gdb/ChangeLog:
[deliverable/binutils-gdb.git] / gas / config / tc-xtensa.c
CommitLineData
e0001a05 1/* tc-xtensa.c -- Assemble Xtensa instructions.
d47d412e 2 Copyright 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
4b4da160
NC
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
e0001a05
NC
20
21#include <string.h>
43cd72b9 22#include <limits.h>
e0001a05
NC
23#include "as.h"
24#include "sb.h"
25#include "safe-ctype.h"
26#include "tc-xtensa.h"
27#include "frags.h"
28#include "subsegs.h"
29#include "xtensa-relax.h"
30#include "xtensa-istack.h"
cda2eb9e 31#include "dwarf2dbg.h"
e0001a05
NC
32#include "struc-symbol.h"
33#include "xtensa-config.h"
34
35#ifndef uint32
36#define uint32 unsigned int
37#endif
38#ifndef int32
39#define int32 signed int
40#endif
41
42/* Notes:
43
e0001a05
NC
44 Naming conventions (used somewhat inconsistently):
45 The xtensa_ functions are exported
46 The xg_ functions are internal
47
48 We also have a couple of different extensibility mechanisms.
49 1) The idiom replacement:
50 This is used when a line is first parsed to
51 replace an instruction pattern with another instruction
52 It is currently limited to replacements of instructions
53 with constant operands.
54 2) The xtensa-relax.c mechanism that has stronger instruction
55 replacement patterns. When an instruction's immediate field
56 does not fit the next instruction sequence is attempted.
57 In addition, "narrow" opcodes are supported this way. */
58
59
60/* Define characters with special meanings to GAS. */
61const char comment_chars[] = "#";
62const char line_comment_chars[] = "#";
63const char line_separator_chars[] = ";";
64const char EXP_CHARS[] = "eE";
65const char FLT_CHARS[] = "rRsSfFdDxXpP";
66
67
43cd72b9
BW
68/* Flags to indicate whether the hardware supports the density and
69 absolute literals options. */
e0001a05 70
e0001a05 71bfd_boolean density_supported = XCHAL_HAVE_DENSITY;
43cd72b9
BW
72bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS;
73
74/* Maximum width we would pad an unreachable frag to get alignment. */
75#define UNREACHABLE_MAX_WIDTH 8
e0001a05 76
43cd72b9
BW
77static vliw_insn cur_vinsn;
78
d77b99c9 79unsigned xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH;
43cd72b9
BW
80
81static enum debug_info_type xt_saved_debug_type = DEBUG_NONE;
82
83/* Some functions are only valid in the front end. This variable
c138bc38 84 allows us to assert that we haven't crossed over into the
43cd72b9
BW
85 back end. */
86static bfd_boolean past_xtensa_end = FALSE;
e0001a05
NC
87
88/* Flags for properties of the last instruction in a segment. */
89#define FLAG_IS_A0_WRITER 0x1
90#define FLAG_IS_BAD_LOOPEND 0x2
91
92
93/* We define a special segment names ".literal" to place literals
94 into. The .fini and .init sections are special because they
95 contain code that is moved together by the linker. We give them
96 their own special .fini.literal and .init.literal sections. */
97
98#define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
43cd72b9 99#define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
e0001a05
NC
100#define FINI_SECTION_NAME xtensa_section_rename (".fini")
101#define INIT_SECTION_NAME xtensa_section_rename (".init")
102#define FINI_LITERAL_SECTION_NAME xtensa_section_rename (".fini.literal")
103#define INIT_LITERAL_SECTION_NAME xtensa_section_rename (".init.literal")
104
105
43cd72b9 106/* This type is used for the directive_stack to keep track of the
e0001a05
NC
107 state of the literal collection pools. */
108
109typedef struct lit_state_struct
110{
111 const char *lit_seg_name;
43cd72b9 112 const char *lit4_seg_name;
e0001a05
NC
113 const char *init_lit_seg_name;
114 const char *fini_lit_seg_name;
115 segT lit_seg;
43cd72b9 116 segT lit4_seg;
e0001a05
NC
117 segT init_lit_seg;
118 segT fini_lit_seg;
119} lit_state;
120
121static lit_state default_lit_sections;
122
123
124/* We keep lists of literal segments. The seg_list type is the node
125 for such a list. The *_literal_head locals are the heads of the
126 various lists. All of these lists have a dummy node at the start. */
127
128typedef struct seg_list_struct
129{
130 struct seg_list_struct *next;
131 segT seg;
132} seg_list;
133
134static seg_list literal_head_h;
135static seg_list *literal_head = &literal_head_h;
136static seg_list init_literal_head_h;
137static seg_list *init_literal_head = &init_literal_head_h;
138static seg_list fini_literal_head_h;
139static seg_list *fini_literal_head = &fini_literal_head_h;
140
141
82e7541d
BW
142/* Lists of symbols. We keep a list of symbols that label the current
143 instruction, so that we can adjust the symbols when inserting alignment
144 for various instructions. We also keep a list of all the symbols on
145 literals, so that we can fix up those symbols when the literals are
146 later moved into the text sections. */
147
148typedef struct sym_list_struct
149{
150 struct sym_list_struct *next;
151 symbolS *sym;
152} sym_list;
153
154static sym_list *insn_labels = NULL;
155static sym_list *free_insn_labels = NULL;
156static sym_list *saved_insn_labels = NULL;
157
158static sym_list *literal_syms;
159
160
43cd72b9
BW
161/* Flags to determine whether to prefer const16 or l32r
162 if both options are available. */
163int prefer_const16 = 0;
164int prefer_l32r = 0;
165
e0001a05
NC
166/* Global flag to indicate when we are emitting literals. */
167int generating_literals = 0;
168
43cd72b9
BW
169/* The following PROPERTY table definitions are copied from
170 <elf/xtensa.h> and must be kept in sync with the code there. */
171
172/* Flags in the property tables to specify whether blocks of memory
173 are literals, instructions, data, or unreachable. For
174 instructions, blocks that begin loop targets and branch targets are
175 designated. Blocks that do not allow density, instruction
176 reordering or transformation are also specified. Finally, for
177 branch targets, branch target alignment priority is included.
178 Alignment of the next block is specified in the current block
179 and the size of the current block does not include any fill required
180 to align to the next block. */
181
182#define XTENSA_PROP_LITERAL 0x00000001
183#define XTENSA_PROP_INSN 0x00000002
184#define XTENSA_PROP_DATA 0x00000004
185#define XTENSA_PROP_UNREACHABLE 0x00000008
186/* Instruction only properties at beginning of code. */
187#define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
188#define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
189/* Instruction only properties about code. */
190#define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
191#define XTENSA_PROP_INSN_NO_REORDER 0x00000080
192#define XTENSA_PROP_INSN_NO_TRANSFORM 0x00000100
193
194/* Branch target alignment information. This transmits information
195 to the linker optimization about the priority of aligning a
196 particular block for branch target alignment: None, low priority,
197 high priority, or required. These only need to be checked in
198 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
199 Common usage is
200
201 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
202 case XTENSA_PROP_BT_ALIGN_NONE:
203 case XTENSA_PROP_BT_ALIGN_LOW:
204 case XTENSA_PROP_BT_ALIGN_HIGH:
205 case XTENSA_PROP_BT_ALIGN_REQUIRE:
206*/
207#define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
208
209/* No branch target alignment. */
210#define XTENSA_PROP_BT_ALIGN_NONE 0x0
211/* Low priority branch target alignment. */
212#define XTENSA_PROP_BT_ALIGN_LOW 0x1
213/* High priority branch target alignment. */
214#define XTENSA_PROP_BT_ALIGN_HIGH 0x2
215/* Required branch target alignment. */
216#define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
217
218#define GET_XTENSA_PROP_BT_ALIGN(flag) \
219 (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9)
220#define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
221 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
222 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
223
224
225/* Alignment is specified in the block BEFORE the one that needs
226 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
227 get the required alignment specified as a power of 2. Use
228 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
229 alignment. Be careful of side effects since the SET will evaluate
230 flags twice. Also, note that the SIZE of a block in the property
231 table does not include the alignment size, so the alignment fill
232 must be calculated to determine if two blocks are contiguous.
233 TEXT_ALIGN is not currently implemented but is a placeholder for a
234 possible future implementation. */
235
236#define XTENSA_PROP_ALIGN 0x00000800
237
238#define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
239
240#define GET_XTENSA_PROP_ALIGNMENT(flag) \
241 (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12)
242#define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
243 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
244 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
245
246#define XTENSA_PROP_INSN_ABSLIT 0x00020000
247
248
249/* Structure for saving instruction and alignment per-fragment data
250 that will be written to the object file. This structure is
251 equivalent to the actual data that will be written out to the file
252 but is easier to use. We provide a conversion to file flags
253 in frag_flags_to_number. */
254
255typedef struct frag_flags_struct frag_flags;
256
257struct frag_flags_struct
258{
259 /* is_literal should only be used after xtensa_move_literals.
260 If you need to check if you are generating a literal fragment,
261 then use the generating_literals global. */
262
263 unsigned is_literal : 1;
264 unsigned is_insn : 1;
265 unsigned is_data : 1;
266 unsigned is_unreachable : 1;
267
268 struct
269 {
270 unsigned is_loop_target : 1;
271 unsigned is_branch_target : 1; /* Branch targets have a priority. */
272 unsigned bt_align_priority : 2;
273
274 unsigned is_no_density : 1;
275 /* no_longcalls flag does not need to be placed in the object file. */
276 /* is_specific_opcode implies no_transform. */
277 unsigned is_no_transform : 1;
278
279 unsigned is_no_reorder : 1;
280
281 /* Uses absolute literal addressing for l32r. */
282 unsigned is_abslit : 1;
283 } insn;
284 unsigned is_align : 1;
285 unsigned alignment : 5;
286};
287
288
289/* Structure for saving information about a block of property data
290 for frags that have the same flags. */
291struct xtensa_block_info_struct
292{
293 segT sec;
294 bfd_vma offset;
295 size_t size;
296 frag_flags flags;
297 struct xtensa_block_info_struct *next;
298};
299
e0001a05
NC
300
301/* Structure for saving the current state before emitting literals. */
302typedef struct emit_state_struct
303{
304 const char *name;
305 segT now_seg;
306 subsegT now_subseg;
307 int generating_literals;
308} emit_state;
309
310
43cd72b9
BW
311/* Opcode placement information */
312
313typedef unsigned long long bitfield;
314#define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
315#define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
316#define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
317
318#define MAX_FORMATS 32
319
320typedef struct op_placement_info_struct
321{
322 int num_formats;
323 /* A number describing how restrictive the issue is for this
324 opcode. For example, an opcode that fits lots of different
c138bc38 325 formats has a high freedom, as does an opcode that fits
43cd72b9 326 only one format but many slots in that format. The most
c138bc38 327 restrictive is the opcode that fits only one slot in one
43cd72b9
BW
328 format. */
329 int issuef;
43cd72b9 330 xtensa_format narrowest;
43cd72b9 331 char narrowest_size;
b2d179be 332 char narrowest_slot;
43cd72b9
BW
333
334 /* formats is a bitfield with the Nth bit set
335 if the opcode fits in the Nth xtensa_format. */
336 bitfield formats;
337
338 /* slots[N]'s Mth bit is set if the op fits in the
339 Mth slot of the Nth xtensa_format. */
340 bitfield slots[MAX_FORMATS];
341
342 /* A count of the number of slots in a given format
343 an op can fit (i.e., the bitcount of the slot field above). */
344 char slots_in_format[MAX_FORMATS];
345
346} op_placement_info, *op_placement_info_table;
347
348op_placement_info_table op_placement_table;
349
350
351/* Extra expression types. */
352
353#define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
354#define O_hi16 O_md2 /* use high 16 bits of symbolic value */
355#define O_lo16 O_md3 /* use low 16 bits of symbolic value */
356
357
e0001a05
NC
358/* Directives. */
359
360typedef enum
361{
362 directive_none = 0,
363 directive_literal,
364 directive_density,
43cd72b9 365 directive_transform,
e0001a05
NC
366 directive_freeregs,
367 directive_longcalls,
43cd72b9
BW
368 directive_literal_prefix,
369 directive_schedule,
370 directive_absolute_literals,
371 directive_last_directive
e0001a05
NC
372} directiveE;
373
374typedef struct
375{
376 const char *name;
377 bfd_boolean can_be_negated;
378} directive_infoS;
379
380const directive_infoS directive_info[] =
381{
43cd72b9
BW
382 { "none", FALSE },
383 { "literal", FALSE },
384 { "density", TRUE },
385 { "transform", TRUE },
386 { "freeregs", FALSE },
387 { "longcalls", TRUE },
388 { "literal_prefix", FALSE },
389 { "schedule", TRUE },
390 { "absolute-literals", TRUE }
e0001a05
NC
391};
392
393bfd_boolean directive_state[] =
394{
395 FALSE, /* none */
396 FALSE, /* literal */
43cd72b9 397#if !XCHAL_HAVE_DENSITY
e0001a05
NC
398 FALSE, /* density */
399#else
400 TRUE, /* density */
401#endif
43cd72b9 402 TRUE, /* transform */
e0001a05
NC
403 FALSE, /* freeregs */
404 FALSE, /* longcalls */
43cd72b9
BW
405 FALSE, /* literal_prefix */
406 TRUE, /* schedule */
407#if XSHAL_USE_ABSOLUTE_LITERALS
408 TRUE /* absolute_literals */
409#else
410 FALSE /* absolute_literals */
411#endif
e0001a05
NC
412};
413
e0001a05
NC
414
415/* Directive functions. */
416
7fa3d080
BW
417static void xtensa_begin_directive (int);
418static void xtensa_end_directive (int);
7fa3d080
BW
419static void xtensa_literal_prefix (char const *, int);
420static void xtensa_literal_position (int);
421static void xtensa_literal_pseudo (int);
422static void xtensa_frequency_pseudo (int);
423static void xtensa_elf_cons (int);
e0001a05 424
7fa3d080 425/* Parsing and Idiom Translation. */
e0001a05 426
7fa3d080 427static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *);
e0001a05 428
e0001a05
NC
429/* Various Other Internal Functions. */
430
84b08ed9
BW
431extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean);
432static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *);
7fa3d080
BW
433static void xtensa_mark_literal_pool_location (void);
434static addressT get_expanded_loop_offset (xtensa_opcode);
435static fragS *get_literal_pool_location (segT);
436static void set_literal_pool_location (segT, fragS *);
437static void xtensa_set_frag_assembly_state (fragS *);
438static void finish_vinsn (vliw_insn *);
439static bfd_boolean emit_single_op (TInsn *);
34e41783 440static int total_frag_text_expansion (fragS *);
e0001a05
NC
441
442/* Alignment Functions. */
443
d77b99c9
BW
444static int get_text_align_power (unsigned);
445static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean);
664df4e4 446static int branch_align_power (segT);
e0001a05
NC
447
448/* Helpers for xtensa_relax_frag(). */
449
7fa3d080 450static long relax_frag_add_nop (fragS *);
e0001a05 451
b08b5071 452/* Accessors for additional per-subsegment information. */
e0001a05 453
7fa3d080
BW
454static unsigned get_last_insn_flags (segT, subsegT);
455static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean);
b08b5071
BW
456static float get_subseg_total_freq (segT, subsegT);
457static float get_subseg_target_freq (segT, subsegT);
458static void set_subseg_freq (segT, subsegT, float, float);
e0001a05
NC
459
460/* Segment list functions. */
461
7fa3d080
BW
462static void xtensa_move_literals (void);
463static void xtensa_reorder_segments (void);
464static void xtensa_switch_to_literal_fragment (emit_state *);
465static void xtensa_switch_to_non_abs_literal_fragment (emit_state *);
466static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT);
467static void xtensa_restore_emit_state (emit_state *);
e0001a05 468static void cache_literal_section
7fa3d080 469 (seg_list *, const char *, segT *, bfd_boolean);
e0001a05 470
e0001a05 471/* Import from elf32-xtensa.c in BFD library. */
43cd72b9 472
7fa3d080 473extern char *xtensa_get_property_section_name (asection *, const char *);
e0001a05 474
43cd72b9
BW
475/* op_placement_info functions. */
476
7fa3d080
BW
477static void init_op_placement_info_table (void);
478extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int);
479static int xg_get_single_size (xtensa_opcode);
480static xtensa_format xg_get_single_format (xtensa_opcode);
b2d179be 481static int xg_get_single_slot (xtensa_opcode);
43cd72b9 482
e0001a05 483/* TInsn and IStack functions. */
43cd72b9 484
7fa3d080
BW
485static bfd_boolean tinsn_has_symbolic_operands (const TInsn *);
486static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *);
487static bfd_boolean tinsn_has_complex_operands (const TInsn *);
488static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf);
489static bfd_boolean tinsn_check_arguments (const TInsn *);
490static void tinsn_from_chars (TInsn *, char *, int);
491static void tinsn_immed_from_frag (TInsn *, fragS *, int);
492static int get_num_stack_text_bytes (IStack *);
493static int get_num_stack_literal_bytes (IStack *);
e0001a05 494
43cd72b9
BW
495/* vliw_insn functions. */
496
7fa3d080
BW
497static void xg_init_vinsn (vliw_insn *);
498static void xg_clear_vinsn (vliw_insn *);
499static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *);
500static void xg_free_vinsn (vliw_insn *);
43cd72b9 501static bfd_boolean vinsn_to_insnbuf
7fa3d080
BW
502 (vliw_insn *, char *, fragS *, bfd_boolean);
503static void vinsn_from_chars (vliw_insn *, char *);
43cd72b9 504
e0001a05 505/* Expression Utilities. */
43cd72b9 506
7fa3d080
BW
507bfd_boolean expr_is_const (const expressionS *);
508offsetT get_expr_const (const expressionS *);
509void set_expr_const (expressionS *, offsetT);
510bfd_boolean expr_is_register (const expressionS *);
511offsetT get_expr_register (const expressionS *);
512void set_expr_symbol_offset (expressionS *, symbolS *, offsetT);
7fa3d080
BW
513bfd_boolean expr_is_equal (expressionS *, expressionS *);
514static void copy_expr (expressionS *, const expressionS *);
e0001a05 515
9456465c
BW
516/* Section renaming. */
517
7fa3d080 518static void build_section_rename (const char *);
e0001a05 519
e0001a05
NC
520
521/* ISA imported from bfd. */
522extern xtensa_isa xtensa_default_isa;
523
524extern int target_big_endian;
525
526static xtensa_opcode xtensa_addi_opcode;
527static xtensa_opcode xtensa_addmi_opcode;
528static xtensa_opcode xtensa_call0_opcode;
529static xtensa_opcode xtensa_call4_opcode;
530static xtensa_opcode xtensa_call8_opcode;
531static xtensa_opcode xtensa_call12_opcode;
532static xtensa_opcode xtensa_callx0_opcode;
533static xtensa_opcode xtensa_callx4_opcode;
534static xtensa_opcode xtensa_callx8_opcode;
535static xtensa_opcode xtensa_callx12_opcode;
43cd72b9 536static xtensa_opcode xtensa_const16_opcode;
e0001a05 537static xtensa_opcode xtensa_entry_opcode;
43cd72b9
BW
538static xtensa_opcode xtensa_movi_opcode;
539static xtensa_opcode xtensa_movi_n_opcode;
e0001a05 540static xtensa_opcode xtensa_isync_opcode;
e0001a05 541static xtensa_opcode xtensa_jx_opcode;
43cd72b9 542static xtensa_opcode xtensa_l32r_opcode;
e0001a05
NC
543static xtensa_opcode xtensa_loop_opcode;
544static xtensa_opcode xtensa_loopnez_opcode;
545static xtensa_opcode xtensa_loopgtz_opcode;
43cd72b9 546static xtensa_opcode xtensa_nop_opcode;
e0001a05
NC
547static xtensa_opcode xtensa_nop_n_opcode;
548static xtensa_opcode xtensa_or_opcode;
549static xtensa_opcode xtensa_ret_opcode;
550static xtensa_opcode xtensa_ret_n_opcode;
551static xtensa_opcode xtensa_retw_opcode;
552static xtensa_opcode xtensa_retw_n_opcode;
43cd72b9 553static xtensa_opcode xtensa_rsr_lcount_opcode;
e0001a05
NC
554static xtensa_opcode xtensa_waiti_opcode;
555
556\f
557/* Command-line Options. */
558
559bfd_boolean use_literal_section = TRUE;
560static bfd_boolean align_targets = TRUE;
43cd72b9 561static bfd_boolean warn_unaligned_branch_targets = FALSE;
e0001a05 562static bfd_boolean has_a0_b_retw = FALSE;
43cd72b9
BW
563static bfd_boolean workaround_a0_b_retw = FALSE;
564static bfd_boolean workaround_b_j_loop_end = FALSE;
565static bfd_boolean workaround_short_loop = FALSE;
e0001a05 566static bfd_boolean maybe_has_short_loop = FALSE;
43cd72b9 567static bfd_boolean workaround_close_loop_end = FALSE;
e0001a05 568static bfd_boolean maybe_has_close_loop_end = FALSE;
03aaa593 569static bfd_boolean enforce_three_byte_loop_align = FALSE;
e0001a05 570
43cd72b9
BW
571/* When workaround_short_loops is TRUE, all loops with early exits must
572 have at least 3 instructions. workaround_all_short_loops is a modifier
573 to the workaround_short_loop flag. In addition to the
574 workaround_short_loop actions, all straightline loopgtz and loopnez
575 must have at least 3 instructions. */
e0001a05 576
43cd72b9 577static bfd_boolean workaround_all_short_loops = FALSE;
e0001a05 578
7fa3d080
BW
579
580static void
581xtensa_setup_hw_workarounds (int earliest, int latest)
582{
583 if (earliest > latest)
584 as_fatal (_("illegal range of target hardware versions"));
585
586 /* Enable all workarounds for pre-T1050.0 hardware. */
587 if (earliest < 105000 || latest < 105000)
588 {
589 workaround_a0_b_retw |= TRUE;
590 workaround_b_j_loop_end |= TRUE;
591 workaround_short_loop |= TRUE;
592 workaround_close_loop_end |= TRUE;
593 workaround_all_short_loops |= TRUE;
03aaa593 594 enforce_three_byte_loop_align = TRUE;
7fa3d080
BW
595 }
596}
597
598
e0001a05
NC
599enum
600{
601 option_density = OPTION_MD_BASE,
602 option_no_density,
603
604 option_relax,
605 option_no_relax,
606
43cd72b9
BW
607 option_link_relax,
608 option_no_link_relax,
609
e0001a05
NC
610 option_generics,
611 option_no_generics,
612
43cd72b9
BW
613 option_transform,
614 option_no_transform,
615
e0001a05
NC
616 option_text_section_literals,
617 option_no_text_section_literals,
618
43cd72b9
BW
619 option_absolute_literals,
620 option_no_absolute_literals,
621
e0001a05
NC
622 option_align_targets,
623 option_no_align_targets,
624
43cd72b9 625 option_warn_unaligned_targets,
e0001a05
NC
626
627 option_longcalls,
628 option_no_longcalls,
629
630 option_workaround_a0_b_retw,
631 option_no_workaround_a0_b_retw,
632
633 option_workaround_b_j_loop_end,
634 option_no_workaround_b_j_loop_end,
635
636 option_workaround_short_loop,
637 option_no_workaround_short_loop,
638
639 option_workaround_all_short_loops,
640 option_no_workaround_all_short_loops,
641
642 option_workaround_close_loop_end,
643 option_no_workaround_close_loop_end,
644
645 option_no_workarounds,
646
e0001a05 647 option_rename_section_name,
e0001a05 648
43cd72b9
BW
649 option_prefer_l32r,
650 option_prefer_const16,
651
652 option_target_hardware
e0001a05
NC
653};
654
655const char *md_shortopts = "";
656
657struct option md_longopts[] =
658{
43cd72b9
BW
659 { "density", no_argument, NULL, option_density },
660 { "no-density", no_argument, NULL, option_no_density },
661
662 /* Both "relax" and "generics" are deprecated and treated as equivalent
663 to the "transform" option. */
664 { "relax", no_argument, NULL, option_relax },
665 { "no-relax", no_argument, NULL, option_no_relax },
666 { "generics", no_argument, NULL, option_generics },
667 { "no-generics", no_argument, NULL, option_no_generics },
668
669 { "transform", no_argument, NULL, option_transform },
670 { "no-transform", no_argument, NULL, option_no_transform },
671 { "text-section-literals", no_argument, NULL, option_text_section_literals },
672 { "no-text-section-literals", no_argument, NULL,
673 option_no_text_section_literals },
674 { "absolute-literals", no_argument, NULL, option_absolute_literals },
675 { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals },
e0001a05
NC
676 /* This option was changed from -align-target to -target-align
677 because it conflicted with the "-al" option. */
43cd72b9 678 { "target-align", no_argument, NULL, option_align_targets },
7fa3d080
BW
679 { "no-target-align", no_argument, NULL, option_no_align_targets },
680 { "warn-unaligned-targets", no_argument, NULL,
681 option_warn_unaligned_targets },
43cd72b9
BW
682 { "longcalls", no_argument, NULL, option_longcalls },
683 { "no-longcalls", no_argument, NULL, option_no_longcalls },
684
685 { "no-workaround-a0-b-retw", no_argument, NULL,
686 option_no_workaround_a0_b_retw },
687 { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw },
e0001a05 688
43cd72b9
BW
689 { "no-workaround-b-j-loop-end", no_argument, NULL,
690 option_no_workaround_b_j_loop_end },
691 { "workaround-b-j-loop-end", no_argument, NULL,
692 option_workaround_b_j_loop_end },
e0001a05 693
43cd72b9
BW
694 { "no-workaround-short-loops", no_argument, NULL,
695 option_no_workaround_short_loop },
7fa3d080
BW
696 { "workaround-short-loops", no_argument, NULL,
697 option_workaround_short_loop },
e0001a05 698
43cd72b9
BW
699 { "no-workaround-all-short-loops", no_argument, NULL,
700 option_no_workaround_all_short_loops },
701 { "workaround-all-short-loop", no_argument, NULL,
702 option_workaround_all_short_loops },
703
704 { "prefer-l32r", no_argument, NULL, option_prefer_l32r },
705 { "prefer-const16", no_argument, NULL, option_prefer_const16 },
706
707 { "no-workarounds", no_argument, NULL, option_no_workarounds },
708
709 { "no-workaround-close-loop-end", no_argument, NULL,
710 option_no_workaround_close_loop_end },
711 { "workaround-close-loop-end", no_argument, NULL,
712 option_workaround_close_loop_end },
e0001a05 713
7fa3d080 714 { "rename-section", required_argument, NULL, option_rename_section_name },
e0001a05 715
43cd72b9
BW
716 { "link-relax", no_argument, NULL, option_link_relax },
717 { "no-link-relax", no_argument, NULL, option_no_link_relax },
718
719 { "target-hardware", required_argument, NULL, option_target_hardware },
720
721 { NULL, no_argument, NULL, 0 }
e0001a05
NC
722};
723
724size_t md_longopts_size = sizeof md_longopts;
725
726
727int
7fa3d080 728md_parse_option (int c, char *arg)
e0001a05
NC
729{
730 switch (c)
731 {
732 case option_density:
43cd72b9 733 as_warn (_("--density option is ignored"));
e0001a05
NC
734 return 1;
735 case option_no_density:
43cd72b9 736 as_warn (_("--no-density option is ignored"));
e0001a05 737 return 1;
43cd72b9
BW
738 case option_link_relax:
739 linkrelax = 1;
e0001a05 740 return 1;
43cd72b9
BW
741 case option_no_link_relax:
742 linkrelax = 0;
e0001a05 743 return 1;
43cd72b9
BW
744 case option_generics:
745 as_warn (_("--generics is deprecated; use --transform instead"));
746 return md_parse_option (option_transform, arg);
747 case option_no_generics:
748 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
749 return md_parse_option (option_no_transform, arg);
750 case option_relax:
751 as_warn (_("--relax is deprecated; use --transform instead"));
752 return md_parse_option (option_transform, arg);
753 case option_no_relax:
754 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
755 return md_parse_option (option_no_transform, arg);
e0001a05
NC
756 case option_longcalls:
757 directive_state[directive_longcalls] = TRUE;
758 return 1;
759 case option_no_longcalls:
760 directive_state[directive_longcalls] = FALSE;
761 return 1;
762 case option_text_section_literals:
763 use_literal_section = FALSE;
764 return 1;
765 case option_no_text_section_literals:
766 use_literal_section = TRUE;
767 return 1;
43cd72b9
BW
768 case option_absolute_literals:
769 if (!absolute_literals_supported)
770 {
771 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
772 return 0;
773 }
774 directive_state[directive_absolute_literals] = TRUE;
775 return 1;
776 case option_no_absolute_literals:
777 directive_state[directive_absolute_literals] = FALSE;
778 return 1;
779
e0001a05
NC
780 case option_workaround_a0_b_retw:
781 workaround_a0_b_retw = TRUE;
e0001a05
NC
782 return 1;
783 case option_no_workaround_a0_b_retw:
784 workaround_a0_b_retw = FALSE;
e0001a05
NC
785 return 1;
786 case option_workaround_b_j_loop_end:
787 workaround_b_j_loop_end = TRUE;
e0001a05
NC
788 return 1;
789 case option_no_workaround_b_j_loop_end:
790 workaround_b_j_loop_end = FALSE;
e0001a05
NC
791 return 1;
792
793 case option_workaround_short_loop:
794 workaround_short_loop = TRUE;
e0001a05
NC
795 return 1;
796 case option_no_workaround_short_loop:
797 workaround_short_loop = FALSE;
e0001a05
NC
798 return 1;
799
800 case option_workaround_all_short_loops:
801 workaround_all_short_loops = TRUE;
e0001a05
NC
802 return 1;
803 case option_no_workaround_all_short_loops:
804 workaround_all_short_loops = FALSE;
e0001a05
NC
805 return 1;
806
807 case option_workaround_close_loop_end:
808 workaround_close_loop_end = TRUE;
e0001a05
NC
809 return 1;
810 case option_no_workaround_close_loop_end:
811 workaround_close_loop_end = FALSE;
e0001a05
NC
812 return 1;
813
814 case option_no_workarounds:
815 workaround_a0_b_retw = FALSE;
e0001a05 816 workaround_b_j_loop_end = FALSE;
e0001a05 817 workaround_short_loop = FALSE;
e0001a05 818 workaround_all_short_loops = FALSE;
e0001a05 819 workaround_close_loop_end = FALSE;
e0001a05 820 return 1;
43cd72b9 821
e0001a05
NC
822 case option_align_targets:
823 align_targets = TRUE;
824 return 1;
825 case option_no_align_targets:
826 align_targets = FALSE;
827 return 1;
828
43cd72b9
BW
829 case option_warn_unaligned_targets:
830 warn_unaligned_branch_targets = TRUE;
e0001a05
NC
831 return 1;
832
e0001a05
NC
833 case option_rename_section_name:
834 build_section_rename (arg);
835 return 1;
e0001a05
NC
836
837 case 'Q':
838 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
839 should be emitted or not. FIXME: Not implemented. */
840 return 1;
c138bc38 841
43cd72b9
BW
842 case option_prefer_l32r:
843 if (prefer_const16)
844 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
845 prefer_l32r = 1;
846 return 1;
847
848 case option_prefer_const16:
849 if (prefer_l32r)
850 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
851 prefer_const16 = 1;
852 return 1;
853
c138bc38 854 case option_target_hardware:
43cd72b9
BW
855 {
856 int earliest, latest = 0;
857 if (*arg == 0 || *arg == '-')
858 as_fatal (_("invalid target hardware version"));
859
860 earliest = strtol (arg, &arg, 0);
861
862 if (*arg == 0)
863 latest = earliest;
864 else if (*arg == '-')
865 {
866 if (*++arg == 0)
867 as_fatal (_("invalid target hardware version"));
868 latest = strtol (arg, &arg, 0);
869 }
870 if (*arg != 0)
871 as_fatal (_("invalid target hardware version"));
872
873 xtensa_setup_hw_workarounds (earliest, latest);
874 return 1;
875 }
876
877 case option_transform:
878 /* This option has no affect other than to use the defaults,
879 which are already set. */
880 return 1;
881
882 case option_no_transform:
883 /* This option turns off all transformations of any kind.
884 However, because we want to preserve the state of other
885 directives, we only change its own field. Thus, before
886 you perform any transformation, always check if transform
887 is available. If you use the functions we provide for this
888 purpose, you will be ok. */
889 directive_state[directive_transform] = FALSE;
890 return 1;
891
e0001a05
NC
892 default:
893 return 0;
894 }
895}
896
897
898void
7fa3d080 899md_show_usage (FILE *stream)
e0001a05 900{
43cd72b9
BW
901 fputs ("\n\
902Xtensa options:\n\
9456465c
BW
903 --[no-]text-section-literals\n\
904 [Do not] put literals in the text section\n\
905 --[no-]absolute-literals\n\
906 [Do not] default to use non-PC-relative literals\n\
907 --[no-]target-align [Do not] try to align branch targets\n\
908 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
909 --[no-]transform [Do not] transform instructions\n\
910 --rename-section old=new Rename section 'old' to 'new'\n", stream);
e0001a05
NC
911}
912
7fa3d080
BW
913\f
914/* Functions related to the list of current label symbols. */
43cd72b9
BW
915
916static void
7fa3d080 917xtensa_add_insn_label (symbolS *sym)
43cd72b9 918{
7fa3d080 919 sym_list *l;
43cd72b9 920
7fa3d080
BW
921 if (!free_insn_labels)
922 l = (sym_list *) xmalloc (sizeof (sym_list));
923 else
43cd72b9 924 {
7fa3d080
BW
925 l = free_insn_labels;
926 free_insn_labels = l->next;
927 }
928
929 l->sym = sym;
930 l->next = insn_labels;
931 insn_labels = l;
932}
933
934
935static void
936xtensa_clear_insn_labels (void)
937{
938 sym_list **pl;
939
940 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
941 ;
942 *pl = insn_labels;
943 insn_labels = NULL;
944}
945
946
c138bc38
BW
947/* The "loops_ok" argument is provided to allow ignoring labels that
948 define loop ends. This fixes a bug where the NOPs to align a
7fa3d080
BW
949 loop opcode were included in a previous zero-cost loop:
950
951 loop a0, loopend
952 <loop1 body>
953 loopend:
954
955 loop a2, loopend2
956 <loop2 body>
957
958 would become:
959
960 loop a0, loopend
961 <loop1 body>
962 nop.n <===== bad!
963 loopend:
964
965 loop a2, loopend2
966 <loop2 body>
967
968 This argument is used to prevent moving the NOP to before the
969 loop-end label, which is what you want in this special case. */
970
971static void
972xtensa_move_labels (fragS *new_frag, valueT new_offset, bfd_boolean loops_ok)
973{
974 sym_list *lit;
975
976 for (lit = insn_labels; lit; lit = lit->next)
977 {
978 symbolS *lit_sym = lit->sym;
979 if (loops_ok || ! symbol_get_tc (lit_sym)->is_loop_target)
980 {
981 S_SET_VALUE (lit_sym, new_offset);
982 symbol_set_frag (lit_sym, new_frag);
983 }
43cd72b9
BW
984 }
985}
986
e0001a05
NC
987\f
988/* Directive data and functions. */
989
990typedef struct state_stackS_struct
991{
992 directiveE directive;
993 bfd_boolean negated;
994 bfd_boolean old_state;
995 const char *file;
996 unsigned int line;
997 const void *datum;
998 struct state_stackS_struct *prev;
999} state_stackS;
1000
1001state_stackS *directive_state_stack;
1002
1003const pseudo_typeS md_pseudo_table[] =
1004{
43cd72b9
BW
1005 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
1006 { "literal_position", xtensa_literal_position, 0 },
1007 { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */
1008 { "long", xtensa_elf_cons, 4 },
1009 { "word", xtensa_elf_cons, 4 },
1010 { "short", xtensa_elf_cons, 2 },
1011 { "begin", xtensa_begin_directive, 0 },
1012 { "end", xtensa_end_directive, 0 },
43cd72b9
BW
1013 { "literal", xtensa_literal_pseudo, 0 },
1014 { "frequency", xtensa_frequency_pseudo, 0 },
1015 { NULL, 0, 0 },
e0001a05
NC
1016};
1017
1018
7fa3d080
BW
1019static bfd_boolean
1020use_transform (void)
e0001a05 1021{
43cd72b9
BW
1022 /* After md_end, you should be checking frag by frag, rather
1023 than state directives. */
1024 assert (!past_xtensa_end);
1025 return directive_state[directive_transform];
e0001a05
NC
1026}
1027
1028
7fa3d080
BW
1029static bfd_boolean
1030do_align_targets (void)
e0001a05 1031{
7b1cc377
BW
1032 /* Do not use this function after md_end; just look at align_targets
1033 instead. There is no target-align directive, so alignment is either
1034 enabled for all frags or not done at all. */
43cd72b9
BW
1035 assert (!past_xtensa_end);
1036 return align_targets && use_transform ();
e0001a05
NC
1037}
1038
1039
1040static void
7fa3d080 1041directive_push (directiveE directive, bfd_boolean negated, const void *datum)
e0001a05
NC
1042{
1043 char *file;
1044 unsigned int line;
1045 state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS));
1046
1047 as_where (&file, &line);
1048
1049 stack->directive = directive;
1050 stack->negated = negated;
1051 stack->old_state = directive_state[directive];
1052 stack->file = file;
1053 stack->line = line;
1054 stack->datum = datum;
1055 stack->prev = directive_state_stack;
1056 directive_state_stack = stack;
1057
1058 directive_state[directive] = !negated;
1059}
1060
7fa3d080 1061
e0001a05 1062static void
7fa3d080
BW
1063directive_pop (directiveE *directive,
1064 bfd_boolean *negated,
1065 const char **file,
1066 unsigned int *line,
1067 const void **datum)
e0001a05
NC
1068{
1069 state_stackS *top = directive_state_stack;
1070
1071 if (!directive_state_stack)
1072 {
1073 as_bad (_("unmatched end directive"));
1074 *directive = directive_none;
1075 return;
1076 }
1077
1078 directive_state[directive_state_stack->directive] = top->old_state;
1079 *directive = top->directive;
1080 *negated = top->negated;
1081 *file = top->file;
1082 *line = top->line;
1083 *datum = top->datum;
1084 directive_state_stack = top->prev;
1085 free (top);
1086}
1087
1088
1089static void
7fa3d080 1090directive_balance (void)
e0001a05
NC
1091{
1092 while (directive_state_stack)
1093 {
1094 directiveE directive;
1095 bfd_boolean negated;
1096 const char *file;
1097 unsigned int line;
1098 const void *datum;
1099
1100 directive_pop (&directive, &negated, &file, &line, &datum);
1101 as_warn_where ((char *) file, line,
1102 _(".begin directive with no matching .end directive"));
1103 }
1104}
1105
1106
1107static bfd_boolean
7fa3d080 1108inside_directive (directiveE dir)
e0001a05
NC
1109{
1110 state_stackS *top = directive_state_stack;
1111
1112 while (top && top->directive != dir)
1113 top = top->prev;
1114
1115 return (top != NULL);
1116}
1117
1118
1119static void
7fa3d080 1120get_directive (directiveE *directive, bfd_boolean *negated)
e0001a05
NC
1121{
1122 int len;
1123 unsigned i;
43cd72b9 1124 char *directive_string;
e0001a05
NC
1125
1126 if (strncmp (input_line_pointer, "no-", 3) != 0)
1127 *negated = FALSE;
1128 else
1129 {
1130 *negated = TRUE;
1131 input_line_pointer += 3;
1132 }
1133
1134 len = strspn (input_line_pointer,
43cd72b9
BW
1135 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1136
1137 /* This code is a hack to make .begin [no-][generics|relax] exactly
1138 equivalent to .begin [no-]transform. We should remove it when
1139 we stop accepting those options. */
c138bc38 1140
43cd72b9
BW
1141 if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0)
1142 {
1143 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1144 directive_string = "transform";
1145 }
1146 else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0)
1147 {
1148 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1149 directive_string = "transform";
c138bc38 1150 }
43cd72b9
BW
1151 else
1152 directive_string = input_line_pointer;
e0001a05
NC
1153
1154 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1155 {
43cd72b9 1156 if (strncmp (directive_string, directive_info[i].name, len) == 0)
e0001a05
NC
1157 {
1158 input_line_pointer += len;
1159 *directive = (directiveE) i;
1160 if (*negated && !directive_info[i].can_be_negated)
43cd72b9 1161 as_bad (_("directive %s cannot be negated"),
e0001a05
NC
1162 directive_info[i].name);
1163 return;
1164 }
1165 }
1166
1167 as_bad (_("unknown directive"));
1168 *directive = (directiveE) XTENSA_UNDEFINED;
1169}
1170
1171
1172static void
7fa3d080 1173xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED)
e0001a05
NC
1174{
1175 directiveE directive;
1176 bfd_boolean negated;
1177 emit_state *state;
1178 int len;
1179 lit_state *ls;
1180
1181 get_directive (&directive, &negated);
1182 if (directive == (directiveE) XTENSA_UNDEFINED)
1183 {
1184 discard_rest_of_line ();
1185 return;
1186 }
1187
43cd72b9
BW
1188 if (cur_vinsn.inside_bundle)
1189 as_bad (_("directives are not valid inside bundles"));
1190
e0001a05
NC
1191 switch (directive)
1192 {
1193 case directive_literal:
82e7541d
BW
1194 if (!inside_directive (directive_literal))
1195 {
1196 /* Previous labels go with whatever follows this directive, not with
1197 the literal, so save them now. */
1198 saved_insn_labels = insn_labels;
1199 insn_labels = NULL;
1200 }
43cd72b9 1201 as_warn (_(".begin literal is deprecated; use .literal instead"));
e0001a05
NC
1202 state = (emit_state *) xmalloc (sizeof (emit_state));
1203 xtensa_switch_to_literal_fragment (state);
1204 directive_push (directive_literal, negated, state);
1205 break;
1206
1207 case directive_literal_prefix:
c138bc38 1208 /* Have to flush pending output because a movi relaxed to an l32r
43cd72b9
BW
1209 might produce a literal. */
1210 md_flush_pending_output ();
e0001a05
NC
1211 /* Check to see if the current fragment is a literal
1212 fragment. If it is, then this operation is not allowed. */
43cd72b9 1213 if (generating_literals)
e0001a05
NC
1214 {
1215 as_bad (_("cannot set literal_prefix inside literal fragment"));
1216 return;
1217 }
1218
1219 /* Allocate the literal state for this section and push
1220 onto the directive stack. */
1221 ls = xmalloc (sizeof (lit_state));
1222 assert (ls);
1223
1224 *ls = default_lit_sections;
1225
1226 directive_push (directive_literal_prefix, negated, ls);
1227
1228 /* Parse the new prefix from the input_line_pointer. */
1229 SKIP_WHITESPACE ();
1230 len = strspn (input_line_pointer,
1231 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1232 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1233
1234 /* Process the new prefix. */
1235 xtensa_literal_prefix (input_line_pointer, len);
1236
1237 /* Skip the name in the input line. */
1238 input_line_pointer += len;
1239 break;
1240
1241 case directive_freeregs:
1242 /* This information is currently unused, but we'll accept the statement
1243 and just discard the rest of the line. This won't check the syntax,
1244 but it will accept every correct freeregs directive. */
1245 input_line_pointer += strcspn (input_line_pointer, "\n");
1246 directive_push (directive_freeregs, negated, 0);
1247 break;
1248
43cd72b9
BW
1249 case directive_schedule:
1250 md_flush_pending_output ();
1251 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
1252 frag_now->fr_symbol, frag_now->fr_offset, NULL);
1253 directive_push (directive_schedule, negated, 0);
1254 xtensa_set_frag_assembly_state (frag_now);
1255 break;
1256
e0001a05 1257 case directive_density:
43cd72b9
BW
1258 as_warn (_(".begin [no-]density is ignored"));
1259 break;
1260
1261 case directive_absolute_literals:
1262 md_flush_pending_output ();
1263 if (!absolute_literals_supported && !negated)
e0001a05 1264 {
43cd72b9 1265 as_warn (_("Xtensa absolute literals option not supported; ignored"));
e0001a05
NC
1266 break;
1267 }
43cd72b9
BW
1268 xtensa_set_frag_assembly_state (frag_now);
1269 directive_push (directive, negated, 0);
1270 break;
e0001a05
NC
1271
1272 default:
43cd72b9
BW
1273 md_flush_pending_output ();
1274 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
1275 directive_push (directive, negated, 0);
1276 break;
1277 }
1278
1279 demand_empty_rest_of_line ();
1280}
1281
1282
1283static void
7fa3d080 1284xtensa_end_directive (int ignore ATTRIBUTE_UNUSED)
e0001a05
NC
1285{
1286 directiveE begin_directive, end_directive;
1287 bfd_boolean begin_negated, end_negated;
1288 const char *file;
1289 unsigned int line;
1290 emit_state *state;
43cd72b9 1291 emit_state **state_ptr;
e0001a05
NC
1292 lit_state *s;
1293
43cd72b9
BW
1294 if (cur_vinsn.inside_bundle)
1295 as_bad (_("directives are not valid inside bundles"));
82e7541d 1296
e0001a05 1297 get_directive (&end_directive, &end_negated);
43cd72b9
BW
1298
1299 md_flush_pending_output ();
1300
1301 switch (end_directive)
e0001a05 1302 {
43cd72b9 1303 case (directiveE) XTENSA_UNDEFINED:
e0001a05
NC
1304 discard_rest_of_line ();
1305 return;
e0001a05 1306
43cd72b9
BW
1307 case directive_density:
1308 as_warn (_(".end [no-]density is ignored"));
e0001a05 1309 demand_empty_rest_of_line ();
43cd72b9
BW
1310 break;
1311
1312 case directive_absolute_literals:
1313 if (!absolute_literals_supported && !end_negated)
1314 {
1315 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1316 demand_empty_rest_of_line ();
1317 return;
1318 }
1319 break;
1320
1321 default:
1322 break;
e0001a05
NC
1323 }
1324
43cd72b9 1325 state_ptr = &state; /* use state_ptr to avoid type-punning warning */
e0001a05 1326 directive_pop (&begin_directive, &begin_negated, &file, &line,
43cd72b9 1327 (const void **) state_ptr);
e0001a05
NC
1328
1329 if (begin_directive != directive_none)
1330 {
1331 if (begin_directive != end_directive || begin_negated != end_negated)
1332 {
1333 as_bad (_("does not match begin %s%s at %s:%d"),
1334 begin_negated ? "no-" : "",
1335 directive_info[begin_directive].name, file, line);
1336 }
1337 else
1338 {
1339 switch (end_directive)
1340 {
1341 case directive_literal:
1342 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1343 xtensa_restore_emit_state (state);
43cd72b9 1344 xtensa_set_frag_assembly_state (frag_now);
e0001a05 1345 free (state);
82e7541d
BW
1346 if (!inside_directive (directive_literal))
1347 {
1348 /* Restore the list of current labels. */
1349 xtensa_clear_insn_labels ();
1350 insn_labels = saved_insn_labels;
1351 }
e0001a05
NC
1352 break;
1353
e0001a05
NC
1354 case directive_literal_prefix:
1355 /* Restore the default collection sections from saved state. */
1356 s = (lit_state *) state;
1357 assert (s);
1358
e8247da7 1359 default_lit_sections = *s;
e0001a05
NC
1360
1361 /* free the state storage */
1362 free (s);
1363 break;
1364
43cd72b9
BW
1365 case directive_schedule:
1366 case directive_freeregs:
1367 break;
1368
e0001a05 1369 default:
43cd72b9 1370 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
1371 break;
1372 }
1373 }
1374 }
1375
1376 demand_empty_rest_of_line ();
1377}
1378
1379
1380/* Place an aligned literal fragment at the current location. */
1381
1382static void
7fa3d080 1383xtensa_literal_position (int ignore ATTRIBUTE_UNUSED)
e0001a05 1384{
43cd72b9
BW
1385 md_flush_pending_output ();
1386
e0001a05
NC
1387 if (inside_directive (directive_literal))
1388 as_warn (_(".literal_position inside literal directive; ignoring"));
43cd72b9 1389 xtensa_mark_literal_pool_location ();
e0001a05
NC
1390
1391 demand_empty_rest_of_line ();
82e7541d 1392 xtensa_clear_insn_labels ();
e0001a05
NC
1393}
1394
1395
43cd72b9 1396/* Support .literal label, expr, ... */
e0001a05
NC
1397
1398static void
7fa3d080 1399xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED)
e0001a05
NC
1400{
1401 emit_state state;
1745fcba 1402 char *p, *base_name;
e0001a05 1403 char c;
e0001a05
NC
1404 segT dest_seg;
1405
82e7541d
BW
1406 if (inside_directive (directive_literal))
1407 {
1408 as_bad (_(".literal not allowed inside .begin literal region"));
1409 ignore_rest_of_line ();
1410 return;
1411 }
1412
43cd72b9
BW
1413 md_flush_pending_output ();
1414
82e7541d
BW
1415 /* Previous labels go with whatever follows this directive, not with
1416 the literal, so save them now. */
1417 saved_insn_labels = insn_labels;
1418 insn_labels = NULL;
1419
e0001a05
NC
1420 /* If we are using text-section literals, then this is the right value... */
1421 dest_seg = now_seg;
1422
1423 base_name = input_line_pointer;
1424
1425 xtensa_switch_to_literal_fragment (&state);
1426
43cd72b9 1427 /* ...but if we aren't using text-section-literals, then we
e0001a05 1428 need to put them in the section we just switched to. */
43cd72b9 1429 if (use_literal_section || directive_state[directive_absolute_literals])
e0001a05
NC
1430 dest_seg = now_seg;
1431
43cd72b9
BW
1432 /* All literals are aligned to four-byte boundaries. */
1433 frag_align (2, 0, 0);
1434 record_alignment (now_seg, 2);
e0001a05
NC
1435
1436 c = get_symbol_end ();
1437 /* Just after name is now '\0'. */
1438 p = input_line_pointer;
1439 *p = c;
1440 SKIP_WHITESPACE ();
1441
1442 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1443 {
1444 as_bad (_("expected comma or colon after symbol name; "
1445 "rest of line ignored"));
1446 ignore_rest_of_line ();
1447 xtensa_restore_emit_state (&state);
1448 return;
1449 }
1450 *p = 0;
1451
e0001a05 1452 colon (base_name);
e0001a05 1453
e0001a05 1454 *p = c;
43cd72b9 1455 input_line_pointer++; /* skip ',' or ':' */
e0001a05 1456
43cd72b9 1457 xtensa_elf_cons (4);
e0001a05
NC
1458
1459 xtensa_restore_emit_state (&state);
82e7541d
BW
1460
1461 /* Restore the list of current labels. */
1462 xtensa_clear_insn_labels ();
1463 insn_labels = saved_insn_labels;
e0001a05
NC
1464}
1465
1466
1467static void
7fa3d080 1468xtensa_literal_prefix (char const *start, int len)
e0001a05 1469{
43cd72b9
BW
1470 char *name, *linkonce_suffix;
1471 char *newname, *newname4;
1472 size_t linkonce_len;
e0001a05
NC
1473
1474 /* Get a null-terminated copy of the name. */
1475 name = xmalloc (len + 1);
1476 assert (name);
1477
1478 strncpy (name, start, len);
1479 name[len] = 0;
1480
1481 /* Allocate the sections (interesting note: the memory pointing to
1482 the name is actually used for the name by the new section). */
43cd72b9 1483
e0001a05 1484 newname = xmalloc (len + strlen (".literal") + 1);
43cd72b9 1485 newname4 = xmalloc (len + strlen (".lit4") + 1);
e0001a05 1486
43cd72b9
BW
1487 linkonce_len = sizeof (".gnu.linkonce.") - 1;
1488 if (strncmp (name, ".gnu.linkonce.", linkonce_len) == 0
1489 && (linkonce_suffix = strchr (name + linkonce_len, '.')) != 0)
1490 {
1491 strcpy (newname, ".gnu.linkonce.literal");
1492 strcpy (newname4, ".gnu.linkonce.lit4");
e0001a05 1493
43cd72b9
BW
1494 strcat (newname, linkonce_suffix);
1495 strcat (newname4, linkonce_suffix);
1496 }
1497 else
1498 {
1499 int suffix_pos = len;
1500
1501 /* If the section name ends with ".text", then replace that suffix
1502 instead of appending an additional suffix. */
1503 if (len >= 5 && strcmp (name + len - 5, ".text") == 0)
1504 suffix_pos -= 5;
1505
1506 strcpy (newname, name);
1507 strcpy (newname4, name);
1508
1509 strcpy (newname + suffix_pos, ".literal");
1510 strcpy (newname4 + suffix_pos, ".lit4");
1511 }
1512
b08b5071 1513 /* Note that cache_literal_section does not create a segment if
43cd72b9
BW
1514 it already exists. */
1515 default_lit_sections.lit_seg = NULL;
1516 default_lit_sections.lit4_seg = NULL;
1517
1518 /* Canonicalizing section names allows renaming literal
e0001a05 1519 sections to occur correctly. */
43cd72b9
BW
1520 default_lit_sections.lit_seg_name = tc_canonicalize_symbol_name (newname);
1521 default_lit_sections.lit4_seg_name = tc_canonicalize_symbol_name (newname4);
e0001a05
NC
1522
1523 free (name);
43cd72b9
BW
1524}
1525
1526
1527/* Support ".frequency branch_target_frequency fall_through_frequency". */
1528
1529static void
7fa3d080 1530xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED)
43cd72b9
BW
1531{
1532 float fall_through_f, target_f;
43cd72b9
BW
1533
1534 fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer);
1535 if (fall_through_f < 0)
1536 {
1537 as_bad (_("fall through frequency must be greater than 0"));
1538 ignore_rest_of_line ();
1539 return;
1540 }
1541
1542 target_f = (float) strtod (input_line_pointer, &input_line_pointer);
1543 if (target_f < 0)
1544 {
1545 as_bad (_("branch target frequency must be greater than 0"));
1546 ignore_rest_of_line ();
1547 return;
1548 }
1549
b08b5071 1550 set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f);
43cd72b9
BW
1551
1552 demand_empty_rest_of_line ();
1553}
1554
1555
1556/* Like normal .long/.short/.word, except support @plt, etc.
1557 Clobbers input_line_pointer, checks end-of-line. */
1558
1559static void
7fa3d080 1560xtensa_elf_cons (int nbytes)
43cd72b9
BW
1561{
1562 expressionS exp;
1563 bfd_reloc_code_real_type reloc;
1564
1565 md_flush_pending_output ();
1566
1567 if (cur_vinsn.inside_bundle)
1568 as_bad (_("directives are not valid inside bundles"));
1569
1570 if (is_it_end_of_statement ())
1571 {
1572 demand_empty_rest_of_line ();
1573 return;
1574 }
1575
1576 do
1577 {
1578 expression (&exp);
1579 if (exp.X_op == O_symbol
1580 && *input_line_pointer == '@'
1581 && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp))
1582 != BFD_RELOC_NONE))
1583 {
1584 reloc_howto_type *reloc_howto =
1585 bfd_reloc_type_lookup (stdoutput, reloc);
1586
1587 if (reloc == BFD_RELOC_UNUSED || !reloc_howto)
1588 as_bad (_("unsupported relocation"));
1589 else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP
1590 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
1591 || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
1592 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT))
1593 as_bad (_("opcode-specific %s relocation used outside "
1594 "an instruction"), reloc_howto->name);
1595 else if (nbytes != (int) bfd_get_reloc_size (reloc_howto))
1596 as_bad (_("%s relocations do not fit in %d bytes"),
1597 reloc_howto->name, nbytes);
1598 else
1599 {
1600 char *p = frag_more ((int) nbytes);
1601 xtensa_set_frag_assembly_state (frag_now);
1602 fix_new_exp (frag_now, p - frag_now->fr_literal,
1603 nbytes, &exp, 0, reloc);
1604 }
1605 }
1606 else
1607 emit_expr (&exp, (unsigned int) nbytes);
1608 }
1609 while (*input_line_pointer++ == ',');
1610
1611 input_line_pointer--; /* Put terminator back into stream. */
1612 demand_empty_rest_of_line ();
1613}
1614
7fa3d080
BW
1615\f
1616/* Parsing and Idiom Translation. */
43cd72b9
BW
1617
1618/* Parse @plt, etc. and return the desired relocation. */
1619static bfd_reloc_code_real_type
7fa3d080 1620xtensa_elf_suffix (char **str_p, expressionS *exp_p)
43cd72b9
BW
1621{
1622 struct map_bfd
1623 {
1624 char *string;
1625 int length;
1626 bfd_reloc_code_real_type reloc;
1627 };
1628
1629 char ident[20];
1630 char *str = *str_p;
1631 char *str2;
1632 int ch;
1633 int len;
1634 struct map_bfd *ptr;
1635
1636#define MAP(str,reloc) { str, sizeof (str) - 1, reloc }
e0001a05 1637
43cd72b9
BW
1638 static struct map_bfd mapping[] =
1639 {
1640 MAP ("l", BFD_RELOC_LO16),
1641 MAP ("h", BFD_RELOC_HI16),
1642 MAP ("plt", BFD_RELOC_XTENSA_PLT),
1643 { (char *) 0, 0, BFD_RELOC_UNUSED }
1644 };
1645
1646 if (*str++ != '@')
1647 return BFD_RELOC_NONE;
1648
1649 for (ch = *str, str2 = ident;
1650 (str2 < ident + sizeof (ident) - 1
1651 && (ISALNUM (ch) || ch == '@'));
1652 ch = *++str)
1653 {
1654 *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch);
1655 }
1656
1657 *str2 = '\0';
1658 len = str2 - ident;
1659
1660 ch = ident[0];
1661 for (ptr = &mapping[0]; ptr->length > 0; ptr++)
1662 if (ch == ptr->string[0]
1663 && len == ptr->length
1664 && memcmp (ident, ptr->string, ptr->length) == 0)
1665 {
1666 /* Now check for "identifier@suffix+constant". */
1667 if (*str == '-' || *str == '+')
1668 {
1669 char *orig_line = input_line_pointer;
1670 expressionS new_exp;
1671
1672 input_line_pointer = str;
1673 expression (&new_exp);
1674 if (new_exp.X_op == O_constant)
1675 {
1676 exp_p->X_add_number += new_exp.X_add_number;
1677 str = input_line_pointer;
1678 }
1679
1680 if (&input_line_pointer != str_p)
1681 input_line_pointer = orig_line;
1682 }
1683
1684 *str_p = str;
1685 return ptr->reloc;
1686 }
1687
1688 return BFD_RELOC_UNUSED;
e0001a05
NC
1689}
1690
e0001a05
NC
1691
1692static const char *
7fa3d080 1693expression_end (const char *name)
e0001a05
NC
1694{
1695 while (1)
1696 {
1697 switch (*name)
1698 {
43cd72b9 1699 case '}':
e0001a05
NC
1700 case ';':
1701 case '\0':
1702 case ',':
43cd72b9 1703 case ':':
e0001a05
NC
1704 return name;
1705 case ' ':
1706 case '\t':
1707 ++name;
1708 continue;
1709 default:
1710 return 0;
1711 }
1712 }
1713}
1714
1715
1716#define ERROR_REG_NUM ((unsigned) -1)
1717
1718static unsigned
7fa3d080 1719tc_get_register (const char *prefix)
e0001a05
NC
1720{
1721 unsigned reg;
1722 const char *next_expr;
1723 const char *old_line_pointer;
1724
1725 SKIP_WHITESPACE ();
1726 old_line_pointer = input_line_pointer;
1727
1728 if (*input_line_pointer == '$')
1729 ++input_line_pointer;
1730
1731 /* Accept "sp" as a synonym for "a1". */
1732 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1733 && expression_end (input_line_pointer + 2))
1734 {
1735 input_line_pointer += 2;
1736 return 1; /* AR[1] */
1737 }
1738
1739 while (*input_line_pointer++ == *prefix++)
1740 ;
1741 --input_line_pointer;
1742 --prefix;
1743
1744 if (*prefix)
1745 {
1746 as_bad (_("bad register name: %s"), old_line_pointer);
1747 return ERROR_REG_NUM;
1748 }
1749
1750 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1751 {
1752 as_bad (_("bad register number: %s"), input_line_pointer);
1753 return ERROR_REG_NUM;
1754 }
1755
1756 reg = 0;
1757
1758 while (ISDIGIT ((int) *input_line_pointer))
1759 reg = reg * 10 + *input_line_pointer++ - '0';
1760
1761 if (!(next_expr = expression_end (input_line_pointer)))
1762 {
1763 as_bad (_("bad register name: %s"), old_line_pointer);
1764 return ERROR_REG_NUM;
1765 }
1766
1767 input_line_pointer = (char *) next_expr;
1768
1769 return reg;
1770}
1771
1772
e0001a05 1773static void
7fa3d080 1774expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok)
e0001a05 1775{
43cd72b9 1776 xtensa_isa isa = xtensa_default_isa;
e0001a05 1777
43cd72b9
BW
1778 /* Check if this is an immediate operand. */
1779 if (xtensa_operand_is_register (isa, opc, opnd) == 0)
e0001a05 1780 {
43cd72b9 1781 bfd_reloc_code_real_type reloc;
e0001a05 1782 segT t = expression (tok);
43cd72b9
BW
1783 if (t == absolute_section
1784 && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1)
e0001a05
NC
1785 {
1786 assert (tok->X_op == O_constant);
1787 tok->X_op = O_symbol;
1788 tok->X_add_symbol = &abs_symbol;
1789 }
43cd72b9
BW
1790
1791 if ((tok->X_op == O_constant || tok->X_op == O_symbol)
1792 && (reloc = xtensa_elf_suffix (&input_line_pointer, tok))
1793 && (reloc != BFD_RELOC_NONE))
e0001a05 1794 {
43cd72b9
BW
1795 switch (reloc)
1796 {
1797 default:
1798 case BFD_RELOC_UNUSED:
1799 as_bad (_("unsupported relocation"));
1800 break;
1801
1802 case BFD_RELOC_XTENSA_PLT:
1803 tok->X_op = O_pltrel;
1804 break;
1805
1806 case BFD_RELOC_LO16:
1807 if (tok->X_op == O_constant)
1808 tok->X_add_number &= 0xffff;
1809 else
1810 tok->X_op = O_lo16;
1811 break;
1812
1813 case BFD_RELOC_HI16:
1814 if (tok->X_op == O_constant)
1815 tok->X_add_number = ((unsigned) tok->X_add_number) >> 16;
1816 else
1817 tok->X_op = O_hi16;
1818 break;
1819 }
e0001a05 1820 }
e0001a05
NC
1821 }
1822 else
1823 {
43cd72b9
BW
1824 xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd);
1825 unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf));
e0001a05
NC
1826
1827 if (reg != ERROR_REG_NUM) /* Already errored */
1828 {
1829 uint32 buf = reg;
43cd72b9 1830 if (xtensa_operand_encode (isa, opc, opnd, &buf))
e0001a05
NC
1831 as_bad (_("register number out of range"));
1832 }
1833
1834 tok->X_op = O_register;
1835 tok->X_add_symbol = 0;
1836 tok->X_add_number = reg;
1837 }
1838}
1839
1840
1841/* Split up the arguments for an opcode or pseudo-op. */
1842
1843static int
7fa3d080 1844tokenize_arguments (char **args, char *str)
e0001a05
NC
1845{
1846 char *old_input_line_pointer;
1847 bfd_boolean saw_comma = FALSE;
1848 bfd_boolean saw_arg = FALSE;
43cd72b9 1849 bfd_boolean saw_colon = FALSE;
e0001a05
NC
1850 int num_args = 0;
1851 char *arg_end, *arg;
1852 int arg_len;
43cd72b9
BW
1853
1854 /* Save and restore input_line_pointer around this function. */
e0001a05
NC
1855 old_input_line_pointer = input_line_pointer;
1856 input_line_pointer = str;
1857
1858 while (*input_line_pointer)
1859 {
1860 SKIP_WHITESPACE ();
1861 switch (*input_line_pointer)
1862 {
1863 case '\0':
43cd72b9 1864 case '}':
e0001a05
NC
1865 goto fini;
1866
43cd72b9
BW
1867 case ':':
1868 input_line_pointer++;
1869 if (saw_comma || saw_colon || !saw_arg)
1870 goto err;
1871 saw_colon = TRUE;
1872 break;
1873
e0001a05
NC
1874 case ',':
1875 input_line_pointer++;
43cd72b9 1876 if (saw_comma || saw_colon || !saw_arg)
e0001a05
NC
1877 goto err;
1878 saw_comma = TRUE;
1879 break;
1880
1881 default:
43cd72b9 1882 if (!saw_comma && !saw_colon && saw_arg)
e0001a05
NC
1883 goto err;
1884
1885 arg_end = input_line_pointer + 1;
1886 while (!expression_end (arg_end))
1887 arg_end += 1;
43cd72b9 1888
e0001a05 1889 arg_len = arg_end - input_line_pointer;
43cd72b9 1890 arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1);
e0001a05
NC
1891 args[num_args] = arg;
1892
43cd72b9
BW
1893 if (saw_colon)
1894 *arg++ = ':';
e0001a05
NC
1895 strncpy (arg, input_line_pointer, arg_len);
1896 arg[arg_len] = '\0';
43cd72b9 1897
e0001a05
NC
1898 input_line_pointer = arg_end;
1899 num_args += 1;
c138bc38 1900 saw_comma = FALSE;
43cd72b9 1901 saw_colon = FALSE;
c138bc38 1902 saw_arg = TRUE;
e0001a05
NC
1903 break;
1904 }
1905 }
1906
1907fini:
43cd72b9 1908 if (saw_comma || saw_colon)
e0001a05
NC
1909 goto err;
1910 input_line_pointer = old_input_line_pointer;
1911 return num_args;
1912
1913err:
43cd72b9
BW
1914 if (saw_comma)
1915 as_bad (_("extra comma"));
1916 else if (saw_colon)
1917 as_bad (_("extra colon"));
1918 else if (!saw_arg)
c138bc38 1919 as_bad (_("missing argument"));
43cd72b9
BW
1920 else
1921 as_bad (_("missing comma or colon"));
e0001a05
NC
1922 input_line_pointer = old_input_line_pointer;
1923 return -1;
1924}
1925
1926
43cd72b9 1927/* Parse the arguments to an opcode. Return TRUE on error. */
e0001a05
NC
1928
1929static bfd_boolean
7fa3d080 1930parse_arguments (TInsn *insn, int num_args, char **arg_strings)
e0001a05 1931{
43cd72b9 1932 expressionS *tok, *last_tok;
e0001a05
NC
1933 xtensa_opcode opcode = insn->opcode;
1934 bfd_boolean had_error = TRUE;
43cd72b9
BW
1935 xtensa_isa isa = xtensa_default_isa;
1936 int n, num_regs = 0;
e0001a05 1937 int opcode_operand_count;
43cd72b9
BW
1938 int opnd_cnt, last_opnd_cnt;
1939 unsigned int next_reg = 0;
e0001a05
NC
1940 char *old_input_line_pointer;
1941
1942 if (insn->insn_type == ITYPE_LITERAL)
1943 opcode_operand_count = 1;
1944 else
43cd72b9 1945 opcode_operand_count = xtensa_opcode_num_operands (isa, opcode);
e0001a05 1946
43cd72b9 1947 tok = insn->tok;
e0001a05
NC
1948 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
1949
1950 /* Save and restore input_line_pointer around this function. */
43cd72b9
BW
1951 old_input_line_pointer = input_line_pointer;
1952
1953 last_tok = 0;
1954 last_opnd_cnt = -1;
1955 opnd_cnt = 0;
1956
1957 /* Skip invisible operands. */
1958 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0)
1959 {
1960 opnd_cnt += 1;
1961 tok++;
1962 }
e0001a05
NC
1963
1964 for (n = 0; n < num_args; n++)
43cd72b9 1965 {
e0001a05 1966 input_line_pointer = arg_strings[n];
43cd72b9
BW
1967 if (*input_line_pointer == ':')
1968 {
1969 xtensa_regfile opnd_rf;
1970 input_line_pointer++;
1971 if (num_regs == 0)
1972 goto err;
1973 assert (opnd_cnt > 0);
1974 num_regs--;
1975 opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt);
1976 if (next_reg
1977 != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)))
1978 as_warn (_("incorrect register number, ignoring"));
1979 next_reg++;
1980 }
1981 else
1982 {
1983 if (opnd_cnt >= opcode_operand_count)
1984 {
1985 as_warn (_("too many arguments"));
1986 goto err;
1987 }
1988 assert (opnd_cnt < MAX_INSN_ARGS);
1989
1990 expression_maybe_register (opcode, opnd_cnt, tok);
1991 next_reg = tok->X_add_number + 1;
1992
1993 if (tok->X_op == O_illegal || tok->X_op == O_absent)
1994 goto err;
1995 if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1)
1996 {
1997 num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1;
1998 /* minus 1 because we are seeing one right now */
1999 }
2000 else
2001 num_regs = 0;
e0001a05 2002
43cd72b9
BW
2003 last_tok = tok;
2004 last_opnd_cnt = opnd_cnt;
e0001a05 2005
43cd72b9
BW
2006 do
2007 {
2008 opnd_cnt += 1;
2009 tok++;
2010 }
2011 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0);
2012 }
2013 }
e0001a05 2014
43cd72b9
BW
2015 if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1))
2016 goto err;
e0001a05
NC
2017
2018 insn->ntok = tok - insn->tok;
c138bc38 2019 had_error = FALSE;
e0001a05
NC
2020
2021 err:
43cd72b9 2022 input_line_pointer = old_input_line_pointer;
e0001a05
NC
2023 return had_error;
2024}
2025
2026
43cd72b9 2027static int
7fa3d080 2028get_invisible_operands (TInsn *insn)
43cd72b9
BW
2029{
2030 xtensa_isa isa = xtensa_default_isa;
2031 static xtensa_insnbuf slotbuf = NULL;
2032 xtensa_format fmt;
2033 xtensa_opcode opc = insn->opcode;
2034 int slot, opnd, fmt_found;
2035 unsigned val;
2036
2037 if (!slotbuf)
2038 slotbuf = xtensa_insnbuf_alloc (isa);
2039
2040 /* Find format/slot where this can be encoded. */
2041 fmt_found = 0;
2042 slot = 0;
2043 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
2044 {
2045 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
2046 {
2047 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0)
2048 {
2049 fmt_found = 1;
2050 break;
2051 }
2052 }
2053 if (fmt_found) break;
2054 }
2055
2056 if (!fmt_found)
2057 {
2058 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc));
2059 return -1;
2060 }
2061
2062 /* First encode all the visible operands
2063 (to deal with shared field operands). */
2064 for (opnd = 0; opnd < insn->ntok; opnd++)
2065 {
2066 if (xtensa_operand_is_visible (isa, opc, opnd) == 1
2067 && (insn->tok[opnd].X_op == O_register
2068 || insn->tok[opnd].X_op == O_constant))
2069 {
2070 val = insn->tok[opnd].X_add_number;
2071 xtensa_operand_encode (isa, opc, opnd, &val);
2072 xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val);
2073 }
2074 }
2075
2076 /* Then pull out the values for the invisible ones. */
2077 for (opnd = 0; opnd < insn->ntok; opnd++)
2078 {
2079 if (xtensa_operand_is_visible (isa, opc, opnd) == 0)
2080 {
2081 xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val);
2082 xtensa_operand_decode (isa, opc, opnd, &val);
2083 insn->tok[opnd].X_add_number = val;
2084 if (xtensa_operand_is_register (isa, opc, opnd) == 1)
2085 insn->tok[opnd].X_op = O_register;
2086 else
2087 insn->tok[opnd].X_op = O_constant;
2088 }
2089 }
2090
2091 return 0;
2092}
2093
2094
e0001a05 2095static void
7fa3d080 2096xg_reverse_shift_count (char **cnt_argp)
e0001a05
NC
2097{
2098 char *cnt_arg, *new_arg;
2099 cnt_arg = *cnt_argp;
2100
2101 /* replace the argument with "31-(argument)" */
2102 new_arg = (char *) xmalloc (strlen (cnt_arg) + 6);
2103 sprintf (new_arg, "31-(%s)", cnt_arg);
2104
2105 free (cnt_arg);
2106 *cnt_argp = new_arg;
2107}
2108
2109
2110/* If "arg" is a constant expression, return non-zero with the value
2111 in *valp. */
2112
2113static int
7fa3d080 2114xg_arg_is_constant (char *arg, offsetT *valp)
e0001a05
NC
2115{
2116 expressionS exp;
2117 char *save_ptr = input_line_pointer;
2118
2119 input_line_pointer = arg;
2120 expression (&exp);
2121 input_line_pointer = save_ptr;
2122
2123 if (exp.X_op == O_constant)
2124 {
2125 *valp = exp.X_add_number;
2126 return 1;
2127 }
2128
2129 return 0;
2130}
2131
2132
2133static void
7fa3d080 2134xg_replace_opname (char **popname, char *newop)
e0001a05
NC
2135{
2136 free (*popname);
2137 *popname = (char *) xmalloc (strlen (newop) + 1);
2138 strcpy (*popname, newop);
2139}
2140
2141
2142static int
7fa3d080
BW
2143xg_check_num_args (int *pnum_args,
2144 int expected_num,
2145 char *opname,
2146 char **arg_strings)
e0001a05
NC
2147{
2148 int num_args = *pnum_args;
2149
43cd72b9 2150 if (num_args < expected_num)
e0001a05
NC
2151 {
2152 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2153 num_args, opname, expected_num);
2154 return -1;
2155 }
2156
2157 if (num_args > expected_num)
2158 {
2159 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2160 num_args, opname, expected_num);
2161 while (num_args-- > expected_num)
2162 {
2163 free (arg_strings[num_args]);
2164 arg_strings[num_args] = 0;
2165 }
2166 *pnum_args = expected_num;
2167 return -1;
2168 }
2169
2170 return 0;
2171}
2172
2173
43cd72b9
BW
2174/* If the register is not specified as part of the opcode,
2175 then get it from the operand and move it to the opcode. */
2176
e0001a05 2177static int
7fa3d080 2178xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings)
e0001a05 2179{
43cd72b9
BW
2180 xtensa_isa isa = xtensa_default_isa;
2181 xtensa_sysreg sr;
e0001a05 2182 char *opname, *new_opname;
43cd72b9
BW
2183 const char *sr_name;
2184 int is_user, is_write;
e0001a05
NC
2185
2186 opname = *popname;
2187 if (*opname == '_')
80ca4e2c 2188 opname += 1;
43cd72b9
BW
2189 is_user = (opname[1] == 'u');
2190 is_write = (opname[0] == 'w');
e0001a05 2191
43cd72b9 2192 /* Opname == [rw]ur or [rwx]sr... */
e0001a05 2193
43cd72b9
BW
2194 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2195 return -1;
e0001a05 2196
43cd72b9
BW
2197 /* Check if the argument is a symbolic register name. */
2198 sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]);
2199 /* Handle WSR to "INTSET" as a special case. */
2200 if (sr == XTENSA_UNDEFINED && is_write && !is_user
2201 && !strcasecmp (arg_strings[1], "intset"))
2202 sr = xtensa_sysreg_lookup_name (isa, "interrupt");
2203 if (sr == XTENSA_UNDEFINED
2204 || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user)
2205 {
2206 /* Maybe it's a register number.... */
2207 offsetT val;
e0001a05
NC
2208 if (!xg_arg_is_constant (arg_strings[1], &val))
2209 {
43cd72b9
BW
2210 as_bad (_("invalid register '%s' for '%s' instruction"),
2211 arg_strings[1], opname);
e0001a05
NC
2212 return -1;
2213 }
43cd72b9
BW
2214 sr = xtensa_sysreg_lookup (isa, val, is_user);
2215 if (sr == XTENSA_UNDEFINED)
e0001a05 2216 {
43cd72b9 2217 as_bad (_("invalid register number (%ld) for '%s' instruction"),
dd49a749 2218 (long) val, opname);
e0001a05
NC
2219 return -1;
2220 }
43cd72b9 2221 }
e0001a05 2222
43cd72b9
BW
2223 /* Remove the last argument, which is now part of the opcode. */
2224 free (arg_strings[1]);
2225 arg_strings[1] = 0;
2226 *pnum_args = 1;
2227
2228 /* Translate the opcode. */
2229 sr_name = xtensa_sysreg_name (isa, sr);
2230 /* Another special case for "WSR.INTSET".... */
2231 if (is_write && !is_user && !strcasecmp ("interrupt", sr_name))
2232 sr_name = "intset";
2233 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
80ca4e2c 2234 sprintf (new_opname, "%s.%s", *popname, sr_name);
43cd72b9
BW
2235 free (*popname);
2236 *popname = new_opname;
2237
2238 return 0;
2239}
2240
2241
2242static int
7fa3d080 2243xtensa_translate_old_userreg_ops (char **popname)
43cd72b9
BW
2244{
2245 xtensa_isa isa = xtensa_default_isa;
2246 xtensa_sysreg sr;
2247 char *opname, *new_opname;
2248 const char *sr_name;
2249 bfd_boolean has_underbar = FALSE;
2250
2251 opname = *popname;
2252 if (opname[0] == '_')
2253 {
2254 has_underbar = TRUE;
2255 opname += 1;
2256 }
2257
2258 sr = xtensa_sysreg_lookup_name (isa, opname + 1);
2259 if (sr != XTENSA_UNDEFINED)
2260 {
2261 /* The new default name ("nnn") is different from the old default
2262 name ("URnnn"). The old default is handled below, and we don't
2263 want to recognize [RW]nnn, so do nothing if the name is the (new)
2264 default. */
2265 static char namebuf[10];
2266 sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr));
2267 if (strcmp (namebuf, opname + 1) == 0)
2268 return 0;
2269 }
2270 else
2271 {
2272 offsetT val;
2273 char *end;
2274
2275 /* Only continue if the reg name is "URnnn". */
2276 if (opname[1] != 'u' || opname[2] != 'r')
2277 return 0;
2278 val = strtoul (opname + 3, &end, 10);
2279 if (*end != '\0')
2280 return 0;
2281
2282 sr = xtensa_sysreg_lookup (isa, val, 1);
2283 if (sr == XTENSA_UNDEFINED)
2284 {
2285 as_bad (_("invalid register number (%ld) for '%s'"),
dd49a749 2286 (long) val, opname);
43cd72b9
BW
2287 return -1;
2288 }
2289 }
2290
2291 /* Translate the opcode. */
2292 sr_name = xtensa_sysreg_name (isa, sr);
2293 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2294 sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""),
2295 opname[0], sr_name);
2296 free (*popname);
2297 *popname = new_opname;
2298
2299 return 0;
2300}
2301
2302
2303static int
7fa3d080
BW
2304xtensa_translate_zero_immed (char *old_op,
2305 char *new_op,
2306 char **popname,
2307 int *pnum_args,
2308 char **arg_strings)
43cd72b9
BW
2309{
2310 char *opname;
2311 offsetT val;
2312
2313 opname = *popname;
2314 assert (opname[0] != '_');
2315
2316 if (strcmp (opname, old_op) != 0)
2317 return 0;
e0001a05 2318
43cd72b9
BW
2319 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2320 return -1;
2321 if (xg_arg_is_constant (arg_strings[1], &val) && val == 0)
2322 {
2323 xg_replace_opname (popname, new_op);
2324 free (arg_strings[1]);
2325 arg_strings[1] = arg_strings[2];
2326 arg_strings[2] = 0;
2327 *pnum_args = 2;
e0001a05
NC
2328 }
2329
2330 return 0;
2331}
2332
2333
2334/* If the instruction is an idiom (i.e., a built-in macro), translate it.
2335 Returns non-zero if an error was found. */
2336
2337static int
7fa3d080 2338xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings)
e0001a05
NC
2339{
2340 char *opname = *popname;
2341 bfd_boolean has_underbar = FALSE;
2342
43cd72b9
BW
2343 if (cur_vinsn.inside_bundle)
2344 return 0;
2345
e0001a05
NC
2346 if (*opname == '_')
2347 {
2348 has_underbar = TRUE;
2349 opname += 1;
2350 }
2351
2352 if (strcmp (opname, "mov") == 0)
2353 {
43cd72b9 2354 if (use_transform () && !has_underbar && density_supported)
e0001a05
NC
2355 xg_replace_opname (popname, "mov.n");
2356 else
2357 {
2358 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2359 return -1;
2360 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2361 arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1);
2362 strcpy (arg_strings[2], arg_strings[1]);
2363 *pnum_args = 3;
2364 }
2365 return 0;
2366 }
2367
2368 if (strcmp (opname, "bbsi.l") == 0)
2369 {
2370 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2371 return -1;
2372 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2373 if (target_big_endian)
2374 xg_reverse_shift_count (&arg_strings[1]);
2375 return 0;
2376 }
2377
2378 if (strcmp (opname, "bbci.l") == 0)
2379 {
2380 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2381 return -1;
2382 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2383 if (target_big_endian)
2384 xg_reverse_shift_count (&arg_strings[1]);
2385 return 0;
2386 }
2387
43cd72b9
BW
2388 if (xtensa_nop_opcode == XTENSA_UNDEFINED
2389 && strcmp (opname, "nop") == 0)
e0001a05 2390 {
43cd72b9 2391 if (use_transform () && !has_underbar && density_supported)
e0001a05
NC
2392 xg_replace_opname (popname, "nop.n");
2393 else
2394 {
2395 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2396 return -1;
2397 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2398 arg_strings[0] = (char *) xmalloc (3);
2399 arg_strings[1] = (char *) xmalloc (3);
2400 arg_strings[2] = (char *) xmalloc (3);
2401 strcpy (arg_strings[0], "a1");
2402 strcpy (arg_strings[1], "a1");
2403 strcpy (arg_strings[2], "a1");
2404 *pnum_args = 3;
2405 }
2406 return 0;
2407 }
2408
43cd72b9
BW
2409 /* Recognize [RW]UR and [RWX]SR. */
2410 if ((((opname[0] == 'r' || opname[0] == 'w')
2411 && (opname[1] == 'u' || opname[1] == 's'))
2412 || (opname[0] == 'x' && opname[1] == 's'))
2413 && opname[2] == 'r'
2414 && opname[3] == '\0')
e0001a05
NC
2415 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2416
43cd72b9
BW
2417 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2418 [RW]<name> if <name> is the non-default name of a user register. */
2419 if ((opname[0] == 'r' || opname[0] == 'w')
2420 && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED)
2421 return xtensa_translate_old_userreg_ops (popname);
e0001a05 2422
43cd72b9
BW
2423 /* Relax branches that don't allow comparisons against an immediate value
2424 of zero to the corresponding branches with implicit zero immediates. */
2425 if (!has_underbar && use_transform ())
2426 {
2427 if (xtensa_translate_zero_immed ("bnei", "bnez", popname,
2428 pnum_args, arg_strings))
2429 return -1;
e0001a05 2430
43cd72b9
BW
2431 if (xtensa_translate_zero_immed ("beqi", "beqz", popname,
2432 pnum_args, arg_strings))
2433 return -1;
e0001a05 2434
43cd72b9
BW
2435 if (xtensa_translate_zero_immed ("bgei", "bgez", popname,
2436 pnum_args, arg_strings))
2437 return -1;
e0001a05 2438
43cd72b9
BW
2439 if (xtensa_translate_zero_immed ("blti", "bltz", popname,
2440 pnum_args, arg_strings))
2441 return -1;
2442 }
e0001a05 2443
43cd72b9
BW
2444 return 0;
2445}
e0001a05 2446
43cd72b9
BW
2447\f
2448/* Functions for dealing with the Xtensa ISA. */
e0001a05 2449
43cd72b9
BW
2450/* Currently the assembler only allows us to use a single target per
2451 fragment. Because of this, only one operand for a given
2452 instruction may be symbolic. If there is a PC-relative operand,
2453 the last one is chosen. Otherwise, the result is the number of the
2454 last immediate operand, and if there are none of those, we fail and
2455 return -1. */
e0001a05 2456
7fa3d080
BW
2457static int
2458get_relaxable_immed (xtensa_opcode opcode)
43cd72b9
BW
2459{
2460 int last_immed = -1;
2461 int noperands, opi;
e0001a05 2462
43cd72b9
BW
2463 if (opcode == XTENSA_UNDEFINED)
2464 return -1;
e0001a05 2465
43cd72b9
BW
2466 noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode);
2467 for (opi = noperands - 1; opi >= 0; opi--)
2468 {
2469 if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0)
2470 continue;
2471 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1)
2472 return opi;
2473 if (last_immed == -1
2474 && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0)
2475 last_immed = opi;
e0001a05 2476 }
43cd72b9 2477 return last_immed;
e0001a05
NC
2478}
2479
e0001a05 2480
43cd72b9 2481static xtensa_opcode
7fa3d080 2482get_opcode_from_buf (const char *buf, int slot)
e0001a05 2483{
43cd72b9
BW
2484 static xtensa_insnbuf insnbuf = NULL;
2485 static xtensa_insnbuf slotbuf = NULL;
2486 xtensa_isa isa = xtensa_default_isa;
2487 xtensa_format fmt;
2488
2489 if (!insnbuf)
e0001a05 2490 {
43cd72b9
BW
2491 insnbuf = xtensa_insnbuf_alloc (isa);
2492 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 2493 }
e0001a05 2494
d77b99c9 2495 xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0);
43cd72b9
BW
2496 fmt = xtensa_format_decode (isa, insnbuf);
2497 if (fmt == XTENSA_UNDEFINED)
2498 return XTENSA_UNDEFINED;
e0001a05 2499
43cd72b9
BW
2500 if (slot >= xtensa_format_num_slots (isa, fmt))
2501 return XTENSA_UNDEFINED;
e0001a05 2502
43cd72b9
BW
2503 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
2504 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
e0001a05
NC
2505}
2506
2507
43cd72b9 2508#ifdef TENSILICA_DEBUG
e0001a05 2509
43cd72b9 2510/* For debugging, print out the mapping of opcode numbers to opcodes. */
e0001a05 2511
7fa3d080
BW
2512static void
2513xtensa_print_insn_table (void)
43cd72b9
BW
2514{
2515 int num_opcodes, num_operands;
2516 xtensa_opcode opcode;
2517 xtensa_isa isa = xtensa_default_isa;
e0001a05 2518
43cd72b9
BW
2519 num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
2520 for (opcode = 0; opcode < num_opcodes; opcode++)
e0001a05 2521 {
43cd72b9
BW
2522 int opn;
2523 fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode));
2524 num_operands = xtensa_opcode_num_operands (isa, opcode);
2525 for (opn = 0; opn < num_operands; opn++)
2526 {
2527 if (xtensa_operand_is_visible (isa, opcode, opn) == 0)
2528 continue;
2529 if (xtensa_operand_is_register (isa, opcode, opn) == 1)
2530 {
2531 xtensa_regfile opnd_rf =
2532 xtensa_operand_regfile (isa, opcode, opn);
2533 fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf));
2534 }
2535 else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1)
2536 fputs ("[lLr] ", stderr);
2537 else
2538 fputs ("i ", stderr);
2539 }
2540 fprintf (stderr, "\n");
e0001a05 2541 }
e0001a05
NC
2542}
2543
2544
43cd72b9 2545static void
7fa3d080 2546print_vliw_insn (xtensa_insnbuf vbuf)
e0001a05 2547{
e0001a05 2548 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
2549 xtensa_format f = xtensa_format_decode (isa, vbuf);
2550 xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa);
2551 int op;
e0001a05 2552
43cd72b9 2553 fprintf (stderr, "format = %d\n", f);
e0001a05 2554
43cd72b9
BW
2555 for (op = 0; op < xtensa_format_num_slots (isa, f); op++)
2556 {
2557 xtensa_opcode opcode;
2558 const char *opname;
2559 int operands;
2560
2561 xtensa_format_get_slot (isa, f, op, vbuf, sbuf);
2562 opcode = xtensa_opcode_decode (isa, f, op, sbuf);
2563 opname = xtensa_opcode_name (isa, opcode);
2564
2565 fprintf (stderr, "op in slot %i is %s;\n", op, opname);
2566 fprintf (stderr, " operands = ");
2567 for (operands = 0;
2568 operands < xtensa_opcode_num_operands (isa, opcode);
2569 operands++)
2570 {
2571 unsigned int val;
2572 if (xtensa_operand_is_visible (isa, opcode, operands) == 0)
2573 continue;
2574 xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val);
2575 xtensa_operand_decode (isa, opcode, operands, &val);
2576 fprintf (stderr, "%d ", val);
2577 }
2578 fprintf (stderr, "\n");
2579 }
2580 xtensa_insnbuf_free (isa, sbuf);
e0001a05
NC
2581}
2582
43cd72b9
BW
2583#endif /* TENSILICA_DEBUG */
2584
e0001a05
NC
2585
2586static bfd_boolean
7fa3d080 2587is_direct_call_opcode (xtensa_opcode opcode)
e0001a05 2588{
43cd72b9
BW
2589 xtensa_isa isa = xtensa_default_isa;
2590 int n, num_operands;
e0001a05 2591
43cd72b9 2592 if (xtensa_opcode_is_call (isa, opcode) == 0)
e0001a05
NC
2593 return FALSE;
2594
43cd72b9
BW
2595 num_operands = xtensa_opcode_num_operands (isa, opcode);
2596 for (n = 0; n < num_operands; n++)
2597 {
2598 if (xtensa_operand_is_register (isa, opcode, n) == 0
2599 && xtensa_operand_is_PCrelative (isa, opcode, n) == 1)
2600 return TRUE;
2601 }
2602 return FALSE;
e0001a05
NC
2603}
2604
2605
43cd72b9
BW
2606/* Convert from BFD relocation type code to slot and operand number.
2607 Returns non-zero on failure. */
e0001a05 2608
43cd72b9 2609static int
7fa3d080 2610decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt)
e0001a05 2611{
43cd72b9
BW
2612 if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP
2613 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
e0001a05 2614 {
43cd72b9
BW
2615 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP;
2616 *is_alt = FALSE;
e0001a05 2617 }
43cd72b9
BW
2618 else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
2619 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)
e0001a05 2620 {
43cd72b9
BW
2621 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT;
2622 *is_alt = TRUE;
e0001a05 2623 }
43cd72b9
BW
2624 else
2625 return -1;
2626
2627 return 0;
e0001a05
NC
2628}
2629
2630
43cd72b9
BW
2631/* Convert from slot number to BFD relocation type code for the
2632 standard PC-relative relocations. Return BFD_RELOC_NONE on
2633 failure. */
e0001a05 2634
43cd72b9 2635static bfd_reloc_code_real_type
7fa3d080 2636encode_reloc (int slot)
e0001a05 2637{
43cd72b9
BW
2638 if (slot < 0 || slot > 14)
2639 return BFD_RELOC_NONE;
2640
2641 return BFD_RELOC_XTENSA_SLOT0_OP + slot;
e0001a05
NC
2642}
2643
2644
43cd72b9
BW
2645/* Convert from slot numbers to BFD relocation type code for the
2646 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
e0001a05 2647
43cd72b9 2648static bfd_reloc_code_real_type
7fa3d080 2649encode_alt_reloc (int slot)
e0001a05 2650{
43cd72b9
BW
2651 if (slot < 0 || slot > 14)
2652 return BFD_RELOC_NONE;
2653
2654 return BFD_RELOC_XTENSA_SLOT0_ALT + slot;
e0001a05
NC
2655}
2656
2657
2658static void
7fa3d080
BW
2659xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf,
2660 xtensa_format fmt,
2661 int slot,
2662 xtensa_opcode opcode,
2663 int operand,
2664 uint32 value,
2665 const char *file,
2666 unsigned int line)
e0001a05 2667{
e0001a05
NC
2668 uint32 valbuf = value;
2669
43cd72b9 2670 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
e0001a05 2671 {
43cd72b9
BW
2672 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand)
2673 == 1)
2674 as_bad_where ((char *) file, line,
d7c531cd
BW
2675 _("operand %d of '%s' has out of range value '%u'"),
2676 operand + 1,
2677 xtensa_opcode_name (xtensa_default_isa, opcode),
2678 value);
43cd72b9
BW
2679 else
2680 as_bad_where ((char *) file, line,
d7c531cd
BW
2681 _("operand %d of '%s' has invalid value '%u'"),
2682 operand + 1,
2683 xtensa_opcode_name (xtensa_default_isa, opcode),
2684 value);
43cd72b9 2685 return;
e0001a05
NC
2686 }
2687
43cd72b9
BW
2688 xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot,
2689 slotbuf, valbuf);
e0001a05
NC
2690}
2691
2692
2693static uint32
7fa3d080
BW
2694xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf,
2695 xtensa_format fmt,
2696 int slot,
2697 xtensa_opcode opcode,
2698 int opnum)
e0001a05 2699{
43cd72b9
BW
2700 uint32 val = 0;
2701 (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum,
2702 fmt, slot, slotbuf, &val);
2703 (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val);
2704 return val;
e0001a05
NC
2705}
2706
e0001a05 2707\f
7fa3d080 2708/* Checks for rules from xtensa-relax tables. */
e0001a05 2709
7fa3d080
BW
2710/* The routine xg_instruction_matches_option_term must return TRUE
2711 when a given option term is true. The meaning of all of the option
2712 terms is given interpretation by this function. This is needed when
2713 an option depends on the state of a directive, but there are no such
2714 options in use right now. */
e0001a05 2715
7fa3d080
BW
2716static bfd_boolean
2717xg_instruction_matches_option_term (TInsn *insn ATTRIBUTE_UNUSED,
2718 const ReqOrOption *option)
e0001a05 2719{
7fa3d080
BW
2720 if (strcmp (option->option_name, "realnop") == 0
2721 || strncmp (option->option_name, "IsaUse", 6) == 0)
2722 {
2723 /* These conditions were evaluated statically when building the
2724 relaxation table. There's no need to reevaluate them now. */
2725 return TRUE;
2726 }
2727 else
2728 {
2729 as_fatal (_("internal error: unknown option name '%s'"),
2730 option->option_name);
2731 }
e0001a05
NC
2732}
2733
2734
7fa3d080
BW
2735static bfd_boolean
2736xg_instruction_matches_or_options (TInsn *insn,
2737 const ReqOrOptionList *or_option)
e0001a05 2738{
7fa3d080
BW
2739 const ReqOrOption *option;
2740 /* Must match each of the AND terms. */
2741 for (option = or_option; option != NULL; option = option->next)
e0001a05 2742 {
7fa3d080
BW
2743 if (xg_instruction_matches_option_term (insn, option))
2744 return TRUE;
e0001a05 2745 }
7fa3d080 2746 return FALSE;
e0001a05
NC
2747}
2748
2749
7fa3d080
BW
2750static bfd_boolean
2751xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options)
e0001a05 2752{
7fa3d080
BW
2753 const ReqOption *req_options;
2754 /* Must match each of the AND terms. */
2755 for (req_options = options;
2756 req_options != NULL;
2757 req_options = req_options->next)
e0001a05 2758 {
7fa3d080
BW
2759 /* Must match one of the OR clauses. */
2760 if (!xg_instruction_matches_or_options (insn,
2761 req_options->or_option_terms))
2762 return FALSE;
e0001a05 2763 }
7fa3d080 2764 return TRUE;
e0001a05
NC
2765}
2766
2767
7fa3d080 2768/* Return the transition rule that matches or NULL if none matches. */
e0001a05 2769
7fa3d080
BW
2770static bfd_boolean
2771xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule)
e0001a05 2772{
7fa3d080 2773 PreconditionList *condition_l;
e0001a05 2774
7fa3d080
BW
2775 if (rule->opcode != insn->opcode)
2776 return FALSE;
e0001a05 2777
7fa3d080
BW
2778 for (condition_l = rule->conditions;
2779 condition_l != NULL;
2780 condition_l = condition_l->next)
e0001a05 2781 {
7fa3d080
BW
2782 expressionS *exp1;
2783 expressionS *exp2;
2784 Precondition *cond = condition_l->precond;
e0001a05 2785
7fa3d080 2786 switch (cond->typ)
e0001a05 2787 {
7fa3d080
BW
2788 case OP_CONSTANT:
2789 /* The expression must be the constant. */
2790 assert (cond->op_num < insn->ntok);
2791 exp1 = &insn->tok[cond->op_num];
2792 if (expr_is_const (exp1))
2793 {
2794 switch (cond->cmp)
2795 {
2796 case OP_EQUAL:
2797 if (get_expr_const (exp1) != cond->op_data)
2798 return FALSE;
2799 break;
2800 case OP_NOTEQUAL:
2801 if (get_expr_const (exp1) == cond->op_data)
2802 return FALSE;
2803 break;
2804 default:
2805 return FALSE;
2806 }
2807 }
2808 else if (expr_is_register (exp1))
2809 {
2810 switch (cond->cmp)
2811 {
2812 case OP_EQUAL:
2813 if (get_expr_register (exp1) != cond->op_data)
2814 return FALSE;
2815 break;
2816 case OP_NOTEQUAL:
2817 if (get_expr_register (exp1) == cond->op_data)
2818 return FALSE;
2819 break;
2820 default:
2821 return FALSE;
2822 }
2823 }
2824 else
2825 return FALSE;
2826 break;
2827
2828 case OP_OPERAND:
2829 assert (cond->op_num < insn->ntok);
2830 assert (cond->op_data < insn->ntok);
2831 exp1 = &insn->tok[cond->op_num];
2832 exp2 = &insn->tok[cond->op_data];
2833
2834 switch (cond->cmp)
2835 {
2836 case OP_EQUAL:
2837 if (!expr_is_equal (exp1, exp2))
2838 return FALSE;
2839 break;
2840 case OP_NOTEQUAL:
2841 if (expr_is_equal (exp1, exp2))
2842 return FALSE;
2843 break;
2844 }
2845 break;
2846
2847 case OP_LITERAL:
2848 case OP_LABEL:
2849 default:
2850 return FALSE;
2851 }
2852 }
2853 if (!xg_instruction_matches_options (insn, rule->options))
2854 return FALSE;
2855
2856 return TRUE;
2857}
2858
2859
2860static int
2861transition_rule_cmp (const TransitionRule *a, const TransitionRule *b)
2862{
2863 bfd_boolean a_greater = FALSE;
2864 bfd_boolean b_greater = FALSE;
2865
2866 ReqOptionList *l_a = a->options;
2867 ReqOptionList *l_b = b->options;
2868
2869 /* We only care if they both are the same except for
2870 a const16 vs. an l32r. */
2871
2872 while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2873 {
2874 ReqOrOptionList *l_or_a = l_a->or_option_terms;
2875 ReqOrOptionList *l_or_b = l_b->or_option_terms;
2876 while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2877 {
2878 if (l_or_a->is_true != l_or_b->is_true)
2879 return 0;
2880 if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0)
2881 {
2882 /* This is the case we care about. */
2883 if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0
2884 && strcmp (l_or_b->option_name, "IsaUseL32R") == 0)
2885 {
2886 if (prefer_const16)
2887 a_greater = TRUE;
2888 else
2889 b_greater = TRUE;
2890 }
2891 else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0
2892 && strcmp (l_or_b->option_name, "IsaUseConst16") == 0)
2893 {
2894 if (prefer_const16)
2895 b_greater = TRUE;
2896 else
2897 a_greater = TRUE;
2898 }
2899 else
2900 return 0;
2901 }
2902 l_or_a = l_or_a->next;
2903 l_or_b = l_or_b->next;
2904 }
2905 if (l_or_a || l_or_b)
2906 return 0;
2907
2908 l_a = l_a->next;
2909 l_b = l_b->next;
2910 }
2911 if (l_a || l_b)
2912 return 0;
2913
2914 /* Incomparable if the substitution was used differently in two cases. */
2915 if (a_greater && b_greater)
2916 return 0;
2917
2918 if (b_greater)
2919 return 1;
2920 if (a_greater)
2921 return -1;
2922
2923 return 0;
2924}
2925
2926
2927static TransitionRule *
2928xg_instruction_match (TInsn *insn)
2929{
2930 TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp);
2931 TransitionList *l;
2932 assert (insn->opcode < table->num_opcodes);
2933
2934 /* Walk through all of the possible transitions. */
2935 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2936 {
2937 TransitionRule *rule = l->rule;
2938 if (xg_instruction_matches_rule (insn, rule))
2939 return rule;
2940 }
2941 return NULL;
2942}
2943
2944\f
2945/* Various Other Internal Functions. */
2946
2947static bfd_boolean
2948is_unique_insn_expansion (TransitionRule *r)
2949{
2950 if (!r->to_instr || r->to_instr->next != NULL)
2951 return FALSE;
2952 if (r->to_instr->typ != INSTR_INSTR)
2953 return FALSE;
2954 return TRUE;
2955}
2956
2957
84b08ed9
BW
2958/* Check if there is exactly one relaxation for INSN that converts it to
2959 another instruction of equal or larger size. If so, and if TARG is
2960 non-null, go ahead and generate the relaxed instruction into TARG. If
2961 NARROW_ONLY is true, then only consider relaxations that widen a narrow
2962 instruction, i.e., ignore relaxations that convert to an instruction of
2963 equal size. In some contexts where this function is used, only
c138bc38 2964 a single widening is allowed and the NARROW_ONLY argument is used to
84b08ed9
BW
2965 exclude cases like ADDI being "widened" to an ADDMI, which may
2966 later be relaxed to an ADDMI/ADDI pair. */
7fa3d080 2967
84b08ed9
BW
2968bfd_boolean
2969xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only)
7fa3d080
BW
2970{
2971 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
2972 TransitionList *l;
84b08ed9 2973 TransitionRule *match = 0;
7fa3d080 2974
7fa3d080
BW
2975 assert (insn->insn_type == ITYPE_INSN);
2976 assert (insn->opcode < table->num_opcodes);
2977
2978 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2979 {
2980 TransitionRule *rule = l->rule;
2981
2982 if (xg_instruction_matches_rule (insn, rule)
84b08ed9
BW
2983 && is_unique_insn_expansion (rule)
2984 && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0)
2985 <= xg_get_single_size (rule->to_instr->opcode)))
7fa3d080 2986 {
84b08ed9
BW
2987 if (match)
2988 return FALSE;
2989 match = rule;
7fa3d080
BW
2990 }
2991 }
84b08ed9
BW
2992 if (!match)
2993 return FALSE;
2994
2995 if (targ)
2996 xg_build_to_insn (targ, insn, match->to_instr);
2997 return TRUE;
7fa3d080
BW
2998}
2999
3000
3001/* Return the maximum number of bytes this opcode can expand to. */
3002
3003static int
3004xg_get_max_insn_widen_size (xtensa_opcode opcode)
3005{
3006 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3007 TransitionList *l;
3008 int max_size = xg_get_single_size (opcode);
3009
3010 assert (opcode < table->num_opcodes);
3011
3012 for (l = table->table[opcode]; l != NULL; l = l->next)
3013 {
3014 TransitionRule *rule = l->rule;
3015 BuildInstr *build_list;
3016 int this_size = 0;
3017
3018 if (!rule)
3019 continue;
3020 build_list = rule->to_instr;
3021 if (is_unique_insn_expansion (rule))
3022 {
3023 assert (build_list->typ == INSTR_INSTR);
3024 this_size = xg_get_max_insn_widen_size (build_list->opcode);
3025 }
3026 else
3027 for (; build_list != NULL; build_list = build_list->next)
3028 {
3029 switch (build_list->typ)
3030 {
3031 case INSTR_INSTR:
3032 this_size += xg_get_single_size (build_list->opcode);
3033 break;
3034 case INSTR_LITERAL_DEF:
3035 case INSTR_LABEL_DEF:
e0001a05
NC
3036 default:
3037 break;
3038 }
3039 }
3040 if (this_size > max_size)
3041 max_size = this_size;
3042 }
3043 return max_size;
3044}
3045
3046
3047/* Return the maximum number of literal bytes this opcode can generate. */
3048
7fa3d080
BW
3049static int
3050xg_get_max_insn_widen_literal_size (xtensa_opcode opcode)
e0001a05 3051{
43cd72b9 3052 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
e0001a05
NC
3053 TransitionList *l;
3054 int max_size = 0;
3055
3056 assert (opcode < table->num_opcodes);
3057
3058 for (l = table->table[opcode]; l != NULL; l = l->next)
3059 {
3060 TransitionRule *rule = l->rule;
3061 BuildInstr *build_list;
3062 int this_size = 0;
3063
3064 if (!rule)
3065 continue;
3066 build_list = rule->to_instr;
3067 if (is_unique_insn_expansion (rule))
3068 {
3069 assert (build_list->typ == INSTR_INSTR);
3070 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
3071 }
3072 else
3073 for (; build_list != NULL; build_list = build_list->next)
3074 {
3075 switch (build_list->typ)
3076 {
3077 case INSTR_LITERAL_DEF:
43cd72b9 3078 /* Hard-coded 4-byte literal. */
e0001a05
NC
3079 this_size += 4;
3080 break;
3081 case INSTR_INSTR:
3082 case INSTR_LABEL_DEF:
3083 default:
3084 break;
3085 }
3086 }
3087 if (this_size > max_size)
3088 max_size = this_size;
3089 }
3090 return max_size;
3091}
3092
3093
7fa3d080
BW
3094static bfd_boolean
3095xg_is_relaxable_insn (TInsn *insn, int lateral_steps)
3096{
3097 int steps_taken = 0;
3098 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3099 TransitionList *l;
3100
3101 assert (insn->insn_type == ITYPE_INSN);
3102 assert (insn->opcode < table->num_opcodes);
3103
3104 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3105 {
3106 TransitionRule *rule = l->rule;
3107
3108 if (xg_instruction_matches_rule (insn, rule))
3109 {
3110 if (steps_taken == lateral_steps)
3111 return TRUE;
3112 steps_taken++;
3113 }
3114 }
3115 return FALSE;
3116}
3117
3118
3119static symbolS *
3120get_special_literal_symbol (void)
3121{
3122 static symbolS *sym = NULL;
3123
3124 if (sym == NULL)
3125 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
3126 return sym;
3127}
3128
3129
3130static symbolS *
3131get_special_label_symbol (void)
3132{
3133 static symbolS *sym = NULL;
3134
3135 if (sym == NULL)
3136 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
3137 return sym;
3138}
3139
3140
3141static bfd_boolean
3142xg_valid_literal_expression (const expressionS *exp)
3143{
3144 switch (exp->X_op)
3145 {
3146 case O_constant:
3147 case O_symbol:
3148 case O_big:
3149 case O_uminus:
3150 case O_subtract:
3151 case O_pltrel:
3152 return TRUE;
3153 default:
3154 return FALSE;
3155 }
3156}
3157
3158
3159/* This will check to see if the value can be converted into the
3160 operand type. It will return TRUE if it does not fit. */
3161
3162static bfd_boolean
3163xg_check_operand (int32 value, xtensa_opcode opcode, int operand)
3164{
3165 uint32 valbuf = value;
3166 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
3167 return TRUE;
3168 return FALSE;
3169}
3170
3171
3172/* Assumes: All immeds are constants. Check that all constants fit
3173 into their immeds; return FALSE if not. */
3174
3175static bfd_boolean
3176xg_immeds_fit (const TInsn *insn)
3177{
3178 xtensa_isa isa = xtensa_default_isa;
3179 int i;
3180
3181 int n = insn->ntok;
3182 assert (insn->insn_type == ITYPE_INSN);
3183 for (i = 0; i < n; ++i)
3184 {
3185 const expressionS *expr = &insn->tok[i];
3186 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3187 continue;
3188
3189 switch (expr->X_op)
3190 {
3191 case O_register:
3192 case O_constant:
3193 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3194 return FALSE;
3195 break;
3196
3197 default:
3198 /* The symbol should have a fixup associated with it. */
3199 assert (FALSE);
3200 break;
3201 }
3202 }
3203 return TRUE;
3204}
3205
3206
3207/* This should only be called after we have an initial
3208 estimate of the addresses. */
3209
3210static bfd_boolean
3211xg_symbolic_immeds_fit (const TInsn *insn,
3212 segT pc_seg,
3213 fragS *pc_frag,
3214 offsetT pc_offset,
3215 long stretch)
e0001a05 3216{
7fa3d080
BW
3217 xtensa_isa isa = xtensa_default_isa;
3218 symbolS *symbolP;
3219 fragS *sym_frag;
3220 offsetT target, pc;
3221 uint32 new_offset;
3222 int i;
3223 int n = insn->ntok;
e0001a05
NC
3224
3225 assert (insn->insn_type == ITYPE_INSN);
e0001a05 3226
7fa3d080 3227 for (i = 0; i < n; ++i)
e0001a05 3228 {
7fa3d080
BW
3229 const expressionS *expr = &insn->tok[i];
3230 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3231 continue;
e0001a05 3232
7fa3d080 3233 switch (expr->X_op)
e0001a05 3234 {
7fa3d080
BW
3235 case O_register:
3236 case O_constant:
3237 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3238 return FALSE;
3239 break;
e0001a05 3240
7fa3d080
BW
3241 case O_lo16:
3242 case O_hi16:
3243 /* Check for the worst case. */
3244 if (xg_check_operand (0xffff, insn->opcode, i))
3245 return FALSE;
3246 break;
e0001a05 3247
7fa3d080 3248 case O_symbol:
7c834684 3249 /* We only allow symbols for PC-relative references.
7fa3d080 3250 If pc_frag == 0, then we don't have frag locations yet. */
7c834684
BW
3251 if (pc_frag == 0
3252 || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0)
7fa3d080 3253 return FALSE;
e0001a05 3254
7c834684
BW
3255 /* If it is a weak symbol, then assume it won't reach. */
3256 if (S_IS_WEAK (expr->X_add_symbol))
7fa3d080 3257 return FALSE;
e0001a05 3258
7c834684
BW
3259 if (is_direct_call_opcode (insn->opcode)
3260 && ! pc_frag->tc_frag_data.use_longcalls)
3261 {
3262 /* If callee is undefined or in a different segment, be
3263 optimistic and assume it will be in range. */
3264 if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
3265 return TRUE;
3266 }
3267
3268 /* Only references within a segment can be known to fit in the
3269 operands at assembly time. */
3270 if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
7fa3d080 3271 return FALSE;
e0001a05 3272
7fa3d080
BW
3273 symbolP = expr->X_add_symbol;
3274 sym_frag = symbol_get_frag (symbolP);
3275 target = S_GET_VALUE (symbolP) + expr->X_add_number;
3276 pc = pc_frag->fr_address + pc_offset;
e0001a05 3277
7fa3d080
BW
3278 /* If frag has yet to be reached on this pass, assume it
3279 will move by STRETCH just as we did. If this is not so,
3280 it will be because some frag between grows, and that will
3281 force another pass. Beware zero-length frags. There
3282 should be a faster way to do this. */
3283
3284 if (stretch != 0
3285 && sym_frag->relax_marker != pc_frag->relax_marker
3286 && S_GET_SEGMENT (symbolP) == pc_seg)
3287 {
3288 target += stretch;
3289 }
c138bc38 3290
7fa3d080
BW
3291 new_offset = target;
3292 xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc);
3293 if (xg_check_operand (new_offset, insn->opcode, i))
3294 return FALSE;
3295 break;
3296
3297 default:
3298 /* The symbol should have a fixup associated with it. */
3299 return FALSE;
3300 }
3301 }
3302
3303 return TRUE;
e0001a05
NC
3304}
3305
3306
43cd72b9 3307/* Return TRUE on success. */
e0001a05 3308
7fa3d080
BW
3309static bfd_boolean
3310xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi)
e0001a05
NC
3311{
3312 BuildOp *op;
3313 symbolS *sym;
3314
3315 memset (targ, 0, sizeof (TInsn));
7c430684 3316 targ->linenum = insn->linenum;
e0001a05
NC
3317 switch (bi->typ)
3318 {
3319 case INSTR_INSTR:
3320 op = bi->ops;
3321 targ->opcode = bi->opcode;
3322 targ->insn_type = ITYPE_INSN;
3323 targ->is_specific_opcode = FALSE;
3324
3325 for (; op != NULL; op = op->next)
3326 {
3327 int op_num = op->op_num;
3328 int op_data = op->op_data;
3329
3330 assert (op->op_num < MAX_INSN_ARGS);
3331
3332 if (targ->ntok <= op_num)
3333 targ->ntok = op_num + 1;
3334
3335 switch (op->typ)
3336 {
3337 case OP_CONSTANT:
3338 set_expr_const (&targ->tok[op_num], op_data);
3339 break;
3340 case OP_OPERAND:
3341 assert (op_data < insn->ntok);
3342 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3343 break;
3344 case OP_LITERAL:
3345 sym = get_special_literal_symbol ();
3346 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3347 break;
3348 case OP_LABEL:
3349 sym = get_special_label_symbol ();
3350 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3351 break;
43cd72b9
BW
3352 case OP_OPERAND_HI16U:
3353 case OP_OPERAND_LOW16U:
3354 assert (op_data < insn->ntok);
3355 if (expr_is_const (&insn->tok[op_data]))
3356 {
3357 long val;
3358 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3359 val = xg_apply_userdef_op_fn (op->typ,
3360 targ->tok[op_num].
3361 X_add_number);
3362 targ->tok[op_num].X_add_number = val;
3363 }
3364 else
3365 {
3366 /* For const16 we can create relocations for these. */
3367 if (targ->opcode == XTENSA_UNDEFINED
3368 || (targ->opcode != xtensa_const16_opcode))
3369 return FALSE;
3370 assert (op_data < insn->ntok);
3371 /* Need to build a O_lo16 or O_hi16. */
3372 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3373 if (targ->tok[op_num].X_op == O_symbol)
3374 {
3375 if (op->typ == OP_OPERAND_HI16U)
3376 targ->tok[op_num].X_op = O_hi16;
3377 else if (op->typ == OP_OPERAND_LOW16U)
3378 targ->tok[op_num].X_op = O_lo16;
3379 else
3380 return FALSE;
3381 }
3382 }
3383 break;
e0001a05
NC
3384 default:
3385 /* currently handles:
3386 OP_OPERAND_LOW8
3387 OP_OPERAND_HI24S
3388 OP_OPERAND_F32MINUS */
3389 if (xg_has_userdef_op_fn (op->typ))
3390 {
3391 assert (op_data < insn->ntok);
3392 if (expr_is_const (&insn->tok[op_data]))
3393 {
3394 long val;
3395 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3396 val = xg_apply_userdef_op_fn (op->typ,
3397 targ->tok[op_num].
3398 X_add_number);
3399 targ->tok[op_num].X_add_number = val;
3400 }
3401 else
3402 return FALSE; /* We cannot use a relocation for this. */
3403 break;
3404 }
3405 assert (0);
3406 break;
3407 }
3408 }
3409 break;
3410
3411 case INSTR_LITERAL_DEF:
3412 op = bi->ops;
3413 targ->opcode = XTENSA_UNDEFINED;
3414 targ->insn_type = ITYPE_LITERAL;
3415 targ->is_specific_opcode = FALSE;
3416 for (; op != NULL; op = op->next)
3417 {
3418 int op_num = op->op_num;
3419 int op_data = op->op_data;
3420 assert (op->op_num < MAX_INSN_ARGS);
3421
3422 if (targ->ntok <= op_num)
3423 targ->ntok = op_num + 1;
3424
3425 switch (op->typ)
3426 {
3427 case OP_OPERAND:
3428 assert (op_data < insn->ntok);
43cd72b9
BW
3429 /* We can only pass resolvable literals through. */
3430 if (!xg_valid_literal_expression (&insn->tok[op_data]))
3431 return FALSE;
e0001a05
NC
3432 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3433 break;
3434 case OP_LITERAL:
3435 case OP_CONSTANT:
3436 case OP_LABEL:
3437 default:
3438 assert (0);
3439 break;
3440 }
3441 }
3442 break;
3443
3444 case INSTR_LABEL_DEF:
3445 op = bi->ops;
3446 targ->opcode = XTENSA_UNDEFINED;
3447 targ->insn_type = ITYPE_LABEL;
3448 targ->is_specific_opcode = FALSE;
43cd72b9 3449 /* Literal with no ops is a label? */
e0001a05
NC
3450 assert (op == NULL);
3451 break;
3452
3453 default:
3454 assert (0);
3455 }
3456
3457 return TRUE;
3458}
3459
3460
43cd72b9 3461/* Return TRUE on success. */
e0001a05 3462
7fa3d080
BW
3463static bfd_boolean
3464xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
e0001a05
NC
3465{
3466 for (; bi != NULL; bi = bi->next)
3467 {
3468 TInsn *next_insn = istack_push_space (istack);
3469
3470 if (!xg_build_to_insn (next_insn, insn, bi))
3471 return FALSE;
3472 }
3473 return TRUE;
3474}
3475
3476
43cd72b9 3477/* Return TRUE on valid expansion. */
e0001a05 3478
7fa3d080
BW
3479static bfd_boolean
3480xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps)
e0001a05
NC
3481{
3482 int stack_size = istack->ninsn;
3483 int steps_taken = 0;
43cd72b9 3484 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
e0001a05
NC
3485 TransitionList *l;
3486
3487 assert (insn->insn_type == ITYPE_INSN);
3488 assert (insn->opcode < table->num_opcodes);
3489
3490 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3491 {
3492 TransitionRule *rule = l->rule;
3493
3494 if (xg_instruction_matches_rule (insn, rule))
3495 {
3496 if (lateral_steps == steps_taken)
3497 {
3498 int i;
3499
3500 /* This is it. Expand the rule to the stack. */
3501 if (!xg_build_to_stack (istack, insn, rule->to_instr))
3502 return FALSE;
3503
3504 /* Check to see if it fits. */
3505 for (i = stack_size; i < istack->ninsn; i++)
3506 {
3507 TInsn *insn = &istack->insn[i];
3508
3509 if (insn->insn_type == ITYPE_INSN
3510 && !tinsn_has_symbolic_operands (insn)
3511 && !xg_immeds_fit (insn))
3512 {
3513 istack->ninsn = stack_size;
3514 return FALSE;
3515 }
3516 }
3517 return TRUE;
3518 }
3519 steps_taken++;
3520 }
3521 }
3522 return FALSE;
3523}
3524
43cd72b9 3525\f
43cd72b9
BW
3526/* Relax the assembly instruction at least "min_steps".
3527 Return the number of steps taken. */
e0001a05 3528
7fa3d080
BW
3529static int
3530xg_assembly_relax (IStack *istack,
3531 TInsn *insn,
3532 segT pc_seg,
3533 fragS *pc_frag, /* if pc_frag == 0, not pc-relative */
3534 offsetT pc_offset, /* offset in fragment */
3535 int min_steps, /* minimum conversion steps */
3536 long stretch) /* number of bytes stretched so far */
e0001a05
NC
3537{
3538 int steps_taken = 0;
3539
3540 /* assert (has no symbolic operands)
3541 Some of its immeds don't fit.
3542 Try to build a relaxed version.
3543 This may go through a couple of stages
3544 of single instruction transformations before
3545 we get there. */
3546
3547 TInsn single_target;
3548 TInsn current_insn;
3549 int lateral_steps = 0;
3550 int istack_size = istack->ninsn;
3551
3552 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3553 && steps_taken >= min_steps)
3554 {
3555 istack_push (istack, insn);
3556 return steps_taken;
3557 }
43cd72b9 3558 current_insn = *insn;
e0001a05 3559
7c834684 3560 /* Walk through all of the single instruction expansions. */
84b08ed9 3561 while (xg_is_single_relaxable_insn (&current_insn, &single_target, FALSE))
e0001a05 3562 {
21af2bbd 3563 steps_taken++;
e0001a05
NC
3564 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3565 stretch))
3566 {
e0001a05
NC
3567 if (steps_taken >= min_steps)
3568 {
3569 istack_push (istack, &single_target);
3570 return steps_taken;
3571 }
3572 }
43cd72b9 3573 current_insn = single_target;
e0001a05
NC
3574 }
3575
3576 /* Now check for a multi-instruction expansion. */
3577 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3578 {
3579 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3580 stretch))
3581 {
3582 if (steps_taken >= min_steps)
3583 {
3584 istack_push (istack, &current_insn);
3585 return steps_taken;
3586 }
3587 }
3588 steps_taken++;
3589 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3590 {
3591 if (steps_taken >= min_steps)
3592 return steps_taken;
3593 }
3594 lateral_steps++;
3595 istack->ninsn = istack_size;
3596 }
3597
3598 /* It's not going to work -- use the original. */
3599 istack_push (istack, insn);
3600 return steps_taken;
3601}
3602
3603
3604static void
7fa3d080 3605xg_force_frag_space (int size)
e0001a05
NC
3606{
3607 /* This may have the side effect of creating a new fragment for the
3608 space to go into. I just do not like the name of the "frag"
3609 functions. */
3610 frag_grow (size);
3611}
3612
3613
7fa3d080
BW
3614static void
3615xg_finish_frag (char *last_insn,
3616 enum xtensa_relax_statesE frag_state,
3617 enum xtensa_relax_statesE slot0_state,
3618 int max_growth,
3619 bfd_boolean is_insn)
e0001a05
NC
3620{
3621 /* Finish off this fragment so that it has at LEAST the desired
3622 max_growth. If it doesn't fit in this fragment, close this one
3623 and start a new one. In either case, return a pointer to the
3624 beginning of the growth area. */
3625
3626 fragS *old_frag;
43cd72b9 3627
e0001a05
NC
3628 xg_force_frag_space (max_growth);
3629
3630 old_frag = frag_now;
3631
3632 frag_now->fr_opcode = last_insn;
3633 if (is_insn)
3634 frag_now->tc_frag_data.is_insn = TRUE;
3635
3636 frag_var (rs_machine_dependent, max_growth, max_growth,
43cd72b9
BW
3637 frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3638
3639 old_frag->tc_frag_data.slot_subtypes[0] = slot0_state;
3640 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
3641
3642 /* Just to make sure that we did not split it up. */
3643 assert (old_frag->fr_next == frag_now);
3644}
3645
3646
7fa3d080
BW
3647/* Return TRUE if the target frag is one of the next non-empty frags. */
3648
3649static bfd_boolean
3650is_next_frag_target (const fragS *fragP, const fragS *target)
3651{
3652 if (fragP == NULL)
3653 return FALSE;
3654
3655 for (; fragP; fragP = fragP->fr_next)
3656 {
3657 if (fragP == target)
3658 return TRUE;
3659 if (fragP->fr_fix != 0)
3660 return FALSE;
3661 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
3662 return FALSE;
3663 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
3664 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
3665 return FALSE;
3666 if (fragP->fr_type == rs_space)
3667 return FALSE;
3668 }
3669 return FALSE;
3670}
3671
3672
e0001a05 3673static bfd_boolean
7fa3d080 3674is_branch_jmp_to_next (TInsn *insn, fragS *fragP)
e0001a05
NC
3675{
3676 xtensa_isa isa = xtensa_default_isa;
3677 int i;
43cd72b9 3678 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
e0001a05
NC
3679 int target_op = -1;
3680 symbolS *sym;
3681 fragS *target_frag;
3682
43cd72b9
BW
3683 if (xtensa_opcode_is_branch (isa, insn->opcode) == 0
3684 && xtensa_opcode_is_jump (isa, insn->opcode) == 0)
e0001a05
NC
3685 return FALSE;
3686
3687 for (i = 0; i < num_ops; i++)
3688 {
43cd72b9 3689 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1)
e0001a05
NC
3690 {
3691 target_op = i;
3692 break;
3693 }
3694 }
3695 if (target_op == -1)
3696 return FALSE;
3697
3698 if (insn->ntok <= target_op)
3699 return FALSE;
3700
3701 if (insn->tok[target_op].X_op != O_symbol)
3702 return FALSE;
3703
3704 sym = insn->tok[target_op].X_add_symbol;
3705 if (sym == NULL)
3706 return FALSE;
3707
3708 if (insn->tok[target_op].X_add_number != 0)
3709 return FALSE;
3710
3711 target_frag = symbol_get_frag (sym);
3712 if (target_frag == NULL)
3713 return FALSE;
3714
c138bc38 3715 if (is_next_frag_target (fragP->fr_next, target_frag)
e0001a05
NC
3716 && S_GET_VALUE (sym) == target_frag->fr_address)
3717 return TRUE;
3718
3719 return FALSE;
3720}
3721
3722
3723static void
7fa3d080 3724xg_add_branch_and_loop_targets (TInsn *insn)
e0001a05
NC
3725{
3726 xtensa_isa isa = xtensa_default_isa;
7fa3d080 3727 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
43cd72b9 3728
7fa3d080
BW
3729 if (xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3730 {
3731 int i = 1;
3732 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3733 && insn->tok[i].X_op == O_symbol)
3734 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3735 return;
3736 }
e0001a05 3737
7fa3d080
BW
3738 if (xtensa_opcode_is_branch (isa, insn->opcode) == 1
3739 || xtensa_opcode_is_loop (isa, insn->opcode) == 1)
e0001a05 3740 {
7fa3d080
BW
3741 int i;
3742
3743 for (i = 0; i < insn->ntok && i < num_ops; i++)
3744 {
3745 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3746 && insn->tok[i].X_op == O_symbol)
3747 {
3748 symbolS *sym = insn->tok[i].X_add_symbol;
3749 symbol_get_tc (sym)->is_branch_target = TRUE;
3750 if (S_IS_DEFINED (sym))
3751 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3752 }
3753 }
e0001a05 3754 }
e0001a05
NC
3755}
3756
3757
43cd72b9 3758/* Return FALSE if no error. */
e0001a05 3759
7fa3d080
BW
3760static bfd_boolean
3761xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn)
e0001a05
NC
3762{
3763 int num_ops = 0;
3764 BuildOp *b_op;
3765
3766 switch (instr_spec->typ)
3767 {
3768 case INSTR_INSTR:
3769 new_insn->insn_type = ITYPE_INSN;
3770 new_insn->opcode = instr_spec->opcode;
3771 new_insn->is_specific_opcode = FALSE;
7c430684 3772 new_insn->linenum = old_insn->linenum;
e0001a05
NC
3773 break;
3774 case INSTR_LITERAL_DEF:
3775 new_insn->insn_type = ITYPE_LITERAL;
3776 new_insn->opcode = XTENSA_UNDEFINED;
3777 new_insn->is_specific_opcode = FALSE;
7c430684 3778 new_insn->linenum = old_insn->linenum;
e0001a05
NC
3779 break;
3780 case INSTR_LABEL_DEF:
3781 as_bad (_("INSTR_LABEL_DEF not supported yet"));
3782 break;
3783 }
3784
3785 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3786 {
3787 expressionS *exp;
3788 const expressionS *src_exp;
3789
3790 num_ops++;
3791 switch (b_op->typ)
3792 {
3793 case OP_CONSTANT:
3794 /* The expression must be the constant. */
3795 assert (b_op->op_num < MAX_INSN_ARGS);
3796 exp = &new_insn->tok[b_op->op_num];
3797 set_expr_const (exp, b_op->op_data);
3798 break;
3799
3800 case OP_OPERAND:
3801 assert (b_op->op_num < MAX_INSN_ARGS);
3802 assert (b_op->op_data < (unsigned) old_insn->ntok);
3803 src_exp = &old_insn->tok[b_op->op_data];
3804 exp = &new_insn->tok[b_op->op_num];
3805 copy_expr (exp, src_exp);
3806 break;
3807
3808 case OP_LITERAL:
3809 case OP_LABEL:
3810 as_bad (_("can't handle generation of literal/labels yet"));
3811 assert (0);
3812
3813 default:
3814 as_bad (_("can't handle undefined OP TYPE"));
3815 assert (0);
3816 }
3817 }
3818
3819 new_insn->ntok = num_ops;
3820 return FALSE;
3821}
3822
3823
43cd72b9 3824/* Return TRUE if it was simplified. */
e0001a05 3825
7fa3d080
BW
3826static bfd_boolean
3827xg_simplify_insn (TInsn *old_insn, TInsn *new_insn)
e0001a05 3828{
43cd72b9 3829 TransitionRule *rule;
e0001a05 3830 BuildInstr *insn_spec;
43cd72b9
BW
3831
3832 if (old_insn->is_specific_opcode || !density_supported)
3833 return FALSE;
3834
3835 rule = xg_instruction_match (old_insn);
e0001a05
NC
3836 if (rule == NULL)
3837 return FALSE;
3838
3839 insn_spec = rule->to_instr;
3840 /* There should only be one. */
3841 assert (insn_spec != NULL);
3842 assert (insn_spec->next == NULL);
3843 if (insn_spec->next != NULL)
3844 return FALSE;
3845
3846 xg_build_token_insn (insn_spec, old_insn, new_insn);
3847
3848 return TRUE;
3849}
3850
3851
3852/* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
3853 l32i.n. (2) Check the number of operands. (3) Place the instruction
7c834684
BW
3854 tokens into the stack or relax it and place multiple
3855 instructions/literals onto the stack. Return FALSE if no error. */
e0001a05
NC
3856
3857static bfd_boolean
7fa3d080 3858xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn)
e0001a05
NC
3859{
3860 int noperands;
3861 TInsn new_insn;
7c834684
BW
3862 bfd_boolean do_expand;
3863
e0001a05
NC
3864 memset (&new_insn, 0, sizeof (TInsn));
3865
43cd72b9
BW
3866 /* Narrow it if we can. xg_simplify_insn now does all the
3867 appropriate checking (e.g., for the density option). */
3868 if (xg_simplify_insn (orig_insn, &new_insn))
3869 orig_insn = &new_insn;
e0001a05 3870
43cd72b9
BW
3871 noperands = xtensa_opcode_num_operands (xtensa_default_isa,
3872 orig_insn->opcode);
e0001a05
NC
3873 if (orig_insn->ntok < noperands)
3874 {
3875 as_bad (_("found %d operands for '%s': Expected %d"),
3876 orig_insn->ntok,
3877 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3878 noperands);
3879 return TRUE;
3880 }
3881 if (orig_insn->ntok > noperands)
3882 as_warn (_("found too many (%d) operands for '%s': Expected %d"),
3883 orig_insn->ntok,
3884 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3885 noperands);
3886
43cd72b9 3887 /* If there are not enough operands, we will assert above. If there
e0001a05 3888 are too many, just cut out the extras here. */
e0001a05
NC
3889 orig_insn->ntok = noperands;
3890
e0001a05
NC
3891 if (tinsn_has_invalid_symbolic_operands (orig_insn))
3892 return TRUE;
3893
7c834684
BW
3894 /* If the instruction will definitely need to be relaxed, it is better
3895 to expand it now for better scheduling. Decide whether to expand
3896 now.... */
3897 do_expand = (!orig_insn->is_specific_opcode && use_transform ());
3898
3899 /* Calls should be expanded to longcalls only in the backend relaxation
3900 so that the assembly scheduler will keep the L32R/CALLX instructions
3901 adjacent. */
3902 if (is_direct_call_opcode (orig_insn->opcode))
3903 do_expand = FALSE;
e0001a05
NC
3904
3905 if (tinsn_has_symbolic_operands (orig_insn))
3906 {
7c834684
BW
3907 /* The values of symbolic operands are not known yet, so only expand
3908 now if an operand is "complex" (e.g., difference of symbols) and
3909 will have to be stored as a literal regardless of the value. */
3910 if (!tinsn_has_complex_operands (orig_insn))
3911 do_expand = FALSE;
e0001a05 3912 }
7c834684
BW
3913 else if (xg_immeds_fit (orig_insn))
3914 do_expand = FALSE;
3915
3916 if (do_expand)
3917 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
e0001a05 3918 else
7c834684 3919 istack_push (istack, orig_insn);
e0001a05 3920
e0001a05
NC
3921 return FALSE;
3922}
3923
3924
7fa3d080
BW
3925/* Return TRUE if the section flags are marked linkonce
3926 or the name is .gnu.linkonce*. */
3927
3928static bfd_boolean
3929get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec)
3930{
3931 flagword flags, link_once_flags;
3932
3933 flags = bfd_get_section_flags (abfd, sec);
3934 link_once_flags = (flags & SEC_LINK_ONCE);
3935
3936 /* Flags might not be set yet. */
3937 if (!link_once_flags)
3938 {
3939 static size_t len = sizeof ".gnu.linkonce.t.";
3940
3941 if (strncmp (segment_name (sec), ".gnu.linkonce.t.", len - 1) == 0)
3942 link_once_flags = SEC_LINK_ONCE;
3943 }
3944 return (link_once_flags != 0);
3945}
3946
3947
3948static void
3949xtensa_add_literal_sym (symbolS *sym)
3950{
3951 sym_list *l;
3952
3953 l = (sym_list *) xmalloc (sizeof (sym_list));
3954 l->sym = sym;
3955 l->next = literal_syms;
3956 literal_syms = l;
3957}
3958
3959
3960static symbolS *
3961xtensa_create_literal_symbol (segT sec, fragS *frag)
3962{
3963 static int lit_num = 0;
3964 static char name[256];
3965 symbolS *symbolP;
3966
3967 sprintf (name, ".L_lit_sym%d", lit_num);
3968
3969 /* Create a local symbol. If it is in a linkonce section, we have to
3970 be careful to make sure that if it is used in a relocation that the
3971 symbol will be in the output file. */
3972 if (get_is_linkonce_section (stdoutput, sec))
3973 {
3974 symbolP = symbol_new (name, sec, 0, frag);
3975 S_CLEAR_EXTERNAL (symbolP);
3976 /* symbolP->local = 1; */
3977 }
3978 else
3979 symbolP = symbol_new (name, sec, 0, frag);
3980
3981 xtensa_add_literal_sym (symbolP);
3982
7fa3d080
BW
3983 lit_num++;
3984 return symbolP;
3985}
3986
3987
e0001a05
NC
3988/* Currently all literals that are generated here are 32-bit L32R targets. */
3989
7fa3d080
BW
3990static symbolS *
3991xg_assemble_literal (/* const */ TInsn *insn)
e0001a05
NC
3992{
3993 emit_state state;
3994 symbolS *lit_sym = NULL;
3995
3996 /* size = 4 for L32R. It could easily be larger when we move to
3997 larger constants. Add a parameter later. */
3998 offsetT litsize = 4;
3999 offsetT litalign = 2; /* 2^2 = 4 */
4000 expressionS saved_loc;
43cd72b9
BW
4001 expressionS * emit_val;
4002
e0001a05
NC
4003 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
4004
4005 assert (insn->insn_type == ITYPE_LITERAL);
77cd6497 4006 assert (insn->ntok == 1); /* must be only one token here */
e0001a05
NC
4007
4008 xtensa_switch_to_literal_fragment (&state);
4009
43cd72b9
BW
4010 emit_val = &insn->tok[0];
4011 if (emit_val->X_op == O_big)
4012 {
4013 int size = emit_val->X_add_number * CHARS_PER_LITTLENUM;
4014 if (size > litsize)
4015 {
4016 /* This happens when someone writes a "movi a2, big_number". */
c138bc38 4017 as_bad_where (frag_now->fr_file, frag_now->fr_line,
43cd72b9
BW
4018 _("invalid immediate"));
4019 xtensa_restore_emit_state (&state);
4020 return NULL;
4021 }
4022 }
4023
e0001a05
NC
4024 /* Force a 4-byte align here. Note that this opens a new frag, so all
4025 literals done with this function have a frag to themselves. That's
4026 important for the way text section literals work. */
4027 frag_align (litalign, 0, 0);
43cd72b9 4028 record_alignment (now_seg, litalign);
e0001a05 4029
43cd72b9
BW
4030 if (emit_val->X_op == O_pltrel)
4031 {
4032 char *p = frag_more (litsize);
4033 xtensa_set_frag_assembly_state (frag_now);
4034 if (emit_val->X_add_symbol)
4035 emit_val->X_op = O_symbol;
4036 else
4037 emit_val->X_op = O_constant;
4038 fix_new_exp (frag_now, p - frag_now->fr_literal,
4039 litsize, emit_val, 0, BFD_RELOC_XTENSA_PLT);
4040 }
4041 else
4042 emit_expr (emit_val, litsize);
e0001a05
NC
4043
4044 assert (frag_now->tc_frag_data.literal_frag == NULL);
4045 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4046 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4047 lit_sym = frag_now->fr_symbol;
e0001a05
NC
4048
4049 /* Go back. */
4050 xtensa_restore_emit_state (&state);
4051 return lit_sym;
4052}
4053
4054
4055static void
7fa3d080 4056xg_assemble_literal_space (/* const */ int size, int slot)
e0001a05
NC
4057{
4058 emit_state state;
43cd72b9 4059 /* We might have to do something about this alignment. It only
e0001a05
NC
4060 takes effect if something is placed here. */
4061 offsetT litalign = 2; /* 2^2 = 4 */
4062 fragS *lit_saved_frag;
4063
e0001a05 4064 assert (size % 4 == 0);
e0001a05
NC
4065
4066 xtensa_switch_to_literal_fragment (&state);
4067
4068 /* Force a 4-byte align here. */
4069 frag_align (litalign, 0, 0);
43cd72b9 4070 record_alignment (now_seg, litalign);
e0001a05
NC
4071
4072 xg_force_frag_space (size);
4073
4074 lit_saved_frag = frag_now;
4075 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
e0001a05 4076 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
43cd72b9 4077 xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE);
e0001a05
NC
4078
4079 /* Go back. */
4080 xtensa_restore_emit_state (&state);
43cd72b9 4081 frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag;
e0001a05
NC
4082}
4083
4084
e0001a05 4085/* Put in a fixup record based on the opcode.
43cd72b9 4086 Return TRUE on success. */
e0001a05 4087
7fa3d080
BW
4088static bfd_boolean
4089xg_add_opcode_fix (TInsn *tinsn,
4090 int opnum,
4091 xtensa_format fmt,
4092 int slot,
4093 expressionS *expr,
4094 fragS *fragP,
4095 offsetT offset)
43cd72b9
BW
4096{
4097 xtensa_opcode opcode = tinsn->opcode;
4098 bfd_reloc_code_real_type reloc;
4099 reloc_howto_type *howto;
4100 int fmt_length;
e0001a05
NC
4101 fixS *the_fix;
4102
43cd72b9
BW
4103 reloc = BFD_RELOC_NONE;
4104
4105 /* First try the special cases for "alternate" relocs. */
4106 if (opcode == xtensa_l32r_opcode)
4107 {
4108 if (fragP->tc_frag_data.use_absolute_literals)
4109 reloc = encode_alt_reloc (slot);
4110 }
4111 else if (opcode == xtensa_const16_opcode)
4112 {
4113 if (expr->X_op == O_lo16)
4114 {
4115 reloc = encode_reloc (slot);
4116 expr->X_op = O_symbol;
4117 }
4118 else if (expr->X_op == O_hi16)
4119 {
4120 reloc = encode_alt_reloc (slot);
4121 expr->X_op = O_symbol;
4122 }
4123 }
4124
4125 if (opnum != get_relaxable_immed (opcode))
e0001a05 4126 {
43cd72b9 4127 as_bad (_("invalid relocation for operand %i of '%s'"),
431ad2d0 4128 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
e0001a05
NC
4129 return FALSE;
4130 }
4131
43cd72b9
BW
4132 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4133 into the symbol table where the generic portions of the assembler
4134 won't know what to do with them. */
4135 if (expr->X_op == O_lo16 || expr->X_op == O_hi16)
4136 {
4137 as_bad (_("invalid expression for operand %i of '%s'"),
431ad2d0 4138 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
43cd72b9
BW
4139 return FALSE;
4140 }
4141
4142 /* Next try the generic relocs. */
4143 if (reloc == BFD_RELOC_NONE)
4144 reloc = encode_reloc (slot);
4145 if (reloc == BFD_RELOC_NONE)
4146 {
4147 as_bad (_("invalid relocation in instruction slot %i"), slot);
4148 return FALSE;
4149 }
e0001a05 4150
43cd72b9 4151 howto = bfd_reloc_type_lookup (stdoutput, reloc);
e0001a05
NC
4152 if (!howto)
4153 {
43cd72b9 4154 as_bad (_("undefined symbol for opcode \"%s\""),
e0001a05
NC
4155 xtensa_opcode_name (xtensa_default_isa, opcode));
4156 return FALSE;
4157 }
4158
43cd72b9
BW
4159 fmt_length = xtensa_format_length (xtensa_default_isa, fmt);
4160 the_fix = fix_new_exp (fragP, offset, fmt_length, expr,
e0001a05 4161 howto->pc_relative, reloc);
d9740523 4162 the_fix->fx_no_overflow = 1;
e0001a05 4163
7fa3d080
BW
4164 if (expr->X_add_symbol
4165 && (S_IS_EXTERNAL (expr->X_add_symbol)
4166 || S_IS_WEAK (expr->X_add_symbol)))
4167 the_fix->fx_plt = TRUE;
4168
4169 the_fix->tc_fix_data.X_add_symbol = expr->X_add_symbol;
4170 the_fix->tc_fix_data.X_add_number = expr->X_add_number;
4171 the_fix->tc_fix_data.slot = slot;
c138bc38 4172
7fa3d080
BW
4173 return TRUE;
4174}
4175
4176
4177static bfd_boolean
4178xg_emit_insn_to_buf (TInsn *tinsn,
7fa3d080
BW
4179 char *buf,
4180 fragS *fragP,
4181 offsetT offset,
4182 bfd_boolean build_fix)
4183{
4184 static xtensa_insnbuf insnbuf = NULL;
4185 bfd_boolean has_symbolic_immed = FALSE;
4186 bfd_boolean ok = TRUE;
b2d179be 4187
7fa3d080
BW
4188 if (!insnbuf)
4189 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4190
4191 has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf);
4192 if (has_symbolic_immed && build_fix)
4193 {
4194 /* Add a fixup. */
b2d179be
BW
4195 xtensa_format fmt = xg_get_single_format (tinsn->opcode);
4196 int slot = xg_get_single_slot (tinsn->opcode);
7fa3d080
BW
4197 int opnum = get_relaxable_immed (tinsn->opcode);
4198 expressionS *exp = &tinsn->tok[opnum];
43cd72b9 4199
b2d179be 4200 if (!xg_add_opcode_fix (tinsn, opnum, fmt, slot, exp, fragP, offset))
7fa3d080
BW
4201 ok = FALSE;
4202 }
4203 fragP->tc_frag_data.is_insn = TRUE;
d77b99c9
BW
4204 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4205 (unsigned char *) buf, 0);
7fa3d080 4206 return ok;
e0001a05
NC
4207}
4208
4209
7fa3d080
BW
4210static void
4211xg_resolve_literals (TInsn *insn, symbolS *lit_sym)
e0001a05
NC
4212{
4213 symbolS *sym = get_special_literal_symbol ();
4214 int i;
4215 if (lit_sym == 0)
4216 return;
4217 assert (insn->insn_type == ITYPE_INSN);
4218 for (i = 0; i < insn->ntok; i++)
4219 if (insn->tok[i].X_add_symbol == sym)
4220 insn->tok[i].X_add_symbol = lit_sym;
4221
4222}
4223
4224
7fa3d080
BW
4225static void
4226xg_resolve_labels (TInsn *insn, symbolS *label_sym)
e0001a05
NC
4227{
4228 symbolS *sym = get_special_label_symbol ();
4229 int i;
e0001a05
NC
4230 for (i = 0; i < insn->ntok; i++)
4231 if (insn->tok[i].X_add_symbol == sym)
4232 insn->tok[i].X_add_symbol = label_sym;
4233
4234}
4235
4236
43cd72b9 4237/* Return TRUE if the instruction can write to the specified
e0001a05
NC
4238 integer register. */
4239
4240static bfd_boolean
7fa3d080 4241is_register_writer (const TInsn *insn, const char *regset, int regnum)
e0001a05
NC
4242{
4243 int i;
4244 int num_ops;
4245 xtensa_isa isa = xtensa_default_isa;
4246
43cd72b9 4247 num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
e0001a05
NC
4248
4249 for (i = 0; i < num_ops; i++)
4250 {
43cd72b9
BW
4251 char inout;
4252 inout = xtensa_operand_inout (isa, insn->opcode, i);
4253 if ((inout == 'o' || inout == 'm')
4254 && xtensa_operand_is_register (isa, insn->opcode, i) == 1)
e0001a05 4255 {
43cd72b9
BW
4256 xtensa_regfile opnd_rf =
4257 xtensa_operand_regfile (isa, insn->opcode, i);
4258 if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset))
e0001a05
NC
4259 {
4260 if ((insn->tok[i].X_op == O_register)
4261 && (insn->tok[i].X_add_number == regnum))
4262 return TRUE;
4263 }
4264 }
4265 }
4266 return FALSE;
4267}
4268
4269
4270static bfd_boolean
7fa3d080 4271is_bad_loopend_opcode (const TInsn *tinsn)
e0001a05
NC
4272{
4273 xtensa_opcode opcode = tinsn->opcode;
4274
4275 if (opcode == XTENSA_UNDEFINED)
4276 return FALSE;
4277
4278 if (opcode == xtensa_call0_opcode
4279 || opcode == xtensa_callx0_opcode
4280 || opcode == xtensa_call4_opcode
4281 || opcode == xtensa_callx4_opcode
4282 || opcode == xtensa_call8_opcode
4283 || opcode == xtensa_callx8_opcode
4284 || opcode == xtensa_call12_opcode
4285 || opcode == xtensa_callx12_opcode
4286 || opcode == xtensa_isync_opcode
4287 || opcode == xtensa_ret_opcode
4288 || opcode == xtensa_ret_n_opcode
4289 || opcode == xtensa_retw_opcode
4290 || opcode == xtensa_retw_n_opcode
43cd72b9
BW
4291 || opcode == xtensa_waiti_opcode
4292 || opcode == xtensa_rsr_lcount_opcode)
e0001a05 4293 return TRUE;
c138bc38 4294
e0001a05
NC
4295 return FALSE;
4296}
4297
4298
4299/* Labels that begin with ".Ln" or ".LM" are unaligned.
4300 This allows the debugger to add unaligned labels.
4301 Also, the assembler generates stabs labels that need
4302 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4303
7fa3d080
BW
4304static bfd_boolean
4305is_unaligned_label (symbolS *sym)
e0001a05
NC
4306{
4307 const char *name = S_GET_NAME (sym);
4308 static size_t fake_size = 0;
4309
4310 if (name
4311 && name[0] == '.'
4312 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4313 return TRUE;
4314
4315 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4316 if (fake_size == 0)
4317 fake_size = strlen (FAKE_LABEL_NAME);
4318
43cd72b9 4319 if (name
e0001a05
NC
4320 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4321 && (name[fake_size] == 'F'
4322 || name[fake_size] == 'L'
4323 || (name[fake_size] == 'e'
4324 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4325 return TRUE;
4326
4327 return FALSE;
4328}
4329
4330
7fa3d080
BW
4331static fragS *
4332next_non_empty_frag (const fragS *fragP)
e0001a05
NC
4333{
4334 fragS *next_fragP = fragP->fr_next;
4335
c138bc38 4336 /* Sometimes an empty will end up here due storage allocation issues.
e0001a05
NC
4337 So we have to skip until we find something legit. */
4338 while (next_fragP && next_fragP->fr_fix == 0)
4339 next_fragP = next_fragP->fr_next;
4340
4341 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4342 return NULL;
4343
4344 return next_fragP;
4345}
4346
4347
43cd72b9 4348static bfd_boolean
7fa3d080 4349next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode)
43cd72b9
BW
4350{
4351 xtensa_opcode out_opcode;
4352 const fragS *next_fragP = next_non_empty_frag (fragP);
4353
4354 if (next_fragP == NULL)
4355 return FALSE;
4356
4357 out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0);
4358 if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1)
4359 {
4360 *opcode = out_opcode;
4361 return TRUE;
4362 }
4363 return FALSE;
4364}
4365
4366
4367static int
7fa3d080 4368frag_format_size (const fragS *fragP)
43cd72b9 4369{
e0001a05
NC
4370 static xtensa_insnbuf insnbuf = NULL;
4371 xtensa_isa isa = xtensa_default_isa;
43cd72b9 4372 xtensa_format fmt;
c138bc38 4373 int fmt_size;
e0001a05
NC
4374
4375 if (!insnbuf)
4376 insnbuf = xtensa_insnbuf_alloc (isa);
4377
43cd72b9
BW
4378 if (fragP == NULL)
4379 return XTENSA_UNDEFINED;
4380
d77b99c9
BW
4381 xtensa_insnbuf_from_chars (isa, insnbuf,
4382 (unsigned char *) fragP->fr_literal, 0);
43cd72b9
BW
4383
4384 fmt = xtensa_format_decode (isa, insnbuf);
4385 if (fmt == XTENSA_UNDEFINED)
e0001a05 4386 return XTENSA_UNDEFINED;
43cd72b9
BW
4387 fmt_size = xtensa_format_length (isa, fmt);
4388
4389 /* If the next format won't be changing due to relaxation, just
4390 return the length of the first format. */
4391 if (fragP->fr_opcode != fragP->fr_literal)
4392 return fmt_size;
4393
c138bc38 4394 /* If during relaxation we have to pull an instruction out of a
43cd72b9
BW
4395 multi-slot instruction, we will return the more conservative
4396 number. This works because alignment on bigger instructions
4397 is more restrictive than alignment on smaller instructions.
4398 This is more conservative than we would like, but it happens
4399 infrequently. */
4400
4401 if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1)
4402 return fmt_size;
4403
4404 /* If we aren't doing one of our own relaxations or it isn't
4405 slot-based, then the insn size won't change. */
4406 if (fragP->fr_type != rs_machine_dependent)
4407 return fmt_size;
4408 if (fragP->fr_subtype != RELAX_SLOTS)
4409 return fmt_size;
4410
4411 /* If an instruction is about to grow, return the longer size. */
4412 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1
4413 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2)
4414 return 3;
c138bc38 4415
43cd72b9
BW
4416 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
4417 return 2 + fragP->tc_frag_data.text_expansion[0];
e0001a05 4418
43cd72b9 4419 return fmt_size;
e0001a05
NC
4420}
4421
4422
7fa3d080
BW
4423static int
4424next_frag_format_size (const fragS *fragP)
e0001a05 4425{
7fa3d080
BW
4426 const fragS *next_fragP = next_non_empty_frag (fragP);
4427 return frag_format_size (next_fragP);
e0001a05
NC
4428}
4429
4430
03aaa593
BW
4431/* In early Xtensa Processors, for reasons that are unclear, the ISA
4432 required two-byte instructions to be treated as three-byte instructions
4433 for loop instruction alignment. This restriction was removed beginning
4434 with Xtensa LX. Now the only requirement on loop instruction alignment
4435 is that the first instruction of the loop must appear at an address that
4436 does not cross a fetch boundary. */
4437
4438static int
4439get_loop_align_size (int insn_size)
4440{
4441 if (insn_size == XTENSA_UNDEFINED)
4442 return xtensa_fetch_width;
4443
4444 if (enforce_three_byte_loop_align && insn_size == 2)
4445 return 3;
4446
4447 return insn_size;
4448}
4449
4450
e0001a05
NC
4451/* If the next legit fragment is an end-of-loop marker,
4452 switch its state so it will instantiate a NOP. */
4453
4454static void
1d19a770 4455update_next_frag_state (fragS *fragP)
e0001a05
NC
4456{
4457 fragS *next_fragP = fragP->fr_next;
43cd72b9 4458 fragS *new_target = NULL;
e0001a05 4459
7b1cc377 4460 if (align_targets)
43cd72b9
BW
4461 {
4462 /* We are guaranteed there will be one of these... */
4463 while (!(next_fragP->fr_type == rs_machine_dependent
4464 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4465 || next_fragP->fr_subtype == RELAX_UNREACHABLE)))
4466 next_fragP = next_fragP->fr_next;
4467
4468 assert (next_fragP->fr_type == rs_machine_dependent
4469 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4470 || next_fragP->fr_subtype == RELAX_UNREACHABLE));
4471
4472 /* ...and one of these. */
4473 new_target = next_fragP->fr_next;
4474 while (!(new_target->fr_type == rs_machine_dependent
4475 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4476 || new_target->fr_subtype == RELAX_DESIRE_ALIGN)))
4477 new_target = new_target->fr_next;
4478
4479 assert (new_target->fr_type == rs_machine_dependent
4480 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4481 || new_target->fr_subtype == RELAX_DESIRE_ALIGN));
4482 }
43cd72b9 4483
1d19a770 4484 while (next_fragP && next_fragP->fr_fix == 0)
43cd72b9 4485 {
1d19a770
BW
4486 if (next_fragP->fr_type == rs_machine_dependent
4487 && next_fragP->fr_subtype == RELAX_LOOP_END)
43cd72b9 4488 {
1d19a770
BW
4489 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4490 return;
e0001a05 4491 }
1d19a770
BW
4492
4493 next_fragP = next_fragP->fr_next;
e0001a05
NC
4494 }
4495}
4496
4497
4498static bfd_boolean
7fa3d080 4499next_frag_is_branch_target (const fragS *fragP)
e0001a05 4500{
43cd72b9 4501 /* Sometimes an empty will end up here due to storage allocation issues,
e0001a05
NC
4502 so we have to skip until we find something legit. */
4503 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4504 {
4505 if (fragP->tc_frag_data.is_branch_target)
4506 return TRUE;
4507 if (fragP->fr_fix != 0)
4508 break;
4509 }
4510 return FALSE;
4511}
4512
4513
4514static bfd_boolean
7fa3d080 4515next_frag_is_loop_target (const fragS *fragP)
e0001a05 4516{
c138bc38 4517 /* Sometimes an empty will end up here due storage allocation issues.
e0001a05
NC
4518 So we have to skip until we find something legit. */
4519 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4520 {
4521 if (fragP->tc_frag_data.is_loop_target)
4522 return TRUE;
4523 if (fragP->fr_fix != 0)
4524 break;
4525 }
4526 return FALSE;
4527}
4528
4529
4530static addressT
7fa3d080 4531next_frag_pre_opcode_bytes (const fragS *fragp)
e0001a05
NC
4532{
4533 const fragS *next_fragp = fragp->fr_next;
43cd72b9 4534 xtensa_opcode next_opcode;
e0001a05 4535
43cd72b9 4536 if (!next_frag_opcode_is_loop (fragp, &next_opcode))
e0001a05
NC
4537 return 0;
4538
43cd72b9
BW
4539 /* Sometimes an empty will end up here due to storage allocation issues,
4540 so we have to skip until we find something legit. */
e0001a05
NC
4541 while (next_fragp->fr_fix == 0)
4542 next_fragp = next_fragp->fr_next;
4543
4544 if (next_fragp->fr_type != rs_machine_dependent)
4545 return 0;
4546
4547 /* There is some implicit knowledge encoded in here.
4548 The LOOP instructions that are NOT RELAX_IMMED have
43cd72b9
BW
4549 been relaxed. Note that we can assume that the LOOP
4550 instruction is in slot 0 because loops aren't bundleable. */
4551 if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED)
e0001a05
NC
4552 return get_expanded_loop_offset (next_opcode);
4553
4554 return 0;
4555}
4556
4557
4558/* Mark a location where we can later insert literal frags. Update
4559 the section's literal_pool_loc, so subsequent literals can be
4560 placed nearest to their use. */
4561
4562static void
7fa3d080 4563xtensa_mark_literal_pool_location (void)
e0001a05
NC
4564{
4565 /* Any labels pointing to the current location need
4566 to be adjusted to after the literal pool. */
4567 emit_state s;
e0001a05 4568 fragS *pool_location;
e0001a05 4569
43cd72b9
BW
4570 if (use_literal_section && !directive_state[directive_absolute_literals])
4571 return;
4572
e0001a05 4573 frag_align (2, 0, 0);
43cd72b9 4574 record_alignment (now_seg, 2);
e0001a05 4575
dd49a749
BW
4576 /* We stash info in these frags so we can later move the literal's
4577 fixes into this frchain's fix list. */
e0001a05 4578 pool_location = frag_now;
dd49a749
BW
4579 frag_now->tc_frag_data.lit_frchain = frchain_now;
4580 frag_variant (rs_machine_dependent, 0, 0,
e0001a05 4581 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
43cd72b9 4582 xtensa_set_frag_assembly_state (frag_now);
dd49a749
BW
4583 frag_now->tc_frag_data.lit_seg = now_seg;
4584 frag_variant (rs_machine_dependent, 0, 0,
e0001a05 4585 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
43cd72b9 4586 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
4587
4588 /* Now put a frag into the literal pool that points to this location. */
4589 set_literal_pool_location (now_seg, pool_location);
43cd72b9
BW
4590 xtensa_switch_to_non_abs_literal_fragment (&s);
4591 frag_align (2, 0, 0);
4592 record_alignment (now_seg, 2);
e0001a05
NC
4593
4594 /* Close whatever frag is there. */
4595 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 4596 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
4597 frag_now->tc_frag_data.literal_frag = pool_location;
4598 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4599 xtensa_restore_emit_state (&s);
43cd72b9 4600 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
4601}
4602
4603
43cd72b9
BW
4604/* Build a nop of the correct size into tinsn. */
4605
4606static void
7fa3d080 4607build_nop (TInsn *tinsn, int size)
43cd72b9
BW
4608{
4609 tinsn_init (tinsn);
4610 switch (size)
4611 {
4612 case 2:
4613 tinsn->opcode = xtensa_nop_n_opcode;
4614 tinsn->ntok = 0;
4615 if (tinsn->opcode == XTENSA_UNDEFINED)
4616 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4617 break;
4618
4619 case 3:
4620 if (xtensa_nop_opcode == XTENSA_UNDEFINED)
4621 {
4622 tinsn->opcode = xtensa_or_opcode;
4623 set_expr_const (&tinsn->tok[0], 1);
4624 set_expr_const (&tinsn->tok[1], 1);
4625 set_expr_const (&tinsn->tok[2], 1);
4626 tinsn->ntok = 3;
4627 }
4628 else
4629 tinsn->opcode = xtensa_nop_opcode;
4630
4631 assert (tinsn->opcode != XTENSA_UNDEFINED);
4632 }
4633}
4634
4635
e0001a05
NC
4636/* Assemble a NOP of the requested size in the buffer. User must have
4637 allocated "buf" with at least "size" bytes. */
4638
7fa3d080 4639static void
d77b99c9 4640assemble_nop (int size, char *buf)
e0001a05
NC
4641{
4642 static xtensa_insnbuf insnbuf = NULL;
43cd72b9 4643 TInsn tinsn;
e0001a05 4644
43cd72b9 4645 build_nop (&tinsn, size);
e0001a05 4646
43cd72b9
BW
4647 if (!insnbuf)
4648 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
e0001a05 4649
43cd72b9 4650 tinsn_to_insnbuf (&tinsn, insnbuf);
d77b99c9
BW
4651 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4652 (unsigned char *) buf, 0);
e0001a05
NC
4653}
4654
4655
4656/* Return the number of bytes for the offset of the expanded loop
4657 instruction. This should be incorporated into the relaxation
4658 specification but is hard-coded here. This is used to auto-align
4659 the loop instruction. It is invalid to call this function if the
4660 configuration does not have loops or if the opcode is not a loop
4661 opcode. */
4662
4663static addressT
7fa3d080 4664get_expanded_loop_offset (xtensa_opcode opcode)
e0001a05
NC
4665{
4666 /* This is the OFFSET of the loop instruction in the expanded loop.
4667 This MUST correspond directly to the specification of the loop
4668 expansion. It will be validated on fragment conversion. */
43cd72b9 4669 assert (opcode != XTENSA_UNDEFINED);
e0001a05
NC
4670 if (opcode == xtensa_loop_opcode)
4671 return 0;
4672 if (opcode == xtensa_loopnez_opcode)
4673 return 3;
4674 if (opcode == xtensa_loopgtz_opcode)
4675 return 6;
4676 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4677 return 0;
4678}
4679
4680
7fa3d080
BW
4681static fragS *
4682get_literal_pool_location (segT seg)
e0001a05
NC
4683{
4684 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4685}
4686
4687
4688static void
7fa3d080 4689set_literal_pool_location (segT seg, fragS *literal_pool_loc)
e0001a05
NC
4690{
4691 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4692}
4693
43cd72b9
BW
4694
4695/* Set frag assembly state should be called when a new frag is
4696 opened and after a frag has been closed. */
4697
7fa3d080
BW
4698static void
4699xtensa_set_frag_assembly_state (fragS *fragP)
43cd72b9
BW
4700{
4701 if (!density_supported)
4702 fragP->tc_frag_data.is_no_density = TRUE;
4703
4704 /* This function is called from subsegs_finish, which is called
c138bc38 4705 after xtensa_end, so we can't use "use_transform" or
43cd72b9
BW
4706 "use_schedule" here. */
4707 if (!directive_state[directive_transform])
4708 fragP->tc_frag_data.is_no_transform = TRUE;
7c834684
BW
4709 if (directive_state[directive_longcalls])
4710 fragP->tc_frag_data.use_longcalls = TRUE;
43cd72b9
BW
4711 fragP->tc_frag_data.use_absolute_literals =
4712 directive_state[directive_absolute_literals];
4713 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4714}
4715
4716
7fa3d080
BW
4717static bfd_boolean
4718relaxable_section (asection *sec)
43cd72b9
BW
4719{
4720 return (sec->flags & SEC_DEBUGGING) == 0;
4721}
4722
4723
4724static void
7fa3d080 4725xtensa_find_unmarked_state_frags (void)
43cd72b9
BW
4726{
4727 segT *seclist;
4728
4729 /* Walk over each fragment of all of the current segments. For each
4730 unmarked fragment, mark it with the same info as the previous
4731 fragment. */
4732 for (seclist = &stdoutput->sections;
4733 seclist && *seclist;
4734 seclist = &(*seclist)->next)
4735 {
4736 segT sec = *seclist;
4737 segment_info_type *seginfo;
4738 fragS *fragP;
4739 flagword flags;
4740 flags = bfd_get_section_flags (stdoutput, sec);
4741 if (flags & SEC_DEBUGGING)
4742 continue;
4743 if (!(flags & SEC_ALLOC))
4744 continue;
4745
4746 seginfo = seg_info (sec);
4747 if (seginfo && seginfo->frchainP)
4748 {
4749 fragS *last_fragP = 0;
4750 for (fragP = seginfo->frchainP->frch_root; fragP;
4751 fragP = fragP->fr_next)
4752 {
4753 if (fragP->fr_fix != 0
4754 && !fragP->tc_frag_data.is_assembly_state_set)
4755 {
4756 if (last_fragP == 0)
4757 {
4758 as_warn_where (fragP->fr_file, fragP->fr_line,
4759 _("assembly state not set for first frag in section %s"),
4760 sec->name);
4761 }
4762 else
4763 {
4764 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4765 fragP->tc_frag_data.is_no_density =
4766 last_fragP->tc_frag_data.is_no_density;
4767 fragP->tc_frag_data.is_no_transform =
4768 last_fragP->tc_frag_data.is_no_transform;
7c834684
BW
4769 fragP->tc_frag_data.use_longcalls =
4770 last_fragP->tc_frag_data.use_longcalls;
43cd72b9
BW
4771 fragP->tc_frag_data.use_absolute_literals =
4772 last_fragP->tc_frag_data.use_absolute_literals;
4773 }
4774 }
4775 if (fragP->tc_frag_data.is_assembly_state_set)
4776 last_fragP = fragP;
4777 }
4778 }
4779 }
4780}
4781
4782
4783static void
7fa3d080
BW
4784xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED,
4785 asection *sec,
4786 void *unused ATTRIBUTE_UNUSED)
43cd72b9
BW
4787{
4788 flagword flags = bfd_get_section_flags (abfd, sec);
4789 segment_info_type *seginfo = seg_info (sec);
4790 fragS *frag = seginfo->frchainP->frch_root;
c138bc38 4791
43cd72b9 4792 if (flags & SEC_CODE)
c138bc38 4793 {
43cd72b9
BW
4794 xtensa_isa isa = xtensa_default_isa;
4795 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4796 while (frag != NULL)
4797 {
4798 if (frag->tc_frag_data.is_branch_target)
4799 {
4800 int op_size;
664df4e4 4801 addressT branch_align, frag_addr;
43cd72b9
BW
4802 xtensa_format fmt;
4803
d77b99c9
BW
4804 xtensa_insnbuf_from_chars
4805 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
43cd72b9
BW
4806 fmt = xtensa_format_decode (isa, insnbuf);
4807 op_size = xtensa_format_length (isa, fmt);
664df4e4
BW
4808 branch_align = 1 << branch_align_power (sec);
4809 frag_addr = frag->fr_address % branch_align;
4810 if (frag_addr + op_size > branch_align)
43cd72b9
BW
4811 as_warn_where (frag->fr_file, frag->fr_line,
4812 _("unaligned branch target: %d bytes at 0x%lx"),
dd49a749 4813 op_size, (long) frag->fr_address);
43cd72b9
BW
4814 }
4815 frag = frag->fr_next;
4816 }
4817 xtensa_insnbuf_free (isa, insnbuf);
4818 }
4819}
4820
4821
4822static void
7fa3d080
BW
4823xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED,
4824 asection *sec,
4825 void *unused ATTRIBUTE_UNUSED)
43cd72b9
BW
4826{
4827 flagword flags = bfd_get_section_flags (abfd, sec);
4828 segment_info_type *seginfo = seg_info (sec);
4829 fragS *frag = seginfo->frchainP->frch_root;
4830 xtensa_isa isa = xtensa_default_isa;
c138bc38 4831
43cd72b9 4832 if (flags & SEC_CODE)
c138bc38 4833 {
43cd72b9
BW
4834 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4835 while (frag != NULL)
4836 {
4837 if (frag->tc_frag_data.is_first_loop_insn)
4838 {
4839 int op_size;
d77b99c9 4840 addressT frag_addr;
43cd72b9
BW
4841 xtensa_format fmt;
4842
d77b99c9
BW
4843 xtensa_insnbuf_from_chars
4844 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
43cd72b9
BW
4845 fmt = xtensa_format_decode (isa, insnbuf);
4846 op_size = xtensa_format_length (isa, fmt);
4847 frag_addr = frag->fr_address % xtensa_fetch_width;
4848
d77b99c9 4849 if (frag_addr + op_size > xtensa_fetch_width)
43cd72b9
BW
4850 as_warn_where (frag->fr_file, frag->fr_line,
4851 _("unaligned loop: %d bytes at 0x%lx"),
dd49a749 4852 op_size, (long) frag->fr_address);
43cd72b9
BW
4853 }
4854 frag = frag->fr_next;
4855 }
4856 xtensa_insnbuf_free (isa, insnbuf);
4857 }
4858}
4859
4860
30f725a1
BW
4861static int
4862xg_apply_fix_value (fixS *fixP, valueT val)
43cd72b9
BW
4863{
4864 xtensa_isa isa = xtensa_default_isa;
4865 static xtensa_insnbuf insnbuf = NULL;
4866 static xtensa_insnbuf slotbuf = NULL;
4867 xtensa_format fmt;
4868 int slot;
4869 bfd_boolean alt_reloc;
4870 xtensa_opcode opcode;
4871 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
4872
4873 (void) decode_reloc (fixP->fx_r_type, &slot, &alt_reloc);
4874 if (alt_reloc)
4875 as_fatal (_("unexpected fix"));
4876
4877 if (!insnbuf)
4878 {
4879 insnbuf = xtensa_insnbuf_alloc (isa);
4880 slotbuf = xtensa_insnbuf_alloc (isa);
4881 }
4882
d77b99c9 4883 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
43cd72b9
BW
4884 fmt = xtensa_format_decode (isa, insnbuf);
4885 if (fmt == XTENSA_UNDEFINED)
4886 as_fatal (_("undecodable fix"));
4887 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4888 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4889 if (opcode == XTENSA_UNDEFINED)
4890 as_fatal (_("undecodable fix"));
4891
4892 /* CONST16 immediates are not PC-relative, despite the fact that we
4893 reuse the normal PC-relative operand relocations for the low part
30f725a1 4894 of a CONST16 operand. */
43cd72b9 4895 if (opcode == xtensa_const16_opcode)
30f725a1 4896 return 0;
43cd72b9
BW
4897
4898 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode,
4899 get_relaxable_immed (opcode), val,
4900 fixP->fx_file, fixP->fx_line);
4901
4902 xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf);
d77b99c9 4903 xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
30f725a1
BW
4904
4905 return 1;
43cd72b9
BW
4906}
4907
e0001a05
NC
4908\f
4909/* External Functions and Other GAS Hooks. */
4910
4911const char *
7fa3d080 4912xtensa_target_format (void)
e0001a05
NC
4913{
4914 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
4915}
4916
4917
4918void
7fa3d080 4919xtensa_file_arch_init (bfd *abfd)
e0001a05
NC
4920{
4921 bfd_set_private_flags (abfd, 0x100 | 0x200);
4922}
4923
4924
4925void
7fa3d080 4926md_number_to_chars (char *buf, valueT val, int n)
e0001a05
NC
4927{
4928 if (target_big_endian)
4929 number_to_chars_bigendian (buf, val, n);
4930 else
4931 number_to_chars_littleendian (buf, val, n);
4932}
4933
4934
4935/* This function is called once, at assembler startup time. It should
4936 set up all the tables, etc. that the MD part of the assembler will
4937 need. */
4938
4939void
7fa3d080 4940md_begin (void)
e0001a05
NC
4941{
4942 segT current_section = now_seg;
4943 int current_subsec = now_subseg;
4944 xtensa_isa isa;
4945
43cd72b9 4946 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 4947 isa = xtensa_default_isa;
e0001a05 4948
43cd72b9
BW
4949 linkrelax = 1;
4950
4951 /* Set up the .literal, .fini.literal and .init.literal sections. */
e0001a05
NC
4952 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
4953 default_lit_sections.init_lit_seg_name = INIT_LITERAL_SECTION_NAME;
4954 default_lit_sections.fini_lit_seg_name = FINI_LITERAL_SECTION_NAME;
4955 default_lit_sections.lit_seg_name = LITERAL_SECTION_NAME;
43cd72b9 4956 default_lit_sections.lit4_seg_name = LIT4_SECTION_NAME;
e0001a05
NC
4957
4958 subseg_set (current_section, current_subsec);
4959
43cd72b9
BW
4960 xg_init_vinsn (&cur_vinsn);
4961
e0001a05
NC
4962 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
4963 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
4964 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
4965 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
4966 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
4967 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
4968 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
4969 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
4970 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
4971 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
43cd72b9 4972 xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16");
e0001a05 4973 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
43cd72b9
BW
4974 xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi");
4975 xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n");
e0001a05 4976 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
e0001a05 4977 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
43cd72b9 4978 xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r");
e0001a05
NC
4979 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
4980 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
4981 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
43cd72b9 4982 xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop");
e0001a05
NC
4983 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
4984 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
4985 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
4986 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
4987 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
4988 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
43cd72b9 4989 xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount");
e0001a05 4990 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
43cd72b9
BW
4991
4992 init_op_placement_info_table ();
4993
4994 /* Set up the assembly state. */
4995 if (!frag_now->tc_frag_data.is_assembly_state_set)
4996 xtensa_set_frag_assembly_state (frag_now);
4997}
4998
4999
5000/* TC_INIT_FIX_DATA hook */
5001
5002void
7fa3d080 5003xtensa_init_fix_data (fixS *x)
43cd72b9
BW
5004{
5005 x->tc_fix_data.slot = 0;
5006 x->tc_fix_data.X_add_symbol = NULL;
5007 x->tc_fix_data.X_add_number = 0;
e0001a05
NC
5008}
5009
5010
5011/* tc_frob_label hook */
5012
5013void
7fa3d080 5014xtensa_frob_label (symbolS *sym)
e0001a05 5015{
3ea38ac2
BW
5016 float freq;
5017
5018 if (cur_vinsn.inside_bundle)
5019 {
5020 as_bad (_("labels are not valid inside bundles"));
5021 return;
5022 }
5023
5024 freq = get_subseg_target_freq (now_seg, now_subseg);
7b1cc377 5025
43cd72b9
BW
5026 /* Since the label was already attached to a frag associated with the
5027 previous basic block, it now needs to be reset to the current frag. */
5028 symbol_set_frag (sym, frag_now);
5029 S_SET_VALUE (sym, (valueT) frag_now_fix ());
5030
82e7541d
BW
5031 if (generating_literals)
5032 xtensa_add_literal_sym (sym);
5033 else
5034 xtensa_add_insn_label (sym);
5035
7b1cc377
BW
5036 if (symbol_get_tc (sym)->is_loop_target)
5037 {
5038 if ((get_last_insn_flags (now_seg, now_subseg)
e0001a05 5039 & FLAG_IS_BAD_LOOPEND) != 0)
7b1cc377
BW
5040 as_bad (_("invalid last instruction for a zero-overhead loop"));
5041
5042 xtensa_set_frag_assembly_state (frag_now);
5043 frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END,
5044 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5045
5046 xtensa_set_frag_assembly_state (frag_now);
5047 xtensa_move_labels (frag_now, 0, TRUE);
07a53e5c 5048 }
e0001a05
NC
5049
5050 /* No target aligning in the absolute section. */
61846f28 5051 if (now_seg != absolute_section
43cd72b9 5052 && do_align_targets ()
61846f28 5053 && !is_unaligned_label (sym)
43cd72b9
BW
5054 && !generating_literals)
5055 {
43cd72b9
BW
5056 xtensa_set_frag_assembly_state (frag_now);
5057
43cd72b9 5058 frag_var (rs_machine_dependent,
7b1cc377 5059 0, (int) freq,
e0001a05
NC
5060 RELAX_DESIRE_ALIGN_IF_TARGET,
5061 frag_now->fr_symbol, frag_now->fr_offset, NULL);
43cd72b9 5062 xtensa_set_frag_assembly_state (frag_now);
82e7541d 5063 xtensa_move_labels (frag_now, 0, TRUE);
43cd72b9
BW
5064 }
5065
5066 /* We need to mark the following properties even if we aren't aligning. */
5067
5068 /* If the label is already known to be a branch target, i.e., a
5069 forward branch, mark the frag accordingly. Backward branches
5070 are handled by xg_add_branch_and_loop_targets. */
5071 if (symbol_get_tc (sym)->is_branch_target)
5072 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
5073
5074 /* Loops only go forward, so they can be identified here. */
5075 if (symbol_get_tc (sym)->is_loop_target)
5076 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
07a53e5c
RH
5077
5078 dwarf2_emit_label (sym);
43cd72b9
BW
5079}
5080
5081
5082/* tc_unrecognized_line hook */
5083
5084int
7fa3d080 5085xtensa_unrecognized_line (int ch)
43cd72b9
BW
5086{
5087 switch (ch)
5088 {
5089 case '{' :
5090 if (cur_vinsn.inside_bundle == 0)
5091 {
5092 /* PR8110: Cannot emit line number info inside a FLIX bundle
5093 when using --gstabs. Temporarily disable debug info. */
5094 generate_lineno_debug ();
5095 if (debug_type == DEBUG_STABS)
5096 {
5097 xt_saved_debug_type = debug_type;
5098 debug_type = DEBUG_NONE;
5099 }
82e7541d 5100
43cd72b9
BW
5101 cur_vinsn.inside_bundle = 1;
5102 }
5103 else
5104 {
5105 as_bad (_("extra opening brace"));
5106 return 0;
5107 }
5108 break;
82e7541d 5109
43cd72b9
BW
5110 case '}' :
5111 if (cur_vinsn.inside_bundle)
5112 finish_vinsn (&cur_vinsn);
5113 else
5114 {
5115 as_bad (_("extra closing brace"));
5116 return 0;
5117 }
5118 break;
5119 default:
5120 as_bad (_("syntax error"));
5121 return 0;
e0001a05 5122 }
43cd72b9 5123 return 1;
e0001a05
NC
5124}
5125
5126
5127/* md_flush_pending_output hook */
5128
5129void
7fa3d080 5130xtensa_flush_pending_output (void)
e0001a05 5131{
43cd72b9
BW
5132 if (cur_vinsn.inside_bundle)
5133 as_bad (_("missing closing brace"));
5134
e0001a05
NC
5135 /* If there is a non-zero instruction fragment, close it. */
5136 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
5137 {
5138 frag_wane (frag_now);
5139 frag_new (0);
43cd72b9 5140 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
5141 }
5142 frag_now->tc_frag_data.is_insn = FALSE;
82e7541d
BW
5143
5144 xtensa_clear_insn_labels ();
e0001a05
NC
5145}
5146
5147
43cd72b9
BW
5148/* We had an error while parsing an instruction. The string might look
5149 like this: "insn arg1, arg2 }". If so, we need to see the closing
5150 brace and reset some fields. Otherwise, the vinsn never gets closed
5151 and the num_slots field will grow past the end of the array of slots,
5152 and bad things happen. */
5153
5154static void
7fa3d080 5155error_reset_cur_vinsn (void)
43cd72b9
BW
5156{
5157 if (cur_vinsn.inside_bundle)
5158 {
5159 if (*input_line_pointer == '}'
5160 || *(input_line_pointer - 1) == '}'
5161 || *(input_line_pointer - 2) == '}')
5162 xg_clear_vinsn (&cur_vinsn);
5163 }
5164}
5165
5166
e0001a05 5167void
7fa3d080 5168md_assemble (char *str)
e0001a05
NC
5169{
5170 xtensa_isa isa = xtensa_default_isa;
7c430684 5171 char *opname, *file_name;
e0001a05
NC
5172 unsigned opnamelen;
5173 bfd_boolean has_underbar = FALSE;
43cd72b9 5174 char *arg_strings[MAX_INSN_ARGS];
e0001a05 5175 int num_args;
e0001a05 5176 TInsn orig_insn; /* Original instruction from the input. */
e0001a05 5177
e0001a05
NC
5178 tinsn_init (&orig_insn);
5179
5180 /* Split off the opcode. */
5181 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5182 opname = xmalloc (opnamelen + 1);
5183 memcpy (opname, str, opnamelen);
5184 opname[opnamelen] = '\0';
5185
5186 num_args = tokenize_arguments (arg_strings, str + opnamelen);
5187 if (num_args == -1)
5188 {
5189 as_bad (_("syntax error"));
5190 return;
5191 }
5192
5193 if (xg_translate_idioms (&opname, &num_args, arg_strings))
5194 return;
5195
5196 /* Check for an underbar prefix. */
5197 if (*opname == '_')
5198 {
5199 has_underbar = TRUE;
5200 opname += 1;
5201 }
5202
5203 orig_insn.insn_type = ITYPE_INSN;
5204 orig_insn.ntok = 0;
43cd72b9 5205 orig_insn.is_specific_opcode = (has_underbar || !use_transform ());
e0001a05
NC
5206
5207 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
5208 if (orig_insn.opcode == XTENSA_UNDEFINED)
5209 {
43cd72b9
BW
5210 xtensa_format fmt = xtensa_format_lookup (isa, opname);
5211 if (fmt == XTENSA_UNDEFINED)
5212 {
5213 as_bad (_("unknown opcode or format name '%s'"), opname);
5214 error_reset_cur_vinsn ();
5215 return;
5216 }
5217 if (!cur_vinsn.inside_bundle)
5218 {
5219 as_bad (_("format names only valid inside bundles"));
5220 error_reset_cur_vinsn ();
5221 return;
5222 }
5223 if (cur_vinsn.format != XTENSA_UNDEFINED)
5224 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5225 opname);
5226 cur_vinsn.format = fmt;
5227 free (has_underbar ? opname - 1 : opname);
5228 error_reset_cur_vinsn ();
e0001a05
NC
5229 return;
5230 }
5231
e0001a05
NC
5232 /* Parse the arguments. */
5233 if (parse_arguments (&orig_insn, num_args, arg_strings))
5234 {
5235 as_bad (_("syntax error"));
43cd72b9 5236 error_reset_cur_vinsn ();
e0001a05
NC
5237 return;
5238 }
5239
5240 /* Free the opcode and argument strings, now that they've been parsed. */
5241 free (has_underbar ? opname - 1 : opname);
5242 opname = 0;
5243 while (num_args-- > 0)
5244 free (arg_strings[num_args]);
5245
43cd72b9
BW
5246 /* Get expressions for invisible operands. */
5247 if (get_invisible_operands (&orig_insn))
5248 {
5249 error_reset_cur_vinsn ();
5250 return;
5251 }
5252
e0001a05
NC
5253 /* Check for the right number and type of arguments. */
5254 if (tinsn_check_arguments (&orig_insn))
e0001a05 5255 {
43cd72b9
BW
5256 error_reset_cur_vinsn ();
5257 return;
e0001a05
NC
5258 }
5259
7c430684
BW
5260 /* A FLIX bundle may be spread across multiple input lines. We want to
5261 report the first such line in the debug information. Record the line
5262 number for each TInsn (assume the file name doesn't change), so the
5263 first line can be found later. */
5264 as_where (&file_name, &orig_insn.linenum);
c138bc38 5265
43cd72b9
BW
5266 xg_add_branch_and_loop_targets (&orig_insn);
5267
431ad2d0
BW
5268 /* Check that immediate value for ENTRY is >= 16. */
5269 if (orig_insn.opcode == xtensa_entry_opcode && orig_insn.ntok >= 3)
e0001a05 5270 {
431ad2d0
BW
5271 expressionS *exp = &orig_insn.tok[2];
5272 if (exp->X_op == O_constant && exp->X_add_number < 16)
5273 as_warn (_("entry instruction with stack decrement < 16"));
e0001a05
NC
5274 }
5275
e0001a05 5276 /* Finish it off:
43cd72b9
BW
5277 assemble_tokens (opcode, tok, ntok);
5278 expand the tokens from the orig_insn into the
5279 stack of instructions that will not expand
e0001a05 5280 unless required at relaxation time. */
e0001a05 5281
43cd72b9
BW
5282 if (!cur_vinsn.inside_bundle)
5283 emit_single_op (&orig_insn);
5284 else /* We are inside a bundle. */
e0001a05 5285 {
43cd72b9
BW
5286 cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn;
5287 cur_vinsn.num_slots++;
5288 if (*input_line_pointer == '}'
5289 || *(input_line_pointer - 1) == '}'
5290 || *(input_line_pointer - 2) == '}')
5291 finish_vinsn (&cur_vinsn);
e0001a05
NC
5292 }
5293
43cd72b9
BW
5294 /* We've just emitted a new instruction so clear the list of labels. */
5295 xtensa_clear_insn_labels ();
e0001a05
NC
5296}
5297
5298
43cd72b9 5299/* HANDLE_ALIGN hook */
e0001a05 5300
43cd72b9
BW
5301/* For a .align directive, we mark the previous block with the alignment
5302 information. This will be placed in the object file in the
5303 property section corresponding to this section. */
e0001a05 5304
43cd72b9 5305void
7fa3d080 5306xtensa_handle_align (fragS *fragP)
43cd72b9
BW
5307{
5308 if (linkrelax
b08b5071 5309 && ! fragP->tc_frag_data.is_literal
43cd72b9
BW
5310 && (fragP->fr_type == rs_align
5311 || fragP->fr_type == rs_align_code)
5312 && fragP->fr_address + fragP->fr_fix > 0
5313 && fragP->fr_offset > 0
5314 && now_seg != bss_section)
e0001a05 5315 {
43cd72b9
BW
5316 fragP->tc_frag_data.is_align = TRUE;
5317 fragP->tc_frag_data.alignment = fragP->fr_offset;
e0001a05
NC
5318 }
5319
43cd72b9 5320 if (fragP->fr_type == rs_align_test)
e0001a05 5321 {
43cd72b9
BW
5322 int count;
5323 count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5324 if (count != 0)
c138bc38 5325 as_bad_where (fragP->fr_file, fragP->fr_line,
43cd72b9 5326 _("unaligned entry instruction"));
e0001a05 5327 }
e0001a05 5328}
43cd72b9 5329
e0001a05
NC
5330
5331/* TC_FRAG_INIT hook */
5332
5333void
7fa3d080 5334xtensa_frag_init (fragS *frag)
e0001a05 5335{
43cd72b9 5336 xtensa_set_frag_assembly_state (frag);
e0001a05
NC
5337}
5338
5339
5340symbolS *
7fa3d080 5341md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
e0001a05
NC
5342{
5343 return NULL;
5344}
5345
5346
5347/* Round up a section size to the appropriate boundary. */
5348
5349valueT
7fa3d080 5350md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
e0001a05
NC
5351{
5352 return size; /* Byte alignment is fine. */
5353}
5354
5355
5356long
7fa3d080 5357md_pcrel_from (fixS *fixP)
e0001a05
NC
5358{
5359 char *insn_p;
5360 static xtensa_insnbuf insnbuf = NULL;
43cd72b9 5361 static xtensa_insnbuf slotbuf = NULL;
e0001a05 5362 int opnum;
43cd72b9 5363 uint32 opnd_value;
e0001a05 5364 xtensa_opcode opcode;
43cd72b9
BW
5365 xtensa_format fmt;
5366 int slot;
e0001a05
NC
5367 xtensa_isa isa = xtensa_default_isa;
5368 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
43cd72b9 5369 bfd_boolean alt_reloc;
e0001a05 5370
e0001a05 5371 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
30f725a1 5372 return 0;
e0001a05
NC
5373
5374 if (!insnbuf)
43cd72b9
BW
5375 {
5376 insnbuf = xtensa_insnbuf_alloc (isa);
5377 slotbuf = xtensa_insnbuf_alloc (isa);
5378 }
e0001a05
NC
5379
5380 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
d77b99c9 5381 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0);
43cd72b9
BW
5382 fmt = xtensa_format_decode (isa, insnbuf);
5383
5384 if (fmt == XTENSA_UNDEFINED)
5385 as_fatal (_("bad instruction format"));
5386
5387 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0)
5388 as_fatal (_("invalid relocation"));
5389
5390 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5391 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5392
30f725a1
BW
5393 /* Check for "alternate" relocations (operand not specified). None
5394 of the current uses for these are really PC-relative. */
43cd72b9
BW
5395 if (alt_reloc || opcode == xtensa_const16_opcode)
5396 {
5397 if (opcode != xtensa_l32r_opcode
5398 && opcode != xtensa_const16_opcode)
5399 as_fatal (_("invalid relocation for '%s' instruction"),
5400 xtensa_opcode_name (isa, opcode));
30f725a1 5401 return 0;
e0001a05
NC
5402 }
5403
43cd72b9
BW
5404 opnum = get_relaxable_immed (opcode);
5405 opnd_value = 0;
5406 if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1
5407 || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr))
e0001a05
NC
5408 {
5409 as_bad_where (fixP->fx_file,
5410 fixP->fx_line,
5411 _("invalid relocation for operand %d of '%s'"),
5412 opnum, xtensa_opcode_name (isa, opcode));
30f725a1 5413 return 0;
e0001a05 5414 }
43cd72b9
BW
5415 return 0 - opnd_value;
5416}
5417
5418
5419/* TC_FORCE_RELOCATION hook */
5420
5421int
7fa3d080 5422xtensa_force_relocation (fixS *fix)
43cd72b9
BW
5423{
5424 switch (fix->fx_r_type)
30f725a1
BW
5425 {
5426 case BFD_RELOC_XTENSA_ASM_EXPAND:
43cd72b9
BW
5427 case BFD_RELOC_XTENSA_SLOT0_ALT:
5428 case BFD_RELOC_XTENSA_SLOT1_ALT:
5429 case BFD_RELOC_XTENSA_SLOT2_ALT:
5430 case BFD_RELOC_XTENSA_SLOT3_ALT:
5431 case BFD_RELOC_XTENSA_SLOT4_ALT:
5432 case BFD_RELOC_XTENSA_SLOT5_ALT:
5433 case BFD_RELOC_XTENSA_SLOT6_ALT:
5434 case BFD_RELOC_XTENSA_SLOT7_ALT:
5435 case BFD_RELOC_XTENSA_SLOT8_ALT:
5436 case BFD_RELOC_XTENSA_SLOT9_ALT:
5437 case BFD_RELOC_XTENSA_SLOT10_ALT:
5438 case BFD_RELOC_XTENSA_SLOT11_ALT:
5439 case BFD_RELOC_XTENSA_SLOT12_ALT:
5440 case BFD_RELOC_XTENSA_SLOT13_ALT:
5441 case BFD_RELOC_XTENSA_SLOT14_ALT:
43cd72b9
BW
5442 return 1;
5443 default:
5444 break;
e0001a05
NC
5445 }
5446
43cd72b9
BW
5447 if (linkrelax && fix->fx_addsy
5448 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
5449 return 1;
5450
5451 return generic_force_reloc (fix);
5452}
5453
5454
30f725a1
BW
5455/* TC_VALIDATE_FIX_SUB hook */
5456
5457int
5458xtensa_validate_fix_sub (fixS *fix)
5459{
5460 segT add_symbol_segment, sub_symbol_segment;
5461
5462 /* The difference of two symbols should be resolved by the assembler when
5463 linkrelax is not set. If the linker may relax the section containing
5464 the symbols, then an Xtensa DIFF relocation must be generated so that
5465 the linker knows to adjust the difference value. */
5466 if (!linkrelax || fix->fx_addsy == NULL)
5467 return 0;
5468
5469 /* Make sure both symbols are in the same segment, and that segment is
5470 "normal" and relaxable. If the segment is not "normal", then the
5471 fix is not valid. If the segment is not "relaxable", then the fix
5472 should have been handled earlier. */
5473 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy);
5474 if (! SEG_NORMAL (add_symbol_segment) ||
5475 ! relaxable_section (add_symbol_segment))
5476 return 0;
5477 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy);
5478 return (sub_symbol_segment == add_symbol_segment);
5479}
5480
5481
43cd72b9
BW
5482/* NO_PSEUDO_DOT hook */
5483
5484/* This function has nothing to do with pseudo dots, but this is the
5485 nearest macro to where the check needs to take place. FIXME: This
5486 seems wrong. */
5487
5488bfd_boolean
7fa3d080 5489xtensa_check_inside_bundle (void)
43cd72b9
BW
5490{
5491 if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.')
5492 as_bad (_("directives are not valid inside bundles"));
5493
5494 /* This function must always return FALSE because it is called via a
5495 macro that has nothing to do with bundling. */
5496 return FALSE;
e0001a05
NC
5497}
5498
5499
43cd72b9 5500/* md_elf_section_change_hook */
e0001a05
NC
5501
5502void
7fa3d080 5503xtensa_elf_section_change_hook (void)
e0001a05 5504{
43cd72b9
BW
5505 /* Set up the assembly state. */
5506 if (!frag_now->tc_frag_data.is_assembly_state_set)
5507 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
5508}
5509
5510
5511/* tc_fix_adjustable hook */
5512
5513bfd_boolean
7fa3d080 5514xtensa_fix_adjustable (fixS *fixP)
e0001a05 5515{
43cd72b9
BW
5516 /* An offset is not allowed in combination with the difference of two
5517 symbols, but that cannot be easily detected after a local symbol
5518 has been adjusted to a (section+offset) form. Return 0 so that such
5519 an fix will not be adjusted. */
5520 if (fixP->fx_subsy && fixP->fx_addsy && fixP->fx_offset
5521 && relaxable_section (S_GET_SEGMENT (fixP->fx_subsy)))
5522 return 0;
5523
e0001a05
NC
5524 /* We need the symbol name for the VTABLE entries. */
5525 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5526 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5527 return 0;
5528
5529 return 1;
5530}
5531
5532
5533void
55cf6793 5534md_apply_fix (fixS *fixP, valueT *valP, segT seg)
e0001a05 5535{
30f725a1 5536 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
d47d412e 5537 valueT val = 0;
30f725a1 5538
e7da6241
BW
5539 /* Subtracted symbols are only allowed for a few relocation types, and
5540 unless linkrelax is enabled, they should not make it to this point. */
5541 if (fixP->fx_subsy && !(linkrelax && (fixP->fx_r_type == BFD_RELOC_32
5542 || fixP->fx_r_type == BFD_RELOC_16
5543 || fixP->fx_r_type == BFD_RELOC_8)))
5544 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
5545
30f725a1 5546 switch (fixP->fx_r_type)
e0001a05 5547 {
30f725a1
BW
5548 case BFD_RELOC_32:
5549 case BFD_RELOC_16:
5550 case BFD_RELOC_8:
e7da6241 5551 if (fixP->fx_subsy)
30f725a1
BW
5552 {
5553 switch (fixP->fx_r_type)
5554 {
5555 case BFD_RELOC_8:
5556 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8;
5557 break;
5558 case BFD_RELOC_16:
5559 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16;
5560 break;
5561 case BFD_RELOC_32:
5562 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32;
5563 break;
5564 default:
5565 break;
5566 }
e0001a05 5567
30f725a1
BW
5568 /* An offset is only allowed when it results from adjusting a
5569 local symbol into a section-relative offset. If the offset
5570 came from the original expression, tc_fix_adjustable will have
5571 prevented the fix from being converted to a section-relative
5572 form so that we can flag the error here. */
5573 if (fixP->fx_offset != 0 && !symbol_section_p (fixP->fx_addsy))
5574 as_bad_where (fixP->fx_file, fixP->fx_line,
5575 _("cannot represent subtraction with an offset"));
5576
5577 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5578 - S_GET_VALUE (fixP->fx_subsy));
5579
5580 /* The difference value gets written out, and the DIFF reloc
5581 identifies the address of the subtracted symbol (i.e., the one
5582 with the lowest address). */
5583 *valP = val;
5584 fixP->fx_offset -= val;
5585 fixP->fx_subsy = NULL;
5586 }
5587 else if (! fixP->fx_addsy)
e0001a05 5588 {
30f725a1 5589 val = *valP;
e0001a05 5590 fixP->fx_done = 1;
30f725a1 5591 }
d47d412e
BW
5592 /* fall through */
5593
5594 case BFD_RELOC_XTENSA_PLT:
30f725a1
BW
5595 md_number_to_chars (fixpos, val, fixP->fx_size);
5596 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5597 break;
e0001a05 5598
30f725a1
BW
5599 case BFD_RELOC_XTENSA_SLOT0_OP:
5600 case BFD_RELOC_XTENSA_SLOT1_OP:
5601 case BFD_RELOC_XTENSA_SLOT2_OP:
5602 case BFD_RELOC_XTENSA_SLOT3_OP:
5603 case BFD_RELOC_XTENSA_SLOT4_OP:
5604 case BFD_RELOC_XTENSA_SLOT5_OP:
5605 case BFD_RELOC_XTENSA_SLOT6_OP:
5606 case BFD_RELOC_XTENSA_SLOT7_OP:
5607 case BFD_RELOC_XTENSA_SLOT8_OP:
5608 case BFD_RELOC_XTENSA_SLOT9_OP:
5609 case BFD_RELOC_XTENSA_SLOT10_OP:
5610 case BFD_RELOC_XTENSA_SLOT11_OP:
5611 case BFD_RELOC_XTENSA_SLOT12_OP:
5612 case BFD_RELOC_XTENSA_SLOT13_OP:
5613 case BFD_RELOC_XTENSA_SLOT14_OP:
5614 if (linkrelax)
5615 {
5616 /* Write the tentative value of a PC-relative relocation to a
5617 local symbol into the instruction. The value will be ignored
5618 by the linker, and it makes the object file disassembly
5619 readable when all branch targets are encoded in relocations. */
5620
5621 assert (fixP->fx_addsy);
5622 if (S_GET_SEGMENT (fixP->fx_addsy) == seg && !fixP->fx_plt
5623 && !S_FORCE_RELOC (fixP->fx_addsy, 1))
5624 {
5625 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5626 - md_pcrel_from (fixP));
5627 (void) xg_apply_fix_value (fixP, val);
5628 }
5629 }
5630 else if (! fixP->fx_addsy)
5631 {
5632 val = *valP;
5633 if (xg_apply_fix_value (fixP, val))
5634 fixP->fx_done = 1;
5635 }
5636 break;
e0001a05 5637
30f725a1
BW
5638 case BFD_RELOC_XTENSA_ASM_EXPAND:
5639 case BFD_RELOC_XTENSA_SLOT0_ALT:
5640 case BFD_RELOC_XTENSA_SLOT1_ALT:
5641 case BFD_RELOC_XTENSA_SLOT2_ALT:
5642 case BFD_RELOC_XTENSA_SLOT3_ALT:
5643 case BFD_RELOC_XTENSA_SLOT4_ALT:
5644 case BFD_RELOC_XTENSA_SLOT5_ALT:
5645 case BFD_RELOC_XTENSA_SLOT6_ALT:
5646 case BFD_RELOC_XTENSA_SLOT7_ALT:
5647 case BFD_RELOC_XTENSA_SLOT8_ALT:
5648 case BFD_RELOC_XTENSA_SLOT9_ALT:
5649 case BFD_RELOC_XTENSA_SLOT10_ALT:
5650 case BFD_RELOC_XTENSA_SLOT11_ALT:
5651 case BFD_RELOC_XTENSA_SLOT12_ALT:
5652 case BFD_RELOC_XTENSA_SLOT13_ALT:
5653 case BFD_RELOC_XTENSA_SLOT14_ALT:
5654 /* These all need to be resolved at link-time. Do nothing now. */
5655 break;
e0001a05 5656
30f725a1
BW
5657 case BFD_RELOC_VTABLE_INHERIT:
5658 case BFD_RELOC_VTABLE_ENTRY:
5659 fixP->fx_done = 0;
5660 break;
e0001a05 5661
30f725a1
BW
5662 default:
5663 as_bad (_("unhandled local relocation fix %s"),
5664 bfd_get_reloc_code_name (fixP->fx_r_type));
e0001a05
NC
5665 }
5666}
5667
5668
5669char *
7fa3d080 5670md_atof (int type, char *litP, int *sizeP)
e0001a05
NC
5671{
5672 int prec;
5673 LITTLENUM_TYPE words[4];
5674 char *t;
5675 int i;
5676
5677 switch (type)
5678 {
5679 case 'f':
5680 prec = 2;
5681 break;
5682
5683 case 'd':
5684 prec = 4;
5685 break;
5686
5687 default:
5688 *sizeP = 0;
5689 return "bad call to md_atof";
5690 }
5691
5692 t = atof_ieee (input_line_pointer, type, words);
5693 if (t)
5694 input_line_pointer = t;
5695
5696 *sizeP = prec * 2;
5697
5698 for (i = prec - 1; i >= 0; i--)
5699 {
5700 int idx = i;
5701 if (target_big_endian)
5702 idx = (prec - 1 - i);
5703
5704 md_number_to_chars (litP, (valueT) words[idx], 2);
5705 litP += 2;
5706 }
5707
5708 return NULL;
5709}
5710
5711
5712int
7fa3d080 5713md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED)
e0001a05 5714{
34e41783 5715 return total_frag_text_expansion (fragP);
e0001a05
NC
5716}
5717
5718
5719/* Translate internal representation of relocation info to BFD target
5720 format. */
5721
5722arelent *
30f725a1 5723tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
e0001a05
NC
5724{
5725 arelent *reloc;
5726
5727 reloc = (arelent *) xmalloc (sizeof (arelent));
5728 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5729 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5730 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
5731
5732 /* Make sure none of our internal relocations make it this far.
5733 They'd better have been fully resolved by this point. */
5734 assert ((int) fixp->fx_r_type > 0);
5735
30f725a1 5736 reloc->addend = fixp->fx_offset;
43cd72b9 5737
e0001a05
NC
5738 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
5739 if (reloc->howto == NULL)
5740 {
5741 as_bad_where (fixp->fx_file, fixp->fx_line,
5742 _("cannot represent `%s' relocation in object file"),
5743 bfd_get_reloc_code_name (fixp->fx_r_type));
43cd72b9
BW
5744 free (reloc->sym_ptr_ptr);
5745 free (reloc);
e0001a05
NC
5746 return NULL;
5747 }
5748
5749 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
43cd72b9
BW
5750 as_fatal (_("internal error? cannot generate `%s' relocation"),
5751 bfd_get_reloc_code_name (fixp->fx_r_type));
e0001a05 5752
e0001a05
NC
5753 return reloc;
5754}
5755
7fa3d080
BW
5756\f
5757/* Checks for resource conflicts between instructions. */
5758
c138bc38
BW
5759/* The func unit stuff could be implemented as bit-vectors rather
5760 than the iterative approach here. If it ends up being too
7fa3d080
BW
5761 slow, we will switch it. */
5762
c138bc38 5763resource_table *
7fa3d080
BW
5764new_resource_table (void *data,
5765 int cycles,
5766 int nu,
5767 unit_num_copies_func uncf,
5768 opcode_num_units_func onuf,
5769 opcode_funcUnit_use_unit_func ouuf,
5770 opcode_funcUnit_use_stage_func ousf)
5771{
5772 int i;
5773 resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table));
5774 rt->data = data;
5775 rt->cycles = cycles;
5776 rt->allocated_cycles = cycles;
5777 rt->num_units = nu;
5778 rt->unit_num_copies = uncf;
5779 rt->opcode_num_units = onuf;
5780 rt->opcode_unit_use = ouuf;
5781 rt->opcode_unit_stage = ousf;
5782
0bf60745 5783 rt->units = (unsigned char **) xcalloc (cycles, sizeof (unsigned char *));
7fa3d080 5784 for (i = 0; i < cycles; i++)
0bf60745 5785 rt->units[i] = (unsigned char *) xcalloc (nu, sizeof (unsigned char));
7fa3d080
BW
5786
5787 return rt;
5788}
5789
5790
c138bc38 5791void
7fa3d080
BW
5792clear_resource_table (resource_table *rt)
5793{
5794 int i, j;
5795 for (i = 0; i < rt->allocated_cycles; i++)
5796 for (j = 0; j < rt->num_units; j++)
5797 rt->units[i][j] = 0;
5798}
5799
5800
5801/* We never shrink it, just fake it into thinking so. */
5802
c138bc38 5803void
7fa3d080
BW
5804resize_resource_table (resource_table *rt, int cycles)
5805{
5806 int i, old_cycles;
5807
5808 rt->cycles = cycles;
5809 if (cycles <= rt->allocated_cycles)
5810 return;
5811
5812 old_cycles = rt->allocated_cycles;
5813 rt->allocated_cycles = cycles;
5814
0bf60745
BW
5815 rt->units = xrealloc (rt->units,
5816 rt->allocated_cycles * sizeof (unsigned char *));
7fa3d080 5817 for (i = 0; i < old_cycles; i++)
0bf60745
BW
5818 rt->units[i] = xrealloc (rt->units[i],
5819 rt->num_units * sizeof (unsigned char));
7fa3d080 5820 for (i = old_cycles; i < cycles; i++)
0bf60745 5821 rt->units[i] = xcalloc (rt->num_units, sizeof (unsigned char));
7fa3d080
BW
5822}
5823
5824
c138bc38 5825bfd_boolean
7fa3d080
BW
5826resources_available (resource_table *rt, xtensa_opcode opcode, int cycle)
5827{
5828 int i;
5829 int uses = (rt->opcode_num_units) (rt->data, opcode);
5830
c138bc38 5831 for (i = 0; i < uses; i++)
7fa3d080
BW
5832 {
5833 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5834 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5835 int copies_in_use = rt->units[stage + cycle][unit];
5836 int copies = (rt->unit_num_copies) (rt->data, unit);
5837 if (copies_in_use >= copies)
5838 return FALSE;
5839 }
5840 return TRUE;
5841}
7fa3d080 5842
c138bc38
BW
5843
5844void
7fa3d080
BW
5845reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5846{
5847 int i;
5848 int uses = (rt->opcode_num_units) (rt->data, opcode);
5849
c138bc38 5850 for (i = 0; i < uses; i++)
7fa3d080
BW
5851 {
5852 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5853 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
c138bc38
BW
5854 /* Note that this allows resources to be oversubscribed. That's
5855 essential to the way the optional scheduler works.
7fa3d080
BW
5856 resources_available reports when a resource is over-subscribed,
5857 so it's easy to tell. */
5858 rt->units[stage + cycle][unit]++;
5859 }
5860}
5861
5862
c138bc38 5863void
7fa3d080
BW
5864release_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5865{
5866 int i;
5867 int uses = (rt->opcode_num_units) (rt->data, opcode);
5868
c138bc38 5869 for (i = 0; i < uses; i++)
7fa3d080
BW
5870 {
5871 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5872 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
0bf60745 5873 assert (rt->units[stage + cycle][unit] > 0);
7fa3d080 5874 rt->units[stage + cycle][unit]--;
7fa3d080
BW
5875 }
5876}
c138bc38 5877
7fa3d080
BW
5878
5879/* Wrapper functions make parameterized resource reservation
5880 more convenient. */
5881
c138bc38 5882int
7fa3d080
BW
5883opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx)
5884{
5885 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
c138bc38 5886 return use->unit;
7fa3d080
BW
5887}
5888
5889
c138bc38 5890int
7fa3d080
BW
5891opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx)
5892{
5893 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
5894 return use->stage;
5895}
5896
5897
5898/* Note that this function does not check issue constraints, but
5899 solely whether the hardware is available to execute the given
c138bc38 5900 instructions together. It also doesn't check if the tinsns
7fa3d080 5901 write the same state, or access the same tieports. That is
a1ace8d8 5902 checked by check_t1_t2_reads_and_writes. */
7fa3d080
BW
5903
5904static bfd_boolean
5905resources_conflict (vliw_insn *vinsn)
5906{
5907 int i;
5908 static resource_table *rt = NULL;
5909
5910 /* This is the most common case by far. Optimize it. */
5911 if (vinsn->num_slots == 1)
5912 return FALSE;
43cd72b9 5913
c138bc38 5914 if (rt == NULL)
7fa3d080
BW
5915 {
5916 xtensa_isa isa = xtensa_default_isa;
5917 rt = new_resource_table
5918 (isa, xtensa_isa_num_pipe_stages (isa),
5919 xtensa_isa_num_funcUnits (isa),
5920 (unit_num_copies_func) xtensa_funcUnit_num_copies,
5921 (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses,
5922 opcode_funcUnit_use_unit,
5923 opcode_funcUnit_use_stage);
5924 }
43cd72b9 5925
7fa3d080 5926 clear_resource_table (rt);
43cd72b9 5927
7fa3d080
BW
5928 for (i = 0; i < vinsn->num_slots; i++)
5929 {
5930 if (!resources_available (rt, vinsn->slots[i].opcode, 0))
5931 return TRUE;
5932 reserve_resources (rt, vinsn->slots[i].opcode, 0);
5933 }
e0001a05 5934
7fa3d080
BW
5935 return FALSE;
5936}
e0001a05 5937
7fa3d080
BW
5938\f
5939/* finish_vinsn, emit_single_op and helper functions. */
e0001a05 5940
7fa3d080
BW
5941static bfd_boolean find_vinsn_conflicts (vliw_insn *);
5942static xtensa_format xg_find_narrowest_format (vliw_insn *);
7fa3d080 5943static void xg_assemble_vliw_tokens (vliw_insn *);
e0001a05
NC
5944
5945
43cd72b9
BW
5946/* We have reached the end of a bundle; emit into the frag. */
5947
e0001a05 5948static void
7fa3d080 5949finish_vinsn (vliw_insn *vinsn)
e0001a05 5950{
43cd72b9
BW
5951 IStack slotstack;
5952 int i;
5953 char *file_name;
d77b99c9 5954 unsigned line;
e0001a05 5955
43cd72b9 5956 if (find_vinsn_conflicts (vinsn))
a1ace8d8
BW
5957 {
5958 xg_clear_vinsn (vinsn);
5959 return;
5960 }
43cd72b9
BW
5961
5962 /* First, find a format that works. */
5963 if (vinsn->format == XTENSA_UNDEFINED)
5964 vinsn->format = xg_find_narrowest_format (vinsn);
5965
5966 if (vinsn->format == XTENSA_UNDEFINED)
5967 {
5968 as_where (&file_name, &line);
5969 as_bad_where (file_name, line,
5970 _("couldn't find a valid instruction format"));
5971 fprintf (stderr, _(" ops were: "));
5972 for (i = 0; i < vinsn->num_slots; i++)
5973 fprintf (stderr, _(" %s;"),
5974 xtensa_opcode_name (xtensa_default_isa,
5975 vinsn->slots[i].opcode));
5976 fprintf (stderr, _("\n"));
5977 xg_clear_vinsn (vinsn);
5978 return;
5979 }
5980
5981 if (vinsn->num_slots
5982 != xtensa_format_num_slots (xtensa_default_isa, vinsn->format))
e0001a05 5983 {
43cd72b9
BW
5984 as_bad (_("format '%s' allows %d slots, but there are %d opcodes"),
5985 xtensa_format_name (xtensa_default_isa, vinsn->format),
5986 xtensa_format_num_slots (xtensa_default_isa, vinsn->format),
5987 vinsn->num_slots);
5988 xg_clear_vinsn (vinsn);
5989 return;
5990 }
e0001a05 5991
c138bc38 5992 if (resources_conflict (vinsn))
43cd72b9
BW
5993 {
5994 as_where (&file_name, &line);
5995 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
5996 fprintf (stderr, " ops were: ");
5997 for (i = 0; i < vinsn->num_slots; i++)
5998 fprintf (stderr, " %s;",
5999 xtensa_opcode_name (xtensa_default_isa,
6000 vinsn->slots[i].opcode));
6001 fprintf (stderr, "\n");
6002 xg_clear_vinsn (vinsn);
6003 return;
6004 }
6005
6006 for (i = 0; i < vinsn->num_slots; i++)
6007 {
6008 if (vinsn->slots[i].opcode != XTENSA_UNDEFINED)
e0001a05 6009 {
43cd72b9
BW
6010 symbolS *lit_sym = NULL;
6011 int j;
6012 bfd_boolean e = FALSE;
6013 bfd_boolean saved_density = density_supported;
6014
6015 /* We don't want to narrow ops inside multi-slot bundles. */
6016 if (vinsn->num_slots > 1)
6017 density_supported = FALSE;
6018
6019 istack_init (&slotstack);
6020 if (vinsn->slots[i].opcode == xtensa_nop_opcode)
e0001a05 6021 {
43cd72b9
BW
6022 vinsn->slots[i].opcode =
6023 xtensa_format_slot_nop_opcode (xtensa_default_isa,
6024 vinsn->format, i);
6025 vinsn->slots[i].ntok = 0;
6026 }
e0001a05 6027
43cd72b9
BW
6028 if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i]))
6029 {
6030 e = TRUE;
6031 continue;
e0001a05 6032 }
e0001a05 6033
43cd72b9 6034 density_supported = saved_density;
e0001a05 6035
43cd72b9
BW
6036 if (e)
6037 {
6038 xg_clear_vinsn (vinsn);
6039 return;
6040 }
e0001a05 6041
0fa77c95 6042 for (j = 0; j < slotstack.ninsn; j++)
43cd72b9
BW
6043 {
6044 TInsn *insn = &slotstack.insn[j];
6045 if (insn->insn_type == ITYPE_LITERAL)
6046 {
6047 assert (lit_sym == NULL);
6048 lit_sym = xg_assemble_literal (insn);
6049 }
6050 else
6051 {
0fa77c95 6052 assert (insn->insn_type == ITYPE_INSN);
43cd72b9
BW
6053 if (lit_sym)
6054 xg_resolve_literals (insn, lit_sym);
0fa77c95
BW
6055 if (j != slotstack.ninsn - 1)
6056 emit_single_op (insn);
43cd72b9
BW
6057 }
6058 }
6059
6060 if (vinsn->num_slots > 1)
6061 {
6062 if (opcode_fits_format_slot
6063 (slotstack.insn[slotstack.ninsn - 1].opcode,
6064 vinsn->format, i))
6065 {
6066 vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1];
6067 }
6068 else
6069 {
b2d179be 6070 emit_single_op (&slotstack.insn[slotstack.ninsn - 1]);
43cd72b9
BW
6071 if (vinsn->format == XTENSA_UNDEFINED)
6072 vinsn->slots[i].opcode = xtensa_nop_opcode;
6073 else
c138bc38 6074 vinsn->slots[i].opcode
43cd72b9
BW
6075 = xtensa_format_slot_nop_opcode (xtensa_default_isa,
6076 vinsn->format, i);
6077
6078 vinsn->slots[i].ntok = 0;
6079 }
6080 }
6081 else
6082 {
6083 vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1];
6084 vinsn->format = XTENSA_UNDEFINED;
6085 }
6086 }
6087 }
6088
6089 /* Now check resource conflicts on the modified bundle. */
c138bc38 6090 if (resources_conflict (vinsn))
43cd72b9
BW
6091 {
6092 as_where (&file_name, &line);
6093 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6094 fprintf (stderr, " ops were: ");
6095 for (i = 0; i < vinsn->num_slots; i++)
6096 fprintf (stderr, " %s;",
6097 xtensa_opcode_name (xtensa_default_isa,
6098 vinsn->slots[i].opcode));
6099 fprintf (stderr, "\n");
6100 xg_clear_vinsn (vinsn);
6101 return;
6102 }
6103
6104 /* First, find a format that works. */
6105 if (vinsn->format == XTENSA_UNDEFINED)
6106 vinsn->format = xg_find_narrowest_format (vinsn);
6107
6108 xg_assemble_vliw_tokens (vinsn);
6109
6110 xg_clear_vinsn (vinsn);
6111}
6112
6113
6114/* Given an vliw instruction, what conflicts are there in register
6115 usage and in writes to states and queues?
6116
6117 This function does two things:
6118 1. Reports an error when a vinsn contains illegal combinations
6119 of writes to registers states or queues.
6120 2. Marks individual tinsns as not relaxable if the combination
6121 contains antidependencies.
6122
6123 Job 2 handles things like swap semantics in instructions that need
6124 to be relaxed. For example,
6125
6126 addi a0, a1, 100000
6127
6128 normally would be relaxed to
6129
6130 l32r a0, some_label
6131 add a0, a1, a0
6132
6133 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6134
6135 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6136
6137 then we can't relax it into
6138
6139 l32r a0, some_label
6140 { add a0, a1, a0 ; add a2, a0, a4 ; }
6141
6142 because the value of a0 is trashed before the second add can read it. */
6143
7fa3d080
BW
6144static char check_t1_t2_reads_and_writes (TInsn *, TInsn *);
6145
43cd72b9 6146static bfd_boolean
7fa3d080 6147find_vinsn_conflicts (vliw_insn *vinsn)
43cd72b9
BW
6148{
6149 int i, j;
6150 int branches = 0;
6151 xtensa_isa isa = xtensa_default_isa;
6152
6153 assert (!past_xtensa_end);
6154
6155 for (i = 0 ; i < vinsn->num_slots; i++)
6156 {
6157 TInsn *op1 = &vinsn->slots[i];
6158 if (op1->is_specific_opcode)
6159 op1->keep_wide = TRUE;
6160 else
6161 op1->keep_wide = FALSE;
6162 }
6163
6164 for (i = 0 ; i < vinsn->num_slots; i++)
6165 {
6166 TInsn *op1 = &vinsn->slots[i];
6167
6168 if (xtensa_opcode_is_branch (isa, op1->opcode) == 1)
6169 branches++;
6170
6171 for (j = 0; j < vinsn->num_slots; j++)
6172 {
6173 if (i != j)
6174 {
6175 TInsn *op2 = &vinsn->slots[j];
6176 char conflict_type = check_t1_t2_reads_and_writes (op1, op2);
6177 switch (conflict_type)
6178 {
6179 case 'c':
6180 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6181 xtensa_opcode_name (isa, op1->opcode), i,
6182 xtensa_opcode_name (isa, op2->opcode), j);
6183 return TRUE;
6184 case 'd':
6185 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6186 xtensa_opcode_name (isa, op1->opcode), i,
6187 xtensa_opcode_name (isa, op2->opcode), j);
6188 return TRUE;
6189 case 'e':
53dfbcc7 6190 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"),
43cd72b9
BW
6191 xtensa_opcode_name (isa, op1->opcode), i,
6192 xtensa_opcode_name (isa, op2->opcode), j);
6193 return TRUE;
6194 case 'f':
53dfbcc7 6195 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"),
43cd72b9
BW
6196 xtensa_opcode_name (isa, op1->opcode), i,
6197 xtensa_opcode_name (isa, op2->opcode), j);
6198 return TRUE;
6199 default:
6200 /* Everything is OK. */
6201 break;
6202 }
6203 op2->is_specific_opcode = (op2->is_specific_opcode
6204 || conflict_type == 'a');
6205 }
6206 }
6207 }
6208
6209 if (branches > 1)
6210 {
6211 as_bad (_("multiple branches or jumps in the same bundle"));
6212 return TRUE;
6213 }
6214
6215 return FALSE;
6216}
6217
6218
a1ace8d8 6219/* Check how the state used by t1 and t2 relate.
43cd72b9
BW
6220 Cases found are:
6221
6222 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6223 case B: no relationship between what is read and written (both could
6224 read the same reg though)
c138bc38 6225 case C: t1 writes a register t2 writes (a register conflict within a
43cd72b9
BW
6226 bundle)
6227 case D: t1 writes a state that t2 also writes
6228 case E: t1 writes a tie queue that t2 also writes
a1ace8d8 6229 case F: two volatile queue accesses
43cd72b9
BW
6230*/
6231
6232static char
7fa3d080 6233check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2)
43cd72b9
BW
6234{
6235 xtensa_isa isa = xtensa_default_isa;
6236 xtensa_regfile t1_regfile, t2_regfile;
6237 int t1_reg, t2_reg;
6238 int t1_base_reg, t1_last_reg;
6239 int t2_base_reg, t2_last_reg;
6240 char t1_inout, t2_inout;
6241 int i, j;
6242 char conflict = 'b';
6243 int t1_states;
6244 int t2_states;
6245 int t1_interfaces;
6246 int t2_interfaces;
6247 bfd_boolean t1_volatile = FALSE;
6248 bfd_boolean t2_volatile = FALSE;
6249
6250 /* Check registers. */
6251 for (j = 0; j < t2->ntok; j++)
6252 {
6253 if (xtensa_operand_is_register (isa, t2->opcode, j) != 1)
6254 continue;
6255
6256 t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j);
6257 t2_base_reg = t2->tok[j].X_add_number;
6258 t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j);
6259
6260 for (i = 0; i < t1->ntok; i++)
6261 {
6262 if (xtensa_operand_is_register (isa, t1->opcode, i) != 1)
6263 continue;
6264
6265 t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i);
6266
6267 if (t1_regfile != t2_regfile)
6268 continue;
6269
6270 t1_inout = xtensa_operand_inout (isa, t1->opcode, i);
6271 t2_inout = xtensa_operand_inout (isa, t2->opcode, j);
6272
6273 if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0
6274 || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0)
6275 {
6276 if (t1_inout == 'm' || t1_inout == 'o'
6277 || t2_inout == 'm' || t2_inout == 'o')
6278 {
6279 conflict = 'a';
6280 continue;
6281 }
6282 }
6283
6284 t1_base_reg = t1->tok[i].X_add_number;
6285 t1_last_reg = (t1_base_reg
6286 + xtensa_operand_num_regs (isa, t1->opcode, i));
6287
6288 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
6289 {
6290 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
6291 {
6292 if (t1_reg != t2_reg)
6293 continue;
6294
6295 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
7fa3d080
BW
6296 {
6297 conflict = 'a';
6298 continue;
6299 }
43cd72b9 6300
7fa3d080
BW
6301 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6302 {
6303 conflict = 'a';
6304 continue;
6305 }
43cd72b9 6306
7fa3d080
BW
6307 if (t1_inout != 'i' && t2_inout != 'i')
6308 return 'c';
6309 }
6310 }
6311 }
6312 }
43cd72b9 6313
7fa3d080
BW
6314 /* Check states. */
6315 t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode);
6316 t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode);
6317 for (j = 0; j < t2_states; j++)
43cd72b9 6318 {
7fa3d080
BW
6319 xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j);
6320 t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j);
6321 for (i = 0; i < t1_states; i++)
6322 {
6323 xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i);
6324 t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i);
c138bc38 6325 if (t1_so != t2_so)
7fa3d080 6326 continue;
43cd72b9 6327
7fa3d080
BW
6328 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6329 {
6330 conflict = 'a';
6331 continue;
6332 }
c138bc38 6333
7fa3d080
BW
6334 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6335 {
6336 conflict = 'a';
6337 continue;
6338 }
c138bc38 6339
7fa3d080
BW
6340 if (t1_inout != 'i' && t2_inout != 'i')
6341 return 'd';
c138bc38 6342 }
7fa3d080 6343 }
43cd72b9 6344
7fa3d080
BW
6345 /* Check tieports. */
6346 t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode);
6347 t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode);
c138bc38 6348 for (j = 0; j < t2_interfaces; j++)
43cd72b9 6349 {
7fa3d080
BW
6350 xtensa_interface t2_int
6351 = xtensa_interfaceOperand_interface (isa, t2->opcode, j);
a1ace8d8
BW
6352 int t2_class = xtensa_interface_class_id (isa, t2_int);
6353
53dfbcc7 6354 t2_inout = xtensa_interface_inout (isa, t2_int);
a1ace8d8 6355 if (xtensa_interface_has_side_effect (isa, t2_int) == 1)
7fa3d080 6356 t2_volatile = TRUE;
a1ace8d8 6357
7fa3d080
BW
6358 for (i = 0; i < t1_interfaces; i++)
6359 {
6360 xtensa_interface t1_int
6361 = xtensa_interfaceOperand_interface (isa, t1->opcode, j);
2eccd1b4 6362 int t1_class = xtensa_interface_class_id (isa, t1_int);
a1ace8d8 6363
53dfbcc7 6364 t1_inout = xtensa_interface_inout (isa, t1_int);
a1ace8d8 6365 if (xtensa_interface_has_side_effect (isa, t1_int) == 1)
7fa3d080 6366 t1_volatile = TRUE;
a1ace8d8
BW
6367
6368 if (t1_volatile && t2_volatile && (t1_class == t2_class))
6369 return 'f';
c138bc38 6370
7fa3d080
BW
6371 if (t1_int != t2_int)
6372 continue;
c138bc38 6373
7fa3d080
BW
6374 if (t2_inout == 'i' && t1_inout == 'o')
6375 {
6376 conflict = 'a';
6377 continue;
6378 }
c138bc38 6379
7fa3d080
BW
6380 if (t1_inout == 'i' && t2_inout == 'o')
6381 {
6382 conflict = 'a';
6383 continue;
6384 }
c138bc38 6385
7fa3d080
BW
6386 if (t1_inout != 'i' && t2_inout != 'i')
6387 return 'e';
6388 }
43cd72b9 6389 }
c138bc38 6390
7fa3d080 6391 return conflict;
43cd72b9
BW
6392}
6393
6394
6395static xtensa_format
7fa3d080 6396xg_find_narrowest_format (vliw_insn *vinsn)
43cd72b9
BW
6397{
6398 /* Right now we assume that the ops within the vinsn are properly
6399 ordered for the slots that the programmer wanted them in. In
6400 other words, we don't rearrange the ops in hopes of finding a
6401 better format. The scheduler handles that. */
6402
6403 xtensa_isa isa = xtensa_default_isa;
6404 xtensa_format format;
6405 vliw_insn v_copy = *vinsn;
6406 xtensa_opcode nop_opcode = xtensa_nop_opcode;
6407
65738a7d
BW
6408 if (vinsn->num_slots == 1)
6409 return xg_get_single_format (vinsn->slots[0].opcode);
6410
43cd72b9
BW
6411 for (format = 0; format < xtensa_isa_num_formats (isa); format++)
6412 {
6413 v_copy = *vinsn;
6414 if (xtensa_format_num_slots (isa, format) == v_copy.num_slots)
6415 {
6416 int slot;
6417 int fit = 0;
6418 for (slot = 0; slot < v_copy.num_slots; slot++)
6419 {
6420 if (v_copy.slots[slot].opcode == nop_opcode)
6421 {
6422 v_copy.slots[slot].opcode =
6423 xtensa_format_slot_nop_opcode (isa, format, slot);
6424 v_copy.slots[slot].ntok = 0;
6425 }
6426
6427 if (opcode_fits_format_slot (v_copy.slots[slot].opcode,
6428 format, slot))
6429 fit++;
7fa3d080 6430 else if (v_copy.num_slots > 1)
43cd72b9 6431 {
7fa3d080
BW
6432 TInsn widened;
6433 /* Try the widened version. */
6434 if (!v_copy.slots[slot].keep_wide
6435 && !v_copy.slots[slot].is_specific_opcode
84b08ed9
BW
6436 && xg_is_single_relaxable_insn (&v_copy.slots[slot],
6437 &widened, TRUE)
7fa3d080
BW
6438 && opcode_fits_format_slot (widened.opcode,
6439 format, slot))
43cd72b9 6440 {
7fa3d080
BW
6441 v_copy.slots[slot] = widened;
6442 fit++;
43cd72b9
BW
6443 }
6444 }
6445 }
6446 if (fit == v_copy.num_slots)
6447 {
6448 *vinsn = v_copy;
6449 xtensa_format_encode (isa, format, vinsn->insnbuf);
6450 vinsn->format = format;
6451 break;
6452 }
6453 }
6454 }
6455
6456 if (format == xtensa_isa_num_formats (isa))
6457 return XTENSA_UNDEFINED;
6458
6459 return format;
6460}
6461
6462
6463/* Return the additional space needed in a frag
6464 for possible relaxations of any ops in a VLIW insn.
6465 Also fill out the relaxations that might be required of
6466 each tinsn in the vinsn. */
6467
6468static int
e7da6241 6469relaxation_requirements (vliw_insn *vinsn, bfd_boolean *pfinish_frag)
43cd72b9 6470{
e7da6241 6471 bfd_boolean finish_frag = FALSE;
43cd72b9
BW
6472 int extra_space = 0;
6473 int slot;
6474
6475 for (slot = 0; slot < vinsn->num_slots; slot++)
6476 {
6477 TInsn *tinsn = &vinsn->slots[slot];
6478 if (!tinsn_has_symbolic_operands (tinsn))
6479 {
6480 /* A narrow instruction could be widened later to help
6481 alignment issues. */
84b08ed9 6482 if (xg_is_single_relaxable_insn (tinsn, 0, TRUE)
43cd72b9
BW
6483 && !tinsn->is_specific_opcode
6484 && vinsn->num_slots == 1)
6485 {
6486 /* Difference in bytes between narrow and wide insns... */
6487 extra_space += 1;
6488 tinsn->subtype = RELAX_NARROW;
43cd72b9
BW
6489 }
6490 }
6491 else
6492 {
b08b5071
BW
6493 if (workaround_b_j_loop_end
6494 && tinsn->opcode == xtensa_jx_opcode
43cd72b9
BW
6495 && use_transform ())
6496 {
6497 /* Add 2 of these. */
6498 extra_space += 3; /* for the nop size */
6499 tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END;
6500 }
c138bc38 6501
43cd72b9
BW
6502 /* Need to assemble it with space for the relocation. */
6503 if (xg_is_relaxable_insn (tinsn, 0)
6504 && !tinsn->is_specific_opcode)
6505 {
6506 int max_size = xg_get_max_insn_widen_size (tinsn->opcode);
6507 int max_literal_size =
6508 xg_get_max_insn_widen_literal_size (tinsn->opcode);
c138bc38 6509
43cd72b9 6510 tinsn->literal_space = max_literal_size;
c138bc38 6511
43cd72b9 6512 tinsn->subtype = RELAX_IMMED;
43cd72b9
BW
6513 extra_space += max_size;
6514 }
6515 else
6516 {
e7da6241
BW
6517 /* A fix record will be added for this instruction prior
6518 to relaxation, so make it end the frag. */
6519 finish_frag = TRUE;
43cd72b9
BW
6520 }
6521 }
6522 }
e7da6241 6523 *pfinish_frag = finish_frag;
43cd72b9
BW
6524 return extra_space;
6525}
6526
6527
6528static void
b2d179be 6529bundle_tinsn (TInsn *tinsn, vliw_insn *vinsn)
43cd72b9
BW
6530{
6531 xtensa_isa isa = xtensa_default_isa;
b2d179be 6532 int slot, chosen_slot;
43cd72b9 6533
b2d179be
BW
6534 vinsn->format = xg_get_single_format (tinsn->opcode);
6535 assert (vinsn->format != XTENSA_UNDEFINED);
6536 vinsn->num_slots = xtensa_format_num_slots (isa, vinsn->format);
43cd72b9 6537
b2d179be
BW
6538 chosen_slot = xg_get_single_slot (tinsn->opcode);
6539 for (slot = 0; slot < vinsn->num_slots; slot++)
43cd72b9 6540 {
b2d179be
BW
6541 if (slot == chosen_slot)
6542 vinsn->slots[slot] = *tinsn;
6543 else
6544 {
6545 vinsn->slots[slot].opcode =
6546 xtensa_format_slot_nop_opcode (isa, vinsn->format, slot);
6547 vinsn->slots[slot].ntok = 0;
6548 vinsn->slots[slot].insn_type = ITYPE_INSN;
6549 }
43cd72b9 6550 }
43cd72b9
BW
6551}
6552
6553
6554static bfd_boolean
7fa3d080 6555emit_single_op (TInsn *orig_insn)
43cd72b9
BW
6556{
6557 int i;
6558 IStack istack; /* put instructions into here */
6559 symbolS *lit_sym = NULL;
6560 symbolS *label_sym = NULL;
6561
6562 istack_init (&istack);
6563
6564 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
c138bc38
BW
6565 Because the scheduling and bundling characteristics of movi and
6566 l32r or const16 are so different, we can do much better if we relax
43cd72b9 6567 it prior to scheduling and bundling, rather than after. */
c138bc38 6568 if ((orig_insn->opcode == xtensa_movi_opcode
b08b5071
BW
6569 || orig_insn->opcode == xtensa_movi_n_opcode)
6570 && !cur_vinsn.inside_bundle
43cd72b9 6571 && (orig_insn->tok[1].X_op == O_symbol
482fd9f9
BW
6572 || orig_insn->tok[1].X_op == O_pltrel)
6573 && !orig_insn->is_specific_opcode && use_transform ())
43cd72b9
BW
6574 xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0);
6575 else
6576 if (xg_expand_assembly_insn (&istack, orig_insn))
6577 return TRUE;
6578
6579 for (i = 0; i < istack.ninsn; i++)
6580 {
6581 TInsn *insn = &istack.insn[i];
c138bc38 6582 switch (insn->insn_type)
43cd72b9
BW
6583 {
6584 case ITYPE_LITERAL:
6585 assert (lit_sym == NULL);
6586 lit_sym = xg_assemble_literal (insn);
6587 break;
6588 case ITYPE_LABEL:
6589 {
6590 static int relaxed_sym_idx = 0;
6591 char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12);
6592 sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++);
6593 colon (label);
6594 assert (label_sym == NULL);
6595 label_sym = symbol_find_or_make (label);
6596 assert (label_sym);
6597 free (label);
6598 }
6599 break;
6600 case ITYPE_INSN:
b2d179be
BW
6601 {
6602 vliw_insn v;
6603 if (lit_sym)
6604 xg_resolve_literals (insn, lit_sym);
6605 if (label_sym)
6606 xg_resolve_labels (insn, label_sym);
6607 xg_init_vinsn (&v);
6608 bundle_tinsn (insn, &v);
6609 finish_vinsn (&v);
6610 xg_free_vinsn (&v);
6611 }
43cd72b9
BW
6612 break;
6613 default:
6614 assert (0);
6615 break;
6616 }
6617 }
6618 return FALSE;
6619}
6620
6621
34e41783
BW
6622static int
6623total_frag_text_expansion (fragS *fragP)
6624{
6625 int slot;
6626 int total_expansion = 0;
6627
6628 for (slot = 0; slot < MAX_SLOTS; slot++)
6629 total_expansion += fragP->tc_frag_data.text_expansion[slot];
6630
6631 return total_expansion;
6632}
6633
6634
43cd72b9
BW
6635/* Emit a vliw instruction to the current fragment. */
6636
7fa3d080
BW
6637static void
6638xg_assemble_vliw_tokens (vliw_insn *vinsn)
43cd72b9 6639{
e7da6241 6640 bfd_boolean finish_frag;
43cd72b9
BW
6641 bfd_boolean is_jump = FALSE;
6642 bfd_boolean is_branch = FALSE;
6643 xtensa_isa isa = xtensa_default_isa;
6644 int i;
6645 int insn_size;
6646 int extra_space;
6647 char *f = NULL;
6648 int slot;
7c430684
BW
6649 unsigned current_line, best_linenum;
6650 char *current_file;
43cd72b9 6651
7c430684 6652 best_linenum = UINT_MAX;
43cd72b9
BW
6653
6654 if (generating_literals)
6655 {
6656 static int reported = 0;
6657 if (reported < 4)
6658 as_bad_where (frag_now->fr_file, frag_now->fr_line,
6659 _("cannot assemble into a literal fragment"));
6660 if (reported == 3)
6661 as_bad (_("..."));
6662 reported++;
6663 return;
6664 }
6665
6666 if (frag_now_fix () != 0
b08b5071 6667 && (! frag_now->tc_frag_data.is_insn
43cd72b9 6668 || (vinsn_has_specific_opcodes (vinsn) && use_transform ())
b08b5071 6669 || !use_transform () != frag_now->tc_frag_data.is_no_transform
7c834684
BW
6670 || (directive_state[directive_longcalls]
6671 != frag_now->tc_frag_data.use_longcalls)
43cd72b9
BW
6672 || (directive_state[directive_absolute_literals]
6673 != frag_now->tc_frag_data.use_absolute_literals)))
6674 {
6675 frag_wane (frag_now);
6676 frag_new (0);
6677 xtensa_set_frag_assembly_state (frag_now);
6678 }
6679
6680 if (workaround_a0_b_retw
6681 && vinsn->num_slots == 1
6682 && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
6683 && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1
6684 && use_transform ())
6685 {
6686 has_a0_b_retw = TRUE;
6687
6688 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
6689 After the first assembly pass we will check all of them and
6690 add a nop if needed. */
6691 frag_now->tc_frag_data.is_insn = TRUE;
6692 frag_var (rs_machine_dependent, 4, 4,
6693 RELAX_ADD_NOP_IF_A0_B_RETW,
6694 frag_now->fr_symbol,
6695 frag_now->fr_offset,
6696 NULL);
6697 xtensa_set_frag_assembly_state (frag_now);
6698 frag_now->tc_frag_data.is_insn = TRUE;
6699 frag_var (rs_machine_dependent, 4, 4,
6700 RELAX_ADD_NOP_IF_A0_B_RETW,
6701 frag_now->fr_symbol,
6702 frag_now->fr_offset,
6703 NULL);
6704 xtensa_set_frag_assembly_state (frag_now);
6705 }
6706
6707 for (i = 0; i < vinsn->num_slots; i++)
6708 {
6709 /* See if the instruction implies an aligned section. */
6710 if (xtensa_opcode_is_loop (isa, vinsn->slots[i].opcode) == 1)
6711 record_alignment (now_seg, 2);
c138bc38 6712
43cd72b9 6713 /* Also determine the best line number for debug info. */
7c430684
BW
6714 best_linenum = vinsn->slots[i].linenum < best_linenum
6715 ? vinsn->slots[i].linenum : best_linenum;
43cd72b9
BW
6716 }
6717
6718 /* Special cases for instructions that force an alignment... */
6719 /* None of these opcodes are bundle-able. */
6720 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1)
6721 {
d77b99c9 6722 int max_fill;
c138bc38 6723
05d58145
BW
6724 /* Remember the symbol that marks the end of the loop in the frag
6725 that marks the start of the loop. This way we can easily find
6726 the end of the loop at the beginning, without adding special code
6727 to mark the loop instructions themselves. */
6728 symbolS *target_sym = NULL;
6729 if (vinsn->slots[0].tok[1].X_op == O_symbol)
6730 target_sym = vinsn->slots[0].tok[1].X_add_symbol;
6731
43cd72b9
BW
6732 xtensa_set_frag_assembly_state (frag_now);
6733 frag_now->tc_frag_data.is_insn = TRUE;
c138bc38 6734
43cd72b9
BW
6735 max_fill = get_text_align_max_fill_size
6736 (get_text_align_power (xtensa_fetch_width),
6737 TRUE, frag_now->tc_frag_data.is_no_density);
6738
6739 if (use_transform ())
6740 frag_var (rs_machine_dependent, max_fill, max_fill,
05d58145 6741 RELAX_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
43cd72b9 6742 else
c138bc38 6743 frag_var (rs_machine_dependent, 0, 0,
05d58145 6744 RELAX_CHECK_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
43cd72b9 6745 xtensa_set_frag_assembly_state (frag_now);
c138bc38 6746
43cd72b9
BW
6747 xtensa_move_labels (frag_now, 0, FALSE);
6748 }
6749
b08b5071 6750 if (vinsn->slots[0].opcode == xtensa_entry_opcode
43cd72b9
BW
6751 && !vinsn->slots[0].is_specific_opcode)
6752 {
6753 xtensa_mark_literal_pool_location ();
6754 xtensa_move_labels (frag_now, 0, TRUE);
6755 frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL);
6756 }
6757
6758 if (vinsn->num_slots == 1)
6759 {
6760 if (workaround_a0_b_retw && use_transform ())
6761 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
6762 is_register_writer (&vinsn->slots[0], "a", 0));
6763
6764 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
6765 is_bad_loopend_opcode (&vinsn->slots[0]));
6766 }
6767 else
6768 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE);
6769
6770 insn_size = xtensa_format_length (isa, vinsn->format);
6771
e7da6241 6772 extra_space = relaxation_requirements (vinsn, &finish_frag);
43cd72b9
BW
6773
6774 /* vinsn_to_insnbuf will produce the error. */
6775 if (vinsn->format != XTENSA_UNDEFINED)
6776 {
d77b99c9 6777 f = frag_more (insn_size + extra_space);
43cd72b9
BW
6778 xtensa_set_frag_assembly_state (frag_now);
6779 frag_now->tc_frag_data.is_insn = TRUE;
6780 }
6781
e7da6241 6782 vinsn_to_insnbuf (vinsn, f, frag_now, FALSE);
43cd72b9
BW
6783 if (vinsn->format == XTENSA_UNDEFINED)
6784 return;
6785
d77b99c9 6786 xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0);
c138bc38 6787
7c430684
BW
6788 /* Temporarily set the logical line number to the one we want to appear
6789 in the debug information. */
6790 as_where (&current_file, &current_line);
6791 new_logical_line (current_file, best_linenum);
6792 dwarf2_emit_insn (insn_size + extra_space);
6793 new_logical_line (current_file, current_line);
43cd72b9
BW
6794
6795 for (slot = 0; slot < vinsn->num_slots; slot++)
6796 {
6797 TInsn *tinsn = &vinsn->slots[slot];
6798 frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype;
7c834684 6799 frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol;
7c834684 6800 frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset;
43cd72b9
BW
6801 frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag;
6802 if (tinsn->literal_space != 0)
6803 xg_assemble_literal_space (tinsn->literal_space, slot);
6804
6805 if (tinsn->subtype == RELAX_NARROW)
6806 assert (vinsn->num_slots == 1);
6807 if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1)
6808 is_jump = TRUE;
6809 if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1)
6810 is_branch = TRUE;
6811
e7da6241
BW
6812 if (tinsn->subtype || tinsn->symbol || tinsn->offset
6813 || tinsn->literal_frag || is_jump || is_branch)
43cd72b9
BW
6814 finish_frag = TRUE;
6815 }
6816
6817 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
b08b5071 6818 frag_now->tc_frag_data.is_specific_opcode = TRUE;
43cd72b9
BW
6819
6820 if (finish_frag)
6821 {
6822 frag_variant (rs_machine_dependent,
6823 extra_space, extra_space, RELAX_SLOTS,
6824 frag_now->fr_symbol, frag_now->fr_offset, f);
6825 xtensa_set_frag_assembly_state (frag_now);
6826 }
6827
6828 /* Special cases for loops:
6829 close_loop_end should be inserted AFTER short_loop.
6830 Make sure that CLOSE loops are processed BEFORE short_loops
6831 when converting them. */
6832
6833 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
6834 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode)
6835 && !vinsn->slots[0].is_specific_opcode)
6836 {
6837 if (workaround_short_loop && use_transform ())
6838 {
6839 maybe_has_short_loop = TRUE;
6840 frag_now->tc_frag_data.is_insn = TRUE;
6841 frag_var (rs_machine_dependent, 4, 4,
6842 RELAX_ADD_NOP_IF_SHORT_LOOP,
6843 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6844 frag_now->tc_frag_data.is_insn = TRUE;
6845 frag_var (rs_machine_dependent, 4, 4,
6846 RELAX_ADD_NOP_IF_SHORT_LOOP,
6847 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6848 }
6849
6850 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
6851 loop at least 12 bytes away from another loop's end. */
6852 if (workaround_close_loop_end && use_transform ())
6853 {
6854 maybe_has_close_loop_end = TRUE;
6855 frag_now->tc_frag_data.is_insn = TRUE;
6856 frag_var (rs_machine_dependent, 12, 12,
6857 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
6858 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6859 }
6860 }
6861
6862 if (use_transform ())
6863 {
6864 if (is_jump)
6865 {
6866 assert (finish_frag);
6867 frag_var (rs_machine_dependent,
6868 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6869 RELAX_UNREACHABLE,
6870 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6871 xtensa_set_frag_assembly_state (frag_now);
6872 }
7b1cc377 6873 else if (is_branch && do_align_targets ())
43cd72b9
BW
6874 {
6875 assert (finish_frag);
6876 frag_var (rs_machine_dependent,
6877 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6878 RELAX_MAYBE_UNREACHABLE,
6879 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6880 xtensa_set_frag_assembly_state (frag_now);
6881 frag_var (rs_machine_dependent,
6882 0, 0,
6883 RELAX_MAYBE_DESIRE_ALIGN,
6884 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6885 xtensa_set_frag_assembly_state (frag_now);
6886 }
6887 }
6888
6889 /* Now, if the original opcode was a call... */
6890 if (do_align_targets ()
6891 && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1)
6892 {
b08b5071 6893 float freq = get_subseg_total_freq (now_seg, now_subseg);
43cd72b9
BW
6894 frag_now->tc_frag_data.is_insn = TRUE;
6895 frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN,
6896 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6897 xtensa_set_frag_assembly_state (frag_now);
6898 }
6899
6900 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6901 {
6902 frag_wane (frag_now);
6903 frag_new (0);
6904 xtensa_set_frag_assembly_state (frag_now);
6905 }
6906}
6907
6908\f
7fa3d080
BW
6909/* xtensa_end and helper functions. */
6910
6911static void xtensa_cleanup_align_frags (void);
6912static void xtensa_fix_target_frags (void);
6913static void xtensa_mark_narrow_branches (void);
6914static void xtensa_mark_zcl_first_insns (void);
6915static void xtensa_fix_a0_b_retw_frags (void);
6916static void xtensa_fix_b_j_loop_end_frags (void);
6917static void xtensa_fix_close_loop_end_frags (void);
6918static void xtensa_fix_short_loop_frags (void);
6919static void xtensa_sanity_check (void);
6920
43cd72b9 6921void
7fa3d080 6922xtensa_end (void)
43cd72b9
BW
6923{
6924 directive_balance ();
6925 xtensa_flush_pending_output ();
6926
6927 past_xtensa_end = TRUE;
6928
6929 xtensa_move_literals ();
6930
6931 xtensa_reorder_segments ();
6932 xtensa_cleanup_align_frags ();
6933 xtensa_fix_target_frags ();
6934 if (workaround_a0_b_retw && has_a0_b_retw)
6935 xtensa_fix_a0_b_retw_frags ();
6936 if (workaround_b_j_loop_end)
6937 xtensa_fix_b_j_loop_end_frags ();
6938
6939 /* "close_loop_end" should be processed BEFORE "short_loop". */
6940 if (workaround_close_loop_end && maybe_has_close_loop_end)
6941 xtensa_fix_close_loop_end_frags ();
6942
6943 if (workaround_short_loop && maybe_has_short_loop)
6944 xtensa_fix_short_loop_frags ();
03aaa593
BW
6945 if (align_targets)
6946 xtensa_mark_narrow_branches ();
43cd72b9
BW
6947 xtensa_mark_zcl_first_insns ();
6948
6949 xtensa_sanity_check ();
6950}
6951
6952
6953static void
7fa3d080 6954xtensa_cleanup_align_frags (void)
43cd72b9
BW
6955{
6956 frchainS *frchP;
6957
6958 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
6959 {
6960 fragS *fragP;
6961 /* Walk over all of the fragments in a subsection. */
6962 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
6963 {
6964 if ((fragP->fr_type == rs_align
6965 || fragP->fr_type == rs_align_code
6966 || (fragP->fr_type == rs_machine_dependent
6967 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
6968 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
6969 && fragP->fr_fix == 0)
6970 {
6971 fragS *next = fragP->fr_next;
6972
6973 while (next
6974 && next->fr_fix == 0
6975 && next->fr_type == rs_machine_dependent
6976 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
6977 {
6978 frag_wane (next);
6979 next = next->fr_next;
6980 }
6981 }
6982 /* If we don't widen branch targets, then they
6983 will be easier to align. */
6984 if (fragP->tc_frag_data.is_branch_target
6985 && fragP->fr_opcode == fragP->fr_literal
6986 && fragP->fr_type == rs_machine_dependent
6987 && fragP->fr_subtype == RELAX_SLOTS
6988 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
6989 frag_wane (fragP);
c138bc38 6990 if (fragP->fr_type == rs_machine_dependent
43cd72b9
BW
6991 && fragP->fr_subtype == RELAX_UNREACHABLE)
6992 fragP->tc_frag_data.is_unreachable = TRUE;
6993 }
6994 }
6995}
6996
6997
6998/* Re-process all of the fragments looking to convert all of the
6999 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
7000 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
7b1cc377 7001 Otherwise, convert to a .fill 0. */
7fa3d080 7002
43cd72b9 7003static void
7fa3d080 7004xtensa_fix_target_frags (void)
e0001a05
NC
7005{
7006 frchainS *frchP;
7007
7008 /* When this routine is called, all of the subsections are still intact
7009 so we walk over subsections instead of sections. */
7010 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7011 {
e0001a05
NC
7012 fragS *fragP;
7013
7014 /* Walk over all of the fragments in a subsection. */
7015 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7016 {
7017 if (fragP->fr_type == rs_machine_dependent
7018 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7019 {
7b1cc377 7020 if (next_frag_is_branch_target (fragP))
e0001a05
NC
7021 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
7022 else
7023 frag_wane (fragP);
7024 }
e0001a05
NC
7025 }
7026 }
7027}
7028
7029
7fa3d080
BW
7030static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *);
7031
43cd72b9 7032static void
7fa3d080 7033xtensa_mark_narrow_branches (void)
43cd72b9
BW
7034{
7035 frchainS *frchP;
7036
7037 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7038 {
7039 fragS *fragP;
7040 /* Walk over all of the fragments in a subsection. */
7041 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7042 {
7043 if (fragP->fr_type == rs_machine_dependent
7044 && fragP->fr_subtype == RELAX_SLOTS
7045 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
7046 {
7047 vliw_insn vinsn;
43cd72b9
BW
7048
7049 vinsn_from_chars (&vinsn, fragP->fr_opcode);
7050 tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0);
7051
43cd72b9
BW
7052 if (vinsn.num_slots == 1
7053 && xtensa_opcode_is_branch (xtensa_default_isa,
7054 vinsn.slots[0].opcode)
7055 && xg_get_single_size (vinsn.slots[0].opcode) == 2
7056 && is_narrow_branch_guaranteed_in_range (fragP,
7057 &vinsn.slots[0]))
7058 {
7059 fragP->fr_subtype = RELAX_SLOTS;
7060 fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW;
b5e4a23d 7061 fragP->tc_frag_data.is_aligning_branch = 1;
43cd72b9
BW
7062 }
7063 }
7064 }
7065 }
7066}
7067
7068
7069/* A branch is typically widened only when its target is out of
7070 range. However, we would like to widen them to align a subsequent
7071 branch target when possible.
7072
7073 Because the branch relaxation code is so convoluted, the optimal solution
7074 (combining the two cases) is difficult to get right in all circumstances.
7075 We therefore go with an "almost as good" solution, where we only
7076 use for alignment narrow branches that definitely will not expand to a
7077 jump and a branch. These functions find and mark these cases. */
7078
a67517f4
BW
7079/* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded
7080 as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63.
7081 We start counting beginning with the frag after the 2-byte branch, so the
7082 maximum offset is (4 - 2) + 63 = 65. */
7083#define MAX_IMMED6 65
43cd72b9 7084
d77b99c9 7085static offsetT unrelaxed_frag_max_size (fragS *);
7fa3d080 7086
43cd72b9 7087static bfd_boolean
7fa3d080 7088is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn)
43cd72b9
BW
7089{
7090 const expressionS *expr = &tinsn->tok[1];
7091 symbolS *symbolP = expr->X_add_symbol;
d77b99c9 7092 offsetT max_distance = expr->X_add_number;
e7da6241
BW
7093 fragS *target_frag;
7094
7095 if (expr->X_op != O_symbol)
7096 return FALSE;
7097
7098 target_frag = symbol_get_frag (symbolP);
7099
43cd72b9
BW
7100 max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address);
7101 if (is_branch_jmp_to_next (tinsn, fragP))
7102 return FALSE;
7103
7104 /* The branch doesn't branch over it's own frag,
7105 but over the subsequent ones. */
7106 fragP = fragP->fr_next;
7107 while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6)
7108 {
7109 max_distance += unrelaxed_frag_max_size (fragP);
7110 fragP = fragP->fr_next;
7111 }
7112 if (max_distance <= MAX_IMMED6 && fragP == target_frag)
7113 return TRUE;
e0001a05
NC
7114 return FALSE;
7115}
7116
7117
43cd72b9 7118static void
7fa3d080 7119xtensa_mark_zcl_first_insns (void)
43cd72b9
BW
7120{
7121 frchainS *frchP;
7122
7123 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7124 {
7125 fragS *fragP;
7126 /* Walk over all of the fragments in a subsection. */
7127 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7128 {
7129 if (fragP->fr_type == rs_machine_dependent
7130 && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7131 || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7132 {
7133 /* Find the loop frag. */
7134 fragS *targ_frag = next_non_empty_frag (fragP);
7135 /* Find the first insn frag. */
7136 targ_frag = next_non_empty_frag (targ_frag);
7137
7138 /* Of course, sometimes (mostly for toy test cases) a
7139 zero-cost loop instruction is the last in a section. */
c138bc38 7140 if (targ_frag)
03aaa593
BW
7141 {
7142 targ_frag->tc_frag_data.is_first_loop_insn = TRUE;
7143 /* Do not widen a frag that is the first instruction of a
7144 zero-cost loop. It makes that loop harder to align. */
7145 if (targ_frag->fr_type == rs_machine_dependent
7146 && targ_frag->fr_subtype == RELAX_SLOTS
7147 && (targ_frag->tc_frag_data.slot_subtypes[0]
7148 == RELAX_NARROW))
7149 {
7150 if (targ_frag->tc_frag_data.is_aligning_branch)
7151 targ_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
7152 else
7153 {
7154 frag_wane (targ_frag);
7155 targ_frag->tc_frag_data.slot_subtypes[0] = 0;
7156 }
7157 }
7158 }
d7c531cd
BW
7159 if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)
7160 frag_wane (fragP);
43cd72b9
BW
7161 }
7162 }
7163 }
7164}
7165
7166
e0001a05
NC
7167/* Re-process all of the fragments looking to convert all of the
7168 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
7169 conditional branch or a retw/retw.n, convert this frag to one that
7170 will generate a NOP. In any case close it off with a .fill 0. */
7171
7fa3d080
BW
7172static bfd_boolean next_instrs_are_b_retw (fragS *);
7173
e0001a05 7174static void
7fa3d080 7175xtensa_fix_a0_b_retw_frags (void)
e0001a05
NC
7176{
7177 frchainS *frchP;
7178
7179 /* When this routine is called, all of the subsections are still intact
7180 so we walk over subsections instead of sections. */
7181 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7182 {
7183 fragS *fragP;
7184
7185 /* Walk over all of the fragments in a subsection. */
7186 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7187 {
7188 if (fragP->fr_type == rs_machine_dependent
7189 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
7190 {
7191 if (next_instrs_are_b_retw (fragP))
43cd72b9 7192 {
b08b5071 7193 if (fragP->tc_frag_data.is_no_transform)
43cd72b9
BW
7194 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
7195 else
7196 relax_frag_add_nop (fragP);
7197 }
7198 frag_wane (fragP);
e0001a05
NC
7199 }
7200 }
7201 }
7202}
7203
7204
7fa3d080
BW
7205static bfd_boolean
7206next_instrs_are_b_retw (fragS *fragP)
e0001a05
NC
7207{
7208 xtensa_opcode opcode;
43cd72b9 7209 xtensa_format fmt;
e0001a05
NC
7210 const fragS *next_fragP = next_non_empty_frag (fragP);
7211 static xtensa_insnbuf insnbuf = NULL;
43cd72b9 7212 static xtensa_insnbuf slotbuf = NULL;
e0001a05
NC
7213 xtensa_isa isa = xtensa_default_isa;
7214 int offset = 0;
43cd72b9
BW
7215 int slot;
7216 bfd_boolean branch_seen = FALSE;
e0001a05
NC
7217
7218 if (!insnbuf)
43cd72b9
BW
7219 {
7220 insnbuf = xtensa_insnbuf_alloc (isa);
7221 slotbuf = xtensa_insnbuf_alloc (isa);
7222 }
e0001a05
NC
7223
7224 if (next_fragP == NULL)
7225 return FALSE;
7226
7227 /* Check for the conditional branch. */
d77b99c9
BW
7228 xtensa_insnbuf_from_chars
7229 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
43cd72b9
BW
7230 fmt = xtensa_format_decode (isa, insnbuf);
7231 if (fmt == XTENSA_UNDEFINED)
7232 return FALSE;
7233
7234 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7235 {
7236 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
7237 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
7238
7239 branch_seen = (branch_seen
7240 || xtensa_opcode_is_branch (isa, opcode) == 1);
7241 }
e0001a05 7242
43cd72b9 7243 if (!branch_seen)
e0001a05
NC
7244 return FALSE;
7245
43cd72b9 7246 offset += xtensa_format_length (isa, fmt);
e0001a05
NC
7247 if (offset == next_fragP->fr_fix)
7248 {
7249 next_fragP = next_non_empty_frag (next_fragP);
7250 offset = 0;
7251 }
43cd72b9 7252
e0001a05
NC
7253 if (next_fragP == NULL)
7254 return FALSE;
7255
7256 /* Check for the retw/retw.n. */
d77b99c9
BW
7257 xtensa_insnbuf_from_chars
7258 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
43cd72b9
BW
7259 fmt = xtensa_format_decode (isa, insnbuf);
7260
7261 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
7262 have no problems. */
7263 if (fmt == XTENSA_UNDEFINED
7264 || xtensa_format_num_slots (isa, fmt) != 1)
7265 return FALSE;
7266
7267 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7268 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
e0001a05 7269
b08b5071 7270 if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode)
e0001a05 7271 return TRUE;
43cd72b9 7272
e0001a05
NC
7273 return FALSE;
7274}
7275
7276
7277/* Re-process all of the fragments looking to convert all of the
7278 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
7279 loop end label, convert this frag to one that will generate a NOP.
7280 In any case close it off with a .fill 0. */
7281
7fa3d080
BW
7282static bfd_boolean next_instr_is_loop_end (fragS *);
7283
e0001a05 7284static void
7fa3d080 7285xtensa_fix_b_j_loop_end_frags (void)
e0001a05
NC
7286{
7287 frchainS *frchP;
7288
7289 /* When this routine is called, all of the subsections are still intact
7290 so we walk over subsections instead of sections. */
7291 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7292 {
7293 fragS *fragP;
7294
7295 /* Walk over all of the fragments in a subsection. */
7296 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7297 {
7298 if (fragP->fr_type == rs_machine_dependent
7299 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
7300 {
7301 if (next_instr_is_loop_end (fragP))
43cd72b9 7302 {
b08b5071 7303 if (fragP->tc_frag_data.is_no_transform)
43cd72b9
BW
7304 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
7305 else
7306 relax_frag_add_nop (fragP);
7307 }
7308 frag_wane (fragP);
e0001a05
NC
7309 }
7310 }
7311 }
7312}
7313
7314
7fa3d080
BW
7315static bfd_boolean
7316next_instr_is_loop_end (fragS *fragP)
e0001a05
NC
7317{
7318 const fragS *next_fragP;
7319
7320 if (next_frag_is_loop_target (fragP))
7321 return FALSE;
7322
7323 next_fragP = next_non_empty_frag (fragP);
7324 if (next_fragP == NULL)
7325 return FALSE;
7326
7327 if (!next_frag_is_loop_target (next_fragP))
7328 return FALSE;
7329
7330 /* If the size is >= 3 then there is more than one instruction here.
7331 The hardware bug will not fire. */
7332 if (next_fragP->fr_fix > 3)
7333 return FALSE;
7334
7335 return TRUE;
7336}
7337
7338
7339/* Re-process all of the fragments looking to convert all of the
7340 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
7341 not MY loop's loop end within 12 bytes, add enough nops here to
7342 make it at least 12 bytes away. In any case close it off with a
7343 .fill 0. */
7344
d77b99c9 7345static offsetT min_bytes_to_other_loop_end
05d58145 7346 (fragS *, fragS *, offsetT);
7fa3d080 7347
e0001a05 7348static void
7fa3d080 7349xtensa_fix_close_loop_end_frags (void)
e0001a05
NC
7350{
7351 frchainS *frchP;
7352
7353 /* When this routine is called, all of the subsections are still intact
7354 so we walk over subsections instead of sections. */
7355 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7356 {
7357 fragS *fragP;
7358
7359 fragS *current_target = NULL;
e0001a05
NC
7360
7361 /* Walk over all of the fragments in a subsection. */
7362 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7363 {
7364 if (fragP->fr_type == rs_machine_dependent
05d58145
BW
7365 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
7366 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
7367 current_target = symbol_get_frag (fragP->fr_symbol);
e0001a05
NC
7368
7369 if (current_target
7370 && fragP->fr_type == rs_machine_dependent
7371 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
7372 {
d77b99c9
BW
7373 offsetT min_bytes;
7374 int bytes_added = 0;
e0001a05
NC
7375
7376#define REQUIRED_LOOP_DIVIDING_BYTES 12
7377 /* Max out at 12. */
7378 min_bytes = min_bytes_to_other_loop_end
05d58145 7379 (fragP->fr_next, current_target, REQUIRED_LOOP_DIVIDING_BYTES);
e0001a05
NC
7380
7381 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
7382 {
b08b5071 7383 if (fragP->tc_frag_data.is_no_transform)
43cd72b9
BW
7384 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
7385 else
e0001a05 7386 {
43cd72b9
BW
7387 while (min_bytes + bytes_added
7388 < REQUIRED_LOOP_DIVIDING_BYTES)
e0001a05 7389 {
43cd72b9 7390 int length = 3;
c138bc38 7391
43cd72b9
BW
7392 if (fragP->fr_var < length)
7393 as_fatal (_("fr_var %lu < length %d"),
dd49a749 7394 (long) fragP->fr_var, length);
43cd72b9
BW
7395 else
7396 {
7397 assemble_nop (length,
7398 fragP->fr_literal + fragP->fr_fix);
7399 fragP->fr_fix += length;
7400 fragP->fr_var -= length;
7401 }
7402 bytes_added += length;
e0001a05 7403 }
e0001a05
NC
7404 }
7405 }
7406 frag_wane (fragP);
7407 }
43cd72b9
BW
7408 assert (fragP->fr_type != rs_machine_dependent
7409 || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END);
e0001a05
NC
7410 }
7411 }
7412}
7413
7414
d77b99c9 7415static offsetT unrelaxed_frag_min_size (fragS *);
7fa3d080 7416
d77b99c9 7417static offsetT
7fa3d080
BW
7418min_bytes_to_other_loop_end (fragS *fragP,
7419 fragS *current_target,
d77b99c9 7420 offsetT max_size)
e0001a05 7421{
d77b99c9 7422 offsetT offset = 0;
e0001a05
NC
7423 fragS *current_fragP;
7424
7425 for (current_fragP = fragP;
7426 current_fragP;
7427 current_fragP = current_fragP->fr_next)
7428 {
7429 if (current_fragP->tc_frag_data.is_loop_target
7430 && current_fragP != current_target)
05d58145 7431 return offset;
e0001a05
NC
7432
7433 offset += unrelaxed_frag_min_size (current_fragP);
7434
05d58145 7435 if (offset >= max_size)
e0001a05
NC
7436 return max_size;
7437 }
7438 return max_size;
7439}
7440
7441
d77b99c9 7442static offsetT
7fa3d080 7443unrelaxed_frag_min_size (fragS *fragP)
e0001a05 7444{
d77b99c9 7445 offsetT size = fragP->fr_fix;
e0001a05 7446
d77b99c9 7447 /* Add fill size. */
e0001a05
NC
7448 if (fragP->fr_type == rs_fill)
7449 size += fragP->fr_offset;
7450
7451 return size;
7452}
7453
7454
d77b99c9 7455static offsetT
7fa3d080 7456unrelaxed_frag_max_size (fragS *fragP)
43cd72b9 7457{
d77b99c9 7458 offsetT size = fragP->fr_fix;
43cd72b9
BW
7459 switch (fragP->fr_type)
7460 {
7461 case 0:
c138bc38 7462 /* Empty frags created by the obstack allocation scheme
43cd72b9
BW
7463 end up with type 0. */
7464 break;
7465 case rs_fill:
7466 case rs_org:
7467 case rs_space:
7468 size += fragP->fr_offset;
7469 break;
7470 case rs_align:
7471 case rs_align_code:
7472 case rs_align_test:
7473 case rs_leb128:
7474 case rs_cfa:
7475 case rs_dwarf2dbg:
7476 /* No further adjustments needed. */
7477 break;
7478 case rs_machine_dependent:
7479 if (fragP->fr_subtype != RELAX_DESIRE_ALIGN)
7480 size += fragP->fr_var;
7481 break;
7482 default:
7483 /* We had darn well better know how big it is. */
7484 assert (0);
7485 break;
7486 }
7487
7488 return size;
7489}
7490
7491
e0001a05
NC
7492/* Re-process all of the fragments looking to convert all
7493 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
7494
7495 A)
7496 1) the instruction size count to the loop end label
7497 is too short (<= 2 instructions),
7498 2) loop has a jump or branch in it
7499
7500 or B)
43cd72b9 7501 1) workaround_all_short_loops is TRUE
e0001a05
NC
7502 2) The generating loop was a 'loopgtz' or 'loopnez'
7503 3) the instruction size count to the loop end label is too short
7504 (<= 2 instructions)
7505 then convert this frag (and maybe the next one) to generate a NOP.
7506 In any case close it off with a .fill 0. */
7507
d77b99c9 7508static int count_insns_to_loop_end (fragS *, bfd_boolean, int);
7fa3d080
BW
7509static bfd_boolean branch_before_loop_end (fragS *);
7510
e0001a05 7511static void
7fa3d080 7512xtensa_fix_short_loop_frags (void)
e0001a05
NC
7513{
7514 frchainS *frchP;
7515
7516 /* When this routine is called, all of the subsections are still intact
7517 so we walk over subsections instead of sections. */
7518 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7519 {
7520 fragS *fragP;
7521 fragS *current_target = NULL;
e0001a05
NC
7522 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
7523
7524 /* Walk over all of the fragments in a subsection. */
7525 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7526 {
e0001a05 7527 if (fragP->fr_type == rs_machine_dependent
05d58145
BW
7528 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
7529 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
e0001a05 7530 {
43cd72b9 7531 TInsn t_insn;
05d58145
BW
7532 fragS *loop_frag = next_non_empty_frag (fragP);
7533 tinsn_from_chars (&t_insn, loop_frag->fr_opcode, 0);
7534 current_target = symbol_get_frag (fragP->fr_symbol);
7535 current_opcode = t_insn.opcode;
7536 assert (xtensa_opcode_is_loop (xtensa_default_isa,
7537 current_opcode));
e0001a05
NC
7538 }
7539
7540 if (fragP->fr_type == rs_machine_dependent
7541 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7542 {
d77b99c9 7543 if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3
e0001a05 7544 && (branch_before_loop_end (fragP->fr_next)
43cd72b9 7545 || (workaround_all_short_loops
e0001a05 7546 && current_opcode != XTENSA_UNDEFINED
b08b5071 7547 && current_opcode != xtensa_loop_opcode)))
43cd72b9 7548 {
b08b5071 7549 if (fragP->tc_frag_data.is_no_transform)
43cd72b9
BW
7550 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
7551 else
7552 relax_frag_add_nop (fragP);
7553 }
7554 frag_wane (fragP);
e0001a05
NC
7555 }
7556 }
7557 }
7558}
7559
7560
d77b99c9 7561static int unrelaxed_frag_min_insn_count (fragS *);
7fa3d080 7562
d77b99c9 7563static int
7fa3d080
BW
7564count_insns_to_loop_end (fragS *base_fragP,
7565 bfd_boolean count_relax_add,
d77b99c9 7566 int max_count)
e0001a05
NC
7567{
7568 fragS *fragP = NULL;
d77b99c9 7569 int insn_count = 0;
e0001a05
NC
7570
7571 fragP = base_fragP;
7572
7573 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
7574 {
7575 insn_count += unrelaxed_frag_min_insn_count (fragP);
7576 if (insn_count >= max_count)
7577 return max_count;
7578
7579 if (count_relax_add)
7580 {
7581 if (fragP->fr_type == rs_machine_dependent
7582 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7583 {
7584 /* In order to add the appropriate number of
7585 NOPs, we count an instruction for downstream
7586 occurrences. */
7587 insn_count++;
7588 if (insn_count >= max_count)
7589 return max_count;
7590 }
7591 }
7592 }
7593 return insn_count;
7594}
7595
7596
d77b99c9 7597static int
7fa3d080 7598unrelaxed_frag_min_insn_count (fragS *fragP)
e0001a05 7599{
43cd72b9
BW
7600 xtensa_isa isa = xtensa_default_isa;
7601 static xtensa_insnbuf insnbuf = NULL;
d77b99c9 7602 int insn_count = 0;
e0001a05
NC
7603 int offset = 0;
7604
7605 if (!fragP->tc_frag_data.is_insn)
7606 return insn_count;
7607
43cd72b9
BW
7608 if (!insnbuf)
7609 insnbuf = xtensa_insnbuf_alloc (isa);
7610
e0001a05
NC
7611 /* Decode the fixed instructions. */
7612 while (offset < fragP->fr_fix)
7613 {
43cd72b9
BW
7614 xtensa_format fmt;
7615
d77b99c9
BW
7616 xtensa_insnbuf_from_chars
7617 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
43cd72b9
BW
7618 fmt = xtensa_format_decode (isa, insnbuf);
7619
7620 if (fmt == XTENSA_UNDEFINED)
e0001a05
NC
7621 {
7622 as_fatal (_("undecodable instruction in instruction frag"));
7623 return insn_count;
7624 }
43cd72b9 7625 offset += xtensa_format_length (isa, fmt);
e0001a05
NC
7626 insn_count++;
7627 }
7628
7629 return insn_count;
7630}
7631
7632
7fa3d080
BW
7633static bfd_boolean unrelaxed_frag_has_b_j (fragS *);
7634
43cd72b9 7635static bfd_boolean
7fa3d080 7636branch_before_loop_end (fragS *base_fragP)
e0001a05
NC
7637{
7638 fragS *fragP;
7639
7640 for (fragP = base_fragP;
7641 fragP && !fragP->tc_frag_data.is_loop_target;
7642 fragP = fragP->fr_next)
7643 {
7644 if (unrelaxed_frag_has_b_j (fragP))
7645 return TRUE;
7646 }
7647 return FALSE;
7648}
7649
7650
43cd72b9 7651static bfd_boolean
7fa3d080 7652unrelaxed_frag_has_b_j (fragS *fragP)
e0001a05 7653{
43cd72b9
BW
7654 static xtensa_insnbuf insnbuf = NULL;
7655 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
7656 int offset = 0;
7657
7658 if (!fragP->tc_frag_data.is_insn)
7659 return FALSE;
7660
43cd72b9
BW
7661 if (!insnbuf)
7662 insnbuf = xtensa_insnbuf_alloc (isa);
7663
e0001a05
NC
7664 /* Decode the fixed instructions. */
7665 while (offset < fragP->fr_fix)
7666 {
43cd72b9
BW
7667 xtensa_format fmt;
7668 int slot;
7669
d77b99c9
BW
7670 xtensa_insnbuf_from_chars
7671 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
43cd72b9
BW
7672 fmt = xtensa_format_decode (isa, insnbuf);
7673 if (fmt == XTENSA_UNDEFINED)
7674 return FALSE;
7675
7676 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
e0001a05 7677 {
43cd72b9
BW
7678 xtensa_opcode opcode =
7679 get_opcode_from_buf (fragP->fr_literal + offset, slot);
7680 if (xtensa_opcode_is_branch (isa, opcode) == 1
7681 || xtensa_opcode_is_jump (isa, opcode) == 1)
7682 return TRUE;
e0001a05 7683 }
43cd72b9 7684 offset += xtensa_format_length (isa, fmt);
e0001a05
NC
7685 }
7686 return FALSE;
7687}
7688
7689
7690/* Checks to be made after initial assembly but before relaxation. */
7691
7fa3d080
BW
7692static bfd_boolean is_empty_loop (const TInsn *, fragS *);
7693static bfd_boolean is_local_forward_loop (const TInsn *, fragS *);
7694
e0001a05 7695static void
7fa3d080 7696xtensa_sanity_check (void)
e0001a05
NC
7697{
7698 char *file_name;
d77b99c9 7699 unsigned line;
e0001a05
NC
7700
7701 frchainS *frchP;
7702
7703 as_where (&file_name, &line);
7704 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7705 {
7706 fragS *fragP;
7707
7708 /* Walk over all of the fragments in a subsection. */
7709 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7710 {
7711 /* Currently we only check for empty loops here. */
7712 if (fragP->fr_type == rs_machine_dependent
7713 && fragP->fr_subtype == RELAX_IMMED)
7714 {
7715 static xtensa_insnbuf insnbuf = NULL;
7716 TInsn t_insn;
7717
7718 if (fragP->fr_opcode != NULL)
7719 {
7720 if (!insnbuf)
7721 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
43cd72b9
BW
7722 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7723 tinsn_immed_from_frag (&t_insn, fragP, 0);
e0001a05 7724
43cd72b9
BW
7725 if (xtensa_opcode_is_loop (xtensa_default_isa,
7726 t_insn.opcode) == 1)
e0001a05
NC
7727 {
7728 if (is_empty_loop (&t_insn, fragP))
7729 {
7730 new_logical_line (fragP->fr_file, fragP->fr_line);
7731 as_bad (_("invalid empty loop"));
7732 }
7733 if (!is_local_forward_loop (&t_insn, fragP))
7734 {
7735 new_logical_line (fragP->fr_file, fragP->fr_line);
7736 as_bad (_("loop target does not follow "
7737 "loop instruction in section"));
7738 }
7739 }
7740 }
7741 }
7742 }
7743 }
7744 new_logical_line (file_name, line);
7745}
7746
7747
7748#define LOOP_IMMED_OPN 1
7749
43cd72b9 7750/* Return TRUE if the loop target is the next non-zero fragment. */
e0001a05 7751
7fa3d080
BW
7752static bfd_boolean
7753is_empty_loop (const TInsn *insn, fragS *fragP)
e0001a05
NC
7754{
7755 const expressionS *expr;
7756 symbolS *symbolP;
7757 fragS *next_fragP;
7758
7759 if (insn->insn_type != ITYPE_INSN)
7760 return FALSE;
7761
43cd72b9 7762 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
e0001a05
NC
7763 return FALSE;
7764
7765 if (insn->ntok <= LOOP_IMMED_OPN)
7766 return FALSE;
7767
7768 expr = &insn->tok[LOOP_IMMED_OPN];
7769
7770 if (expr->X_op != O_symbol)
7771 return FALSE;
7772
7773 symbolP = expr->X_add_symbol;
7774 if (!symbolP)
7775 return FALSE;
7776
7777 if (symbol_get_frag (symbolP) == NULL)
7778 return FALSE;
7779
7780 if (S_GET_VALUE (symbolP) != 0)
7781 return FALSE;
7782
7783 /* Walk through the zero-size fragments from this one. If we find
7784 the target fragment, then this is a zero-size loop. */
43cd72b9 7785
e0001a05
NC
7786 for (next_fragP = fragP->fr_next;
7787 next_fragP != NULL;
7788 next_fragP = next_fragP->fr_next)
7789 {
7790 if (next_fragP == symbol_get_frag (symbolP))
7791 return TRUE;
7792 if (next_fragP->fr_fix != 0)
7793 return FALSE;
7794 }
7795 return FALSE;
7796}
7797
7798
7fa3d080
BW
7799static bfd_boolean
7800is_local_forward_loop (const TInsn *insn, fragS *fragP)
e0001a05
NC
7801{
7802 const expressionS *expr;
7803 symbolS *symbolP;
7804 fragS *next_fragP;
7805
7806 if (insn->insn_type != ITYPE_INSN)
7807 return FALSE;
7808
43cd72b9 7809 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) == 0)
e0001a05
NC
7810 return FALSE;
7811
7812 if (insn->ntok <= LOOP_IMMED_OPN)
7813 return FALSE;
7814
7815 expr = &insn->tok[LOOP_IMMED_OPN];
7816
7817 if (expr->X_op != O_symbol)
7818 return FALSE;
7819
7820 symbolP = expr->X_add_symbol;
7821 if (!symbolP)
7822 return FALSE;
7823
7824 if (symbol_get_frag (symbolP) == NULL)
7825 return FALSE;
7826
7827 /* Walk through fragments until we find the target.
7828 If we do not find the target, then this is an invalid loop. */
43cd72b9 7829
e0001a05
NC
7830 for (next_fragP = fragP->fr_next;
7831 next_fragP != NULL;
7832 next_fragP = next_fragP->fr_next)
43cd72b9
BW
7833 {
7834 if (next_fragP == symbol_get_frag (symbolP))
7835 return TRUE;
7836 }
e0001a05
NC
7837
7838 return FALSE;
7839}
7840
7841\f
7842/* Alignment Functions. */
7843
d77b99c9
BW
7844static int
7845get_text_align_power (unsigned target_size)
e0001a05 7846{
03aaa593
BW
7847 if (target_size <= 4)
7848 return 2;
7849 assert (target_size == 8);
7850 return 3;
e0001a05
NC
7851}
7852
7853
d77b99c9 7854static int
7fa3d080
BW
7855get_text_align_max_fill_size (int align_pow,
7856 bfd_boolean use_nops,
7857 bfd_boolean use_no_density)
e0001a05
NC
7858{
7859 if (!use_nops)
7860 return (1 << align_pow);
7861 if (use_no_density)
7862 return 3 * (1 << align_pow);
7863
7864 return 1 + (1 << align_pow);
7865}
7866
7867
d77b99c9
BW
7868/* Calculate the minimum bytes of fill needed at "address" to align a
7869 target instruction of size "target_size" so that it does not cross a
7870 power-of-two boundary specified by "align_pow". If "use_nops" is FALSE,
7871 the fill can be an arbitrary number of bytes. Otherwise, the space must
7872 be filled by NOP instructions. */
e0001a05 7873
d77b99c9 7874static int
7fa3d080
BW
7875get_text_align_fill_size (addressT address,
7876 int align_pow,
7877 int target_size,
7878 bfd_boolean use_nops,
7879 bfd_boolean use_no_density)
e0001a05 7880{
d77b99c9
BW
7881 addressT alignment, fill, fill_limit, fill_step;
7882 bfd_boolean skip_one = FALSE;
e0001a05 7883
d77b99c9
BW
7884 alignment = (1 << align_pow);
7885 assert (target_size > 0 && alignment >= (addressT) target_size);
c138bc38 7886
e0001a05
NC
7887 if (!use_nops)
7888 {
d77b99c9
BW
7889 fill_limit = alignment;
7890 fill_step = 1;
e0001a05 7891 }
d77b99c9 7892 else if (!use_no_density)
e0001a05 7893 {
d77b99c9
BW
7894 /* Combine 2- and 3-byte NOPs to fill anything larger than one. */
7895 fill_limit = alignment * 2;
7896 fill_step = 1;
7897 skip_one = TRUE;
e0001a05
NC
7898 }
7899 else
7900 {
d77b99c9
BW
7901 /* Fill with 3-byte NOPs -- can only fill multiples of 3. */
7902 fill_limit = alignment * 3;
7903 fill_step = 3;
7904 }
e0001a05 7905
d77b99c9
BW
7906 /* Try all fill sizes until finding one that works. */
7907 for (fill = 0; fill < fill_limit; fill += fill_step)
7908 {
7909 if (skip_one && fill == 1)
7910 continue;
7911 if ((address + fill) >> align_pow
7912 == (address + fill + target_size - 1) >> align_pow)
7913 return fill;
e0001a05
NC
7914 }
7915 assert (0);
7916 return 0;
7917}
7918
7919
664df4e4
BW
7920static int
7921branch_align_power (segT sec)
7922{
7923 /* If the Xtensa processor has a fetch width of 8 bytes, and the section
7924 is aligned to at least an 8-byte boundary, then a branch target need
7925 only fit within an 8-byte aligned block of memory to avoid a stall.
7926 Otherwise, try to fit branch targets within 4-byte aligned blocks
7927 (which may be insufficient, e.g., if the section has no alignment, but
7928 it's good enough). */
7929 if (xtensa_fetch_width == 8)
7930 {
7931 if (get_recorded_alignment (sec) >= 3)
7932 return 3;
7933 }
7934 else
7935 assert (xtensa_fetch_width == 4);
7936
7937 return 2;
7938}
7939
7940
e0001a05
NC
7941/* This will assert if it is not possible. */
7942
d77b99c9
BW
7943static int
7944get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density)
e0001a05 7945{
d77b99c9
BW
7946 int count = 0;
7947
e0001a05
NC
7948 if (use_no_density)
7949 {
7950 assert (fill_size % 3 == 0);
7951 return (fill_size / 3);
7952 }
7953
7954 assert (fill_size != 1); /* Bad argument. */
7955
7956 while (fill_size > 1)
7957 {
d77b99c9 7958 int insn_size = 3;
e0001a05
NC
7959 if (fill_size == 2 || fill_size == 4)
7960 insn_size = 2;
7961 fill_size -= insn_size;
7962 count++;
7963 }
7964 assert (fill_size != 1); /* Bad algorithm. */
7965 return count;
7966}
7967
7968
d77b99c9
BW
7969static int
7970get_text_align_nth_nop_size (offsetT fill_size,
7971 int n,
7fa3d080 7972 bfd_boolean use_no_density)
e0001a05 7973{
d77b99c9 7974 int count = 0;
e0001a05
NC
7975
7976 if (use_no_density)
7977 return 3;
7978
d77b99c9
BW
7979 assert (fill_size != 1); /* Bad argument. */
7980
e0001a05
NC
7981 while (fill_size > 1)
7982 {
d77b99c9 7983 int insn_size = 3;
e0001a05
NC
7984 if (fill_size == 2 || fill_size == 4)
7985 insn_size = 2;
7986 fill_size -= insn_size;
7987 count++;
7988 if (n + 1 == count)
7989 return insn_size;
7990 }
7991 assert (0);
7992 return 0;
7993}
7994
7995
7996/* For the given fragment, find the appropriate address
7997 for it to begin at if we are using NOPs to align it. */
7998
7999static addressT
7fa3d080 8000get_noop_aligned_address (fragS *fragP, addressT address)
e0001a05 8001{
43cd72b9
BW
8002 /* The rule is: get next fragment's FIRST instruction. Find
8003 the smallest number of bytes that need to be added to
8004 ensure that the next fragment's FIRST instruction will fit
8005 in a single word.
c138bc38 8006
43cd72b9
BW
8007 E.G., 2 bytes : 0, 1, 2 mod 4
8008 3 bytes: 0, 1 mod 4
c138bc38 8009
43cd72b9
BW
8010 If the FIRST instruction MIGHT be relaxed,
8011 assume that it will become a 3-byte instruction.
c138bc38 8012
43cd72b9
BW
8013 Note again here that LOOP instructions are not bundleable,
8014 and this relaxation only applies to LOOP opcodes. */
c138bc38 8015
d77b99c9 8016 int fill_size = 0;
43cd72b9
BW
8017 int first_insn_size;
8018 int loop_insn_size;
8019 addressT pre_opcode_bytes;
d77b99c9 8020 int align_power;
43cd72b9
BW
8021 fragS *first_insn;
8022 xtensa_opcode opcode;
8023 bfd_boolean is_loop;
e0001a05 8024
43cd72b9
BW
8025 assert (fragP->fr_type == rs_machine_dependent);
8026 assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE);
e0001a05 8027
43cd72b9
BW
8028 /* Find the loop frag. */
8029 first_insn = next_non_empty_frag (fragP);
8030 /* Now find the first insn frag. */
8031 first_insn = next_non_empty_frag (first_insn);
e0001a05 8032
43cd72b9
BW
8033 is_loop = next_frag_opcode_is_loop (fragP, &opcode);
8034 assert (is_loop);
8035 loop_insn_size = xg_get_single_size (opcode);
e0001a05 8036
43cd72b9
BW
8037 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
8038 pre_opcode_bytes += loop_insn_size;
e0001a05 8039
43cd72b9
BW
8040 /* For loops, the alignment depends on the size of the
8041 instruction following the loop, not the LOOP instruction. */
e0001a05 8042
43cd72b9 8043 if (first_insn == NULL)
03aaa593
BW
8044 first_insn_size = xtensa_fetch_width;
8045 else
8046 first_insn_size = get_loop_align_size (frag_format_size (first_insn));
e0001a05 8047
43cd72b9 8048 /* If it was 8, then we'll need a larger alignment for the section. */
d77b99c9
BW
8049 align_power = get_text_align_power (first_insn_size);
8050 record_alignment (now_seg, align_power);
c138bc38 8051
43cd72b9 8052 fill_size = get_text_align_fill_size
d77b99c9
BW
8053 (address + pre_opcode_bytes, align_power, first_insn_size, TRUE,
8054 fragP->tc_frag_data.is_no_density);
e0001a05
NC
8055
8056 return address + fill_size;
8057}
8058
8059
43cd72b9
BW
8060/* 3 mechanisms for relaxing an alignment:
8061
8062 Align to a power of 2.
8063 Align so the next fragment's instruction does not cross a word boundary.
8064 Align the current instruction so that if the next instruction
8065 were 3 bytes, it would not cross a word boundary.
8066
e0001a05
NC
8067 We can align with:
8068
43cd72b9
BW
8069 zeros - This is easy; always insert zeros.
8070 nops - 3-byte and 2-byte instructions
8071 2 - 2-byte nop
8072 3 - 3-byte nop
8073 4 - 2 2-byte nops
8074 >=5 : 3-byte instruction + fn (n-3)
e0001a05
NC
8075 widening - widen previous instructions. */
8076
d77b99c9
BW
8077static offsetT
8078get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff)
e0001a05 8079{
43cd72b9
BW
8080 addressT target_address, loop_insn_offset;
8081 int target_size;
8082 xtensa_opcode loop_opcode;
8083 bfd_boolean is_loop;
d77b99c9
BW
8084 int align_power;
8085 offsetT opt_diff;
5f9084e9 8086 offsetT branch_align;
e0001a05 8087
43cd72b9
BW
8088 assert (fragP->fr_type == rs_machine_dependent);
8089 switch (fragP->fr_subtype)
e0001a05 8090 {
43cd72b9
BW
8091 case RELAX_DESIRE_ALIGN:
8092 target_size = next_frag_format_size (fragP);
8093 if (target_size == XTENSA_UNDEFINED)
8094 target_size = 3;
664df4e4
BW
8095 align_power = branch_align_power (now_seg);
8096 branch_align = 1 << align_power;
0e5cd789
BW
8097 /* Don't count on the section alignment being as large as the target. */
8098 if (target_size > branch_align)
8099 target_size = branch_align;
d77b99c9 8100 opt_diff = get_text_align_fill_size (address, align_power,
43cd72b9
BW
8101 target_size, FALSE, FALSE);
8102
664df4e4
BW
8103 *max_diff = (opt_diff + branch_align
8104 - (target_size + ((address + opt_diff) % branch_align)));
43cd72b9
BW
8105 assert (*max_diff >= opt_diff);
8106 return opt_diff;
e0001a05 8107
43cd72b9 8108 case RELAX_ALIGN_NEXT_OPCODE:
03aaa593 8109 target_size = get_loop_align_size (next_frag_format_size (fragP));
43cd72b9
BW
8110 loop_insn_offset = 0;
8111 is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode);
8112 assert (is_loop);
8113
8114 /* If the loop has been expanded then the LOOP instruction
8115 could be at an offset from this fragment. */
8116 if (next_non_empty_frag(fragP)->tc_frag_data.slot_subtypes[0]
8117 != RELAX_IMMED)
8118 loop_insn_offset = get_expanded_loop_offset (loop_opcode);
8119
43cd72b9
BW
8120 /* In an ideal world, which is what we are shooting for here,
8121 we wouldn't need to use any NOPs immediately prior to the
8122 LOOP instruction. If this approach fails, relax_frag_loop_align
8123 will call get_noop_aligned_address. */
8124 target_address =
8125 address + loop_insn_offset + xg_get_single_size (loop_opcode);
d77b99c9
BW
8126 align_power = get_text_align_power (target_size),
8127 opt_diff = get_text_align_fill_size (target_address, align_power,
43cd72b9
BW
8128 target_size, FALSE, FALSE);
8129
8130 *max_diff = xtensa_fetch_width
8131 - ((target_address + opt_diff) % xtensa_fetch_width)
8132 - target_size + opt_diff;
8133 assert (*max_diff >= opt_diff);
8134 return opt_diff;
e0001a05 8135
43cd72b9
BW
8136 default:
8137 break;
e0001a05 8138 }
43cd72b9
BW
8139 assert (0);
8140 return 0;
e0001a05
NC
8141}
8142
8143\f
8144/* md_relax_frag Hook and Helper Functions. */
8145
7fa3d080
BW
8146static long relax_frag_loop_align (fragS *, long);
8147static long relax_frag_for_align (fragS *, long);
8148static long relax_frag_immed
8149 (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean);
8150
8151
e0001a05
NC
8152/* Return the number of bytes added to this fragment, given that the
8153 input has been stretched already by "stretch". */
8154
8155long
7fa3d080 8156xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p)
e0001a05 8157{
43cd72b9 8158 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
8159 int unreported = fragP->tc_frag_data.unreported_expansion;
8160 long new_stretch = 0;
8161 char *file_name;
d77b99c9
BW
8162 unsigned line;
8163 int lit_size;
43cd72b9
BW
8164 static xtensa_insnbuf vbuf = NULL;
8165 int slot, num_slots;
8166 xtensa_format fmt;
e0001a05
NC
8167
8168 as_where (&file_name, &line);
8169 new_logical_line (fragP->fr_file, fragP->fr_line);
8170
8171 fragP->tc_frag_data.unreported_expansion = 0;
8172
8173 switch (fragP->fr_subtype)
8174 {
8175 case RELAX_ALIGN_NEXT_OPCODE:
8176 /* Always convert. */
43cd72b9
BW
8177 if (fragP->tc_frag_data.relax_seen)
8178 new_stretch = relax_frag_loop_align (fragP, stretch);
e0001a05
NC
8179 break;
8180
8181 case RELAX_LOOP_END:
8182 /* Do nothing. */
8183 break;
8184
8185 case RELAX_LOOP_END_ADD_NOP:
8186 /* Add a NOP and switch to .fill 0. */
8187 new_stretch = relax_frag_add_nop (fragP);
43cd72b9 8188 frag_wane (fragP);
e0001a05
NC
8189 break;
8190
8191 case RELAX_DESIRE_ALIGN:
43cd72b9 8192 /* Do nothing. The narrowing before this frag will either align
e0001a05
NC
8193 it or not. */
8194 break;
8195
8196 case RELAX_LITERAL:
8197 case RELAX_LITERAL_FINAL:
8198 return 0;
8199
8200 case RELAX_LITERAL_NR:
8201 lit_size = 4;
8202 fragP->fr_subtype = RELAX_LITERAL_FINAL;
8203 assert (unreported == lit_size);
8204 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
8205 fragP->fr_var -= lit_size;
8206 fragP->fr_fix += lit_size;
8207 new_stretch = 4;
8208 break;
8209
43cd72b9
BW
8210 case RELAX_SLOTS:
8211 if (vbuf == NULL)
8212 vbuf = xtensa_insnbuf_alloc (isa);
8213
d77b99c9
BW
8214 xtensa_insnbuf_from_chars
8215 (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0);
43cd72b9
BW
8216 fmt = xtensa_format_decode (isa, vbuf);
8217 num_slots = xtensa_format_num_slots (isa, fmt);
e0001a05 8218
43cd72b9
BW
8219 for (slot = 0; slot < num_slots; slot++)
8220 {
8221 switch (fragP->tc_frag_data.slot_subtypes[slot])
8222 {
8223 case RELAX_NARROW:
8224 if (fragP->tc_frag_data.relax_seen)
8225 new_stretch += relax_frag_for_align (fragP, stretch);
8226 break;
8227
8228 case RELAX_IMMED:
8229 case RELAX_IMMED_STEP1:
8230 case RELAX_IMMED_STEP2:
8231 /* Place the immediate. */
8232 new_stretch += relax_frag_immed
8233 (now_seg, fragP, stretch,
8234 fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8235 fmt, slot, stretched_p, FALSE);
8236 break;
8237
8238 default:
8239 /* This is OK; see the note in xg_assemble_vliw_tokens. */
8240 break;
8241 }
8242 }
e0001a05
NC
8243 break;
8244
8245 case RELAX_LITERAL_POOL_BEGIN:
8246 case RELAX_LITERAL_POOL_END:
43cd72b9
BW
8247 case RELAX_MAYBE_UNREACHABLE:
8248 case RELAX_MAYBE_DESIRE_ALIGN:
e0001a05
NC
8249 /* No relaxation required. */
8250 break;
8251
43cd72b9
BW
8252 case RELAX_FILL_NOP:
8253 case RELAX_UNREACHABLE:
8254 if (fragP->tc_frag_data.relax_seen)
8255 new_stretch += relax_frag_for_align (fragP, stretch);
8256 break;
8257
e0001a05
NC
8258 default:
8259 as_bad (_("bad relaxation state"));
8260 }
8261
43cd72b9 8262 /* Tell gas we need another relaxation pass. */
c138bc38 8263 if (! fragP->tc_frag_data.relax_seen)
43cd72b9
BW
8264 {
8265 fragP->tc_frag_data.relax_seen = TRUE;
8266 *stretched_p = 1;
8267 }
8268
e0001a05
NC
8269 new_logical_line (file_name, line);
8270 return new_stretch;
8271}
8272
8273
8274static long
7fa3d080 8275relax_frag_loop_align (fragS *fragP, long stretch)
e0001a05
NC
8276{
8277 addressT old_address, old_next_address, old_size;
8278 addressT new_address, new_next_address, new_size;
8279 addressT growth;
8280
43cd72b9
BW
8281 /* All the frags with relax_frag_for_alignment prior to this one in the
8282 section have been done, hopefully eliminating the need for a NOP here.
8283 But, this will put it in if necessary. */
e0001a05
NC
8284
8285 /* Calculate the old address of this fragment and the next fragment. */
8286 old_address = fragP->fr_address - stretch;
8287 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
43cd72b9 8288 fragP->tc_frag_data.text_expansion[0]);
e0001a05
NC
8289 old_size = old_next_address - old_address;
8290
8291 /* Calculate the new address of this fragment and the next fragment. */
8292 new_address = fragP->fr_address;
8293 new_next_address =
8294 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
8295 new_size = new_next_address - new_address;
8296
8297 growth = new_size - old_size;
8298
8299 /* Fix up the text_expansion field and return the new growth. */
43cd72b9 8300 fragP->tc_frag_data.text_expansion[0] += growth;
e0001a05
NC
8301 return growth;
8302}
8303
8304
43cd72b9 8305/* Add a NOP instruction. */
e0001a05
NC
8306
8307static long
7fa3d080 8308relax_frag_add_nop (fragS *fragP)
e0001a05 8309{
e0001a05 8310 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
43cd72b9
BW
8311 int length = fragP->tc_frag_data.is_no_density ? 3 : 2;
8312 assemble_nop (length, nop_buf);
e0001a05 8313 fragP->tc_frag_data.is_insn = TRUE;
e0001a05 8314
e0001a05
NC
8315 if (fragP->fr_var < length)
8316 {
dd49a749 8317 as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length);
e0001a05
NC
8318 return 0;
8319 }
8320
8321 fragP->fr_fix += length;
8322 fragP->fr_var -= length;
e0001a05
NC
8323 return length;
8324}
8325
8326
7fa3d080
BW
8327static long future_alignment_required (fragS *, long);
8328
e0001a05 8329static long
7fa3d080 8330relax_frag_for_align (fragS *fragP, long stretch)
e0001a05 8331{
43cd72b9
BW
8332 /* Overview of the relaxation procedure for alignment:
8333 We can widen with NOPs or by widening instructions or by filling
8334 bytes after jump instructions. Find the opportune places and widen
8335 them if necessary. */
8336
8337 long stretch_me;
8338 long diff;
e0001a05 8339
43cd72b9
BW
8340 assert (fragP->fr_subtype == RELAX_FILL_NOP
8341 || fragP->fr_subtype == RELAX_UNREACHABLE
8342 || (fragP->fr_subtype == RELAX_SLOTS
8343 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW));
8344
8345 stretch_me = future_alignment_required (fragP, stretch);
8346 diff = stretch_me - fragP->tc_frag_data.text_expansion[0];
8347 if (diff == 0)
8348 return 0;
e0001a05 8349
43cd72b9 8350 if (diff < 0)
e0001a05 8351 {
43cd72b9
BW
8352 /* We expanded on a previous pass. Can we shrink now? */
8353 long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me;
8354 if (shrink <= stretch && stretch > 0)
e0001a05 8355 {
43cd72b9
BW
8356 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8357 return -shrink;
e0001a05
NC
8358 }
8359 return 0;
8360 }
8361
43cd72b9
BW
8362 /* Below here, diff > 0. */
8363 fragP->tc_frag_data.text_expansion[0] = stretch_me;
e0001a05 8364
43cd72b9 8365 return diff;
e0001a05
NC
8366}
8367
8368
43cd72b9
BW
8369/* Return the address of the next frag that should be aligned.
8370
8371 By "address" we mean the address it _would_ be at if there
8372 is no action taken to align it between here and the target frag.
8373 In other words, if no narrows and no fill nops are used between
8374 here and the frag to align, _even_if_ some of the frags we use
8375 to align targets have already expanded on a previous relaxation
8376 pass.
8377
8378 Also, count each frag that may be used to help align the target.
8379
8380 Return 0 if there are no frags left in the chain that need to be
8381 aligned. */
8382
8383static addressT
7fa3d080
BW
8384find_address_of_next_align_frag (fragS **fragPP,
8385 int *wide_nops,
8386 int *narrow_nops,
8387 int *widens,
8388 bfd_boolean *paddable)
e0001a05 8389{
43cd72b9
BW
8390 fragS *fragP = *fragPP;
8391 addressT address = fragP->fr_address;
8392
8393 /* Do not reset the counts to 0. */
e0001a05
NC
8394
8395 while (fragP)
8396 {
8397 /* Limit this to a small search. */
b5e4a23d 8398 if (*widens >= (int) xtensa_fetch_width)
43cd72b9
BW
8399 {
8400 *fragPP = fragP;
8401 return 0;
8402 }
e0001a05
NC
8403 address += fragP->fr_fix;
8404
43cd72b9
BW
8405 if (fragP->fr_type == rs_fill)
8406 address += fragP->fr_offset * fragP->fr_var;
8407 else if (fragP->fr_type == rs_machine_dependent)
e0001a05 8408 {
e0001a05
NC
8409 switch (fragP->fr_subtype)
8410 {
43cd72b9
BW
8411 case RELAX_UNREACHABLE:
8412 *paddable = TRUE;
8413 break;
8414
8415 case RELAX_FILL_NOP:
8416 (*wide_nops)++;
8417 if (!fragP->tc_frag_data.is_no_density)
8418 (*narrow_nops)++;
8419 break;
8420
8421 case RELAX_SLOTS:
8422 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8423 {
8424 (*widens)++;
8425 break;
8426 }
34e41783 8427 address += total_frag_text_expansion (fragP);;
e0001a05
NC
8428 break;
8429
8430 case RELAX_IMMED:
43cd72b9 8431 address += fragP->tc_frag_data.text_expansion[0];
e0001a05
NC
8432 break;
8433
8434 case RELAX_ALIGN_NEXT_OPCODE:
8435 case RELAX_DESIRE_ALIGN:
43cd72b9
BW
8436 *fragPP = fragP;
8437 return address;
8438
8439 case RELAX_MAYBE_UNREACHABLE:
8440 case RELAX_MAYBE_DESIRE_ALIGN:
8441 /* Do nothing. */
e0001a05
NC
8442 break;
8443
8444 default:
43cd72b9
BW
8445 /* Just punt if we don't know the type. */
8446 *fragPP = fragP;
8447 return 0;
e0001a05 8448 }
43cd72b9 8449 }
c138bc38 8450 else
43cd72b9
BW
8451 {
8452 /* Just punt if we don't know the type. */
8453 *fragPP = fragP;
8454 return 0;
8455 }
8456 fragP = fragP->fr_next;
8457 }
8458
8459 *fragPP = fragP;
8460 return 0;
8461}
8462
8463
7fa3d080
BW
8464static long bytes_to_stretch (fragS *, int, int, int, int);
8465
43cd72b9 8466static long
7fa3d080 8467future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED)
43cd72b9
BW
8468{
8469 fragS *this_frag = fragP;
8470 long address;
8471 int num_widens = 0;
8472 int wide_nops = 0;
8473 int narrow_nops = 0;
8474 bfd_boolean paddable = FALSE;
8475 offsetT local_opt_diff;
8476 offsetT opt_diff;
8477 offsetT max_diff;
8478 int stretch_amount = 0;
8479 int local_stretch_amount;
8480 int global_stretch_amount;
8481
7fa3d080
BW
8482 address = find_address_of_next_align_frag
8483 (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable);
43cd72b9 8484
b5e4a23d
BW
8485 if (!address)
8486 {
8487 if (this_frag->tc_frag_data.is_aligning_branch)
8488 this_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
8489 else
8490 frag_wane (this_frag);
8491 }
8492 else
43cd72b9
BW
8493 {
8494 local_opt_diff = get_aligned_diff (fragP, address, &max_diff);
8495 opt_diff = local_opt_diff;
8496 assert (opt_diff >= 0);
8497 assert (max_diff >= opt_diff);
c138bc38 8498 if (max_diff == 0)
43cd72b9 8499 return 0;
d2a033cd 8500
43cd72b9
BW
8501 if (fragP)
8502 fragP = fragP->fr_next;
8503
8504 while (fragP && opt_diff < max_diff && address)
8505 {
8506 /* We only use these to determine if we can exit early
c138bc38 8507 because there will be plenty of ways to align future
43cd72b9 8508 align frags. */
d77b99c9 8509 int glob_widens = 0;
43cd72b9
BW
8510 int dnn = 0;
8511 int dw = 0;
8512 bfd_boolean glob_pad = 0;
7fa3d080
BW
8513 address = find_address_of_next_align_frag
8514 (&fragP, &glob_widens, &dnn, &dw, &glob_pad);
43cd72b9 8515 /* If there is a padable portion, then skip. */
664df4e4 8516 if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg)))
b5e4a23d 8517 address = 0;
43cd72b9 8518
c138bc38 8519 if (address)
43cd72b9
BW
8520 {
8521 offsetT next_m_diff;
8522 offsetT next_o_diff;
8523
8524 /* Downrange frags haven't had stretch added to them yet. */
8525 address += stretch;
8526
8527 /* The address also includes any text expansion from this
8528 frag in a previous pass, but we don't want that. */
8529 address -= this_frag->tc_frag_data.text_expansion[0];
8530
8531 /* Assume we are going to move at least opt_diff. In
8532 reality, we might not be able to, but assuming that
8533 we will helps catch cases where moving opt_diff pushes
8534 the next target from aligned to unaligned. */
8535 address += opt_diff;
8536
8537 next_o_diff = get_aligned_diff (fragP, address, &next_m_diff);
8538
8539 /* Now cleanup for the adjustments to address. */
8540 next_o_diff += opt_diff;
8541 next_m_diff += opt_diff;
8542 if (next_o_diff <= max_diff && next_o_diff > opt_diff)
8543 opt_diff = next_o_diff;
8544 if (next_m_diff < max_diff)
8545 max_diff = next_m_diff;
8546 fragP = fragP->fr_next;
8547 }
8548 }
d2a033cd 8549
43cd72b9
BW
8550 /* If there are enough wideners in between, do it. */
8551 if (paddable)
8552 {
8553 if (this_frag->fr_subtype == RELAX_UNREACHABLE)
8554 {
8555 assert (opt_diff <= UNREACHABLE_MAX_WIDTH);
8556 return opt_diff;
8557 }
8558 return 0;
8559 }
c138bc38 8560 local_stretch_amount
43cd72b9
BW
8561 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8562 num_widens, local_opt_diff);
c138bc38
BW
8563 global_stretch_amount
8564 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
43cd72b9 8565 num_widens, opt_diff);
c138bc38
BW
8566 /* If the condition below is true, then the frag couldn't
8567 stretch the correct amount for the global case, so we just
8568 optimize locally. We'll rely on the subsequent frags to get
43cd72b9
BW
8569 the correct alignment in the global case. */
8570 if (global_stretch_amount < local_stretch_amount)
8571 stretch_amount = local_stretch_amount;
8572 else
8573 stretch_amount = global_stretch_amount;
d2a033cd 8574
43cd72b9
BW
8575 if (this_frag->fr_subtype == RELAX_SLOTS
8576 && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8577 assert (stretch_amount <= 1);
8578 else if (this_frag->fr_subtype == RELAX_FILL_NOP)
8579 {
8580 if (this_frag->tc_frag_data.is_no_density)
8581 assert (stretch_amount == 3 || stretch_amount == 0);
8582 else
8583 assert (stretch_amount <= 3);
8584 }
8585 }
8586 return stretch_amount;
8587}
8588
8589
8590/* The idea: widen everything you can to get a target or loop aligned,
8591 then start using NOPs.
8592
8593 When we must have a NOP, here is a table of how we decide
8594 (so you don't have to fight through the control flow below):
8595
8596 wide_nops = the number of wide NOPs available for aligning
8597 narrow_nops = the number of narrow NOPs available for aligning
8598 (a subset of wide_nops)
8599 widens = the number of narrow instructions that should be widened
8600
8601 Desired wide narrow
8602 Diff nop nop widens
8603 1 0 0 1
8604 2 0 1 0
8605 3a 1 0 0
8606 b 0 1 1 (case 3a makes this case unnecessary)
8607 4a 1 0 1
8608 b 0 2 0
8609 c 0 1 2 (case 4a makes this case unnecessary)
8610 5a 1 0 2
8611 b 1 1 0
8612 c 0 2 1 (case 5b makes this case unnecessary)
8613 6a 2 0 0
8614 b 1 0 3
708587a4 8615 c 0 1 4 (case 6b makes this case unnecessary)
43cd72b9
BW
8616 d 1 1 1 (case 6a makes this case unnecessary)
8617 e 0 2 2 (case 6a makes this case unnecessary)
8618 f 0 3 0 (case 6a makes this case unnecessary)
8619 7a 1 0 4
8620 b 2 0 1
8621 c 1 1 2 (case 7b makes this case unnecessary)
8622 d 0 1 5 (case 7a makes this case unnecessary)
8623 e 0 2 3 (case 7b makes this case unnecessary)
8624 f 0 3 1 (case 7b makes this case unnecessary)
8625 g 1 2 1 (case 7b makes this case unnecessary)
8626*/
8627
8628static long
7fa3d080
BW
8629bytes_to_stretch (fragS *this_frag,
8630 int wide_nops,
8631 int narrow_nops,
8632 int num_widens,
8633 int desired_diff)
43cd72b9
BW
8634{
8635 int bytes_short = desired_diff - num_widens;
8636
8637 assert (desired_diff >= 0 && desired_diff < 8);
8638 if (desired_diff == 0)
8639 return 0;
c138bc38 8640
43cd72b9 8641 assert (wide_nops > 0 || num_widens > 0);
e0001a05 8642
43cd72b9
BW
8643 /* Always prefer widening to NOP-filling. */
8644 if (bytes_short < 0)
8645 {
8646 /* There are enough RELAX_NARROW frags after this one
8647 to align the target without widening this frag in any way. */
8648 return 0;
8649 }
c138bc38 8650
43cd72b9
BW
8651 if (bytes_short == 0)
8652 {
8653 /* Widen every narrow between here and the align target
8654 and the align target will be properly aligned. */
8655 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8656 return 0;
8657 else
8658 return 1;
8659 }
c138bc38 8660
43cd72b9
BW
8661 /* From here we will need at least one NOP to get an alignment.
8662 However, we may not be able to align at all, in which case,
8663 don't widen. */
8664 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8665 {
8666 switch (desired_diff)
8667 {
8668 case 1:
8669 return 0;
8670 case 2:
8671 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 1)
8672 return 2; /* case 2 */
8673 return 0;
c138bc38 8674 case 3:
43cd72b9
BW
8675 if (wide_nops > 1)
8676 return 0;
8677 else
8678 return 3; /* case 3a */
8679 case 4:
8680 if (num_widens >= 1 && wide_nops == 1)
8681 return 3; /* case 4a */
8682 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 2)
8683 return 2; /* case 4b */
8684 return 0;
8685 case 5:
8686 if (num_widens >= 2 && wide_nops == 1)
8687 return 3; /* case 5a */
c138bc38 8688 /* We will need two nops. Are there enough nops
43cd72b9
BW
8689 between here and the align target? */
8690 if (wide_nops < 2 || narrow_nops == 0)
8691 return 0;
8692 /* Are there other nops closer that can serve instead? */
8693 if (wide_nops > 2 && narrow_nops > 1)
8694 return 0;
8695 /* Take the density one first, because there might not be
8696 another density one available. */
8697 if (!this_frag->tc_frag_data.is_no_density)
8698 return 2; /* case 5b narrow */
8699 else
8700 return 3; /* case 5b wide */
8701 return 0;
8702 case 6:
8703 if (wide_nops == 2)
8704 return 3; /* case 6a */
8705 else if (num_widens >= 3 && wide_nops == 1)
8706 return 3; /* case 6b */
8707 return 0;
8708 case 7:
8709 if (wide_nops == 1 && num_widens >= 4)
8710 return 3; /* case 7a */
8711 else if (wide_nops == 2 && num_widens >= 1)
8712 return 3; /* case 7b */
8713 return 0;
e0001a05 8714 default:
43cd72b9 8715 assert (0);
e0001a05 8716 }
e0001a05 8717 }
43cd72b9
BW
8718 else
8719 {
c138bc38 8720 /* We will need a NOP no matter what, but should we widen
43cd72b9 8721 this instruction to help?
e0001a05 8722
03aaa593 8723 This is a RELAX_NARROW frag. */
43cd72b9
BW
8724 switch (desired_diff)
8725 {
8726 case 1:
8727 assert (0);
8728 return 0;
8729 case 2:
8730 case 3:
8731 return 0;
8732 case 4:
8733 if (wide_nops >= 1 && num_widens == 1)
8734 return 1; /* case 4a */
8735 return 0;
8736 case 5:
8737 if (wide_nops >= 1 && num_widens == 2)
8738 return 1; /* case 5a */
8739 return 0;
8740 case 6:
8741 if (wide_nops >= 2)
8742 return 0; /* case 6a */
8743 else if (wide_nops >= 1 && num_widens == 3)
8744 return 1; /* case 6b */
8745 return 0;
8746 case 7:
8747 if (wide_nops >= 1 && num_widens == 4)
8748 return 1; /* case 7a */
8749 else if (wide_nops >= 2 && num_widens == 1)
8750 return 1; /* case 7b */
8751 return 0;
8752 default:
8753 assert (0);
8754 return 0;
8755 }
8756 }
8757 assert (0);
8758 return 0;
e0001a05
NC
8759}
8760
8761
8762static long
7fa3d080
BW
8763relax_frag_immed (segT segP,
8764 fragS *fragP,
8765 long stretch,
8766 int min_steps,
8767 xtensa_format fmt,
8768 int slot,
8769 int *stretched_p,
8770 bfd_boolean estimate_only)
e0001a05 8771{
43cd72b9 8772 TInsn tinsn;
e0001a05
NC
8773 int old_size;
8774 bfd_boolean negatable_branch = FALSE;
8775 bfd_boolean branch_jmp_to_next = FALSE;
43cd72b9
BW
8776 bfd_boolean wide_insn = FALSE;
8777 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
8778 IStack istack;
8779 offsetT frag_offset;
8780 int num_steps;
8781 fragS *lit_fragP;
8782 int num_text_bytes, num_literal_bytes;
43cd72b9 8783 int literal_diff, total_text_diff, this_text_diff, first;
e0001a05
NC
8784
8785 assert (fragP->fr_opcode != NULL);
8786
b5e4a23d
BW
8787 xg_clear_vinsn (&cur_vinsn);
8788 vinsn_from_chars (&cur_vinsn, fragP->fr_opcode);
b2d179be 8789 if (cur_vinsn.num_slots > 1)
43cd72b9
BW
8790 wide_insn = TRUE;
8791
b5e4a23d 8792 tinsn = cur_vinsn.slots[slot];
43cd72b9 8793 tinsn_immed_from_frag (&tinsn, fragP, slot);
e0001a05 8794
43cd72b9
BW
8795 if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode))
8796 return 0;
e0001a05 8797
b08b5071 8798 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
43cd72b9 8799 branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP);
e0001a05 8800
43cd72b9 8801 negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1);
e0001a05 8802
43cd72b9 8803 old_size = xtensa_format_length (isa, fmt);
e0001a05
NC
8804
8805 /* Special case: replace a branch to the next instruction with a NOP.
8806 This is required to work around a hardware bug in T1040.0 and also
8807 serves as an optimization. */
8808
8809 if (branch_jmp_to_next
8810 && ((old_size == 2) || (old_size == 3))
8811 && !next_frag_is_loop_target (fragP))
8812 return 0;
8813
8814 /* Here is the fun stuff: Get the immediate field from this
8815 instruction. If it fits, we are done. If not, find the next
8816 instruction sequence that fits. */
8817
8818 frag_offset = fragP->fr_opcode - fragP->fr_literal;
8819 istack_init (&istack);
43cd72b9 8820 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset,
e0001a05
NC
8821 min_steps, stretch);
8822 if (num_steps < min_steps)
8823 {
8824 as_fatal (_("internal error: relaxation failed"));
8825 return 0;
8826 }
8827
8828 if (num_steps > RELAX_IMMED_MAXSTEPS)
8829 {
8830 as_fatal (_("internal error: relaxation requires too many steps"));
8831 return 0;
8832 }
8833
43cd72b9 8834 fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps;
e0001a05
NC
8835
8836 /* Figure out the number of bytes needed. */
8837 lit_fragP = 0;
e0001a05 8838 num_literal_bytes = get_num_stack_literal_bytes (&istack);
43cd72b9
BW
8839 literal_diff =
8840 num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
8841 first = 0;
8842 while (istack.insn[first].opcode == XTENSA_UNDEFINED)
8843 first++;
8844 num_text_bytes = get_num_stack_text_bytes (&istack);
8845 if (wide_insn)
8846 {
8847 num_text_bytes += old_size;
8848 if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot))
8849 num_text_bytes -= xg_get_single_size (istack.insn[first].opcode);
8850 }
8851 total_text_diff = num_text_bytes - old_size;
8852 this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot];
e0001a05
NC
8853
8854 /* It MUST get larger. If not, we could get an infinite loop. */
43cd72b9
BW
8855 assert (num_text_bytes >= 0);
8856 assert (literal_diff >= 0);
8857 assert (total_text_diff >= 0);
e0001a05 8858
43cd72b9
BW
8859 fragP->tc_frag_data.text_expansion[slot] = total_text_diff;
8860 fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes;
8861 assert (fragP->tc_frag_data.text_expansion[slot] >= 0);
8862 assert (fragP->tc_frag_data.literal_expansion[slot] >= 0);
e0001a05
NC
8863
8864 /* Find the associated expandable literal for this. */
8865 if (literal_diff != 0)
8866 {
43cd72b9 8867 lit_fragP = fragP->tc_frag_data.literal_frags[slot];
e0001a05
NC
8868 if (lit_fragP)
8869 {
8870 assert (literal_diff == 4);
8871 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
8872
8873 /* We expect that the literal section state has NOT been
8874 modified yet. */
8875 assert (lit_fragP->fr_type == rs_machine_dependent
8876 && lit_fragP->fr_subtype == RELAX_LITERAL);
8877 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
8878
8879 /* We need to mark this section for another iteration
8880 of relaxation. */
8881 (*stretched_p)++;
8882 }
8883 }
8884
43cd72b9 8885 if (negatable_branch && istack.ninsn > 1)
1d19a770 8886 update_next_frag_state (fragP);
e0001a05 8887
43cd72b9 8888 return this_text_diff;
e0001a05
NC
8889}
8890
8891\f
8892/* md_convert_frag Hook and Helper Functions. */
8893
7fa3d080
BW
8894static void convert_frag_align_next_opcode (fragS *);
8895static void convert_frag_narrow (segT, fragS *, xtensa_format, int);
8896static void convert_frag_fill_nop (fragS *);
8897static void convert_frag_immed (segT, fragS *, int, xtensa_format, int);
8898
e0001a05 8899void
7fa3d080 8900md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp)
e0001a05 8901{
43cd72b9
BW
8902 static xtensa_insnbuf vbuf = NULL;
8903 xtensa_isa isa = xtensa_default_isa;
8904 int slot;
8905 int num_slots;
8906 xtensa_format fmt;
e0001a05 8907 char *file_name;
d77b99c9 8908 unsigned line;
e0001a05
NC
8909
8910 as_where (&file_name, &line);
8911 new_logical_line (fragp->fr_file, fragp->fr_line);
8912
8913 switch (fragp->fr_subtype)
8914 {
8915 case RELAX_ALIGN_NEXT_OPCODE:
8916 /* Always convert. */
8917 convert_frag_align_next_opcode (fragp);
8918 break;
8919
8920 case RELAX_DESIRE_ALIGN:
8921 /* Do nothing. If not aligned already, too bad. */
8922 break;
8923
43cd72b9
BW
8924 case RELAX_LITERAL:
8925 case RELAX_LITERAL_FINAL:
8926 break;
8927
8928 case RELAX_SLOTS:
8929 if (vbuf == NULL)
8930 vbuf = xtensa_insnbuf_alloc (isa);
8931
d77b99c9
BW
8932 xtensa_insnbuf_from_chars
8933 (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0);
43cd72b9
BW
8934 fmt = xtensa_format_decode (isa, vbuf);
8935 num_slots = xtensa_format_num_slots (isa, fmt);
8936
8937 for (slot = 0; slot < num_slots; slot++)
8938 {
8939 switch (fragp->tc_frag_data.slot_subtypes[slot])
8940 {
8941 case RELAX_NARROW:
8942 convert_frag_narrow (sec, fragp, fmt, slot);
8943 break;
8944
8945 case RELAX_IMMED:
8946 case RELAX_IMMED_STEP1:
8947 case RELAX_IMMED_STEP2:
8948 /* Place the immediate. */
8949 convert_frag_immed
8950 (sec, fragp,
8951 fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8952 fmt, slot);
8953 break;
8954
8955 default:
8956 /* This is OK because some slots could have
8957 relaxations and others have none. */
8958 break;
8959 }
8960 }
8961 break;
8962
8963 case RELAX_UNREACHABLE:
8964 memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var);
8965 fragp->fr_fix += fragp->tc_frag_data.text_expansion[0];
8966 fragp->fr_var -= fragp->tc_frag_data.text_expansion[0];
8967 frag_wane (fragp);
e0001a05
NC
8968 break;
8969
43cd72b9
BW
8970 case RELAX_MAYBE_UNREACHABLE:
8971 case RELAX_MAYBE_DESIRE_ALIGN:
8972 frag_wane (fragp);
e0001a05
NC
8973 break;
8974
43cd72b9
BW
8975 case RELAX_FILL_NOP:
8976 convert_frag_fill_nop (fragp);
e0001a05
NC
8977 break;
8978
8979 case RELAX_LITERAL_NR:
8980 if (use_literal_section)
8981 {
8982 /* This should have been handled during relaxation. When
8983 relaxing a code segment, literals sometimes need to be
8984 added to the corresponding literal segment. If that
8985 literal segment has already been relaxed, then we end up
8986 in this situation. Marking the literal segments as data
8987 would make this happen less often (since GAS always relaxes
8988 code before data), but we could still get into trouble if
8989 there are instructions in a segment that is not marked as
8990 containing code. Until we can implement a better solution,
8991 cheat and adjust the addresses of all the following frags.
8992 This could break subsequent alignments, but the linker's
8993 literal coalescing will do that anyway. */
8994
8995 fragS *f;
8996 fragp->fr_subtype = RELAX_LITERAL_FINAL;
8997 assert (fragp->tc_frag_data.unreported_expansion == 4);
8998 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
8999 fragp->fr_var -= 4;
9000 fragp->fr_fix += 4;
9001 for (f = fragp->fr_next; f; f = f->fr_next)
9002 f->fr_address += 4;
9003 }
9004 else
9005 as_bad (_("invalid relaxation fragment result"));
9006 break;
9007 }
9008
9009 fragp->fr_var = 0;
9010 new_logical_line (file_name, line);
9011}
9012
9013
7fa3d080
BW
9014static void
9015convert_frag_align_next_opcode (fragS *fragp)
e0001a05
NC
9016{
9017 char *nop_buf; /* Location for Writing. */
e0001a05
NC
9018 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
9019 addressT aligned_address;
d77b99c9
BW
9020 offsetT fill_size;
9021 int nop, nop_count;
e0001a05
NC
9022
9023 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
9024 fragp->fr_fix);
9025 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
9026 nop_count = get_text_align_nop_count (fill_size, use_no_density);
9027 nop_buf = fragp->fr_literal + fragp->fr_fix;
9028
d77b99c9 9029 for (nop = 0; nop < nop_count; nop++)
e0001a05 9030 {
d77b99c9
BW
9031 int nop_size;
9032 nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density);
e0001a05
NC
9033
9034 assemble_nop (nop_size, nop_buf);
9035 nop_buf += nop_size;
9036 }
9037
9038 fragp->fr_fix += fill_size;
9039 fragp->fr_var -= fill_size;
9040}
9041
9042
9043static void
7fa3d080 9044convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot)
e0001a05 9045{
43cd72b9 9046 TInsn tinsn, single_target;
84b08ed9 9047 int size, old_size, diff;
e0001a05
NC
9048 offsetT frag_offset;
9049
43cd72b9
BW
9050 assert (slot == 0);
9051 tinsn_from_chars (&tinsn, fragP->fr_opcode, 0);
9052
b5e4a23d 9053 if (fragP->tc_frag_data.is_aligning_branch == 1)
43cd72b9
BW
9054 {
9055 assert (fragP->tc_frag_data.text_expansion[0] == 1
9056 || fragP->tc_frag_data.text_expansion[0] == 0);
9057 convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0],
9058 fmt, slot);
9059 return;
9060 }
9061
9062 if (fragP->tc_frag_data.text_expansion[0] == 0)
e0001a05
NC
9063 {
9064 /* No conversion. */
9065 fragP->fr_var = 0;
9066 return;
9067 }
9068
9069 assert (fragP->fr_opcode != NULL);
9070
43cd72b9
BW
9071 /* Frags in this relaxation state should only contain
9072 single instruction bundles. */
9073 tinsn_immed_from_frag (&tinsn, fragP, 0);
e0001a05
NC
9074
9075 /* Just convert it to a wide form.... */
9076 size = 0;
43cd72b9 9077 old_size = xg_get_single_size (tinsn.opcode);
e0001a05
NC
9078
9079 tinsn_init (&single_target);
9080 frag_offset = fragP->fr_opcode - fragP->fr_literal;
9081
84b08ed9 9082 if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE))
43cd72b9
BW
9083 {
9084 as_bad (_("unable to widen instruction"));
9085 return;
9086 }
9087
9088 size = xg_get_single_size (single_target.opcode);
b2d179be
BW
9089 xg_emit_insn_to_buf (&single_target, fragP->fr_opcode, fragP,
9090 frag_offset, TRUE);
e0001a05
NC
9091
9092 diff = size - old_size;
9093 assert (diff >= 0);
9094 assert (diff <= fragP->fr_var);
9095 fragP->fr_var -= diff;
9096 fragP->fr_fix += diff;
9097
9098 /* clean it up */
9099 fragP->fr_var = 0;
9100}
9101
9102
9103static void
7fa3d080 9104convert_frag_fill_nop (fragS *fragP)
43cd72b9
BW
9105{
9106 char *loc = &fragP->fr_literal[fragP->fr_fix];
9107 int size = fragP->tc_frag_data.text_expansion[0];
9108 assert ((unsigned) size == (fragP->fr_next->fr_address
9109 - fragP->fr_address - fragP->fr_fix));
9110 if (size == 0)
9111 {
9112 /* No conversion. */
9113 fragP->fr_var = 0;
9114 return;
9115 }
9116 assemble_nop (size, loc);
9117 fragP->tc_frag_data.is_insn = TRUE;
9118 fragP->fr_var -= size;
9119 fragP->fr_fix += size;
9120 frag_wane (fragP);
9121}
9122
9123
7fa3d080
BW
9124static fixS *fix_new_exp_in_seg
9125 (segT, subsegT, fragS *, int, int, expressionS *, int,
9126 bfd_reloc_code_real_type);
9127static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *);
9128
43cd72b9 9129static void
7fa3d080
BW
9130convert_frag_immed (segT segP,
9131 fragS *fragP,
9132 int min_steps,
9133 xtensa_format fmt,
9134 int slot)
e0001a05
NC
9135{
9136 char *immed_instr = fragP->fr_opcode;
43cd72b9 9137 TInsn orig_tinsn;
e0001a05 9138 bfd_boolean expanded = FALSE;
e0001a05 9139 bfd_boolean branch_jmp_to_next = FALSE;
43cd72b9 9140 char *fr_opcode = fragP->fr_opcode;
43cd72b9
BW
9141 xtensa_isa isa = xtensa_default_isa;
9142 bfd_boolean wide_insn = FALSE;
9143 int bytes;
9144 bfd_boolean is_loop;
e0001a05 9145
43cd72b9 9146 assert (fr_opcode != NULL);
e0001a05 9147
b5e4a23d 9148 xg_clear_vinsn (&cur_vinsn);
e0001a05 9149
b5e4a23d 9150 vinsn_from_chars (&cur_vinsn, fr_opcode);
b2d179be 9151 if (cur_vinsn.num_slots > 1)
43cd72b9 9152 wide_insn = TRUE;
e0001a05 9153
b5e4a23d 9154 orig_tinsn = cur_vinsn.slots[slot];
43cd72b9
BW
9155 tinsn_immed_from_frag (&orig_tinsn, fragP, slot);
9156
9157 is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1;
e0001a05 9158
b08b5071 9159 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
43cd72b9 9160 branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP);
e0001a05
NC
9161
9162 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
9163 {
9164 /* Conversion just inserts a NOP and marks the fix as completed. */
43cd72b9
BW
9165 bytes = xtensa_format_length (isa, fmt);
9166 if (bytes >= 4)
9167 {
b5e4a23d
BW
9168 cur_vinsn.slots[slot].opcode =
9169 xtensa_format_slot_nop_opcode (isa, cur_vinsn.format, slot);
9170 cur_vinsn.slots[slot].ntok = 0;
43cd72b9
BW
9171 }
9172 else
9173 {
9174 bytes += fragP->tc_frag_data.text_expansion[0];
9175 assert (bytes == 2 || bytes == 3);
b5e4a23d 9176 build_nop (&cur_vinsn.slots[0], bytes);
43cd72b9
BW
9177 fragP->fr_fix += fragP->tc_frag_data.text_expansion[0];
9178 }
e7da6241 9179 vinsn_to_insnbuf (&cur_vinsn, fr_opcode, frag_now, TRUE);
d77b99c9 9180 xtensa_insnbuf_to_chars
b5e4a23d 9181 (isa, cur_vinsn.insnbuf, (unsigned char *) fr_opcode, 0);
e0001a05
NC
9182 fragP->fr_var = 0;
9183 }
7c834684 9184 else
e0001a05 9185 {
43cd72b9
BW
9186 /* Here is the fun stuff: Get the immediate field from this
9187 instruction. If it fits, we're done. If not, find the next
9188 instruction sequence that fits. */
9189
e0001a05
NC
9190 IStack istack;
9191 int i;
9192 symbolS *lit_sym = NULL;
9193 int total_size = 0;
43cd72b9 9194 int target_offset = 0;
e0001a05
NC
9195 int old_size;
9196 int diff;
9197 symbolS *gen_label = NULL;
9198 offsetT frag_offset;
43cd72b9
BW
9199 bfd_boolean first = TRUE;
9200 bfd_boolean last_is_jump;
e0001a05 9201
43cd72b9 9202 /* It does not fit. Find something that does and
e0001a05 9203 convert immediately. */
43cd72b9 9204 frag_offset = fr_opcode - fragP->fr_literal;
e0001a05 9205 istack_init (&istack);
43cd72b9 9206 xg_assembly_relax (&istack, &orig_tinsn,
e0001a05
NC
9207 segP, fragP, frag_offset, min_steps, 0);
9208
43cd72b9 9209 old_size = xtensa_format_length (isa, fmt);
e0001a05
NC
9210
9211 /* Assemble this right inline. */
9212
9213 /* First, create the mapping from a label name to the REAL label. */
43cd72b9 9214 target_offset = 0;
e0001a05
NC
9215 for (i = 0; i < istack.ninsn; i++)
9216 {
43cd72b9 9217 TInsn *tinsn = &istack.insn[i];
e0001a05
NC
9218 fragS *lit_frag;
9219
43cd72b9 9220 switch (tinsn->insn_type)
e0001a05
NC
9221 {
9222 case ITYPE_LITERAL:
9223 if (lit_sym != NULL)
9224 as_bad (_("multiple literals in expansion"));
9225 /* First find the appropriate space in the literal pool. */
43cd72b9 9226 lit_frag = fragP->tc_frag_data.literal_frags[slot];
e0001a05
NC
9227 if (lit_frag == NULL)
9228 as_bad (_("no registered fragment for literal"));
43cd72b9 9229 if (tinsn->ntok != 1)
e0001a05
NC
9230 as_bad (_("number of literal tokens != 1"));
9231
9232 /* Set the literal symbol and add a fixup. */
9233 lit_sym = lit_frag->fr_symbol;
9234 break;
9235
9236 case ITYPE_LABEL:
43cd72b9
BW
9237 if (align_targets && !is_loop)
9238 {
9239 fragS *unreach = fragP->fr_next;
9240 while (!(unreach->fr_type == rs_machine_dependent
9241 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9242 || unreach->fr_subtype == RELAX_UNREACHABLE)))
9243 {
9244 unreach = unreach->fr_next;
9245 }
9246
9247 assert (unreach->fr_type == rs_machine_dependent
9248 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9249 || unreach->fr_subtype == RELAX_UNREACHABLE));
9250
9251 target_offset += unreach->tc_frag_data.text_expansion[0];
9252 }
e0001a05
NC
9253 assert (gen_label == NULL);
9254 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg,
43cd72b9
BW
9255 fr_opcode - fragP->fr_literal
9256 + target_offset, fragP);
e0001a05
NC
9257 break;
9258
9259 case ITYPE_INSN:
43cd72b9
BW
9260 if (first && wide_insn)
9261 {
9262 target_offset += xtensa_format_length (isa, fmt);
9263 first = FALSE;
9264 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9265 target_offset += xg_get_single_size (tinsn->opcode);
9266 }
9267 else
9268 target_offset += xg_get_single_size (tinsn->opcode);
e0001a05
NC
9269 break;
9270 }
9271 }
9272
9273 total_size = 0;
43cd72b9
BW
9274 first = TRUE;
9275 last_is_jump = FALSE;
e0001a05
NC
9276 for (i = 0; i < istack.ninsn; i++)
9277 {
43cd72b9 9278 TInsn *tinsn = &istack.insn[i];
e0001a05
NC
9279 fragS *lit_frag;
9280 int size;
9281 segT target_seg;
43cd72b9 9282 bfd_reloc_code_real_type reloc_type;
e0001a05 9283
43cd72b9 9284 switch (tinsn->insn_type)
e0001a05
NC
9285 {
9286 case ITYPE_LITERAL:
43cd72b9
BW
9287 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9288 /* Already checked. */
e0001a05
NC
9289 assert (lit_frag != NULL);
9290 assert (lit_sym != NULL);
43cd72b9
BW
9291 assert (tinsn->ntok == 1);
9292 /* Add a fixup. */
e0001a05
NC
9293 target_seg = S_GET_SEGMENT (lit_sym);
9294 assert (target_seg);
43cd72b9
BW
9295 if (tinsn->tok[0].X_op == O_pltrel)
9296 reloc_type = BFD_RELOC_XTENSA_PLT;
9297 else
9298 reloc_type = BFD_RELOC_32;
e0001a05 9299 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
43cd72b9 9300 &tinsn->tok[0], FALSE, reloc_type);
e0001a05
NC
9301 break;
9302
9303 case ITYPE_LABEL:
9304 break;
9305
9306 case ITYPE_INSN:
43cd72b9
BW
9307 xg_resolve_labels (tinsn, gen_label);
9308 xg_resolve_literals (tinsn, lit_sym);
9309 if (wide_insn && first)
9310 {
9311 first = FALSE;
9312 if (opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9313 {
b5e4a23d 9314 cur_vinsn.slots[slot] = *tinsn;
43cd72b9
BW
9315 }
9316 else
9317 {
b5e4a23d 9318 cur_vinsn.slots[slot].opcode =
43cd72b9 9319 xtensa_format_slot_nop_opcode (isa, fmt, slot);
b5e4a23d 9320 cur_vinsn.slots[slot].ntok = 0;
43cd72b9 9321 }
b5e4a23d
BW
9322 vinsn_to_insnbuf (&cur_vinsn, immed_instr, fragP, TRUE);
9323 xtensa_insnbuf_to_chars (isa, cur_vinsn.insnbuf,
d77b99c9 9324 (unsigned char *) immed_instr, 0);
43cd72b9
BW
9325 fragP->tc_frag_data.is_insn = TRUE;
9326 size = xtensa_format_length (isa, fmt);
9327 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9328 {
43cd72b9 9329 xg_emit_insn_to_buf
b2d179be 9330 (tinsn, immed_instr + size, fragP,
43cd72b9
BW
9331 immed_instr - fragP->fr_literal + size, TRUE);
9332 size += xg_get_single_size (tinsn->opcode);
9333 }
9334 }
9335 else
9336 {
43cd72b9 9337 size = xg_get_single_size (tinsn->opcode);
b2d179be 9338 xg_emit_insn_to_buf (tinsn, immed_instr, fragP,
43cd72b9 9339 immed_instr - fragP->fr_literal, TRUE);
43cd72b9 9340 }
e0001a05 9341 immed_instr += size;
43cd72b9 9342 total_size += size;
e0001a05
NC
9343 break;
9344 }
9345 }
9346
9347 diff = total_size - old_size;
9348 assert (diff >= 0);
9349 if (diff != 0)
9350 expanded = TRUE;
9351 assert (diff <= fragP->fr_var);
9352 fragP->fr_var -= diff;
9353 fragP->fr_fix += diff;
9354 }
9355
e0001a05 9356 /* Check for undefined immediates in LOOP instructions. */
43cd72b9 9357 if (is_loop)
e0001a05
NC
9358 {
9359 symbolS *sym;
43cd72b9 9360 sym = orig_tinsn.tok[1].X_add_symbol;
e0001a05
NC
9361 if (sym != NULL && !S_IS_DEFINED (sym))
9362 {
9363 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9364 return;
9365 }
43cd72b9 9366 sym = orig_tinsn.tok[1].X_op_symbol;
e0001a05
NC
9367 if (sym != NULL && !S_IS_DEFINED (sym))
9368 {
9369 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9370 return;
9371 }
9372 }
9373
43cd72b9
BW
9374 if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1)
9375 convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn);
e0001a05 9376
43cd72b9 9377 if (expanded && is_direct_call_opcode (orig_tinsn.opcode))
e0001a05
NC
9378 {
9379 /* Add an expansion note on the expanded instruction. */
9380 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
43cd72b9 9381 &orig_tinsn.tok[0], TRUE,
e0001a05 9382 BFD_RELOC_XTENSA_ASM_EXPAND);
e0001a05
NC
9383 }
9384}
9385
9386
9387/* Add a new fix expression into the desired segment. We have to
9388 switch to that segment to do this. */
9389
9390static fixS *
7fa3d080
BW
9391fix_new_exp_in_seg (segT new_seg,
9392 subsegT new_subseg,
9393 fragS *frag,
9394 int where,
9395 int size,
9396 expressionS *exp,
9397 int pcrel,
9398 bfd_reloc_code_real_type r_type)
e0001a05
NC
9399{
9400 fixS *new_fix;
9401 segT seg = now_seg;
9402 subsegT subseg = now_subseg;
43cd72b9 9403
e0001a05
NC
9404 assert (new_seg != 0);
9405 subseg_set (new_seg, new_subseg);
9406
e0001a05
NC
9407 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
9408 subseg_set (seg, subseg);
9409 return new_fix;
9410}
9411
9412
43cd72b9
BW
9413/* Relax a loop instruction so that it can span loop >256 bytes.
9414
9415 loop as, .L1
9416 .L0:
9417 rsr as, LEND
9418 wsr as, LBEG
9419 addi as, as, lo8 (label-.L1)
9420 addmi as, as, mid8 (label-.L1)
9421 wsr as, LEND
9422 isync
9423 rsr as, LCOUNT
9424 addi as, as, 1
9425 .L1:
9426 <<body>>
9427 label:
9428*/
e0001a05
NC
9429
9430static void
7fa3d080 9431convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn)
e0001a05
NC
9432{
9433 TInsn loop_insn;
9434 TInsn addi_insn;
9435 TInsn addmi_insn;
9436 unsigned long target;
9437 static xtensa_insnbuf insnbuf = NULL;
9438 unsigned int loop_length, loop_length_hi, loop_length_lo;
9439 xtensa_isa isa = xtensa_default_isa;
9440 addressT loop_offset;
9441 addressT addi_offset = 9;
9442 addressT addmi_offset = 12;
43cd72b9 9443 fragS *next_fragP;
d77b99c9 9444 int target_count;
e0001a05
NC
9445
9446 if (!insnbuf)
9447 insnbuf = xtensa_insnbuf_alloc (isa);
9448
9449 /* Get the loop offset. */
43cd72b9 9450 loop_offset = get_expanded_loop_offset (tinsn->opcode);
e0001a05 9451
43cd72b9
BW
9452 /* Validate that there really is a LOOP at the loop_offset. Because
9453 loops are not bundleable, we can assume that the instruction will be
9454 in slot 0. */
9455 tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0);
9456 tinsn_immed_from_frag (&loop_insn, fragP, 0);
9457
9458 assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1);
e0001a05
NC
9459 addi_offset += loop_offset;
9460 addmi_offset += loop_offset;
9461
43cd72b9 9462 assert (tinsn->ntok == 2);
b08b5071
BW
9463 if (tinsn->tok[1].X_op == O_constant)
9464 target = tinsn->tok[1].X_add_number;
9465 else if (tinsn->tok[1].X_op == O_symbol)
9466 {
9467 /* Find the fragment. */
9468 symbolS *sym = tinsn->tok[1].X_add_symbol;
9469 assert (S_GET_SEGMENT (sym) == segP
9470 || S_GET_SEGMENT (sym) == absolute_section);
9471 target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number);
9472 }
9473 else
9474 {
9475 as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op);
9476 target = 0;
9477 }
e0001a05
NC
9478
9479 know (symbolP);
9480 know (symbolP->sy_frag);
9481 know (!(S_GET_SEGMENT (symbolP) == absolute_section)
9482 || symbol_get_frag (symbolP) == &zero_address_frag);
9483
9484 loop_length = target - (fragP->fr_address + fragP->fr_fix);
9485 loop_length_hi = loop_length & ~0x0ff;
9486 loop_length_lo = loop_length & 0x0ff;
9487 if (loop_length_lo >= 128)
9488 {
9489 loop_length_lo -= 256;
9490 loop_length_hi += 256;
9491 }
9492
43cd72b9 9493 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
e0001a05
NC
9494 32512. If the loop is larger than that, then we just fail. */
9495 if (loop_length_hi > 32512)
9496 as_bad_where (fragP->fr_file, fragP->fr_line,
9497 _("loop too long for LOOP instruction"));
9498
43cd72b9 9499 tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0);
e0001a05
NC
9500 assert (addi_insn.opcode == xtensa_addi_opcode);
9501
43cd72b9 9502 tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0);
e0001a05
NC
9503 assert (addmi_insn.opcode == xtensa_addmi_opcode);
9504
9505 set_expr_const (&addi_insn.tok[2], loop_length_lo);
9506 tinsn_to_insnbuf (&addi_insn, insnbuf);
43cd72b9 9507
e0001a05 9508 fragP->tc_frag_data.is_insn = TRUE;
d77b99c9
BW
9509 xtensa_insnbuf_to_chars
9510 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0);
e0001a05
NC
9511
9512 set_expr_const (&addmi_insn.tok[2], loop_length_hi);
9513 tinsn_to_insnbuf (&addmi_insn, insnbuf);
d77b99c9
BW
9514 xtensa_insnbuf_to_chars
9515 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0);
43cd72b9
BW
9516
9517 /* Walk through all of the frags from here to the loop end
9518 and mark them as no_transform to keep them from being modified
9519 by the linker. If we ever have a relocation for the
9520 addi/addmi of the difference of two symbols we can remove this. */
9521
9522 target_count = 0;
9523 for (next_fragP = fragP; next_fragP != NULL;
9524 next_fragP = next_fragP->fr_next)
9525 {
b08b5071 9526 next_fragP->tc_frag_data.is_no_transform = TRUE;
43cd72b9
BW
9527 if (next_fragP->tc_frag_data.is_loop_target)
9528 target_count++;
9529 if (target_count == 2)
9530 break;
9531 }
e0001a05
NC
9532}
9533
b08b5071
BW
9534\f
9535/* A map that keeps information on a per-subsegment basis. This is
9536 maintained during initial assembly, but is invalid once the
9537 subsegments are smashed together. I.E., it cannot be used during
9538 the relaxation. */
e0001a05 9539
b08b5071 9540typedef struct subseg_map_struct
e0001a05 9541{
b08b5071
BW
9542 /* the key */
9543 segT seg;
9544 subsegT subseg;
e0001a05 9545
b08b5071
BW
9546 /* the data */
9547 unsigned flags;
9548 float total_freq; /* fall-through + branch target frequency */
9549 float target_freq; /* branch target frequency alone */
9550
9551 struct subseg_map_struct *next;
9552} subseg_map;
e0001a05 9553
e0001a05 9554
e0001a05
NC
9555static subseg_map *sseg_map = NULL;
9556
43cd72b9 9557static subseg_map *
7fa3d080 9558get_subseg_info (segT seg, subsegT subseg)
e0001a05
NC
9559{
9560 subseg_map *subseg_e;
9561
9562 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
e0001a05 9563 {
43cd72b9 9564 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
b08b5071 9565 break;
e0001a05 9566 }
b08b5071
BW
9567 return subseg_e;
9568}
9569
9570
9571static subseg_map *
9572add_subseg_info (segT seg, subsegT subseg)
9573{
9574 subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map));
43cd72b9
BW
9575 memset (subseg_e, 0, sizeof (subseg_map));
9576 subseg_e->seg = seg;
9577 subseg_e->subseg = subseg;
9578 subseg_e->flags = 0;
9579 /* Start off considering every branch target very important. */
b08b5071
BW
9580 subseg_e->target_freq = 1.0;
9581 subseg_e->total_freq = 1.0;
43cd72b9
BW
9582 subseg_e->next = sseg_map;
9583 sseg_map = subseg_e;
43cd72b9
BW
9584 return subseg_e;
9585}
e0001a05 9586
7fa3d080
BW
9587
9588static unsigned
9589get_last_insn_flags (segT seg, subsegT subseg)
9590{
9591 subseg_map *subseg_e = get_subseg_info (seg, subseg);
b08b5071
BW
9592 if (subseg_e)
9593 return subseg_e->flags;
9594 return 0;
7fa3d080
BW
9595}
9596
9597
43cd72b9 9598static void
7fa3d080
BW
9599set_last_insn_flags (segT seg,
9600 subsegT subseg,
9601 unsigned fl,
9602 bfd_boolean val)
43cd72b9
BW
9603{
9604 subseg_map *subseg_e = get_subseg_info (seg, subseg);
b08b5071
BW
9605 if (! subseg_e)
9606 subseg_e = add_subseg_info (seg, subseg);
e0001a05
NC
9607 if (val)
9608 subseg_e->flags |= fl;
9609 else
9610 subseg_e->flags &= ~fl;
9611}
9612
b08b5071
BW
9613
9614static float
9615get_subseg_total_freq (segT seg, subsegT subseg)
9616{
9617 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9618 if (subseg_e)
9619 return subseg_e->total_freq;
9620 return 1.0;
9621}
9622
9623
9624static float
9625get_subseg_target_freq (segT seg, subsegT subseg)
9626{
9627 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9628 if (subseg_e)
9629 return subseg_e->target_freq;
9630 return 1.0;
9631}
9632
9633
9634static void
9635set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f)
9636{
9637 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9638 if (! subseg_e)
9639 subseg_e = add_subseg_info (seg, subseg);
9640 subseg_e->total_freq = total_f;
9641 subseg_e->target_freq = target_f;
9642}
9643
e0001a05
NC
9644\f
9645/* Segment Lists and emit_state Stuff. */
9646
e0001a05 9647static void
7fa3d080 9648xtensa_move_seg_list_to_beginning (seg_list *head)
e0001a05
NC
9649{
9650 head = head->next;
9651 while (head)
9652 {
9653 segT literal_section = head->seg;
9654
9655 /* Move the literal section to the front of the section list. */
9656 assert (literal_section);
69852798
AM
9657 if (literal_section != stdoutput->sections)
9658 {
9659 bfd_section_list_remove (stdoutput, literal_section);
9660 bfd_section_list_prepend (stdoutput, literal_section);
9661 }
e0001a05
NC
9662 head = head->next;
9663 }
9664}
9665
9666
7fa3d080
BW
9667static void mark_literal_frags (seg_list *);
9668
9669static void
9670xtensa_move_literals (void)
e0001a05
NC
9671{
9672 seg_list *segment;
9673 frchainS *frchain_from, *frchain_to;
9674 fragS *search_frag, *next_frag, *last_frag, *literal_pool, *insert_after;
9675 fragS **frag_splice;
9676 emit_state state;
9677 segT dest_seg;
9678 fixS *fix, *next_fix, **fix_splice;
82e7541d 9679 sym_list *lit;
e0001a05 9680
a7877748
BW
9681 mark_literal_frags (literal_head->next);
9682 mark_literal_frags (init_literal_head->next);
9683 mark_literal_frags (fini_literal_head->next);
e0001a05
NC
9684
9685 if (use_literal_section)
9686 return;
9687
9688 segment = literal_head->next;
9689 while (segment)
9690 {
9691 frchain_from = seg_info (segment->seg)->frchainP;
9692 search_frag = frchain_from->frch_root;
9693 literal_pool = NULL;
9694 frchain_to = NULL;
9695 frag_splice = &(frchain_from->frch_root);
9696
9697 while (!search_frag->tc_frag_data.literal_frag)
9698 {
9699 assert (search_frag->fr_fix == 0
9700 || search_frag->fr_type == rs_align);
9701 search_frag = search_frag->fr_next;
9702 }
9703
9704 assert (search_frag->tc_frag_data.literal_frag->fr_subtype
9705 == RELAX_LITERAL_POOL_BEGIN);
9706 xtensa_switch_section_emit_state (&state, segment->seg, 0);
9707
9708 /* Make sure that all the frags in this series are closed, and
9709 that there is at least one left over of zero-size. This
9710 prevents us from making a segment with an frchain without any
9711 frags in it. */
9712 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 9713 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
9714 last_frag = frag_now;
9715 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 9716 xtensa_set_frag_assembly_state (frag_now);
e0001a05 9717
43cd72b9 9718 while (search_frag != frag_now)
e0001a05
NC
9719 {
9720 next_frag = search_frag->fr_next;
9721
43cd72b9 9722 /* First, move the frag out of the literal section and
e0001a05
NC
9723 to the appropriate place. */
9724 if (search_frag->tc_frag_data.literal_frag)
9725 {
9726 literal_pool = search_frag->tc_frag_data.literal_frag;
9727 assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
dd49a749
BW
9728 frchain_to = literal_pool->tc_frag_data.lit_frchain;
9729 assert (frchain_to);
e0001a05
NC
9730 }
9731 insert_after = literal_pool;
43cd72b9 9732
e0001a05
NC
9733 while (insert_after->fr_next->fr_subtype != RELAX_LITERAL_POOL_END)
9734 insert_after = insert_after->fr_next;
9735
dd49a749 9736 dest_seg = insert_after->fr_next->tc_frag_data.lit_seg;
43cd72b9 9737
e0001a05
NC
9738 *frag_splice = next_frag;
9739 search_frag->fr_next = insert_after->fr_next;
9740 insert_after->fr_next = search_frag;
9741 search_frag->tc_frag_data.lit_seg = dest_seg;
9742
9743 /* Now move any fixups associated with this frag to the
9744 right section. */
9745 fix = frchain_from->fix_root;
9746 fix_splice = &(frchain_from->fix_root);
9747 while (fix)
9748 {
9749 next_fix = fix->fx_next;
9750 if (fix->fx_frag == search_frag)
9751 {
9752 *fix_splice = next_fix;
9753 fix->fx_next = frchain_to->fix_root;
9754 frchain_to->fix_root = fix;
9755 if (frchain_to->fix_tail == NULL)
9756 frchain_to->fix_tail = fix;
9757 }
9758 else
9759 fix_splice = &(fix->fx_next);
9760 fix = next_fix;
9761 }
9762 search_frag = next_frag;
9763 }
9764
9765 if (frchain_from->fix_root != NULL)
9766 {
9767 frchain_from = seg_info (segment->seg)->frchainP;
9768 as_warn (_("fixes not all moved from %s"), segment->seg->name);
9769
9770 assert (frchain_from->fix_root == NULL);
9771 }
9772 frchain_from->fix_tail = NULL;
9773 xtensa_restore_emit_state (&state);
9774 segment = segment->next;
9775 }
9776
82e7541d
BW
9777 /* Now fix up the SEGMENT value for all the literal symbols. */
9778 for (lit = literal_syms; lit; lit = lit->next)
9779 {
9780 symbolS *lit_sym = lit->sym;
9781 segT dest_seg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
43cd72b9
BW
9782 if (dest_seg)
9783 S_SET_SEGMENT (lit_sym, dest_seg);
82e7541d 9784 }
e0001a05
NC
9785}
9786
9787
a7877748
BW
9788/* Walk over all the frags for segments in a list and mark them as
9789 containing literals. As clunky as this is, we can't rely on frag_var
9790 and frag_variant to get called in all situations. */
9791
9792static void
7fa3d080 9793mark_literal_frags (seg_list *segment)
a7877748
BW
9794{
9795 frchainS *frchain_from;
9796 fragS *search_frag;
9797
9798 while (segment)
9799 {
9800 frchain_from = seg_info (segment->seg)->frchainP;
9801 search_frag = frchain_from->frch_root;
c138bc38 9802 while (search_frag)
a7877748
BW
9803 {
9804 search_frag->tc_frag_data.is_literal = TRUE;
9805 search_frag = search_frag->fr_next;
9806 }
9807 segment = segment->next;
9808 }
9809}
9810
9811
e0001a05 9812static void
7fa3d080 9813xtensa_reorder_seg_list (seg_list *head, segT after)
e0001a05
NC
9814{
9815 /* Move all of the sections in the section list to come
9816 after "after" in the gnu segment list. */
9817
9818 head = head->next;
9819 while (head)
9820 {
9821 segT literal_section = head->seg;
9822
9823 /* Move the literal section after "after". */
9824 assert (literal_section);
9825 if (literal_section != after)
9826 {
69852798
AM
9827 bfd_section_list_remove (stdoutput, literal_section);
9828 bfd_section_list_insert_after (stdoutput, after, literal_section);
e0001a05
NC
9829 }
9830
9831 head = head->next;
9832 }
9833}
9834
9835
9836/* Push all the literal segments to the end of the gnu list. */
9837
7fa3d080
BW
9838static void
9839xtensa_reorder_segments (void)
e0001a05
NC
9840{
9841 segT sec;
b08b5071 9842 segT last_sec = 0;
e0001a05
NC
9843 int old_count = 0;
9844 int new_count = 0;
9845
9846 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
b08b5071
BW
9847 {
9848 last_sec = sec;
9849 old_count++;
9850 }
e0001a05
NC
9851
9852 /* Now that we have the last section, push all the literal
9853 sections to the end. */
e0001a05
NC
9854 xtensa_reorder_seg_list (literal_head, last_sec);
9855 xtensa_reorder_seg_list (init_literal_head, last_sec);
9856 xtensa_reorder_seg_list (fini_literal_head, last_sec);
9857
9858 /* Now perform the final error check. */
9859 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
9860 new_count++;
9861 assert (new_count == old_count);
9862}
9863
9864
e0001a05
NC
9865/* Change the emit state (seg, subseg, and frag related stuff) to the
9866 correct location. Return a emit_state which can be passed to
9867 xtensa_restore_emit_state to return to current fragment. */
9868
7fa3d080
BW
9869static void
9870xtensa_switch_to_literal_fragment (emit_state *result)
43cd72b9
BW
9871{
9872 if (directive_state[directive_absolute_literals])
9873 {
9874 cache_literal_section (0, default_lit_sections.lit4_seg_name,
9875 &default_lit_sections.lit4_seg, FALSE);
9876 xtensa_switch_section_emit_state (result,
9877 default_lit_sections.lit4_seg, 0);
9878 }
9879 else
9880 xtensa_switch_to_non_abs_literal_fragment (result);
9881
9882 /* Do a 4-byte align here. */
9883 frag_align (2, 0, 0);
9884 record_alignment (now_seg, 2);
9885}
9886
9887
7fa3d080
BW
9888static void
9889xtensa_switch_to_non_abs_literal_fragment (emit_state *result)
e0001a05
NC
9890{
9891 /* When we mark a literal pool location, we want to put a frag in
9892 the literal pool that points to it. But to do that, we want to
9893 switch_to_literal_fragment. But literal sections don't have
9894 literal pools, so their location is always null, so we would
9895 recurse forever. This is kind of hacky, but it works. */
9896
9897 static bfd_boolean recursive = FALSE;
9898 fragS *pool_location = get_literal_pool_location (now_seg);
c138bc38 9899 bfd_boolean is_init =
e0001a05
NC
9900 (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME));
9901
c138bc38 9902 bfd_boolean is_fini =
e0001a05 9903 (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME));
e0001a05 9904
43cd72b9
BW
9905 if (pool_location == NULL
9906 && !use_literal_section
e0001a05
NC
9907 && !recursive
9908 && !is_init && ! is_fini)
9909 {
43cd72b9 9910 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
e0001a05 9911 recursive = TRUE;
61846f28 9912 xtensa_mark_literal_pool_location ();
e0001a05
NC
9913 recursive = FALSE;
9914 }
9915
9916 /* Special case: If we are in the ".fini" or ".init" section, then
9917 we will ALWAYS be generating to the ".fini.literal" and
9918 ".init.literal" sections. */
9919
9920 if (is_init)
9921 {
9922 cache_literal_section (init_literal_head,
9923 default_lit_sections.init_lit_seg_name,
43cd72b9 9924 &default_lit_sections.init_lit_seg, TRUE);
e0001a05
NC
9925 xtensa_switch_section_emit_state (result,
9926 default_lit_sections.init_lit_seg, 0);
9927 }
9928 else if (is_fini)
9929 {
9930 cache_literal_section (fini_literal_head,
9931 default_lit_sections.fini_lit_seg_name,
43cd72b9 9932 &default_lit_sections.fini_lit_seg, TRUE);
e0001a05
NC
9933 xtensa_switch_section_emit_state (result,
9934 default_lit_sections.fini_lit_seg, 0);
9935 }
43cd72b9 9936 else
e0001a05
NC
9937 {
9938 cache_literal_section (literal_head,
9939 default_lit_sections.lit_seg_name,
43cd72b9 9940 &default_lit_sections.lit_seg, TRUE);
e0001a05
NC
9941 xtensa_switch_section_emit_state (result,
9942 default_lit_sections.lit_seg, 0);
9943 }
9944
43cd72b9
BW
9945 if (!use_literal_section
9946 && !is_init && !is_fini
9947 && get_literal_pool_location (now_seg) != pool_location)
e0001a05
NC
9948 {
9949 /* Close whatever frag is there. */
9950 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 9951 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
9952 frag_now->tc_frag_data.literal_frag = pool_location;
9953 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 9954 xtensa_set_frag_assembly_state (frag_now);
e0001a05 9955 }
e0001a05
NC
9956}
9957
9958
9959/* Call this function before emitting data into the literal section.
9960 This is a helper function for xtensa_switch_to_literal_fragment.
9961 This is similar to a .section new_now_seg subseg. */
9962
7fa3d080
BW
9963static void
9964xtensa_switch_section_emit_state (emit_state *state,
9965 segT new_now_seg,
9966 subsegT new_now_subseg)
e0001a05
NC
9967{
9968 state->name = now_seg->name;
9969 state->now_seg = now_seg;
9970 state->now_subseg = now_subseg;
9971 state->generating_literals = generating_literals;
9972 generating_literals++;
2b0210eb 9973 subseg_set (new_now_seg, new_now_subseg);
e0001a05
NC
9974}
9975
9976
9977/* Use to restore the emitting into the normal place. */
9978
7fa3d080
BW
9979static void
9980xtensa_restore_emit_state (emit_state *state)
e0001a05
NC
9981{
9982 generating_literals = state->generating_literals;
2b0210eb 9983 subseg_set (state->now_seg, state->now_subseg);
e0001a05
NC
9984}
9985
9986
9987/* Get a segment of a given name. If the segment is already
9988 present, return it; otherwise, create a new one. */
9989
9990static void
7fa3d080
BW
9991cache_literal_section (seg_list *head,
9992 const char *name,
b08b5071 9993 segT *pseg,
7fa3d080 9994 bfd_boolean is_code)
e0001a05
NC
9995{
9996 segT current_section = now_seg;
9997 int current_subsec = now_subseg;
b08b5071 9998 segT seg;
e0001a05 9999
b08b5071 10000 if (*pseg != 0)
e0001a05 10001 return;
e0001a05 10002
b08b5071
BW
10003 /* Check if the named section exists. */
10004 for (seg = stdoutput->sections; seg; seg = seg->next)
10005 {
10006 if (!strcmp (segment_name (seg), name))
10007 break;
10008 }
e0001a05 10009
b08b5071 10010 if (!seg)
e0001a05 10011 {
b08b5071
BW
10012 /* Create a new literal section. */
10013 seg = subseg_new (name, (subsegT) 0);
43cd72b9 10014 if (head)
b08b5071
BW
10015 {
10016 /* Add the newly created literal segment to the specified list. */
10017 seg_list *n = (seg_list *) xmalloc (sizeof (seg_list));
10018 n->seg = seg;
10019 n->next = head->next;
10020 head->next = n;
10021 }
10022 bfd_set_section_flags (stdoutput, seg, SEC_HAS_CONTENTS |
43cd72b9
BW
10023 SEC_READONLY | SEC_ALLOC | SEC_LOAD
10024 | (is_code ? SEC_CODE : SEC_DATA));
b08b5071 10025 bfd_set_section_alignment (stdoutput, seg, 2);
e0001a05
NC
10026 }
10027
b08b5071
BW
10028 *pseg = seg;
10029 subseg_set (current_section, current_subsec);
e0001a05
NC
10030}
10031
43cd72b9
BW
10032\f
10033/* Property Tables Stuff. */
10034
7fa3d080
BW
10035#define XTENSA_INSN_SEC_NAME ".xt.insn"
10036#define XTENSA_LIT_SEC_NAME ".xt.lit"
10037#define XTENSA_PROP_SEC_NAME ".xt.prop"
10038
10039typedef bfd_boolean (*frag_predicate) (const fragS *);
10040typedef void (*frag_flags_fn) (const fragS *, frag_flags *);
10041
b08b5071 10042static bfd_boolean get_frag_is_literal (const fragS *);
7fa3d080
BW
10043static void xtensa_create_property_segments
10044 (frag_predicate, frag_predicate, const char *, xt_section_type);
10045static void xtensa_create_xproperty_segments
10046 (frag_flags_fn, const char *, xt_section_type);
10047static segment_info_type *retrieve_segment_info (segT);
10048static segT retrieve_xtensa_section (char *);
10049static bfd_boolean section_has_property (segT, frag_predicate);
10050static bfd_boolean section_has_xproperty (segT, frag_flags_fn);
10051static void add_xt_block_frags
10052 (segT, segT, xtensa_block_info **, frag_predicate, frag_predicate);
10053static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *);
10054static void xtensa_frag_flags_init (frag_flags *);
10055static void get_frag_property_flags (const fragS *, frag_flags *);
10056static bfd_vma frag_flags_to_number (const frag_flags *);
10057static void add_xt_prop_frags
10058 (segT, segT, xtensa_block_info **, frag_flags_fn);
10059
10060/* Set up property tables after relaxation. */
10061
10062void
10063xtensa_post_relax_hook (void)
10064{
10065 xtensa_move_seg_list_to_beginning (literal_head);
10066 xtensa_move_seg_list_to_beginning (init_literal_head);
10067 xtensa_move_seg_list_to_beginning (fini_literal_head);
10068
10069 xtensa_find_unmarked_state_frags ();
10070
b29757dc
BW
10071 xtensa_create_property_segments (get_frag_is_literal,
10072 NULL,
10073 XTENSA_LIT_SEC_NAME,
10074 xt_literal_sec);
7fa3d080
BW
10075 xtensa_create_xproperty_segments (get_frag_property_flags,
10076 XTENSA_PROP_SEC_NAME,
10077 xt_prop_sec);
10078
10079 if (warn_unaligned_branch_targets)
10080 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0);
10081 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0);
10082}
10083
10084
43cd72b9
BW
10085/* This function is only meaningful after xtensa_move_literals. */
10086
10087static bfd_boolean
7fa3d080 10088get_frag_is_literal (const fragS *fragP)
43cd72b9
BW
10089{
10090 assert (fragP != NULL);
10091 return fragP->tc_frag_data.is_literal;
10092}
10093
10094
43cd72b9 10095static void
7fa3d080
BW
10096xtensa_create_property_segments (frag_predicate property_function,
10097 frag_predicate end_property_function,
10098 const char *section_name_base,
10099 xt_section_type sec_type)
43cd72b9
BW
10100{
10101 segT *seclist;
10102
10103 /* Walk over all of the current segments.
10104 Walk over each fragment
10105 For each non-empty fragment,
10106 Build a property record (append where possible). */
10107
10108 for (seclist = &stdoutput->sections;
10109 seclist && *seclist;
10110 seclist = &(*seclist)->next)
10111 {
10112 segT sec = *seclist;
10113 flagword flags;
10114
10115 flags = bfd_get_section_flags (stdoutput, sec);
10116 if (flags & SEC_DEBUGGING)
10117 continue;
10118 if (!(flags & SEC_ALLOC))
10119 continue;
10120
10121 if (section_has_property (sec, property_function))
10122 {
10123 char *property_section_name =
10124 xtensa_get_property_section_name (sec, section_name_base);
10125 segT insn_sec = retrieve_xtensa_section (property_section_name);
10126 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
10127 xtensa_block_info **xt_blocks =
10128 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10129 /* Walk over all of the frchains here and add new sections. */
10130 add_xt_block_frags (sec, insn_sec, xt_blocks, property_function,
10131 end_property_function);
10132 }
10133 }
10134
10135 /* Now we fill them out.... */
10136
10137 for (seclist = &stdoutput->sections;
10138 seclist && *seclist;
10139 seclist = &(*seclist)->next)
10140 {
10141 segment_info_type *seginfo;
10142 xtensa_block_info *block;
10143 segT sec = *seclist;
10144
10145 seginfo = seg_info (sec);
10146 block = seginfo->tc_segment_info_data.blocks[sec_type];
10147
10148 if (block)
10149 {
10150 xtensa_block_info *cur_block;
10151 /* This is a section with some data. */
10152 int num_recs = 0;
d77b99c9 10153 bfd_size_type rec_size;
43cd72b9
BW
10154
10155 for (cur_block = block; cur_block; cur_block = cur_block->next)
10156 num_recs++;
10157
10158 rec_size = num_recs * 8;
10159 bfd_set_section_size (stdoutput, sec, rec_size);
10160
10161 /* In order to make this work with the assembler, we have to
10162 build some frags and then build the "fixups" for it. It
10163 would be easier to just set the contents then set the
10164 arlents. */
10165
10166 if (num_recs)
10167 {
10168 /* Allocate a fragment and leak it. */
10169 fragS *fragP;
d77b99c9 10170 bfd_size_type frag_size;
43cd72b9
BW
10171 fixS *fixes;
10172 frchainS *frchainP;
10173 int i;
10174 char *frag_data;
10175
10176 frag_size = sizeof (fragS) + rec_size;
10177 fragP = (fragS *) xmalloc (frag_size);
e0001a05 10178
43cd72b9
BW
10179 memset (fragP, 0, frag_size);
10180 fragP->fr_address = 0;
10181 fragP->fr_next = NULL;
10182 fragP->fr_fix = rec_size;
10183 fragP->fr_var = 0;
10184 fragP->fr_type = rs_fill;
10185 /* The rest are zeros. */
e0001a05 10186
43cd72b9
BW
10187 frchainP = seginfo->frchainP;
10188 frchainP->frch_root = fragP;
10189 frchainP->frch_last = fragP;
e0001a05 10190
43cd72b9
BW
10191 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10192 memset (fixes, 0, sizeof (fixS) * num_recs);
e0001a05 10193
43cd72b9
BW
10194 seginfo->fix_root = fixes;
10195 seginfo->fix_tail = &fixes[num_recs - 1];
10196 cur_block = block;
10197 frag_data = &fragP->fr_literal[0];
10198 for (i = 0; i < num_recs; i++)
10199 {
10200 fixS *fix = &fixes[i];
10201 assert (cur_block);
e0001a05 10202
43cd72b9
BW
10203 /* Write the fixup. */
10204 if (i != num_recs - 1)
10205 fix->fx_next = &fixes[i + 1];
10206 else
10207 fix->fx_next = NULL;
10208 fix->fx_size = 4;
10209 fix->fx_done = 0;
10210 fix->fx_frag = fragP;
10211 fix->fx_where = i * 8;
10212 fix->fx_addsy = section_symbol (cur_block->sec);
10213 fix->fx_offset = cur_block->offset;
10214 fix->fx_r_type = BFD_RELOC_32;
10215 fix->fx_file = "Internal Assembly";
10216 fix->fx_line = 0;
e0001a05 10217
43cd72b9
BW
10218 /* Write the length. */
10219 md_number_to_chars (&frag_data[4 + 8 * i],
10220 cur_block->size, 4);
10221 cur_block = cur_block->next;
10222 }
10223 }
10224 }
10225 }
e0001a05
NC
10226}
10227
10228
7fa3d080
BW
10229static void
10230xtensa_create_xproperty_segments (frag_flags_fn flag_fn,
10231 const char *section_name_base,
10232 xt_section_type sec_type)
e0001a05
NC
10233{
10234 segT *seclist;
10235
10236 /* Walk over all of the current segments.
43cd72b9
BW
10237 Walk over each fragment.
10238 For each fragment that has instructions,
10239 build an instruction record (append where possible). */
e0001a05
NC
10240
10241 for (seclist = &stdoutput->sections;
10242 seclist && *seclist;
10243 seclist = &(*seclist)->next)
10244 {
10245 segT sec = *seclist;
43cd72b9
BW
10246 flagword flags;
10247
10248 flags = bfd_get_section_flags (stdoutput, sec);
6624cbde
BW
10249 if ((flags & SEC_DEBUGGING)
10250 || !(flags & SEC_ALLOC)
10251 || (flags & SEC_MERGE))
43cd72b9
BW
10252 continue;
10253
10254 if (section_has_xproperty (sec, flag_fn))
e0001a05 10255 {
b614a702
BW
10256 char *property_section_name =
10257 xtensa_get_property_section_name (sec, section_name_base);
e0001a05
NC
10258 segT insn_sec = retrieve_xtensa_section (property_section_name);
10259 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
43cd72b9 10260 xtensa_block_info **xt_blocks =
e0001a05
NC
10261 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10262 /* Walk over all of the frchains here and add new sections. */
43cd72b9 10263 add_xt_prop_frags (sec, insn_sec, xt_blocks, flag_fn);
e0001a05
NC
10264 }
10265 }
10266
10267 /* Now we fill them out.... */
10268
10269 for (seclist = &stdoutput->sections;
10270 seclist && *seclist;
10271 seclist = &(*seclist)->next)
10272 {
10273 segment_info_type *seginfo;
10274 xtensa_block_info *block;
10275 segT sec = *seclist;
43cd72b9 10276
e0001a05
NC
10277 seginfo = seg_info (sec);
10278 block = seginfo->tc_segment_info_data.blocks[sec_type];
10279
10280 if (block)
10281 {
10282 xtensa_block_info *cur_block;
10283 /* This is a section with some data. */
43cd72b9 10284 int num_recs = 0;
d77b99c9 10285 bfd_size_type rec_size;
e0001a05
NC
10286
10287 for (cur_block = block; cur_block; cur_block = cur_block->next)
10288 num_recs++;
10289
43cd72b9 10290 rec_size = num_recs * (8 + 4);
e0001a05
NC
10291 bfd_set_section_size (stdoutput, sec, rec_size);
10292
43cd72b9
BW
10293 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
10294
10295 /* In order to make this work with the assembler, we have to build
10296 some frags then build the "fixups" for it. It would be easier to
10297 just set the contents then set the arlents. */
e0001a05
NC
10298
10299 if (num_recs)
10300 {
43cd72b9 10301 /* Allocate a fragment and (unfortunately) leak it. */
e0001a05 10302 fragS *fragP;
d77b99c9 10303 bfd_size_type frag_size;
e0001a05
NC
10304 fixS *fixes;
10305 frchainS *frchainP;
43cd72b9 10306 int i;
e0001a05
NC
10307 char *frag_data;
10308
10309 frag_size = sizeof (fragS) + rec_size;
10310 fragP = (fragS *) xmalloc (frag_size);
10311
10312 memset (fragP, 0, frag_size);
10313 fragP->fr_address = 0;
10314 fragP->fr_next = NULL;
10315 fragP->fr_fix = rec_size;
10316 fragP->fr_var = 0;
10317 fragP->fr_type = rs_fill;
43cd72b9 10318 /* The rest are zeros. */
e0001a05
NC
10319
10320 frchainP = seginfo->frchainP;
10321 frchainP->frch_root = fragP;
10322 frchainP->frch_last = fragP;
10323
10324 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10325 memset (fixes, 0, sizeof (fixS) * num_recs);
10326
10327 seginfo->fix_root = fixes;
10328 seginfo->fix_tail = &fixes[num_recs - 1];
10329 cur_block = block;
10330 frag_data = &fragP->fr_literal[0];
10331 for (i = 0; i < num_recs; i++)
10332 {
10333 fixS *fix = &fixes[i];
10334 assert (cur_block);
10335
10336 /* Write the fixup. */
10337 if (i != num_recs - 1)
10338 fix->fx_next = &fixes[i + 1];
10339 else
10340 fix->fx_next = NULL;
10341 fix->fx_size = 4;
10342 fix->fx_done = 0;
10343 fix->fx_frag = fragP;
43cd72b9 10344 fix->fx_where = i * (8 + 4);
e0001a05
NC
10345 fix->fx_addsy = section_symbol (cur_block->sec);
10346 fix->fx_offset = cur_block->offset;
10347 fix->fx_r_type = BFD_RELOC_32;
10348 fix->fx_file = "Internal Assembly";
10349 fix->fx_line = 0;
10350
10351 /* Write the length. */
43cd72b9 10352 md_number_to_chars (&frag_data[4 + (8+4) * i],
e0001a05 10353 cur_block->size, 4);
43cd72b9
BW
10354 md_number_to_chars (&frag_data[8 + (8+4) * i],
10355 frag_flags_to_number (&cur_block->flags),
10356 4);
e0001a05
NC
10357 cur_block = cur_block->next;
10358 }
10359 }
10360 }
10361 }
10362}
10363
10364
7fa3d080
BW
10365static segment_info_type *
10366retrieve_segment_info (segT seg)
e0001a05
NC
10367{
10368 segment_info_type *seginfo;
10369 seginfo = (segment_info_type *) bfd_get_section_userdata (stdoutput, seg);
10370 if (!seginfo)
10371 {
10372 frchainS *frchainP;
10373
10374 seginfo = (segment_info_type *) xmalloc (sizeof (*seginfo));
7fa3d080 10375 memset ((void *) seginfo, 0, sizeof (*seginfo));
e0001a05
NC
10376 seginfo->fix_root = NULL;
10377 seginfo->fix_tail = NULL;
10378 seginfo->bfd_section = seg;
10379 seginfo->sym = 0;
10380 /* We will not be dealing with these, only our special ones. */
65ec77d2 10381 bfd_set_section_userdata (stdoutput, seg, (void *) seginfo);
e0001a05
NC
10382
10383 frchainP = (frchainS *) xmalloc (sizeof (frchainS));
10384 frchainP->frch_root = NULL;
10385 frchainP->frch_last = NULL;
10386 frchainP->frch_next = NULL;
10387 frchainP->frch_seg = seg;
10388 frchainP->frch_subseg = 0;
10389 frchainP->fix_root = NULL;
10390 frchainP->fix_tail = NULL;
10391 /* Do not init the objstack. */
10392 /* obstack_begin (&frchainP->frch_obstack, chunksize); */
10393 /* frchainP->frch_frag_now = fragP; */
10394 frchainP->frch_frag_now = NULL;
10395
10396 seginfo->frchainP = frchainP;
10397 }
10398
10399 return seginfo;
10400}
10401
10402
7fa3d080
BW
10403static segT
10404retrieve_xtensa_section (char *sec_name)
e0001a05
NC
10405{
10406 bfd *abfd = stdoutput;
10407 flagword flags, out_flags, link_once_flags;
10408 segT s;
10409
10410 flags = bfd_get_section_flags (abfd, now_seg);
10411 link_once_flags = (flags & SEC_LINK_ONCE);
10412 if (link_once_flags)
10413 link_once_flags |= (flags & SEC_LINK_DUPLICATES);
10414 out_flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY | link_once_flags);
10415
10416 s = bfd_make_section_old_way (abfd, sec_name);
10417 if (s == NULL)
10418 as_bad (_("could not create section %s"), sec_name);
10419 if (!bfd_set_section_flags (abfd, s, out_flags))
10420 as_bad (_("invalid flag combination on section %s"), sec_name);
10421
10422 return s;
10423}
10424
10425
7fa3d080
BW
10426static bfd_boolean
10427section_has_property (segT sec, frag_predicate property_function)
e0001a05
NC
10428{
10429 segment_info_type *seginfo = seg_info (sec);
10430 fragS *fragP;
10431
10432 if (seginfo && seginfo->frchainP)
10433 {
10434 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10435 {
10436 if (property_function (fragP)
10437 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10438 return TRUE;
10439 }
10440 }
10441 return FALSE;
10442}
10443
10444
7fa3d080
BW
10445static bfd_boolean
10446section_has_xproperty (segT sec, frag_flags_fn property_function)
43cd72b9
BW
10447{
10448 segment_info_type *seginfo = seg_info (sec);
10449 fragS *fragP;
10450
10451 if (seginfo && seginfo->frchainP)
10452 {
10453 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10454 {
10455 frag_flags prop_flags;
10456 property_function (fragP, &prop_flags);
10457 if (!xtensa_frag_flags_is_empty (&prop_flags))
10458 return TRUE;
10459 }
10460 }
10461 return FALSE;
10462}
10463
10464
e0001a05
NC
10465/* Two types of block sections exist right now: literal and insns. */
10466
7fa3d080
BW
10467static void
10468add_xt_block_frags (segT sec,
10469 segT xt_block_sec,
10470 xtensa_block_info **xt_block,
10471 frag_predicate property_function,
10472 frag_predicate end_property_function)
e0001a05
NC
10473{
10474 segment_info_type *seg_info;
10475 segment_info_type *xt_seg_info;
10476 bfd_vma seg_offset;
10477 fragS *fragP;
10478
10479 xt_seg_info = retrieve_segment_info (xt_block_sec);
10480 seg_info = retrieve_segment_info (sec);
10481
10482 /* Build it if needed. */
10483 while (*xt_block != NULL)
10484 xt_block = &(*xt_block)->next;
10485 /* We are either at NULL at the beginning or at the end. */
10486
10487 /* Walk through the frags. */
10488 seg_offset = 0;
10489
10490 if (seg_info->frchainP)
10491 {
10492 for (fragP = seg_info->frchainP->frch_root;
10493 fragP;
10494 fragP = fragP->fr_next)
10495 {
10496 if (property_function (fragP)
10497 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10498 {
10499 if (*xt_block != NULL)
10500 {
10501 if ((*xt_block)->offset + (*xt_block)->size
10502 == fragP->fr_address)
10503 (*xt_block)->size += fragP->fr_fix;
10504 else
10505 xt_block = &((*xt_block)->next);
10506 }
10507 if (*xt_block == NULL)
10508 {
43cd72b9
BW
10509 xtensa_block_info *new_block = (xtensa_block_info *)
10510 xmalloc (sizeof (xtensa_block_info));
10511 new_block->sec = sec;
10512 new_block->offset = fragP->fr_address;
10513 new_block->size = fragP->fr_fix;
10514 new_block->next = NULL;
10515 xtensa_frag_flags_init (&new_block->flags);
10516 *xt_block = new_block;
10517 }
10518 if (end_property_function
10519 && end_property_function (fragP))
10520 {
10521 xt_block = &((*xt_block)->next);
10522 }
10523 }
10524 }
10525 }
10526}
10527
10528
10529/* Break the encapsulation of add_xt_prop_frags here. */
10530
7fa3d080
BW
10531static bfd_boolean
10532xtensa_frag_flags_is_empty (const frag_flags *prop_flags)
43cd72b9
BW
10533{
10534 if (prop_flags->is_literal
10535 || prop_flags->is_insn
10536 || prop_flags->is_data
10537 || prop_flags->is_unreachable)
10538 return FALSE;
10539 return TRUE;
10540}
10541
10542
7fa3d080
BW
10543static void
10544xtensa_frag_flags_init (frag_flags *prop_flags)
43cd72b9
BW
10545{
10546 memset (prop_flags, 0, sizeof (frag_flags));
10547}
10548
10549
7fa3d080
BW
10550static void
10551get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags)
43cd72b9
BW
10552{
10553 xtensa_frag_flags_init (prop_flags);
10554 if (fragP->tc_frag_data.is_literal)
10555 prop_flags->is_literal = TRUE;
10556 if (fragP->tc_frag_data.is_unreachable)
7fa3d080 10557 prop_flags->is_unreachable = TRUE;
43cd72b9
BW
10558 else if (fragP->tc_frag_data.is_insn)
10559 {
10560 prop_flags->is_insn = TRUE;
10561 if (fragP->tc_frag_data.is_loop_target)
10562 prop_flags->insn.is_loop_target = TRUE;
10563 if (fragP->tc_frag_data.is_branch_target)
10564 prop_flags->insn.is_branch_target = TRUE;
10565 if (fragP->tc_frag_data.is_specific_opcode
10566 || fragP->tc_frag_data.is_no_transform)
10567 prop_flags->insn.is_no_transform = TRUE;
10568 if (fragP->tc_frag_data.is_no_density)
10569 prop_flags->insn.is_no_density = TRUE;
10570 if (fragP->tc_frag_data.use_absolute_literals)
10571 prop_flags->insn.is_abslit = TRUE;
10572 }
10573 if (fragP->tc_frag_data.is_align)
10574 {
10575 prop_flags->is_align = TRUE;
10576 prop_flags->alignment = fragP->tc_frag_data.alignment;
10577 if (xtensa_frag_flags_is_empty (prop_flags))
10578 prop_flags->is_data = TRUE;
10579 }
10580}
10581
10582
7fa3d080
BW
10583static bfd_vma
10584frag_flags_to_number (const frag_flags *prop_flags)
43cd72b9
BW
10585{
10586 bfd_vma num = 0;
10587 if (prop_flags->is_literal)
10588 num |= XTENSA_PROP_LITERAL;
10589 if (prop_flags->is_insn)
10590 num |= XTENSA_PROP_INSN;
10591 if (prop_flags->is_data)
10592 num |= XTENSA_PROP_DATA;
10593 if (prop_flags->is_unreachable)
10594 num |= XTENSA_PROP_UNREACHABLE;
10595 if (prop_flags->insn.is_loop_target)
10596 num |= XTENSA_PROP_INSN_LOOP_TARGET;
10597 if (prop_flags->insn.is_branch_target)
10598 {
10599 num |= XTENSA_PROP_INSN_BRANCH_TARGET;
10600 num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority);
10601 }
10602
10603 if (prop_flags->insn.is_no_density)
10604 num |= XTENSA_PROP_INSN_NO_DENSITY;
10605 if (prop_flags->insn.is_no_transform)
10606 num |= XTENSA_PROP_INSN_NO_TRANSFORM;
10607 if (prop_flags->insn.is_no_reorder)
10608 num |= XTENSA_PROP_INSN_NO_REORDER;
10609 if (prop_flags->insn.is_abslit)
10610 num |= XTENSA_PROP_INSN_ABSLIT;
10611
10612 if (prop_flags->is_align)
10613 {
10614 num |= XTENSA_PROP_ALIGN;
10615 num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment);
10616 }
10617
10618 return num;
10619}
10620
10621
10622static bfd_boolean
7fa3d080
BW
10623xtensa_frag_flags_combinable (const frag_flags *prop_flags_1,
10624 const frag_flags *prop_flags_2)
43cd72b9
BW
10625{
10626 /* Cannot combine with an end marker. */
10627
10628 if (prop_flags_1->is_literal != prop_flags_2->is_literal)
10629 return FALSE;
10630 if (prop_flags_1->is_insn != prop_flags_2->is_insn)
10631 return FALSE;
10632 if (prop_flags_1->is_data != prop_flags_2->is_data)
10633 return FALSE;
10634
10635 if (prop_flags_1->is_insn)
10636 {
10637 /* Properties of the beginning of the frag. */
10638 if (prop_flags_2->insn.is_loop_target)
10639 return FALSE;
10640 if (prop_flags_2->insn.is_branch_target)
10641 return FALSE;
10642 if (prop_flags_1->insn.is_no_density !=
10643 prop_flags_2->insn.is_no_density)
10644 return FALSE;
10645 if (prop_flags_1->insn.is_no_transform !=
10646 prop_flags_2->insn.is_no_transform)
10647 return FALSE;
10648 if (prop_flags_1->insn.is_no_reorder !=
10649 prop_flags_2->insn.is_no_reorder)
10650 return FALSE;
10651 if (prop_flags_1->insn.is_abslit !=
10652 prop_flags_2->insn.is_abslit)
10653 return FALSE;
10654 }
10655
10656 if (prop_flags_1->is_align)
10657 return FALSE;
10658
10659 return TRUE;
10660}
10661
10662
7fa3d080
BW
10663static bfd_vma
10664xt_block_aligned_size (const xtensa_block_info *xt_block)
43cd72b9
BW
10665{
10666 bfd_vma end_addr;
d77b99c9 10667 unsigned align_bits;
43cd72b9
BW
10668
10669 if (!xt_block->flags.is_align)
10670 return xt_block->size;
10671
10672 end_addr = xt_block->offset + xt_block->size;
10673 align_bits = xt_block->flags.alignment;
10674 end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits;
10675 return end_addr - xt_block->offset;
10676}
10677
10678
10679static bfd_boolean
7fa3d080
BW
10680xtensa_xt_block_combine (xtensa_block_info *xt_block,
10681 const xtensa_block_info *xt_block_2)
43cd72b9
BW
10682{
10683 if (xt_block->sec != xt_block_2->sec)
10684 return FALSE;
10685 if (xt_block->offset + xt_block_aligned_size (xt_block)
10686 != xt_block_2->offset)
10687 return FALSE;
10688
10689 if (xt_block_2->size == 0
10690 && (!xt_block_2->flags.is_unreachable
10691 || xt_block->flags.is_unreachable))
10692 {
10693 if (xt_block_2->flags.is_align
10694 && xt_block->flags.is_align)
10695 {
10696 /* Nothing needed. */
10697 if (xt_block->flags.alignment >= xt_block_2->flags.alignment)
10698 return TRUE;
10699 }
10700 else
10701 {
10702 if (xt_block_2->flags.is_align)
10703 {
10704 /* Push alignment to previous entry. */
10705 xt_block->flags.is_align = xt_block_2->flags.is_align;
10706 xt_block->flags.alignment = xt_block_2->flags.alignment;
10707 }
10708 return TRUE;
10709 }
10710 }
10711 if (!xtensa_frag_flags_combinable (&xt_block->flags,
10712 &xt_block_2->flags))
10713 return FALSE;
10714
10715 xt_block->size += xt_block_2->size;
10716
10717 if (xt_block_2->flags.is_align)
10718 {
10719 xt_block->flags.is_align = TRUE;
10720 xt_block->flags.alignment = xt_block_2->flags.alignment;
10721 }
10722
10723 return TRUE;
10724}
10725
10726
7fa3d080
BW
10727static void
10728add_xt_prop_frags (segT sec,
10729 segT xt_block_sec,
10730 xtensa_block_info **xt_block,
10731 frag_flags_fn property_function)
43cd72b9
BW
10732{
10733 segment_info_type *seg_info;
10734 segment_info_type *xt_seg_info;
10735 bfd_vma seg_offset;
10736 fragS *fragP;
10737
10738 xt_seg_info = retrieve_segment_info (xt_block_sec);
10739 seg_info = retrieve_segment_info (sec);
10740 /* Build it if needed. */
10741 while (*xt_block != NULL)
10742 {
10743 xt_block = &(*xt_block)->next;
10744 }
10745 /* We are either at NULL at the beginning or at the end. */
10746
10747 /* Walk through the frags. */
10748 seg_offset = 0;
10749
10750 if (seg_info->frchainP)
10751 {
10752 for (fragP = seg_info->frchainP->frch_root; fragP;
10753 fragP = fragP->fr_next)
10754 {
10755 xtensa_block_info tmp_block;
10756 tmp_block.sec = sec;
10757 tmp_block.offset = fragP->fr_address;
10758 tmp_block.size = fragP->fr_fix;
10759 tmp_block.next = NULL;
10760 property_function (fragP, &tmp_block.flags);
10761
10762 if (!xtensa_frag_flags_is_empty (&tmp_block.flags))
10763 /* && fragP->fr_fix != 0) */
10764 {
10765 if ((*xt_block) == NULL
10766 || !xtensa_xt_block_combine (*xt_block, &tmp_block))
10767 {
10768 xtensa_block_info *new_block;
10769 if ((*xt_block) != NULL)
10770 xt_block = &(*xt_block)->next;
10771 new_block = (xtensa_block_info *)
10772 xmalloc (sizeof (xtensa_block_info));
10773 *new_block = tmp_block;
10774 *xt_block = new_block;
10775 }
10776 }
10777 }
10778 }
10779}
10780
10781\f
10782/* op_placement_info_table */
10783
10784/* op_placement_info makes it easier to determine which
10785 ops can go in which slots. */
10786
10787static void
7fa3d080 10788init_op_placement_info_table (void)
43cd72b9
BW
10789{
10790 xtensa_isa isa = xtensa_default_isa;
10791 xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa);
10792 xtensa_opcode opcode;
10793 xtensa_format fmt;
10794 int slot;
10795 int num_opcodes = xtensa_isa_num_opcodes (isa);
10796
10797 op_placement_table = (op_placement_info_table)
10798 xmalloc (sizeof (op_placement_info) * num_opcodes);
10799 assert (xtensa_isa_num_formats (isa) < MAX_FORMATS);
10800
10801 for (opcode = 0; opcode < num_opcodes; opcode++)
10802 {
10803 op_placement_info *opi = &op_placement_table[opcode];
10804 /* FIXME: Make tinsn allocation dynamic. */
10805 if (xtensa_opcode_num_operands (isa, opcode) >= MAX_INSN_ARGS)
10806 as_fatal (_("too many operands in instruction"));
43cd72b9
BW
10807 opi->narrowest = XTENSA_UNDEFINED;
10808 opi->narrowest_size = 0x7F;
b2d179be 10809 opi->narrowest_slot = 0;
43cd72b9
BW
10810 opi->formats = 0;
10811 opi->num_formats = 0;
10812 opi->issuef = 0;
10813 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
10814 {
10815 opi->slots[fmt] = 0;
10816 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
10817 {
10818 if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0)
10819 {
10820 int fmt_length = xtensa_format_length (isa, fmt);
10821 opi->issuef++;
10822 set_bit (fmt, opi->formats);
10823 set_bit (slot, opi->slots[fmt]);
a02728c8
BW
10824 if (fmt_length < opi->narrowest_size
10825 || (fmt_length == opi->narrowest_size
10826 && (xtensa_format_num_slots (isa, fmt)
10827 < xtensa_format_num_slots (isa,
10828 opi->narrowest))))
43cd72b9
BW
10829 {
10830 opi->narrowest = fmt;
10831 opi->narrowest_size = fmt_length;
b2d179be 10832 opi->narrowest_slot = slot;
43cd72b9 10833 }
e0001a05
NC
10834 }
10835 }
43cd72b9
BW
10836 if (opi->formats)
10837 opi->num_formats++;
e0001a05
NC
10838 }
10839 }
43cd72b9
BW
10840 xtensa_insnbuf_free (isa, ibuf);
10841}
10842
10843
10844bfd_boolean
7fa3d080 10845opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot)
43cd72b9
BW
10846{
10847 return bit_is_set (slot, op_placement_table[opcode].slots[fmt]);
10848}
10849
10850
10851/* If the opcode is available in a single slot format, return its size. */
10852
7fa3d080
BW
10853static int
10854xg_get_single_size (xtensa_opcode opcode)
43cd72b9 10855{
b2d179be 10856 return op_placement_table[opcode].narrowest_size;
43cd72b9
BW
10857}
10858
10859
7fa3d080
BW
10860static xtensa_format
10861xg_get_single_format (xtensa_opcode opcode)
43cd72b9 10862{
b2d179be
BW
10863 return op_placement_table[opcode].narrowest;
10864}
10865
10866
10867static int
10868xg_get_single_slot (xtensa_opcode opcode)
10869{
10870 return op_placement_table[opcode].narrowest_slot;
e0001a05
NC
10871}
10872
10873\f
10874/* Instruction Stack Functions (from "xtensa-istack.h"). */
10875
10876void
7fa3d080 10877istack_init (IStack *stack)
e0001a05
NC
10878{
10879 memset (stack, 0, sizeof (IStack));
10880 stack->ninsn = 0;
10881}
10882
10883
10884bfd_boolean
7fa3d080 10885istack_empty (IStack *stack)
e0001a05
NC
10886{
10887 return (stack->ninsn == 0);
10888}
10889
10890
10891bfd_boolean
7fa3d080 10892istack_full (IStack *stack)
e0001a05
NC
10893{
10894 return (stack->ninsn == MAX_ISTACK);
10895}
10896
10897
10898/* Return a pointer to the top IStack entry.
43cd72b9 10899 It is an error to call this if istack_empty () is TRUE. */
e0001a05
NC
10900
10901TInsn *
7fa3d080 10902istack_top (IStack *stack)
e0001a05
NC
10903{
10904 int rec = stack->ninsn - 1;
10905 assert (!istack_empty (stack));
10906 return &stack->insn[rec];
10907}
10908
10909
10910/* Add a new TInsn to an IStack.
43cd72b9 10911 It is an error to call this if istack_full () is TRUE. */
e0001a05
NC
10912
10913void
7fa3d080 10914istack_push (IStack *stack, TInsn *insn)
e0001a05
NC
10915{
10916 int rec = stack->ninsn;
10917 assert (!istack_full (stack));
43cd72b9 10918 stack->insn[rec] = *insn;
e0001a05
NC
10919 stack->ninsn++;
10920}
10921
10922
10923/* Clear space for the next TInsn on the IStack and return a pointer
43cd72b9 10924 to it. It is an error to call this if istack_full () is TRUE. */
e0001a05
NC
10925
10926TInsn *
7fa3d080 10927istack_push_space (IStack *stack)
e0001a05
NC
10928{
10929 int rec = stack->ninsn;
10930 TInsn *insn;
10931 assert (!istack_full (stack));
10932 insn = &stack->insn[rec];
10933 memset (insn, 0, sizeof (TInsn));
10934 stack->ninsn++;
10935 return insn;
10936}
10937
10938
10939/* Remove the last pushed instruction. It is an error to call this if
43cd72b9 10940 istack_empty () returns TRUE. */
e0001a05
NC
10941
10942void
7fa3d080 10943istack_pop (IStack *stack)
e0001a05
NC
10944{
10945 int rec = stack->ninsn - 1;
10946 assert (!istack_empty (stack));
10947 stack->ninsn--;
10948 memset (&stack->insn[rec], 0, sizeof (TInsn));
10949}
10950
10951\f
10952/* TInsn functions. */
10953
10954void
7fa3d080 10955tinsn_init (TInsn *dst)
e0001a05
NC
10956{
10957 memset (dst, 0, sizeof (TInsn));
10958}
10959
10960
e0001a05
NC
10961/* Get the ``num''th token of the TInsn.
10962 It is illegal to call this if num > insn->ntoks. */
10963
10964expressionS *
7fa3d080 10965tinsn_get_tok (TInsn *insn, int num)
e0001a05
NC
10966{
10967 assert (num < insn->ntok);
10968 return &insn->tok[num];
10969}
10970
10971
43cd72b9 10972/* Return TRUE if ANY of the operands in the insn are symbolic. */
e0001a05
NC
10973
10974static bfd_boolean
7fa3d080 10975tinsn_has_symbolic_operands (const TInsn *insn)
e0001a05
NC
10976{
10977 int i;
10978 int n = insn->ntok;
10979
10980 assert (insn->insn_type == ITYPE_INSN);
10981
10982 for (i = 0; i < n; ++i)
10983 {
10984 switch (insn->tok[i].X_op)
10985 {
10986 case O_register:
10987 case O_constant:
10988 break;
10989 default:
10990 return TRUE;
10991 }
10992 }
10993 return FALSE;
10994}
10995
10996
10997bfd_boolean
7fa3d080 10998tinsn_has_invalid_symbolic_operands (const TInsn *insn)
e0001a05 10999{
43cd72b9 11000 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
11001 int i;
11002 int n = insn->ntok;
11003
11004 assert (insn->insn_type == ITYPE_INSN);
11005
11006 for (i = 0; i < n; ++i)
11007 {
11008 switch (insn->tok[i].X_op)
11009 {
11010 case O_register:
11011 case O_constant:
11012 break;
43cd72b9
BW
11013 case O_big:
11014 case O_illegal:
11015 case O_absent:
11016 /* Errors for these types are caught later. */
11017 break;
11018 case O_hi16:
11019 case O_lo16:
e0001a05 11020 default:
43cd72b9
BW
11021 /* Symbolic immediates are only allowed on the last immediate
11022 operand. At this time, CONST16 is the only opcode where we
e7da6241 11023 support non-PC-relative relocations. */
43cd72b9
BW
11024 if (i != get_relaxable_immed (insn->opcode)
11025 || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1
11026 && insn->opcode != xtensa_const16_opcode))
11027 {
431ad2d0 11028 as_bad (_("invalid symbolic operand"));
43cd72b9
BW
11029 return TRUE;
11030 }
e0001a05
NC
11031 }
11032 }
11033 return FALSE;
11034}
11035
11036
11037/* For assembly code with complex expressions (e.g. subtraction),
11038 we have to build them in the literal pool so that
11039 their results are calculated correctly after relaxation.
11040 The relaxation only handles expressions that
11041 boil down to SYMBOL + OFFSET. */
11042
11043static bfd_boolean
7fa3d080 11044tinsn_has_complex_operands (const TInsn *insn)
e0001a05
NC
11045{
11046 int i;
11047 int n = insn->ntok;
11048 assert (insn->insn_type == ITYPE_INSN);
11049 for (i = 0; i < n; ++i)
11050 {
11051 switch (insn->tok[i].X_op)
11052 {
11053 case O_register:
11054 case O_constant:
11055 case O_symbol:
43cd72b9
BW
11056 case O_lo16:
11057 case O_hi16:
e0001a05
NC
11058 break;
11059 default:
11060 return TRUE;
11061 }
11062 }
11063 return FALSE;
11064}
11065
11066
b2d179be
BW
11067/* Encode a TInsn opcode and its constant operands into slotbuf.
11068 Return TRUE if there is a symbol in the immediate field. This
11069 function assumes that:
11070 1) The number of operands are correct.
11071 2) The insn_type is ITYPE_INSN.
11072 3) The opcode can be encoded in the specified format and slot.
11073 4) Operands are either O_constant or O_symbol, and all constants fit. */
43cd72b9
BW
11074
11075static bfd_boolean
7fa3d080
BW
11076tinsn_to_slotbuf (xtensa_format fmt,
11077 int slot,
11078 TInsn *tinsn,
11079 xtensa_insnbuf slotbuf)
43cd72b9
BW
11080{
11081 xtensa_isa isa = xtensa_default_isa;
11082 xtensa_opcode opcode = tinsn->opcode;
11083 bfd_boolean has_fixup = FALSE;
11084 int noperands = xtensa_opcode_num_operands (isa, opcode);
11085 int i;
11086
43cd72b9
BW
11087 assert (tinsn->insn_type == ITYPE_INSN);
11088 if (noperands != tinsn->ntok)
11089 as_fatal (_("operand number mismatch"));
11090
11091 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode))
11092 {
11093 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
11094 xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt));
11095 return FALSE;
11096 }
11097
11098 for (i = 0; i < noperands; i++)
11099 {
11100 expressionS *expr = &tinsn->tok[i];
d77b99c9
BW
11101 int rc;
11102 unsigned line;
43cd72b9
BW
11103 char *file_name;
11104 uint32 opnd_value;
11105
11106 switch (expr->X_op)
11107 {
11108 case O_register:
11109 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11110 break;
11111 /* The register number has already been checked in
11112 expression_maybe_register, so we don't need to check here. */
11113 opnd_value = expr->X_add_number;
11114 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
11115 rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf,
11116 opnd_value);
11117 if (rc != 0)
11118 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa));
11119 break;
11120
11121 case O_constant:
11122 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11123 break;
11124 as_where (&file_name, &line);
11125 /* It is a constant and we called this function
11126 then we have to try to fit it. */
11127 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i,
e0001a05
NC
11128 expr->X_add_number, file_name, line);
11129 break;
11130
e0001a05
NC
11131 default:
11132 has_fixup = TRUE;
11133 break;
11134 }
11135 }
43cd72b9 11136
e0001a05
NC
11137 return has_fixup;
11138}
11139
11140
b2d179be
BW
11141/* Encode a single TInsn into an insnbuf. If the opcode can only be encoded
11142 into a multi-slot instruction, fill the other slots with NOPs.
11143 Return TRUE if there is a symbol in the immediate field. See also the
11144 assumptions listed for tinsn_to_slotbuf. */
11145
11146static bfd_boolean
11147tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf)
11148{
11149 static xtensa_insnbuf slotbuf = 0;
11150 static vliw_insn vinsn;
11151 xtensa_isa isa = xtensa_default_isa;
11152 bfd_boolean has_fixup = FALSE;
11153 int i;
11154
11155 if (!slotbuf)
11156 {
11157 slotbuf = xtensa_insnbuf_alloc (isa);
11158 xg_init_vinsn (&vinsn);
11159 }
11160
11161 xg_clear_vinsn (&vinsn);
11162
11163 bundle_tinsn (tinsn, &vinsn);
11164
11165 xtensa_format_encode (isa, vinsn.format, insnbuf);
11166
11167 for (i = 0; i < vinsn.num_slots; i++)
11168 {
11169 /* Only one slot may have a fix-up because the rest contains NOPs. */
11170 has_fixup |=
11171 tinsn_to_slotbuf (vinsn.format, i, &vinsn.slots[i], vinsn.slotbuf[i]);
11172 xtensa_format_set_slot (isa, vinsn.format, i, insnbuf, vinsn.slotbuf[i]);
11173 }
11174
11175 return has_fixup;
11176}
11177
11178
43cd72b9 11179/* Check the instruction arguments. Return TRUE on failure. */
e0001a05 11180
7fa3d080
BW
11181static bfd_boolean
11182tinsn_check_arguments (const TInsn *insn)
e0001a05
NC
11183{
11184 xtensa_isa isa = xtensa_default_isa;
11185 xtensa_opcode opcode = insn->opcode;
11186
11187 if (opcode == XTENSA_UNDEFINED)
11188 {
11189 as_bad (_("invalid opcode"));
11190 return TRUE;
11191 }
11192
43cd72b9 11193 if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok)
e0001a05
NC
11194 {
11195 as_bad (_("too few operands"));
11196 return TRUE;
11197 }
11198
43cd72b9 11199 if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok)
e0001a05
NC
11200 {
11201 as_bad (_("too many operands"));
11202 return TRUE;
11203 }
11204 return FALSE;
11205}
11206
11207
11208/* Load an instruction from its encoded form. */
11209
11210static void
7fa3d080 11211tinsn_from_chars (TInsn *tinsn, char *f, int slot)
e0001a05 11212{
43cd72b9 11213 vliw_insn vinsn;
e0001a05 11214
43cd72b9
BW
11215 xg_init_vinsn (&vinsn);
11216 vinsn_from_chars (&vinsn, f);
11217
11218 *tinsn = vinsn.slots[slot];
11219 xg_free_vinsn (&vinsn);
11220}
e0001a05 11221
43cd72b9
BW
11222
11223static void
7fa3d080
BW
11224tinsn_from_insnbuf (TInsn *tinsn,
11225 xtensa_insnbuf slotbuf,
11226 xtensa_format fmt,
11227 int slot)
43cd72b9
BW
11228{
11229 int i;
11230 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
11231
11232 /* Find the immed. */
43cd72b9
BW
11233 tinsn_init (tinsn);
11234 tinsn->insn_type = ITYPE_INSN;
11235 tinsn->is_specific_opcode = FALSE; /* must not be specific */
11236 tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
11237 tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode);
11238 for (i = 0; i < tinsn->ntok; i++)
e0001a05 11239 {
43cd72b9
BW
11240 set_expr_const (&tinsn->tok[i],
11241 xtensa_insnbuf_get_operand (slotbuf, fmt, slot,
11242 tinsn->opcode, i));
e0001a05
NC
11243 }
11244}
11245
11246
11247/* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
11248
11249static void
7fa3d080 11250tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot)
e0001a05 11251{
43cd72b9 11252 xtensa_opcode opcode = tinsn->opcode;
e0001a05
NC
11253 int opnum;
11254
43cd72b9 11255 if (fragP->tc_frag_data.slot_symbols[slot])
e0001a05
NC
11256 {
11257 opnum = get_relaxable_immed (opcode);
43cd72b9 11258 assert (opnum >= 0);
e7da6241
BW
11259 set_expr_symbol_offset (&tinsn->tok[opnum],
11260 fragP->tc_frag_data.slot_symbols[slot],
11261 fragP->tc_frag_data.slot_offsets[slot]);
e0001a05
NC
11262 }
11263}
11264
11265
11266static int
7fa3d080 11267get_num_stack_text_bytes (IStack *istack)
e0001a05
NC
11268{
11269 int i;
11270 int text_bytes = 0;
11271
11272 for (i = 0; i < istack->ninsn; i++)
11273 {
43cd72b9
BW
11274 TInsn *tinsn = &istack->insn[i];
11275 if (tinsn->insn_type == ITYPE_INSN)
11276 text_bytes += xg_get_single_size (tinsn->opcode);
e0001a05
NC
11277 }
11278 return text_bytes;
11279}
11280
11281
11282static int
7fa3d080 11283get_num_stack_literal_bytes (IStack *istack)
e0001a05
NC
11284{
11285 int i;
11286 int lit_bytes = 0;
11287
11288 for (i = 0; i < istack->ninsn; i++)
11289 {
43cd72b9
BW
11290 TInsn *tinsn = &istack->insn[i];
11291 if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1)
e0001a05
NC
11292 lit_bytes += 4;
11293 }
11294 return lit_bytes;
11295}
11296
43cd72b9
BW
11297\f
11298/* vliw_insn functions. */
11299
7fa3d080
BW
11300static void
11301xg_init_vinsn (vliw_insn *v)
43cd72b9
BW
11302{
11303 int i;
11304 xtensa_isa isa = xtensa_default_isa;
11305
11306 xg_clear_vinsn (v);
11307
11308 v->insnbuf = xtensa_insnbuf_alloc (isa);
11309 if (v->insnbuf == NULL)
11310 as_fatal (_("out of memory"));
11311
11312 for (i = 0; i < MAX_SLOTS; i++)
11313 {
43cd72b9
BW
11314 v->slotbuf[i] = xtensa_insnbuf_alloc (isa);
11315 if (v->slotbuf[i] == NULL)
11316 as_fatal (_("out of memory"));
11317 }
11318}
11319
11320
7fa3d080
BW
11321static void
11322xg_clear_vinsn (vliw_insn *v)
43cd72b9
BW
11323{
11324 int i;
65738a7d
BW
11325
11326 memset (v, 0, offsetof (vliw_insn, insnbuf));
11327
43cd72b9
BW
11328 v->format = XTENSA_UNDEFINED;
11329 v->num_slots = 0;
11330 v->inside_bundle = FALSE;
11331
11332 if (xt_saved_debug_type != DEBUG_NONE)
11333 debug_type = xt_saved_debug_type;
11334
11335 for (i = 0; i < MAX_SLOTS; i++)
65738a7d 11336 v->slots[i].opcode = XTENSA_UNDEFINED;
43cd72b9
BW
11337}
11338
11339
7fa3d080
BW
11340static bfd_boolean
11341vinsn_has_specific_opcodes (vliw_insn *v)
43cd72b9
BW
11342{
11343 int i;
c138bc38 11344
43cd72b9
BW
11345 for (i = 0; i < v->num_slots; i++)
11346 {
11347 if (v->slots[i].is_specific_opcode)
11348 return TRUE;
11349 }
11350 return FALSE;
11351}
11352
11353
7fa3d080
BW
11354static void
11355xg_free_vinsn (vliw_insn *v)
43cd72b9
BW
11356{
11357 int i;
11358 xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf);
11359 for (i = 0; i < MAX_SLOTS; i++)
11360 xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]);
11361}
11362
11363
e7da6241
BW
11364/* Encode a vliw_insn into an insnbuf. Return TRUE if there are any symbolic
11365 operands. See also the assumptions listed for tinsn_to_slotbuf. */
43cd72b9
BW
11366
11367static bfd_boolean
7fa3d080
BW
11368vinsn_to_insnbuf (vliw_insn *vinsn,
11369 char *frag_offset,
11370 fragS *fragP,
11371 bfd_boolean record_fixup)
43cd72b9
BW
11372{
11373 xtensa_isa isa = xtensa_default_isa;
11374 xtensa_format fmt = vinsn->format;
11375 xtensa_insnbuf insnbuf = vinsn->insnbuf;
11376 int slot;
11377 bfd_boolean has_fixup = FALSE;
11378
11379 xtensa_format_encode (isa, fmt, insnbuf);
11380
11381 for (slot = 0; slot < vinsn->num_slots; slot++)
11382 {
11383 TInsn *tinsn = &vinsn->slots[slot];
11384 bfd_boolean tinsn_has_fixup =
11385 tinsn_to_slotbuf (vinsn->format, slot, tinsn,
11386 vinsn->slotbuf[slot]);
11387
11388 xtensa_format_set_slot (isa, fmt, slot,
11389 insnbuf, vinsn->slotbuf[slot]);
e7da6241 11390 if (tinsn_has_fixup)
43cd72b9
BW
11391 {
11392 int i;
11393 xtensa_opcode opcode = tinsn->opcode;
11394 int noperands = xtensa_opcode_num_operands (isa, opcode);
11395 has_fixup = TRUE;
11396
11397 for (i = 0; i < noperands; i++)
11398 {
11399 expressionS* expr = &tinsn->tok[i];
11400 switch (expr->X_op)
11401 {
11402 case O_symbol:
11403 case O_lo16:
11404 case O_hi16:
11405 if (get_relaxable_immed (opcode) == i)
11406 {
e7da6241
BW
11407 /* Add a fix record for the instruction, except if this
11408 function is being called prior to relaxation, i.e.,
11409 if record_fixup is false, and the instruction might
11410 be relaxed later. */
11411 if (record_fixup
11412 || tinsn->is_specific_opcode
11413 || !xg_is_relaxable_insn (tinsn, 0))
43cd72b9 11414 {
e7da6241
BW
11415 xg_add_opcode_fix (tinsn, i, fmt, slot, expr, fragP,
11416 frag_offset - fragP->fr_literal);
43cd72b9
BW
11417 }
11418 else
11419 {
e7da6241
BW
11420 if (expr->X_op != O_symbol)
11421 as_bad (_("invalid operand"));
43cd72b9
BW
11422 tinsn->symbol = expr->X_add_symbol;
11423 tinsn->offset = expr->X_add_number;
11424 }
11425 }
11426 else
e7da6241 11427 as_bad (_("symbolic operand not allowed"));
43cd72b9
BW
11428 break;
11429
11430 case O_constant:
11431 case O_register:
11432 break;
11433
43cd72b9 11434 default:
e7da6241 11435 as_bad (_("expression too complex"));
43cd72b9
BW
11436 break;
11437 }
11438 }
11439 }
11440 }
11441
11442 return has_fixup;
11443}
11444
11445
11446static void
7fa3d080 11447vinsn_from_chars (vliw_insn *vinsn, char *f)
43cd72b9
BW
11448{
11449 static xtensa_insnbuf insnbuf = NULL;
11450 static xtensa_insnbuf slotbuf = NULL;
11451 int i;
11452 xtensa_format fmt;
11453 xtensa_isa isa = xtensa_default_isa;
11454
11455 if (!insnbuf)
11456 {
11457 insnbuf = xtensa_insnbuf_alloc (isa);
11458 slotbuf = xtensa_insnbuf_alloc (isa);
11459 }
11460
d77b99c9 11461 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0);
43cd72b9
BW
11462 fmt = xtensa_format_decode (isa, insnbuf);
11463 if (fmt == XTENSA_UNDEFINED)
11464 as_fatal (_("cannot decode instruction format"));
11465 vinsn->format = fmt;
11466 vinsn->num_slots = xtensa_format_num_slots (isa, fmt);
11467
11468 for (i = 0; i < vinsn->num_slots; i++)
11469 {
11470 TInsn *tinsn = &vinsn->slots[i];
11471 xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf);
11472 tinsn_from_insnbuf (tinsn, slotbuf, fmt, i);
11473 }
11474}
11475
e0001a05
NC
11476\f
11477/* Expression utilities. */
11478
43cd72b9 11479/* Return TRUE if the expression is an integer constant. */
e0001a05
NC
11480
11481bfd_boolean
7fa3d080 11482expr_is_const (const expressionS *s)
e0001a05
NC
11483{
11484 return (s->X_op == O_constant);
11485}
11486
11487
11488/* Get the expression constant.
43cd72b9 11489 Calling this is illegal if expr_is_const () returns TRUE. */
e0001a05
NC
11490
11491offsetT
7fa3d080 11492get_expr_const (const expressionS *s)
e0001a05
NC
11493{
11494 assert (expr_is_const (s));
11495 return s->X_add_number;
11496}
11497
11498
11499/* Set the expression to a constant value. */
11500
11501void
7fa3d080 11502set_expr_const (expressionS *s, offsetT val)
e0001a05
NC
11503{
11504 s->X_op = O_constant;
11505 s->X_add_number = val;
11506 s->X_add_symbol = NULL;
11507 s->X_op_symbol = NULL;
11508}
11509
11510
43cd72b9 11511bfd_boolean
7fa3d080 11512expr_is_register (const expressionS *s)
43cd72b9
BW
11513{
11514 return (s->X_op == O_register);
11515}
11516
11517
11518/* Get the expression constant.
11519 Calling this is illegal if expr_is_const () returns TRUE. */
11520
11521offsetT
7fa3d080 11522get_expr_register (const expressionS *s)
43cd72b9
BW
11523{
11524 assert (expr_is_register (s));
11525 return s->X_add_number;
11526}
11527
11528
e0001a05
NC
11529/* Set the expression to a symbol + constant offset. */
11530
11531void
7fa3d080 11532set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset)
e0001a05
NC
11533{
11534 s->X_op = O_symbol;
11535 s->X_add_symbol = sym;
11536 s->X_op_symbol = NULL; /* unused */
11537 s->X_add_number = offset;
11538}
11539
11540
43cd72b9
BW
11541/* Return TRUE if the two expressions are equal. */
11542
e0001a05 11543bfd_boolean
7fa3d080 11544expr_is_equal (expressionS *s1, expressionS *s2)
e0001a05
NC
11545{
11546 if (s1->X_op != s2->X_op)
11547 return FALSE;
11548 if (s1->X_add_symbol != s2->X_add_symbol)
11549 return FALSE;
11550 if (s1->X_op_symbol != s2->X_op_symbol)
11551 return FALSE;
11552 if (s1->X_add_number != s2->X_add_number)
11553 return FALSE;
11554 return TRUE;
11555}
11556
11557
11558static void
7fa3d080 11559copy_expr (expressionS *dst, const expressionS *src)
e0001a05
NC
11560{
11561 memcpy (dst, src, sizeof (expressionS));
11562}
11563
11564\f
9456465c 11565/* Support for the "--rename-section" option. */
e0001a05
NC
11566
11567struct rename_section_struct
11568{
11569 char *old_name;
11570 char *new_name;
11571 struct rename_section_struct *next;
11572};
11573
11574static struct rename_section_struct *section_rename;
11575
11576
9456465c
BW
11577/* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
11578 entries to the section_rename list. Note: Specifying multiple
11579 renamings separated by colons is not documented and is retained only
11580 for backward compatibility. */
e0001a05 11581
7fa3d080
BW
11582static void
11583build_section_rename (const char *arg)
e0001a05 11584{
9456465c 11585 struct rename_section_struct *r;
e0001a05
NC
11586 char *this_arg = NULL;
11587 char *next_arg = NULL;
11588
9456465c 11589 for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg)
e0001a05 11590 {
9456465c
BW
11591 char *old_name, *new_name;
11592
e0001a05
NC
11593 if (this_arg)
11594 {
11595 next_arg = strchr (this_arg, ':');
11596 if (next_arg)
11597 {
11598 *next_arg = '\0';
11599 next_arg++;
11600 }
11601 }
e0001a05 11602
9456465c
BW
11603 old_name = this_arg;
11604 new_name = strchr (this_arg, '=');
e0001a05 11605
9456465c
BW
11606 if (*old_name == '\0')
11607 {
11608 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
11609 continue;
11610 }
11611 if (!new_name || new_name[1] == '\0')
11612 {
11613 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
11614 old_name);
11615 continue;
11616 }
11617 *new_name = '\0';
11618 new_name++;
e0001a05 11619
9456465c
BW
11620 /* Check for invalid section renaming. */
11621 for (r = section_rename; r != NULL; r = r->next)
11622 {
11623 if (strcmp (r->old_name, old_name) == 0)
11624 as_bad (_("section %s renamed multiple times"), old_name);
11625 if (strcmp (r->new_name, new_name) == 0)
11626 as_bad (_("multiple sections remapped to output section %s"),
11627 new_name);
11628 }
e0001a05 11629
9456465c
BW
11630 /* Now add it. */
11631 r = (struct rename_section_struct *)
11632 xmalloc (sizeof (struct rename_section_struct));
11633 r->old_name = xstrdup (old_name);
11634 r->new_name = xstrdup (new_name);
11635 r->next = section_rename;
11636 section_rename = r;
e0001a05 11637 }
e0001a05
NC
11638}
11639
11640
9456465c
BW
11641char *
11642xtensa_section_rename (char *name)
e0001a05
NC
11643{
11644 struct rename_section_struct *r = section_rename;
11645
11646 for (r = section_rename; r != NULL; r = r->next)
43cd72b9
BW
11647 {
11648 if (strcmp (r->old_name, name) == 0)
11649 return r->new_name;
11650 }
e0001a05
NC
11651
11652 return name;
11653}
This page took 0.785944 seconds and 4 git commands to generate.