Update year range in copyright notice of all files owned by the GDB project.
[deliverable/binutils-gdb.git] / gas / config / tc-xtensa.c
CommitLineData
e0001a05 1/* tc-xtensa.c -- Assemble Xtensa instructions.
4b95cf5c 2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
e0001a05
NC
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
4b4da160
NC
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
e0001a05 20
e0001a05 21#include "as.h"
df7b86aa 22#include <limits.h>
e0001a05
NC
23#include "sb.h"
24#include "safe-ctype.h"
25#include "tc-xtensa.h"
e0001a05
NC
26#include "subsegs.h"
27#include "xtensa-relax.h"
cda2eb9e 28#include "dwarf2dbg.h"
b224e962 29#include "xtensa-istack.h"
e0001a05
NC
30#include "struc-symbol.h"
31#include "xtensa-config.h"
32
2caa7ca0
BW
33/* Provide default values for new configuration settings. */
34#ifndef XSHAL_ABI
35#define XSHAL_ABI 0
36#endif
37
e0001a05
NC
38#ifndef uint32
39#define uint32 unsigned int
40#endif
41#ifndef int32
42#define int32 signed int
43#endif
44
45/* Notes:
46
e0001a05
NC
47 Naming conventions (used somewhat inconsistently):
48 The xtensa_ functions are exported
49 The xg_ functions are internal
50
51 We also have a couple of different extensibility mechanisms.
52 1) The idiom replacement:
53 This is used when a line is first parsed to
54 replace an instruction pattern with another instruction
55 It is currently limited to replacements of instructions
56 with constant operands.
57 2) The xtensa-relax.c mechanism that has stronger instruction
58 replacement patterns. When an instruction's immediate field
59 does not fit the next instruction sequence is attempted.
60 In addition, "narrow" opcodes are supported this way. */
61
62
63/* Define characters with special meanings to GAS. */
64const char comment_chars[] = "#";
65const char line_comment_chars[] = "#";
66const char line_separator_chars[] = ";";
67const char EXP_CHARS[] = "eE";
68const char FLT_CHARS[] = "rRsSfFdDxXpP";
69
70
43cd72b9
BW
71/* Flags to indicate whether the hardware supports the density and
72 absolute literals options. */
e0001a05 73
e0001a05 74bfd_boolean density_supported = XCHAL_HAVE_DENSITY;
43cd72b9
BW
75bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS;
76
43cd72b9
BW
77static vliw_insn cur_vinsn;
78
77cba8a3 79unsigned xtensa_num_pipe_stages;
d77b99c9 80unsigned xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH;
43cd72b9
BW
81
82static enum debug_info_type xt_saved_debug_type = DEBUG_NONE;
83
84/* Some functions are only valid in the front end. This variable
c138bc38 85 allows us to assert that we haven't crossed over into the
43cd72b9
BW
86 back end. */
87static bfd_boolean past_xtensa_end = FALSE;
e0001a05
NC
88
89/* Flags for properties of the last instruction in a segment. */
90#define FLAG_IS_A0_WRITER 0x1
91#define FLAG_IS_BAD_LOOPEND 0x2
92
93
94/* We define a special segment names ".literal" to place literals
95 into. The .fini and .init sections are special because they
96 contain code that is moved together by the linker. We give them
97 their own special .fini.literal and .init.literal sections. */
98
99#define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
43cd72b9 100#define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
e0001a05 101#define INIT_SECTION_NAME xtensa_section_rename (".init")
74869ac7 102#define FINI_SECTION_NAME xtensa_section_rename (".fini")
e0001a05
NC
103
104
43cd72b9 105/* This type is used for the directive_stack to keep track of the
74869ac7
BW
106 state of the literal collection pools. If lit_prefix is set, it is
107 used to determine the literal section names; otherwise, the literal
108 sections are determined based on the current text section. The
109 lit_seg and lit4_seg fields cache these literal sections, with the
110 current_text_seg field used a tag to indicate whether the cached
111 values are valid. */
e0001a05
NC
112
113typedef struct lit_state_struct
114{
74869ac7
BW
115 char *lit_prefix;
116 segT current_text_seg;
e0001a05 117 segT lit_seg;
43cd72b9 118 segT lit4_seg;
e0001a05
NC
119} lit_state;
120
121static lit_state default_lit_sections;
122
123
74869ac7
BW
124/* We keep a list of literal segments. The seg_list type is the node
125 for this list. The literal_head pointer is the head of the list,
126 with the literal_head_h dummy node at the start. */
e0001a05
NC
127
128typedef struct seg_list_struct
129{
130 struct seg_list_struct *next;
131 segT seg;
132} seg_list;
133
134static seg_list literal_head_h;
135static seg_list *literal_head = &literal_head_h;
e0001a05
NC
136
137
82e7541d
BW
138/* Lists of symbols. We keep a list of symbols that label the current
139 instruction, so that we can adjust the symbols when inserting alignment
140 for various instructions. We also keep a list of all the symbols on
141 literals, so that we can fix up those symbols when the literals are
142 later moved into the text sections. */
143
144typedef struct sym_list_struct
145{
146 struct sym_list_struct *next;
147 symbolS *sym;
148} sym_list;
149
150static sym_list *insn_labels = NULL;
151static sym_list *free_insn_labels = NULL;
152static sym_list *saved_insn_labels = NULL;
153
154static sym_list *literal_syms;
155
156
43cd72b9
BW
157/* Flags to determine whether to prefer const16 or l32r
158 if both options are available. */
159int prefer_const16 = 0;
160int prefer_l32r = 0;
161
e0001a05
NC
162/* Global flag to indicate when we are emitting literals. */
163int generating_literals = 0;
164
43cd72b9
BW
165/* The following PROPERTY table definitions are copied from
166 <elf/xtensa.h> and must be kept in sync with the code there. */
167
168/* Flags in the property tables to specify whether blocks of memory
169 are literals, instructions, data, or unreachable. For
170 instructions, blocks that begin loop targets and branch targets are
171 designated. Blocks that do not allow density, instruction
172 reordering or transformation are also specified. Finally, for
173 branch targets, branch target alignment priority is included.
174 Alignment of the next block is specified in the current block
175 and the size of the current block does not include any fill required
176 to align to the next block. */
177
178#define XTENSA_PROP_LITERAL 0x00000001
179#define XTENSA_PROP_INSN 0x00000002
180#define XTENSA_PROP_DATA 0x00000004
181#define XTENSA_PROP_UNREACHABLE 0x00000008
182/* Instruction only properties at beginning of code. */
183#define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
184#define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
185/* Instruction only properties about code. */
186#define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
187#define XTENSA_PROP_INSN_NO_REORDER 0x00000080
99ded152
BW
188/* Historically, NO_TRANSFORM was a property of instructions,
189 but it should apply to literals under certain circumstances. */
190#define XTENSA_PROP_NO_TRANSFORM 0x00000100
43cd72b9
BW
191
192/* Branch target alignment information. This transmits information
193 to the linker optimization about the priority of aligning a
194 particular block for branch target alignment: None, low priority,
195 high priority, or required. These only need to be checked in
196 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
197 Common usage is
198
199 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
200 case XTENSA_PROP_BT_ALIGN_NONE:
201 case XTENSA_PROP_BT_ALIGN_LOW:
202 case XTENSA_PROP_BT_ALIGN_HIGH:
203 case XTENSA_PROP_BT_ALIGN_REQUIRE:
204*/
205#define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
206
207/* No branch target alignment. */
208#define XTENSA_PROP_BT_ALIGN_NONE 0x0
209/* Low priority branch target alignment. */
210#define XTENSA_PROP_BT_ALIGN_LOW 0x1
211/* High priority branch target alignment. */
212#define XTENSA_PROP_BT_ALIGN_HIGH 0x2
213/* Required branch target alignment. */
214#define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
215
216#define GET_XTENSA_PROP_BT_ALIGN(flag) \
217 (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9)
218#define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
219 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
220 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
221
222
223/* Alignment is specified in the block BEFORE the one that needs
224 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
225 get the required alignment specified as a power of 2. Use
226 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
227 alignment. Be careful of side effects since the SET will evaluate
228 flags twice. Also, note that the SIZE of a block in the property
229 table does not include the alignment size, so the alignment fill
230 must be calculated to determine if two blocks are contiguous.
231 TEXT_ALIGN is not currently implemented but is a placeholder for a
232 possible future implementation. */
233
234#define XTENSA_PROP_ALIGN 0x00000800
235
236#define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
237
238#define GET_XTENSA_PROP_ALIGNMENT(flag) \
239 (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12)
240#define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
241 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
242 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
243
244#define XTENSA_PROP_INSN_ABSLIT 0x00020000
245
246
247/* Structure for saving instruction and alignment per-fragment data
248 that will be written to the object file. This structure is
249 equivalent to the actual data that will be written out to the file
250 but is easier to use. We provide a conversion to file flags
251 in frag_flags_to_number. */
252
253typedef struct frag_flags_struct frag_flags;
254
255struct frag_flags_struct
256{
257 /* is_literal should only be used after xtensa_move_literals.
258 If you need to check if you are generating a literal fragment,
259 then use the generating_literals global. */
260
261 unsigned is_literal : 1;
262 unsigned is_insn : 1;
263 unsigned is_data : 1;
264 unsigned is_unreachable : 1;
265
99ded152
BW
266 /* is_specific_opcode implies no_transform. */
267 unsigned is_no_transform : 1;
268
43cd72b9
BW
269 struct
270 {
271 unsigned is_loop_target : 1;
272 unsigned is_branch_target : 1; /* Branch targets have a priority. */
273 unsigned bt_align_priority : 2;
274
275 unsigned is_no_density : 1;
276 /* no_longcalls flag does not need to be placed in the object file. */
43cd72b9
BW
277
278 unsigned is_no_reorder : 1;
279
280 /* Uses absolute literal addressing for l32r. */
281 unsigned is_abslit : 1;
282 } insn;
283 unsigned is_align : 1;
284 unsigned alignment : 5;
285};
286
287
288/* Structure for saving information about a block of property data
289 for frags that have the same flags. */
290struct xtensa_block_info_struct
291{
292 segT sec;
293 bfd_vma offset;
294 size_t size;
295 frag_flags flags;
296 struct xtensa_block_info_struct *next;
297};
298
e0001a05
NC
299
300/* Structure for saving the current state before emitting literals. */
301typedef struct emit_state_struct
302{
303 const char *name;
304 segT now_seg;
305 subsegT now_subseg;
306 int generating_literals;
307} emit_state;
308
309
43cd72b9
BW
310/* Opcode placement information */
311
312typedef unsigned long long bitfield;
313#define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
314#define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
315#define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
316
317#define MAX_FORMATS 32
318
319typedef struct op_placement_info_struct
320{
321 int num_formats;
322 /* A number describing how restrictive the issue is for this
323 opcode. For example, an opcode that fits lots of different
c138bc38 324 formats has a high freedom, as does an opcode that fits
43cd72b9 325 only one format but many slots in that format. The most
c138bc38 326 restrictive is the opcode that fits only one slot in one
43cd72b9
BW
327 format. */
328 int issuef;
43cd72b9 329 xtensa_format narrowest;
43cd72b9 330 char narrowest_size;
b2d179be 331 char narrowest_slot;
43cd72b9
BW
332
333 /* formats is a bitfield with the Nth bit set
334 if the opcode fits in the Nth xtensa_format. */
335 bitfield formats;
336
337 /* slots[N]'s Mth bit is set if the op fits in the
338 Mth slot of the Nth xtensa_format. */
339 bitfield slots[MAX_FORMATS];
340
341 /* A count of the number of slots in a given format
342 an op can fit (i.e., the bitcount of the slot field above). */
343 char slots_in_format[MAX_FORMATS];
344
345} op_placement_info, *op_placement_info_table;
346
347op_placement_info_table op_placement_table;
348
349
350/* Extra expression types. */
351
352#define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
353#define O_hi16 O_md2 /* use high 16 bits of symbolic value */
354#define O_lo16 O_md3 /* use low 16 bits of symbolic value */
1bbb5f21 355#define O_pcrel O_md4 /* value is a PC-relative offset */
28dbbc02
BW
356#define O_tlsfunc O_md5 /* TLS_FUNC/TLSDESC_FN relocation */
357#define O_tlsarg O_md6 /* TLS_ARG/TLSDESC_ARG relocation */
358#define O_tlscall O_md7 /* TLS_CALL relocation */
359#define O_tpoff O_md8 /* TPOFF relocation */
360#define O_dtpoff O_md9 /* DTPOFF relocation */
43cd72b9 361
bbdd25a8
BW
362struct suffix_reloc_map
363{
364 char *suffix;
365 int length;
366 bfd_reloc_code_real_type reloc;
367 unsigned char operator;
368};
369
370#define SUFFIX_MAP(str, reloc, op) { str, sizeof (str) - 1, reloc, op }
371
372static struct suffix_reloc_map suffix_relocs[] =
373{
374 SUFFIX_MAP ("l", BFD_RELOC_LO16, O_lo16),
375 SUFFIX_MAP ("h", BFD_RELOC_HI16, O_hi16),
376 SUFFIX_MAP ("plt", BFD_RELOC_XTENSA_PLT, O_pltrel),
1bbb5f21 377 SUFFIX_MAP ("pcrel", BFD_RELOC_32_PCREL, O_pcrel),
28dbbc02
BW
378 SUFFIX_MAP ("tlsfunc", BFD_RELOC_XTENSA_TLS_FUNC, O_tlsfunc),
379 SUFFIX_MAP ("tlsarg", BFD_RELOC_XTENSA_TLS_ARG, O_tlsarg),
380 SUFFIX_MAP ("tlscall", BFD_RELOC_XTENSA_TLS_CALL, O_tlscall),
381 SUFFIX_MAP ("tpoff", BFD_RELOC_XTENSA_TLS_TPOFF, O_tpoff),
382 SUFFIX_MAP ("dtpoff", BFD_RELOC_XTENSA_TLS_DTPOFF, O_dtpoff),
bbdd25a8
BW
383 { (char *) 0, 0, BFD_RELOC_UNUSED, 0 }
384};
385
43cd72b9 386
e0001a05
NC
387/* Directives. */
388
389typedef enum
390{
391 directive_none = 0,
392 directive_literal,
393 directive_density,
43cd72b9 394 directive_transform,
e0001a05
NC
395 directive_freeregs,
396 directive_longcalls,
43cd72b9
BW
397 directive_literal_prefix,
398 directive_schedule,
399 directive_absolute_literals,
400 directive_last_directive
e0001a05
NC
401} directiveE;
402
403typedef struct
404{
405 const char *name;
406 bfd_boolean can_be_negated;
407} directive_infoS;
408
409const directive_infoS directive_info[] =
410{
43cd72b9
BW
411 { "none", FALSE },
412 { "literal", FALSE },
413 { "density", TRUE },
414 { "transform", TRUE },
415 { "freeregs", FALSE },
416 { "longcalls", TRUE },
417 { "literal_prefix", FALSE },
418 { "schedule", TRUE },
419 { "absolute-literals", TRUE }
e0001a05
NC
420};
421
422bfd_boolean directive_state[] =
423{
424 FALSE, /* none */
425 FALSE, /* literal */
43cd72b9 426#if !XCHAL_HAVE_DENSITY
e0001a05
NC
427 FALSE, /* density */
428#else
429 TRUE, /* density */
430#endif
43cd72b9 431 TRUE, /* transform */
e0001a05
NC
432 FALSE, /* freeregs */
433 FALSE, /* longcalls */
43cd72b9 434 FALSE, /* literal_prefix */
2caa7ca0 435 FALSE, /* schedule */
43cd72b9
BW
436#if XSHAL_USE_ABSOLUTE_LITERALS
437 TRUE /* absolute_literals */
438#else
439 FALSE /* absolute_literals */
440#endif
e0001a05
NC
441};
442
e0001a05
NC
443
444/* Directive functions. */
445
7fa3d080
BW
446static void xtensa_begin_directive (int);
447static void xtensa_end_directive (int);
74869ac7 448static void xtensa_literal_prefix (void);
7fa3d080
BW
449static void xtensa_literal_position (int);
450static void xtensa_literal_pseudo (int);
451static void xtensa_frequency_pseudo (int);
452static void xtensa_elf_cons (int);
fb227da0 453static void xtensa_leb128 (int);
e0001a05 454
7fa3d080 455/* Parsing and Idiom Translation. */
e0001a05 456
7fa3d080 457static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *);
e0001a05 458
e0001a05
NC
459/* Various Other Internal Functions. */
460
84b08ed9
BW
461extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean);
462static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *);
7fa3d080
BW
463static void xtensa_mark_literal_pool_location (void);
464static addressT get_expanded_loop_offset (xtensa_opcode);
465static fragS *get_literal_pool_location (segT);
466static void set_literal_pool_location (segT, fragS *);
467static void xtensa_set_frag_assembly_state (fragS *);
468static void finish_vinsn (vliw_insn *);
469static bfd_boolean emit_single_op (TInsn *);
34e41783 470static int total_frag_text_expansion (fragS *);
a82c7d90
DW
471static bfd_boolean use_trampolines = TRUE;
472static void xtensa_check_frag_count (void);
473static void xtensa_create_trampoline_frag (bfd_boolean);
474static void xtensa_maybe_create_trampoline_frag (void);
475struct trampoline_frag;
476static int init_trampoline_frag (struct trampoline_frag *);
e0001a05
NC
477
478/* Alignment Functions. */
479
d77b99c9
BW
480static int get_text_align_power (unsigned);
481static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean);
664df4e4 482static int branch_align_power (segT);
e0001a05
NC
483
484/* Helpers for xtensa_relax_frag(). */
485
7fa3d080 486static long relax_frag_add_nop (fragS *);
e0001a05 487
b08b5071 488/* Accessors for additional per-subsegment information. */
e0001a05 489
7fa3d080
BW
490static unsigned get_last_insn_flags (segT, subsegT);
491static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean);
b08b5071
BW
492static float get_subseg_total_freq (segT, subsegT);
493static float get_subseg_target_freq (segT, subsegT);
494static void set_subseg_freq (segT, subsegT, float, float);
e0001a05
NC
495
496/* Segment list functions. */
497
7fa3d080
BW
498static void xtensa_move_literals (void);
499static void xtensa_reorder_segments (void);
500static void xtensa_switch_to_literal_fragment (emit_state *);
501static void xtensa_switch_to_non_abs_literal_fragment (emit_state *);
502static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT);
503static void xtensa_restore_emit_state (emit_state *);
74869ac7 504static segT cache_literal_section (bfd_boolean);
e0001a05 505
e0001a05 506/* Import from elf32-xtensa.c in BFD library. */
43cd72b9 507
51c8ebc1 508extern asection *xtensa_make_property_section (asection *, const char *);
e0001a05 509
43cd72b9
BW
510/* op_placement_info functions. */
511
7fa3d080
BW
512static void init_op_placement_info_table (void);
513extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int);
514static int xg_get_single_size (xtensa_opcode);
515static xtensa_format xg_get_single_format (xtensa_opcode);
b2d179be 516static int xg_get_single_slot (xtensa_opcode);
43cd72b9 517
e0001a05 518/* TInsn and IStack functions. */
43cd72b9 519
7fa3d080
BW
520static bfd_boolean tinsn_has_symbolic_operands (const TInsn *);
521static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *);
522static bfd_boolean tinsn_has_complex_operands (const TInsn *);
523static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf);
524static bfd_boolean tinsn_check_arguments (const TInsn *);
525static void tinsn_from_chars (TInsn *, char *, int);
526static void tinsn_immed_from_frag (TInsn *, fragS *, int);
527static int get_num_stack_text_bytes (IStack *);
528static int get_num_stack_literal_bytes (IStack *);
a82c7d90 529static bfd_boolean tinsn_to_slotbuf (xtensa_format, int, TInsn *, xtensa_insnbuf);
e0001a05 530
43cd72b9
BW
531/* vliw_insn functions. */
532
7fa3d080 533static void xg_init_vinsn (vliw_insn *);
d8392fd9 534static void xg_copy_vinsn (vliw_insn *, vliw_insn *);
7fa3d080
BW
535static void xg_clear_vinsn (vliw_insn *);
536static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *);
537static void xg_free_vinsn (vliw_insn *);
43cd72b9 538static bfd_boolean vinsn_to_insnbuf
7fa3d080
BW
539 (vliw_insn *, char *, fragS *, bfd_boolean);
540static void vinsn_from_chars (vliw_insn *, char *);
43cd72b9 541
e0001a05 542/* Expression Utilities. */
43cd72b9 543
7fa3d080
BW
544bfd_boolean expr_is_const (const expressionS *);
545offsetT get_expr_const (const expressionS *);
546void set_expr_const (expressionS *, offsetT);
547bfd_boolean expr_is_register (const expressionS *);
548offsetT get_expr_register (const expressionS *);
549void set_expr_symbol_offset (expressionS *, symbolS *, offsetT);
7fa3d080
BW
550bfd_boolean expr_is_equal (expressionS *, expressionS *);
551static void copy_expr (expressionS *, const expressionS *);
e0001a05 552
9456465c
BW
553/* Section renaming. */
554
7fa3d080 555static void build_section_rename (const char *);
e0001a05 556
e0001a05
NC
557
558/* ISA imported from bfd. */
559extern xtensa_isa xtensa_default_isa;
560
561extern int target_big_endian;
562
563static xtensa_opcode xtensa_addi_opcode;
564static xtensa_opcode xtensa_addmi_opcode;
565static xtensa_opcode xtensa_call0_opcode;
566static xtensa_opcode xtensa_call4_opcode;
567static xtensa_opcode xtensa_call8_opcode;
568static xtensa_opcode xtensa_call12_opcode;
569static xtensa_opcode xtensa_callx0_opcode;
570static xtensa_opcode xtensa_callx4_opcode;
571static xtensa_opcode xtensa_callx8_opcode;
572static xtensa_opcode xtensa_callx12_opcode;
43cd72b9 573static xtensa_opcode xtensa_const16_opcode;
e0001a05 574static xtensa_opcode xtensa_entry_opcode;
d12f9798 575static xtensa_opcode xtensa_extui_opcode;
43cd72b9
BW
576static xtensa_opcode xtensa_movi_opcode;
577static xtensa_opcode xtensa_movi_n_opcode;
e0001a05 578static xtensa_opcode xtensa_isync_opcode;
19e8f41a 579static xtensa_opcode xtensa_j_opcode;
e0001a05 580static xtensa_opcode xtensa_jx_opcode;
43cd72b9 581static xtensa_opcode xtensa_l32r_opcode;
e0001a05
NC
582static xtensa_opcode xtensa_loop_opcode;
583static xtensa_opcode xtensa_loopnez_opcode;
584static xtensa_opcode xtensa_loopgtz_opcode;
43cd72b9 585static xtensa_opcode xtensa_nop_opcode;
e0001a05
NC
586static xtensa_opcode xtensa_nop_n_opcode;
587static xtensa_opcode xtensa_or_opcode;
588static xtensa_opcode xtensa_ret_opcode;
589static xtensa_opcode xtensa_ret_n_opcode;
590static xtensa_opcode xtensa_retw_opcode;
591static xtensa_opcode xtensa_retw_n_opcode;
43cd72b9 592static xtensa_opcode xtensa_rsr_lcount_opcode;
e0001a05 593static xtensa_opcode xtensa_waiti_opcode;
62af60e2 594static int config_max_slots = 0;
e0001a05
NC
595
596\f
597/* Command-line Options. */
598
599bfd_boolean use_literal_section = TRUE;
19fc3723 600enum flix_level produce_flix = FLIX_ALL;
e0001a05 601static bfd_boolean align_targets = TRUE;
43cd72b9 602static bfd_boolean warn_unaligned_branch_targets = FALSE;
e0001a05 603static bfd_boolean has_a0_b_retw = FALSE;
43cd72b9
BW
604static bfd_boolean workaround_a0_b_retw = FALSE;
605static bfd_boolean workaround_b_j_loop_end = FALSE;
606static bfd_boolean workaround_short_loop = FALSE;
e0001a05 607static bfd_boolean maybe_has_short_loop = FALSE;
43cd72b9 608static bfd_boolean workaround_close_loop_end = FALSE;
e0001a05 609static bfd_boolean maybe_has_close_loop_end = FALSE;
03aaa593 610static bfd_boolean enforce_three_byte_loop_align = FALSE;
e0001a05 611
43cd72b9
BW
612/* When workaround_short_loops is TRUE, all loops with early exits must
613 have at least 3 instructions. workaround_all_short_loops is a modifier
614 to the workaround_short_loop flag. In addition to the
615 workaround_short_loop actions, all straightline loopgtz and loopnez
616 must have at least 3 instructions. */
e0001a05 617
43cd72b9 618static bfd_boolean workaround_all_short_loops = FALSE;
e0001a05 619
7fa3d080
BW
620
621static void
622xtensa_setup_hw_workarounds (int earliest, int latest)
623{
624 if (earliest > latest)
625 as_fatal (_("illegal range of target hardware versions"));
626
627 /* Enable all workarounds for pre-T1050.0 hardware. */
628 if (earliest < 105000 || latest < 105000)
629 {
630 workaround_a0_b_retw |= TRUE;
631 workaround_b_j_loop_end |= TRUE;
632 workaround_short_loop |= TRUE;
633 workaround_close_loop_end |= TRUE;
634 workaround_all_short_loops |= TRUE;
03aaa593 635 enforce_three_byte_loop_align = TRUE;
7fa3d080
BW
636 }
637}
638
639
e0001a05
NC
640enum
641{
642 option_density = OPTION_MD_BASE,
643 option_no_density,
644
19fc3723
SA
645 option_flix,
646 option_no_generate_flix,
647 option_no_flix,
648
e0001a05
NC
649 option_relax,
650 option_no_relax,
651
43cd72b9
BW
652 option_link_relax,
653 option_no_link_relax,
654
e0001a05
NC
655 option_generics,
656 option_no_generics,
657
43cd72b9
BW
658 option_transform,
659 option_no_transform,
660
e0001a05
NC
661 option_text_section_literals,
662 option_no_text_section_literals,
663
43cd72b9
BW
664 option_absolute_literals,
665 option_no_absolute_literals,
666
e0001a05
NC
667 option_align_targets,
668 option_no_align_targets,
669
43cd72b9 670 option_warn_unaligned_targets,
e0001a05
NC
671
672 option_longcalls,
673 option_no_longcalls,
674
675 option_workaround_a0_b_retw,
676 option_no_workaround_a0_b_retw,
677
678 option_workaround_b_j_loop_end,
679 option_no_workaround_b_j_loop_end,
680
681 option_workaround_short_loop,
682 option_no_workaround_short_loop,
683
684 option_workaround_all_short_loops,
685 option_no_workaround_all_short_loops,
686
687 option_workaround_close_loop_end,
688 option_no_workaround_close_loop_end,
689
690 option_no_workarounds,
691
e0001a05 692 option_rename_section_name,
e0001a05 693
43cd72b9
BW
694 option_prefer_l32r,
695 option_prefer_const16,
696
a82c7d90
DW
697 option_target_hardware,
698
699 option_trampolines,
700 option_no_trampolines,
e0001a05
NC
701};
702
703const char *md_shortopts = "";
704
705struct option md_longopts[] =
706{
43cd72b9
BW
707 { "density", no_argument, NULL, option_density },
708 { "no-density", no_argument, NULL, option_no_density },
709
19fc3723
SA
710 { "flix", no_argument, NULL, option_flix },
711 { "no-generate-flix", no_argument, NULL, option_no_generate_flix },
712 { "no-allow-flix", no_argument, NULL, option_no_flix },
713
43cd72b9
BW
714 /* Both "relax" and "generics" are deprecated and treated as equivalent
715 to the "transform" option. */
716 { "relax", no_argument, NULL, option_relax },
717 { "no-relax", no_argument, NULL, option_no_relax },
718 { "generics", no_argument, NULL, option_generics },
719 { "no-generics", no_argument, NULL, option_no_generics },
720
721 { "transform", no_argument, NULL, option_transform },
722 { "no-transform", no_argument, NULL, option_no_transform },
723 { "text-section-literals", no_argument, NULL, option_text_section_literals },
724 { "no-text-section-literals", no_argument, NULL,
725 option_no_text_section_literals },
726 { "absolute-literals", no_argument, NULL, option_absolute_literals },
727 { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals },
e0001a05
NC
728 /* This option was changed from -align-target to -target-align
729 because it conflicted with the "-al" option. */
43cd72b9 730 { "target-align", no_argument, NULL, option_align_targets },
7fa3d080
BW
731 { "no-target-align", no_argument, NULL, option_no_align_targets },
732 { "warn-unaligned-targets", no_argument, NULL,
733 option_warn_unaligned_targets },
43cd72b9
BW
734 { "longcalls", no_argument, NULL, option_longcalls },
735 { "no-longcalls", no_argument, NULL, option_no_longcalls },
736
737 { "no-workaround-a0-b-retw", no_argument, NULL,
738 option_no_workaround_a0_b_retw },
739 { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw },
e0001a05 740
43cd72b9
BW
741 { "no-workaround-b-j-loop-end", no_argument, NULL,
742 option_no_workaround_b_j_loop_end },
743 { "workaround-b-j-loop-end", no_argument, NULL,
744 option_workaround_b_j_loop_end },
e0001a05 745
43cd72b9
BW
746 { "no-workaround-short-loops", no_argument, NULL,
747 option_no_workaround_short_loop },
7fa3d080
BW
748 { "workaround-short-loops", no_argument, NULL,
749 option_workaround_short_loop },
e0001a05 750
43cd72b9
BW
751 { "no-workaround-all-short-loops", no_argument, NULL,
752 option_no_workaround_all_short_loops },
753 { "workaround-all-short-loop", no_argument, NULL,
754 option_workaround_all_short_loops },
755
756 { "prefer-l32r", no_argument, NULL, option_prefer_l32r },
757 { "prefer-const16", no_argument, NULL, option_prefer_const16 },
758
759 { "no-workarounds", no_argument, NULL, option_no_workarounds },
760
761 { "no-workaround-close-loop-end", no_argument, NULL,
762 option_no_workaround_close_loop_end },
763 { "workaround-close-loop-end", no_argument, NULL,
764 option_workaround_close_loop_end },
e0001a05 765
7fa3d080 766 { "rename-section", required_argument, NULL, option_rename_section_name },
e0001a05 767
43cd72b9
BW
768 { "link-relax", no_argument, NULL, option_link_relax },
769 { "no-link-relax", no_argument, NULL, option_no_link_relax },
770
771 { "target-hardware", required_argument, NULL, option_target_hardware },
772
a82c7d90
DW
773 { "trampolines", no_argument, NULL, option_trampolines },
774 { "no-trampolines", no_argument, NULL, option_no_trampolines },
775
43cd72b9 776 { NULL, no_argument, NULL, 0 }
e0001a05
NC
777};
778
779size_t md_longopts_size = sizeof md_longopts;
780
781
782int
7fa3d080 783md_parse_option (int c, char *arg)
e0001a05
NC
784{
785 switch (c)
786 {
787 case option_density:
43cd72b9 788 as_warn (_("--density option is ignored"));
e0001a05
NC
789 return 1;
790 case option_no_density:
43cd72b9 791 as_warn (_("--no-density option is ignored"));
e0001a05 792 return 1;
43cd72b9
BW
793 case option_link_relax:
794 linkrelax = 1;
e0001a05 795 return 1;
43cd72b9
BW
796 case option_no_link_relax:
797 linkrelax = 0;
e0001a05 798 return 1;
19fc3723
SA
799 case option_flix:
800 produce_flix = FLIX_ALL;
801 return 1;
802 case option_no_generate_flix:
803 produce_flix = FLIX_NO_GENERATE;
804 return 1;
805 case option_no_flix:
806 produce_flix = FLIX_NONE;
807 return 1;
43cd72b9
BW
808 case option_generics:
809 as_warn (_("--generics is deprecated; use --transform instead"));
810 return md_parse_option (option_transform, arg);
811 case option_no_generics:
812 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
813 return md_parse_option (option_no_transform, arg);
814 case option_relax:
815 as_warn (_("--relax is deprecated; use --transform instead"));
816 return md_parse_option (option_transform, arg);
817 case option_no_relax:
818 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
819 return md_parse_option (option_no_transform, arg);
e0001a05
NC
820 case option_longcalls:
821 directive_state[directive_longcalls] = TRUE;
822 return 1;
823 case option_no_longcalls:
824 directive_state[directive_longcalls] = FALSE;
825 return 1;
826 case option_text_section_literals:
827 use_literal_section = FALSE;
828 return 1;
829 case option_no_text_section_literals:
830 use_literal_section = TRUE;
831 return 1;
43cd72b9
BW
832 case option_absolute_literals:
833 if (!absolute_literals_supported)
834 {
835 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
836 return 0;
837 }
838 directive_state[directive_absolute_literals] = TRUE;
839 return 1;
840 case option_no_absolute_literals:
841 directive_state[directive_absolute_literals] = FALSE;
842 return 1;
843
e0001a05
NC
844 case option_workaround_a0_b_retw:
845 workaround_a0_b_retw = TRUE;
e0001a05
NC
846 return 1;
847 case option_no_workaround_a0_b_retw:
848 workaround_a0_b_retw = FALSE;
e0001a05
NC
849 return 1;
850 case option_workaround_b_j_loop_end:
851 workaround_b_j_loop_end = TRUE;
e0001a05
NC
852 return 1;
853 case option_no_workaround_b_j_loop_end:
854 workaround_b_j_loop_end = FALSE;
e0001a05
NC
855 return 1;
856
857 case option_workaround_short_loop:
858 workaround_short_loop = TRUE;
e0001a05
NC
859 return 1;
860 case option_no_workaround_short_loop:
861 workaround_short_loop = FALSE;
e0001a05
NC
862 return 1;
863
864 case option_workaround_all_short_loops:
865 workaround_all_short_loops = TRUE;
e0001a05
NC
866 return 1;
867 case option_no_workaround_all_short_loops:
868 workaround_all_short_loops = FALSE;
e0001a05
NC
869 return 1;
870
871 case option_workaround_close_loop_end:
872 workaround_close_loop_end = TRUE;
e0001a05
NC
873 return 1;
874 case option_no_workaround_close_loop_end:
875 workaround_close_loop_end = FALSE;
e0001a05
NC
876 return 1;
877
878 case option_no_workarounds:
879 workaround_a0_b_retw = FALSE;
e0001a05 880 workaround_b_j_loop_end = FALSE;
e0001a05 881 workaround_short_loop = FALSE;
e0001a05 882 workaround_all_short_loops = FALSE;
e0001a05 883 workaround_close_loop_end = FALSE;
e0001a05 884 return 1;
43cd72b9 885
e0001a05
NC
886 case option_align_targets:
887 align_targets = TRUE;
888 return 1;
889 case option_no_align_targets:
890 align_targets = FALSE;
891 return 1;
892
43cd72b9
BW
893 case option_warn_unaligned_targets:
894 warn_unaligned_branch_targets = TRUE;
e0001a05
NC
895 return 1;
896
e0001a05
NC
897 case option_rename_section_name:
898 build_section_rename (arg);
899 return 1;
e0001a05
NC
900
901 case 'Q':
902 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
903 should be emitted or not. FIXME: Not implemented. */
904 return 1;
c138bc38 905
43cd72b9
BW
906 case option_prefer_l32r:
907 if (prefer_const16)
908 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
909 prefer_l32r = 1;
910 return 1;
911
912 case option_prefer_const16:
913 if (prefer_l32r)
914 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
915 prefer_const16 = 1;
916 return 1;
917
c138bc38 918 case option_target_hardware:
43cd72b9
BW
919 {
920 int earliest, latest = 0;
921 if (*arg == 0 || *arg == '-')
922 as_fatal (_("invalid target hardware version"));
923
924 earliest = strtol (arg, &arg, 0);
925
926 if (*arg == 0)
927 latest = earliest;
928 else if (*arg == '-')
929 {
930 if (*++arg == 0)
931 as_fatal (_("invalid target hardware version"));
932 latest = strtol (arg, &arg, 0);
933 }
934 if (*arg != 0)
935 as_fatal (_("invalid target hardware version"));
936
937 xtensa_setup_hw_workarounds (earliest, latest);
938 return 1;
939 }
940
941 case option_transform:
942 /* This option has no affect other than to use the defaults,
943 which are already set. */
944 return 1;
945
946 case option_no_transform:
947 /* This option turns off all transformations of any kind.
948 However, because we want to preserve the state of other
949 directives, we only change its own field. Thus, before
950 you perform any transformation, always check if transform
951 is available. If you use the functions we provide for this
952 purpose, you will be ok. */
953 directive_state[directive_transform] = FALSE;
954 return 1;
955
a82c7d90
DW
956 case option_trampolines:
957 use_trampolines = TRUE;
958 return 1;
959
960 case option_no_trampolines:
961 use_trampolines = FALSE;
962 return 1;
963
e0001a05
NC
964 default:
965 return 0;
966 }
967}
968
969
970void
7fa3d080 971md_show_usage (FILE *stream)
e0001a05 972{
43cd72b9
BW
973 fputs ("\n\
974Xtensa options:\n\
9456465c
BW
975 --[no-]text-section-literals\n\
976 [Do not] put literals in the text section\n\
977 --[no-]absolute-literals\n\
978 [Do not] default to use non-PC-relative literals\n\
979 --[no-]target-align [Do not] try to align branch targets\n\
980 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
981 --[no-]transform [Do not] transform instructions\n\
19fc3723
SA
982 --flix both allow hand-written and generate flix bundles\n\
983 --no-generate-flix allow hand-written but do not generate\n\
984 flix bundles\n\
985 --no-allow-flix neither allow hand-written nor generate\n\
986 flix bundles\n\
a82c7d90
DW
987 --rename-section old=new Rename section 'old' to 'new'\n\
988 --[no-]trampolines [Do not] generate trampolines (jumps to jumps)\n\
989 when jumps do not reach their targets\n", stream);
e0001a05
NC
990}
991
7fa3d080
BW
992\f
993/* Functions related to the list of current label symbols. */
43cd72b9
BW
994
995static void
7fa3d080 996xtensa_add_insn_label (symbolS *sym)
43cd72b9 997{
7fa3d080 998 sym_list *l;
43cd72b9 999
7fa3d080
BW
1000 if (!free_insn_labels)
1001 l = (sym_list *) xmalloc (sizeof (sym_list));
1002 else
43cd72b9 1003 {
7fa3d080
BW
1004 l = free_insn_labels;
1005 free_insn_labels = l->next;
1006 }
1007
1008 l->sym = sym;
1009 l->next = insn_labels;
1010 insn_labels = l;
1011}
1012
1013
1014static void
1015xtensa_clear_insn_labels (void)
1016{
1017 sym_list **pl;
1018
1019 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1020 ;
1021 *pl = insn_labels;
1022 insn_labels = NULL;
1023}
1024
1025
7fa3d080 1026static void
c3ea6048 1027xtensa_move_labels (fragS *new_frag, valueT new_offset)
7fa3d080
BW
1028{
1029 sym_list *lit;
1030
1031 for (lit = insn_labels; lit; lit = lit->next)
1032 {
1033 symbolS *lit_sym = lit->sym;
c3ea6048
BW
1034 S_SET_VALUE (lit_sym, new_offset);
1035 symbol_set_frag (lit_sym, new_frag);
43cd72b9
BW
1036 }
1037}
1038
e0001a05
NC
1039\f
1040/* Directive data and functions. */
1041
1042typedef struct state_stackS_struct
1043{
1044 directiveE directive;
1045 bfd_boolean negated;
1046 bfd_boolean old_state;
1047 const char *file;
1048 unsigned int line;
1049 const void *datum;
1050 struct state_stackS_struct *prev;
1051} state_stackS;
1052
1053state_stackS *directive_state_stack;
1054
1055const pseudo_typeS md_pseudo_table[] =
1056{
43cd72b9
BW
1057 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
1058 { "literal_position", xtensa_literal_position, 0 },
1059 { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */
1060 { "long", xtensa_elf_cons, 4 },
1061 { "word", xtensa_elf_cons, 4 },
1bbb5f21 1062 { "4byte", xtensa_elf_cons, 4 },
43cd72b9 1063 { "short", xtensa_elf_cons, 2 },
1bbb5f21 1064 { "2byte", xtensa_elf_cons, 2 },
fb227da0
BW
1065 { "sleb128", xtensa_leb128, 1},
1066 { "uleb128", xtensa_leb128, 0},
43cd72b9
BW
1067 { "begin", xtensa_begin_directive, 0 },
1068 { "end", xtensa_end_directive, 0 },
43cd72b9
BW
1069 { "literal", xtensa_literal_pseudo, 0 },
1070 { "frequency", xtensa_frequency_pseudo, 0 },
1071 { NULL, 0, 0 },
e0001a05
NC
1072};
1073
1074
7fa3d080
BW
1075static bfd_boolean
1076use_transform (void)
e0001a05 1077{
43cd72b9
BW
1078 /* After md_end, you should be checking frag by frag, rather
1079 than state directives. */
9c2799c2 1080 gas_assert (!past_xtensa_end);
43cd72b9 1081 return directive_state[directive_transform];
e0001a05
NC
1082}
1083
1084
7fa3d080
BW
1085static bfd_boolean
1086do_align_targets (void)
e0001a05 1087{
7b1cc377
BW
1088 /* Do not use this function after md_end; just look at align_targets
1089 instead. There is no target-align directive, so alignment is either
1090 enabled for all frags or not done at all. */
9c2799c2 1091 gas_assert (!past_xtensa_end);
43cd72b9 1092 return align_targets && use_transform ();
e0001a05
NC
1093}
1094
1095
1096static void
7fa3d080 1097directive_push (directiveE directive, bfd_boolean negated, const void *datum)
e0001a05
NC
1098{
1099 char *file;
1100 unsigned int line;
1101 state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS));
1102
1103 as_where (&file, &line);
1104
1105 stack->directive = directive;
1106 stack->negated = negated;
1107 stack->old_state = directive_state[directive];
1108 stack->file = file;
1109 stack->line = line;
1110 stack->datum = datum;
1111 stack->prev = directive_state_stack;
1112 directive_state_stack = stack;
1113
1114 directive_state[directive] = !negated;
1115}
1116
7fa3d080 1117
e0001a05 1118static void
7fa3d080
BW
1119directive_pop (directiveE *directive,
1120 bfd_boolean *negated,
1121 const char **file,
1122 unsigned int *line,
1123 const void **datum)
e0001a05
NC
1124{
1125 state_stackS *top = directive_state_stack;
1126
1127 if (!directive_state_stack)
1128 {
1129 as_bad (_("unmatched end directive"));
1130 *directive = directive_none;
1131 return;
1132 }
1133
1134 directive_state[directive_state_stack->directive] = top->old_state;
1135 *directive = top->directive;
1136 *negated = top->negated;
1137 *file = top->file;
1138 *line = top->line;
1139 *datum = top->datum;
1140 directive_state_stack = top->prev;
1141 free (top);
1142}
1143
1144
1145static void
7fa3d080 1146directive_balance (void)
e0001a05
NC
1147{
1148 while (directive_state_stack)
1149 {
1150 directiveE directive;
1151 bfd_boolean negated;
1152 const char *file;
1153 unsigned int line;
1154 const void *datum;
1155
1156 directive_pop (&directive, &negated, &file, &line, &datum);
1157 as_warn_where ((char *) file, line,
1158 _(".begin directive with no matching .end directive"));
1159 }
1160}
1161
1162
1163static bfd_boolean
7fa3d080 1164inside_directive (directiveE dir)
e0001a05
NC
1165{
1166 state_stackS *top = directive_state_stack;
1167
1168 while (top && top->directive != dir)
1169 top = top->prev;
1170
1171 return (top != NULL);
1172}
1173
1174
1175static void
7fa3d080 1176get_directive (directiveE *directive, bfd_boolean *negated)
e0001a05
NC
1177{
1178 int len;
1179 unsigned i;
43cd72b9 1180 char *directive_string;
e0001a05
NC
1181
1182 if (strncmp (input_line_pointer, "no-", 3) != 0)
1183 *negated = FALSE;
1184 else
1185 {
1186 *negated = TRUE;
1187 input_line_pointer += 3;
1188 }
1189
1190 len = strspn (input_line_pointer,
43cd72b9
BW
1191 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1192
1193 /* This code is a hack to make .begin [no-][generics|relax] exactly
1194 equivalent to .begin [no-]transform. We should remove it when
1195 we stop accepting those options. */
c138bc38 1196
43cd72b9
BW
1197 if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0)
1198 {
1199 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1200 directive_string = "transform";
1201 }
1202 else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0)
1203 {
1204 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1205 directive_string = "transform";
c138bc38 1206 }
43cd72b9
BW
1207 else
1208 directive_string = input_line_pointer;
e0001a05
NC
1209
1210 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1211 {
43cd72b9 1212 if (strncmp (directive_string, directive_info[i].name, len) == 0)
e0001a05
NC
1213 {
1214 input_line_pointer += len;
1215 *directive = (directiveE) i;
1216 if (*negated && !directive_info[i].can_be_negated)
43cd72b9 1217 as_bad (_("directive %s cannot be negated"),
e0001a05
NC
1218 directive_info[i].name);
1219 return;
1220 }
1221 }
1222
1223 as_bad (_("unknown directive"));
1224 *directive = (directiveE) XTENSA_UNDEFINED;
1225}
1226
1227
1228static void
7fa3d080 1229xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED)
e0001a05
NC
1230{
1231 directiveE directive;
1232 bfd_boolean negated;
1233 emit_state *state;
e0001a05
NC
1234 lit_state *ls;
1235
1236 get_directive (&directive, &negated);
1237 if (directive == (directiveE) XTENSA_UNDEFINED)
1238 {
1239 discard_rest_of_line ();
1240 return;
1241 }
1242
43cd72b9
BW
1243 if (cur_vinsn.inside_bundle)
1244 as_bad (_("directives are not valid inside bundles"));
1245
e0001a05
NC
1246 switch (directive)
1247 {
1248 case directive_literal:
82e7541d
BW
1249 if (!inside_directive (directive_literal))
1250 {
1251 /* Previous labels go with whatever follows this directive, not with
1252 the literal, so save them now. */
1253 saved_insn_labels = insn_labels;
1254 insn_labels = NULL;
1255 }
43cd72b9 1256 as_warn (_(".begin literal is deprecated; use .literal instead"));
e0001a05
NC
1257 state = (emit_state *) xmalloc (sizeof (emit_state));
1258 xtensa_switch_to_literal_fragment (state);
1259 directive_push (directive_literal, negated, state);
1260 break;
1261
1262 case directive_literal_prefix:
c138bc38 1263 /* Have to flush pending output because a movi relaxed to an l32r
43cd72b9
BW
1264 might produce a literal. */
1265 md_flush_pending_output ();
e0001a05
NC
1266 /* Check to see if the current fragment is a literal
1267 fragment. If it is, then this operation is not allowed. */
43cd72b9 1268 if (generating_literals)
e0001a05
NC
1269 {
1270 as_bad (_("cannot set literal_prefix inside literal fragment"));
1271 return;
1272 }
1273
1274 /* Allocate the literal state for this section and push
1275 onto the directive stack. */
1276 ls = xmalloc (sizeof (lit_state));
9c2799c2 1277 gas_assert (ls);
e0001a05
NC
1278
1279 *ls = default_lit_sections;
e0001a05
NC
1280 directive_push (directive_literal_prefix, negated, ls);
1281
e0001a05 1282 /* Process the new prefix. */
74869ac7 1283 xtensa_literal_prefix ();
e0001a05
NC
1284 break;
1285
1286 case directive_freeregs:
1287 /* This information is currently unused, but we'll accept the statement
1288 and just discard the rest of the line. This won't check the syntax,
1289 but it will accept every correct freeregs directive. */
1290 input_line_pointer += strcspn (input_line_pointer, "\n");
1291 directive_push (directive_freeregs, negated, 0);
1292 break;
1293
43cd72b9
BW
1294 case directive_schedule:
1295 md_flush_pending_output ();
1296 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
1297 frag_now->fr_symbol, frag_now->fr_offset, NULL);
1298 directive_push (directive_schedule, negated, 0);
1299 xtensa_set_frag_assembly_state (frag_now);
1300 break;
1301
e0001a05 1302 case directive_density:
43cd72b9
BW
1303 as_warn (_(".begin [no-]density is ignored"));
1304 break;
1305
1306 case directive_absolute_literals:
1307 md_flush_pending_output ();
1308 if (!absolute_literals_supported && !negated)
e0001a05 1309 {
43cd72b9 1310 as_warn (_("Xtensa absolute literals option not supported; ignored"));
e0001a05
NC
1311 break;
1312 }
43cd72b9
BW
1313 xtensa_set_frag_assembly_state (frag_now);
1314 directive_push (directive, negated, 0);
1315 break;
e0001a05
NC
1316
1317 default:
43cd72b9
BW
1318 md_flush_pending_output ();
1319 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
1320 directive_push (directive, negated, 0);
1321 break;
1322 }
1323
1324 demand_empty_rest_of_line ();
1325}
1326
1327
1328static void
7fa3d080 1329xtensa_end_directive (int ignore ATTRIBUTE_UNUSED)
e0001a05
NC
1330{
1331 directiveE begin_directive, end_directive;
1332 bfd_boolean begin_negated, end_negated;
1333 const char *file;
1334 unsigned int line;
1335 emit_state *state;
43cd72b9 1336 emit_state **state_ptr;
e0001a05
NC
1337 lit_state *s;
1338
43cd72b9
BW
1339 if (cur_vinsn.inside_bundle)
1340 as_bad (_("directives are not valid inside bundles"));
82e7541d 1341
e0001a05 1342 get_directive (&end_directive, &end_negated);
43cd72b9
BW
1343
1344 md_flush_pending_output ();
1345
87975d2a 1346 switch ((int) end_directive)
e0001a05 1347 {
87975d2a 1348 case XTENSA_UNDEFINED:
e0001a05
NC
1349 discard_rest_of_line ();
1350 return;
e0001a05 1351
87975d2a 1352 case (int) directive_density:
43cd72b9 1353 as_warn (_(".end [no-]density is ignored"));
e0001a05 1354 demand_empty_rest_of_line ();
43cd72b9
BW
1355 break;
1356
87975d2a 1357 case (int) directive_absolute_literals:
43cd72b9
BW
1358 if (!absolute_literals_supported && !end_negated)
1359 {
1360 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1361 demand_empty_rest_of_line ();
1362 return;
1363 }
1364 break;
1365
1366 default:
1367 break;
e0001a05
NC
1368 }
1369
43cd72b9 1370 state_ptr = &state; /* use state_ptr to avoid type-punning warning */
e0001a05 1371 directive_pop (&begin_directive, &begin_negated, &file, &line,
43cd72b9 1372 (const void **) state_ptr);
e0001a05
NC
1373
1374 if (begin_directive != directive_none)
1375 {
1376 if (begin_directive != end_directive || begin_negated != end_negated)
1377 {
1378 as_bad (_("does not match begin %s%s at %s:%d"),
1379 begin_negated ? "no-" : "",
1380 directive_info[begin_directive].name, file, line);
1381 }
1382 else
1383 {
1384 switch (end_directive)
1385 {
1386 case directive_literal:
1387 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1388 xtensa_restore_emit_state (state);
43cd72b9 1389 xtensa_set_frag_assembly_state (frag_now);
e0001a05 1390 free (state);
82e7541d
BW
1391 if (!inside_directive (directive_literal))
1392 {
1393 /* Restore the list of current labels. */
1394 xtensa_clear_insn_labels ();
1395 insn_labels = saved_insn_labels;
1396 }
e0001a05
NC
1397 break;
1398
e0001a05
NC
1399 case directive_literal_prefix:
1400 /* Restore the default collection sections from saved state. */
1401 s = (lit_state *) state;
9c2799c2 1402 gas_assert (s);
e8247da7 1403 default_lit_sections = *s;
e0001a05 1404
74869ac7
BW
1405 /* Free the state storage. */
1406 free (s->lit_prefix);
e0001a05
NC
1407 free (s);
1408 break;
1409
43cd72b9
BW
1410 case directive_schedule:
1411 case directive_freeregs:
1412 break;
1413
e0001a05 1414 default:
43cd72b9 1415 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
1416 break;
1417 }
1418 }
1419 }
1420
1421 demand_empty_rest_of_line ();
1422}
1423
1424
1425/* Place an aligned literal fragment at the current location. */
1426
1427static void
7fa3d080 1428xtensa_literal_position (int ignore ATTRIBUTE_UNUSED)
e0001a05 1429{
43cd72b9
BW
1430 md_flush_pending_output ();
1431
e0001a05
NC
1432 if (inside_directive (directive_literal))
1433 as_warn (_(".literal_position inside literal directive; ignoring"));
43cd72b9 1434 xtensa_mark_literal_pool_location ();
e0001a05
NC
1435
1436 demand_empty_rest_of_line ();
82e7541d 1437 xtensa_clear_insn_labels ();
e0001a05
NC
1438}
1439
1440
43cd72b9 1441/* Support .literal label, expr, ... */
e0001a05
NC
1442
1443static void
7fa3d080 1444xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED)
e0001a05
NC
1445{
1446 emit_state state;
1745fcba 1447 char *p, *base_name;
e0001a05 1448 char c;
e0001a05
NC
1449 segT dest_seg;
1450
82e7541d
BW
1451 if (inside_directive (directive_literal))
1452 {
1453 as_bad (_(".literal not allowed inside .begin literal region"));
1454 ignore_rest_of_line ();
1455 return;
1456 }
1457
43cd72b9
BW
1458 md_flush_pending_output ();
1459
82e7541d
BW
1460 /* Previous labels go with whatever follows this directive, not with
1461 the literal, so save them now. */
1462 saved_insn_labels = insn_labels;
1463 insn_labels = NULL;
1464
e0001a05
NC
1465 /* If we are using text-section literals, then this is the right value... */
1466 dest_seg = now_seg;
1467
1468 base_name = input_line_pointer;
1469
1470 xtensa_switch_to_literal_fragment (&state);
1471
43cd72b9 1472 /* ...but if we aren't using text-section-literals, then we
e0001a05 1473 need to put them in the section we just switched to. */
43cd72b9 1474 if (use_literal_section || directive_state[directive_absolute_literals])
e0001a05
NC
1475 dest_seg = now_seg;
1476
87975d2a
AM
1477 /* FIXME, despite the previous comments, dest_seg is unused... */
1478 (void) dest_seg;
1479
43cd72b9
BW
1480 /* All literals are aligned to four-byte boundaries. */
1481 frag_align (2, 0, 0);
1482 record_alignment (now_seg, 2);
e0001a05
NC
1483
1484 c = get_symbol_end ();
1485 /* Just after name is now '\0'. */
1486 p = input_line_pointer;
1487 *p = c;
1488 SKIP_WHITESPACE ();
1489
1490 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1491 {
1492 as_bad (_("expected comma or colon after symbol name; "
1493 "rest of line ignored"));
1494 ignore_rest_of_line ();
1495 xtensa_restore_emit_state (&state);
1496 return;
1497 }
1498 *p = 0;
1499
e0001a05 1500 colon (base_name);
e0001a05 1501
e0001a05 1502 *p = c;
43cd72b9 1503 input_line_pointer++; /* skip ',' or ':' */
e0001a05 1504
43cd72b9 1505 xtensa_elf_cons (4);
e0001a05
NC
1506
1507 xtensa_restore_emit_state (&state);
82e7541d
BW
1508
1509 /* Restore the list of current labels. */
1510 xtensa_clear_insn_labels ();
1511 insn_labels = saved_insn_labels;
e0001a05
NC
1512}
1513
1514
1515static void
74869ac7 1516xtensa_literal_prefix (void)
e0001a05 1517{
74869ac7
BW
1518 char *name;
1519 int len;
1520
1521 /* Parse the new prefix from the input_line_pointer. */
1522 SKIP_WHITESPACE ();
1523 len = strspn (input_line_pointer,
1524 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1525 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
e0001a05
NC
1526
1527 /* Get a null-terminated copy of the name. */
1528 name = xmalloc (len + 1);
9c2799c2 1529 gas_assert (name);
74869ac7 1530 strncpy (name, input_line_pointer, len);
e0001a05
NC
1531 name[len] = 0;
1532
74869ac7
BW
1533 /* Skip the name in the input line. */
1534 input_line_pointer += len;
43cd72b9 1535
74869ac7 1536 default_lit_sections.lit_prefix = name;
43cd72b9 1537
74869ac7 1538 /* Clear cached literal sections, since the prefix has changed. */
43cd72b9
BW
1539 default_lit_sections.lit_seg = NULL;
1540 default_lit_sections.lit4_seg = NULL;
43cd72b9
BW
1541}
1542
1543
1544/* Support ".frequency branch_target_frequency fall_through_frequency". */
1545
1546static void
7fa3d080 1547xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED)
43cd72b9
BW
1548{
1549 float fall_through_f, target_f;
43cd72b9
BW
1550
1551 fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer);
1552 if (fall_through_f < 0)
1553 {
1554 as_bad (_("fall through frequency must be greater than 0"));
1555 ignore_rest_of_line ();
1556 return;
1557 }
1558
1559 target_f = (float) strtod (input_line_pointer, &input_line_pointer);
1560 if (target_f < 0)
1561 {
1562 as_bad (_("branch target frequency must be greater than 0"));
1563 ignore_rest_of_line ();
1564 return;
1565 }
1566
b08b5071 1567 set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f);
43cd72b9
BW
1568
1569 demand_empty_rest_of_line ();
1570}
1571
1572
1573/* Like normal .long/.short/.word, except support @plt, etc.
1574 Clobbers input_line_pointer, checks end-of-line. */
1575
1576static void
7fa3d080 1577xtensa_elf_cons (int nbytes)
43cd72b9
BW
1578{
1579 expressionS exp;
1580 bfd_reloc_code_real_type reloc;
1581
1582 md_flush_pending_output ();
1583
1584 if (cur_vinsn.inside_bundle)
1585 as_bad (_("directives are not valid inside bundles"));
1586
1587 if (is_it_end_of_statement ())
1588 {
1589 demand_empty_rest_of_line ();
1590 return;
1591 }
1592
1593 do
1594 {
1595 expression (&exp);
1596 if (exp.X_op == O_symbol
1597 && *input_line_pointer == '@'
1598 && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp))
1599 != BFD_RELOC_NONE))
1600 {
1601 reloc_howto_type *reloc_howto =
1602 bfd_reloc_type_lookup (stdoutput, reloc);
1603
1604 if (reloc == BFD_RELOC_UNUSED || !reloc_howto)
1605 as_bad (_("unsupported relocation"));
1606 else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP
1607 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
1608 || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
1609 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT))
1610 as_bad (_("opcode-specific %s relocation used outside "
1611 "an instruction"), reloc_howto->name);
1612 else if (nbytes != (int) bfd_get_reloc_size (reloc_howto))
1613 as_bad (_("%s relocations do not fit in %d bytes"),
1614 reloc_howto->name, nbytes);
28dbbc02
BW
1615 else if (reloc == BFD_RELOC_XTENSA_TLS_FUNC
1616 || reloc == BFD_RELOC_XTENSA_TLS_ARG
1617 || reloc == BFD_RELOC_XTENSA_TLS_CALL)
1618 as_bad (_("invalid use of %s relocation"), reloc_howto->name);
43cd72b9
BW
1619 else
1620 {
1621 char *p = frag_more ((int) nbytes);
1622 xtensa_set_frag_assembly_state (frag_now);
1623 fix_new_exp (frag_now, p - frag_now->fr_literal,
1bbb5f21 1624 nbytes, &exp, reloc_howto->pc_relative, reloc);
43cd72b9
BW
1625 }
1626 }
1627 else
1f7efbae
BW
1628 {
1629 xtensa_set_frag_assembly_state (frag_now);
1630 emit_expr (&exp, (unsigned int) nbytes);
1631 }
43cd72b9
BW
1632 }
1633 while (*input_line_pointer++ == ',');
1634
1635 input_line_pointer--; /* Put terminator back into stream. */
1636 demand_empty_rest_of_line ();
1637}
1638
fb227da0
BW
1639static bfd_boolean is_leb128_expr;
1640
1641static void
1642xtensa_leb128 (int sign)
1643{
1644 is_leb128_expr = TRUE;
1645 s_leb128 (sign);
1646 is_leb128_expr = FALSE;
1647}
1648
7fa3d080
BW
1649\f
1650/* Parsing and Idiom Translation. */
43cd72b9
BW
1651
1652/* Parse @plt, etc. and return the desired relocation. */
1653static bfd_reloc_code_real_type
7fa3d080 1654xtensa_elf_suffix (char **str_p, expressionS *exp_p)
43cd72b9 1655{
43cd72b9
BW
1656 char ident[20];
1657 char *str = *str_p;
1658 char *str2;
1659 int ch;
1660 int len;
bbdd25a8 1661 struct suffix_reloc_map *ptr;
43cd72b9
BW
1662
1663 if (*str++ != '@')
1664 return BFD_RELOC_NONE;
1665
1666 for (ch = *str, str2 = ident;
1667 (str2 < ident + sizeof (ident) - 1
1668 && (ISALNUM (ch) || ch == '@'));
1669 ch = *++str)
1670 {
1671 *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch);
1672 }
1673
1674 *str2 = '\0';
1675 len = str2 - ident;
1676
1677 ch = ident[0];
bbdd25a8
BW
1678 for (ptr = &suffix_relocs[0]; ptr->length > 0; ptr++)
1679 if (ch == ptr->suffix[0]
43cd72b9 1680 && len == ptr->length
bbdd25a8 1681 && memcmp (ident, ptr->suffix, ptr->length) == 0)
43cd72b9
BW
1682 {
1683 /* Now check for "identifier@suffix+constant". */
1684 if (*str == '-' || *str == '+')
1685 {
1686 char *orig_line = input_line_pointer;
1687 expressionS new_exp;
1688
1689 input_line_pointer = str;
1690 expression (&new_exp);
1691 if (new_exp.X_op == O_constant)
1692 {
1693 exp_p->X_add_number += new_exp.X_add_number;
1694 str = input_line_pointer;
1695 }
1696
1697 if (&input_line_pointer != str_p)
1698 input_line_pointer = orig_line;
1699 }
1700
1701 *str_p = str;
1702 return ptr->reloc;
1703 }
1704
1705 return BFD_RELOC_UNUSED;
e0001a05
NC
1706}
1707
e0001a05 1708
bbdd25a8
BW
1709/* Find the matching operator type. */
1710static unsigned char
1711map_suffix_reloc_to_operator (bfd_reloc_code_real_type reloc)
1712{
1713 struct suffix_reloc_map *sfx;
1714 unsigned char operator = (unsigned char) -1;
1715
1716 for (sfx = &suffix_relocs[0]; sfx->suffix; sfx++)
1717 {
1718 if (sfx->reloc == reloc)
1719 {
1720 operator = sfx->operator;
1721 break;
1722 }
1723 }
9c2799c2 1724 gas_assert (operator != (unsigned char) -1);
bbdd25a8
BW
1725 return operator;
1726}
1727
1728
1729/* Find the matching reloc type. */
1730static bfd_reloc_code_real_type
28dbbc02 1731map_operator_to_reloc (unsigned char operator, bfd_boolean is_literal)
bbdd25a8
BW
1732{
1733 struct suffix_reloc_map *sfx;
1734 bfd_reloc_code_real_type reloc = BFD_RELOC_UNUSED;
1735
1736 for (sfx = &suffix_relocs[0]; sfx->suffix; sfx++)
1737 {
1738 if (sfx->operator == operator)
1739 {
1740 reloc = sfx->reloc;
1741 break;
1742 }
1743 }
1744
28dbbc02
BW
1745 if (is_literal)
1746 {
1747 if (reloc == BFD_RELOC_XTENSA_TLS_FUNC)
1748 return BFD_RELOC_XTENSA_TLSDESC_FN;
1749 else if (reloc == BFD_RELOC_XTENSA_TLS_ARG)
1750 return BFD_RELOC_XTENSA_TLSDESC_ARG;
1751 }
1752
bbdd25a8
BW
1753 if (reloc == BFD_RELOC_UNUSED)
1754 return BFD_RELOC_32;
1755
1756 return reloc;
1757}
1758
1759
e0001a05 1760static const char *
7fa3d080 1761expression_end (const char *name)
e0001a05
NC
1762{
1763 while (1)
1764 {
1765 switch (*name)
1766 {
43cd72b9 1767 case '}':
e0001a05
NC
1768 case ';':
1769 case '\0':
1770 case ',':
43cd72b9 1771 case ':':
e0001a05
NC
1772 return name;
1773 case ' ':
1774 case '\t':
1775 ++name;
1776 continue;
1777 default:
1778 return 0;
1779 }
1780 }
1781}
1782
1783
1784#define ERROR_REG_NUM ((unsigned) -1)
1785
1786static unsigned
7fa3d080 1787tc_get_register (const char *prefix)
e0001a05
NC
1788{
1789 unsigned reg;
1790 const char *next_expr;
1791 const char *old_line_pointer;
1792
1793 SKIP_WHITESPACE ();
1794 old_line_pointer = input_line_pointer;
1795
1796 if (*input_line_pointer == '$')
1797 ++input_line_pointer;
1798
1799 /* Accept "sp" as a synonym for "a1". */
1800 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1801 && expression_end (input_line_pointer + 2))
1802 {
1803 input_line_pointer += 2;
1804 return 1; /* AR[1] */
1805 }
1806
1807 while (*input_line_pointer++ == *prefix++)
1808 ;
1809 --input_line_pointer;
1810 --prefix;
1811
1812 if (*prefix)
1813 {
1814 as_bad (_("bad register name: %s"), old_line_pointer);
1815 return ERROR_REG_NUM;
1816 }
1817
1818 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1819 {
1820 as_bad (_("bad register number: %s"), input_line_pointer);
1821 return ERROR_REG_NUM;
1822 }
1823
1824 reg = 0;
1825
1826 while (ISDIGIT ((int) *input_line_pointer))
1827 reg = reg * 10 + *input_line_pointer++ - '0';
1828
1829 if (!(next_expr = expression_end (input_line_pointer)))
1830 {
1831 as_bad (_("bad register name: %s"), old_line_pointer);
1832 return ERROR_REG_NUM;
1833 }
1834
1835 input_line_pointer = (char *) next_expr;
1836
1837 return reg;
1838}
1839
1840
e0001a05 1841static void
7fa3d080 1842expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok)
e0001a05 1843{
43cd72b9 1844 xtensa_isa isa = xtensa_default_isa;
e0001a05 1845
43cd72b9
BW
1846 /* Check if this is an immediate operand. */
1847 if (xtensa_operand_is_register (isa, opc, opnd) == 0)
e0001a05 1848 {
43cd72b9 1849 bfd_reloc_code_real_type reloc;
e0001a05 1850 segT t = expression (tok);
91d6fa6a 1851
43cd72b9
BW
1852 if (t == absolute_section
1853 && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1)
e0001a05 1854 {
9c2799c2 1855 gas_assert (tok->X_op == O_constant);
e0001a05
NC
1856 tok->X_op = O_symbol;
1857 tok->X_add_symbol = &abs_symbol;
1858 }
43cd72b9
BW
1859
1860 if ((tok->X_op == O_constant || tok->X_op == O_symbol)
bbdd25a8
BW
1861 && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok))
1862 != BFD_RELOC_NONE))
e0001a05 1863 {
1bbb5f21 1864 switch (reloc)
43cd72b9 1865 {
1bbb5f21
BW
1866 case BFD_RELOC_LO16:
1867 if (tok->X_op == O_constant)
bbdd25a8 1868 {
43cd72b9 1869 tok->X_add_number &= 0xffff;
bbdd25a8 1870 return;
1bbb5f21
BW
1871 }
1872 break;
1873 case BFD_RELOC_HI16:
1874 if (tok->X_op == O_constant)
1875 {
43cd72b9 1876 tok->X_add_number = ((unsigned) tok->X_add_number) >> 16;
bbdd25a8 1877 return;
bbdd25a8 1878 }
1bbb5f21
BW
1879 break;
1880 case BFD_RELOC_UNUSED:
1881 as_bad (_("unsupported relocation"));
1882 return;
1883 case BFD_RELOC_32_PCREL:
1884 as_bad (_("pcrel relocation not allowed in an instruction"));
1885 return;
1886 default:
1887 break;
43cd72b9 1888 }
bbdd25a8 1889 tok->X_op = map_suffix_reloc_to_operator (reloc);
e0001a05 1890 }
e0001a05
NC
1891 }
1892 else
1893 {
43cd72b9
BW
1894 xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd);
1895 unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf));
e0001a05
NC
1896
1897 if (reg != ERROR_REG_NUM) /* Already errored */
1898 {
1899 uint32 buf = reg;
43cd72b9 1900 if (xtensa_operand_encode (isa, opc, opnd, &buf))
e0001a05
NC
1901 as_bad (_("register number out of range"));
1902 }
1903
1904 tok->X_op = O_register;
1905 tok->X_add_symbol = 0;
1906 tok->X_add_number = reg;
1907 }
1908}
1909
1910
1911/* Split up the arguments for an opcode or pseudo-op. */
1912
1913static int
7fa3d080 1914tokenize_arguments (char **args, char *str)
e0001a05
NC
1915{
1916 char *old_input_line_pointer;
1917 bfd_boolean saw_comma = FALSE;
1918 bfd_boolean saw_arg = FALSE;
43cd72b9 1919 bfd_boolean saw_colon = FALSE;
e0001a05
NC
1920 int num_args = 0;
1921 char *arg_end, *arg;
1922 int arg_len;
43cd72b9
BW
1923
1924 /* Save and restore input_line_pointer around this function. */
e0001a05
NC
1925 old_input_line_pointer = input_line_pointer;
1926 input_line_pointer = str;
1927
1928 while (*input_line_pointer)
1929 {
1930 SKIP_WHITESPACE ();
1931 switch (*input_line_pointer)
1932 {
1933 case '\0':
43cd72b9 1934 case '}':
e0001a05
NC
1935 goto fini;
1936
43cd72b9
BW
1937 case ':':
1938 input_line_pointer++;
1939 if (saw_comma || saw_colon || !saw_arg)
1940 goto err;
1941 saw_colon = TRUE;
1942 break;
1943
e0001a05
NC
1944 case ',':
1945 input_line_pointer++;
43cd72b9 1946 if (saw_comma || saw_colon || !saw_arg)
e0001a05
NC
1947 goto err;
1948 saw_comma = TRUE;
1949 break;
1950
1951 default:
43cd72b9 1952 if (!saw_comma && !saw_colon && saw_arg)
e0001a05
NC
1953 goto err;
1954
1955 arg_end = input_line_pointer + 1;
1956 while (!expression_end (arg_end))
1957 arg_end += 1;
43cd72b9 1958
e0001a05 1959 arg_len = arg_end - input_line_pointer;
43cd72b9 1960 arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1);
e0001a05
NC
1961 args[num_args] = arg;
1962
43cd72b9
BW
1963 if (saw_colon)
1964 *arg++ = ':';
e0001a05
NC
1965 strncpy (arg, input_line_pointer, arg_len);
1966 arg[arg_len] = '\0';
43cd72b9 1967
e0001a05
NC
1968 input_line_pointer = arg_end;
1969 num_args += 1;
c138bc38 1970 saw_comma = FALSE;
43cd72b9 1971 saw_colon = FALSE;
c138bc38 1972 saw_arg = TRUE;
e0001a05
NC
1973 break;
1974 }
1975 }
1976
1977fini:
43cd72b9 1978 if (saw_comma || saw_colon)
e0001a05
NC
1979 goto err;
1980 input_line_pointer = old_input_line_pointer;
1981 return num_args;
1982
1983err:
43cd72b9
BW
1984 if (saw_comma)
1985 as_bad (_("extra comma"));
1986 else if (saw_colon)
1987 as_bad (_("extra colon"));
1988 else if (!saw_arg)
c138bc38 1989 as_bad (_("missing argument"));
43cd72b9
BW
1990 else
1991 as_bad (_("missing comma or colon"));
e0001a05
NC
1992 input_line_pointer = old_input_line_pointer;
1993 return -1;
1994}
1995
1996
43cd72b9 1997/* Parse the arguments to an opcode. Return TRUE on error. */
e0001a05
NC
1998
1999static bfd_boolean
7fa3d080 2000parse_arguments (TInsn *insn, int num_args, char **arg_strings)
e0001a05 2001{
43cd72b9 2002 expressionS *tok, *last_tok;
e0001a05
NC
2003 xtensa_opcode opcode = insn->opcode;
2004 bfd_boolean had_error = TRUE;
43cd72b9
BW
2005 xtensa_isa isa = xtensa_default_isa;
2006 int n, num_regs = 0;
e0001a05 2007 int opcode_operand_count;
43cd72b9
BW
2008 int opnd_cnt, last_opnd_cnt;
2009 unsigned int next_reg = 0;
e0001a05
NC
2010 char *old_input_line_pointer;
2011
2012 if (insn->insn_type == ITYPE_LITERAL)
2013 opcode_operand_count = 1;
2014 else
43cd72b9 2015 opcode_operand_count = xtensa_opcode_num_operands (isa, opcode);
e0001a05 2016
43cd72b9 2017 tok = insn->tok;
e0001a05
NC
2018 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
2019
2020 /* Save and restore input_line_pointer around this function. */
43cd72b9
BW
2021 old_input_line_pointer = input_line_pointer;
2022
2023 last_tok = 0;
2024 last_opnd_cnt = -1;
2025 opnd_cnt = 0;
2026
2027 /* Skip invisible operands. */
2028 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0)
2029 {
2030 opnd_cnt += 1;
2031 tok++;
2032 }
e0001a05
NC
2033
2034 for (n = 0; n < num_args; n++)
43cd72b9 2035 {
e0001a05 2036 input_line_pointer = arg_strings[n];
43cd72b9
BW
2037 if (*input_line_pointer == ':')
2038 {
2039 xtensa_regfile opnd_rf;
2040 input_line_pointer++;
2041 if (num_regs == 0)
2042 goto err;
9c2799c2 2043 gas_assert (opnd_cnt > 0);
43cd72b9
BW
2044 num_regs--;
2045 opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt);
2046 if (next_reg
2047 != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)))
2048 as_warn (_("incorrect register number, ignoring"));
2049 next_reg++;
2050 }
2051 else
2052 {
2053 if (opnd_cnt >= opcode_operand_count)
2054 {
2055 as_warn (_("too many arguments"));
2056 goto err;
2057 }
9c2799c2 2058 gas_assert (opnd_cnt < MAX_INSN_ARGS);
43cd72b9
BW
2059
2060 expression_maybe_register (opcode, opnd_cnt, tok);
2061 next_reg = tok->X_add_number + 1;
2062
2063 if (tok->X_op == O_illegal || tok->X_op == O_absent)
2064 goto err;
2065 if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1)
2066 {
2067 num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1;
2068 /* minus 1 because we are seeing one right now */
2069 }
2070 else
2071 num_regs = 0;
e0001a05 2072
43cd72b9
BW
2073 last_tok = tok;
2074 last_opnd_cnt = opnd_cnt;
1ec520b7 2075 demand_empty_rest_of_line ();
e0001a05 2076
43cd72b9
BW
2077 do
2078 {
2079 opnd_cnt += 1;
2080 tok++;
2081 }
2082 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0);
2083 }
2084 }
e0001a05 2085
43cd72b9
BW
2086 if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1))
2087 goto err;
e0001a05
NC
2088
2089 insn->ntok = tok - insn->tok;
c138bc38 2090 had_error = FALSE;
e0001a05
NC
2091
2092 err:
43cd72b9 2093 input_line_pointer = old_input_line_pointer;
e0001a05
NC
2094 return had_error;
2095}
2096
2097
43cd72b9 2098static int
7fa3d080 2099get_invisible_operands (TInsn *insn)
43cd72b9
BW
2100{
2101 xtensa_isa isa = xtensa_default_isa;
2102 static xtensa_insnbuf slotbuf = NULL;
2103 xtensa_format fmt;
2104 xtensa_opcode opc = insn->opcode;
2105 int slot, opnd, fmt_found;
2106 unsigned val;
2107
2108 if (!slotbuf)
2109 slotbuf = xtensa_insnbuf_alloc (isa);
2110
2111 /* Find format/slot where this can be encoded. */
2112 fmt_found = 0;
2113 slot = 0;
2114 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
2115 {
2116 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
2117 {
2118 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0)
2119 {
2120 fmt_found = 1;
2121 break;
2122 }
2123 }
2124 if (fmt_found) break;
2125 }
2126
2127 if (!fmt_found)
2128 {
2129 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc));
2130 return -1;
2131 }
2132
2133 /* First encode all the visible operands
2134 (to deal with shared field operands). */
2135 for (opnd = 0; opnd < insn->ntok; opnd++)
2136 {
2137 if (xtensa_operand_is_visible (isa, opc, opnd) == 1
2138 && (insn->tok[opnd].X_op == O_register
2139 || insn->tok[opnd].X_op == O_constant))
2140 {
2141 val = insn->tok[opnd].X_add_number;
2142 xtensa_operand_encode (isa, opc, opnd, &val);
2143 xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val);
2144 }
2145 }
2146
2147 /* Then pull out the values for the invisible ones. */
2148 for (opnd = 0; opnd < insn->ntok; opnd++)
2149 {
2150 if (xtensa_operand_is_visible (isa, opc, opnd) == 0)
2151 {
2152 xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val);
2153 xtensa_operand_decode (isa, opc, opnd, &val);
2154 insn->tok[opnd].X_add_number = val;
2155 if (xtensa_operand_is_register (isa, opc, opnd) == 1)
2156 insn->tok[opnd].X_op = O_register;
2157 else
2158 insn->tok[opnd].X_op = O_constant;
2159 }
2160 }
2161
2162 return 0;
2163}
2164
2165
e0001a05 2166static void
7fa3d080 2167xg_reverse_shift_count (char **cnt_argp)
e0001a05
NC
2168{
2169 char *cnt_arg, *new_arg;
2170 cnt_arg = *cnt_argp;
2171
2172 /* replace the argument with "31-(argument)" */
2173 new_arg = (char *) xmalloc (strlen (cnt_arg) + 6);
2174 sprintf (new_arg, "31-(%s)", cnt_arg);
2175
2176 free (cnt_arg);
2177 *cnt_argp = new_arg;
2178}
2179
2180
2181/* If "arg" is a constant expression, return non-zero with the value
2182 in *valp. */
2183
2184static int
7fa3d080 2185xg_arg_is_constant (char *arg, offsetT *valp)
e0001a05
NC
2186{
2187 expressionS exp;
2188 char *save_ptr = input_line_pointer;
2189
2190 input_line_pointer = arg;
2191 expression (&exp);
2192 input_line_pointer = save_ptr;
2193
2194 if (exp.X_op == O_constant)
2195 {
2196 *valp = exp.X_add_number;
2197 return 1;
2198 }
2199
2200 return 0;
2201}
2202
2203
2204static void
7fa3d080 2205xg_replace_opname (char **popname, char *newop)
e0001a05
NC
2206{
2207 free (*popname);
2208 *popname = (char *) xmalloc (strlen (newop) + 1);
2209 strcpy (*popname, newop);
2210}
2211
2212
2213static int
7fa3d080
BW
2214xg_check_num_args (int *pnum_args,
2215 int expected_num,
2216 char *opname,
2217 char **arg_strings)
e0001a05
NC
2218{
2219 int num_args = *pnum_args;
2220
43cd72b9 2221 if (num_args < expected_num)
e0001a05
NC
2222 {
2223 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2224 num_args, opname, expected_num);
2225 return -1;
2226 }
2227
2228 if (num_args > expected_num)
2229 {
2230 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2231 num_args, opname, expected_num);
2232 while (num_args-- > expected_num)
2233 {
2234 free (arg_strings[num_args]);
2235 arg_strings[num_args] = 0;
2236 }
2237 *pnum_args = expected_num;
2238 return -1;
2239 }
2240
2241 return 0;
2242}
2243
2244
43cd72b9
BW
2245/* If the register is not specified as part of the opcode,
2246 then get it from the operand and move it to the opcode. */
2247
e0001a05 2248static int
7fa3d080 2249xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings)
e0001a05 2250{
43cd72b9
BW
2251 xtensa_isa isa = xtensa_default_isa;
2252 xtensa_sysreg sr;
e0001a05 2253 char *opname, *new_opname;
43cd72b9
BW
2254 const char *sr_name;
2255 int is_user, is_write;
e0001a05
NC
2256
2257 opname = *popname;
2258 if (*opname == '_')
80ca4e2c 2259 opname += 1;
43cd72b9
BW
2260 is_user = (opname[1] == 'u');
2261 is_write = (opname[0] == 'w');
e0001a05 2262
43cd72b9 2263 /* Opname == [rw]ur or [rwx]sr... */
e0001a05 2264
43cd72b9
BW
2265 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2266 return -1;
e0001a05 2267
43cd72b9
BW
2268 /* Check if the argument is a symbolic register name. */
2269 sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]);
2270 /* Handle WSR to "INTSET" as a special case. */
2271 if (sr == XTENSA_UNDEFINED && is_write && !is_user
2272 && !strcasecmp (arg_strings[1], "intset"))
2273 sr = xtensa_sysreg_lookup_name (isa, "interrupt");
2274 if (sr == XTENSA_UNDEFINED
2275 || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user)
2276 {
2277 /* Maybe it's a register number.... */
2278 offsetT val;
e0001a05
NC
2279 if (!xg_arg_is_constant (arg_strings[1], &val))
2280 {
43cd72b9
BW
2281 as_bad (_("invalid register '%s' for '%s' instruction"),
2282 arg_strings[1], opname);
e0001a05
NC
2283 return -1;
2284 }
43cd72b9
BW
2285 sr = xtensa_sysreg_lookup (isa, val, is_user);
2286 if (sr == XTENSA_UNDEFINED)
e0001a05 2287 {
43cd72b9 2288 as_bad (_("invalid register number (%ld) for '%s' instruction"),
dd49a749 2289 (long) val, opname);
e0001a05
NC
2290 return -1;
2291 }
43cd72b9 2292 }
e0001a05 2293
43cd72b9
BW
2294 /* Remove the last argument, which is now part of the opcode. */
2295 free (arg_strings[1]);
2296 arg_strings[1] = 0;
2297 *pnum_args = 1;
2298
2299 /* Translate the opcode. */
2300 sr_name = xtensa_sysreg_name (isa, sr);
2301 /* Another special case for "WSR.INTSET".... */
2302 if (is_write && !is_user && !strcasecmp ("interrupt", sr_name))
2303 sr_name = "intset";
2304 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
80ca4e2c 2305 sprintf (new_opname, "%s.%s", *popname, sr_name);
43cd72b9
BW
2306 free (*popname);
2307 *popname = new_opname;
2308
2309 return 0;
2310}
2311
2312
2313static int
7fa3d080 2314xtensa_translate_old_userreg_ops (char **popname)
43cd72b9
BW
2315{
2316 xtensa_isa isa = xtensa_default_isa;
2317 xtensa_sysreg sr;
2318 char *opname, *new_opname;
2319 const char *sr_name;
2320 bfd_boolean has_underbar = FALSE;
2321
2322 opname = *popname;
2323 if (opname[0] == '_')
2324 {
2325 has_underbar = TRUE;
2326 opname += 1;
2327 }
2328
2329 sr = xtensa_sysreg_lookup_name (isa, opname + 1);
2330 if (sr != XTENSA_UNDEFINED)
2331 {
2332 /* The new default name ("nnn") is different from the old default
2333 name ("URnnn"). The old default is handled below, and we don't
2334 want to recognize [RW]nnn, so do nothing if the name is the (new)
2335 default. */
2336 static char namebuf[10];
2337 sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr));
2338 if (strcmp (namebuf, opname + 1) == 0)
2339 return 0;
2340 }
2341 else
2342 {
2343 offsetT val;
2344 char *end;
2345
2346 /* Only continue if the reg name is "URnnn". */
2347 if (opname[1] != 'u' || opname[2] != 'r')
2348 return 0;
2349 val = strtoul (opname + 3, &end, 10);
2350 if (*end != '\0')
2351 return 0;
2352
2353 sr = xtensa_sysreg_lookup (isa, val, 1);
2354 if (sr == XTENSA_UNDEFINED)
2355 {
2356 as_bad (_("invalid register number (%ld) for '%s'"),
dd49a749 2357 (long) val, opname);
43cd72b9
BW
2358 return -1;
2359 }
2360 }
2361
2362 /* Translate the opcode. */
2363 sr_name = xtensa_sysreg_name (isa, sr);
2364 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2365 sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""),
2366 opname[0], sr_name);
2367 free (*popname);
2368 *popname = new_opname;
2369
2370 return 0;
2371}
2372
2373
2374static int
7fa3d080
BW
2375xtensa_translate_zero_immed (char *old_op,
2376 char *new_op,
2377 char **popname,
2378 int *pnum_args,
2379 char **arg_strings)
43cd72b9
BW
2380{
2381 char *opname;
2382 offsetT val;
2383
2384 opname = *popname;
9c2799c2 2385 gas_assert (opname[0] != '_');
43cd72b9
BW
2386
2387 if (strcmp (opname, old_op) != 0)
2388 return 0;
e0001a05 2389
43cd72b9
BW
2390 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2391 return -1;
2392 if (xg_arg_is_constant (arg_strings[1], &val) && val == 0)
2393 {
2394 xg_replace_opname (popname, new_op);
2395 free (arg_strings[1]);
2396 arg_strings[1] = arg_strings[2];
2397 arg_strings[2] = 0;
2398 *pnum_args = 2;
e0001a05
NC
2399 }
2400
2401 return 0;
2402}
2403
2404
2405/* If the instruction is an idiom (i.e., a built-in macro), translate it.
2406 Returns non-zero if an error was found. */
2407
2408static int
7fa3d080 2409xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings)
e0001a05
NC
2410{
2411 char *opname = *popname;
2412 bfd_boolean has_underbar = FALSE;
2413
2414 if (*opname == '_')
2415 {
2416 has_underbar = TRUE;
2417 opname += 1;
2418 }
2419
2420 if (strcmp (opname, "mov") == 0)
2421 {
43cd72b9 2422 if (use_transform () && !has_underbar && density_supported)
e0001a05
NC
2423 xg_replace_opname (popname, "mov.n");
2424 else
2425 {
2426 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2427 return -1;
2428 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2429 arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1);
2430 strcpy (arg_strings[2], arg_strings[1]);
2431 *pnum_args = 3;
2432 }
2433 return 0;
2434 }
2435
2436 if (strcmp (opname, "bbsi.l") == 0)
2437 {
2438 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2439 return -1;
2440 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2441 if (target_big_endian)
2442 xg_reverse_shift_count (&arg_strings[1]);
2443 return 0;
2444 }
2445
2446 if (strcmp (opname, "bbci.l") == 0)
2447 {
2448 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2449 return -1;
2450 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2451 if (target_big_endian)
2452 xg_reverse_shift_count (&arg_strings[1]);
2453 return 0;
2454 }
2455
eb6d9dce
BW
2456 /* Don't do anything special with NOPs inside FLIX instructions. They
2457 are handled elsewhere. Real NOP instructions are always available
2458 in configurations with FLIX, so this should never be an issue but
2459 check for it anyway. */
2460 if (!cur_vinsn.inside_bundle && xtensa_nop_opcode == XTENSA_UNDEFINED
43cd72b9 2461 && strcmp (opname, "nop") == 0)
e0001a05 2462 {
43cd72b9 2463 if (use_transform () && !has_underbar && density_supported)
e0001a05
NC
2464 xg_replace_opname (popname, "nop.n");
2465 else
2466 {
2467 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2468 return -1;
2469 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2470 arg_strings[0] = (char *) xmalloc (3);
2471 arg_strings[1] = (char *) xmalloc (3);
2472 arg_strings[2] = (char *) xmalloc (3);
2473 strcpy (arg_strings[0], "a1");
2474 strcpy (arg_strings[1], "a1");
2475 strcpy (arg_strings[2], "a1");
2476 *pnum_args = 3;
2477 }
2478 return 0;
2479 }
2480
43cd72b9
BW
2481 /* Recognize [RW]UR and [RWX]SR. */
2482 if ((((opname[0] == 'r' || opname[0] == 'w')
2483 && (opname[1] == 'u' || opname[1] == 's'))
2484 || (opname[0] == 'x' && opname[1] == 's'))
2485 && opname[2] == 'r'
2486 && opname[3] == '\0')
e0001a05
NC
2487 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2488
43cd72b9
BW
2489 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2490 [RW]<name> if <name> is the non-default name of a user register. */
2491 if ((opname[0] == 'r' || opname[0] == 'w')
2492 && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED)
2493 return xtensa_translate_old_userreg_ops (popname);
e0001a05 2494
43cd72b9
BW
2495 /* Relax branches that don't allow comparisons against an immediate value
2496 of zero to the corresponding branches with implicit zero immediates. */
2497 if (!has_underbar && use_transform ())
2498 {
2499 if (xtensa_translate_zero_immed ("bnei", "bnez", popname,
2500 pnum_args, arg_strings))
2501 return -1;
e0001a05 2502
43cd72b9
BW
2503 if (xtensa_translate_zero_immed ("beqi", "beqz", popname,
2504 pnum_args, arg_strings))
2505 return -1;
e0001a05 2506
43cd72b9
BW
2507 if (xtensa_translate_zero_immed ("bgei", "bgez", popname,
2508 pnum_args, arg_strings))
2509 return -1;
e0001a05 2510
43cd72b9
BW
2511 if (xtensa_translate_zero_immed ("blti", "bltz", popname,
2512 pnum_args, arg_strings))
2513 return -1;
2514 }
e0001a05 2515
43cd72b9
BW
2516 return 0;
2517}
e0001a05 2518
43cd72b9
BW
2519\f
2520/* Functions for dealing with the Xtensa ISA. */
e0001a05 2521
43cd72b9
BW
2522/* Currently the assembler only allows us to use a single target per
2523 fragment. Because of this, only one operand for a given
2524 instruction may be symbolic. If there is a PC-relative operand,
2525 the last one is chosen. Otherwise, the result is the number of the
2526 last immediate operand, and if there are none of those, we fail and
2527 return -1. */
e0001a05 2528
7fa3d080
BW
2529static int
2530get_relaxable_immed (xtensa_opcode opcode)
43cd72b9
BW
2531{
2532 int last_immed = -1;
2533 int noperands, opi;
e0001a05 2534
43cd72b9
BW
2535 if (opcode == XTENSA_UNDEFINED)
2536 return -1;
e0001a05 2537
43cd72b9
BW
2538 noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode);
2539 for (opi = noperands - 1; opi >= 0; opi--)
2540 {
2541 if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0)
2542 continue;
2543 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1)
2544 return opi;
2545 if (last_immed == -1
2546 && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0)
2547 last_immed = opi;
e0001a05 2548 }
43cd72b9 2549 return last_immed;
e0001a05
NC
2550}
2551
e0001a05 2552
43cd72b9 2553static xtensa_opcode
7fa3d080 2554get_opcode_from_buf (const char *buf, int slot)
e0001a05 2555{
43cd72b9
BW
2556 static xtensa_insnbuf insnbuf = NULL;
2557 static xtensa_insnbuf slotbuf = NULL;
2558 xtensa_isa isa = xtensa_default_isa;
2559 xtensa_format fmt;
2560
2561 if (!insnbuf)
e0001a05 2562 {
43cd72b9
BW
2563 insnbuf = xtensa_insnbuf_alloc (isa);
2564 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 2565 }
e0001a05 2566
d77b99c9 2567 xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0);
43cd72b9
BW
2568 fmt = xtensa_format_decode (isa, insnbuf);
2569 if (fmt == XTENSA_UNDEFINED)
2570 return XTENSA_UNDEFINED;
e0001a05 2571
43cd72b9
BW
2572 if (slot >= xtensa_format_num_slots (isa, fmt))
2573 return XTENSA_UNDEFINED;
e0001a05 2574
43cd72b9
BW
2575 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
2576 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
e0001a05
NC
2577}
2578
2579
43cd72b9 2580#ifdef TENSILICA_DEBUG
e0001a05 2581
43cd72b9 2582/* For debugging, print out the mapping of opcode numbers to opcodes. */
e0001a05 2583
7fa3d080
BW
2584static void
2585xtensa_print_insn_table (void)
43cd72b9
BW
2586{
2587 int num_opcodes, num_operands;
2588 xtensa_opcode opcode;
2589 xtensa_isa isa = xtensa_default_isa;
e0001a05 2590
43cd72b9
BW
2591 num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
2592 for (opcode = 0; opcode < num_opcodes; opcode++)
e0001a05 2593 {
43cd72b9
BW
2594 int opn;
2595 fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode));
2596 num_operands = xtensa_opcode_num_operands (isa, opcode);
2597 for (opn = 0; opn < num_operands; opn++)
2598 {
2599 if (xtensa_operand_is_visible (isa, opcode, opn) == 0)
2600 continue;
2601 if (xtensa_operand_is_register (isa, opcode, opn) == 1)
2602 {
2603 xtensa_regfile opnd_rf =
2604 xtensa_operand_regfile (isa, opcode, opn);
2605 fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf));
2606 }
2607 else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1)
2608 fputs ("[lLr] ", stderr);
2609 else
2610 fputs ("i ", stderr);
2611 }
2612 fprintf (stderr, "\n");
e0001a05 2613 }
e0001a05
NC
2614}
2615
2616
43cd72b9 2617static void
7fa3d080 2618print_vliw_insn (xtensa_insnbuf vbuf)
e0001a05 2619{
e0001a05 2620 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
2621 xtensa_format f = xtensa_format_decode (isa, vbuf);
2622 xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa);
2623 int op;
e0001a05 2624
43cd72b9 2625 fprintf (stderr, "format = %d\n", f);
e0001a05 2626
43cd72b9
BW
2627 for (op = 0; op < xtensa_format_num_slots (isa, f); op++)
2628 {
2629 xtensa_opcode opcode;
2630 const char *opname;
2631 int operands;
2632
2633 xtensa_format_get_slot (isa, f, op, vbuf, sbuf);
2634 opcode = xtensa_opcode_decode (isa, f, op, sbuf);
2635 opname = xtensa_opcode_name (isa, opcode);
2636
2637 fprintf (stderr, "op in slot %i is %s;\n", op, opname);
2638 fprintf (stderr, " operands = ");
2639 for (operands = 0;
2640 operands < xtensa_opcode_num_operands (isa, opcode);
2641 operands++)
2642 {
2643 unsigned int val;
2644 if (xtensa_operand_is_visible (isa, opcode, operands) == 0)
2645 continue;
2646 xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val);
2647 xtensa_operand_decode (isa, opcode, operands, &val);
2648 fprintf (stderr, "%d ", val);
2649 }
2650 fprintf (stderr, "\n");
2651 }
2652 xtensa_insnbuf_free (isa, sbuf);
e0001a05
NC
2653}
2654
43cd72b9
BW
2655#endif /* TENSILICA_DEBUG */
2656
e0001a05
NC
2657
2658static bfd_boolean
7fa3d080 2659is_direct_call_opcode (xtensa_opcode opcode)
e0001a05 2660{
43cd72b9
BW
2661 xtensa_isa isa = xtensa_default_isa;
2662 int n, num_operands;
e0001a05 2663
64b607e6 2664 if (xtensa_opcode_is_call (isa, opcode) != 1)
e0001a05
NC
2665 return FALSE;
2666
43cd72b9
BW
2667 num_operands = xtensa_opcode_num_operands (isa, opcode);
2668 for (n = 0; n < num_operands; n++)
2669 {
2670 if (xtensa_operand_is_register (isa, opcode, n) == 0
2671 && xtensa_operand_is_PCrelative (isa, opcode, n) == 1)
2672 return TRUE;
2673 }
2674 return FALSE;
e0001a05
NC
2675}
2676
2677
43cd72b9
BW
2678/* Convert from BFD relocation type code to slot and operand number.
2679 Returns non-zero on failure. */
e0001a05 2680
43cd72b9 2681static int
7fa3d080 2682decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt)
e0001a05 2683{
43cd72b9
BW
2684 if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP
2685 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
e0001a05 2686 {
43cd72b9
BW
2687 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP;
2688 *is_alt = FALSE;
e0001a05 2689 }
43cd72b9
BW
2690 else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
2691 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)
e0001a05 2692 {
43cd72b9
BW
2693 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT;
2694 *is_alt = TRUE;
e0001a05 2695 }
43cd72b9
BW
2696 else
2697 return -1;
2698
2699 return 0;
e0001a05
NC
2700}
2701
2702
43cd72b9
BW
2703/* Convert from slot number to BFD relocation type code for the
2704 standard PC-relative relocations. Return BFD_RELOC_NONE on
2705 failure. */
e0001a05 2706
43cd72b9 2707static bfd_reloc_code_real_type
7fa3d080 2708encode_reloc (int slot)
e0001a05 2709{
43cd72b9
BW
2710 if (slot < 0 || slot > 14)
2711 return BFD_RELOC_NONE;
2712
2713 return BFD_RELOC_XTENSA_SLOT0_OP + slot;
e0001a05
NC
2714}
2715
2716
43cd72b9
BW
2717/* Convert from slot numbers to BFD relocation type code for the
2718 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
e0001a05 2719
43cd72b9 2720static bfd_reloc_code_real_type
7fa3d080 2721encode_alt_reloc (int slot)
e0001a05 2722{
43cd72b9
BW
2723 if (slot < 0 || slot > 14)
2724 return BFD_RELOC_NONE;
2725
2726 return BFD_RELOC_XTENSA_SLOT0_ALT + slot;
e0001a05
NC
2727}
2728
2729
2730static void
7fa3d080
BW
2731xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf,
2732 xtensa_format fmt,
2733 int slot,
2734 xtensa_opcode opcode,
2735 int operand,
2736 uint32 value,
2737 const char *file,
2738 unsigned int line)
e0001a05 2739{
e0001a05
NC
2740 uint32 valbuf = value;
2741
43cd72b9 2742 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
e0001a05 2743 {
43cd72b9
BW
2744 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand)
2745 == 1)
2746 as_bad_where ((char *) file, line,
d7c531cd
BW
2747 _("operand %d of '%s' has out of range value '%u'"),
2748 operand + 1,
2749 xtensa_opcode_name (xtensa_default_isa, opcode),
2750 value);
43cd72b9
BW
2751 else
2752 as_bad_where ((char *) file, line,
d7c531cd
BW
2753 _("operand %d of '%s' has invalid value '%u'"),
2754 operand + 1,
2755 xtensa_opcode_name (xtensa_default_isa, opcode),
2756 value);
43cd72b9 2757 return;
e0001a05
NC
2758 }
2759
43cd72b9
BW
2760 xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot,
2761 slotbuf, valbuf);
e0001a05
NC
2762}
2763
2764
2765static uint32
7fa3d080
BW
2766xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf,
2767 xtensa_format fmt,
2768 int slot,
2769 xtensa_opcode opcode,
2770 int opnum)
e0001a05 2771{
43cd72b9
BW
2772 uint32 val = 0;
2773 (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum,
2774 fmt, slot, slotbuf, &val);
2775 (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val);
2776 return val;
e0001a05
NC
2777}
2778
e0001a05 2779\f
7fa3d080 2780/* Checks for rules from xtensa-relax tables. */
e0001a05 2781
7fa3d080
BW
2782/* The routine xg_instruction_matches_option_term must return TRUE
2783 when a given option term is true. The meaning of all of the option
19e8f41a 2784 terms is given interpretation by this function. */
e0001a05 2785
7fa3d080 2786static bfd_boolean
19e8f41a 2787xg_instruction_matches_option_term (TInsn *insn, const ReqOrOption *option)
e0001a05 2788{
7fa3d080
BW
2789 if (strcmp (option->option_name, "realnop") == 0
2790 || strncmp (option->option_name, "IsaUse", 6) == 0)
2791 {
2792 /* These conditions were evaluated statically when building the
2793 relaxation table. There's no need to reevaluate them now. */
2794 return TRUE;
2795 }
19e8f41a
BW
2796 else if (strcmp (option->option_name, "FREEREG") == 0)
2797 return insn->extra_arg.X_op == O_register;
7fa3d080
BW
2798 else
2799 {
2800 as_fatal (_("internal error: unknown option name '%s'"),
2801 option->option_name);
2802 }
e0001a05
NC
2803}
2804
2805
7fa3d080
BW
2806static bfd_boolean
2807xg_instruction_matches_or_options (TInsn *insn,
2808 const ReqOrOptionList *or_option)
e0001a05 2809{
7fa3d080
BW
2810 const ReqOrOption *option;
2811 /* Must match each of the AND terms. */
2812 for (option = or_option; option != NULL; option = option->next)
e0001a05 2813 {
7fa3d080
BW
2814 if (xg_instruction_matches_option_term (insn, option))
2815 return TRUE;
e0001a05 2816 }
7fa3d080 2817 return FALSE;
e0001a05
NC
2818}
2819
2820
7fa3d080
BW
2821static bfd_boolean
2822xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options)
e0001a05 2823{
7fa3d080
BW
2824 const ReqOption *req_options;
2825 /* Must match each of the AND terms. */
2826 for (req_options = options;
2827 req_options != NULL;
2828 req_options = req_options->next)
e0001a05 2829 {
7fa3d080
BW
2830 /* Must match one of the OR clauses. */
2831 if (!xg_instruction_matches_or_options (insn,
2832 req_options->or_option_terms))
2833 return FALSE;
e0001a05 2834 }
7fa3d080 2835 return TRUE;
e0001a05
NC
2836}
2837
2838
7fa3d080 2839/* Return the transition rule that matches or NULL if none matches. */
e0001a05 2840
7fa3d080
BW
2841static bfd_boolean
2842xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule)
e0001a05 2843{
7fa3d080 2844 PreconditionList *condition_l;
e0001a05 2845
7fa3d080
BW
2846 if (rule->opcode != insn->opcode)
2847 return FALSE;
e0001a05 2848
7fa3d080
BW
2849 for (condition_l = rule->conditions;
2850 condition_l != NULL;
2851 condition_l = condition_l->next)
e0001a05 2852 {
7fa3d080
BW
2853 expressionS *exp1;
2854 expressionS *exp2;
2855 Precondition *cond = condition_l->precond;
e0001a05 2856
7fa3d080 2857 switch (cond->typ)
e0001a05 2858 {
7fa3d080
BW
2859 case OP_CONSTANT:
2860 /* The expression must be the constant. */
9c2799c2 2861 gas_assert (cond->op_num < insn->ntok);
7fa3d080
BW
2862 exp1 = &insn->tok[cond->op_num];
2863 if (expr_is_const (exp1))
2864 {
2865 switch (cond->cmp)
2866 {
2867 case OP_EQUAL:
2868 if (get_expr_const (exp1) != cond->op_data)
2869 return FALSE;
2870 break;
2871 case OP_NOTEQUAL:
2872 if (get_expr_const (exp1) == cond->op_data)
2873 return FALSE;
2874 break;
2875 default:
2876 return FALSE;
2877 }
2878 }
2879 else if (expr_is_register (exp1))
2880 {
2881 switch (cond->cmp)
2882 {
2883 case OP_EQUAL:
2884 if (get_expr_register (exp1) != cond->op_data)
2885 return FALSE;
2886 break;
2887 case OP_NOTEQUAL:
2888 if (get_expr_register (exp1) == cond->op_data)
2889 return FALSE;
2890 break;
2891 default:
2892 return FALSE;
2893 }
2894 }
2895 else
2896 return FALSE;
2897 break;
2898
2899 case OP_OPERAND:
9c2799c2
NC
2900 gas_assert (cond->op_num < insn->ntok);
2901 gas_assert (cond->op_data < insn->ntok);
7fa3d080
BW
2902 exp1 = &insn->tok[cond->op_num];
2903 exp2 = &insn->tok[cond->op_data];
2904
2905 switch (cond->cmp)
2906 {
2907 case OP_EQUAL:
2908 if (!expr_is_equal (exp1, exp2))
2909 return FALSE;
2910 break;
2911 case OP_NOTEQUAL:
2912 if (expr_is_equal (exp1, exp2))
2913 return FALSE;
2914 break;
2915 }
2916 break;
2917
2918 case OP_LITERAL:
2919 case OP_LABEL:
2920 default:
2921 return FALSE;
2922 }
2923 }
2924 if (!xg_instruction_matches_options (insn, rule->options))
2925 return FALSE;
2926
2927 return TRUE;
2928}
2929
2930
2931static int
2932transition_rule_cmp (const TransitionRule *a, const TransitionRule *b)
2933{
2934 bfd_boolean a_greater = FALSE;
2935 bfd_boolean b_greater = FALSE;
2936
2937 ReqOptionList *l_a = a->options;
2938 ReqOptionList *l_b = b->options;
2939
2940 /* We only care if they both are the same except for
2941 a const16 vs. an l32r. */
2942
2943 while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2944 {
2945 ReqOrOptionList *l_or_a = l_a->or_option_terms;
2946 ReqOrOptionList *l_or_b = l_b->or_option_terms;
2947 while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2948 {
2949 if (l_or_a->is_true != l_or_b->is_true)
2950 return 0;
2951 if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0)
2952 {
2953 /* This is the case we care about. */
2954 if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0
2955 && strcmp (l_or_b->option_name, "IsaUseL32R") == 0)
2956 {
2957 if (prefer_const16)
2958 a_greater = TRUE;
2959 else
2960 b_greater = TRUE;
2961 }
2962 else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0
2963 && strcmp (l_or_b->option_name, "IsaUseConst16") == 0)
2964 {
2965 if (prefer_const16)
2966 b_greater = TRUE;
2967 else
2968 a_greater = TRUE;
2969 }
2970 else
2971 return 0;
2972 }
2973 l_or_a = l_or_a->next;
2974 l_or_b = l_or_b->next;
2975 }
2976 if (l_or_a || l_or_b)
2977 return 0;
2978
2979 l_a = l_a->next;
2980 l_b = l_b->next;
2981 }
2982 if (l_a || l_b)
2983 return 0;
2984
2985 /* Incomparable if the substitution was used differently in two cases. */
2986 if (a_greater && b_greater)
2987 return 0;
2988
2989 if (b_greater)
2990 return 1;
2991 if (a_greater)
2992 return -1;
2993
2994 return 0;
2995}
2996
2997
2998static TransitionRule *
2999xg_instruction_match (TInsn *insn)
3000{
3001 TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp);
3002 TransitionList *l;
9c2799c2 3003 gas_assert (insn->opcode < table->num_opcodes);
7fa3d080
BW
3004
3005 /* Walk through all of the possible transitions. */
3006 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3007 {
3008 TransitionRule *rule = l->rule;
3009 if (xg_instruction_matches_rule (insn, rule))
3010 return rule;
3011 }
3012 return NULL;
3013}
3014
3015\f
3016/* Various Other Internal Functions. */
3017
3018static bfd_boolean
3019is_unique_insn_expansion (TransitionRule *r)
3020{
3021 if (!r->to_instr || r->to_instr->next != NULL)
3022 return FALSE;
3023 if (r->to_instr->typ != INSTR_INSTR)
3024 return FALSE;
3025 return TRUE;
3026}
3027
3028
84b08ed9
BW
3029/* Check if there is exactly one relaxation for INSN that converts it to
3030 another instruction of equal or larger size. If so, and if TARG is
3031 non-null, go ahead and generate the relaxed instruction into TARG. If
3032 NARROW_ONLY is true, then only consider relaxations that widen a narrow
3033 instruction, i.e., ignore relaxations that convert to an instruction of
3034 equal size. In some contexts where this function is used, only
c138bc38 3035 a single widening is allowed and the NARROW_ONLY argument is used to
84b08ed9
BW
3036 exclude cases like ADDI being "widened" to an ADDMI, which may
3037 later be relaxed to an ADDMI/ADDI pair. */
7fa3d080 3038
84b08ed9
BW
3039bfd_boolean
3040xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only)
7fa3d080
BW
3041{
3042 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3043 TransitionList *l;
84b08ed9 3044 TransitionRule *match = 0;
7fa3d080 3045
9c2799c2
NC
3046 gas_assert (insn->insn_type == ITYPE_INSN);
3047 gas_assert (insn->opcode < table->num_opcodes);
7fa3d080
BW
3048
3049 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3050 {
3051 TransitionRule *rule = l->rule;
3052
3053 if (xg_instruction_matches_rule (insn, rule)
84b08ed9
BW
3054 && is_unique_insn_expansion (rule)
3055 && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0)
3056 <= xg_get_single_size (rule->to_instr->opcode)))
7fa3d080 3057 {
84b08ed9
BW
3058 if (match)
3059 return FALSE;
3060 match = rule;
7fa3d080
BW
3061 }
3062 }
84b08ed9
BW
3063 if (!match)
3064 return FALSE;
3065
3066 if (targ)
3067 xg_build_to_insn (targ, insn, match->to_instr);
3068 return TRUE;
7fa3d080
BW
3069}
3070
3071
3072/* Return the maximum number of bytes this opcode can expand to. */
3073
3074static int
3075xg_get_max_insn_widen_size (xtensa_opcode opcode)
3076{
3077 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3078 TransitionList *l;
3079 int max_size = xg_get_single_size (opcode);
3080
9c2799c2 3081 gas_assert (opcode < table->num_opcodes);
7fa3d080
BW
3082
3083 for (l = table->table[opcode]; l != NULL; l = l->next)
3084 {
3085 TransitionRule *rule = l->rule;
3086 BuildInstr *build_list;
3087 int this_size = 0;
3088
3089 if (!rule)
3090 continue;
3091 build_list = rule->to_instr;
3092 if (is_unique_insn_expansion (rule))
3093 {
9c2799c2 3094 gas_assert (build_list->typ == INSTR_INSTR);
7fa3d080
BW
3095 this_size = xg_get_max_insn_widen_size (build_list->opcode);
3096 }
3097 else
3098 for (; build_list != NULL; build_list = build_list->next)
3099 {
3100 switch (build_list->typ)
3101 {
3102 case INSTR_INSTR:
3103 this_size += xg_get_single_size (build_list->opcode);
3104 break;
3105 case INSTR_LITERAL_DEF:
3106 case INSTR_LABEL_DEF:
e0001a05
NC
3107 default:
3108 break;
3109 }
3110 }
3111 if (this_size > max_size)
3112 max_size = this_size;
3113 }
3114 return max_size;
3115}
3116
3117
3118/* Return the maximum number of literal bytes this opcode can generate. */
3119
7fa3d080
BW
3120static int
3121xg_get_max_insn_widen_literal_size (xtensa_opcode opcode)
e0001a05 3122{
43cd72b9 3123 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
e0001a05
NC
3124 TransitionList *l;
3125 int max_size = 0;
3126
9c2799c2 3127 gas_assert (opcode < table->num_opcodes);
e0001a05
NC
3128
3129 for (l = table->table[opcode]; l != NULL; l = l->next)
3130 {
3131 TransitionRule *rule = l->rule;
3132 BuildInstr *build_list;
3133 int this_size = 0;
3134
3135 if (!rule)
3136 continue;
3137 build_list = rule->to_instr;
3138 if (is_unique_insn_expansion (rule))
3139 {
9c2799c2 3140 gas_assert (build_list->typ == INSTR_INSTR);
e0001a05
NC
3141 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
3142 }
3143 else
3144 for (; build_list != NULL; build_list = build_list->next)
3145 {
3146 switch (build_list->typ)
3147 {
3148 case INSTR_LITERAL_DEF:
43cd72b9 3149 /* Hard-coded 4-byte literal. */
e0001a05
NC
3150 this_size += 4;
3151 break;
3152 case INSTR_INSTR:
3153 case INSTR_LABEL_DEF:
3154 default:
3155 break;
3156 }
3157 }
3158 if (this_size > max_size)
3159 max_size = this_size;
3160 }
3161 return max_size;
3162}
3163
3164
7fa3d080
BW
3165static bfd_boolean
3166xg_is_relaxable_insn (TInsn *insn, int lateral_steps)
3167{
3168 int steps_taken = 0;
3169 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3170 TransitionList *l;
3171
9c2799c2
NC
3172 gas_assert (insn->insn_type == ITYPE_INSN);
3173 gas_assert (insn->opcode < table->num_opcodes);
7fa3d080
BW
3174
3175 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3176 {
3177 TransitionRule *rule = l->rule;
3178
3179 if (xg_instruction_matches_rule (insn, rule))
3180 {
3181 if (steps_taken == lateral_steps)
3182 return TRUE;
3183 steps_taken++;
3184 }
3185 }
3186 return FALSE;
3187}
3188
3189
3190static symbolS *
3191get_special_literal_symbol (void)
3192{
3193 static symbolS *sym = NULL;
3194
3195 if (sym == NULL)
3196 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
3197 return sym;
3198}
3199
3200
3201static symbolS *
3202get_special_label_symbol (void)
3203{
3204 static symbolS *sym = NULL;
3205
3206 if (sym == NULL)
3207 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
3208 return sym;
3209}
3210
3211
3212static bfd_boolean
3213xg_valid_literal_expression (const expressionS *exp)
3214{
3215 switch (exp->X_op)
3216 {
3217 case O_constant:
3218 case O_symbol:
3219 case O_big:
3220 case O_uminus:
3221 case O_subtract:
3222 case O_pltrel:
1bbb5f21 3223 case O_pcrel:
28dbbc02
BW
3224 case O_tlsfunc:
3225 case O_tlsarg:
3226 case O_tpoff:
3227 case O_dtpoff:
7fa3d080
BW
3228 return TRUE;
3229 default:
3230 return FALSE;
3231 }
3232}
3233
3234
3235/* This will check to see if the value can be converted into the
3236 operand type. It will return TRUE if it does not fit. */
3237
3238static bfd_boolean
3239xg_check_operand (int32 value, xtensa_opcode opcode, int operand)
3240{
3241 uint32 valbuf = value;
3242 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
3243 return TRUE;
3244 return FALSE;
3245}
3246
3247
3248/* Assumes: All immeds are constants. Check that all constants fit
3249 into their immeds; return FALSE if not. */
3250
3251static bfd_boolean
3252xg_immeds_fit (const TInsn *insn)
3253{
3254 xtensa_isa isa = xtensa_default_isa;
3255 int i;
3256
3257 int n = insn->ntok;
9c2799c2 3258 gas_assert (insn->insn_type == ITYPE_INSN);
7fa3d080
BW
3259 for (i = 0; i < n; ++i)
3260 {
91d6fa6a
NC
3261 const expressionS *exp = &insn->tok[i];
3262
7fa3d080
BW
3263 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3264 continue;
3265
91d6fa6a 3266 switch (exp->X_op)
7fa3d080
BW
3267 {
3268 case O_register:
3269 case O_constant:
91d6fa6a 3270 if (xg_check_operand (exp->X_add_number, insn->opcode, i))
7fa3d080
BW
3271 return FALSE;
3272 break;
3273
3274 default:
3275 /* The symbol should have a fixup associated with it. */
9c2799c2 3276 gas_assert (FALSE);
7fa3d080
BW
3277 break;
3278 }
3279 }
3280 return TRUE;
3281}
3282
3283
3284/* This should only be called after we have an initial
3285 estimate of the addresses. */
3286
3287static bfd_boolean
3288xg_symbolic_immeds_fit (const TInsn *insn,
3289 segT pc_seg,
3290 fragS *pc_frag,
3291 offsetT pc_offset,
3292 long stretch)
e0001a05 3293{
7fa3d080
BW
3294 xtensa_isa isa = xtensa_default_isa;
3295 symbolS *symbolP;
3296 fragS *sym_frag;
3297 offsetT target, pc;
3298 uint32 new_offset;
3299 int i;
3300 int n = insn->ntok;
e0001a05 3301
9c2799c2 3302 gas_assert (insn->insn_type == ITYPE_INSN);
e0001a05 3303
7fa3d080 3304 for (i = 0; i < n; ++i)
e0001a05 3305 {
91d6fa6a
NC
3306 const expressionS *exp = &insn->tok[i];
3307
7fa3d080
BW
3308 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3309 continue;
e0001a05 3310
91d6fa6a 3311 switch (exp->X_op)
e0001a05 3312 {
7fa3d080
BW
3313 case O_register:
3314 case O_constant:
91d6fa6a 3315 if (xg_check_operand (exp->X_add_number, insn->opcode, i))
7fa3d080
BW
3316 return FALSE;
3317 break;
e0001a05 3318
7fa3d080
BW
3319 case O_lo16:
3320 case O_hi16:
3321 /* Check for the worst case. */
3322 if (xg_check_operand (0xffff, insn->opcode, i))
3323 return FALSE;
3324 break;
e0001a05 3325
7fa3d080 3326 case O_symbol:
7c834684 3327 /* We only allow symbols for PC-relative references.
7fa3d080 3328 If pc_frag == 0, then we don't have frag locations yet. */
7c834684
BW
3329 if (pc_frag == 0
3330 || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0)
7fa3d080 3331 return FALSE;
e0001a05 3332
8e6bc631
BW
3333 /* If it is a weak symbol or a symbol in a different section,
3334 it cannot be known to fit at assembly time. */
91d6fa6a
NC
3335 if (S_IS_WEAK (exp->X_add_symbol)
3336 || S_GET_SEGMENT (exp->X_add_symbol) != pc_seg)
7c834684 3337 {
8e6bc631 3338 /* For a direct call with --no-longcalls, be optimistic and
38f9cb7f
BW
3339 assume it will be in range. If the symbol is weak and
3340 undefined, it may remain undefined at link-time, in which
3341 case it will have a zero value and almost certainly be out
3342 of range for a direct call; thus, relax for undefined weak
3343 symbols even if longcalls is not enabled. */
8e6bc631 3344 if (is_direct_call_opcode (insn->opcode)
38f9cb7f 3345 && ! pc_frag->tc_frag_data.use_longcalls
91d6fa6a
NC
3346 && (! S_IS_WEAK (exp->X_add_symbol)
3347 || S_IS_DEFINED (exp->X_add_symbol)))
7c834684 3348 return TRUE;
7c834684 3349
8e6bc631
BW
3350 return FALSE;
3351 }
e0001a05 3352
91d6fa6a 3353 symbolP = exp->X_add_symbol;
7fa3d080 3354 sym_frag = symbol_get_frag (symbolP);
91d6fa6a 3355 target = S_GET_VALUE (symbolP) + exp->X_add_number;
7fa3d080 3356 pc = pc_frag->fr_address + pc_offset;
e0001a05 3357
7fa3d080
BW
3358 /* If frag has yet to be reached on this pass, assume it
3359 will move by STRETCH just as we did. If this is not so,
3360 it will be because some frag between grows, and that will
3361 force another pass. Beware zero-length frags. There
3362 should be a faster way to do this. */
3363
3364 if (stretch != 0
3365 && sym_frag->relax_marker != pc_frag->relax_marker
3366 && S_GET_SEGMENT (symbolP) == pc_seg)
3367 {
3368 target += stretch;
3369 }
c138bc38 3370
7fa3d080
BW
3371 new_offset = target;
3372 xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc);
3373 if (xg_check_operand (new_offset, insn->opcode, i))
3374 return FALSE;
3375 break;
3376
3377 default:
3378 /* The symbol should have a fixup associated with it. */
3379 return FALSE;
3380 }
3381 }
3382
3383 return TRUE;
e0001a05
NC
3384}
3385
3386
43cd72b9 3387/* Return TRUE on success. */
e0001a05 3388
7fa3d080
BW
3389static bfd_boolean
3390xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi)
e0001a05
NC
3391{
3392 BuildOp *op;
3393 symbolS *sym;
3394
60242db2 3395 tinsn_init (targ);
b224e962
BW
3396 targ->debug_line = insn->debug_line;
3397 targ->loc_directive_seen = insn->loc_directive_seen;
e0001a05
NC
3398 switch (bi->typ)
3399 {
3400 case INSTR_INSTR:
3401 op = bi->ops;
3402 targ->opcode = bi->opcode;
3403 targ->insn_type = ITYPE_INSN;
3404 targ->is_specific_opcode = FALSE;
3405
3406 for (; op != NULL; op = op->next)
3407 {
3408 int op_num = op->op_num;
3409 int op_data = op->op_data;
3410
9c2799c2 3411 gas_assert (op->op_num < MAX_INSN_ARGS);
e0001a05
NC
3412
3413 if (targ->ntok <= op_num)
3414 targ->ntok = op_num + 1;
3415
3416 switch (op->typ)
3417 {
3418 case OP_CONSTANT:
3419 set_expr_const (&targ->tok[op_num], op_data);
3420 break;
3421 case OP_OPERAND:
9c2799c2 3422 gas_assert (op_data < insn->ntok);
e0001a05
NC
3423 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3424 break;
19e8f41a
BW
3425 case OP_FREEREG:
3426 if (insn->extra_arg.X_op != O_register)
3427 return FALSE;
3428 copy_expr (&targ->tok[op_num], &insn->extra_arg);
3429 break;
e0001a05
NC
3430 case OP_LITERAL:
3431 sym = get_special_literal_symbol ();
3432 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
28dbbc02
BW
3433 if (insn->tok[op_data].X_op == O_tlsfunc
3434 || insn->tok[op_data].X_op == O_tlsarg)
19e8f41a 3435 copy_expr (&targ->extra_arg, &insn->tok[op_data]);
e0001a05
NC
3436 break;
3437 case OP_LABEL:
3438 sym = get_special_label_symbol ();
3439 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3440 break;
43cd72b9
BW
3441 case OP_OPERAND_HI16U:
3442 case OP_OPERAND_LOW16U:
9c2799c2 3443 gas_assert (op_data < insn->ntok);
43cd72b9
BW
3444 if (expr_is_const (&insn->tok[op_data]))
3445 {
3446 long val;
3447 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3448 val = xg_apply_userdef_op_fn (op->typ,
3449 targ->tok[op_num].
3450 X_add_number);
3451 targ->tok[op_num].X_add_number = val;
3452 }
3453 else
3454 {
3455 /* For const16 we can create relocations for these. */
3456 if (targ->opcode == XTENSA_UNDEFINED
3457 || (targ->opcode != xtensa_const16_opcode))
3458 return FALSE;
9c2799c2 3459 gas_assert (op_data < insn->ntok);
43cd72b9
BW
3460 /* Need to build a O_lo16 or O_hi16. */
3461 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3462 if (targ->tok[op_num].X_op == O_symbol)
3463 {
3464 if (op->typ == OP_OPERAND_HI16U)
3465 targ->tok[op_num].X_op = O_hi16;
3466 else if (op->typ == OP_OPERAND_LOW16U)
3467 targ->tok[op_num].X_op = O_lo16;
3468 else
3469 return FALSE;
3470 }
3471 }
3472 break;
e0001a05
NC
3473 default:
3474 /* currently handles:
3475 OP_OPERAND_LOW8
3476 OP_OPERAND_HI24S
3477 OP_OPERAND_F32MINUS */
3478 if (xg_has_userdef_op_fn (op->typ))
3479 {
9c2799c2 3480 gas_assert (op_data < insn->ntok);
e0001a05
NC
3481 if (expr_is_const (&insn->tok[op_data]))
3482 {
3483 long val;
3484 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3485 val = xg_apply_userdef_op_fn (op->typ,
3486 targ->tok[op_num].
3487 X_add_number);
3488 targ->tok[op_num].X_add_number = val;
3489 }
3490 else
3491 return FALSE; /* We cannot use a relocation for this. */
3492 break;
3493 }
9c2799c2 3494 gas_assert (0);
e0001a05
NC
3495 break;
3496 }
3497 }
3498 break;
3499
3500 case INSTR_LITERAL_DEF:
3501 op = bi->ops;
3502 targ->opcode = XTENSA_UNDEFINED;
3503 targ->insn_type = ITYPE_LITERAL;
3504 targ->is_specific_opcode = FALSE;
3505 for (; op != NULL; op = op->next)
3506 {
3507 int op_num = op->op_num;
3508 int op_data = op->op_data;
9c2799c2 3509 gas_assert (op->op_num < MAX_INSN_ARGS);
e0001a05
NC
3510
3511 if (targ->ntok <= op_num)
3512 targ->ntok = op_num + 1;
3513
3514 switch (op->typ)
3515 {
3516 case OP_OPERAND:
9c2799c2 3517 gas_assert (op_data < insn->ntok);
43cd72b9
BW
3518 /* We can only pass resolvable literals through. */
3519 if (!xg_valid_literal_expression (&insn->tok[op_data]))
3520 return FALSE;
e0001a05
NC
3521 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3522 break;
3523 case OP_LITERAL:
3524 case OP_CONSTANT:
3525 case OP_LABEL:
3526 default:
9c2799c2 3527 gas_assert (0);
e0001a05
NC
3528 break;
3529 }
3530 }
3531 break;
3532
3533 case INSTR_LABEL_DEF:
3534 op = bi->ops;
3535 targ->opcode = XTENSA_UNDEFINED;
3536 targ->insn_type = ITYPE_LABEL;
3537 targ->is_specific_opcode = FALSE;
43cd72b9 3538 /* Literal with no ops is a label? */
9c2799c2 3539 gas_assert (op == NULL);
e0001a05
NC
3540 break;
3541
3542 default:
9c2799c2 3543 gas_assert (0);
e0001a05
NC
3544 }
3545
3546 return TRUE;
3547}
3548
3549
43cd72b9 3550/* Return TRUE on success. */
e0001a05 3551
7fa3d080
BW
3552static bfd_boolean
3553xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
e0001a05
NC
3554{
3555 for (; bi != NULL; bi = bi->next)
3556 {
3557 TInsn *next_insn = istack_push_space (istack);
3558
3559 if (!xg_build_to_insn (next_insn, insn, bi))
3560 return FALSE;
3561 }
3562 return TRUE;
3563}
3564
3565
43cd72b9 3566/* Return TRUE on valid expansion. */
e0001a05 3567
7fa3d080
BW
3568static bfd_boolean
3569xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps)
e0001a05
NC
3570{
3571 int stack_size = istack->ninsn;
3572 int steps_taken = 0;
43cd72b9 3573 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
e0001a05
NC
3574 TransitionList *l;
3575
9c2799c2
NC
3576 gas_assert (insn->insn_type == ITYPE_INSN);
3577 gas_assert (insn->opcode < table->num_opcodes);
e0001a05
NC
3578
3579 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3580 {
3581 TransitionRule *rule = l->rule;
3582
3583 if (xg_instruction_matches_rule (insn, rule))
3584 {
3585 if (lateral_steps == steps_taken)
3586 {
3587 int i;
3588
3589 /* This is it. Expand the rule to the stack. */
3590 if (!xg_build_to_stack (istack, insn, rule->to_instr))
3591 return FALSE;
3592
3593 /* Check to see if it fits. */
3594 for (i = stack_size; i < istack->ninsn; i++)
3595 {
91d6fa6a 3596 TInsn *tinsn = &istack->insn[i];
e0001a05 3597
91d6fa6a
NC
3598 if (tinsn->insn_type == ITYPE_INSN
3599 && !tinsn_has_symbolic_operands (tinsn)
3600 && !xg_immeds_fit (tinsn))
e0001a05
NC
3601 {
3602 istack->ninsn = stack_size;
3603 return FALSE;
3604 }
3605 }
3606 return TRUE;
3607 }
3608 steps_taken++;
3609 }
3610 }
3611 return FALSE;
3612}
3613
43cd72b9 3614\f
43cd72b9 3615/* Relax the assembly instruction at least "min_steps".
b81bf389
BW
3616 Return the number of steps taken.
3617
3618 For relaxation to correctly terminate, every relaxation chain must
3619 terminate in one of two ways:
3620
3621 1. If the chain from one instruction to the next consists entirely of
3622 single instructions, then the chain *must* handle all possible
3623 immediates without failing. It must not ever fail because an
3624 immediate is out of range. The MOVI.N -> MOVI -> L32R relaxation
3625 chain is one example. L32R loads 32 bits, and there cannot be an
3626 immediate larger than 32 bits, so it satisfies this condition.
3627 Single instruction relaxation chains are as defined by
3628 xg_is_single_relaxable_instruction.
3629
3630 2. Otherwise, the chain must end in a multi-instruction expansion: e.g.,
3631 BNEZ.N -> BNEZ -> BNEZ.W15 -> BENZ.N/J
3632
3633 Strictly speaking, in most cases you can violate condition 1 and be OK
3634 -- in particular when the last two instructions have the same single
3635 size. But nevertheless, you should guarantee the above two conditions.
3636
3637 We could fix this so that single-instruction expansions correctly
3638 terminate when they can't handle the range, but the error messages are
3639 worse, and it actually turns out that in every case but one (18-bit wide
3640 branches), you need a multi-instruction expansion to get the full range
3641 anyway. And because 18-bit branches are handled identically to 15-bit
3642 branches, there isn't any point in changing it. */
e0001a05 3643
7fa3d080
BW
3644static int
3645xg_assembly_relax (IStack *istack,
3646 TInsn *insn,
3647 segT pc_seg,
3648 fragS *pc_frag, /* if pc_frag == 0, not pc-relative */
3649 offsetT pc_offset, /* offset in fragment */
3650 int min_steps, /* minimum conversion steps */
3651 long stretch) /* number of bytes stretched so far */
e0001a05
NC
3652{
3653 int steps_taken = 0;
3654
b81bf389
BW
3655 /* Some of its immeds don't fit. Try to build a relaxed version.
3656 This may go through a couple of stages of single instruction
3657 transformations before we get there. */
e0001a05
NC
3658
3659 TInsn single_target;
3660 TInsn current_insn;
3661 int lateral_steps = 0;
3662 int istack_size = istack->ninsn;
3663
3664 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3665 && steps_taken >= min_steps)
3666 {
3667 istack_push (istack, insn);
3668 return steps_taken;
3669 }
43cd72b9 3670 current_insn = *insn;
e0001a05 3671
7c834684 3672 /* Walk through all of the single instruction expansions. */
84b08ed9 3673 while (xg_is_single_relaxable_insn (&current_insn, &single_target, FALSE))
e0001a05 3674 {
21af2bbd 3675 steps_taken++;
e0001a05
NC
3676 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3677 stretch))
3678 {
e0001a05
NC
3679 if (steps_taken >= min_steps)
3680 {
3681 istack_push (istack, &single_target);
3682 return steps_taken;
3683 }
3684 }
43cd72b9 3685 current_insn = single_target;
e0001a05
NC
3686 }
3687
3688 /* Now check for a multi-instruction expansion. */
3689 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3690 {
3691 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3692 stretch))
3693 {
3694 if (steps_taken >= min_steps)
3695 {
3696 istack_push (istack, &current_insn);
3697 return steps_taken;
3698 }
3699 }
3700 steps_taken++;
3701 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3702 {
3703 if (steps_taken >= min_steps)
3704 return steps_taken;
3705 }
3706 lateral_steps++;
3707 istack->ninsn = istack_size;
3708 }
3709
3710 /* It's not going to work -- use the original. */
3711 istack_push (istack, insn);
3712 return steps_taken;
3713}
3714
3715
7fa3d080
BW
3716static void
3717xg_finish_frag (char *last_insn,
3718 enum xtensa_relax_statesE frag_state,
3719 enum xtensa_relax_statesE slot0_state,
3720 int max_growth,
3721 bfd_boolean is_insn)
e0001a05
NC
3722{
3723 /* Finish off this fragment so that it has at LEAST the desired
3724 max_growth. If it doesn't fit in this fragment, close this one
3725 and start a new one. In either case, return a pointer to the
3726 beginning of the growth area. */
3727
3728 fragS *old_frag;
43cd72b9 3729
542f8b94 3730 frag_grow (max_growth);
e0001a05
NC
3731 old_frag = frag_now;
3732
3733 frag_now->fr_opcode = last_insn;
3734 if (is_insn)
3735 frag_now->tc_frag_data.is_insn = TRUE;
3736
3737 frag_var (rs_machine_dependent, max_growth, max_growth,
43cd72b9
BW
3738 frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3739
3740 old_frag->tc_frag_data.slot_subtypes[0] = slot0_state;
3741 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
3742
3743 /* Just to make sure that we did not split it up. */
9c2799c2 3744 gas_assert (old_frag->fr_next == frag_now);
e0001a05
NC
3745}
3746
3747
7fa3d080
BW
3748/* Return TRUE if the target frag is one of the next non-empty frags. */
3749
3750static bfd_boolean
3751is_next_frag_target (const fragS *fragP, const fragS *target)
3752{
3753 if (fragP == NULL)
3754 return FALSE;
3755
3756 for (; fragP; fragP = fragP->fr_next)
3757 {
3758 if (fragP == target)
3759 return TRUE;
3760 if (fragP->fr_fix != 0)
3761 return FALSE;
3762 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
3763 return FALSE;
3764 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
3765 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
3766 return FALSE;
3767 if (fragP->fr_type == rs_space)
3768 return FALSE;
3769 }
3770 return FALSE;
3771}
3772
3773
e0001a05 3774static bfd_boolean
7fa3d080 3775is_branch_jmp_to_next (TInsn *insn, fragS *fragP)
e0001a05
NC
3776{
3777 xtensa_isa isa = xtensa_default_isa;
3778 int i;
43cd72b9 3779 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
e0001a05
NC
3780 int target_op = -1;
3781 symbolS *sym;
3782 fragS *target_frag;
3783
64b607e6
BW
3784 if (xtensa_opcode_is_branch (isa, insn->opcode) != 1
3785 && xtensa_opcode_is_jump (isa, insn->opcode) != 1)
e0001a05
NC
3786 return FALSE;
3787
3788 for (i = 0; i < num_ops; i++)
3789 {
43cd72b9 3790 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1)
e0001a05
NC
3791 {
3792 target_op = i;
3793 break;
3794 }
3795 }
3796 if (target_op == -1)
3797 return FALSE;
3798
3799 if (insn->ntok <= target_op)
3800 return FALSE;
3801
3802 if (insn->tok[target_op].X_op != O_symbol)
3803 return FALSE;
3804
3805 sym = insn->tok[target_op].X_add_symbol;
3806 if (sym == NULL)
3807 return FALSE;
3808
3809 if (insn->tok[target_op].X_add_number != 0)
3810 return FALSE;
3811
3812 target_frag = symbol_get_frag (sym);
3813 if (target_frag == NULL)
3814 return FALSE;
3815
c138bc38 3816 if (is_next_frag_target (fragP->fr_next, target_frag)
e0001a05
NC
3817 && S_GET_VALUE (sym) == target_frag->fr_address)
3818 return TRUE;
3819
3820 return FALSE;
3821}
3822
3823
3824static void
7fa3d080 3825xg_add_branch_and_loop_targets (TInsn *insn)
e0001a05
NC
3826{
3827 xtensa_isa isa = xtensa_default_isa;
7fa3d080 3828 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
43cd72b9 3829
7fa3d080
BW
3830 if (xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3831 {
3832 int i = 1;
3833 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3834 && insn->tok[i].X_op == O_symbol)
3835 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3836 return;
3837 }
e0001a05 3838
7fa3d080
BW
3839 if (xtensa_opcode_is_branch (isa, insn->opcode) == 1
3840 || xtensa_opcode_is_loop (isa, insn->opcode) == 1)
e0001a05 3841 {
7fa3d080
BW
3842 int i;
3843
3844 for (i = 0; i < insn->ntok && i < num_ops; i++)
3845 {
3846 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3847 && insn->tok[i].X_op == O_symbol)
3848 {
3849 symbolS *sym = insn->tok[i].X_add_symbol;
3850 symbol_get_tc (sym)->is_branch_target = TRUE;
3851 if (S_IS_DEFINED (sym))
3852 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3853 }
3854 }
e0001a05 3855 }
e0001a05
NC
3856}
3857
3858
43cd72b9 3859/* Return FALSE if no error. */
e0001a05 3860
7fa3d080
BW
3861static bfd_boolean
3862xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn)
e0001a05
NC
3863{
3864 int num_ops = 0;
3865 BuildOp *b_op;
3866
3867 switch (instr_spec->typ)
3868 {
3869 case INSTR_INSTR:
3870 new_insn->insn_type = ITYPE_INSN;
3871 new_insn->opcode = instr_spec->opcode;
e0001a05
NC
3872 break;
3873 case INSTR_LITERAL_DEF:
3874 new_insn->insn_type = ITYPE_LITERAL;
3875 new_insn->opcode = XTENSA_UNDEFINED;
e0001a05
NC
3876 break;
3877 case INSTR_LABEL_DEF:
b224e962 3878 abort ();
e0001a05 3879 }
b224e962
BW
3880 new_insn->is_specific_opcode = FALSE;
3881 new_insn->debug_line = old_insn->debug_line;
3882 new_insn->loc_directive_seen = old_insn->loc_directive_seen;
e0001a05
NC
3883
3884 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3885 {
3886 expressionS *exp;
3887 const expressionS *src_exp;
3888
3889 num_ops++;
3890 switch (b_op->typ)
3891 {
3892 case OP_CONSTANT:
3893 /* The expression must be the constant. */
9c2799c2 3894 gas_assert (b_op->op_num < MAX_INSN_ARGS);
e0001a05
NC
3895 exp = &new_insn->tok[b_op->op_num];
3896 set_expr_const (exp, b_op->op_data);
3897 break;
3898
3899 case OP_OPERAND:
9c2799c2
NC
3900 gas_assert (b_op->op_num < MAX_INSN_ARGS);
3901 gas_assert (b_op->op_data < (unsigned) old_insn->ntok);
e0001a05
NC
3902 src_exp = &old_insn->tok[b_op->op_data];
3903 exp = &new_insn->tok[b_op->op_num];
3904 copy_expr (exp, src_exp);
3905 break;
3906
3907 case OP_LITERAL:
3908 case OP_LABEL:
3909 as_bad (_("can't handle generation of literal/labels yet"));
9c2799c2 3910 gas_assert (0);
e0001a05
NC
3911
3912 default:
3913 as_bad (_("can't handle undefined OP TYPE"));
9c2799c2 3914 gas_assert (0);
e0001a05
NC
3915 }
3916 }
3917
3918 new_insn->ntok = num_ops;
3919 return FALSE;
3920}
3921
3922
43cd72b9 3923/* Return TRUE if it was simplified. */
e0001a05 3924
7fa3d080
BW
3925static bfd_boolean
3926xg_simplify_insn (TInsn *old_insn, TInsn *new_insn)
e0001a05 3927{
43cd72b9 3928 TransitionRule *rule;
e0001a05 3929 BuildInstr *insn_spec;
43cd72b9
BW
3930
3931 if (old_insn->is_specific_opcode || !density_supported)
3932 return FALSE;
3933
3934 rule = xg_instruction_match (old_insn);
e0001a05
NC
3935 if (rule == NULL)
3936 return FALSE;
3937
3938 insn_spec = rule->to_instr;
3939 /* There should only be one. */
9c2799c2
NC
3940 gas_assert (insn_spec != NULL);
3941 gas_assert (insn_spec->next == NULL);
e0001a05
NC
3942 if (insn_spec->next != NULL)
3943 return FALSE;
3944
3945 xg_build_token_insn (insn_spec, old_insn, new_insn);
3946
3947 return TRUE;
3948}
3949
3950
3951/* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
3952 l32i.n. (2) Check the number of operands. (3) Place the instruction
7c834684
BW
3953 tokens into the stack or relax it and place multiple
3954 instructions/literals onto the stack. Return FALSE if no error. */
e0001a05
NC
3955
3956static bfd_boolean
7fa3d080 3957xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn)
e0001a05
NC
3958{
3959 int noperands;
3960 TInsn new_insn;
7c834684
BW
3961 bfd_boolean do_expand;
3962
60242db2 3963 tinsn_init (&new_insn);
e0001a05 3964
43cd72b9
BW
3965 /* Narrow it if we can. xg_simplify_insn now does all the
3966 appropriate checking (e.g., for the density option). */
3967 if (xg_simplify_insn (orig_insn, &new_insn))
3968 orig_insn = &new_insn;
e0001a05 3969
43cd72b9
BW
3970 noperands = xtensa_opcode_num_operands (xtensa_default_isa,
3971 orig_insn->opcode);
e0001a05
NC
3972 if (orig_insn->ntok < noperands)
3973 {
3974 as_bad (_("found %d operands for '%s': Expected %d"),
3975 orig_insn->ntok,
3976 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3977 noperands);
3978 return TRUE;
3979 }
3980 if (orig_insn->ntok > noperands)
3981 as_warn (_("found too many (%d) operands for '%s': Expected %d"),
3982 orig_insn->ntok,
3983 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3984 noperands);
3985
43cd72b9 3986 /* If there are not enough operands, we will assert above. If there
e0001a05 3987 are too many, just cut out the extras here. */
e0001a05
NC
3988 orig_insn->ntok = noperands;
3989
e0001a05
NC
3990 if (tinsn_has_invalid_symbolic_operands (orig_insn))
3991 return TRUE;
3992
d12f9798
BW
3993 /* Special case for extui opcode which has constraints not handled
3994 by the ordinary operand encoding checks. The number of operands
3995 and related syntax issues have already been checked. */
3996 if (orig_insn->opcode == xtensa_extui_opcode)
3997 {
3998 int shiftimm = orig_insn->tok[2].X_add_number;
3999 int maskimm = orig_insn->tok[3].X_add_number;
4000 if (shiftimm + maskimm > 32)
4001 {
4002 as_bad (_("immediate operands sum to greater than 32"));
4003 return TRUE;
4004 }
4005 }
4006
7c834684
BW
4007 /* If the instruction will definitely need to be relaxed, it is better
4008 to expand it now for better scheduling. Decide whether to expand
4009 now.... */
4010 do_expand = (!orig_insn->is_specific_opcode && use_transform ());
4011
4012 /* Calls should be expanded to longcalls only in the backend relaxation
4013 so that the assembly scheduler will keep the L32R/CALLX instructions
4014 adjacent. */
4015 if (is_direct_call_opcode (orig_insn->opcode))
4016 do_expand = FALSE;
e0001a05
NC
4017
4018 if (tinsn_has_symbolic_operands (orig_insn))
4019 {
7c834684
BW
4020 /* The values of symbolic operands are not known yet, so only expand
4021 now if an operand is "complex" (e.g., difference of symbols) and
4022 will have to be stored as a literal regardless of the value. */
4023 if (!tinsn_has_complex_operands (orig_insn))
4024 do_expand = FALSE;
e0001a05 4025 }
7c834684
BW
4026 else if (xg_immeds_fit (orig_insn))
4027 do_expand = FALSE;
4028
4029 if (do_expand)
4030 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
e0001a05 4031 else
7c834684 4032 istack_push (istack, orig_insn);
e0001a05 4033
e0001a05
NC
4034 return FALSE;
4035}
4036
4037
7fa3d080 4038/* Return TRUE if the section flags are marked linkonce
74869ac7
BW
4039 or the name is .gnu.linkonce.*. */
4040
4041static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
7fa3d080
BW
4042
4043static bfd_boolean
4044get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec)
4045{
4046 flagword flags, link_once_flags;
4047
4048 flags = bfd_get_section_flags (abfd, sec);
4049 link_once_flags = (flags & SEC_LINK_ONCE);
4050
4051 /* Flags might not be set yet. */
74869ac7
BW
4052 if (!link_once_flags
4053 && strncmp (segment_name (sec), ".gnu.linkonce.", linkonce_len) == 0)
4054 link_once_flags = SEC_LINK_ONCE;
7fa3d080 4055
7fa3d080
BW
4056 return (link_once_flags != 0);
4057}
4058
4059
4060static void
4061xtensa_add_literal_sym (symbolS *sym)
4062{
4063 sym_list *l;
4064
4065 l = (sym_list *) xmalloc (sizeof (sym_list));
4066 l->sym = sym;
4067 l->next = literal_syms;
4068 literal_syms = l;
4069}
4070
4071
4072static symbolS *
4073xtensa_create_literal_symbol (segT sec, fragS *frag)
4074{
4075 static int lit_num = 0;
4076 static char name[256];
4077 symbolS *symbolP;
4078
4079 sprintf (name, ".L_lit_sym%d", lit_num);
4080
4081 /* Create a local symbol. If it is in a linkonce section, we have to
4082 be careful to make sure that if it is used in a relocation that the
4083 symbol will be in the output file. */
4084 if (get_is_linkonce_section (stdoutput, sec))
4085 {
4086 symbolP = symbol_new (name, sec, 0, frag);
4087 S_CLEAR_EXTERNAL (symbolP);
4088 /* symbolP->local = 1; */
4089 }
4090 else
4091 symbolP = symbol_new (name, sec, 0, frag);
4092
4093 xtensa_add_literal_sym (symbolP);
4094
7fa3d080
BW
4095 lit_num++;
4096 return symbolP;
4097}
4098
4099
e0001a05
NC
4100/* Currently all literals that are generated here are 32-bit L32R targets. */
4101
7fa3d080
BW
4102static symbolS *
4103xg_assemble_literal (/* const */ TInsn *insn)
e0001a05
NC
4104{
4105 emit_state state;
4106 symbolS *lit_sym = NULL;
bbdd25a8 4107 bfd_reloc_code_real_type reloc;
1bbb5f21 4108 bfd_boolean pcrel = FALSE;
bbdd25a8 4109 char *p;
e0001a05
NC
4110
4111 /* size = 4 for L32R. It could easily be larger when we move to
4112 larger constants. Add a parameter later. */
4113 offsetT litsize = 4;
4114 offsetT litalign = 2; /* 2^2 = 4 */
4115 expressionS saved_loc;
43cd72b9
BW
4116 expressionS * emit_val;
4117
e0001a05
NC
4118 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
4119
9c2799c2
NC
4120 gas_assert (insn->insn_type == ITYPE_LITERAL);
4121 gas_assert (insn->ntok == 1); /* must be only one token here */
e0001a05
NC
4122
4123 xtensa_switch_to_literal_fragment (&state);
4124
43cd72b9
BW
4125 emit_val = &insn->tok[0];
4126 if (emit_val->X_op == O_big)
4127 {
4128 int size = emit_val->X_add_number * CHARS_PER_LITTLENUM;
4129 if (size > litsize)
4130 {
4131 /* This happens when someone writes a "movi a2, big_number". */
c138bc38 4132 as_bad_where (frag_now->fr_file, frag_now->fr_line,
43cd72b9
BW
4133 _("invalid immediate"));
4134 xtensa_restore_emit_state (&state);
4135 return NULL;
4136 }
4137 }
4138
e0001a05
NC
4139 /* Force a 4-byte align here. Note that this opens a new frag, so all
4140 literals done with this function have a frag to themselves. That's
4141 important for the way text section literals work. */
4142 frag_align (litalign, 0, 0);
43cd72b9 4143 record_alignment (now_seg, litalign);
e0001a05 4144
bbdd25a8 4145 switch (emit_val->X_op)
43cd72b9 4146 {
1bbb5f21
BW
4147 case O_pcrel:
4148 pcrel = TRUE;
4149 /* fall through */
bbdd25a8 4150 case O_pltrel:
28dbbc02
BW
4151 case O_tlsfunc:
4152 case O_tlsarg:
4153 case O_tpoff:
4154 case O_dtpoff:
bbdd25a8 4155 p = frag_more (litsize);
43cd72b9 4156 xtensa_set_frag_assembly_state (frag_now);
28dbbc02 4157 reloc = map_operator_to_reloc (emit_val->X_op, TRUE);
43cd72b9
BW
4158 if (emit_val->X_add_symbol)
4159 emit_val->X_op = O_symbol;
4160 else
4161 emit_val->X_op = O_constant;
4162 fix_new_exp (frag_now, p - frag_now->fr_literal,
1bbb5f21 4163 litsize, emit_val, pcrel, reloc);
bbdd25a8
BW
4164 break;
4165
4166 default:
4167 emit_expr (emit_val, litsize);
4168 break;
43cd72b9 4169 }
e0001a05 4170
9c2799c2 4171 gas_assert (frag_now->tc_frag_data.literal_frag == NULL);
e0001a05
NC
4172 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4173 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4174 lit_sym = frag_now->fr_symbol;
e0001a05
NC
4175
4176 /* Go back. */
4177 xtensa_restore_emit_state (&state);
4178 return lit_sym;
4179}
4180
4181
4182static void
7fa3d080 4183xg_assemble_literal_space (/* const */ int size, int slot)
e0001a05
NC
4184{
4185 emit_state state;
43cd72b9 4186 /* We might have to do something about this alignment. It only
e0001a05
NC
4187 takes effect if something is placed here. */
4188 offsetT litalign = 2; /* 2^2 = 4 */
4189 fragS *lit_saved_frag;
4190
9c2799c2 4191 gas_assert (size % 4 == 0);
e0001a05
NC
4192
4193 xtensa_switch_to_literal_fragment (&state);
4194
4195 /* Force a 4-byte align here. */
4196 frag_align (litalign, 0, 0);
43cd72b9 4197 record_alignment (now_seg, litalign);
e0001a05 4198
542f8b94 4199 frag_grow (size);
e0001a05
NC
4200
4201 lit_saved_frag = frag_now;
4202 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
e0001a05 4203 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
43cd72b9 4204 xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE);
e0001a05
NC
4205
4206 /* Go back. */
4207 xtensa_restore_emit_state (&state);
43cd72b9 4208 frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag;
e0001a05
NC
4209}
4210
4211
e0001a05 4212/* Put in a fixup record based on the opcode.
43cd72b9 4213 Return TRUE on success. */
e0001a05 4214
7fa3d080
BW
4215static bfd_boolean
4216xg_add_opcode_fix (TInsn *tinsn,
4217 int opnum,
4218 xtensa_format fmt,
4219 int slot,
91d6fa6a 4220 expressionS *exp,
7fa3d080
BW
4221 fragS *fragP,
4222 offsetT offset)
43cd72b9
BW
4223{
4224 xtensa_opcode opcode = tinsn->opcode;
4225 bfd_reloc_code_real_type reloc;
4226 reloc_howto_type *howto;
4227 int fmt_length;
e0001a05
NC
4228 fixS *the_fix;
4229
43cd72b9
BW
4230 reloc = BFD_RELOC_NONE;
4231
4232 /* First try the special cases for "alternate" relocs. */
4233 if (opcode == xtensa_l32r_opcode)
4234 {
4235 if (fragP->tc_frag_data.use_absolute_literals)
4236 reloc = encode_alt_reloc (slot);
4237 }
4238 else if (opcode == xtensa_const16_opcode)
4239 {
91d6fa6a 4240 if (exp->X_op == O_lo16)
43cd72b9
BW
4241 {
4242 reloc = encode_reloc (slot);
91d6fa6a 4243 exp->X_op = O_symbol;
43cd72b9 4244 }
91d6fa6a 4245 else if (exp->X_op == O_hi16)
43cd72b9
BW
4246 {
4247 reloc = encode_alt_reloc (slot);
91d6fa6a 4248 exp->X_op = O_symbol;
43cd72b9
BW
4249 }
4250 }
4251
4252 if (opnum != get_relaxable_immed (opcode))
e0001a05 4253 {
43cd72b9 4254 as_bad (_("invalid relocation for operand %i of '%s'"),
431ad2d0 4255 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
e0001a05
NC
4256 return FALSE;
4257 }
4258
43cd72b9
BW
4259 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4260 into the symbol table where the generic portions of the assembler
4261 won't know what to do with them. */
91d6fa6a 4262 if (exp->X_op == O_lo16 || exp->X_op == O_hi16)
43cd72b9
BW
4263 {
4264 as_bad (_("invalid expression for operand %i of '%s'"),
431ad2d0 4265 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
43cd72b9
BW
4266 return FALSE;
4267 }
4268
4269 /* Next try the generic relocs. */
4270 if (reloc == BFD_RELOC_NONE)
4271 reloc = encode_reloc (slot);
4272 if (reloc == BFD_RELOC_NONE)
4273 {
4274 as_bad (_("invalid relocation in instruction slot %i"), slot);
4275 return FALSE;
4276 }
e0001a05 4277
43cd72b9 4278 howto = bfd_reloc_type_lookup (stdoutput, reloc);
e0001a05
NC
4279 if (!howto)
4280 {
43cd72b9 4281 as_bad (_("undefined symbol for opcode \"%s\""),
e0001a05
NC
4282 xtensa_opcode_name (xtensa_default_isa, opcode));
4283 return FALSE;
4284 }
4285
43cd72b9 4286 fmt_length = xtensa_format_length (xtensa_default_isa, fmt);
91d6fa6a 4287 the_fix = fix_new_exp (fragP, offset, fmt_length, exp,
e0001a05 4288 howto->pc_relative, reloc);
d9740523 4289 the_fix->fx_no_overflow = 1;
91d6fa6a
NC
4290 the_fix->tc_fix_data.X_add_symbol = exp->X_add_symbol;
4291 the_fix->tc_fix_data.X_add_number = exp->X_add_number;
7fa3d080 4292 the_fix->tc_fix_data.slot = slot;
c138bc38 4293
7fa3d080
BW
4294 return TRUE;
4295}
4296
4297
4298static bfd_boolean
4299xg_emit_insn_to_buf (TInsn *tinsn,
7fa3d080
BW
4300 char *buf,
4301 fragS *fragP,
4302 offsetT offset,
4303 bfd_boolean build_fix)
4304{
4305 static xtensa_insnbuf insnbuf = NULL;
4306 bfd_boolean has_symbolic_immed = FALSE;
4307 bfd_boolean ok = TRUE;
b2d179be 4308
7fa3d080
BW
4309 if (!insnbuf)
4310 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4311
4312 has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf);
4313 if (has_symbolic_immed && build_fix)
4314 {
4315 /* Add a fixup. */
b2d179be
BW
4316 xtensa_format fmt = xg_get_single_format (tinsn->opcode);
4317 int slot = xg_get_single_slot (tinsn->opcode);
7fa3d080
BW
4318 int opnum = get_relaxable_immed (tinsn->opcode);
4319 expressionS *exp = &tinsn->tok[opnum];
43cd72b9 4320
b2d179be 4321 if (!xg_add_opcode_fix (tinsn, opnum, fmt, slot, exp, fragP, offset))
7fa3d080
BW
4322 ok = FALSE;
4323 }
4324 fragP->tc_frag_data.is_insn = TRUE;
d77b99c9
BW
4325 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4326 (unsigned char *) buf, 0);
7fa3d080 4327 return ok;
e0001a05
NC
4328}
4329
4330
7fa3d080
BW
4331static void
4332xg_resolve_literals (TInsn *insn, symbolS *lit_sym)
e0001a05
NC
4333{
4334 symbolS *sym = get_special_literal_symbol ();
4335 int i;
4336 if (lit_sym == 0)
4337 return;
9c2799c2 4338 gas_assert (insn->insn_type == ITYPE_INSN);
e0001a05
NC
4339 for (i = 0; i < insn->ntok; i++)
4340 if (insn->tok[i].X_add_symbol == sym)
4341 insn->tok[i].X_add_symbol = lit_sym;
4342
4343}
4344
4345
7fa3d080
BW
4346static void
4347xg_resolve_labels (TInsn *insn, symbolS *label_sym)
e0001a05
NC
4348{
4349 symbolS *sym = get_special_label_symbol ();
4350 int i;
e0001a05
NC
4351 for (i = 0; i < insn->ntok; i++)
4352 if (insn->tok[i].X_add_symbol == sym)
4353 insn->tok[i].X_add_symbol = label_sym;
4354
4355}
4356
4357
43cd72b9 4358/* Return TRUE if the instruction can write to the specified
e0001a05
NC
4359 integer register. */
4360
4361static bfd_boolean
7fa3d080 4362is_register_writer (const TInsn *insn, const char *regset, int regnum)
e0001a05
NC
4363{
4364 int i;
4365 int num_ops;
4366 xtensa_isa isa = xtensa_default_isa;
4367
43cd72b9 4368 num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
e0001a05
NC
4369
4370 for (i = 0; i < num_ops; i++)
4371 {
43cd72b9
BW
4372 char inout;
4373 inout = xtensa_operand_inout (isa, insn->opcode, i);
4374 if ((inout == 'o' || inout == 'm')
4375 && xtensa_operand_is_register (isa, insn->opcode, i) == 1)
e0001a05 4376 {
43cd72b9
BW
4377 xtensa_regfile opnd_rf =
4378 xtensa_operand_regfile (isa, insn->opcode, i);
4379 if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset))
e0001a05
NC
4380 {
4381 if ((insn->tok[i].X_op == O_register)
4382 && (insn->tok[i].X_add_number == regnum))
4383 return TRUE;
4384 }
4385 }
4386 }
4387 return FALSE;
4388}
4389
4390
4391static bfd_boolean
7fa3d080 4392is_bad_loopend_opcode (const TInsn *tinsn)
e0001a05
NC
4393{
4394 xtensa_opcode opcode = tinsn->opcode;
4395
4396 if (opcode == XTENSA_UNDEFINED)
4397 return FALSE;
4398
4399 if (opcode == xtensa_call0_opcode
4400 || opcode == xtensa_callx0_opcode
4401 || opcode == xtensa_call4_opcode
4402 || opcode == xtensa_callx4_opcode
4403 || opcode == xtensa_call8_opcode
4404 || opcode == xtensa_callx8_opcode
4405 || opcode == xtensa_call12_opcode
4406 || opcode == xtensa_callx12_opcode
4407 || opcode == xtensa_isync_opcode
4408 || opcode == xtensa_ret_opcode
4409 || opcode == xtensa_ret_n_opcode
4410 || opcode == xtensa_retw_opcode
4411 || opcode == xtensa_retw_n_opcode
43cd72b9
BW
4412 || opcode == xtensa_waiti_opcode
4413 || opcode == xtensa_rsr_lcount_opcode)
e0001a05 4414 return TRUE;
c138bc38 4415
e0001a05
NC
4416 return FALSE;
4417}
4418
4419
4420/* Labels that begin with ".Ln" or ".LM" are unaligned.
4421 This allows the debugger to add unaligned labels.
4422 Also, the assembler generates stabs labels that need
4423 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4424
7fa3d080
BW
4425static bfd_boolean
4426is_unaligned_label (symbolS *sym)
e0001a05
NC
4427{
4428 const char *name = S_GET_NAME (sym);
4429 static size_t fake_size = 0;
4430
4431 if (name
4432 && name[0] == '.'
4433 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4434 return TRUE;
4435
4436 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4437 if (fake_size == 0)
4438 fake_size = strlen (FAKE_LABEL_NAME);
4439
43cd72b9 4440 if (name
e0001a05
NC
4441 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4442 && (name[fake_size] == 'F'
4443 || name[fake_size] == 'L'
4444 || (name[fake_size] == 'e'
4445 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4446 return TRUE;
4447
4448 return FALSE;
4449}
4450
4451
7fa3d080
BW
4452static fragS *
4453next_non_empty_frag (const fragS *fragP)
e0001a05
NC
4454{
4455 fragS *next_fragP = fragP->fr_next;
4456
c138bc38 4457 /* Sometimes an empty will end up here due storage allocation issues.
e0001a05
NC
4458 So we have to skip until we find something legit. */
4459 while (next_fragP && next_fragP->fr_fix == 0)
4460 next_fragP = next_fragP->fr_next;
4461
4462 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4463 return NULL;
4464
4465 return next_fragP;
4466}
4467
4468
43cd72b9 4469static bfd_boolean
7fa3d080 4470next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode)
43cd72b9
BW
4471{
4472 xtensa_opcode out_opcode;
4473 const fragS *next_fragP = next_non_empty_frag (fragP);
4474
4475 if (next_fragP == NULL)
4476 return FALSE;
4477
4478 out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0);
4479 if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1)
4480 {
4481 *opcode = out_opcode;
4482 return TRUE;
4483 }
4484 return FALSE;
4485}
4486
4487
4488static int
7fa3d080 4489frag_format_size (const fragS *fragP)
43cd72b9 4490{
e0001a05
NC
4491 static xtensa_insnbuf insnbuf = NULL;
4492 xtensa_isa isa = xtensa_default_isa;
43cd72b9 4493 xtensa_format fmt;
c138bc38 4494 int fmt_size;
e0001a05
NC
4495
4496 if (!insnbuf)
4497 insnbuf = xtensa_insnbuf_alloc (isa);
4498
43cd72b9
BW
4499 if (fragP == NULL)
4500 return XTENSA_UNDEFINED;
4501
d77b99c9
BW
4502 xtensa_insnbuf_from_chars (isa, insnbuf,
4503 (unsigned char *) fragP->fr_literal, 0);
43cd72b9
BW
4504
4505 fmt = xtensa_format_decode (isa, insnbuf);
4506 if (fmt == XTENSA_UNDEFINED)
e0001a05 4507 return XTENSA_UNDEFINED;
43cd72b9
BW
4508 fmt_size = xtensa_format_length (isa, fmt);
4509
4510 /* If the next format won't be changing due to relaxation, just
4511 return the length of the first format. */
4512 if (fragP->fr_opcode != fragP->fr_literal)
4513 return fmt_size;
4514
c138bc38 4515 /* If during relaxation we have to pull an instruction out of a
43cd72b9
BW
4516 multi-slot instruction, we will return the more conservative
4517 number. This works because alignment on bigger instructions
4518 is more restrictive than alignment on smaller instructions.
4519 This is more conservative than we would like, but it happens
4520 infrequently. */
4521
4522 if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1)
4523 return fmt_size;
4524
4525 /* If we aren't doing one of our own relaxations or it isn't
4526 slot-based, then the insn size won't change. */
4527 if (fragP->fr_type != rs_machine_dependent)
4528 return fmt_size;
4529 if (fragP->fr_subtype != RELAX_SLOTS)
4530 return fmt_size;
4531
4532 /* If an instruction is about to grow, return the longer size. */
4533 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1
b81bf389
BW
4534 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2
4535 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP3)
def13efb
BW
4536 {
4537 /* For most frags at RELAX_IMMED_STEPX, with X > 0, the first
4538 instruction in the relaxed version is of length 3. (The case
4539 where we have to pull the instruction out of a FLIX bundle
4540 is handled conservatively above.) However, frags with opcodes
4541 that are expanding to wide branches end up having formats that
4542 are not determinable by the RELAX_IMMED_STEPX enumeration, and
4543 we can't tell directly what format the relaxer picked. This
4544 is a wart in the design of the relaxer that should someday be
4545 fixed, but would require major changes, or at least should
4546 be accompanied by major changes to make use of that data.
4547
4548 In any event, we can tell that we are expanding from a single-slot
19ef5f3d 4549 format to a wider one with the logic below. */
def13efb 4550
19ef5f3d
SA
4551 int i;
4552 int relaxed_size = fmt_size + fragP->tc_frag_data.text_expansion[0];
4553
4554 for (i = 0; i < xtensa_isa_num_formats (isa); i++)
4555 {
4556 if (relaxed_size == xtensa_format_length (isa, i))
4557 return relaxed_size;
4558 }
4559
4560 return 3;
def13efb 4561 }
c138bc38 4562
43cd72b9
BW
4563 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
4564 return 2 + fragP->tc_frag_data.text_expansion[0];
e0001a05 4565
43cd72b9 4566 return fmt_size;
e0001a05
NC
4567}
4568
4569
7fa3d080
BW
4570static int
4571next_frag_format_size (const fragS *fragP)
e0001a05 4572{
7fa3d080
BW
4573 const fragS *next_fragP = next_non_empty_frag (fragP);
4574 return frag_format_size (next_fragP);
e0001a05
NC
4575}
4576
4577
03aaa593
BW
4578/* In early Xtensa Processors, for reasons that are unclear, the ISA
4579 required two-byte instructions to be treated as three-byte instructions
4580 for loop instruction alignment. This restriction was removed beginning
4581 with Xtensa LX. Now the only requirement on loop instruction alignment
4582 is that the first instruction of the loop must appear at an address that
4583 does not cross a fetch boundary. */
4584
4585static int
4586get_loop_align_size (int insn_size)
4587{
4588 if (insn_size == XTENSA_UNDEFINED)
4589 return xtensa_fetch_width;
4590
4591 if (enforce_three_byte_loop_align && insn_size == 2)
4592 return 3;
4593
4594 return insn_size;
4595}
4596
4597
e0001a05
NC
4598/* If the next legit fragment is an end-of-loop marker,
4599 switch its state so it will instantiate a NOP. */
4600
4601static void
1d19a770 4602update_next_frag_state (fragS *fragP)
e0001a05
NC
4603{
4604 fragS *next_fragP = fragP->fr_next;
43cd72b9 4605 fragS *new_target = NULL;
e0001a05 4606
7b1cc377 4607 if (align_targets)
43cd72b9
BW
4608 {
4609 /* We are guaranteed there will be one of these... */
4610 while (!(next_fragP->fr_type == rs_machine_dependent
4611 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4612 || next_fragP->fr_subtype == RELAX_UNREACHABLE)))
4613 next_fragP = next_fragP->fr_next;
4614
9c2799c2 4615 gas_assert (next_fragP->fr_type == rs_machine_dependent
43cd72b9
BW
4616 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4617 || next_fragP->fr_subtype == RELAX_UNREACHABLE));
4618
4619 /* ...and one of these. */
4620 new_target = next_fragP->fr_next;
4621 while (!(new_target->fr_type == rs_machine_dependent
4622 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4623 || new_target->fr_subtype == RELAX_DESIRE_ALIGN)))
4624 new_target = new_target->fr_next;
4625
9c2799c2 4626 gas_assert (new_target->fr_type == rs_machine_dependent
43cd72b9
BW
4627 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4628 || new_target->fr_subtype == RELAX_DESIRE_ALIGN));
4629 }
43cd72b9 4630
1d19a770 4631 while (next_fragP && next_fragP->fr_fix == 0)
43cd72b9 4632 {
1d19a770
BW
4633 if (next_fragP->fr_type == rs_machine_dependent
4634 && next_fragP->fr_subtype == RELAX_LOOP_END)
43cd72b9 4635 {
1d19a770
BW
4636 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4637 return;
e0001a05 4638 }
1d19a770
BW
4639
4640 next_fragP = next_fragP->fr_next;
e0001a05
NC
4641 }
4642}
4643
4644
4645static bfd_boolean
7fa3d080 4646next_frag_is_branch_target (const fragS *fragP)
e0001a05 4647{
43cd72b9 4648 /* Sometimes an empty will end up here due to storage allocation issues,
e0001a05
NC
4649 so we have to skip until we find something legit. */
4650 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4651 {
4652 if (fragP->tc_frag_data.is_branch_target)
4653 return TRUE;
4654 if (fragP->fr_fix != 0)
4655 break;
4656 }
4657 return FALSE;
4658}
4659
4660
4661static bfd_boolean
7fa3d080 4662next_frag_is_loop_target (const fragS *fragP)
e0001a05 4663{
c138bc38 4664 /* Sometimes an empty will end up here due storage allocation issues.
e0001a05
NC
4665 So we have to skip until we find something legit. */
4666 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4667 {
4668 if (fragP->tc_frag_data.is_loop_target)
4669 return TRUE;
4670 if (fragP->fr_fix != 0)
4671 break;
4672 }
4673 return FALSE;
4674}
4675
4676
3a1e9c4a
SA
4677/* As specified in the relaxation table, when a loop instruction is
4678 relaxed, there are 24 bytes between the loop instruction itself and
4679 the first instruction in the loop. */
4680
4681#define RELAXED_LOOP_INSN_BYTES 24
4682
e0001a05 4683static addressT
7fa3d080 4684next_frag_pre_opcode_bytes (const fragS *fragp)
e0001a05
NC
4685{
4686 const fragS *next_fragp = fragp->fr_next;
43cd72b9 4687 xtensa_opcode next_opcode;
e0001a05 4688
43cd72b9 4689 if (!next_frag_opcode_is_loop (fragp, &next_opcode))
e0001a05
NC
4690 return 0;
4691
43cd72b9
BW
4692 /* Sometimes an empty will end up here due to storage allocation issues,
4693 so we have to skip until we find something legit. */
e0001a05
NC
4694 while (next_fragp->fr_fix == 0)
4695 next_fragp = next_fragp->fr_next;
4696
4697 if (next_fragp->fr_type != rs_machine_dependent)
4698 return 0;
4699
4700 /* There is some implicit knowledge encoded in here.
4701 The LOOP instructions that are NOT RELAX_IMMED have
43cd72b9
BW
4702 been relaxed. Note that we can assume that the LOOP
4703 instruction is in slot 0 because loops aren't bundleable. */
4704 if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED)
3a1e9c4a 4705 return get_expanded_loop_offset (next_opcode) + RELAXED_LOOP_INSN_BYTES;
e0001a05
NC
4706
4707 return 0;
4708}
4709
4710
4711/* Mark a location where we can later insert literal frags. Update
4712 the section's literal_pool_loc, so subsequent literals can be
4713 placed nearest to their use. */
4714
4715static void
7fa3d080 4716xtensa_mark_literal_pool_location (void)
e0001a05
NC
4717{
4718 /* Any labels pointing to the current location need
4719 to be adjusted to after the literal pool. */
4720 emit_state s;
e0001a05 4721 fragS *pool_location;
e0001a05 4722
1f2a7e38 4723 if (use_literal_section)
43cd72b9
BW
4724 return;
4725
dd49a749
BW
4726 /* We stash info in these frags so we can later move the literal's
4727 fixes into this frchain's fix list. */
e0001a05 4728 pool_location = frag_now;
dd49a749 4729 frag_now->tc_frag_data.lit_frchain = frchain_now;
c48aaca0 4730 frag_now->tc_frag_data.literal_frag = frag_now;
dd49a749 4731 frag_variant (rs_machine_dependent, 0, 0,
e0001a05 4732 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
43cd72b9 4733 xtensa_set_frag_assembly_state (frag_now);
dd49a749
BW
4734 frag_now->tc_frag_data.lit_seg = now_seg;
4735 frag_variant (rs_machine_dependent, 0, 0,
e0001a05 4736 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
43cd72b9 4737 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
4738
4739 /* Now put a frag into the literal pool that points to this location. */
4740 set_literal_pool_location (now_seg, pool_location);
43cd72b9
BW
4741 xtensa_switch_to_non_abs_literal_fragment (&s);
4742 frag_align (2, 0, 0);
4743 record_alignment (now_seg, 2);
e0001a05
NC
4744
4745 /* Close whatever frag is there. */
4746 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 4747 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
4748 frag_now->tc_frag_data.literal_frag = pool_location;
4749 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4750 xtensa_restore_emit_state (&s);
43cd72b9 4751 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
4752}
4753
4754
43cd72b9
BW
4755/* Build a nop of the correct size into tinsn. */
4756
4757static void
7fa3d080 4758build_nop (TInsn *tinsn, int size)
43cd72b9
BW
4759{
4760 tinsn_init (tinsn);
4761 switch (size)
4762 {
4763 case 2:
4764 tinsn->opcode = xtensa_nop_n_opcode;
4765 tinsn->ntok = 0;
4766 if (tinsn->opcode == XTENSA_UNDEFINED)
4767 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4768 break;
4769
4770 case 3:
4771 if (xtensa_nop_opcode == XTENSA_UNDEFINED)
4772 {
4773 tinsn->opcode = xtensa_or_opcode;
4774 set_expr_const (&tinsn->tok[0], 1);
4775 set_expr_const (&tinsn->tok[1], 1);
4776 set_expr_const (&tinsn->tok[2], 1);
4777 tinsn->ntok = 3;
4778 }
4779 else
4780 tinsn->opcode = xtensa_nop_opcode;
4781
9c2799c2 4782 gas_assert (tinsn->opcode != XTENSA_UNDEFINED);
43cd72b9
BW
4783 }
4784}
4785
4786
e0001a05
NC
4787/* Assemble a NOP of the requested size in the buffer. User must have
4788 allocated "buf" with at least "size" bytes. */
4789
7fa3d080 4790static void
d77b99c9 4791assemble_nop (int size, char *buf)
e0001a05
NC
4792{
4793 static xtensa_insnbuf insnbuf = NULL;
43cd72b9 4794 TInsn tinsn;
e0001a05 4795
43cd72b9 4796 build_nop (&tinsn, size);
e0001a05 4797
43cd72b9
BW
4798 if (!insnbuf)
4799 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
e0001a05 4800
43cd72b9 4801 tinsn_to_insnbuf (&tinsn, insnbuf);
d77b99c9
BW
4802 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4803 (unsigned char *) buf, 0);
e0001a05
NC
4804}
4805
4806
4807/* Return the number of bytes for the offset of the expanded loop
4808 instruction. This should be incorporated into the relaxation
4809 specification but is hard-coded here. This is used to auto-align
4810 the loop instruction. It is invalid to call this function if the
4811 configuration does not have loops or if the opcode is not a loop
4812 opcode. */
4813
4814static addressT
7fa3d080 4815get_expanded_loop_offset (xtensa_opcode opcode)
e0001a05
NC
4816{
4817 /* This is the OFFSET of the loop instruction in the expanded loop.
4818 This MUST correspond directly to the specification of the loop
4819 expansion. It will be validated on fragment conversion. */
9c2799c2 4820 gas_assert (opcode != XTENSA_UNDEFINED);
e0001a05
NC
4821 if (opcode == xtensa_loop_opcode)
4822 return 0;
4823 if (opcode == xtensa_loopnez_opcode)
4824 return 3;
4825 if (opcode == xtensa_loopgtz_opcode)
4826 return 6;
4827 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4828 return 0;
4829}
4830
4831
7fa3d080
BW
4832static fragS *
4833get_literal_pool_location (segT seg)
e0001a05
NC
4834{
4835 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4836}
4837
4838
4839static void
7fa3d080 4840set_literal_pool_location (segT seg, fragS *literal_pool_loc)
e0001a05
NC
4841{
4842 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4843}
4844
43cd72b9
BW
4845
4846/* Set frag assembly state should be called when a new frag is
4847 opened and after a frag has been closed. */
4848
7fa3d080
BW
4849static void
4850xtensa_set_frag_assembly_state (fragS *fragP)
43cd72b9
BW
4851{
4852 if (!density_supported)
4853 fragP->tc_frag_data.is_no_density = TRUE;
4854
4855 /* This function is called from subsegs_finish, which is called
c138bc38 4856 after xtensa_end, so we can't use "use_transform" or
43cd72b9
BW
4857 "use_schedule" here. */
4858 if (!directive_state[directive_transform])
4859 fragP->tc_frag_data.is_no_transform = TRUE;
7c834684
BW
4860 if (directive_state[directive_longcalls])
4861 fragP->tc_frag_data.use_longcalls = TRUE;
43cd72b9
BW
4862 fragP->tc_frag_data.use_absolute_literals =
4863 directive_state[directive_absolute_literals];
4864 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4865}
4866
4867
7fa3d080
BW
4868static bfd_boolean
4869relaxable_section (asection *sec)
43cd72b9 4870{
11ac2671
BW
4871 return ((sec->flags & SEC_DEBUGGING) == 0
4872 && strcmp (sec->name, ".eh_frame") != 0);
43cd72b9
BW
4873}
4874
4875
99ded152
BW
4876static void
4877xtensa_mark_frags_for_org (void)
4878{
4879 segT *seclist;
4880
4881 /* Walk over each fragment of all of the current segments. If we find
4882 a .org frag in any of the segments, mark all frags prior to it as
4883 "no transform", which will prevent linker optimizations from messing
4884 up the .org distance. This should be done after
4885 xtensa_find_unmarked_state_frags, because we don't want to worry here
4886 about that function trashing the data we save here. */
4887
4888 for (seclist = &stdoutput->sections;
4889 seclist && *seclist;
4890 seclist = &(*seclist)->next)
4891 {
4892 segT sec = *seclist;
4893 segment_info_type *seginfo;
4894 fragS *fragP;
4895 flagword flags;
4896 flags = bfd_get_section_flags (stdoutput, sec);
4897 if (flags & SEC_DEBUGGING)
4898 continue;
4899 if (!(flags & SEC_ALLOC))
4900 continue;
4901
4902 seginfo = seg_info (sec);
4903 if (seginfo && seginfo->frchainP)
4904 {
4905 fragS *last_fragP = seginfo->frchainP->frch_root;
4906 for (fragP = seginfo->frchainP->frch_root; fragP;
4907 fragP = fragP->fr_next)
4908 {
4909 /* cvt_frag_to_fill has changed the fr_type of org frags to
4910 rs_fill, so use the value as cached in rs_subtype here. */
4911 if (fragP->fr_subtype == RELAX_ORG)
4912 {
4913 while (last_fragP != fragP->fr_next)
4914 {
4915 last_fragP->tc_frag_data.is_no_transform = TRUE;
4916 last_fragP = last_fragP->fr_next;
4917 }
4918 }
4919 }
4920 }
4921 }
4922}
4923
4924
43cd72b9 4925static void
7fa3d080 4926xtensa_find_unmarked_state_frags (void)
43cd72b9
BW
4927{
4928 segT *seclist;
4929
4930 /* Walk over each fragment of all of the current segments. For each
4931 unmarked fragment, mark it with the same info as the previous
4932 fragment. */
4933 for (seclist = &stdoutput->sections;
4934 seclist && *seclist;
4935 seclist = &(*seclist)->next)
4936 {
4937 segT sec = *seclist;
4938 segment_info_type *seginfo;
4939 fragS *fragP;
4940 flagword flags;
4941 flags = bfd_get_section_flags (stdoutput, sec);
4942 if (flags & SEC_DEBUGGING)
4943 continue;
4944 if (!(flags & SEC_ALLOC))
4945 continue;
4946
4947 seginfo = seg_info (sec);
4948 if (seginfo && seginfo->frchainP)
4949 {
4950 fragS *last_fragP = 0;
4951 for (fragP = seginfo->frchainP->frch_root; fragP;
4952 fragP = fragP->fr_next)
4953 {
4954 if (fragP->fr_fix != 0
4955 && !fragP->tc_frag_data.is_assembly_state_set)
4956 {
4957 if (last_fragP == 0)
4958 {
4959 as_warn_where (fragP->fr_file, fragP->fr_line,
4960 _("assembly state not set for first frag in section %s"),
4961 sec->name);
4962 }
4963 else
4964 {
4965 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4966 fragP->tc_frag_data.is_no_density =
4967 last_fragP->tc_frag_data.is_no_density;
4968 fragP->tc_frag_data.is_no_transform =
4969 last_fragP->tc_frag_data.is_no_transform;
7c834684
BW
4970 fragP->tc_frag_data.use_longcalls =
4971 last_fragP->tc_frag_data.use_longcalls;
43cd72b9
BW
4972 fragP->tc_frag_data.use_absolute_literals =
4973 last_fragP->tc_frag_data.use_absolute_literals;
4974 }
4975 }
4976 if (fragP->tc_frag_data.is_assembly_state_set)
4977 last_fragP = fragP;
4978 }
4979 }
4980 }
4981}
4982
4983
4984static void
7fa3d080
BW
4985xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED,
4986 asection *sec,
4987 void *unused ATTRIBUTE_UNUSED)
43cd72b9
BW
4988{
4989 flagword flags = bfd_get_section_flags (abfd, sec);
4990 segment_info_type *seginfo = seg_info (sec);
4991 fragS *frag = seginfo->frchainP->frch_root;
c138bc38 4992
43cd72b9 4993 if (flags & SEC_CODE)
c138bc38 4994 {
43cd72b9
BW
4995 xtensa_isa isa = xtensa_default_isa;
4996 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4997 while (frag != NULL)
4998 {
4999 if (frag->tc_frag_data.is_branch_target)
5000 {
5001 int op_size;
664df4e4 5002 addressT branch_align, frag_addr;
43cd72b9
BW
5003 xtensa_format fmt;
5004
d77b99c9
BW
5005 xtensa_insnbuf_from_chars
5006 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
43cd72b9
BW
5007 fmt = xtensa_format_decode (isa, insnbuf);
5008 op_size = xtensa_format_length (isa, fmt);
664df4e4
BW
5009 branch_align = 1 << branch_align_power (sec);
5010 frag_addr = frag->fr_address % branch_align;
5011 if (frag_addr + op_size > branch_align)
43cd72b9
BW
5012 as_warn_where (frag->fr_file, frag->fr_line,
5013 _("unaligned branch target: %d bytes at 0x%lx"),
dd49a749 5014 op_size, (long) frag->fr_address);
43cd72b9
BW
5015 }
5016 frag = frag->fr_next;
5017 }
5018 xtensa_insnbuf_free (isa, insnbuf);
5019 }
5020}
5021
5022
5023static void
7fa3d080
BW
5024xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED,
5025 asection *sec,
5026 void *unused ATTRIBUTE_UNUSED)
43cd72b9
BW
5027{
5028 flagword flags = bfd_get_section_flags (abfd, sec);
5029 segment_info_type *seginfo = seg_info (sec);
5030 fragS *frag = seginfo->frchainP->frch_root;
5031 xtensa_isa isa = xtensa_default_isa;
c138bc38 5032
43cd72b9 5033 if (flags & SEC_CODE)
c138bc38 5034 {
43cd72b9
BW
5035 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
5036 while (frag != NULL)
5037 {
5038 if (frag->tc_frag_data.is_first_loop_insn)
5039 {
5040 int op_size;
d77b99c9 5041 addressT frag_addr;
43cd72b9
BW
5042 xtensa_format fmt;
5043
3c83b96e
SA
5044 if (frag->fr_fix == 0)
5045 frag = next_non_empty_frag (frag);
5046
5047 if (frag)
5048 {
5049 xtensa_insnbuf_from_chars
5050 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
5051 fmt = xtensa_format_decode (isa, insnbuf);
5052 op_size = xtensa_format_length (isa, fmt);
5053 frag_addr = frag->fr_address % xtensa_fetch_width;
5054
5055 if (frag_addr + op_size > xtensa_fetch_width)
5056 as_warn_where (frag->fr_file, frag->fr_line,
5057 _("unaligned loop: %d bytes at 0x%lx"),
5058 op_size, (long) frag->fr_address);
5059 }
43cd72b9
BW
5060 }
5061 frag = frag->fr_next;
5062 }
5063 xtensa_insnbuf_free (isa, insnbuf);
5064 }
5065}
5066
5067
30f725a1
BW
5068static int
5069xg_apply_fix_value (fixS *fixP, valueT val)
43cd72b9
BW
5070{
5071 xtensa_isa isa = xtensa_default_isa;
5072 static xtensa_insnbuf insnbuf = NULL;
5073 static xtensa_insnbuf slotbuf = NULL;
5074 xtensa_format fmt;
5075 int slot;
5076 bfd_boolean alt_reloc;
5077 xtensa_opcode opcode;
5078 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5079
1b6e95c2
BW
5080 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc)
5081 || alt_reloc)
43cd72b9
BW
5082 as_fatal (_("unexpected fix"));
5083
5084 if (!insnbuf)
5085 {
5086 insnbuf = xtensa_insnbuf_alloc (isa);
5087 slotbuf = xtensa_insnbuf_alloc (isa);
5088 }
5089
d77b99c9 5090 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
43cd72b9
BW
5091 fmt = xtensa_format_decode (isa, insnbuf);
5092 if (fmt == XTENSA_UNDEFINED)
5093 as_fatal (_("undecodable fix"));
5094 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5095 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5096 if (opcode == XTENSA_UNDEFINED)
5097 as_fatal (_("undecodable fix"));
5098
5099 /* CONST16 immediates are not PC-relative, despite the fact that we
5100 reuse the normal PC-relative operand relocations for the low part
30f725a1 5101 of a CONST16 operand. */
43cd72b9 5102 if (opcode == xtensa_const16_opcode)
30f725a1 5103 return 0;
43cd72b9
BW
5104
5105 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode,
5106 get_relaxable_immed (opcode), val,
5107 fixP->fx_file, fixP->fx_line);
5108
5109 xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf);
d77b99c9 5110 xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
30f725a1
BW
5111
5112 return 1;
43cd72b9
BW
5113}
5114
e0001a05
NC
5115\f
5116/* External Functions and Other GAS Hooks. */
5117
5118const char *
7fa3d080 5119xtensa_target_format (void)
e0001a05
NC
5120{
5121 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
5122}
5123
5124
5125void
7fa3d080 5126xtensa_file_arch_init (bfd *abfd)
e0001a05
NC
5127{
5128 bfd_set_private_flags (abfd, 0x100 | 0x200);
5129}
5130
5131
5132void
7fa3d080 5133md_number_to_chars (char *buf, valueT val, int n)
e0001a05
NC
5134{
5135 if (target_big_endian)
5136 number_to_chars_bigendian (buf, val, n);
5137 else
5138 number_to_chars_littleendian (buf, val, n);
5139}
5140
5141
5142/* This function is called once, at assembler startup time. It should
5143 set up all the tables, etc. that the MD part of the assembler will
5144 need. */
5145
5146void
7fa3d080 5147md_begin (void)
e0001a05
NC
5148{
5149 segT current_section = now_seg;
5150 int current_subsec = now_subseg;
5151 xtensa_isa isa;
62af60e2 5152 int i;
e0001a05 5153
43cd72b9 5154 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 5155 isa = xtensa_default_isa;
e0001a05 5156
43cd72b9
BW
5157 linkrelax = 1;
5158
74869ac7 5159 /* Set up the literal sections. */
e0001a05 5160 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
e0001a05
NC
5161
5162 subseg_set (current_section, current_subsec);
5163
5164 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
5165 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
5166 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
5167 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
5168 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
5169 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
5170 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
5171 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
5172 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
5173 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
43cd72b9 5174 xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16");
e0001a05 5175 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
d12f9798 5176 xtensa_extui_opcode = xtensa_opcode_lookup (isa, "extui");
43cd72b9
BW
5177 xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi");
5178 xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n");
e0001a05 5179 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
19e8f41a 5180 xtensa_j_opcode = xtensa_opcode_lookup (isa, "j");
e0001a05 5181 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
43cd72b9 5182 xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r");
e0001a05
NC
5183 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
5184 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
5185 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
43cd72b9 5186 xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop");
e0001a05
NC
5187 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
5188 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
5189 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
5190 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
5191 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
5192 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
43cd72b9 5193 xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount");
e0001a05 5194 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
43cd72b9 5195
62af60e2
SA
5196 for (i = 0; i < xtensa_isa_num_formats (isa); i++)
5197 {
5198 int format_slots = xtensa_format_num_slots (isa, i);
5199 if (format_slots > config_max_slots)
5200 config_max_slots = format_slots;
5201 }
5202
5203 xg_init_vinsn (&cur_vinsn);
5204
77cba8a3
BW
5205 xtensa_num_pipe_stages = xtensa_isa_num_pipe_stages (isa);
5206
43cd72b9
BW
5207 init_op_placement_info_table ();
5208
5209 /* Set up the assembly state. */
5210 if (!frag_now->tc_frag_data.is_assembly_state_set)
5211 xtensa_set_frag_assembly_state (frag_now);
5212}
5213
5214
5215/* TC_INIT_FIX_DATA hook */
5216
5217void
7fa3d080 5218xtensa_init_fix_data (fixS *x)
43cd72b9
BW
5219{
5220 x->tc_fix_data.slot = 0;
5221 x->tc_fix_data.X_add_symbol = NULL;
5222 x->tc_fix_data.X_add_number = 0;
e0001a05
NC
5223}
5224
5225
5226/* tc_frob_label hook */
5227
5228void
7fa3d080 5229xtensa_frob_label (symbolS *sym)
e0001a05 5230{
3ea38ac2
BW
5231 float freq;
5232
5233 if (cur_vinsn.inside_bundle)
5234 {
5235 as_bad (_("labels are not valid inside bundles"));
5236 return;
5237 }
5238
5239 freq = get_subseg_target_freq (now_seg, now_subseg);
7b1cc377 5240
43cd72b9
BW
5241 /* Since the label was already attached to a frag associated with the
5242 previous basic block, it now needs to be reset to the current frag. */
5243 symbol_set_frag (sym, frag_now);
5244 S_SET_VALUE (sym, (valueT) frag_now_fix ());
5245
82e7541d
BW
5246 if (generating_literals)
5247 xtensa_add_literal_sym (sym);
5248 else
5249 xtensa_add_insn_label (sym);
5250
7b1cc377
BW
5251 if (symbol_get_tc (sym)->is_loop_target)
5252 {
5253 if ((get_last_insn_flags (now_seg, now_subseg)
e0001a05 5254 & FLAG_IS_BAD_LOOPEND) != 0)
7b1cc377
BW
5255 as_bad (_("invalid last instruction for a zero-overhead loop"));
5256
5257 xtensa_set_frag_assembly_state (frag_now);
5258 frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END,
5259 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5260
5261 xtensa_set_frag_assembly_state (frag_now);
c3ea6048 5262 xtensa_move_labels (frag_now, 0);
07a53e5c 5263 }
e0001a05
NC
5264
5265 /* No target aligning in the absolute section. */
61846f28 5266 if (now_seg != absolute_section
61846f28 5267 && !is_unaligned_label (sym)
43cd72b9
BW
5268 && !generating_literals)
5269 {
43cd72b9
BW
5270 xtensa_set_frag_assembly_state (frag_now);
5271
b7afdeef
SA
5272 if (do_align_targets ())
5273 frag_var (rs_machine_dependent, 0, (int) freq,
5274 RELAX_DESIRE_ALIGN_IF_TARGET, frag_now->fr_symbol,
5275 frag_now->fr_offset, NULL);
5276 else
5277 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
5278 frag_now->fr_symbol, frag_now->fr_offset, NULL);
43cd72b9 5279 xtensa_set_frag_assembly_state (frag_now);
c3ea6048 5280 xtensa_move_labels (frag_now, 0);
43cd72b9
BW
5281 }
5282
5283 /* We need to mark the following properties even if we aren't aligning. */
5284
5285 /* If the label is already known to be a branch target, i.e., a
5286 forward branch, mark the frag accordingly. Backward branches
5287 are handled by xg_add_branch_and_loop_targets. */
5288 if (symbol_get_tc (sym)->is_branch_target)
5289 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
5290
5291 /* Loops only go forward, so they can be identified here. */
5292 if (symbol_get_tc (sym)->is_loop_target)
5293 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
07a53e5c
RH
5294
5295 dwarf2_emit_label (sym);
43cd72b9
BW
5296}
5297
5298
5299/* tc_unrecognized_line hook */
5300
5301int
7fa3d080 5302xtensa_unrecognized_line (int ch)
43cd72b9
BW
5303{
5304 switch (ch)
5305 {
5306 case '{' :
5307 if (cur_vinsn.inside_bundle == 0)
5308 {
5309 /* PR8110: Cannot emit line number info inside a FLIX bundle
5310 when using --gstabs. Temporarily disable debug info. */
5311 generate_lineno_debug ();
5312 if (debug_type == DEBUG_STABS)
5313 {
5314 xt_saved_debug_type = debug_type;
5315 debug_type = DEBUG_NONE;
5316 }
82e7541d 5317
43cd72b9
BW
5318 cur_vinsn.inside_bundle = 1;
5319 }
5320 else
5321 {
5322 as_bad (_("extra opening brace"));
5323 return 0;
5324 }
5325 break;
82e7541d 5326
43cd72b9
BW
5327 case '}' :
5328 if (cur_vinsn.inside_bundle)
5329 finish_vinsn (&cur_vinsn);
5330 else
5331 {
5332 as_bad (_("extra closing brace"));
5333 return 0;
5334 }
5335 break;
5336 default:
5337 as_bad (_("syntax error"));
5338 return 0;
e0001a05 5339 }
43cd72b9 5340 return 1;
e0001a05
NC
5341}
5342
5343
5344/* md_flush_pending_output hook */
5345
5346void
7fa3d080 5347xtensa_flush_pending_output (void)
e0001a05 5348{
a3582eee
BW
5349 /* This line fixes a bug where automatically generated gstabs info
5350 separates a function label from its entry instruction, ending up
5351 with the literal position between the function label and the entry
5352 instruction and crashing code. It only happens with --gstabs and
5353 --text-section-literals, and when several other obscure relaxation
5354 conditions are met. */
5355 if (outputting_stabs_line_debug)
5356 return;
5357
43cd72b9
BW
5358 if (cur_vinsn.inside_bundle)
5359 as_bad (_("missing closing brace"));
5360
e0001a05
NC
5361 /* If there is a non-zero instruction fragment, close it. */
5362 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
5363 {
5364 frag_wane (frag_now);
5365 frag_new (0);
43cd72b9 5366 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
5367 }
5368 frag_now->tc_frag_data.is_insn = FALSE;
82e7541d
BW
5369
5370 xtensa_clear_insn_labels ();
e0001a05
NC
5371}
5372
5373
43cd72b9
BW
5374/* We had an error while parsing an instruction. The string might look
5375 like this: "insn arg1, arg2 }". If so, we need to see the closing
5376 brace and reset some fields. Otherwise, the vinsn never gets closed
5377 and the num_slots field will grow past the end of the array of slots,
5378 and bad things happen. */
5379
5380static void
7fa3d080 5381error_reset_cur_vinsn (void)
43cd72b9
BW
5382{
5383 if (cur_vinsn.inside_bundle)
5384 {
5385 if (*input_line_pointer == '}'
5386 || *(input_line_pointer - 1) == '}'
5387 || *(input_line_pointer - 2) == '}')
5388 xg_clear_vinsn (&cur_vinsn);
5389 }
5390}
5391
5392
e0001a05 5393void
7fa3d080 5394md_assemble (char *str)
e0001a05
NC
5395{
5396 xtensa_isa isa = xtensa_default_isa;
b224e962 5397 char *opname;
e0001a05
NC
5398 unsigned opnamelen;
5399 bfd_boolean has_underbar = FALSE;
43cd72b9 5400 char *arg_strings[MAX_INSN_ARGS];
e0001a05 5401 int num_args;
e0001a05 5402 TInsn orig_insn; /* Original instruction from the input. */
e0001a05 5403
e0001a05
NC
5404 tinsn_init (&orig_insn);
5405
5406 /* Split off the opcode. */
5407 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5408 opname = xmalloc (opnamelen + 1);
5409 memcpy (opname, str, opnamelen);
5410 opname[opnamelen] = '\0';
5411
5412 num_args = tokenize_arguments (arg_strings, str + opnamelen);
5413 if (num_args == -1)
5414 {
5415 as_bad (_("syntax error"));
5416 return;
5417 }
5418
5419 if (xg_translate_idioms (&opname, &num_args, arg_strings))
5420 return;
5421
5422 /* Check for an underbar prefix. */
5423 if (*opname == '_')
5424 {
5425 has_underbar = TRUE;
5426 opname += 1;
5427 }
5428
5429 orig_insn.insn_type = ITYPE_INSN;
5430 orig_insn.ntok = 0;
43cd72b9 5431 orig_insn.is_specific_opcode = (has_underbar || !use_transform ());
e0001a05 5432 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
28dbbc02
BW
5433
5434 /* Special case: Check for "CALLXn.TLS" psuedo op. If found, grab its
5435 extra argument and set the opcode to "CALLXn". */
5436 if (orig_insn.opcode == XTENSA_UNDEFINED
5437 && strncasecmp (opname, "callx", 5) == 0)
5438 {
5439 unsigned long window_size;
5440 char *suffix;
5441
5442 window_size = strtoul (opname + 5, &suffix, 10);
5443 if (suffix != opname + 5
5444 && (window_size == 0
5445 || window_size == 4
5446 || window_size == 8
5447 || window_size == 12)
5448 && strcasecmp (suffix, ".tls") == 0)
5449 {
5450 switch (window_size)
5451 {
5452 case 0: orig_insn.opcode = xtensa_callx0_opcode; break;
5453 case 4: orig_insn.opcode = xtensa_callx4_opcode; break;
5454 case 8: orig_insn.opcode = xtensa_callx8_opcode; break;
5455 case 12: orig_insn.opcode = xtensa_callx12_opcode; break;
5456 }
5457
5458 if (num_args != 2)
5459 as_bad (_("wrong number of operands for '%s'"), opname);
5460 else
5461 {
5462 bfd_reloc_code_real_type reloc;
5463 char *old_input_line_pointer;
19e8f41a 5464 expressionS *tok = &orig_insn.extra_arg;
28dbbc02
BW
5465
5466 old_input_line_pointer = input_line_pointer;
5467 input_line_pointer = arg_strings[num_args - 1];
5468
87975d2a 5469 expression (tok);
28dbbc02
BW
5470 if (tok->X_op == O_symbol
5471 && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok))
5472 == BFD_RELOC_XTENSA_TLS_CALL))
5473 tok->X_op = map_suffix_reloc_to_operator (reloc);
5474 else
5475 as_bad (_("bad relocation expression for '%s'"), opname);
5476
5477 input_line_pointer = old_input_line_pointer;
5478 num_args -= 1;
5479 }
5480 }
5481 }
5482
19e8f41a
BW
5483 /* Special case: Check for "j.l" psuedo op. */
5484 if (orig_insn.opcode == XTENSA_UNDEFINED
5485 && strncasecmp (opname, "j.l", 3) == 0)
5486 {
5487 if (num_args != 2)
5488 as_bad (_("wrong number of operands for '%s'"), opname);
5489 else
5490 {
5491 char *old_input_line_pointer;
5492 expressionS *tok = &orig_insn.extra_arg;
5493
5494 old_input_line_pointer = input_line_pointer;
5495 input_line_pointer = arg_strings[num_args - 1];
5496
5497 expression_maybe_register (xtensa_jx_opcode, 0, tok);
5498 input_line_pointer = old_input_line_pointer;
5499
5500 num_args -= 1;
5501 orig_insn.opcode = xtensa_j_opcode;
5502 }
5503 }
5504
e0001a05
NC
5505 if (orig_insn.opcode == XTENSA_UNDEFINED)
5506 {
43cd72b9
BW
5507 xtensa_format fmt = xtensa_format_lookup (isa, opname);
5508 if (fmt == XTENSA_UNDEFINED)
5509 {
5510 as_bad (_("unknown opcode or format name '%s'"), opname);
5511 error_reset_cur_vinsn ();
5512 return;
5513 }
5514 if (!cur_vinsn.inside_bundle)
5515 {
5516 as_bad (_("format names only valid inside bundles"));
5517 error_reset_cur_vinsn ();
5518 return;
5519 }
5520 if (cur_vinsn.format != XTENSA_UNDEFINED)
5521 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5522 opname);
5523 cur_vinsn.format = fmt;
5524 free (has_underbar ? opname - 1 : opname);
5525 error_reset_cur_vinsn ();
e0001a05
NC
5526 return;
5527 }
5528
e0001a05
NC
5529 /* Parse the arguments. */
5530 if (parse_arguments (&orig_insn, num_args, arg_strings))
5531 {
5532 as_bad (_("syntax error"));
43cd72b9 5533 error_reset_cur_vinsn ();
e0001a05
NC
5534 return;
5535 }
5536
5537 /* Free the opcode and argument strings, now that they've been parsed. */
5538 free (has_underbar ? opname - 1 : opname);
5539 opname = 0;
5540 while (num_args-- > 0)
5541 free (arg_strings[num_args]);
5542
43cd72b9
BW
5543 /* Get expressions for invisible operands. */
5544 if (get_invisible_operands (&orig_insn))
5545 {
5546 error_reset_cur_vinsn ();
5547 return;
5548 }
5549
e0001a05
NC
5550 /* Check for the right number and type of arguments. */
5551 if (tinsn_check_arguments (&orig_insn))
e0001a05 5552 {
43cd72b9
BW
5553 error_reset_cur_vinsn ();
5554 return;
e0001a05
NC
5555 }
5556
b224e962
BW
5557 /* Record the line number for each TInsn, because a FLIX bundle may be
5558 spread across multiple input lines and individual instructions may be
5559 moved around in some cases. */
5560 orig_insn.loc_directive_seen = dwarf2_loc_directive_seen;
5561 dwarf2_where (&orig_insn.debug_line);
5562 dwarf2_consume_line_info ();
c138bc38 5563
43cd72b9
BW
5564 xg_add_branch_and_loop_targets (&orig_insn);
5565
431ad2d0
BW
5566 /* Check that immediate value for ENTRY is >= 16. */
5567 if (orig_insn.opcode == xtensa_entry_opcode && orig_insn.ntok >= 3)
e0001a05 5568 {
431ad2d0
BW
5569 expressionS *exp = &orig_insn.tok[2];
5570 if (exp->X_op == O_constant && exp->X_add_number < 16)
5571 as_warn (_("entry instruction with stack decrement < 16"));
e0001a05
NC
5572 }
5573
e0001a05 5574 /* Finish it off:
43cd72b9
BW
5575 assemble_tokens (opcode, tok, ntok);
5576 expand the tokens from the orig_insn into the
5577 stack of instructions that will not expand
e0001a05 5578 unless required at relaxation time. */
e0001a05 5579
43cd72b9
BW
5580 if (!cur_vinsn.inside_bundle)
5581 emit_single_op (&orig_insn);
5582 else /* We are inside a bundle. */
e0001a05 5583 {
43cd72b9
BW
5584 cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn;
5585 cur_vinsn.num_slots++;
5586 if (*input_line_pointer == '}'
5587 || *(input_line_pointer - 1) == '}'
5588 || *(input_line_pointer - 2) == '}')
5589 finish_vinsn (&cur_vinsn);
e0001a05
NC
5590 }
5591
43cd72b9
BW
5592 /* We've just emitted a new instruction so clear the list of labels. */
5593 xtensa_clear_insn_labels ();
a82c7d90
DW
5594
5595 xtensa_check_frag_count ();
e0001a05
NC
5596}
5597
5598
43cd72b9 5599/* HANDLE_ALIGN hook */
e0001a05 5600
43cd72b9
BW
5601/* For a .align directive, we mark the previous block with the alignment
5602 information. This will be placed in the object file in the
5603 property section corresponding to this section. */
e0001a05 5604
43cd72b9 5605void
7fa3d080 5606xtensa_handle_align (fragS *fragP)
43cd72b9
BW
5607{
5608 if (linkrelax
b08b5071 5609 && ! fragP->tc_frag_data.is_literal
43cd72b9
BW
5610 && (fragP->fr_type == rs_align
5611 || fragP->fr_type == rs_align_code)
43cd72b9
BW
5612 && fragP->fr_offset > 0
5613 && now_seg != bss_section)
e0001a05 5614 {
43cd72b9
BW
5615 fragP->tc_frag_data.is_align = TRUE;
5616 fragP->tc_frag_data.alignment = fragP->fr_offset;
e0001a05
NC
5617 }
5618
43cd72b9 5619 if (fragP->fr_type == rs_align_test)
e0001a05 5620 {
43cd72b9
BW
5621 int count;
5622 count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5623 if (count != 0)
c138bc38 5624 as_bad_where (fragP->fr_file, fragP->fr_line,
43cd72b9 5625 _("unaligned entry instruction"));
e0001a05 5626 }
99ded152
BW
5627
5628 if (linkrelax && fragP->fr_type == rs_org)
5629 fragP->fr_subtype = RELAX_ORG;
e0001a05 5630}
43cd72b9 5631
e0001a05
NC
5632
5633/* TC_FRAG_INIT hook */
5634
5635void
7fa3d080 5636xtensa_frag_init (fragS *frag)
e0001a05 5637{
43cd72b9 5638 xtensa_set_frag_assembly_state (frag);
e0001a05
NC
5639}
5640
5641
5642symbolS *
7fa3d080 5643md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
e0001a05
NC
5644{
5645 return NULL;
5646}
5647
5648
5649/* Round up a section size to the appropriate boundary. */
5650
5651valueT
7fa3d080 5652md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
e0001a05
NC
5653{
5654 return size; /* Byte alignment is fine. */
5655}
5656
5657
5658long
7fa3d080 5659md_pcrel_from (fixS *fixP)
e0001a05
NC
5660{
5661 char *insn_p;
5662 static xtensa_insnbuf insnbuf = NULL;
43cd72b9 5663 static xtensa_insnbuf slotbuf = NULL;
e0001a05 5664 int opnum;
43cd72b9 5665 uint32 opnd_value;
e0001a05 5666 xtensa_opcode opcode;
43cd72b9
BW
5667 xtensa_format fmt;
5668 int slot;
e0001a05
NC
5669 xtensa_isa isa = xtensa_default_isa;
5670 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
43cd72b9 5671 bfd_boolean alt_reloc;
e0001a05 5672
e0001a05 5673 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
30f725a1 5674 return 0;
e0001a05 5675
1bbb5f21
BW
5676 if (fixP->fx_r_type == BFD_RELOC_32_PCREL)
5677 return addr;
5678
e0001a05 5679 if (!insnbuf)
43cd72b9
BW
5680 {
5681 insnbuf = xtensa_insnbuf_alloc (isa);
5682 slotbuf = xtensa_insnbuf_alloc (isa);
5683 }
e0001a05
NC
5684
5685 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
d77b99c9 5686 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0);
43cd72b9
BW
5687 fmt = xtensa_format_decode (isa, insnbuf);
5688
5689 if (fmt == XTENSA_UNDEFINED)
5690 as_fatal (_("bad instruction format"));
5691
5692 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0)
5693 as_fatal (_("invalid relocation"));
5694
5695 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5696 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5697
30f725a1
BW
5698 /* Check for "alternate" relocations (operand not specified). None
5699 of the current uses for these are really PC-relative. */
43cd72b9
BW
5700 if (alt_reloc || opcode == xtensa_const16_opcode)
5701 {
5702 if (opcode != xtensa_l32r_opcode
5703 && opcode != xtensa_const16_opcode)
5704 as_fatal (_("invalid relocation for '%s' instruction"),
5705 xtensa_opcode_name (isa, opcode));
30f725a1 5706 return 0;
e0001a05
NC
5707 }
5708
43cd72b9
BW
5709 opnum = get_relaxable_immed (opcode);
5710 opnd_value = 0;
5711 if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1
5712 || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr))
e0001a05
NC
5713 {
5714 as_bad_where (fixP->fx_file,
5715 fixP->fx_line,
5716 _("invalid relocation for operand %d of '%s'"),
5717 opnum, xtensa_opcode_name (isa, opcode));
30f725a1 5718 return 0;
e0001a05 5719 }
43cd72b9
BW
5720 return 0 - opnd_value;
5721}
5722
5723
5724/* TC_FORCE_RELOCATION hook */
5725
5726int
7fa3d080 5727xtensa_force_relocation (fixS *fix)
43cd72b9
BW
5728{
5729 switch (fix->fx_r_type)
30f725a1
BW
5730 {
5731 case BFD_RELOC_XTENSA_ASM_EXPAND:
43cd72b9
BW
5732 case BFD_RELOC_XTENSA_SLOT0_ALT:
5733 case BFD_RELOC_XTENSA_SLOT1_ALT:
5734 case BFD_RELOC_XTENSA_SLOT2_ALT:
5735 case BFD_RELOC_XTENSA_SLOT3_ALT:
5736 case BFD_RELOC_XTENSA_SLOT4_ALT:
5737 case BFD_RELOC_XTENSA_SLOT5_ALT:
5738 case BFD_RELOC_XTENSA_SLOT6_ALT:
5739 case BFD_RELOC_XTENSA_SLOT7_ALT:
5740 case BFD_RELOC_XTENSA_SLOT8_ALT:
5741 case BFD_RELOC_XTENSA_SLOT9_ALT:
5742 case BFD_RELOC_XTENSA_SLOT10_ALT:
5743 case BFD_RELOC_XTENSA_SLOT11_ALT:
5744 case BFD_RELOC_XTENSA_SLOT12_ALT:
5745 case BFD_RELOC_XTENSA_SLOT13_ALT:
5746 case BFD_RELOC_XTENSA_SLOT14_ALT:
43cd72b9
BW
5747 return 1;
5748 default:
5749 break;
e0001a05
NC
5750 }
5751
43cd72b9
BW
5752 if (linkrelax && fix->fx_addsy
5753 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
5754 return 1;
5755
5756 return generic_force_reloc (fix);
5757}
5758
5759
30f725a1
BW
5760/* TC_VALIDATE_FIX_SUB hook */
5761
5762int
5763xtensa_validate_fix_sub (fixS *fix)
5764{
5765 segT add_symbol_segment, sub_symbol_segment;
5766
5767 /* The difference of two symbols should be resolved by the assembler when
5768 linkrelax is not set. If the linker may relax the section containing
5769 the symbols, then an Xtensa DIFF relocation must be generated so that
5770 the linker knows to adjust the difference value. */
5771 if (!linkrelax || fix->fx_addsy == NULL)
5772 return 0;
5773
5774 /* Make sure both symbols are in the same segment, and that segment is
5775 "normal" and relaxable. If the segment is not "normal", then the
5776 fix is not valid. If the segment is not "relaxable", then the fix
5777 should have been handled earlier. */
5778 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy);
5779 if (! SEG_NORMAL (add_symbol_segment) ||
5780 ! relaxable_section (add_symbol_segment))
5781 return 0;
5782 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy);
5783 return (sub_symbol_segment == add_symbol_segment);
5784}
5785
5786
43cd72b9
BW
5787/* NO_PSEUDO_DOT hook */
5788
5789/* This function has nothing to do with pseudo dots, but this is the
5790 nearest macro to where the check needs to take place. FIXME: This
5791 seems wrong. */
5792
5793bfd_boolean
7fa3d080 5794xtensa_check_inside_bundle (void)
43cd72b9
BW
5795{
5796 if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.')
5797 as_bad (_("directives are not valid inside bundles"));
5798
5799 /* This function must always return FALSE because it is called via a
5800 macro that has nothing to do with bundling. */
5801 return FALSE;
e0001a05
NC
5802}
5803
5804
43cd72b9 5805/* md_elf_section_change_hook */
e0001a05
NC
5806
5807void
7fa3d080 5808xtensa_elf_section_change_hook (void)
e0001a05 5809{
43cd72b9
BW
5810 /* Set up the assembly state. */
5811 if (!frag_now->tc_frag_data.is_assembly_state_set)
5812 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
5813}
5814
5815
5816/* tc_fix_adjustable hook */
5817
5818bfd_boolean
7fa3d080 5819xtensa_fix_adjustable (fixS *fixP)
e0001a05
NC
5820{
5821 /* We need the symbol name for the VTABLE entries. */
5822 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5823 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5824 return 0;
5825
5826 return 1;
5827}
5828
5829
6a7eedfe
BW
5830/* tc_symbol_new_hook */
5831
5832symbolS *expr_symbols = NULL;
5833
5834void
5835xtensa_symbol_new_hook (symbolS *sym)
5836{
fb227da0 5837 if (is_leb128_expr && S_GET_SEGMENT (sym) == expr_section)
6a7eedfe
BW
5838 {
5839 symbol_get_tc (sym)->next_expr_symbol = expr_symbols;
5840 expr_symbols = sym;
5841 }
5842}
5843
5844
e0001a05 5845void
55cf6793 5846md_apply_fix (fixS *fixP, valueT *valP, segT seg)
e0001a05 5847{
30f725a1 5848 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
d47d412e 5849 valueT val = 0;
30f725a1 5850
e7da6241
BW
5851 /* Subtracted symbols are only allowed for a few relocation types, and
5852 unless linkrelax is enabled, they should not make it to this point. */
5853 if (fixP->fx_subsy && !(linkrelax && (fixP->fx_r_type == BFD_RELOC_32
5854 || fixP->fx_r_type == BFD_RELOC_16
5855 || fixP->fx_r_type == BFD_RELOC_8)))
5856 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
5857
30f725a1 5858 switch (fixP->fx_r_type)
e0001a05 5859 {
1bbb5f21 5860 case BFD_RELOC_32_PCREL:
30f725a1
BW
5861 case BFD_RELOC_32:
5862 case BFD_RELOC_16:
5863 case BFD_RELOC_8:
e7da6241 5864 if (fixP->fx_subsy)
30f725a1
BW
5865 {
5866 switch (fixP->fx_r_type)
5867 {
5868 case BFD_RELOC_8:
5869 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8;
1058c753 5870 fixP->fx_signed = 1;
30f725a1
BW
5871 break;
5872 case BFD_RELOC_16:
5873 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16;
1058c753 5874 fixP->fx_signed = 1;
30f725a1
BW
5875 break;
5876 case BFD_RELOC_32:
5877 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32;
1058c753 5878 fixP->fx_signed = 1;
30f725a1
BW
5879 break;
5880 default:
5881 break;
5882 }
e0001a05 5883
30f725a1
BW
5884 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5885 - S_GET_VALUE (fixP->fx_subsy));
5886
5887 /* The difference value gets written out, and the DIFF reloc
5888 identifies the address of the subtracted symbol (i.e., the one
5889 with the lowest address). */
5890 *valP = val;
5891 fixP->fx_offset -= val;
5892 fixP->fx_subsy = NULL;
5893 }
5894 else if (! fixP->fx_addsy)
e0001a05 5895 {
30f725a1 5896 val = *valP;
e0001a05 5897 fixP->fx_done = 1;
30f725a1 5898 }
d47d412e
BW
5899 /* fall through */
5900
5901 case BFD_RELOC_XTENSA_PLT:
30f725a1
BW
5902 md_number_to_chars (fixpos, val, fixP->fx_size);
5903 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5904 break;
e0001a05 5905
28dbbc02
BW
5906 case BFD_RELOC_XTENSA_TLSDESC_FN:
5907 case BFD_RELOC_XTENSA_TLSDESC_ARG:
5908 case BFD_RELOC_XTENSA_TLS_TPOFF:
5909 case BFD_RELOC_XTENSA_TLS_DTPOFF:
5910 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5911 md_number_to_chars (fixpos, 0, fixP->fx_size);
5912 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5913 break;
5914
30f725a1
BW
5915 case BFD_RELOC_XTENSA_SLOT0_OP:
5916 case BFD_RELOC_XTENSA_SLOT1_OP:
5917 case BFD_RELOC_XTENSA_SLOT2_OP:
5918 case BFD_RELOC_XTENSA_SLOT3_OP:
5919 case BFD_RELOC_XTENSA_SLOT4_OP:
5920 case BFD_RELOC_XTENSA_SLOT5_OP:
5921 case BFD_RELOC_XTENSA_SLOT6_OP:
5922 case BFD_RELOC_XTENSA_SLOT7_OP:
5923 case BFD_RELOC_XTENSA_SLOT8_OP:
5924 case BFD_RELOC_XTENSA_SLOT9_OP:
5925 case BFD_RELOC_XTENSA_SLOT10_OP:
5926 case BFD_RELOC_XTENSA_SLOT11_OP:
5927 case BFD_RELOC_XTENSA_SLOT12_OP:
5928 case BFD_RELOC_XTENSA_SLOT13_OP:
5929 case BFD_RELOC_XTENSA_SLOT14_OP:
5930 if (linkrelax)
5931 {
5932 /* Write the tentative value of a PC-relative relocation to a
5933 local symbol into the instruction. The value will be ignored
5934 by the linker, and it makes the object file disassembly
5935 readable when all branch targets are encoded in relocations. */
5936
9c2799c2 5937 gas_assert (fixP->fx_addsy);
20ee54e8 5938 if (S_GET_SEGMENT (fixP->fx_addsy) == seg
30f725a1
BW
5939 && !S_FORCE_RELOC (fixP->fx_addsy, 1))
5940 {
5941 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5942 - md_pcrel_from (fixP));
5943 (void) xg_apply_fix_value (fixP, val);
5944 }
5945 }
5946 else if (! fixP->fx_addsy)
5947 {
5948 val = *valP;
5949 if (xg_apply_fix_value (fixP, val))
5950 fixP->fx_done = 1;
5951 }
5952 break;
e0001a05 5953
30f725a1 5954 case BFD_RELOC_XTENSA_ASM_EXPAND:
28dbbc02
BW
5955 case BFD_RELOC_XTENSA_TLS_FUNC:
5956 case BFD_RELOC_XTENSA_TLS_ARG:
5957 case BFD_RELOC_XTENSA_TLS_CALL:
30f725a1
BW
5958 case BFD_RELOC_XTENSA_SLOT0_ALT:
5959 case BFD_RELOC_XTENSA_SLOT1_ALT:
5960 case BFD_RELOC_XTENSA_SLOT2_ALT:
5961 case BFD_RELOC_XTENSA_SLOT3_ALT:
5962 case BFD_RELOC_XTENSA_SLOT4_ALT:
5963 case BFD_RELOC_XTENSA_SLOT5_ALT:
5964 case BFD_RELOC_XTENSA_SLOT6_ALT:
5965 case BFD_RELOC_XTENSA_SLOT7_ALT:
5966 case BFD_RELOC_XTENSA_SLOT8_ALT:
5967 case BFD_RELOC_XTENSA_SLOT9_ALT:
5968 case BFD_RELOC_XTENSA_SLOT10_ALT:
5969 case BFD_RELOC_XTENSA_SLOT11_ALT:
5970 case BFD_RELOC_XTENSA_SLOT12_ALT:
5971 case BFD_RELOC_XTENSA_SLOT13_ALT:
5972 case BFD_RELOC_XTENSA_SLOT14_ALT:
5973 /* These all need to be resolved at link-time. Do nothing now. */
5974 break;
e0001a05 5975
30f725a1
BW
5976 case BFD_RELOC_VTABLE_INHERIT:
5977 case BFD_RELOC_VTABLE_ENTRY:
5978 fixP->fx_done = 0;
5979 break;
e0001a05 5980
30f725a1
BW
5981 default:
5982 as_bad (_("unhandled local relocation fix %s"),
5983 bfd_get_reloc_code_name (fixP->fx_r_type));
e0001a05
NC
5984 }
5985}
5986
5987
5988char *
7fa3d080 5989md_atof (int type, char *litP, int *sizeP)
e0001a05 5990{
499ac353 5991 return ieee_md_atof (type, litP, sizeP, target_big_endian);
e0001a05
NC
5992}
5993
5994
5995int
7fa3d080 5996md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED)
e0001a05 5997{
34e41783 5998 return total_frag_text_expansion (fragP);
e0001a05
NC
5999}
6000
6001
6002/* Translate internal representation of relocation info to BFD target
6003 format. */
6004
6005arelent *
30f725a1 6006tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
e0001a05
NC
6007{
6008 arelent *reloc;
6009
6010 reloc = (arelent *) xmalloc (sizeof (arelent));
6011 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
6012 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6013 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
6014
6015 /* Make sure none of our internal relocations make it this far.
6016 They'd better have been fully resolved by this point. */
9c2799c2 6017 gas_assert ((int) fixp->fx_r_type > 0);
e0001a05 6018
30f725a1 6019 reloc->addend = fixp->fx_offset;
43cd72b9 6020
e0001a05
NC
6021 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
6022 if (reloc->howto == NULL)
6023 {
6024 as_bad_where (fixp->fx_file, fixp->fx_line,
6025 _("cannot represent `%s' relocation in object file"),
6026 bfd_get_reloc_code_name (fixp->fx_r_type));
43cd72b9
BW
6027 free (reloc->sym_ptr_ptr);
6028 free (reloc);
e0001a05
NC
6029 return NULL;
6030 }
6031
6032 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
1bbb5f21 6033 as_fatal (_("internal error; cannot generate `%s' relocation"),
43cd72b9 6034 bfd_get_reloc_code_name (fixp->fx_r_type));
e0001a05 6035
e0001a05
NC
6036 return reloc;
6037}
6038
7fa3d080
BW
6039\f
6040/* Checks for resource conflicts between instructions. */
6041
c138bc38
BW
6042/* The func unit stuff could be implemented as bit-vectors rather
6043 than the iterative approach here. If it ends up being too
7fa3d080
BW
6044 slow, we will switch it. */
6045
c138bc38 6046resource_table *
7fa3d080
BW
6047new_resource_table (void *data,
6048 int cycles,
6049 int nu,
6050 unit_num_copies_func uncf,
6051 opcode_num_units_func onuf,
6052 opcode_funcUnit_use_unit_func ouuf,
6053 opcode_funcUnit_use_stage_func ousf)
6054{
6055 int i;
6056 resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table));
6057 rt->data = data;
6058 rt->cycles = cycles;
6059 rt->allocated_cycles = cycles;
6060 rt->num_units = nu;
6061 rt->unit_num_copies = uncf;
6062 rt->opcode_num_units = onuf;
6063 rt->opcode_unit_use = ouuf;
6064 rt->opcode_unit_stage = ousf;
6065
0bf60745 6066 rt->units = (unsigned char **) xcalloc (cycles, sizeof (unsigned char *));
7fa3d080 6067 for (i = 0; i < cycles; i++)
0bf60745 6068 rt->units[i] = (unsigned char *) xcalloc (nu, sizeof (unsigned char));
7fa3d080
BW
6069
6070 return rt;
6071}
6072
6073
c138bc38 6074void
7fa3d080
BW
6075clear_resource_table (resource_table *rt)
6076{
6077 int i, j;
6078 for (i = 0; i < rt->allocated_cycles; i++)
6079 for (j = 0; j < rt->num_units; j++)
6080 rt->units[i][j] = 0;
6081}
6082
6083
6084/* We never shrink it, just fake it into thinking so. */
6085
c138bc38 6086void
7fa3d080
BW
6087resize_resource_table (resource_table *rt, int cycles)
6088{
6089 int i, old_cycles;
6090
6091 rt->cycles = cycles;
6092 if (cycles <= rt->allocated_cycles)
6093 return;
6094
6095 old_cycles = rt->allocated_cycles;
6096 rt->allocated_cycles = cycles;
6097
0bf60745
BW
6098 rt->units = xrealloc (rt->units,
6099 rt->allocated_cycles * sizeof (unsigned char *));
7fa3d080 6100 for (i = 0; i < old_cycles; i++)
0bf60745
BW
6101 rt->units[i] = xrealloc (rt->units[i],
6102 rt->num_units * sizeof (unsigned char));
7fa3d080 6103 for (i = old_cycles; i < cycles; i++)
0bf60745 6104 rt->units[i] = xcalloc (rt->num_units, sizeof (unsigned char));
7fa3d080
BW
6105}
6106
6107
c138bc38 6108bfd_boolean
7fa3d080
BW
6109resources_available (resource_table *rt, xtensa_opcode opcode, int cycle)
6110{
6111 int i;
6112 int uses = (rt->opcode_num_units) (rt->data, opcode);
6113
c138bc38 6114 for (i = 0; i < uses; i++)
7fa3d080
BW
6115 {
6116 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6117 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6118 int copies_in_use = rt->units[stage + cycle][unit];
6119 int copies = (rt->unit_num_copies) (rt->data, unit);
6120 if (copies_in_use >= copies)
6121 return FALSE;
6122 }
6123 return TRUE;
6124}
7fa3d080 6125
c138bc38
BW
6126
6127void
7fa3d080
BW
6128reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
6129{
6130 int i;
6131 int uses = (rt->opcode_num_units) (rt->data, opcode);
6132
c138bc38 6133 for (i = 0; i < uses; i++)
7fa3d080
BW
6134 {
6135 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6136 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
c138bc38
BW
6137 /* Note that this allows resources to be oversubscribed. That's
6138 essential to the way the optional scheduler works.
7fa3d080
BW
6139 resources_available reports when a resource is over-subscribed,
6140 so it's easy to tell. */
6141 rt->units[stage + cycle][unit]++;
6142 }
6143}
6144
6145
c138bc38 6146void
7fa3d080
BW
6147release_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
6148{
6149 int i;
6150 int uses = (rt->opcode_num_units) (rt->data, opcode);
6151
c138bc38 6152 for (i = 0; i < uses; i++)
7fa3d080
BW
6153 {
6154 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6155 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
9c2799c2 6156 gas_assert (rt->units[stage + cycle][unit] > 0);
7fa3d080 6157 rt->units[stage + cycle][unit]--;
7fa3d080
BW
6158 }
6159}
c138bc38 6160
7fa3d080
BW
6161
6162/* Wrapper functions make parameterized resource reservation
6163 more convenient. */
6164
c138bc38 6165int
7fa3d080
BW
6166opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx)
6167{
6168 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
c138bc38 6169 return use->unit;
7fa3d080
BW
6170}
6171
6172
c138bc38 6173int
7fa3d080
BW
6174opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx)
6175{
6176 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
6177 return use->stage;
6178}
6179
6180
6181/* Note that this function does not check issue constraints, but
6182 solely whether the hardware is available to execute the given
c138bc38 6183 instructions together. It also doesn't check if the tinsns
7fa3d080 6184 write the same state, or access the same tieports. That is
a1ace8d8 6185 checked by check_t1_t2_reads_and_writes. */
7fa3d080
BW
6186
6187static bfd_boolean
6188resources_conflict (vliw_insn *vinsn)
6189{
6190 int i;
6191 static resource_table *rt = NULL;
6192
6193 /* This is the most common case by far. Optimize it. */
6194 if (vinsn->num_slots == 1)
6195 return FALSE;
43cd72b9 6196
c138bc38 6197 if (rt == NULL)
7fa3d080
BW
6198 {
6199 xtensa_isa isa = xtensa_default_isa;
6200 rt = new_resource_table
77cba8a3 6201 (isa, xtensa_num_pipe_stages,
7fa3d080
BW
6202 xtensa_isa_num_funcUnits (isa),
6203 (unit_num_copies_func) xtensa_funcUnit_num_copies,
6204 (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses,
6205 opcode_funcUnit_use_unit,
6206 opcode_funcUnit_use_stage);
6207 }
43cd72b9 6208
7fa3d080 6209 clear_resource_table (rt);
43cd72b9 6210
7fa3d080
BW
6211 for (i = 0; i < vinsn->num_slots; i++)
6212 {
6213 if (!resources_available (rt, vinsn->slots[i].opcode, 0))
6214 return TRUE;
6215 reserve_resources (rt, vinsn->slots[i].opcode, 0);
6216 }
e0001a05 6217
7fa3d080
BW
6218 return FALSE;
6219}
e0001a05 6220
7fa3d080
BW
6221\f
6222/* finish_vinsn, emit_single_op and helper functions. */
e0001a05 6223
7fa3d080
BW
6224static bfd_boolean find_vinsn_conflicts (vliw_insn *);
6225static xtensa_format xg_find_narrowest_format (vliw_insn *);
7fa3d080 6226static void xg_assemble_vliw_tokens (vliw_insn *);
e0001a05
NC
6227
6228
43cd72b9
BW
6229/* We have reached the end of a bundle; emit into the frag. */
6230
e0001a05 6231static void
7fa3d080 6232finish_vinsn (vliw_insn *vinsn)
e0001a05 6233{
43cd72b9
BW
6234 IStack slotstack;
6235 int i;
6236 char *file_name;
d77b99c9 6237 unsigned line;
e0001a05 6238
43cd72b9 6239 if (find_vinsn_conflicts (vinsn))
a1ace8d8
BW
6240 {
6241 xg_clear_vinsn (vinsn);
6242 return;
6243 }
43cd72b9
BW
6244
6245 /* First, find a format that works. */
6246 if (vinsn->format == XTENSA_UNDEFINED)
6247 vinsn->format = xg_find_narrowest_format (vinsn);
6248
19fc3723
SA
6249 if (xtensa_format_num_slots (xtensa_default_isa, vinsn->format) > 1
6250 && produce_flix == FLIX_NONE)
6251 {
6252 as_bad (_("The option \"--no-allow-flix\" prohibits multi-slot flix."));
6253 xg_clear_vinsn (vinsn);
6254 return;
6255 }
6256
43cd72b9
BW
6257 if (vinsn->format == XTENSA_UNDEFINED)
6258 {
6259 as_where (&file_name, &line);
6260 as_bad_where (file_name, line,
6261 _("couldn't find a valid instruction format"));
6262 fprintf (stderr, _(" ops were: "));
6263 for (i = 0; i < vinsn->num_slots; i++)
6264 fprintf (stderr, _(" %s;"),
6265 xtensa_opcode_name (xtensa_default_isa,
6266 vinsn->slots[i].opcode));
6267 fprintf (stderr, _("\n"));
6268 xg_clear_vinsn (vinsn);
6269 return;
6270 }
6271
6272 if (vinsn->num_slots
6273 != xtensa_format_num_slots (xtensa_default_isa, vinsn->format))
e0001a05 6274 {
43cd72b9
BW
6275 as_bad (_("format '%s' allows %d slots, but there are %d opcodes"),
6276 xtensa_format_name (xtensa_default_isa, vinsn->format),
6277 xtensa_format_num_slots (xtensa_default_isa, vinsn->format),
6278 vinsn->num_slots);
6279 xg_clear_vinsn (vinsn);
6280 return;
6281 }
e0001a05 6282
c138bc38 6283 if (resources_conflict (vinsn))
43cd72b9
BW
6284 {
6285 as_where (&file_name, &line);
6286 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6287 fprintf (stderr, " ops were: ");
6288 for (i = 0; i < vinsn->num_slots; i++)
6289 fprintf (stderr, " %s;",
6290 xtensa_opcode_name (xtensa_default_isa,
6291 vinsn->slots[i].opcode));
6292 fprintf (stderr, "\n");
6293 xg_clear_vinsn (vinsn);
6294 return;
6295 }
6296
6297 for (i = 0; i < vinsn->num_slots; i++)
6298 {
6299 if (vinsn->slots[i].opcode != XTENSA_UNDEFINED)
e0001a05 6300 {
43cd72b9
BW
6301 symbolS *lit_sym = NULL;
6302 int j;
6303 bfd_boolean e = FALSE;
6304 bfd_boolean saved_density = density_supported;
6305
6306 /* We don't want to narrow ops inside multi-slot bundles. */
6307 if (vinsn->num_slots > 1)
6308 density_supported = FALSE;
6309
6310 istack_init (&slotstack);
6311 if (vinsn->slots[i].opcode == xtensa_nop_opcode)
e0001a05 6312 {
43cd72b9
BW
6313 vinsn->slots[i].opcode =
6314 xtensa_format_slot_nop_opcode (xtensa_default_isa,
6315 vinsn->format, i);
6316 vinsn->slots[i].ntok = 0;
6317 }
e0001a05 6318
43cd72b9
BW
6319 if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i]))
6320 {
6321 e = TRUE;
6322 continue;
e0001a05 6323 }
e0001a05 6324
43cd72b9 6325 density_supported = saved_density;
e0001a05 6326
43cd72b9
BW
6327 if (e)
6328 {
6329 xg_clear_vinsn (vinsn);
6330 return;
6331 }
e0001a05 6332
0fa77c95 6333 for (j = 0; j < slotstack.ninsn; j++)
43cd72b9
BW
6334 {
6335 TInsn *insn = &slotstack.insn[j];
6336 if (insn->insn_type == ITYPE_LITERAL)
6337 {
9c2799c2 6338 gas_assert (lit_sym == NULL);
43cd72b9
BW
6339 lit_sym = xg_assemble_literal (insn);
6340 }
6341 else
6342 {
9c2799c2 6343 gas_assert (insn->insn_type == ITYPE_INSN);
43cd72b9
BW
6344 if (lit_sym)
6345 xg_resolve_literals (insn, lit_sym);
0fa77c95
BW
6346 if (j != slotstack.ninsn - 1)
6347 emit_single_op (insn);
43cd72b9
BW
6348 }
6349 }
6350
6351 if (vinsn->num_slots > 1)
6352 {
6353 if (opcode_fits_format_slot
6354 (slotstack.insn[slotstack.ninsn - 1].opcode,
6355 vinsn->format, i))
6356 {
6357 vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1];
6358 }
6359 else
6360 {
b2d179be 6361 emit_single_op (&slotstack.insn[slotstack.ninsn - 1]);
43cd72b9
BW
6362 if (vinsn->format == XTENSA_UNDEFINED)
6363 vinsn->slots[i].opcode = xtensa_nop_opcode;
6364 else
c138bc38 6365 vinsn->slots[i].opcode
43cd72b9
BW
6366 = xtensa_format_slot_nop_opcode (xtensa_default_isa,
6367 vinsn->format, i);
6368
6369 vinsn->slots[i].ntok = 0;
6370 }
6371 }
6372 else
6373 {
6374 vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1];
6375 vinsn->format = XTENSA_UNDEFINED;
6376 }
6377 }
6378 }
6379
6380 /* Now check resource conflicts on the modified bundle. */
c138bc38 6381 if (resources_conflict (vinsn))
43cd72b9
BW
6382 {
6383 as_where (&file_name, &line);
6384 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6385 fprintf (stderr, " ops were: ");
6386 for (i = 0; i < vinsn->num_slots; i++)
6387 fprintf (stderr, " %s;",
6388 xtensa_opcode_name (xtensa_default_isa,
6389 vinsn->slots[i].opcode));
6390 fprintf (stderr, "\n");
6391 xg_clear_vinsn (vinsn);
6392 return;
6393 }
6394
6395 /* First, find a format that works. */
6396 if (vinsn->format == XTENSA_UNDEFINED)
6397 vinsn->format = xg_find_narrowest_format (vinsn);
6398
6399 xg_assemble_vliw_tokens (vinsn);
6400
6401 xg_clear_vinsn (vinsn);
a82c7d90
DW
6402
6403 xtensa_check_frag_count ();
43cd72b9
BW
6404}
6405
6406
6407/* Given an vliw instruction, what conflicts are there in register
6408 usage and in writes to states and queues?
6409
6410 This function does two things:
6411 1. Reports an error when a vinsn contains illegal combinations
6412 of writes to registers states or queues.
6413 2. Marks individual tinsns as not relaxable if the combination
6414 contains antidependencies.
6415
6416 Job 2 handles things like swap semantics in instructions that need
6417 to be relaxed. For example,
6418
6419 addi a0, a1, 100000
6420
6421 normally would be relaxed to
6422
6423 l32r a0, some_label
6424 add a0, a1, a0
6425
6426 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6427
6428 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6429
6430 then we can't relax it into
6431
6432 l32r a0, some_label
6433 { add a0, a1, a0 ; add a2, a0, a4 ; }
6434
6435 because the value of a0 is trashed before the second add can read it. */
6436
7fa3d080
BW
6437static char check_t1_t2_reads_and_writes (TInsn *, TInsn *);
6438
43cd72b9 6439static bfd_boolean
7fa3d080 6440find_vinsn_conflicts (vliw_insn *vinsn)
43cd72b9
BW
6441{
6442 int i, j;
6443 int branches = 0;
6444 xtensa_isa isa = xtensa_default_isa;
6445
9c2799c2 6446 gas_assert (!past_xtensa_end);
43cd72b9
BW
6447
6448 for (i = 0 ; i < vinsn->num_slots; i++)
6449 {
6450 TInsn *op1 = &vinsn->slots[i];
6451 if (op1->is_specific_opcode)
6452 op1->keep_wide = TRUE;
6453 else
6454 op1->keep_wide = FALSE;
6455 }
6456
6457 for (i = 0 ; i < vinsn->num_slots; i++)
6458 {
6459 TInsn *op1 = &vinsn->slots[i];
6460
6461 if (xtensa_opcode_is_branch (isa, op1->opcode) == 1)
6462 branches++;
6463
6464 for (j = 0; j < vinsn->num_slots; j++)
6465 {
6466 if (i != j)
6467 {
6468 TInsn *op2 = &vinsn->slots[j];
6469 char conflict_type = check_t1_t2_reads_and_writes (op1, op2);
6470 switch (conflict_type)
6471 {
6472 case 'c':
6473 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6474 xtensa_opcode_name (isa, op1->opcode), i,
6475 xtensa_opcode_name (isa, op2->opcode), j);
6476 return TRUE;
6477 case 'd':
6478 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6479 xtensa_opcode_name (isa, op1->opcode), i,
6480 xtensa_opcode_name (isa, op2->opcode), j);
6481 return TRUE;
6482 case 'e':
53dfbcc7 6483 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"),
43cd72b9
BW
6484 xtensa_opcode_name (isa, op1->opcode), i,
6485 xtensa_opcode_name (isa, op2->opcode), j);
6486 return TRUE;
6487 case 'f':
53dfbcc7 6488 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"),
43cd72b9
BW
6489 xtensa_opcode_name (isa, op1->opcode), i,
6490 xtensa_opcode_name (isa, op2->opcode), j);
6491 return TRUE;
6492 default:
6493 /* Everything is OK. */
6494 break;
6495 }
6496 op2->is_specific_opcode = (op2->is_specific_opcode
6497 || conflict_type == 'a');
6498 }
6499 }
6500 }
6501
6502 if (branches > 1)
6503 {
6504 as_bad (_("multiple branches or jumps in the same bundle"));
6505 return TRUE;
6506 }
6507
6508 return FALSE;
6509}
6510
6511
a1ace8d8 6512/* Check how the state used by t1 and t2 relate.
43cd72b9
BW
6513 Cases found are:
6514
6515 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6516 case B: no relationship between what is read and written (both could
6517 read the same reg though)
c138bc38 6518 case C: t1 writes a register t2 writes (a register conflict within a
43cd72b9
BW
6519 bundle)
6520 case D: t1 writes a state that t2 also writes
6521 case E: t1 writes a tie queue that t2 also writes
a1ace8d8 6522 case F: two volatile queue accesses
43cd72b9
BW
6523*/
6524
6525static char
7fa3d080 6526check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2)
43cd72b9
BW
6527{
6528 xtensa_isa isa = xtensa_default_isa;
6529 xtensa_regfile t1_regfile, t2_regfile;
6530 int t1_reg, t2_reg;
6531 int t1_base_reg, t1_last_reg;
6532 int t2_base_reg, t2_last_reg;
6533 char t1_inout, t2_inout;
6534 int i, j;
6535 char conflict = 'b';
6536 int t1_states;
6537 int t2_states;
6538 int t1_interfaces;
6539 int t2_interfaces;
6540 bfd_boolean t1_volatile = FALSE;
6541 bfd_boolean t2_volatile = FALSE;
6542
6543 /* Check registers. */
6544 for (j = 0; j < t2->ntok; j++)
6545 {
6546 if (xtensa_operand_is_register (isa, t2->opcode, j) != 1)
6547 continue;
6548
6549 t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j);
6550 t2_base_reg = t2->tok[j].X_add_number;
6551 t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j);
6552
6553 for (i = 0; i < t1->ntok; i++)
6554 {
6555 if (xtensa_operand_is_register (isa, t1->opcode, i) != 1)
6556 continue;
6557
6558 t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i);
6559
6560 if (t1_regfile != t2_regfile)
6561 continue;
6562
6563 t1_inout = xtensa_operand_inout (isa, t1->opcode, i);
6564 t2_inout = xtensa_operand_inout (isa, t2->opcode, j);
6565
6566 if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0
6567 || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0)
6568 {
6569 if (t1_inout == 'm' || t1_inout == 'o'
6570 || t2_inout == 'm' || t2_inout == 'o')
6571 {
6572 conflict = 'a';
6573 continue;
6574 }
6575 }
6576
6577 t1_base_reg = t1->tok[i].X_add_number;
6578 t1_last_reg = (t1_base_reg
6579 + xtensa_operand_num_regs (isa, t1->opcode, i));
6580
6581 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
6582 {
6583 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
6584 {
6585 if (t1_reg != t2_reg)
6586 continue;
6587
6588 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
7fa3d080
BW
6589 {
6590 conflict = 'a';
6591 continue;
6592 }
43cd72b9 6593
7fa3d080
BW
6594 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6595 {
6596 conflict = 'a';
6597 continue;
6598 }
43cd72b9 6599
7fa3d080
BW
6600 if (t1_inout != 'i' && t2_inout != 'i')
6601 return 'c';
6602 }
6603 }
6604 }
6605 }
43cd72b9 6606
7fa3d080
BW
6607 /* Check states. */
6608 t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode);
6609 t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode);
6610 for (j = 0; j < t2_states; j++)
43cd72b9 6611 {
7fa3d080
BW
6612 xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j);
6613 t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j);
6614 for (i = 0; i < t1_states; i++)
6615 {
6616 xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i);
6617 t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i);
1fa3cd83 6618 if (t1_so != t2_so || xtensa_state_is_shared_or (isa, t1_so) == 1)
7fa3d080 6619 continue;
43cd72b9 6620
7fa3d080
BW
6621 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6622 {
6623 conflict = 'a';
6624 continue;
6625 }
c138bc38 6626
7fa3d080
BW
6627 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6628 {
6629 conflict = 'a';
6630 continue;
6631 }
c138bc38 6632
7fa3d080
BW
6633 if (t1_inout != 'i' && t2_inout != 'i')
6634 return 'd';
c138bc38 6635 }
7fa3d080 6636 }
43cd72b9 6637
7fa3d080
BW
6638 /* Check tieports. */
6639 t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode);
6640 t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode);
c138bc38 6641 for (j = 0; j < t2_interfaces; j++)
43cd72b9 6642 {
7fa3d080
BW
6643 xtensa_interface t2_int
6644 = xtensa_interfaceOperand_interface (isa, t2->opcode, j);
a1ace8d8
BW
6645 int t2_class = xtensa_interface_class_id (isa, t2_int);
6646
53dfbcc7 6647 t2_inout = xtensa_interface_inout (isa, t2_int);
a1ace8d8 6648 if (xtensa_interface_has_side_effect (isa, t2_int) == 1)
7fa3d080 6649 t2_volatile = TRUE;
a1ace8d8 6650
7fa3d080
BW
6651 for (i = 0; i < t1_interfaces; i++)
6652 {
6653 xtensa_interface t1_int
6654 = xtensa_interfaceOperand_interface (isa, t1->opcode, j);
2eccd1b4 6655 int t1_class = xtensa_interface_class_id (isa, t1_int);
a1ace8d8 6656
53dfbcc7 6657 t1_inout = xtensa_interface_inout (isa, t1_int);
a1ace8d8 6658 if (xtensa_interface_has_side_effect (isa, t1_int) == 1)
7fa3d080 6659 t1_volatile = TRUE;
a1ace8d8
BW
6660
6661 if (t1_volatile && t2_volatile && (t1_class == t2_class))
6662 return 'f';
c138bc38 6663
7fa3d080
BW
6664 if (t1_int != t2_int)
6665 continue;
c138bc38 6666
7fa3d080
BW
6667 if (t2_inout == 'i' && t1_inout == 'o')
6668 {
6669 conflict = 'a';
6670 continue;
6671 }
c138bc38 6672
7fa3d080
BW
6673 if (t1_inout == 'i' && t2_inout == 'o')
6674 {
6675 conflict = 'a';
6676 continue;
6677 }
c138bc38 6678
7fa3d080
BW
6679 if (t1_inout != 'i' && t2_inout != 'i')
6680 return 'e';
6681 }
43cd72b9 6682 }
c138bc38 6683
7fa3d080 6684 return conflict;
43cd72b9
BW
6685}
6686
6687
6688static xtensa_format
7fa3d080 6689xg_find_narrowest_format (vliw_insn *vinsn)
43cd72b9
BW
6690{
6691 /* Right now we assume that the ops within the vinsn are properly
6692 ordered for the slots that the programmer wanted them in. In
6693 other words, we don't rearrange the ops in hopes of finding a
6694 better format. The scheduler handles that. */
6695
6696 xtensa_isa isa = xtensa_default_isa;
6697 xtensa_format format;
43cd72b9
BW
6698 xtensa_opcode nop_opcode = xtensa_nop_opcode;
6699
65738a7d
BW
6700 if (vinsn->num_slots == 1)
6701 return xg_get_single_format (vinsn->slots[0].opcode);
6702
43cd72b9
BW
6703 for (format = 0; format < xtensa_isa_num_formats (isa); format++)
6704 {
d8392fd9
SA
6705 vliw_insn v_copy;
6706 xg_copy_vinsn (&v_copy, vinsn);
43cd72b9
BW
6707 if (xtensa_format_num_slots (isa, format) == v_copy.num_slots)
6708 {
6709 int slot;
6710 int fit = 0;
6711 for (slot = 0; slot < v_copy.num_slots; slot++)
6712 {
6713 if (v_copy.slots[slot].opcode == nop_opcode)
6714 {
6715 v_copy.slots[slot].opcode =
6716 xtensa_format_slot_nop_opcode (isa, format, slot);
6717 v_copy.slots[slot].ntok = 0;
6718 }
6719
6720 if (opcode_fits_format_slot (v_copy.slots[slot].opcode,
6721 format, slot))
6722 fit++;
7fa3d080 6723 else if (v_copy.num_slots > 1)
43cd72b9 6724 {
7fa3d080
BW
6725 TInsn widened;
6726 /* Try the widened version. */
6727 if (!v_copy.slots[slot].keep_wide
6728 && !v_copy.slots[slot].is_specific_opcode
84b08ed9
BW
6729 && xg_is_single_relaxable_insn (&v_copy.slots[slot],
6730 &widened, TRUE)
7fa3d080
BW
6731 && opcode_fits_format_slot (widened.opcode,
6732 format, slot))
43cd72b9 6733 {
7fa3d080
BW
6734 v_copy.slots[slot] = widened;
6735 fit++;
43cd72b9
BW
6736 }
6737 }
6738 }
6739 if (fit == v_copy.num_slots)
6740 {
d8392fd9 6741 xg_copy_vinsn (vinsn, &v_copy);
43cd72b9
BW
6742 xtensa_format_encode (isa, format, vinsn->insnbuf);
6743 vinsn->format = format;
6744 break;
6745 }
6746 }
6747 }
6748
6749 if (format == xtensa_isa_num_formats (isa))
6750 return XTENSA_UNDEFINED;
6751
6752 return format;
6753}
6754
6755
6756/* Return the additional space needed in a frag
6757 for possible relaxations of any ops in a VLIW insn.
6758 Also fill out the relaxations that might be required of
6759 each tinsn in the vinsn. */
6760
6761static int
e7da6241 6762relaxation_requirements (vliw_insn *vinsn, bfd_boolean *pfinish_frag)
43cd72b9 6763{
e7da6241 6764 bfd_boolean finish_frag = FALSE;
43cd72b9
BW
6765 int extra_space = 0;
6766 int slot;
6767
6768 for (slot = 0; slot < vinsn->num_slots; slot++)
6769 {
6770 TInsn *tinsn = &vinsn->slots[slot];
6771 if (!tinsn_has_symbolic_operands (tinsn))
6772 {
6773 /* A narrow instruction could be widened later to help
6774 alignment issues. */
84b08ed9 6775 if (xg_is_single_relaxable_insn (tinsn, 0, TRUE)
43cd72b9
BW
6776 && !tinsn->is_specific_opcode
6777 && vinsn->num_slots == 1)
6778 {
6779 /* Difference in bytes between narrow and wide insns... */
6780 extra_space += 1;
6781 tinsn->subtype = RELAX_NARROW;
43cd72b9
BW
6782 }
6783 }
6784 else
6785 {
b08b5071
BW
6786 if (workaround_b_j_loop_end
6787 && tinsn->opcode == xtensa_jx_opcode
43cd72b9
BW
6788 && use_transform ())
6789 {
6790 /* Add 2 of these. */
6791 extra_space += 3; /* for the nop size */
6792 tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END;
6793 }
c138bc38 6794
43cd72b9
BW
6795 /* Need to assemble it with space for the relocation. */
6796 if (xg_is_relaxable_insn (tinsn, 0)
6797 && !tinsn->is_specific_opcode)
6798 {
6799 int max_size = xg_get_max_insn_widen_size (tinsn->opcode);
6800 int max_literal_size =
6801 xg_get_max_insn_widen_literal_size (tinsn->opcode);
c138bc38 6802
43cd72b9 6803 tinsn->literal_space = max_literal_size;
c138bc38 6804
43cd72b9 6805 tinsn->subtype = RELAX_IMMED;
43cd72b9
BW
6806 extra_space += max_size;
6807 }
6808 else
6809 {
e7da6241
BW
6810 /* A fix record will be added for this instruction prior
6811 to relaxation, so make it end the frag. */
6812 finish_frag = TRUE;
43cd72b9
BW
6813 }
6814 }
6815 }
e7da6241 6816 *pfinish_frag = finish_frag;
43cd72b9
BW
6817 return extra_space;
6818}
6819
6820
6821static void
b2d179be 6822bundle_tinsn (TInsn *tinsn, vliw_insn *vinsn)
43cd72b9
BW
6823{
6824 xtensa_isa isa = xtensa_default_isa;
b2d179be 6825 int slot, chosen_slot;
43cd72b9 6826
b2d179be 6827 vinsn->format = xg_get_single_format (tinsn->opcode);
9c2799c2 6828 gas_assert (vinsn->format != XTENSA_UNDEFINED);
b2d179be 6829 vinsn->num_slots = xtensa_format_num_slots (isa, vinsn->format);
43cd72b9 6830
b2d179be
BW
6831 chosen_slot = xg_get_single_slot (tinsn->opcode);
6832 for (slot = 0; slot < vinsn->num_slots; slot++)
43cd72b9 6833 {
b2d179be
BW
6834 if (slot == chosen_slot)
6835 vinsn->slots[slot] = *tinsn;
6836 else
6837 {
6838 vinsn->slots[slot].opcode =
6839 xtensa_format_slot_nop_opcode (isa, vinsn->format, slot);
6840 vinsn->slots[slot].ntok = 0;
6841 vinsn->slots[slot].insn_type = ITYPE_INSN;
6842 }
43cd72b9 6843 }
43cd72b9
BW
6844}
6845
6846
6847static bfd_boolean
7fa3d080 6848emit_single_op (TInsn *orig_insn)
43cd72b9
BW
6849{
6850 int i;
6851 IStack istack; /* put instructions into here */
6852 symbolS *lit_sym = NULL;
6853 symbolS *label_sym = NULL;
6854
6855 istack_init (&istack);
6856
6857 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
c138bc38
BW
6858 Because the scheduling and bundling characteristics of movi and
6859 l32r or const16 are so different, we can do much better if we relax
43cd72b9 6860 it prior to scheduling and bundling, rather than after. */
c138bc38 6861 if ((orig_insn->opcode == xtensa_movi_opcode
b08b5071
BW
6862 || orig_insn->opcode == xtensa_movi_n_opcode)
6863 && !cur_vinsn.inside_bundle
43cd72b9 6864 && (orig_insn->tok[1].X_op == O_symbol
28dbbc02
BW
6865 || orig_insn->tok[1].X_op == O_pltrel
6866 || orig_insn->tok[1].X_op == O_tlsfunc
6867 || orig_insn->tok[1].X_op == O_tlsarg
6868 || orig_insn->tok[1].X_op == O_tpoff
6869 || orig_insn->tok[1].X_op == O_dtpoff)
482fd9f9 6870 && !orig_insn->is_specific_opcode && use_transform ())
43cd72b9
BW
6871 xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0);
6872 else
6873 if (xg_expand_assembly_insn (&istack, orig_insn))
6874 return TRUE;
6875
6876 for (i = 0; i < istack.ninsn; i++)
6877 {
6878 TInsn *insn = &istack.insn[i];
c138bc38 6879 switch (insn->insn_type)
43cd72b9
BW
6880 {
6881 case ITYPE_LITERAL:
9c2799c2 6882 gas_assert (lit_sym == NULL);
43cd72b9
BW
6883 lit_sym = xg_assemble_literal (insn);
6884 break;
6885 case ITYPE_LABEL:
6886 {
6887 static int relaxed_sym_idx = 0;
6888 char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12);
6889 sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++);
6890 colon (label);
9c2799c2 6891 gas_assert (label_sym == NULL);
43cd72b9 6892 label_sym = symbol_find_or_make (label);
9c2799c2 6893 gas_assert (label_sym);
43cd72b9
BW
6894 free (label);
6895 }
6896 break;
6897 case ITYPE_INSN:
b2d179be
BW
6898 {
6899 vliw_insn v;
6900 if (lit_sym)
6901 xg_resolve_literals (insn, lit_sym);
6902 if (label_sym)
6903 xg_resolve_labels (insn, label_sym);
6904 xg_init_vinsn (&v);
6905 bundle_tinsn (insn, &v);
6906 finish_vinsn (&v);
6907 xg_free_vinsn (&v);
6908 }
43cd72b9
BW
6909 break;
6910 default:
9c2799c2 6911 gas_assert (0);
43cd72b9
BW
6912 break;
6913 }
6914 }
6915 return FALSE;
6916}
6917
6918
34e41783
BW
6919static int
6920total_frag_text_expansion (fragS *fragP)
6921{
6922 int slot;
6923 int total_expansion = 0;
6924
62af60e2 6925 for (slot = 0; slot < config_max_slots; slot++)
34e41783
BW
6926 total_expansion += fragP->tc_frag_data.text_expansion[slot];
6927
6928 return total_expansion;
6929}
6930
6931
43cd72b9
BW
6932/* Emit a vliw instruction to the current fragment. */
6933
7fa3d080
BW
6934static void
6935xg_assemble_vliw_tokens (vliw_insn *vinsn)
43cd72b9 6936{
e7da6241 6937 bfd_boolean finish_frag;
43cd72b9
BW
6938 bfd_boolean is_jump = FALSE;
6939 bfd_boolean is_branch = FALSE;
6940 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
6941 int insn_size;
6942 int extra_space;
6943 char *f = NULL;
6944 int slot;
b224e962
BW
6945 struct dwarf2_line_info debug_line;
6946 bfd_boolean loc_directive_seen = FALSE;
6947 TInsn *tinsn;
43cd72b9 6948
b224e962 6949 memset (&debug_line, 0, sizeof (struct dwarf2_line_info));
43cd72b9
BW
6950
6951 if (generating_literals)
6952 {
6953 static int reported = 0;
6954 if (reported < 4)
6955 as_bad_where (frag_now->fr_file, frag_now->fr_line,
6956 _("cannot assemble into a literal fragment"));
6957 if (reported == 3)
6958 as_bad (_("..."));
6959 reported++;
6960 return;
6961 }
6962
6963 if (frag_now_fix () != 0
b08b5071 6964 && (! frag_now->tc_frag_data.is_insn
43cd72b9 6965 || (vinsn_has_specific_opcodes (vinsn) && use_transform ())
28a0da39 6966 || (!use_transform ()) != frag_now->tc_frag_data.is_no_transform
7c834684
BW
6967 || (directive_state[directive_longcalls]
6968 != frag_now->tc_frag_data.use_longcalls)
43cd72b9
BW
6969 || (directive_state[directive_absolute_literals]
6970 != frag_now->tc_frag_data.use_absolute_literals)))
6971 {
6972 frag_wane (frag_now);
6973 frag_new (0);
6974 xtensa_set_frag_assembly_state (frag_now);
6975 }
6976
6977 if (workaround_a0_b_retw
6978 && vinsn->num_slots == 1
6979 && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
6980 && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1
6981 && use_transform ())
6982 {
6983 has_a0_b_retw = TRUE;
6984
6985 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
6986 After the first assembly pass we will check all of them and
6987 add a nop if needed. */
6988 frag_now->tc_frag_data.is_insn = TRUE;
6989 frag_var (rs_machine_dependent, 4, 4,
6990 RELAX_ADD_NOP_IF_A0_B_RETW,
6991 frag_now->fr_symbol,
6992 frag_now->fr_offset,
6993 NULL);
6994 xtensa_set_frag_assembly_state (frag_now);
6995 frag_now->tc_frag_data.is_insn = TRUE;
6996 frag_var (rs_machine_dependent, 4, 4,
6997 RELAX_ADD_NOP_IF_A0_B_RETW,
6998 frag_now->fr_symbol,
6999 frag_now->fr_offset,
7000 NULL);
7001 xtensa_set_frag_assembly_state (frag_now);
7002 }
7003
b224e962 7004 for (slot = 0; slot < vinsn->num_slots; slot++)
43cd72b9 7005 {
b224e962
BW
7006 tinsn = &vinsn->slots[slot];
7007
43cd72b9 7008 /* See if the instruction implies an aligned section. */
b224e962 7009 if (xtensa_opcode_is_loop (isa, tinsn->opcode) == 1)
43cd72b9 7010 record_alignment (now_seg, 2);
c138bc38 7011
b224e962
BW
7012 /* Determine the best line number for debug info. */
7013 if ((tinsn->loc_directive_seen || !loc_directive_seen)
7014 && (tinsn->debug_line.filenum != debug_line.filenum
7015 || tinsn->debug_line.line < debug_line.line
7016 || tinsn->debug_line.column < debug_line.column))
7017 debug_line = tinsn->debug_line;
7018 if (tinsn->loc_directive_seen)
7019 loc_directive_seen = TRUE;
43cd72b9
BW
7020 }
7021
7022 /* Special cases for instructions that force an alignment... */
7023 /* None of these opcodes are bundle-able. */
7024 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1)
7025 {
d77b99c9 7026 int max_fill;
c138bc38 7027
05d58145
BW
7028 /* Remember the symbol that marks the end of the loop in the frag
7029 that marks the start of the loop. This way we can easily find
7030 the end of the loop at the beginning, without adding special code
7031 to mark the loop instructions themselves. */
7032 symbolS *target_sym = NULL;
7033 if (vinsn->slots[0].tok[1].X_op == O_symbol)
7034 target_sym = vinsn->slots[0].tok[1].X_add_symbol;
7035
43cd72b9
BW
7036 xtensa_set_frag_assembly_state (frag_now);
7037 frag_now->tc_frag_data.is_insn = TRUE;
c138bc38 7038
43cd72b9
BW
7039 max_fill = get_text_align_max_fill_size
7040 (get_text_align_power (xtensa_fetch_width),
7041 TRUE, frag_now->tc_frag_data.is_no_density);
7042
7043 if (use_transform ())
7044 frag_var (rs_machine_dependent, max_fill, max_fill,
05d58145 7045 RELAX_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
43cd72b9 7046 else
c138bc38 7047 frag_var (rs_machine_dependent, 0, 0,
05d58145 7048 RELAX_CHECK_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
43cd72b9 7049 xtensa_set_frag_assembly_state (frag_now);
43cd72b9
BW
7050 }
7051
b08b5071 7052 if (vinsn->slots[0].opcode == xtensa_entry_opcode
43cd72b9
BW
7053 && !vinsn->slots[0].is_specific_opcode)
7054 {
7055 xtensa_mark_literal_pool_location ();
c3ea6048 7056 xtensa_move_labels (frag_now, 0);
43cd72b9
BW
7057 frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL);
7058 }
7059
7060 if (vinsn->num_slots == 1)
7061 {
7062 if (workaround_a0_b_retw && use_transform ())
7063 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
7064 is_register_writer (&vinsn->slots[0], "a", 0));
7065
7066 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
7067 is_bad_loopend_opcode (&vinsn->slots[0]));
7068 }
7069 else
7070 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE);
7071
7072 insn_size = xtensa_format_length (isa, vinsn->format);
7073
e7da6241 7074 extra_space = relaxation_requirements (vinsn, &finish_frag);
43cd72b9
BW
7075
7076 /* vinsn_to_insnbuf will produce the error. */
7077 if (vinsn->format != XTENSA_UNDEFINED)
7078 {
d77b99c9 7079 f = frag_more (insn_size + extra_space);
43cd72b9
BW
7080 xtensa_set_frag_assembly_state (frag_now);
7081 frag_now->tc_frag_data.is_insn = TRUE;
7082 }
7083
e7da6241 7084 vinsn_to_insnbuf (vinsn, f, frag_now, FALSE);
43cd72b9
BW
7085 if (vinsn->format == XTENSA_UNDEFINED)
7086 return;
7087
d77b99c9 7088 xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0);
c138bc38 7089
b224e962
BW
7090 if (debug_type == DEBUG_DWARF2 || loc_directive_seen)
7091 dwarf2_gen_line_info (frag_now_fix () - (insn_size + extra_space),
7092 &debug_line);
43cd72b9
BW
7093
7094 for (slot = 0; slot < vinsn->num_slots; slot++)
7095 {
b224e962 7096 tinsn = &vinsn->slots[slot];
43cd72b9 7097 frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype;
7c834684 7098 frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol;
7c834684 7099 frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset;
43cd72b9
BW
7100 frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag;
7101 if (tinsn->literal_space != 0)
7102 xg_assemble_literal_space (tinsn->literal_space, slot);
19e8f41a 7103 frag_now->tc_frag_data.free_reg[slot] = tinsn->extra_arg;
43cd72b9
BW
7104
7105 if (tinsn->subtype == RELAX_NARROW)
9c2799c2 7106 gas_assert (vinsn->num_slots == 1);
43cd72b9
BW
7107 if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1)
7108 is_jump = TRUE;
7109 if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1)
7110 is_branch = TRUE;
7111
e7da6241
BW
7112 if (tinsn->subtype || tinsn->symbol || tinsn->offset
7113 || tinsn->literal_frag || is_jump || is_branch)
43cd72b9
BW
7114 finish_frag = TRUE;
7115 }
7116
7117 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
b08b5071 7118 frag_now->tc_frag_data.is_specific_opcode = TRUE;
43cd72b9
BW
7119
7120 if (finish_frag)
7121 {
7122 frag_variant (rs_machine_dependent,
7123 extra_space, extra_space, RELAX_SLOTS,
7124 frag_now->fr_symbol, frag_now->fr_offset, f);
7125 xtensa_set_frag_assembly_state (frag_now);
7126 }
7127
7128 /* Special cases for loops:
7129 close_loop_end should be inserted AFTER short_loop.
7130 Make sure that CLOSE loops are processed BEFORE short_loops
7131 when converting them. */
7132
7133 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
64b607e6 7134 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1
43cd72b9
BW
7135 && !vinsn->slots[0].is_specific_opcode)
7136 {
7137 if (workaround_short_loop && use_transform ())
7138 {
7139 maybe_has_short_loop = TRUE;
7140 frag_now->tc_frag_data.is_insn = TRUE;
7141 frag_var (rs_machine_dependent, 4, 4,
7142 RELAX_ADD_NOP_IF_SHORT_LOOP,
7143 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7144 frag_now->tc_frag_data.is_insn = TRUE;
7145 frag_var (rs_machine_dependent, 4, 4,
7146 RELAX_ADD_NOP_IF_SHORT_LOOP,
7147 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7148 }
7149
7150 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
7151 loop at least 12 bytes away from another loop's end. */
7152 if (workaround_close_loop_end && use_transform ())
7153 {
7154 maybe_has_close_loop_end = TRUE;
7155 frag_now->tc_frag_data.is_insn = TRUE;
7156 frag_var (rs_machine_dependent, 12, 12,
7157 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
7158 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7159 }
7160 }
7161
7162 if (use_transform ())
7163 {
7164 if (is_jump)
7165 {
9c2799c2 7166 gas_assert (finish_frag);
43cd72b9 7167 frag_var (rs_machine_dependent,
1beeb686 7168 xtensa_fetch_width, xtensa_fetch_width,
43cd72b9
BW
7169 RELAX_UNREACHABLE,
7170 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7171 xtensa_set_frag_assembly_state (frag_now);
a82c7d90 7172 xtensa_maybe_create_trampoline_frag ();
43cd72b9 7173 }
7b1cc377 7174 else if (is_branch && do_align_targets ())
43cd72b9 7175 {
9c2799c2 7176 gas_assert (finish_frag);
43cd72b9 7177 frag_var (rs_machine_dependent,
1beeb686 7178 xtensa_fetch_width, xtensa_fetch_width,
43cd72b9
BW
7179 RELAX_MAYBE_UNREACHABLE,
7180 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7181 xtensa_set_frag_assembly_state (frag_now);
7182 frag_var (rs_machine_dependent,
7183 0, 0,
7184 RELAX_MAYBE_DESIRE_ALIGN,
7185 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7186 xtensa_set_frag_assembly_state (frag_now);
7187 }
7188 }
7189
7190 /* Now, if the original opcode was a call... */
7191 if (do_align_targets ()
7192 && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1)
7193 {
b08b5071 7194 float freq = get_subseg_total_freq (now_seg, now_subseg);
43cd72b9
BW
7195 frag_now->tc_frag_data.is_insn = TRUE;
7196 frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN,
7197 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7198 xtensa_set_frag_assembly_state (frag_now);
7199 }
7200
7201 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7202 {
7203 frag_wane (frag_now);
7204 frag_new (0);
7205 xtensa_set_frag_assembly_state (frag_now);
7206 }
7207}
7208
7209\f
7fa3d080
BW
7210/* xtensa_end and helper functions. */
7211
7212static void xtensa_cleanup_align_frags (void);
7213static void xtensa_fix_target_frags (void);
7214static void xtensa_mark_narrow_branches (void);
7215static void xtensa_mark_zcl_first_insns (void);
6a7eedfe 7216static void xtensa_mark_difference_of_two_symbols (void);
7fa3d080
BW
7217static void xtensa_fix_a0_b_retw_frags (void);
7218static void xtensa_fix_b_j_loop_end_frags (void);
7219static void xtensa_fix_close_loop_end_frags (void);
7220static void xtensa_fix_short_loop_frags (void);
7221static void xtensa_sanity_check (void);
2caa7ca0 7222static void xtensa_add_config_info (void);
7fa3d080 7223
43cd72b9 7224void
7fa3d080 7225xtensa_end (void)
43cd72b9
BW
7226{
7227 directive_balance ();
7228 xtensa_flush_pending_output ();
7229
7230 past_xtensa_end = TRUE;
7231
7232 xtensa_move_literals ();
7233
7234 xtensa_reorder_segments ();
7235 xtensa_cleanup_align_frags ();
7236 xtensa_fix_target_frags ();
7237 if (workaround_a0_b_retw && has_a0_b_retw)
7238 xtensa_fix_a0_b_retw_frags ();
7239 if (workaround_b_j_loop_end)
7240 xtensa_fix_b_j_loop_end_frags ();
7241
7242 /* "close_loop_end" should be processed BEFORE "short_loop". */
7243 if (workaround_close_loop_end && maybe_has_close_loop_end)
7244 xtensa_fix_close_loop_end_frags ();
7245
7246 if (workaround_short_loop && maybe_has_short_loop)
7247 xtensa_fix_short_loop_frags ();
03aaa593
BW
7248 if (align_targets)
7249 xtensa_mark_narrow_branches ();
43cd72b9
BW
7250 xtensa_mark_zcl_first_insns ();
7251
7252 xtensa_sanity_check ();
2caa7ca0
BW
7253
7254 xtensa_add_config_info ();
a82c7d90
DW
7255
7256 xtensa_check_frag_count ();
43cd72b9
BW
7257}
7258
7259
a82c7d90
DW
7260struct trampoline_frag
7261{
7262 struct trampoline_frag *next;
7263 bfd_boolean needs_jump_around;
7264 fragS *fragP;
7265 fixS *fixP;
7266};
7267
7268struct trampoline_seg
7269{
7270 struct trampoline_seg *next;
7271 asection *seg;
7272 struct trampoline_frag trampoline_list;
7273};
7274
7275static struct trampoline_seg trampoline_seg_list;
7276#define J_RANGE (128 * 1024)
7277
7278static int unreachable_count = 0;
7279
7280
7281static void
7282xtensa_maybe_create_trampoline_frag (void)
7283{
7284 if (!use_trampolines)
7285 return;
7286
7287 /* We create an area for possible trampolines every 10 unreachable frags.
7288 These are preferred over the ones not preceded by an unreachable frag,
7289 because we don't have to jump around them. This function is called after
7290 each RELAX_UNREACHABLE frag is created. */
7291
7292 if (++unreachable_count > 10)
7293 {
7294 xtensa_create_trampoline_frag (FALSE);
7295 clear_frag_count ();
7296 unreachable_count = 0;
7297 }
7298}
7299
7300static void
7301xtensa_check_frag_count (void)
7302{
7303 if (!use_trampolines || frag_now->tc_frag_data.is_no_transform)
7304 return;
7305
7306 /* We create an area for possible trampolines every 8000 frags or so. This
7307 is an estimate based on the max range of a "j" insn (+/-128K) divided
7308 by a typical frag byte count (16), minus a few for safety. This function
7309 is called after each source line is processed. */
7310
7311 if (get_frag_count () > 8000)
7312 {
7313 xtensa_create_trampoline_frag (TRUE);
7314 clear_frag_count ();
7315 unreachable_count = 0;
7316 }
7317}
7318
7319static xtensa_insnbuf trampoline_buf = NULL;
7320static xtensa_insnbuf trampoline_slotbuf = NULL;
7321
7322#define TRAMPOLINE_FRAG_SIZE 3000
7323
7324static void
7325xtensa_create_trampoline_frag (bfd_boolean needs_jump_around)
7326{
7327 /* Emit a frag where we can place intermediate jump instructions,
7328 in case we need to jump farther than 128K bytes.
7329 Each jump instruction takes three bytes.
7330 We allocate enough for 1000 trampolines in each frag.
7331 If that's not enough, oh well. */
7332
7333 struct trampoline_seg *ts = trampoline_seg_list.next;
7334 struct trampoline_frag *tf;
7335 char *varP;
7336 fragS *fragP;
7337 int size = TRAMPOLINE_FRAG_SIZE;
7338
7339 for ( ; ts; ts = ts->next)
7340 {
7341 if (ts->seg == now_seg)
7342 break;
7343 }
7344
7345 if (ts == NULL)
7346 {
7347 ts = (struct trampoline_seg *)xcalloc(sizeof (struct trampoline_seg), 1);
7348 ts->next = trampoline_seg_list.next;
7349 trampoline_seg_list.next = ts;
7350 ts->seg = now_seg;
7351 }
7352
7353 frag_wane (frag_now);
7354 frag_new (0);
7355 xtensa_set_frag_assembly_state (frag_now);
7356 varP = frag_var (rs_machine_dependent, size, size, RELAX_TRAMPOLINE, NULL, 0, NULL);
7357 fragP = (fragS *)(varP - SIZEOF_STRUCT_FRAG);
7358 if (trampoline_buf == NULL)
7359 {
7360 trampoline_buf = xtensa_insnbuf_alloc (xtensa_default_isa);
7361 trampoline_slotbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
7362 }
7363 tf = (struct trampoline_frag *)xmalloc(sizeof (struct trampoline_frag));
7364 tf->next = ts->trampoline_list.next;
7365 ts->trampoline_list.next = tf;
7366 tf->needs_jump_around = needs_jump_around;
7367 tf->fragP = fragP;
7368 tf->fixP = NULL;
7369}
7370
7371
7372static struct trampoline_seg *
7373find_trampoline_seg (asection *seg)
7374{
7375 struct trampoline_seg *ts = trampoline_seg_list.next;
7376
7377 for ( ; ts; ts = ts->next)
7378 {
7379 if (ts->seg == seg)
7380 return ts;
7381 }
7382
7383 return NULL;
7384}
7385
7386
7387void dump_trampolines (void);
7388
7389void
7390dump_trampolines (void)
7391{
7392 struct trampoline_seg *ts = trampoline_seg_list.next;
7393
7394 for ( ; ts; ts = ts->next)
7395 {
7396 asection *seg = ts->seg;
7397
7398 if (seg == NULL)
7399 continue;
7400 fprintf(stderr, "SECTION %s\n", seg->name);
7401 struct trampoline_frag *tf = ts->trampoline_list.next;
7402 for ( ; tf; tf = tf->next)
7403 {
7404 if (tf->fragP == NULL)
7405 continue;
7406 fprintf(stderr, " 0x%08x: fix=%d, jump_around=%s\n",
7407 (int)tf->fragP->fr_address, (int)tf->fragP->fr_fix,
7408 tf->needs_jump_around ? "T" : "F");
7409 }
7410 }
7411}
7412
43cd72b9 7413static void
7fa3d080 7414xtensa_cleanup_align_frags (void)
43cd72b9
BW
7415{
7416 frchainS *frchP;
c9049d30 7417 asection *s;
43cd72b9 7418
c9049d30
AM
7419 for (s = stdoutput->sections; s; s = s->next)
7420 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7421 {
7422 fragS *fragP;
7423 /* Walk over all of the fragments in a subsection. */
7424 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7425 {
7426 if ((fragP->fr_type == rs_align
7427 || fragP->fr_type == rs_align_code
7428 || (fragP->fr_type == rs_machine_dependent
7429 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
7430 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
7431 && fragP->fr_fix == 0)
7432 {
7433 fragS *next = fragP->fr_next;
7434
7435 while (next
7436 && next->fr_fix == 0
7437 && next->fr_type == rs_machine_dependent
7438 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7439 {
7440 frag_wane (next);
7441 next = next->fr_next;
7442 }
7443 }
7444 /* If we don't widen branch targets, then they
7445 will be easier to align. */
7446 if (fragP->tc_frag_data.is_branch_target
7447 && fragP->fr_opcode == fragP->fr_literal
7448 && fragP->fr_type == rs_machine_dependent
7449 && fragP->fr_subtype == RELAX_SLOTS
7450 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
7451 frag_wane (fragP);
7452 if (fragP->fr_type == rs_machine_dependent
7453 && fragP->fr_subtype == RELAX_UNREACHABLE)
7454 fragP->tc_frag_data.is_unreachable = TRUE;
7455 }
7456 }
43cd72b9
BW
7457}
7458
7459
7460/* Re-process all of the fragments looking to convert all of the
7461 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
7462 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
7b1cc377 7463 Otherwise, convert to a .fill 0. */
7fa3d080 7464
43cd72b9 7465static void
7fa3d080 7466xtensa_fix_target_frags (void)
e0001a05
NC
7467{
7468 frchainS *frchP;
c9049d30 7469 asection *s;
e0001a05
NC
7470
7471 /* When this routine is called, all of the subsections are still intact
7472 so we walk over subsections instead of sections. */
c9049d30
AM
7473 for (s = stdoutput->sections; s; s = s->next)
7474 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7475 {
7476 fragS *fragP;
e0001a05 7477
c9049d30
AM
7478 /* Walk over all of the fragments in a subsection. */
7479 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7480 {
7481 if (fragP->fr_type == rs_machine_dependent
7482 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7483 {
7484 if (next_frag_is_branch_target (fragP))
7485 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
7486 else
7487 frag_wane (fragP);
7488 }
7489 }
7490 }
e0001a05
NC
7491}
7492
7493
7fa3d080
BW
7494static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *);
7495
43cd72b9 7496static void
7fa3d080 7497xtensa_mark_narrow_branches (void)
43cd72b9
BW
7498{
7499 frchainS *frchP;
c9049d30 7500 asection *s;
43cd72b9 7501
c9049d30
AM
7502 for (s = stdoutput->sections; s; s = s->next)
7503 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7504 {
7505 fragS *fragP;
7506 /* Walk over all of the fragments in a subsection. */
7507 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7508 {
7509 if (fragP->fr_type == rs_machine_dependent
7510 && fragP->fr_subtype == RELAX_SLOTS
7511 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
7512 {
7513 vliw_insn vinsn;
7514
7515 vinsn_from_chars (&vinsn, fragP->fr_opcode);
7516 tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0);
7517
7518 if (vinsn.num_slots == 1
7519 && xtensa_opcode_is_branch (xtensa_default_isa,
64b607e6 7520 vinsn.slots[0].opcode) == 1
c9049d30
AM
7521 && xg_get_single_size (vinsn.slots[0].opcode) == 2
7522 && is_narrow_branch_guaranteed_in_range (fragP,
7523 &vinsn.slots[0]))
7524 {
7525 fragP->fr_subtype = RELAX_SLOTS;
7526 fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW;
7527 fragP->tc_frag_data.is_aligning_branch = 1;
7528 }
7529 }
7530 }
7531 }
43cd72b9
BW
7532}
7533
7534
7535/* A branch is typically widened only when its target is out of
7536 range. However, we would like to widen them to align a subsequent
7537 branch target when possible.
7538
7539 Because the branch relaxation code is so convoluted, the optimal solution
7540 (combining the two cases) is difficult to get right in all circumstances.
7541 We therefore go with an "almost as good" solution, where we only
7542 use for alignment narrow branches that definitely will not expand to a
7543 jump and a branch. These functions find and mark these cases. */
7544
a67517f4
BW
7545/* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded
7546 as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63.
7547 We start counting beginning with the frag after the 2-byte branch, so the
7548 maximum offset is (4 - 2) + 63 = 65. */
7549#define MAX_IMMED6 65
43cd72b9 7550
d77b99c9 7551static offsetT unrelaxed_frag_max_size (fragS *);
7fa3d080 7552
43cd72b9 7553static bfd_boolean
7fa3d080 7554is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn)
43cd72b9 7555{
91d6fa6a
NC
7556 const expressionS *exp = &tinsn->tok[1];
7557 symbolS *symbolP = exp->X_add_symbol;
7558 offsetT max_distance = exp->X_add_number;
e7da6241
BW
7559 fragS *target_frag;
7560
91d6fa6a 7561 if (exp->X_op != O_symbol)
e7da6241
BW
7562 return FALSE;
7563
7564 target_frag = symbol_get_frag (symbolP);
7565
43cd72b9
BW
7566 max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address);
7567 if (is_branch_jmp_to_next (tinsn, fragP))
7568 return FALSE;
7569
7570 /* The branch doesn't branch over it's own frag,
7571 but over the subsequent ones. */
7572 fragP = fragP->fr_next;
7573 while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6)
7574 {
7575 max_distance += unrelaxed_frag_max_size (fragP);
7576 fragP = fragP->fr_next;
7577 }
7578 if (max_distance <= MAX_IMMED6 && fragP == target_frag)
7579 return TRUE;
e0001a05
NC
7580 return FALSE;
7581}
7582
7583
43cd72b9 7584static void
7fa3d080 7585xtensa_mark_zcl_first_insns (void)
43cd72b9
BW
7586{
7587 frchainS *frchP;
c9049d30 7588 asection *s;
43cd72b9 7589
c9049d30
AM
7590 for (s = stdoutput->sections; s; s = s->next)
7591 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7592 {
7593 fragS *fragP;
7594 /* Walk over all of the fragments in a subsection. */
7595 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7596 {
7597 if (fragP->fr_type == rs_machine_dependent
7598 && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7599 || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7600 {
7601 /* Find the loop frag. */
3a1e9c4a 7602 fragS *loop_frag = next_non_empty_frag (fragP);
c9049d30 7603 /* Find the first insn frag. */
3a1e9c4a
SA
7604 fragS *targ_frag = next_non_empty_frag (loop_frag);
7605
7606 /* Handle a corner case that comes up in hardware
7607 diagnostics. The original assembly looks like this:
7608
7609 loop aX, LabelA
7610 <empty_frag>--not found by next_non_empty_frag
7611 loop aY, LabelB
7612
7613 Depending on the start address, the assembler may or
7614 may not change it to look something like this:
7615
7616 loop aX, LabelA
7617 nop--frag isn't empty anymore
7618 loop aY, LabelB
7619
7620 So set up to check the alignment of the nop if it
7621 exists */
7622 while (loop_frag != targ_frag)
7623 {
7624 if (loop_frag->fr_type == rs_machine_dependent
7625 && (loop_frag->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7626 || loop_frag->fr_subtype
7627 == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7628 targ_frag = loop_frag;
7629 else
7630 loop_frag = loop_frag->fr_next;
7631 }
c9049d30
AM
7632
7633 /* Of course, sometimes (mostly for toy test cases) a
7634 zero-cost loop instruction is the last in a section. */
7635 if (targ_frag)
7636 {
7637 targ_frag->tc_frag_data.is_first_loop_insn = TRUE;
7638 /* Do not widen a frag that is the first instruction of a
7639 zero-cost loop. It makes that loop harder to align. */
7640 if (targ_frag->fr_type == rs_machine_dependent
7641 && targ_frag->fr_subtype == RELAX_SLOTS
7642 && (targ_frag->tc_frag_data.slot_subtypes[0]
7643 == RELAX_NARROW))
7644 {
7645 if (targ_frag->tc_frag_data.is_aligning_branch)
7646 targ_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
7647 else
7648 {
7649 frag_wane (targ_frag);
7650 targ_frag->tc_frag_data.slot_subtypes[0] = 0;
7651 }
7652 }
7653 }
7654 if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)
7655 frag_wane (fragP);
7656 }
7657 }
7658 }
43cd72b9
BW
7659}
7660
7661
fb227da0
BW
7662/* When a difference-of-symbols expression is encoded as a uleb128 or
7663 sleb128 value, the linker is unable to adjust that value to account for
7664 link-time relaxation. Mark all the code between such symbols so that
7665 its size cannot be changed by linker relaxation. */
7666
6a7eedfe
BW
7667static void
7668xtensa_mark_difference_of_two_symbols (void)
7669{
7670 symbolS *expr_sym;
7671
7672 for (expr_sym = expr_symbols; expr_sym;
7673 expr_sym = symbol_get_tc (expr_sym)->next_expr_symbol)
7674 {
91d6fa6a 7675 expressionS *exp = symbol_get_value_expression (expr_sym);
6a7eedfe 7676
91d6fa6a 7677 if (exp->X_op == O_subtract)
6a7eedfe 7678 {
91d6fa6a
NC
7679 symbolS *left = exp->X_add_symbol;
7680 symbolS *right = exp->X_op_symbol;
6a7eedfe
BW
7681
7682 /* Difference of two symbols not in the same section
7683 are handled with relocations in the linker. */
7684 if (S_GET_SEGMENT (left) == S_GET_SEGMENT (right))
7685 {
7686 fragS *start;
7687 fragS *end;
983f90e3 7688 fragS *walk;
6a7eedfe
BW
7689
7690 if (symbol_get_frag (left)->fr_address
7691 <= symbol_get_frag (right)->fr_address)
7692 {
7693 start = symbol_get_frag (left);
7694 end = symbol_get_frag (right);
7695 }
7696 else
7697 {
7698 start = symbol_get_frag (right);
7699 end = symbol_get_frag (left);
7700 }
983f90e3
SA
7701
7702 if (start->tc_frag_data.no_transform_end != NULL)
7703 walk = start->tc_frag_data.no_transform_end;
7704 else
7705 walk = start;
6a7eedfe
BW
7706 do
7707 {
983f90e3
SA
7708 walk->tc_frag_data.is_no_transform = 1;
7709 walk = walk->fr_next;
6a7eedfe 7710 }
983f90e3
SA
7711 while (walk && walk->fr_address < end->fr_address);
7712
7713 start->tc_frag_data.no_transform_end = walk;
6a7eedfe
BW
7714 }
7715 }
7716 }
7717}
7718
7719
e0001a05
NC
7720/* Re-process all of the fragments looking to convert all of the
7721 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
7722 conditional branch or a retw/retw.n, convert this frag to one that
7723 will generate a NOP. In any case close it off with a .fill 0. */
7724
7fa3d080
BW
7725static bfd_boolean next_instrs_are_b_retw (fragS *);
7726
e0001a05 7727static void
7fa3d080 7728xtensa_fix_a0_b_retw_frags (void)
e0001a05
NC
7729{
7730 frchainS *frchP;
c9049d30 7731 asection *s;
e0001a05
NC
7732
7733 /* When this routine is called, all of the subsections are still intact
7734 so we walk over subsections instead of sections. */
c9049d30
AM
7735 for (s = stdoutput->sections; s; s = s->next)
7736 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7737 {
7738 fragS *fragP;
e0001a05 7739
c9049d30
AM
7740 /* Walk over all of the fragments in a subsection. */
7741 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7742 {
7743 if (fragP->fr_type == rs_machine_dependent
7744 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
7745 {
7746 if (next_instrs_are_b_retw (fragP))
7747 {
7748 if (fragP->tc_frag_data.is_no_transform)
7749 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
7750 else
7751 relax_frag_add_nop (fragP);
7752 }
7753 frag_wane (fragP);
7754 }
7755 }
7756 }
e0001a05
NC
7757}
7758
7759
7fa3d080
BW
7760static bfd_boolean
7761next_instrs_are_b_retw (fragS *fragP)
e0001a05
NC
7762{
7763 xtensa_opcode opcode;
43cd72b9 7764 xtensa_format fmt;
e0001a05
NC
7765 const fragS *next_fragP = next_non_empty_frag (fragP);
7766 static xtensa_insnbuf insnbuf = NULL;
43cd72b9 7767 static xtensa_insnbuf slotbuf = NULL;
e0001a05
NC
7768 xtensa_isa isa = xtensa_default_isa;
7769 int offset = 0;
43cd72b9
BW
7770 int slot;
7771 bfd_boolean branch_seen = FALSE;
e0001a05
NC
7772
7773 if (!insnbuf)
43cd72b9
BW
7774 {
7775 insnbuf = xtensa_insnbuf_alloc (isa);
7776 slotbuf = xtensa_insnbuf_alloc (isa);
7777 }
e0001a05
NC
7778
7779 if (next_fragP == NULL)
7780 return FALSE;
7781
7782 /* Check for the conditional branch. */
d77b99c9
BW
7783 xtensa_insnbuf_from_chars
7784 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
43cd72b9
BW
7785 fmt = xtensa_format_decode (isa, insnbuf);
7786 if (fmt == XTENSA_UNDEFINED)
7787 return FALSE;
7788
7789 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7790 {
7791 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
7792 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
7793
7794 branch_seen = (branch_seen
7795 || xtensa_opcode_is_branch (isa, opcode) == 1);
7796 }
e0001a05 7797
43cd72b9 7798 if (!branch_seen)
e0001a05
NC
7799 return FALSE;
7800
43cd72b9 7801 offset += xtensa_format_length (isa, fmt);
e0001a05
NC
7802 if (offset == next_fragP->fr_fix)
7803 {
7804 next_fragP = next_non_empty_frag (next_fragP);
7805 offset = 0;
7806 }
43cd72b9 7807
e0001a05
NC
7808 if (next_fragP == NULL)
7809 return FALSE;
7810
7811 /* Check for the retw/retw.n. */
d77b99c9
BW
7812 xtensa_insnbuf_from_chars
7813 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
43cd72b9
BW
7814 fmt = xtensa_format_decode (isa, insnbuf);
7815
7816 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
7817 have no problems. */
7818 if (fmt == XTENSA_UNDEFINED
7819 || xtensa_format_num_slots (isa, fmt) != 1)
7820 return FALSE;
7821
7822 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7823 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
e0001a05 7824
b08b5071 7825 if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode)
e0001a05 7826 return TRUE;
43cd72b9 7827
e0001a05
NC
7828 return FALSE;
7829}
7830
7831
7832/* Re-process all of the fragments looking to convert all of the
7833 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
7834 loop end label, convert this frag to one that will generate a NOP.
7835 In any case close it off with a .fill 0. */
7836
7fa3d080
BW
7837static bfd_boolean next_instr_is_loop_end (fragS *);
7838
e0001a05 7839static void
7fa3d080 7840xtensa_fix_b_j_loop_end_frags (void)
e0001a05
NC
7841{
7842 frchainS *frchP;
c9049d30 7843 asection *s;
e0001a05
NC
7844
7845 /* When this routine is called, all of the subsections are still intact
7846 so we walk over subsections instead of sections. */
c9049d30
AM
7847 for (s = stdoutput->sections; s; s = s->next)
7848 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7849 {
7850 fragS *fragP;
e0001a05 7851
c9049d30
AM
7852 /* Walk over all of the fragments in a subsection. */
7853 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7854 {
7855 if (fragP->fr_type == rs_machine_dependent
7856 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
7857 {
7858 if (next_instr_is_loop_end (fragP))
7859 {
7860 if (fragP->tc_frag_data.is_no_transform)
7861 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
7862 else
7863 relax_frag_add_nop (fragP);
7864 }
7865 frag_wane (fragP);
7866 }
7867 }
7868 }
e0001a05
NC
7869}
7870
7871
7fa3d080
BW
7872static bfd_boolean
7873next_instr_is_loop_end (fragS *fragP)
e0001a05
NC
7874{
7875 const fragS *next_fragP;
7876
7877 if (next_frag_is_loop_target (fragP))
7878 return FALSE;
7879
7880 next_fragP = next_non_empty_frag (fragP);
7881 if (next_fragP == NULL)
7882 return FALSE;
7883
7884 if (!next_frag_is_loop_target (next_fragP))
7885 return FALSE;
7886
7887 /* If the size is >= 3 then there is more than one instruction here.
7888 The hardware bug will not fire. */
7889 if (next_fragP->fr_fix > 3)
7890 return FALSE;
7891
7892 return TRUE;
7893}
7894
7895
7896/* Re-process all of the fragments looking to convert all of the
7897 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
7898 not MY loop's loop end within 12 bytes, add enough nops here to
7899 make it at least 12 bytes away. In any case close it off with a
7900 .fill 0. */
7901
d77b99c9 7902static offsetT min_bytes_to_other_loop_end
05d58145 7903 (fragS *, fragS *, offsetT);
7fa3d080 7904
e0001a05 7905static void
7fa3d080 7906xtensa_fix_close_loop_end_frags (void)
e0001a05
NC
7907{
7908 frchainS *frchP;
c9049d30 7909 asection *s;
e0001a05
NC
7910
7911 /* When this routine is called, all of the subsections are still intact
7912 so we walk over subsections instead of sections. */
c9049d30
AM
7913 for (s = stdoutput->sections; s; s = s->next)
7914 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7915 {
7916 fragS *fragP;
e0001a05 7917
c9049d30 7918 fragS *current_target = NULL;
e0001a05 7919
c9049d30
AM
7920 /* Walk over all of the fragments in a subsection. */
7921 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7922 {
7923 if (fragP->fr_type == rs_machine_dependent
7924 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
7925 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
05d58145 7926 current_target = symbol_get_frag (fragP->fr_symbol);
e0001a05 7927
c9049d30
AM
7928 if (current_target
7929 && fragP->fr_type == rs_machine_dependent
7930 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
7931 {
7932 offsetT min_bytes;
7933 int bytes_added = 0;
e0001a05
NC
7934
7935#define REQUIRED_LOOP_DIVIDING_BYTES 12
c9049d30
AM
7936 /* Max out at 12. */
7937 min_bytes = min_bytes_to_other_loop_end
7938 (fragP->fr_next, current_target, REQUIRED_LOOP_DIVIDING_BYTES);
7939
7940 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
7941 {
7942 if (fragP->tc_frag_data.is_no_transform)
7943 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
7944 else
7945 {
7946 while (min_bytes + bytes_added
7947 < REQUIRED_LOOP_DIVIDING_BYTES)
7948 {
7949 int length = 3;
7950
7951 if (fragP->fr_var < length)
7952 as_fatal (_("fr_var %lu < length %d"),
7953 (long) fragP->fr_var, length);
7954 else
7955 {
7956 assemble_nop (length,
7957 fragP->fr_literal + fragP->fr_fix);
7958 fragP->fr_fix += length;
7959 fragP->fr_var -= length;
7960 }
7961 bytes_added += length;
7962 }
7963 }
7964 }
7965 frag_wane (fragP);
7966 }
9c2799c2 7967 gas_assert (fragP->fr_type != rs_machine_dependent
c9049d30
AM
7968 || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END);
7969 }
7970 }
e0001a05
NC
7971}
7972
7973
d77b99c9 7974static offsetT unrelaxed_frag_min_size (fragS *);
7fa3d080 7975
d77b99c9 7976static offsetT
7fa3d080
BW
7977min_bytes_to_other_loop_end (fragS *fragP,
7978 fragS *current_target,
d77b99c9 7979 offsetT max_size)
e0001a05 7980{
d77b99c9 7981 offsetT offset = 0;
e0001a05
NC
7982 fragS *current_fragP;
7983
7984 for (current_fragP = fragP;
7985 current_fragP;
7986 current_fragP = current_fragP->fr_next)
7987 {
7988 if (current_fragP->tc_frag_data.is_loop_target
7989 && current_fragP != current_target)
05d58145 7990 return offset;
e0001a05
NC
7991
7992 offset += unrelaxed_frag_min_size (current_fragP);
7993
05d58145 7994 if (offset >= max_size)
e0001a05
NC
7995 return max_size;
7996 }
7997 return max_size;
7998}
7999
8000
d77b99c9 8001static offsetT
7fa3d080 8002unrelaxed_frag_min_size (fragS *fragP)
e0001a05 8003{
d77b99c9 8004 offsetT size = fragP->fr_fix;
e0001a05 8005
d77b99c9 8006 /* Add fill size. */
e0001a05
NC
8007 if (fragP->fr_type == rs_fill)
8008 size += fragP->fr_offset;
8009
8010 return size;
8011}
8012
8013
d77b99c9 8014static offsetT
7fa3d080 8015unrelaxed_frag_max_size (fragS *fragP)
43cd72b9 8016{
d77b99c9 8017 offsetT size = fragP->fr_fix;
43cd72b9
BW
8018 switch (fragP->fr_type)
8019 {
8020 case 0:
c138bc38 8021 /* Empty frags created by the obstack allocation scheme
43cd72b9
BW
8022 end up with type 0. */
8023 break;
8024 case rs_fill:
8025 case rs_org:
8026 case rs_space:
8027 size += fragP->fr_offset;
8028 break;
8029 case rs_align:
8030 case rs_align_code:
8031 case rs_align_test:
8032 case rs_leb128:
8033 case rs_cfa:
8034 case rs_dwarf2dbg:
8035 /* No further adjustments needed. */
8036 break;
8037 case rs_machine_dependent:
8038 if (fragP->fr_subtype != RELAX_DESIRE_ALIGN)
8039 size += fragP->fr_var;
8040 break;
8041 default:
8042 /* We had darn well better know how big it is. */
9c2799c2 8043 gas_assert (0);
43cd72b9
BW
8044 break;
8045 }
8046
8047 return size;
8048}
8049
8050
e0001a05
NC
8051/* Re-process all of the fragments looking to convert all
8052 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
8053
8054 A)
8055 1) the instruction size count to the loop end label
8056 is too short (<= 2 instructions),
8057 2) loop has a jump or branch in it
8058
8059 or B)
43cd72b9 8060 1) workaround_all_short_loops is TRUE
e0001a05
NC
8061 2) The generating loop was a 'loopgtz' or 'loopnez'
8062 3) the instruction size count to the loop end label is too short
8063 (<= 2 instructions)
8064 then convert this frag (and maybe the next one) to generate a NOP.
8065 In any case close it off with a .fill 0. */
8066
d77b99c9 8067static int count_insns_to_loop_end (fragS *, bfd_boolean, int);
7fa3d080
BW
8068static bfd_boolean branch_before_loop_end (fragS *);
8069
e0001a05 8070static void
7fa3d080 8071xtensa_fix_short_loop_frags (void)
e0001a05
NC
8072{
8073 frchainS *frchP;
c9049d30 8074 asection *s;
e0001a05
NC
8075
8076 /* When this routine is called, all of the subsections are still intact
8077 so we walk over subsections instead of sections. */
c9049d30
AM
8078 for (s = stdoutput->sections; s; s = s->next)
8079 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8080 {
8081 fragS *fragP;
c9049d30 8082 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
e0001a05 8083
c9049d30
AM
8084 /* Walk over all of the fragments in a subsection. */
8085 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8086 {
8087 if (fragP->fr_type == rs_machine_dependent
8088 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
8089 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
8090 {
8091 TInsn t_insn;
8092 fragS *loop_frag = next_non_empty_frag (fragP);
8093 tinsn_from_chars (&t_insn, loop_frag->fr_opcode, 0);
c9049d30 8094 current_opcode = t_insn.opcode;
9c2799c2 8095 gas_assert (xtensa_opcode_is_loop (xtensa_default_isa,
64b607e6 8096 current_opcode) == 1);
c9049d30 8097 }
e0001a05 8098
c9049d30
AM
8099 if (fragP->fr_type == rs_machine_dependent
8100 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
8101 {
8102 if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3
8103 && (branch_before_loop_end (fragP->fr_next)
8104 || (workaround_all_short_loops
8105 && current_opcode != XTENSA_UNDEFINED
8106 && current_opcode != xtensa_loop_opcode)))
8107 {
8108 if (fragP->tc_frag_data.is_no_transform)
8109 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
8110 else
8111 relax_frag_add_nop (fragP);
8112 }
8113 frag_wane (fragP);
8114 }
8115 }
8116 }
e0001a05
NC
8117}
8118
8119
d77b99c9 8120static int unrelaxed_frag_min_insn_count (fragS *);
7fa3d080 8121
d77b99c9 8122static int
7fa3d080
BW
8123count_insns_to_loop_end (fragS *base_fragP,
8124 bfd_boolean count_relax_add,
d77b99c9 8125 int max_count)
e0001a05
NC
8126{
8127 fragS *fragP = NULL;
d77b99c9 8128 int insn_count = 0;
e0001a05
NC
8129
8130 fragP = base_fragP;
8131
8132 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
8133 {
8134 insn_count += unrelaxed_frag_min_insn_count (fragP);
8135 if (insn_count >= max_count)
8136 return max_count;
8137
8138 if (count_relax_add)
8139 {
8140 if (fragP->fr_type == rs_machine_dependent
8141 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
8142 {
8143 /* In order to add the appropriate number of
8144 NOPs, we count an instruction for downstream
8145 occurrences. */
8146 insn_count++;
8147 if (insn_count >= max_count)
8148 return max_count;
8149 }
8150 }
8151 }
8152 return insn_count;
8153}
8154
8155
d77b99c9 8156static int
7fa3d080 8157unrelaxed_frag_min_insn_count (fragS *fragP)
e0001a05 8158{
43cd72b9
BW
8159 xtensa_isa isa = xtensa_default_isa;
8160 static xtensa_insnbuf insnbuf = NULL;
d77b99c9 8161 int insn_count = 0;
e0001a05
NC
8162 int offset = 0;
8163
8164 if (!fragP->tc_frag_data.is_insn)
8165 return insn_count;
8166
43cd72b9
BW
8167 if (!insnbuf)
8168 insnbuf = xtensa_insnbuf_alloc (isa);
8169
e0001a05
NC
8170 /* Decode the fixed instructions. */
8171 while (offset < fragP->fr_fix)
8172 {
43cd72b9
BW
8173 xtensa_format fmt;
8174
d77b99c9
BW
8175 xtensa_insnbuf_from_chars
8176 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
43cd72b9
BW
8177 fmt = xtensa_format_decode (isa, insnbuf);
8178
8179 if (fmt == XTENSA_UNDEFINED)
e0001a05
NC
8180 {
8181 as_fatal (_("undecodable instruction in instruction frag"));
8182 return insn_count;
8183 }
43cd72b9 8184 offset += xtensa_format_length (isa, fmt);
e0001a05
NC
8185 insn_count++;
8186 }
8187
8188 return insn_count;
8189}
8190
8191
7fa3d080
BW
8192static bfd_boolean unrelaxed_frag_has_b_j (fragS *);
8193
43cd72b9 8194static bfd_boolean
7fa3d080 8195branch_before_loop_end (fragS *base_fragP)
e0001a05
NC
8196{
8197 fragS *fragP;
8198
8199 for (fragP = base_fragP;
8200 fragP && !fragP->tc_frag_data.is_loop_target;
8201 fragP = fragP->fr_next)
8202 {
8203 if (unrelaxed_frag_has_b_j (fragP))
8204 return TRUE;
8205 }
8206 return FALSE;
8207}
8208
8209
43cd72b9 8210static bfd_boolean
7fa3d080 8211unrelaxed_frag_has_b_j (fragS *fragP)
e0001a05 8212{
43cd72b9
BW
8213 static xtensa_insnbuf insnbuf = NULL;
8214 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
8215 int offset = 0;
8216
8217 if (!fragP->tc_frag_data.is_insn)
8218 return FALSE;
8219
43cd72b9
BW
8220 if (!insnbuf)
8221 insnbuf = xtensa_insnbuf_alloc (isa);
8222
e0001a05
NC
8223 /* Decode the fixed instructions. */
8224 while (offset < fragP->fr_fix)
8225 {
43cd72b9
BW
8226 xtensa_format fmt;
8227 int slot;
8228
d77b99c9
BW
8229 xtensa_insnbuf_from_chars
8230 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
43cd72b9
BW
8231 fmt = xtensa_format_decode (isa, insnbuf);
8232 if (fmt == XTENSA_UNDEFINED)
8233 return FALSE;
8234
8235 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
e0001a05 8236 {
43cd72b9
BW
8237 xtensa_opcode opcode =
8238 get_opcode_from_buf (fragP->fr_literal + offset, slot);
8239 if (xtensa_opcode_is_branch (isa, opcode) == 1
8240 || xtensa_opcode_is_jump (isa, opcode) == 1)
8241 return TRUE;
e0001a05 8242 }
43cd72b9 8243 offset += xtensa_format_length (isa, fmt);
e0001a05
NC
8244 }
8245 return FALSE;
8246}
8247
8248
8249/* Checks to be made after initial assembly but before relaxation. */
8250
7fa3d080
BW
8251static bfd_boolean is_empty_loop (const TInsn *, fragS *);
8252static bfd_boolean is_local_forward_loop (const TInsn *, fragS *);
8253
e0001a05 8254static void
7fa3d080 8255xtensa_sanity_check (void)
e0001a05
NC
8256{
8257 char *file_name;
d77b99c9 8258 unsigned line;
e0001a05 8259 frchainS *frchP;
c9049d30 8260 asection *s;
e0001a05
NC
8261
8262 as_where (&file_name, &line);
c9049d30
AM
8263 for (s = stdoutput->sections; s; s = s->next)
8264 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8265 {
8266 fragS *fragP;
e0001a05 8267
c9049d30
AM
8268 /* Walk over all of the fragments in a subsection. */
8269 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8270 {
c9049d30 8271 if (fragP->fr_type == rs_machine_dependent
a7284bf1
BW
8272 && fragP->fr_subtype == RELAX_SLOTS
8273 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
c9049d30
AM
8274 {
8275 static xtensa_insnbuf insnbuf = NULL;
8276 TInsn t_insn;
8277
8278 if (fragP->fr_opcode != NULL)
8279 {
8280 if (!insnbuf)
8281 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
8282 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
8283 tinsn_immed_from_frag (&t_insn, fragP, 0);
8284
8285 if (xtensa_opcode_is_loop (xtensa_default_isa,
8286 t_insn.opcode) == 1)
8287 {
8288 if (is_empty_loop (&t_insn, fragP))
8289 {
8290 new_logical_line (fragP->fr_file, fragP->fr_line);
8291 as_bad (_("invalid empty loop"));
8292 }
8293 if (!is_local_forward_loop (&t_insn, fragP))
8294 {
8295 new_logical_line (fragP->fr_file, fragP->fr_line);
8296 as_bad (_("loop target does not follow "
8297 "loop instruction in section"));
8298 }
8299 }
8300 }
8301 }
8302 }
8303 }
e0001a05
NC
8304 new_logical_line (file_name, line);
8305}
8306
8307
8308#define LOOP_IMMED_OPN 1
8309
43cd72b9 8310/* Return TRUE if the loop target is the next non-zero fragment. */
e0001a05 8311
7fa3d080
BW
8312static bfd_boolean
8313is_empty_loop (const TInsn *insn, fragS *fragP)
e0001a05 8314{
91d6fa6a 8315 const expressionS *exp;
e0001a05
NC
8316 symbolS *symbolP;
8317 fragS *next_fragP;
8318
8319 if (insn->insn_type != ITYPE_INSN)
8320 return FALSE;
8321
43cd72b9 8322 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
e0001a05
NC
8323 return FALSE;
8324
8325 if (insn->ntok <= LOOP_IMMED_OPN)
8326 return FALSE;
8327
91d6fa6a 8328 exp = &insn->tok[LOOP_IMMED_OPN];
e0001a05 8329
91d6fa6a 8330 if (exp->X_op != O_symbol)
e0001a05
NC
8331 return FALSE;
8332
91d6fa6a 8333 symbolP = exp->X_add_symbol;
e0001a05
NC
8334 if (!symbolP)
8335 return FALSE;
8336
8337 if (symbol_get_frag (symbolP) == NULL)
8338 return FALSE;
8339
8340 if (S_GET_VALUE (symbolP) != 0)
8341 return FALSE;
8342
8343 /* Walk through the zero-size fragments from this one. If we find
8344 the target fragment, then this is a zero-size loop. */
43cd72b9 8345
e0001a05
NC
8346 for (next_fragP = fragP->fr_next;
8347 next_fragP != NULL;
8348 next_fragP = next_fragP->fr_next)
8349 {
8350 if (next_fragP == symbol_get_frag (symbolP))
8351 return TRUE;
8352 if (next_fragP->fr_fix != 0)
8353 return FALSE;
8354 }
8355 return FALSE;
8356}
8357
8358
7fa3d080
BW
8359static bfd_boolean
8360is_local_forward_loop (const TInsn *insn, fragS *fragP)
e0001a05 8361{
91d6fa6a 8362 const expressionS *exp;
e0001a05
NC
8363 symbolS *symbolP;
8364 fragS *next_fragP;
8365
8366 if (insn->insn_type != ITYPE_INSN)
8367 return FALSE;
8368
64b607e6 8369 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
e0001a05
NC
8370 return FALSE;
8371
8372 if (insn->ntok <= LOOP_IMMED_OPN)
8373 return FALSE;
8374
91d6fa6a 8375 exp = &insn->tok[LOOP_IMMED_OPN];
e0001a05 8376
91d6fa6a 8377 if (exp->X_op != O_symbol)
e0001a05
NC
8378 return FALSE;
8379
91d6fa6a 8380 symbolP = exp->X_add_symbol;
e0001a05
NC
8381 if (!symbolP)
8382 return FALSE;
8383
8384 if (symbol_get_frag (symbolP) == NULL)
8385 return FALSE;
8386
8387 /* Walk through fragments until we find the target.
8388 If we do not find the target, then this is an invalid loop. */
43cd72b9 8389
e0001a05
NC
8390 for (next_fragP = fragP->fr_next;
8391 next_fragP != NULL;
8392 next_fragP = next_fragP->fr_next)
43cd72b9
BW
8393 {
8394 if (next_fragP == symbol_get_frag (symbolP))
8395 return TRUE;
8396 }
e0001a05
NC
8397
8398 return FALSE;
8399}
8400
2caa7ca0
BW
8401
8402#define XTINFO_NAME "Xtensa_Info"
8403#define XTINFO_NAMESZ 12
8404#define XTINFO_TYPE 1
8405
8406static void
8407xtensa_add_config_info (void)
8408{
8409 asection *info_sec;
8410 char *data, *p;
8411 int sz;
8412
8413 info_sec = subseg_new (".xtensa.info", 0);
8414 bfd_set_section_flags (stdoutput, info_sec, SEC_HAS_CONTENTS | SEC_READONLY);
8415
8416 data = xmalloc (100);
8417 sprintf (data, "USE_ABSOLUTE_LITERALS=%d\nABI=%d\n",
8418 XSHAL_USE_ABSOLUTE_LITERALS, XSHAL_ABI);
8419 sz = strlen (data) + 1;
8420
8421 /* Add enough null terminators to pad to a word boundary. */
8422 do
8423 data[sz++] = 0;
8424 while ((sz & 3) != 0);
8425
8426 /* Follow the standard note section layout:
8427 First write the length of the name string. */
8428 p = frag_more (4);
8429 md_number_to_chars (p, (valueT) XTINFO_NAMESZ, 4);
8430
8431 /* Next comes the length of the "descriptor", i.e., the actual data. */
8432 p = frag_more (4);
8433 md_number_to_chars (p, (valueT) sz, 4);
8434
8435 /* Write the note type. */
8436 p = frag_more (4);
8437 md_number_to_chars (p, (valueT) XTINFO_TYPE, 4);
8438
8439 /* Write the name field. */
8440 p = frag_more (XTINFO_NAMESZ);
8441 memcpy (p, XTINFO_NAME, XTINFO_NAMESZ);
8442
8443 /* Finally, write the descriptor. */
8444 p = frag_more (sz);
8445 memcpy (p, data, sz);
8446
8447 free (data);
8448}
8449
e0001a05
NC
8450\f
8451/* Alignment Functions. */
8452
d77b99c9
BW
8453static int
8454get_text_align_power (unsigned target_size)
e0001a05 8455{
03aaa593
BW
8456 if (target_size <= 4)
8457 return 2;
19ef5f3d
SA
8458
8459 if (target_size <= 8)
8460 return 3;
8461
8462 if (target_size <= 16)
8463 return 4;
8464
8465 if (target_size <= 32)
8466 return 5;
8467
8468 if (target_size <= 64)
8469 return 6;
8470
8471 if (target_size <= 128)
8472 return 7;
8473
8474 if (target_size <= 256)
8475 return 8;
8476
8477 if (target_size <= 512)
8478 return 9;
8479
8480 if (target_size <= 1024)
8481 return 10;
8482
8483 gas_assert (0);
8484 return 0;
e0001a05
NC
8485}
8486
8487
d77b99c9 8488static int
7fa3d080
BW
8489get_text_align_max_fill_size (int align_pow,
8490 bfd_boolean use_nops,
8491 bfd_boolean use_no_density)
e0001a05
NC
8492{
8493 if (!use_nops)
8494 return (1 << align_pow);
8495 if (use_no_density)
8496 return 3 * (1 << align_pow);
8497
8498 return 1 + (1 << align_pow);
8499}
8500
8501
d77b99c9
BW
8502/* Calculate the minimum bytes of fill needed at "address" to align a
8503 target instruction of size "target_size" so that it does not cross a
8504 power-of-two boundary specified by "align_pow". If "use_nops" is FALSE,
8505 the fill can be an arbitrary number of bytes. Otherwise, the space must
8506 be filled by NOP instructions. */
e0001a05 8507
d77b99c9 8508static int
7fa3d080
BW
8509get_text_align_fill_size (addressT address,
8510 int align_pow,
8511 int target_size,
8512 bfd_boolean use_nops,
8513 bfd_boolean use_no_density)
e0001a05 8514{
d77b99c9
BW
8515 addressT alignment, fill, fill_limit, fill_step;
8516 bfd_boolean skip_one = FALSE;
e0001a05 8517
d77b99c9 8518 alignment = (1 << align_pow);
9c2799c2 8519 gas_assert (target_size > 0 && alignment >= (addressT) target_size);
c138bc38 8520
e0001a05
NC
8521 if (!use_nops)
8522 {
d77b99c9
BW
8523 fill_limit = alignment;
8524 fill_step = 1;
e0001a05 8525 }
d77b99c9 8526 else if (!use_no_density)
e0001a05 8527 {
d77b99c9
BW
8528 /* Combine 2- and 3-byte NOPs to fill anything larger than one. */
8529 fill_limit = alignment * 2;
8530 fill_step = 1;
8531 skip_one = TRUE;
e0001a05
NC
8532 }
8533 else
8534 {
d77b99c9
BW
8535 /* Fill with 3-byte NOPs -- can only fill multiples of 3. */
8536 fill_limit = alignment * 3;
8537 fill_step = 3;
8538 }
e0001a05 8539
d77b99c9
BW
8540 /* Try all fill sizes until finding one that works. */
8541 for (fill = 0; fill < fill_limit; fill += fill_step)
8542 {
8543 if (skip_one && fill == 1)
8544 continue;
8545 if ((address + fill) >> align_pow
8546 == (address + fill + target_size - 1) >> align_pow)
8547 return fill;
e0001a05 8548 }
9c2799c2 8549 gas_assert (0);
e0001a05
NC
8550 return 0;
8551}
8552
8553
664df4e4
BW
8554static int
8555branch_align_power (segT sec)
8556{
19ef5f3d
SA
8557 /* If the Xtensa processor has a fetch width of X, and
8558 the section is aligned to at least that boundary, then a branch
8559 target need only fit within that aligned block of memory to avoid
8560 a stall. Otherwise, try to fit branch targets within 4-byte
8561 aligned blocks (which may be insufficient, e.g., if the section
8562 has no alignment, but it's good enough). */
8563 int fetch_align = get_text_align_power(xtensa_fetch_width);
8564 int sec_align = get_recorded_alignment (sec);
8565
8566 if (sec_align >= fetch_align)
8567 return fetch_align;
664df4e4
BW
8568
8569 return 2;
8570}
8571
8572
e0001a05
NC
8573/* This will assert if it is not possible. */
8574
d77b99c9
BW
8575static int
8576get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density)
e0001a05 8577{
d77b99c9
BW
8578 int count = 0;
8579
e0001a05
NC
8580 if (use_no_density)
8581 {
9c2799c2 8582 gas_assert (fill_size % 3 == 0);
e0001a05
NC
8583 return (fill_size / 3);
8584 }
8585
9c2799c2 8586 gas_assert (fill_size != 1); /* Bad argument. */
e0001a05
NC
8587
8588 while (fill_size > 1)
8589 {
d77b99c9 8590 int insn_size = 3;
e0001a05
NC
8591 if (fill_size == 2 || fill_size == 4)
8592 insn_size = 2;
8593 fill_size -= insn_size;
8594 count++;
8595 }
9c2799c2 8596 gas_assert (fill_size != 1); /* Bad algorithm. */
e0001a05
NC
8597 return count;
8598}
8599
8600
d77b99c9
BW
8601static int
8602get_text_align_nth_nop_size (offsetT fill_size,
8603 int n,
7fa3d080 8604 bfd_boolean use_no_density)
e0001a05 8605{
d77b99c9 8606 int count = 0;
e0001a05
NC
8607
8608 if (use_no_density)
8609 return 3;
8610
9c2799c2 8611 gas_assert (fill_size != 1); /* Bad argument. */
d77b99c9 8612
e0001a05
NC
8613 while (fill_size > 1)
8614 {
d77b99c9 8615 int insn_size = 3;
e0001a05
NC
8616 if (fill_size == 2 || fill_size == 4)
8617 insn_size = 2;
8618 fill_size -= insn_size;
8619 count++;
8620 if (n + 1 == count)
8621 return insn_size;
8622 }
9c2799c2 8623 gas_assert (0);
e0001a05
NC
8624 return 0;
8625}
8626
8627
8628/* For the given fragment, find the appropriate address
8629 for it to begin at if we are using NOPs to align it. */
8630
8631static addressT
7fa3d080 8632get_noop_aligned_address (fragS *fragP, addressT address)
e0001a05 8633{
43cd72b9
BW
8634 /* The rule is: get next fragment's FIRST instruction. Find
8635 the smallest number of bytes that need to be added to
8636 ensure that the next fragment's FIRST instruction will fit
8637 in a single word.
c138bc38 8638
43cd72b9
BW
8639 E.G., 2 bytes : 0, 1, 2 mod 4
8640 3 bytes: 0, 1 mod 4
c138bc38 8641
43cd72b9
BW
8642 If the FIRST instruction MIGHT be relaxed,
8643 assume that it will become a 3-byte instruction.
c138bc38 8644
43cd72b9
BW
8645 Note again here that LOOP instructions are not bundleable,
8646 and this relaxation only applies to LOOP opcodes. */
c138bc38 8647
d77b99c9 8648 int fill_size = 0;
43cd72b9
BW
8649 int first_insn_size;
8650 int loop_insn_size;
8651 addressT pre_opcode_bytes;
d77b99c9 8652 int align_power;
43cd72b9
BW
8653 fragS *first_insn;
8654 xtensa_opcode opcode;
8655 bfd_boolean is_loop;
e0001a05 8656
9c2799c2
NC
8657 gas_assert (fragP->fr_type == rs_machine_dependent);
8658 gas_assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE);
e0001a05 8659
43cd72b9
BW
8660 /* Find the loop frag. */
8661 first_insn = next_non_empty_frag (fragP);
8662 /* Now find the first insn frag. */
8663 first_insn = next_non_empty_frag (first_insn);
e0001a05 8664
43cd72b9 8665 is_loop = next_frag_opcode_is_loop (fragP, &opcode);
9c2799c2 8666 gas_assert (is_loop);
43cd72b9 8667 loop_insn_size = xg_get_single_size (opcode);
e0001a05 8668
43cd72b9
BW
8669 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
8670 pre_opcode_bytes += loop_insn_size;
e0001a05 8671
43cd72b9
BW
8672 /* For loops, the alignment depends on the size of the
8673 instruction following the loop, not the LOOP instruction. */
e0001a05 8674
43cd72b9 8675 if (first_insn == NULL)
03aaa593
BW
8676 first_insn_size = xtensa_fetch_width;
8677 else
8678 first_insn_size = get_loop_align_size (frag_format_size (first_insn));
e0001a05 8679
43cd72b9 8680 /* If it was 8, then we'll need a larger alignment for the section. */
d77b99c9
BW
8681 align_power = get_text_align_power (first_insn_size);
8682 record_alignment (now_seg, align_power);
c138bc38 8683
43cd72b9 8684 fill_size = get_text_align_fill_size
d77b99c9
BW
8685 (address + pre_opcode_bytes, align_power, first_insn_size, TRUE,
8686 fragP->tc_frag_data.is_no_density);
e0001a05
NC
8687
8688 return address + fill_size;
8689}
8690
8691
43cd72b9
BW
8692/* 3 mechanisms for relaxing an alignment:
8693
8694 Align to a power of 2.
8695 Align so the next fragment's instruction does not cross a word boundary.
8696 Align the current instruction so that if the next instruction
8697 were 3 bytes, it would not cross a word boundary.
8698
e0001a05
NC
8699 We can align with:
8700
43cd72b9
BW
8701 zeros - This is easy; always insert zeros.
8702 nops - 3-byte and 2-byte instructions
8703 2 - 2-byte nop
8704 3 - 3-byte nop
8705 4 - 2 2-byte nops
8706 >=5 : 3-byte instruction + fn (n-3)
e0001a05
NC
8707 widening - widen previous instructions. */
8708
d77b99c9
BW
8709static offsetT
8710get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff)
e0001a05 8711{
43cd72b9
BW
8712 addressT target_address, loop_insn_offset;
8713 int target_size;
8714 xtensa_opcode loop_opcode;
8715 bfd_boolean is_loop;
d77b99c9
BW
8716 int align_power;
8717 offsetT opt_diff;
5f9084e9 8718 offsetT branch_align;
def13efb 8719 fragS *loop_frag;
e0001a05 8720
9c2799c2 8721 gas_assert (fragP->fr_type == rs_machine_dependent);
43cd72b9 8722 switch (fragP->fr_subtype)
e0001a05 8723 {
43cd72b9
BW
8724 case RELAX_DESIRE_ALIGN:
8725 target_size = next_frag_format_size (fragP);
8726 if (target_size == XTENSA_UNDEFINED)
8727 target_size = 3;
664df4e4
BW
8728 align_power = branch_align_power (now_seg);
8729 branch_align = 1 << align_power;
0e5cd789
BW
8730 /* Don't count on the section alignment being as large as the target. */
8731 if (target_size > branch_align)
8732 target_size = branch_align;
d77b99c9 8733 opt_diff = get_text_align_fill_size (address, align_power,
43cd72b9
BW
8734 target_size, FALSE, FALSE);
8735
664df4e4
BW
8736 *max_diff = (opt_diff + branch_align
8737 - (target_size + ((address + opt_diff) % branch_align)));
9c2799c2 8738 gas_assert (*max_diff >= opt_diff);
43cd72b9 8739 return opt_diff;
e0001a05 8740
43cd72b9 8741 case RELAX_ALIGN_NEXT_OPCODE:
def13efb
BW
8742 /* The next non-empty frag after this one holds the LOOP instruction
8743 that needs to be aligned. The required alignment depends on the
8744 size of the next non-empty frag after the loop frag, i.e., the
8745 first instruction in the loop. */
8746 loop_frag = next_non_empty_frag (fragP);
8747 target_size = get_loop_align_size (next_frag_format_size (loop_frag));
43cd72b9
BW
8748 loop_insn_offset = 0;
8749 is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode);
9c2799c2 8750 gas_assert (is_loop);
43cd72b9
BW
8751
8752 /* If the loop has been expanded then the LOOP instruction
8753 could be at an offset from this fragment. */
def13efb 8754 if (loop_frag->tc_frag_data.slot_subtypes[0] != RELAX_IMMED)
43cd72b9
BW
8755 loop_insn_offset = get_expanded_loop_offset (loop_opcode);
8756
43cd72b9
BW
8757 /* In an ideal world, which is what we are shooting for here,
8758 we wouldn't need to use any NOPs immediately prior to the
8759 LOOP instruction. If this approach fails, relax_frag_loop_align
8760 will call get_noop_aligned_address. */
8761 target_address =
8762 address + loop_insn_offset + xg_get_single_size (loop_opcode);
def13efb 8763 align_power = get_text_align_power (target_size);
d77b99c9 8764 opt_diff = get_text_align_fill_size (target_address, align_power,
43cd72b9
BW
8765 target_size, FALSE, FALSE);
8766
8767 *max_diff = xtensa_fetch_width
8768 - ((target_address + opt_diff) % xtensa_fetch_width)
8769 - target_size + opt_diff;
9c2799c2 8770 gas_assert (*max_diff >= opt_diff);
43cd72b9 8771 return opt_diff;
e0001a05 8772
43cd72b9
BW
8773 default:
8774 break;
e0001a05 8775 }
9c2799c2 8776 gas_assert (0);
43cd72b9 8777 return 0;
e0001a05
NC
8778}
8779
8780\f
8781/* md_relax_frag Hook and Helper Functions. */
8782
7fa3d080
BW
8783static long relax_frag_loop_align (fragS *, long);
8784static long relax_frag_for_align (fragS *, long);
8785static long relax_frag_immed
8786 (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean);
8787
8788
e0001a05
NC
8789/* Return the number of bytes added to this fragment, given that the
8790 input has been stretched already by "stretch". */
8791
8792long
7fa3d080 8793xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p)
e0001a05 8794{
43cd72b9 8795 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
8796 int unreported = fragP->tc_frag_data.unreported_expansion;
8797 long new_stretch = 0;
8798 char *file_name;
d77b99c9
BW
8799 unsigned line;
8800 int lit_size;
43cd72b9
BW
8801 static xtensa_insnbuf vbuf = NULL;
8802 int slot, num_slots;
8803 xtensa_format fmt;
e0001a05
NC
8804
8805 as_where (&file_name, &line);
8806 new_logical_line (fragP->fr_file, fragP->fr_line);
8807
8808 fragP->tc_frag_data.unreported_expansion = 0;
8809
8810 switch (fragP->fr_subtype)
8811 {
8812 case RELAX_ALIGN_NEXT_OPCODE:
8813 /* Always convert. */
43cd72b9
BW
8814 if (fragP->tc_frag_data.relax_seen)
8815 new_stretch = relax_frag_loop_align (fragP, stretch);
e0001a05
NC
8816 break;
8817
8818 case RELAX_LOOP_END:
8819 /* Do nothing. */
8820 break;
8821
8822 case RELAX_LOOP_END_ADD_NOP:
8823 /* Add a NOP and switch to .fill 0. */
8824 new_stretch = relax_frag_add_nop (fragP);
43cd72b9 8825 frag_wane (fragP);
e0001a05
NC
8826 break;
8827
8828 case RELAX_DESIRE_ALIGN:
43cd72b9 8829 /* Do nothing. The narrowing before this frag will either align
e0001a05
NC
8830 it or not. */
8831 break;
8832
8833 case RELAX_LITERAL:
8834 case RELAX_LITERAL_FINAL:
8835 return 0;
8836
8837 case RELAX_LITERAL_NR:
8838 lit_size = 4;
8839 fragP->fr_subtype = RELAX_LITERAL_FINAL;
9c2799c2 8840 gas_assert (unreported == lit_size);
e0001a05
NC
8841 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
8842 fragP->fr_var -= lit_size;
8843 fragP->fr_fix += lit_size;
8844 new_stretch = 4;
8845 break;
8846
43cd72b9
BW
8847 case RELAX_SLOTS:
8848 if (vbuf == NULL)
8849 vbuf = xtensa_insnbuf_alloc (isa);
8850
d77b99c9
BW
8851 xtensa_insnbuf_from_chars
8852 (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0);
43cd72b9
BW
8853 fmt = xtensa_format_decode (isa, vbuf);
8854 num_slots = xtensa_format_num_slots (isa, fmt);
e0001a05 8855
43cd72b9
BW
8856 for (slot = 0; slot < num_slots; slot++)
8857 {
8858 switch (fragP->tc_frag_data.slot_subtypes[slot])
8859 {
8860 case RELAX_NARROW:
8861 if (fragP->tc_frag_data.relax_seen)
8862 new_stretch += relax_frag_for_align (fragP, stretch);
8863 break;
8864
8865 case RELAX_IMMED:
8866 case RELAX_IMMED_STEP1:
8867 case RELAX_IMMED_STEP2:
b81bf389 8868 case RELAX_IMMED_STEP3:
43cd72b9
BW
8869 /* Place the immediate. */
8870 new_stretch += relax_frag_immed
8871 (now_seg, fragP, stretch,
8872 fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8873 fmt, slot, stretched_p, FALSE);
8874 break;
8875
8876 default:
8877 /* This is OK; see the note in xg_assemble_vliw_tokens. */
8878 break;
8879 }
8880 }
e0001a05
NC
8881 break;
8882
8883 case RELAX_LITERAL_POOL_BEGIN:
8884 case RELAX_LITERAL_POOL_END:
43cd72b9
BW
8885 case RELAX_MAYBE_UNREACHABLE:
8886 case RELAX_MAYBE_DESIRE_ALIGN:
e0001a05
NC
8887 /* No relaxation required. */
8888 break;
8889
43cd72b9
BW
8890 case RELAX_FILL_NOP:
8891 case RELAX_UNREACHABLE:
8892 if (fragP->tc_frag_data.relax_seen)
8893 new_stretch += relax_frag_for_align (fragP, stretch);
8894 break;
8895
a82c7d90
DW
8896 case RELAX_TRAMPOLINE:
8897 if (fragP->tc_frag_data.relax_seen)
8898 {
8899 segment_info_type *seginfo = seg_info (now_seg);
8900 fragS *fP; /* The out-of-range jump. */
8901 fixS *fixP;
8902
8903 /* Scan for jumps that will not reach. */
8904 for (fixP = seginfo->fix_root; fixP ; fixP = fixP->fx_next)
8905 {
8906 symbolS *s = fixP->fx_addsy;
8907 xtensa_opcode opcode;
8908 int target;
8909 int addr;
8910 int delta;
8911
8912 if (fixP->fx_r_type < BFD_RELOC_XTENSA_SLOT0_OP ||
8913 fixP->fx_r_type > BFD_RELOC_XTENSA_SLOT14_OP)
8914 continue;
8915 xtensa_insnbuf_from_chars (isa, trampoline_buf,
8916 (unsigned char *) fixP->fx_frag->fr_literal + fixP->fx_where,
8917 0);
8918 fmt = xtensa_format_decode (isa, trampoline_buf);
8919 gas_assert (fmt != XTENSA_UNDEFINED);
8920 slot = fixP->tc_fix_data.slot;
8921 xtensa_format_get_slot (isa, fmt, slot, trampoline_buf, trampoline_slotbuf);
8922 opcode = xtensa_opcode_decode (isa, fmt, slot, trampoline_slotbuf);
8923 if (opcode != xtensa_j_opcode)
8924 continue;
8925 target = S_GET_VALUE (s);
8926 addr = fixP->fx_frag->fr_address;
8927 delta = target - addr + stretch;
8928 if (delta > J_RANGE || delta < -1 * J_RANGE)
8929 { /* Found an out-of-range jump; scan the list of trampolines for the best match. */
8930 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
8931 struct trampoline_frag *tf = ts->trampoline_list.next;
8932 struct trampoline_frag *prev = &ts->trampoline_list;
8933 int lower = (target < addr) ? target : addr;
8934 int upper = (target > addr) ? target : addr;
8935 int midpoint = lower + (upper - lower) / 2;
8936
8937 if ((upper - lower) > 2 * J_RANGE)
8938 {
8939 /* One trampoline won't suffice; we need multiple jumps.
8940 Jump to the trampoline that's farthest, but still in
8941 range relative to the original "j" instruction. */
8942 for ( ; tf; prev = tf, tf = tf->next )
8943 {
8944 int this_addr = tf->fragP->fr_address + tf->fragP->fr_fix;
8945 int next_addr = (tf->next) ? tf->next->fragP->fr_address + tf->next->fragP->fr_fix : 0 ;
8946
8947 if (addr == lower)
8948 {
8949 /* Forward jump. */
8950 if (this_addr - addr < J_RANGE)
8951 break;
8952 }
8953 else
8954 {
8955 /* Backward jump. */
8956 if (next_addr == 0 || addr - next_addr > J_RANGE)
8957 break;
8958 }
8959 }
8960 }
8961 else
8962 {
8963 struct trampoline_frag *best_tf = NULL;
8964 int best_delta = 0;
8965
8966 for ( ; tf; prev = tf, tf = tf->next )
8967 {
8968 int this_addr = tf->fragP->fr_address + tf->fragP->fr_fix;
8969 int this_delta = abs (this_addr - midpoint);
8970
8971 if (!best_tf || this_delta < best_delta)
8972 {
8973 best_tf = tf;
8974 best_delta = this_delta;
8975 }
8976 }
8977 tf = best_tf;
8978 }
8979 if (tf->fragP == fragP)
8980 {
8981 int trampaddr = fragP->fr_address + fragP->fr_fix;
8982
8983 if (abs (addr - trampaddr) < J_RANGE)
8984 { /* The trampoline is in range of original; fix it! */
8985 fixS *newfixP;
8986 int offset;
8987 TInsn insn;
8988 symbolS *lsym;
8989
8990 new_stretch += init_trampoline_frag (tf);
8991 offset = fragP->fr_fix; /* Where to assemble the j insn. */
8992 lsym = fragP->fr_symbol;
8993 fP = fixP->fx_frag;
8994 /* Assemble a jump to the target label here. */
8995 tinsn_init (&insn);
8996 insn.insn_type = ITYPE_INSN;
8997 insn.opcode = xtensa_j_opcode;
8998 insn.ntok = 1;
8999 set_expr_symbol_offset (&insn.tok[0], lsym, offset);
9000 fmt = xg_get_single_format (xtensa_j_opcode);
9001 tinsn_to_slotbuf (fmt, 0, &insn, trampoline_slotbuf);
9002 xtensa_format_set_slot (isa, fmt, 0, trampoline_buf, trampoline_slotbuf);
9003 xtensa_insnbuf_to_chars (isa, trampoline_buf, (unsigned char *)fragP->fr_literal + offset, 3);
9004 fragP->fr_fix += 3;
9005 fragP->fr_var -= 3;
9006 /* Add a fix-up for the original j insn. */
9007 newfixP = fix_new (fP, fixP->fx_where, fixP->fx_size, lsym, fragP->fr_fix - 3, TRUE, fixP->fx_r_type);
9008 newfixP->fx_no_overflow = 1;
9009 newfixP->tc_fix_data.X_add_symbol = lsym;
9010 newfixP->tc_fix_data.X_add_number = offset;
9011 newfixP->tc_fix_data.slot = slot;
9012 /* Move the fix-up from the original j insn to this one. */
9013 fixP->fx_frag = fragP;
9014 fixP->fx_where = fragP->fr_fix - 3;
9015 fixP->tc_fix_data.slot = 0;
9016 /* Adjust the jump around this trampoline (if present). */
9017 if (tf->fixP != NULL)
9018 {
9019 tf->fixP->fx_offset += 3;
9020 }
9021 new_stretch += 3;
9022 fragP->tc_frag_data.relax_seen = FALSE; /* Need another pass. */
9023 /* Do we have room for more? */
9024 if (fragP->fr_var < 3)
9025 { /* No, convert to fill. */
9026 frag_wane (fragP);
9027 fragP->fr_subtype = 0;
9028 /* Remove from the trampoline_list. */
9029 prev->next = tf->next;
9030 break;
9031 }
9032 }
9033 }
9034 }
9035 }
9036 }
9037 break;
9038
e0001a05
NC
9039 default:
9040 as_bad (_("bad relaxation state"));
9041 }
9042
43cd72b9 9043 /* Tell gas we need another relaxation pass. */
c138bc38 9044 if (! fragP->tc_frag_data.relax_seen)
43cd72b9
BW
9045 {
9046 fragP->tc_frag_data.relax_seen = TRUE;
9047 *stretched_p = 1;
9048 }
9049
e0001a05
NC
9050 new_logical_line (file_name, line);
9051 return new_stretch;
9052}
9053
9054
9055static long
7fa3d080 9056relax_frag_loop_align (fragS *fragP, long stretch)
e0001a05
NC
9057{
9058 addressT old_address, old_next_address, old_size;
9059 addressT new_address, new_next_address, new_size;
9060 addressT growth;
9061
43cd72b9
BW
9062 /* All the frags with relax_frag_for_alignment prior to this one in the
9063 section have been done, hopefully eliminating the need for a NOP here.
9064 But, this will put it in if necessary. */
e0001a05
NC
9065
9066 /* Calculate the old address of this fragment and the next fragment. */
9067 old_address = fragP->fr_address - stretch;
9068 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
43cd72b9 9069 fragP->tc_frag_data.text_expansion[0]);
e0001a05
NC
9070 old_size = old_next_address - old_address;
9071
9072 /* Calculate the new address of this fragment and the next fragment. */
9073 new_address = fragP->fr_address;
9074 new_next_address =
9075 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
9076 new_size = new_next_address - new_address;
9077
9078 growth = new_size - old_size;
9079
9080 /* Fix up the text_expansion field and return the new growth. */
43cd72b9 9081 fragP->tc_frag_data.text_expansion[0] += growth;
e0001a05
NC
9082 return growth;
9083}
9084
9085
43cd72b9 9086/* Add a NOP instruction. */
e0001a05
NC
9087
9088static long
7fa3d080 9089relax_frag_add_nop (fragS *fragP)
e0001a05 9090{
e0001a05 9091 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
43cd72b9
BW
9092 int length = fragP->tc_frag_data.is_no_density ? 3 : 2;
9093 assemble_nop (length, nop_buf);
e0001a05 9094 fragP->tc_frag_data.is_insn = TRUE;
e0001a05 9095
e0001a05
NC
9096 if (fragP->fr_var < length)
9097 {
dd49a749 9098 as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length);
e0001a05
NC
9099 return 0;
9100 }
9101
9102 fragP->fr_fix += length;
9103 fragP->fr_var -= length;
e0001a05
NC
9104 return length;
9105}
9106
9107
7fa3d080
BW
9108static long future_alignment_required (fragS *, long);
9109
e0001a05 9110static long
7fa3d080 9111relax_frag_for_align (fragS *fragP, long stretch)
e0001a05 9112{
43cd72b9
BW
9113 /* Overview of the relaxation procedure for alignment:
9114 We can widen with NOPs or by widening instructions or by filling
9115 bytes after jump instructions. Find the opportune places and widen
9116 them if necessary. */
9117
9118 long stretch_me;
9119 long diff;
e0001a05 9120
9c2799c2 9121 gas_assert (fragP->fr_subtype == RELAX_FILL_NOP
43cd72b9
BW
9122 || fragP->fr_subtype == RELAX_UNREACHABLE
9123 || (fragP->fr_subtype == RELAX_SLOTS
9124 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW));
9125
9126 stretch_me = future_alignment_required (fragP, stretch);
9127 diff = stretch_me - fragP->tc_frag_data.text_expansion[0];
9128 if (diff == 0)
9129 return 0;
e0001a05 9130
43cd72b9 9131 if (diff < 0)
e0001a05 9132 {
43cd72b9
BW
9133 /* We expanded on a previous pass. Can we shrink now? */
9134 long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me;
9135 if (shrink <= stretch && stretch > 0)
e0001a05 9136 {
43cd72b9
BW
9137 fragP->tc_frag_data.text_expansion[0] = stretch_me;
9138 return -shrink;
e0001a05
NC
9139 }
9140 return 0;
9141 }
9142
43cd72b9
BW
9143 /* Below here, diff > 0. */
9144 fragP->tc_frag_data.text_expansion[0] = stretch_me;
e0001a05 9145
43cd72b9 9146 return diff;
e0001a05
NC
9147}
9148
9149
43cd72b9
BW
9150/* Return the address of the next frag that should be aligned.
9151
9152 By "address" we mean the address it _would_ be at if there
9153 is no action taken to align it between here and the target frag.
9154 In other words, if no narrows and no fill nops are used between
9155 here and the frag to align, _even_if_ some of the frags we use
9156 to align targets have already expanded on a previous relaxation
9157 pass.
9158
9159 Also, count each frag that may be used to help align the target.
9160
9161 Return 0 if there are no frags left in the chain that need to be
9162 aligned. */
9163
9164static addressT
7fa3d080
BW
9165find_address_of_next_align_frag (fragS **fragPP,
9166 int *wide_nops,
9167 int *narrow_nops,
9168 int *widens,
9169 bfd_boolean *paddable)
e0001a05 9170{
43cd72b9
BW
9171 fragS *fragP = *fragPP;
9172 addressT address = fragP->fr_address;
9173
9174 /* Do not reset the counts to 0. */
e0001a05
NC
9175
9176 while (fragP)
9177 {
9178 /* Limit this to a small search. */
b5e4a23d 9179 if (*widens >= (int) xtensa_fetch_width)
43cd72b9
BW
9180 {
9181 *fragPP = fragP;
9182 return 0;
9183 }
e0001a05
NC
9184 address += fragP->fr_fix;
9185
43cd72b9
BW
9186 if (fragP->fr_type == rs_fill)
9187 address += fragP->fr_offset * fragP->fr_var;
9188 else if (fragP->fr_type == rs_machine_dependent)
e0001a05 9189 {
e0001a05
NC
9190 switch (fragP->fr_subtype)
9191 {
43cd72b9
BW
9192 case RELAX_UNREACHABLE:
9193 *paddable = TRUE;
9194 break;
9195
9196 case RELAX_FILL_NOP:
9197 (*wide_nops)++;
9198 if (!fragP->tc_frag_data.is_no_density)
9199 (*narrow_nops)++;
9200 break;
9201
9202 case RELAX_SLOTS:
9203 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
9204 {
9205 (*widens)++;
9206 break;
9207 }
5bb3703f 9208 address += total_frag_text_expansion (fragP);
e0001a05
NC
9209 break;
9210
9211 case RELAX_IMMED:
43cd72b9 9212 address += fragP->tc_frag_data.text_expansion[0];
e0001a05
NC
9213 break;
9214
9215 case RELAX_ALIGN_NEXT_OPCODE:
9216 case RELAX_DESIRE_ALIGN:
43cd72b9
BW
9217 *fragPP = fragP;
9218 return address;
9219
9220 case RELAX_MAYBE_UNREACHABLE:
9221 case RELAX_MAYBE_DESIRE_ALIGN:
9222 /* Do nothing. */
e0001a05
NC
9223 break;
9224
9225 default:
43cd72b9
BW
9226 /* Just punt if we don't know the type. */
9227 *fragPP = fragP;
9228 return 0;
e0001a05 9229 }
43cd72b9 9230 }
c138bc38 9231 else
43cd72b9
BW
9232 {
9233 /* Just punt if we don't know the type. */
9234 *fragPP = fragP;
9235 return 0;
9236 }
9237 fragP = fragP->fr_next;
9238 }
9239
9240 *fragPP = fragP;
9241 return 0;
9242}
9243
9244
7fa3d080
BW
9245static long bytes_to_stretch (fragS *, int, int, int, int);
9246
43cd72b9 9247static long
7fa3d080 9248future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED)
43cd72b9
BW
9249{
9250 fragS *this_frag = fragP;
9251 long address;
9252 int num_widens = 0;
9253 int wide_nops = 0;
9254 int narrow_nops = 0;
9255 bfd_boolean paddable = FALSE;
9256 offsetT local_opt_diff;
9257 offsetT opt_diff;
9258 offsetT max_diff;
9259 int stretch_amount = 0;
9260 int local_stretch_amount;
9261 int global_stretch_amount;
9262
7fa3d080
BW
9263 address = find_address_of_next_align_frag
9264 (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable);
43cd72b9 9265
b5e4a23d
BW
9266 if (!address)
9267 {
9268 if (this_frag->tc_frag_data.is_aligning_branch)
9269 this_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
9270 else
9271 frag_wane (this_frag);
9272 }
9273 else
43cd72b9
BW
9274 {
9275 local_opt_diff = get_aligned_diff (fragP, address, &max_diff);
9276 opt_diff = local_opt_diff;
9c2799c2
NC
9277 gas_assert (opt_diff >= 0);
9278 gas_assert (max_diff >= opt_diff);
c138bc38 9279 if (max_diff == 0)
43cd72b9 9280 return 0;
d2a033cd 9281
43cd72b9
BW
9282 if (fragP)
9283 fragP = fragP->fr_next;
9284
9285 while (fragP && opt_diff < max_diff && address)
9286 {
9287 /* We only use these to determine if we can exit early
c138bc38 9288 because there will be plenty of ways to align future
43cd72b9 9289 align frags. */
d77b99c9 9290 int glob_widens = 0;
43cd72b9
BW
9291 int dnn = 0;
9292 int dw = 0;
9293 bfd_boolean glob_pad = 0;
7fa3d080
BW
9294 address = find_address_of_next_align_frag
9295 (&fragP, &glob_widens, &dnn, &dw, &glob_pad);
43cd72b9 9296 /* If there is a padable portion, then skip. */
664df4e4 9297 if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg)))
b5e4a23d 9298 address = 0;
43cd72b9 9299
c138bc38 9300 if (address)
43cd72b9
BW
9301 {
9302 offsetT next_m_diff;
9303 offsetT next_o_diff;
9304
9305 /* Downrange frags haven't had stretch added to them yet. */
9306 address += stretch;
9307
9308 /* The address also includes any text expansion from this
9309 frag in a previous pass, but we don't want that. */
9310 address -= this_frag->tc_frag_data.text_expansion[0];
9311
9312 /* Assume we are going to move at least opt_diff. In
9313 reality, we might not be able to, but assuming that
9314 we will helps catch cases where moving opt_diff pushes
9315 the next target from aligned to unaligned. */
9316 address += opt_diff;
9317
9318 next_o_diff = get_aligned_diff (fragP, address, &next_m_diff);
9319
9320 /* Now cleanup for the adjustments to address. */
9321 next_o_diff += opt_diff;
9322 next_m_diff += opt_diff;
9323 if (next_o_diff <= max_diff && next_o_diff > opt_diff)
9324 opt_diff = next_o_diff;
9325 if (next_m_diff < max_diff)
9326 max_diff = next_m_diff;
9327 fragP = fragP->fr_next;
9328 }
9329 }
d2a033cd 9330
43cd72b9
BW
9331 /* If there are enough wideners in between, do it. */
9332 if (paddable)
9333 {
9334 if (this_frag->fr_subtype == RELAX_UNREACHABLE)
9335 {
1beeb686 9336 gas_assert (opt_diff <= (signed) xtensa_fetch_width);
43cd72b9
BW
9337 return opt_diff;
9338 }
9339 return 0;
9340 }
c138bc38 9341 local_stretch_amount
43cd72b9
BW
9342 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
9343 num_widens, local_opt_diff);
c138bc38
BW
9344 global_stretch_amount
9345 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
43cd72b9 9346 num_widens, opt_diff);
c138bc38
BW
9347 /* If the condition below is true, then the frag couldn't
9348 stretch the correct amount for the global case, so we just
9349 optimize locally. We'll rely on the subsequent frags to get
43cd72b9
BW
9350 the correct alignment in the global case. */
9351 if (global_stretch_amount < local_stretch_amount)
9352 stretch_amount = local_stretch_amount;
9353 else
9354 stretch_amount = global_stretch_amount;
d2a033cd 9355
43cd72b9
BW
9356 if (this_frag->fr_subtype == RELAX_SLOTS
9357 && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
9c2799c2 9358 gas_assert (stretch_amount <= 1);
43cd72b9
BW
9359 else if (this_frag->fr_subtype == RELAX_FILL_NOP)
9360 {
9361 if (this_frag->tc_frag_data.is_no_density)
9c2799c2 9362 gas_assert (stretch_amount == 3 || stretch_amount == 0);
43cd72b9 9363 else
9c2799c2 9364 gas_assert (stretch_amount <= 3);
43cd72b9
BW
9365 }
9366 }
9367 return stretch_amount;
9368}
9369
9370
9371/* The idea: widen everything you can to get a target or loop aligned,
9372 then start using NOPs.
9373
43cd72b9
BW
9374 wide_nops = the number of wide NOPs available for aligning
9375 narrow_nops = the number of narrow NOPs available for aligning
9376 (a subset of wide_nops)
9377 widens = the number of narrow instructions that should be widened
9378
43cd72b9
BW
9379*/
9380
9381static long
7fa3d080
BW
9382bytes_to_stretch (fragS *this_frag,
9383 int wide_nops,
9384 int narrow_nops,
9385 int num_widens,
9386 int desired_diff)
43cd72b9 9387{
19ef5f3d
SA
9388 int nops_needed;
9389 int nop_bytes;
9390 int extra_bytes;
43cd72b9
BW
9391 int bytes_short = desired_diff - num_widens;
9392
1beeb686
SA
9393 gas_assert (desired_diff >= 0
9394 && desired_diff < (signed) xtensa_fetch_width);
43cd72b9
BW
9395 if (desired_diff == 0)
9396 return 0;
c138bc38 9397
9c2799c2 9398 gas_assert (wide_nops > 0 || num_widens > 0);
e0001a05 9399
43cd72b9
BW
9400 /* Always prefer widening to NOP-filling. */
9401 if (bytes_short < 0)
9402 {
9403 /* There are enough RELAX_NARROW frags after this one
9404 to align the target without widening this frag in any way. */
9405 return 0;
9406 }
c138bc38 9407
43cd72b9
BW
9408 if (bytes_short == 0)
9409 {
9410 /* Widen every narrow between here and the align target
9411 and the align target will be properly aligned. */
9412 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9413 return 0;
9414 else
9415 return 1;
9416 }
c138bc38 9417
43cd72b9
BW
9418 /* From here we will need at least one NOP to get an alignment.
9419 However, we may not be able to align at all, in which case,
9420 don't widen. */
19ef5f3d
SA
9421 nops_needed = desired_diff / 3;
9422
9423 /* If there aren't enough nops, don't widen. */
9424 if (nops_needed > wide_nops)
9425 return 0;
9426
9427 /* First try it with all wide nops. */
9428 nop_bytes = nops_needed * 3;
9429 extra_bytes = desired_diff - nop_bytes;
9430
9431 if (nop_bytes + num_widens >= desired_diff)
43cd72b9 9432 {
19ef5f3d
SA
9433 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9434 return 3;
9435 else if (num_widens == extra_bytes)
9436 return 1;
9437 return 0;
e0001a05 9438 }
19ef5f3d
SA
9439
9440 /* Add a narrow nop. */
9441 nops_needed++;
9442 nop_bytes += 2;
9443 extra_bytes -= 2;
9444 if (narrow_nops == 0 || nops_needed > wide_nops)
9445 return 0;
9446
9447 if (nop_bytes + num_widens >= desired_diff && extra_bytes >= 0)
43cd72b9 9448 {
19ef5f3d
SA
9449 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9450 return !this_frag->tc_frag_data.is_no_density ? 2 : 3;
9451 else if (num_widens == extra_bytes)
9452 return 1;
9453 return 0;
9454 }
e0001a05 9455
19ef5f3d
SA
9456 /* Replace a wide nop with a narrow nop--we can get here if
9457 extra_bytes was negative in the previous conditional. */
9458 if (narrow_nops == 1)
9459 return 0;
9460 nop_bytes--;
9461 extra_bytes++;
9462 if (nop_bytes + num_widens >= desired_diff)
9463 {
9464 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9465 return !this_frag->tc_frag_data.is_no_density ? 2 : 3;
9466 else if (num_widens == extra_bytes)
9467 return 1;
9468 return 0;
43cd72b9 9469 }
19ef5f3d
SA
9470
9471 /* If we can't satisfy any of the above cases, then we can't align
9472 using padding or fill nops. */
43cd72b9 9473 return 0;
e0001a05
NC
9474}
9475
9476
a82c7d90
DW
9477static struct trampoline_frag *
9478search_trampolines (TInsn *tinsn, fragS *fragP, bfd_boolean unreachable_only)
9479{
9480 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
9481 struct trampoline_frag *tf = (ts) ? ts->trampoline_list.next : NULL;
9482 struct trampoline_frag *best_tf = NULL;
9483 int best_delta = 0;
9484 int best_addr = 0;
9485 symbolS *sym = tinsn->tok[0].X_add_symbol;
9486 offsetT target = S_GET_VALUE (sym) + tinsn->tok[0].X_add_number;
9487 offsetT addr = fragP->fr_address;
9488 offsetT lower = (addr < target) ? addr : target;
9489 offsetT upper = (addr > target) ? addr : target;
9490 int delta = upper - lower;
9491 offsetT midpoint = lower + delta / 2;
9492 int this_delta = -1;
9493 int this_addr = -1;
9494
9495 if (delta > 2 * J_RANGE)
9496 {
9497 /* One trampoline won't do; we need multiple.
9498 Choose the farthest trampoline that's still in range of the original
9499 and let a later pass finish the job. */
9500 for ( ; tf; tf = tf->next)
9501 {
9502 int next_addr = (tf->next) ? tf->next->fragP->fr_address + tf->next->fragP->fr_fix : 0;
9503
9504 this_addr = tf->fragP->fr_address + tf->fragP->fr_fix;
9505 if (lower == addr)
9506 {
9507 /* Forward jump. */
9508 if (this_addr - addr < J_RANGE)
9509 break;
9510 }
9511 else
9512 {
9513 /* Backward jump. */
9514 if (next_addr == 0 || addr - next_addr > J_RANGE)
9515 break;
9516 }
a82c7d90 9517 }
d92b6eec
MF
9518 if (abs (addr - this_addr) < J_RANGE)
9519 return tf;
9520
9521 return NULL;
a82c7d90
DW
9522 }
9523 for ( ; tf; tf = tf->next)
9524 {
9525 this_addr = tf->fragP->fr_address + tf->fragP->fr_fix;
9526 this_delta = abs (this_addr - midpoint);
9527 if (unreachable_only && tf->needs_jump_around)
9528 continue;
9529 if (!best_tf || this_delta < best_delta)
9530 {
9531 best_tf = tf;
9532 best_delta = this_delta;
9533 best_addr = this_addr;
9534 }
9535 }
9536
9537 if (best_tf &&
9538 best_delta < J_RANGE &&
9539 abs(best_addr - lower) < J_RANGE &&
9540 abs(best_addr - upper) < J_RANGE)
9541 return best_tf;
9542
9543 return NULL; /* No suitable trampoline found. */
9544}
9545
9546
9547static struct trampoline_frag *
9548get_best_trampoline (TInsn *tinsn, fragS *fragP)
9549{
9550 struct trampoline_frag *tf = NULL;
9551
9552 tf = search_trampolines (tinsn, fragP, TRUE); /* Try unreachable first. */
9553
9554 if (tf == NULL)
9555 tf = search_trampolines (tinsn, fragP, FALSE); /* Try ones needing a jump-around, too. */
9556
9557 return tf;
9558}
9559
9560
9561static void
9562check_and_update_trampolines (void)
9563{
9564 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
9565 struct trampoline_frag *tf = ts->trampoline_list.next;
9566 struct trampoline_frag *prev = &ts->trampoline_list;
9567
9568 for ( ; tf; prev = tf, tf = tf->next)
9569 {
9570 if (tf->fragP->fr_var < 3)
9571 {
9572 frag_wane (tf->fragP);
9573 prev->next = tf->next;
9574 tf->fragP = NULL;
9575 }
9576 }
9577}
9578
9579
9580static int
9581init_trampoline_frag (struct trampoline_frag *trampP)
9582{
9583 fragS *fp = trampP->fragP;
9584 int growth = 0;
9585
9586 if (fp->fr_fix == 0)
9587 {
9588 symbolS *lsym;
9589 char label[10 + 2 * sizeof(fp)];
9590 sprintf (label, ".L0_TR_%p", fp);
9591
9592 lsym = (symbolS *)local_symbol_make (label, now_seg, 0, fp);
9593 fp->fr_symbol = lsym;
9594 if (trampP->needs_jump_around)
9595 {
9596 /* Add a jump around this block of jumps, in case
9597 control flows into this block. */
9598 fixS *fixP;
9599 TInsn insn;
9600 xtensa_format fmt;
9601 xtensa_isa isa = xtensa_default_isa;
9602
9603 fp->tc_frag_data.is_insn = 1;
9604 /* Assemble a jump insn. */
9605 tinsn_init (&insn);
9606 insn.insn_type = ITYPE_INSN;
9607 insn.opcode = xtensa_j_opcode;
9608 insn.ntok = 1;
9609 set_expr_symbol_offset (&insn.tok[0], lsym, 3);
9610 fmt = xg_get_single_format (xtensa_j_opcode);
9611 tinsn_to_slotbuf (fmt, 0, &insn, trampoline_slotbuf);
9612 xtensa_format_set_slot (isa, fmt, 0, trampoline_buf, trampoline_slotbuf);
9613 xtensa_insnbuf_to_chars (isa, trampoline_buf, (unsigned char *)fp->fr_literal, 3);
9614 fp->fr_fix += 3;
9615 fp->fr_var -= 3;
9616 growth = 3;
9617 fixP = fix_new (fp, 0, 3, lsym, 3, TRUE, BFD_RELOC_XTENSA_SLOT0_OP);
9618 trampP->fixP = fixP;
9619 }
9620 }
9621 return growth;
9622}
9623
9624
9625static int
9626add_jump_to_trampoline (struct trampoline_frag *trampP, fragS *origfrag)
9627{
9628 fragS *tramp = trampP->fragP;
9629 fixS *fixP;
9630 int offset = tramp->fr_fix; /* Where to assemble the j insn. */
9631 TInsn insn;
9632 symbolS *lsym;
9633 symbolS *tsym;
9634 int toffset;
9635 xtensa_format fmt;
9636 xtensa_isa isa = xtensa_default_isa;
9637 int growth = 0;
9638
9639 lsym = tramp->fr_symbol;
9640 /* Assemble a jump to the target label in the trampoline frag. */
9641 tsym = origfrag->tc_frag_data.slot_symbols[0];
9642 toffset = origfrag-> tc_frag_data.slot_offsets[0];
9643 tinsn_init (&insn);
9644 insn.insn_type = ITYPE_INSN;
9645 insn.opcode = xtensa_j_opcode;
9646 insn.ntok = 1;
9647 set_expr_symbol_offset (&insn.tok[0], tsym, toffset);
9648 fmt = xg_get_single_format (xtensa_j_opcode);
9649 tinsn_to_slotbuf (fmt, 0, &insn, trampoline_slotbuf);
9650 xtensa_format_set_slot (isa, fmt, 0, trampoline_buf, trampoline_slotbuf);
9651 xtensa_insnbuf_to_chars (isa, trampoline_buf, (unsigned char *)tramp->fr_literal + offset, 3);
9652 tramp->fr_fix += 3;
9653 tramp->fr_var -= 3;
9654 growth = 3;
9655 /* add a fix-up for the trampoline jump. */
9656 fixP = fix_new (tramp, tramp->fr_fix - 3, 3, tsym, toffset, TRUE, BFD_RELOC_XTENSA_SLOT0_OP);
9657 /* Modify the jump at the start of this trampoline to point past the newly-added jump. */
9658 fixP = trampP->fixP;
9659 if (fixP)
9660 fixP->fx_offset += 3;
9661 /* Modify the original j to point here. */
9662 origfrag->tc_frag_data.slot_symbols[0] = lsym;
9663 origfrag->tc_frag_data.slot_offsets[0] = tramp->fr_fix - 3;
9664 /* If trampoline is full, remove it from the list. */
9665 check_and_update_trampolines ();
9666
9667 return growth;
9668}
9669
9670
e0001a05 9671static long
7fa3d080
BW
9672relax_frag_immed (segT segP,
9673 fragS *fragP,
9674 long stretch,
9675 int min_steps,
9676 xtensa_format fmt,
9677 int slot,
9678 int *stretched_p,
9679 bfd_boolean estimate_only)
e0001a05 9680{
43cd72b9 9681 TInsn tinsn;
e0001a05
NC
9682 int old_size;
9683 bfd_boolean negatable_branch = FALSE;
9684 bfd_boolean branch_jmp_to_next = FALSE;
def13efb 9685 bfd_boolean from_wide_insn = FALSE;
43cd72b9 9686 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
9687 IStack istack;
9688 offsetT frag_offset;
9689 int num_steps;
e0001a05 9690 int num_text_bytes, num_literal_bytes;
2276bc20 9691 int literal_diff, total_text_diff, this_text_diff;
e0001a05 9692
9c2799c2 9693 gas_assert (fragP->fr_opcode != NULL);
e0001a05 9694
b5e4a23d
BW
9695 xg_clear_vinsn (&cur_vinsn);
9696 vinsn_from_chars (&cur_vinsn, fragP->fr_opcode);
b2d179be 9697 if (cur_vinsn.num_slots > 1)
def13efb 9698 from_wide_insn = TRUE;
43cd72b9 9699
b5e4a23d 9700 tinsn = cur_vinsn.slots[slot];
43cd72b9 9701 tinsn_immed_from_frag (&tinsn, fragP, slot);
e0001a05 9702
64b607e6 9703 if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode) == 1)
43cd72b9 9704 return 0;
e0001a05 9705
b08b5071 9706 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
43cd72b9 9707 branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP);
e0001a05 9708
43cd72b9 9709 negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1);
e0001a05 9710
43cd72b9 9711 old_size = xtensa_format_length (isa, fmt);
e0001a05
NC
9712
9713 /* Special case: replace a branch to the next instruction with a NOP.
9714 This is required to work around a hardware bug in T1040.0 and also
9715 serves as an optimization. */
9716
9717 if (branch_jmp_to_next
9718 && ((old_size == 2) || (old_size == 3))
9719 && !next_frag_is_loop_target (fragP))
9720 return 0;
9721
9722 /* Here is the fun stuff: Get the immediate field from this
9723 instruction. If it fits, we are done. If not, find the next
9724 instruction sequence that fits. */
9725
9726 frag_offset = fragP->fr_opcode - fragP->fr_literal;
9727 istack_init (&istack);
43cd72b9 9728 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset,
e0001a05 9729 min_steps, stretch);
9c2799c2 9730 gas_assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS);
e0001a05 9731
43cd72b9 9732 fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps;
e0001a05
NC
9733
9734 /* Figure out the number of bytes needed. */
e0001a05 9735 num_literal_bytes = get_num_stack_literal_bytes (&istack);
2276bc20
BW
9736 literal_diff
9737 = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
43cd72b9 9738 num_text_bytes = get_num_stack_text_bytes (&istack);
def13efb
BW
9739
9740 if (from_wide_insn)
43cd72b9 9741 {
2276bc20
BW
9742 int first = 0;
9743 while (istack.insn[first].opcode == XTENSA_UNDEFINED)
9744 first++;
9745
43cd72b9
BW
9746 num_text_bytes += old_size;
9747 if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot))
9748 num_text_bytes -= xg_get_single_size (istack.insn[first].opcode);
2276bc20
BW
9749 else
9750 {
9751 /* The first instruction in the relaxed sequence will go after
9752 the current wide instruction, and thus its symbolic immediates
9753 might not fit. */
9754
9755 istack_init (&istack);
9756 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP,
9757 frag_offset + old_size,
9758 min_steps, stretch + old_size);
9c2799c2 9759 gas_assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS);
2276bc20
BW
9760
9761 fragP->tc_frag_data.slot_subtypes[slot]
9762 = (int) RELAX_IMMED + num_steps;
9763
9764 num_literal_bytes = get_num_stack_literal_bytes (&istack);
9765 literal_diff
9766 = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
9767
9768 num_text_bytes = get_num_stack_text_bytes (&istack) + old_size;
9769 }
43cd72b9 9770 }
def13efb 9771
43cd72b9
BW
9772 total_text_diff = num_text_bytes - old_size;
9773 this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot];
e0001a05
NC
9774
9775 /* It MUST get larger. If not, we could get an infinite loop. */
9c2799c2
NC
9776 gas_assert (num_text_bytes >= 0);
9777 gas_assert (literal_diff >= 0);
9778 gas_assert (total_text_diff >= 0);
e0001a05 9779
43cd72b9
BW
9780 fragP->tc_frag_data.text_expansion[slot] = total_text_diff;
9781 fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes;
9c2799c2
NC
9782 gas_assert (fragP->tc_frag_data.text_expansion[slot] >= 0);
9783 gas_assert (fragP->tc_frag_data.literal_expansion[slot] >= 0);
e0001a05
NC
9784
9785 /* Find the associated expandable literal for this. */
9786 if (literal_diff != 0)
9787 {
2276bc20 9788 fragS *lit_fragP = fragP->tc_frag_data.literal_frags[slot];
e0001a05
NC
9789 if (lit_fragP)
9790 {
9c2799c2 9791 gas_assert (literal_diff == 4);
e0001a05
NC
9792 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
9793
9794 /* We expect that the literal section state has NOT been
9795 modified yet. */
9c2799c2 9796 gas_assert (lit_fragP->fr_type == rs_machine_dependent
e0001a05
NC
9797 && lit_fragP->fr_subtype == RELAX_LITERAL);
9798 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
9799
9800 /* We need to mark this section for another iteration
9801 of relaxation. */
9802 (*stretched_p)++;
9803 }
9804 }
9805
43cd72b9 9806 if (negatable_branch && istack.ninsn > 1)
1d19a770 9807 update_next_frag_state (fragP);
e0001a05 9808
a82c7d90
DW
9809 /* If last insn is a jump, and it cannot reach its target, try to find a trampoline. */
9810 if (istack.ninsn > 2 &&
9811 istack.insn[istack.ninsn - 1].insn_type == ITYPE_LABEL &&
9812 istack.insn[istack.ninsn - 2].insn_type == ITYPE_INSN &&
9813 istack.insn[istack.ninsn - 2].opcode == xtensa_j_opcode)
9814 {
9815 TInsn *jinsn = &istack.insn[istack.ninsn - 2];
9816
9817 if (!xg_symbolic_immeds_fit (jinsn, segP, fragP, fragP->fr_offset, total_text_diff))
9818 {
9819 struct trampoline_frag *tf = get_best_trampoline (jinsn, fragP);
9820
9821 if (tf)
9822 {
9823 this_text_diff += init_trampoline_frag (tf);
9824 this_text_diff += add_jump_to_trampoline (tf, fragP);
9825 }
9826 else
9827 {
9828 /* If target symbol is undefined, assume it will reach once linked. */
9829 expressionS *exp = &istack.insn[istack.ninsn - 2].tok[0];
9830
9831 if (exp->X_op == O_symbol && S_IS_DEFINED (exp->X_add_symbol))
9832 {
9833 as_bad_where (fragP->fr_file, fragP->fr_line,
9834 _("jump target out of range; no usable trampoline found"));
9835 }
9836 }
9837 }
9838 }
9839
43cd72b9 9840 return this_text_diff;
e0001a05
NC
9841}
9842
9843\f
9844/* md_convert_frag Hook and Helper Functions. */
9845
7fa3d080
BW
9846static void convert_frag_align_next_opcode (fragS *);
9847static void convert_frag_narrow (segT, fragS *, xtensa_format, int);
9848static void convert_frag_fill_nop (fragS *);
9849static void convert_frag_immed (segT, fragS *, int, xtensa_format, int);
9850
e0001a05 9851void
7fa3d080 9852md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp)
e0001a05 9853{
43cd72b9
BW
9854 static xtensa_insnbuf vbuf = NULL;
9855 xtensa_isa isa = xtensa_default_isa;
9856 int slot;
9857 int num_slots;
9858 xtensa_format fmt;
e0001a05 9859 char *file_name;
d77b99c9 9860 unsigned line;
e0001a05
NC
9861
9862 as_where (&file_name, &line);
9863 new_logical_line (fragp->fr_file, fragp->fr_line);
9864
9865 switch (fragp->fr_subtype)
9866 {
9867 case RELAX_ALIGN_NEXT_OPCODE:
9868 /* Always convert. */
9869 convert_frag_align_next_opcode (fragp);
9870 break;
9871
9872 case RELAX_DESIRE_ALIGN:
9873 /* Do nothing. If not aligned already, too bad. */
9874 break;
9875
43cd72b9
BW
9876 case RELAX_LITERAL:
9877 case RELAX_LITERAL_FINAL:
9878 break;
9879
9880 case RELAX_SLOTS:
9881 if (vbuf == NULL)
9882 vbuf = xtensa_insnbuf_alloc (isa);
9883
d77b99c9
BW
9884 xtensa_insnbuf_from_chars
9885 (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0);
43cd72b9
BW
9886 fmt = xtensa_format_decode (isa, vbuf);
9887 num_slots = xtensa_format_num_slots (isa, fmt);
9888
9889 for (slot = 0; slot < num_slots; slot++)
9890 {
9891 switch (fragp->tc_frag_data.slot_subtypes[slot])
9892 {
9893 case RELAX_NARROW:
9894 convert_frag_narrow (sec, fragp, fmt, slot);
9895 break;
9896
9897 case RELAX_IMMED:
9898 case RELAX_IMMED_STEP1:
9899 case RELAX_IMMED_STEP2:
b81bf389 9900 case RELAX_IMMED_STEP3:
43cd72b9
BW
9901 /* Place the immediate. */
9902 convert_frag_immed
9903 (sec, fragp,
9904 fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
9905 fmt, slot);
9906 break;
9907
9908 default:
9909 /* This is OK because some slots could have
9910 relaxations and others have none. */
9911 break;
9912 }
9913 }
9914 break;
9915
9916 case RELAX_UNREACHABLE:
9917 memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var);
9918 fragp->fr_fix += fragp->tc_frag_data.text_expansion[0];
9919 fragp->fr_var -= fragp->tc_frag_data.text_expansion[0];
9920 frag_wane (fragp);
e0001a05
NC
9921 break;
9922
43cd72b9
BW
9923 case RELAX_MAYBE_UNREACHABLE:
9924 case RELAX_MAYBE_DESIRE_ALIGN:
9925 frag_wane (fragp);
e0001a05
NC
9926 break;
9927
43cd72b9
BW
9928 case RELAX_FILL_NOP:
9929 convert_frag_fill_nop (fragp);
e0001a05
NC
9930 break;
9931
9932 case RELAX_LITERAL_NR:
9933 if (use_literal_section)
9934 {
9935 /* This should have been handled during relaxation. When
9936 relaxing a code segment, literals sometimes need to be
9937 added to the corresponding literal segment. If that
9938 literal segment has already been relaxed, then we end up
9939 in this situation. Marking the literal segments as data
9940 would make this happen less often (since GAS always relaxes
9941 code before data), but we could still get into trouble if
9942 there are instructions in a segment that is not marked as
9943 containing code. Until we can implement a better solution,
9944 cheat and adjust the addresses of all the following frags.
9945 This could break subsequent alignments, but the linker's
9946 literal coalescing will do that anyway. */
9947
9948 fragS *f;
9949 fragp->fr_subtype = RELAX_LITERAL_FINAL;
9c2799c2 9950 gas_assert (fragp->tc_frag_data.unreported_expansion == 4);
e0001a05
NC
9951 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
9952 fragp->fr_var -= 4;
9953 fragp->fr_fix += 4;
9954 for (f = fragp->fr_next; f; f = f->fr_next)
9955 f->fr_address += 4;
9956 }
9957 else
9958 as_bad (_("invalid relaxation fragment result"));
9959 break;
a82c7d90
DW
9960
9961 case RELAX_TRAMPOLINE:
9962 break;
e0001a05
NC
9963 }
9964
9965 fragp->fr_var = 0;
9966 new_logical_line (file_name, line);
9967}
9968
9969
7fa3d080
BW
9970static void
9971convert_frag_align_next_opcode (fragS *fragp)
e0001a05
NC
9972{
9973 char *nop_buf; /* Location for Writing. */
e0001a05
NC
9974 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
9975 addressT aligned_address;
d77b99c9
BW
9976 offsetT fill_size;
9977 int nop, nop_count;
e0001a05
NC
9978
9979 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
9980 fragp->fr_fix);
9981 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
9982 nop_count = get_text_align_nop_count (fill_size, use_no_density);
9983 nop_buf = fragp->fr_literal + fragp->fr_fix;
9984
d77b99c9 9985 for (nop = 0; nop < nop_count; nop++)
e0001a05 9986 {
d77b99c9
BW
9987 int nop_size;
9988 nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density);
e0001a05
NC
9989
9990 assemble_nop (nop_size, nop_buf);
9991 nop_buf += nop_size;
9992 }
9993
9994 fragp->fr_fix += fill_size;
9995 fragp->fr_var -= fill_size;
9996}
9997
9998
9999static void
7fa3d080 10000convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot)
e0001a05 10001{
43cd72b9 10002 TInsn tinsn, single_target;
84b08ed9 10003 int size, old_size, diff;
e0001a05
NC
10004 offsetT frag_offset;
10005
9c2799c2 10006 gas_assert (slot == 0);
43cd72b9
BW
10007 tinsn_from_chars (&tinsn, fragP->fr_opcode, 0);
10008
b5e4a23d 10009 if (fragP->tc_frag_data.is_aligning_branch == 1)
43cd72b9 10010 {
9c2799c2 10011 gas_assert (fragP->tc_frag_data.text_expansion[0] == 1
43cd72b9
BW
10012 || fragP->tc_frag_data.text_expansion[0] == 0);
10013 convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0],
10014 fmt, slot);
10015 return;
10016 }
10017
10018 if (fragP->tc_frag_data.text_expansion[0] == 0)
e0001a05
NC
10019 {
10020 /* No conversion. */
10021 fragP->fr_var = 0;
10022 return;
10023 }
10024
9c2799c2 10025 gas_assert (fragP->fr_opcode != NULL);
e0001a05 10026
43cd72b9
BW
10027 /* Frags in this relaxation state should only contain
10028 single instruction bundles. */
10029 tinsn_immed_from_frag (&tinsn, fragP, 0);
e0001a05
NC
10030
10031 /* Just convert it to a wide form.... */
10032 size = 0;
43cd72b9 10033 old_size = xg_get_single_size (tinsn.opcode);
e0001a05
NC
10034
10035 tinsn_init (&single_target);
10036 frag_offset = fragP->fr_opcode - fragP->fr_literal;
10037
84b08ed9 10038 if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE))
43cd72b9
BW
10039 {
10040 as_bad (_("unable to widen instruction"));
10041 return;
10042 }
10043
10044 size = xg_get_single_size (single_target.opcode);
b2d179be
BW
10045 xg_emit_insn_to_buf (&single_target, fragP->fr_opcode, fragP,
10046 frag_offset, TRUE);
e0001a05
NC
10047
10048 diff = size - old_size;
9c2799c2
NC
10049 gas_assert (diff >= 0);
10050 gas_assert (diff <= fragP->fr_var);
e0001a05
NC
10051 fragP->fr_var -= diff;
10052 fragP->fr_fix += diff;
10053
10054 /* clean it up */
10055 fragP->fr_var = 0;
10056}
10057
10058
10059static void
7fa3d080 10060convert_frag_fill_nop (fragS *fragP)
43cd72b9
BW
10061{
10062 char *loc = &fragP->fr_literal[fragP->fr_fix];
10063 int size = fragP->tc_frag_data.text_expansion[0];
9c2799c2 10064 gas_assert ((unsigned) size == (fragP->fr_next->fr_address
43cd72b9
BW
10065 - fragP->fr_address - fragP->fr_fix));
10066 if (size == 0)
10067 {
10068 /* No conversion. */
10069 fragP->fr_var = 0;
10070 return;
10071 }
10072 assemble_nop (size, loc);
10073 fragP->tc_frag_data.is_insn = TRUE;
10074 fragP->fr_var -= size;
10075 fragP->fr_fix += size;
10076 frag_wane (fragP);
10077}
10078
10079
7fa3d080
BW
10080static fixS *fix_new_exp_in_seg
10081 (segT, subsegT, fragS *, int, int, expressionS *, int,
10082 bfd_reloc_code_real_type);
10083static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *);
10084
43cd72b9 10085static void
7fa3d080
BW
10086convert_frag_immed (segT segP,
10087 fragS *fragP,
10088 int min_steps,
10089 xtensa_format fmt,
10090 int slot)
e0001a05
NC
10091{
10092 char *immed_instr = fragP->fr_opcode;
43cd72b9 10093 TInsn orig_tinsn;
e0001a05 10094 bfd_boolean expanded = FALSE;
e0001a05 10095 bfd_boolean branch_jmp_to_next = FALSE;
43cd72b9 10096 char *fr_opcode = fragP->fr_opcode;
43cd72b9 10097 xtensa_isa isa = xtensa_default_isa;
def13efb 10098 bfd_boolean from_wide_insn = FALSE;
43cd72b9
BW
10099 int bytes;
10100 bfd_boolean is_loop;
e0001a05 10101
9c2799c2 10102 gas_assert (fr_opcode != NULL);
e0001a05 10103
b5e4a23d 10104 xg_clear_vinsn (&cur_vinsn);
e0001a05 10105
b5e4a23d 10106 vinsn_from_chars (&cur_vinsn, fr_opcode);
b2d179be 10107 if (cur_vinsn.num_slots > 1)
def13efb 10108 from_wide_insn = TRUE;
e0001a05 10109
b5e4a23d 10110 orig_tinsn = cur_vinsn.slots[slot];
43cd72b9
BW
10111 tinsn_immed_from_frag (&orig_tinsn, fragP, slot);
10112
10113 is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1;
e0001a05 10114
b08b5071 10115 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
43cd72b9 10116 branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP);
e0001a05
NC
10117
10118 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
10119 {
10120 /* Conversion just inserts a NOP and marks the fix as completed. */
43cd72b9
BW
10121 bytes = xtensa_format_length (isa, fmt);
10122 if (bytes >= 4)
10123 {
b5e4a23d
BW
10124 cur_vinsn.slots[slot].opcode =
10125 xtensa_format_slot_nop_opcode (isa, cur_vinsn.format, slot);
10126 cur_vinsn.slots[slot].ntok = 0;
43cd72b9
BW
10127 }
10128 else
10129 {
10130 bytes += fragP->tc_frag_data.text_expansion[0];
9c2799c2 10131 gas_assert (bytes == 2 || bytes == 3);
b5e4a23d 10132 build_nop (&cur_vinsn.slots[0], bytes);
43cd72b9
BW
10133 fragP->fr_fix += fragP->tc_frag_data.text_expansion[0];
10134 }
e7da6241 10135 vinsn_to_insnbuf (&cur_vinsn, fr_opcode, frag_now, TRUE);
d77b99c9 10136 xtensa_insnbuf_to_chars
b5e4a23d 10137 (isa, cur_vinsn.insnbuf, (unsigned char *) fr_opcode, 0);
e0001a05
NC
10138 fragP->fr_var = 0;
10139 }
7c834684 10140 else
e0001a05 10141 {
43cd72b9
BW
10142 /* Here is the fun stuff: Get the immediate field from this
10143 instruction. If it fits, we're done. If not, find the next
10144 instruction sequence that fits. */
10145
e0001a05
NC
10146 IStack istack;
10147 int i;
10148 symbolS *lit_sym = NULL;
10149 int total_size = 0;
43cd72b9 10150 int target_offset = 0;
e0001a05
NC
10151 int old_size;
10152 int diff;
10153 symbolS *gen_label = NULL;
10154 offsetT frag_offset;
43cd72b9 10155 bfd_boolean first = TRUE;
e0001a05 10156
43cd72b9 10157 /* It does not fit. Find something that does and
e0001a05 10158 convert immediately. */
43cd72b9 10159 frag_offset = fr_opcode - fragP->fr_literal;
e0001a05 10160 istack_init (&istack);
43cd72b9 10161 xg_assembly_relax (&istack, &orig_tinsn,
e0001a05
NC
10162 segP, fragP, frag_offset, min_steps, 0);
10163
43cd72b9 10164 old_size = xtensa_format_length (isa, fmt);
e0001a05
NC
10165
10166 /* Assemble this right inline. */
10167
10168 /* First, create the mapping from a label name to the REAL label. */
43cd72b9 10169 target_offset = 0;
e0001a05
NC
10170 for (i = 0; i < istack.ninsn; i++)
10171 {
43cd72b9 10172 TInsn *tinsn = &istack.insn[i];
e0001a05
NC
10173 fragS *lit_frag;
10174
43cd72b9 10175 switch (tinsn->insn_type)
e0001a05
NC
10176 {
10177 case ITYPE_LITERAL:
10178 if (lit_sym != NULL)
10179 as_bad (_("multiple literals in expansion"));
10180 /* First find the appropriate space in the literal pool. */
43cd72b9 10181 lit_frag = fragP->tc_frag_data.literal_frags[slot];
e0001a05
NC
10182 if (lit_frag == NULL)
10183 as_bad (_("no registered fragment for literal"));
43cd72b9 10184 if (tinsn->ntok != 1)
e0001a05
NC
10185 as_bad (_("number of literal tokens != 1"));
10186
10187 /* Set the literal symbol and add a fixup. */
10188 lit_sym = lit_frag->fr_symbol;
10189 break;
10190
10191 case ITYPE_LABEL:
43cd72b9
BW
10192 if (align_targets && !is_loop)
10193 {
10194 fragS *unreach = fragP->fr_next;
10195 while (!(unreach->fr_type == rs_machine_dependent
10196 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
10197 || unreach->fr_subtype == RELAX_UNREACHABLE)))
10198 {
10199 unreach = unreach->fr_next;
10200 }
10201
9c2799c2 10202 gas_assert (unreach->fr_type == rs_machine_dependent
43cd72b9
BW
10203 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
10204 || unreach->fr_subtype == RELAX_UNREACHABLE));
10205
10206 target_offset += unreach->tc_frag_data.text_expansion[0];
10207 }
9c2799c2 10208 gas_assert (gen_label == NULL);
e0001a05 10209 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg,
43cd72b9
BW
10210 fr_opcode - fragP->fr_literal
10211 + target_offset, fragP);
e0001a05
NC
10212 break;
10213
10214 case ITYPE_INSN:
def13efb 10215 if (first && from_wide_insn)
43cd72b9
BW
10216 {
10217 target_offset += xtensa_format_length (isa, fmt);
10218 first = FALSE;
10219 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
10220 target_offset += xg_get_single_size (tinsn->opcode);
10221 }
10222 else
10223 target_offset += xg_get_single_size (tinsn->opcode);
e0001a05
NC
10224 break;
10225 }
10226 }
10227
10228 total_size = 0;
43cd72b9 10229 first = TRUE;
e0001a05
NC
10230 for (i = 0; i < istack.ninsn; i++)
10231 {
43cd72b9 10232 TInsn *tinsn = &istack.insn[i];
e0001a05
NC
10233 fragS *lit_frag;
10234 int size;
10235 segT target_seg;
43cd72b9 10236 bfd_reloc_code_real_type reloc_type;
e0001a05 10237
43cd72b9 10238 switch (tinsn->insn_type)
e0001a05
NC
10239 {
10240 case ITYPE_LITERAL:
43cd72b9
BW
10241 lit_frag = fragP->tc_frag_data.literal_frags[slot];
10242 /* Already checked. */
9c2799c2
NC
10243 gas_assert (lit_frag != NULL);
10244 gas_assert (lit_sym != NULL);
10245 gas_assert (tinsn->ntok == 1);
43cd72b9 10246 /* Add a fixup. */
e0001a05 10247 target_seg = S_GET_SEGMENT (lit_sym);
9c2799c2 10248 gas_assert (target_seg);
28dbbc02 10249 reloc_type = map_operator_to_reloc (tinsn->tok[0].X_op, TRUE);
e0001a05 10250 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
43cd72b9 10251 &tinsn->tok[0], FALSE, reloc_type);
e0001a05
NC
10252 break;
10253
10254 case ITYPE_LABEL:
10255 break;
10256
10257 case ITYPE_INSN:
43cd72b9
BW
10258 xg_resolve_labels (tinsn, gen_label);
10259 xg_resolve_literals (tinsn, lit_sym);
def13efb 10260 if (from_wide_insn && first)
43cd72b9
BW
10261 {
10262 first = FALSE;
10263 if (opcode_fits_format_slot (tinsn->opcode, fmt, slot))
10264 {
b5e4a23d 10265 cur_vinsn.slots[slot] = *tinsn;
43cd72b9
BW
10266 }
10267 else
10268 {
b5e4a23d 10269 cur_vinsn.slots[slot].opcode =
43cd72b9 10270 xtensa_format_slot_nop_opcode (isa, fmt, slot);
b5e4a23d 10271 cur_vinsn.slots[slot].ntok = 0;
43cd72b9 10272 }
b5e4a23d
BW
10273 vinsn_to_insnbuf (&cur_vinsn, immed_instr, fragP, TRUE);
10274 xtensa_insnbuf_to_chars (isa, cur_vinsn.insnbuf,
d77b99c9 10275 (unsigned char *) immed_instr, 0);
43cd72b9
BW
10276 fragP->tc_frag_data.is_insn = TRUE;
10277 size = xtensa_format_length (isa, fmt);
10278 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
10279 {
43cd72b9 10280 xg_emit_insn_to_buf
b2d179be 10281 (tinsn, immed_instr + size, fragP,
43cd72b9
BW
10282 immed_instr - fragP->fr_literal + size, TRUE);
10283 size += xg_get_single_size (tinsn->opcode);
10284 }
10285 }
10286 else
10287 {
43cd72b9 10288 size = xg_get_single_size (tinsn->opcode);
b2d179be 10289 xg_emit_insn_to_buf (tinsn, immed_instr, fragP,
43cd72b9 10290 immed_instr - fragP->fr_literal, TRUE);
43cd72b9 10291 }
e0001a05 10292 immed_instr += size;
43cd72b9 10293 total_size += size;
e0001a05
NC
10294 break;
10295 }
10296 }
10297
10298 diff = total_size - old_size;
9c2799c2 10299 gas_assert (diff >= 0);
e0001a05
NC
10300 if (diff != 0)
10301 expanded = TRUE;
9c2799c2 10302 gas_assert (diff <= fragP->fr_var);
e0001a05
NC
10303 fragP->fr_var -= diff;
10304 fragP->fr_fix += diff;
10305 }
10306
e0001a05 10307 /* Check for undefined immediates in LOOP instructions. */
43cd72b9 10308 if (is_loop)
e0001a05
NC
10309 {
10310 symbolS *sym;
43cd72b9 10311 sym = orig_tinsn.tok[1].X_add_symbol;
e0001a05
NC
10312 if (sym != NULL && !S_IS_DEFINED (sym))
10313 {
10314 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
10315 return;
10316 }
43cd72b9 10317 sym = orig_tinsn.tok[1].X_op_symbol;
e0001a05
NC
10318 if (sym != NULL && !S_IS_DEFINED (sym))
10319 {
10320 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
10321 return;
10322 }
10323 }
10324
43cd72b9
BW
10325 if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1)
10326 convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn);
e0001a05 10327
43cd72b9 10328 if (expanded && is_direct_call_opcode (orig_tinsn.opcode))
e0001a05
NC
10329 {
10330 /* Add an expansion note on the expanded instruction. */
10331 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
43cd72b9 10332 &orig_tinsn.tok[0], TRUE,
e0001a05 10333 BFD_RELOC_XTENSA_ASM_EXPAND);
e0001a05
NC
10334 }
10335}
10336
10337
10338/* Add a new fix expression into the desired segment. We have to
10339 switch to that segment to do this. */
10340
10341static fixS *
7fa3d080
BW
10342fix_new_exp_in_seg (segT new_seg,
10343 subsegT new_subseg,
10344 fragS *frag,
10345 int where,
10346 int size,
10347 expressionS *exp,
10348 int pcrel,
10349 bfd_reloc_code_real_type r_type)
e0001a05
NC
10350{
10351 fixS *new_fix;
10352 segT seg = now_seg;
10353 subsegT subseg = now_subseg;
43cd72b9 10354
9c2799c2 10355 gas_assert (new_seg != 0);
e0001a05
NC
10356 subseg_set (new_seg, new_subseg);
10357
e0001a05
NC
10358 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
10359 subseg_set (seg, subseg);
10360 return new_fix;
10361}
10362
10363
43cd72b9
BW
10364/* Relax a loop instruction so that it can span loop >256 bytes.
10365
10366 loop as, .L1
10367 .L0:
10368 rsr as, LEND
10369 wsr as, LBEG
10370 addi as, as, lo8 (label-.L1)
10371 addmi as, as, mid8 (label-.L1)
10372 wsr as, LEND
10373 isync
10374 rsr as, LCOUNT
10375 addi as, as, 1
10376 .L1:
10377 <<body>>
10378 label:
10379*/
e0001a05
NC
10380
10381static void
7fa3d080 10382convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn)
e0001a05
NC
10383{
10384 TInsn loop_insn;
10385 TInsn addi_insn;
10386 TInsn addmi_insn;
10387 unsigned long target;
10388 static xtensa_insnbuf insnbuf = NULL;
10389 unsigned int loop_length, loop_length_hi, loop_length_lo;
10390 xtensa_isa isa = xtensa_default_isa;
10391 addressT loop_offset;
10392 addressT addi_offset = 9;
10393 addressT addmi_offset = 12;
43cd72b9 10394 fragS *next_fragP;
d77b99c9 10395 int target_count;
e0001a05
NC
10396
10397 if (!insnbuf)
10398 insnbuf = xtensa_insnbuf_alloc (isa);
10399
10400 /* Get the loop offset. */
43cd72b9 10401 loop_offset = get_expanded_loop_offset (tinsn->opcode);
e0001a05 10402
43cd72b9
BW
10403 /* Validate that there really is a LOOP at the loop_offset. Because
10404 loops are not bundleable, we can assume that the instruction will be
10405 in slot 0. */
10406 tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0);
10407 tinsn_immed_from_frag (&loop_insn, fragP, 0);
10408
9c2799c2 10409 gas_assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1);
e0001a05
NC
10410 addi_offset += loop_offset;
10411 addmi_offset += loop_offset;
10412
9c2799c2 10413 gas_assert (tinsn->ntok == 2);
b08b5071
BW
10414 if (tinsn->tok[1].X_op == O_constant)
10415 target = tinsn->tok[1].X_add_number;
10416 else if (tinsn->tok[1].X_op == O_symbol)
10417 {
10418 /* Find the fragment. */
10419 symbolS *sym = tinsn->tok[1].X_add_symbol;
9c2799c2 10420 gas_assert (S_GET_SEGMENT (sym) == segP
b08b5071
BW
10421 || S_GET_SEGMENT (sym) == absolute_section);
10422 target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number);
10423 }
10424 else
10425 {
10426 as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op);
10427 target = 0;
10428 }
e0001a05 10429
e0001a05
NC
10430 loop_length = target - (fragP->fr_address + fragP->fr_fix);
10431 loop_length_hi = loop_length & ~0x0ff;
10432 loop_length_lo = loop_length & 0x0ff;
10433 if (loop_length_lo >= 128)
10434 {
10435 loop_length_lo -= 256;
10436 loop_length_hi += 256;
10437 }
10438
43cd72b9 10439 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
e0001a05
NC
10440 32512. If the loop is larger than that, then we just fail. */
10441 if (loop_length_hi > 32512)
10442 as_bad_where (fragP->fr_file, fragP->fr_line,
10443 _("loop too long for LOOP instruction"));
10444
43cd72b9 10445 tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0);
9c2799c2 10446 gas_assert (addi_insn.opcode == xtensa_addi_opcode);
e0001a05 10447
43cd72b9 10448 tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0);
9c2799c2 10449 gas_assert (addmi_insn.opcode == xtensa_addmi_opcode);
e0001a05
NC
10450
10451 set_expr_const (&addi_insn.tok[2], loop_length_lo);
10452 tinsn_to_insnbuf (&addi_insn, insnbuf);
43cd72b9 10453
e0001a05 10454 fragP->tc_frag_data.is_insn = TRUE;
d77b99c9
BW
10455 xtensa_insnbuf_to_chars
10456 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0);
e0001a05
NC
10457
10458 set_expr_const (&addmi_insn.tok[2], loop_length_hi);
10459 tinsn_to_insnbuf (&addmi_insn, insnbuf);
d77b99c9
BW
10460 xtensa_insnbuf_to_chars
10461 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0);
43cd72b9
BW
10462
10463 /* Walk through all of the frags from here to the loop end
10464 and mark them as no_transform to keep them from being modified
10465 by the linker. If we ever have a relocation for the
10466 addi/addmi of the difference of two symbols we can remove this. */
10467
10468 target_count = 0;
10469 for (next_fragP = fragP; next_fragP != NULL;
10470 next_fragP = next_fragP->fr_next)
10471 {
b08b5071 10472 next_fragP->tc_frag_data.is_no_transform = TRUE;
43cd72b9
BW
10473 if (next_fragP->tc_frag_data.is_loop_target)
10474 target_count++;
10475 if (target_count == 2)
10476 break;
10477 }
e0001a05
NC
10478}
10479
b08b5071
BW
10480\f
10481/* A map that keeps information on a per-subsegment basis. This is
10482 maintained during initial assembly, but is invalid once the
10483 subsegments are smashed together. I.E., it cannot be used during
10484 the relaxation. */
e0001a05 10485
b08b5071 10486typedef struct subseg_map_struct
e0001a05 10487{
b08b5071
BW
10488 /* the key */
10489 segT seg;
10490 subsegT subseg;
e0001a05 10491
b08b5071
BW
10492 /* the data */
10493 unsigned flags;
10494 float total_freq; /* fall-through + branch target frequency */
10495 float target_freq; /* branch target frequency alone */
10496
10497 struct subseg_map_struct *next;
10498} subseg_map;
e0001a05 10499
e0001a05 10500
e0001a05
NC
10501static subseg_map *sseg_map = NULL;
10502
43cd72b9 10503static subseg_map *
7fa3d080 10504get_subseg_info (segT seg, subsegT subseg)
e0001a05
NC
10505{
10506 subseg_map *subseg_e;
10507
10508 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
e0001a05 10509 {
43cd72b9 10510 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
b08b5071 10511 break;
e0001a05 10512 }
b08b5071
BW
10513 return subseg_e;
10514}
10515
10516
10517static subseg_map *
10518add_subseg_info (segT seg, subsegT subseg)
10519{
10520 subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map));
43cd72b9
BW
10521 memset (subseg_e, 0, sizeof (subseg_map));
10522 subseg_e->seg = seg;
10523 subseg_e->subseg = subseg;
10524 subseg_e->flags = 0;
10525 /* Start off considering every branch target very important. */
b08b5071
BW
10526 subseg_e->target_freq = 1.0;
10527 subseg_e->total_freq = 1.0;
43cd72b9
BW
10528 subseg_e->next = sseg_map;
10529 sseg_map = subseg_e;
43cd72b9
BW
10530 return subseg_e;
10531}
e0001a05 10532
7fa3d080
BW
10533
10534static unsigned
10535get_last_insn_flags (segT seg, subsegT subseg)
10536{
10537 subseg_map *subseg_e = get_subseg_info (seg, subseg);
b08b5071
BW
10538 if (subseg_e)
10539 return subseg_e->flags;
10540 return 0;
7fa3d080
BW
10541}
10542
10543
43cd72b9 10544static void
7fa3d080
BW
10545set_last_insn_flags (segT seg,
10546 subsegT subseg,
10547 unsigned fl,
10548 bfd_boolean val)
43cd72b9
BW
10549{
10550 subseg_map *subseg_e = get_subseg_info (seg, subseg);
b08b5071
BW
10551 if (! subseg_e)
10552 subseg_e = add_subseg_info (seg, subseg);
e0001a05
NC
10553 if (val)
10554 subseg_e->flags |= fl;
10555 else
10556 subseg_e->flags &= ~fl;
10557}
10558
b08b5071
BW
10559
10560static float
10561get_subseg_total_freq (segT seg, subsegT subseg)
10562{
10563 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10564 if (subseg_e)
10565 return subseg_e->total_freq;
10566 return 1.0;
10567}
10568
10569
10570static float
10571get_subseg_target_freq (segT seg, subsegT subseg)
10572{
10573 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10574 if (subseg_e)
10575 return subseg_e->target_freq;
10576 return 1.0;
10577}
10578
10579
10580static void
10581set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f)
10582{
10583 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10584 if (! subseg_e)
10585 subseg_e = add_subseg_info (seg, subseg);
10586 subseg_e->total_freq = total_f;
10587 subseg_e->target_freq = target_f;
10588}
10589
e0001a05
NC
10590\f
10591/* Segment Lists and emit_state Stuff. */
10592
e0001a05 10593static void
7fa3d080 10594xtensa_move_seg_list_to_beginning (seg_list *head)
e0001a05
NC
10595{
10596 head = head->next;
10597 while (head)
10598 {
10599 segT literal_section = head->seg;
10600
10601 /* Move the literal section to the front of the section list. */
9c2799c2 10602 gas_assert (literal_section);
69852798
AM
10603 if (literal_section != stdoutput->sections)
10604 {
10605 bfd_section_list_remove (stdoutput, literal_section);
10606 bfd_section_list_prepend (stdoutput, literal_section);
10607 }
e0001a05
NC
10608 head = head->next;
10609 }
10610}
10611
10612
7fa3d080
BW
10613static void mark_literal_frags (seg_list *);
10614
10615static void
10616xtensa_move_literals (void)
e0001a05
NC
10617{
10618 seg_list *segment;
10619 frchainS *frchain_from, *frchain_to;
87975d2a 10620 fragS *search_frag, *next_frag, *literal_pool, *insert_after;
e0001a05
NC
10621 fragS **frag_splice;
10622 emit_state state;
10623 segT dest_seg;
10624 fixS *fix, *next_fix, **fix_splice;
82e7541d 10625 sym_list *lit;
e0001a05 10626
a7877748 10627 mark_literal_frags (literal_head->next);
e0001a05
NC
10628
10629 if (use_literal_section)
10630 return;
10631
74869ac7 10632 for (segment = literal_head->next; segment; segment = segment->next)
e0001a05 10633 {
74869ac7
BW
10634 /* Keep the literals for .init and .fini in separate sections. */
10635 if (!strcmp (segment_name (segment->seg), INIT_SECTION_NAME)
10636 || !strcmp (segment_name (segment->seg), FINI_SECTION_NAME))
10637 continue;
10638
e0001a05
NC
10639 frchain_from = seg_info (segment->seg)->frchainP;
10640 search_frag = frchain_from->frch_root;
10641 literal_pool = NULL;
10642 frchain_to = NULL;
10643 frag_splice = &(frchain_from->frch_root);
10644
10645 while (!search_frag->tc_frag_data.literal_frag)
10646 {
9c2799c2 10647 gas_assert (search_frag->fr_fix == 0
e0001a05
NC
10648 || search_frag->fr_type == rs_align);
10649 search_frag = search_frag->fr_next;
10650 }
10651
9c2799c2 10652 gas_assert (search_frag->tc_frag_data.literal_frag->fr_subtype
e0001a05
NC
10653 == RELAX_LITERAL_POOL_BEGIN);
10654 xtensa_switch_section_emit_state (&state, segment->seg, 0);
10655
10656 /* Make sure that all the frags in this series are closed, and
10657 that there is at least one left over of zero-size. This
10658 prevents us from making a segment with an frchain without any
10659 frags in it. */
10660 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 10661 xtensa_set_frag_assembly_state (frag_now);
e0001a05 10662 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 10663 xtensa_set_frag_assembly_state (frag_now);
e0001a05 10664
43cd72b9 10665 while (search_frag != frag_now)
e0001a05
NC
10666 {
10667 next_frag = search_frag->fr_next;
10668
43cd72b9 10669 /* First, move the frag out of the literal section and
e0001a05
NC
10670 to the appropriate place. */
10671 if (search_frag->tc_frag_data.literal_frag)
10672 {
10673 literal_pool = search_frag->tc_frag_data.literal_frag;
9c2799c2 10674 gas_assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
dd49a749 10675 frchain_to = literal_pool->tc_frag_data.lit_frchain;
9c2799c2 10676 gas_assert (frchain_to);
e0001a05 10677 }
c48aaca0 10678 insert_after = literal_pool->tc_frag_data.literal_frag;
dd49a749 10679 dest_seg = insert_after->fr_next->tc_frag_data.lit_seg;
43cd72b9 10680
e0001a05
NC
10681 *frag_splice = next_frag;
10682 search_frag->fr_next = insert_after->fr_next;
10683 insert_after->fr_next = search_frag;
10684 search_frag->tc_frag_data.lit_seg = dest_seg;
c48aaca0 10685 literal_pool->tc_frag_data.literal_frag = search_frag;
e0001a05
NC
10686
10687 /* Now move any fixups associated with this frag to the
10688 right section. */
10689 fix = frchain_from->fix_root;
10690 fix_splice = &(frchain_from->fix_root);
10691 while (fix)
10692 {
10693 next_fix = fix->fx_next;
10694 if (fix->fx_frag == search_frag)
10695 {
10696 *fix_splice = next_fix;
10697 fix->fx_next = frchain_to->fix_root;
10698 frchain_to->fix_root = fix;
10699 if (frchain_to->fix_tail == NULL)
10700 frchain_to->fix_tail = fix;
10701 }
10702 else
10703 fix_splice = &(fix->fx_next);
10704 fix = next_fix;
10705 }
10706 search_frag = next_frag;
10707 }
10708
10709 if (frchain_from->fix_root != NULL)
10710 {
10711 frchain_from = seg_info (segment->seg)->frchainP;
10712 as_warn (_("fixes not all moved from %s"), segment->seg->name);
10713
9c2799c2 10714 gas_assert (frchain_from->fix_root == NULL);
e0001a05
NC
10715 }
10716 frchain_from->fix_tail = NULL;
10717 xtensa_restore_emit_state (&state);
e0001a05
NC
10718 }
10719
82e7541d
BW
10720 /* Now fix up the SEGMENT value for all the literal symbols. */
10721 for (lit = literal_syms; lit; lit = lit->next)
10722 {
10723 symbolS *lit_sym = lit->sym;
91d6fa6a
NC
10724 segT dseg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
10725 if (dseg)
10726 S_SET_SEGMENT (lit_sym, dseg);
82e7541d 10727 }
e0001a05
NC
10728}
10729
10730
a7877748
BW
10731/* Walk over all the frags for segments in a list and mark them as
10732 containing literals. As clunky as this is, we can't rely on frag_var
10733 and frag_variant to get called in all situations. */
10734
10735static void
7fa3d080 10736mark_literal_frags (seg_list *segment)
a7877748
BW
10737{
10738 frchainS *frchain_from;
10739 fragS *search_frag;
10740
10741 while (segment)
10742 {
10743 frchain_from = seg_info (segment->seg)->frchainP;
10744 search_frag = frchain_from->frch_root;
c138bc38 10745 while (search_frag)
a7877748
BW
10746 {
10747 search_frag->tc_frag_data.is_literal = TRUE;
10748 search_frag = search_frag->fr_next;
10749 }
10750 segment = segment->next;
10751 }
10752}
10753
10754
e0001a05 10755static void
7fa3d080 10756xtensa_reorder_seg_list (seg_list *head, segT after)
e0001a05
NC
10757{
10758 /* Move all of the sections in the section list to come
10759 after "after" in the gnu segment list. */
10760
10761 head = head->next;
10762 while (head)
10763 {
10764 segT literal_section = head->seg;
10765
10766 /* Move the literal section after "after". */
9c2799c2 10767 gas_assert (literal_section);
e0001a05
NC
10768 if (literal_section != after)
10769 {
69852798
AM
10770 bfd_section_list_remove (stdoutput, literal_section);
10771 bfd_section_list_insert_after (stdoutput, after, literal_section);
e0001a05
NC
10772 }
10773
10774 head = head->next;
10775 }
10776}
10777
10778
10779/* Push all the literal segments to the end of the gnu list. */
10780
7fa3d080
BW
10781static void
10782xtensa_reorder_segments (void)
e0001a05
NC
10783{
10784 segT sec;
b08b5071 10785 segT last_sec = 0;
e0001a05
NC
10786 int old_count = 0;
10787 int new_count = 0;
10788
10789 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
b08b5071
BW
10790 {
10791 last_sec = sec;
10792 old_count++;
10793 }
e0001a05
NC
10794
10795 /* Now that we have the last section, push all the literal
10796 sections to the end. */
e0001a05 10797 xtensa_reorder_seg_list (literal_head, last_sec);
e0001a05
NC
10798
10799 /* Now perform the final error check. */
10800 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
10801 new_count++;
9c2799c2 10802 gas_assert (new_count == old_count);
e0001a05
NC
10803}
10804
10805
e0001a05
NC
10806/* Change the emit state (seg, subseg, and frag related stuff) to the
10807 correct location. Return a emit_state which can be passed to
10808 xtensa_restore_emit_state to return to current fragment. */
10809
7fa3d080
BW
10810static void
10811xtensa_switch_to_literal_fragment (emit_state *result)
43cd72b9
BW
10812{
10813 if (directive_state[directive_absolute_literals])
10814 {
74869ac7
BW
10815 segT lit4_seg = cache_literal_section (TRUE);
10816 xtensa_switch_section_emit_state (result, lit4_seg, 0);
43cd72b9
BW
10817 }
10818 else
10819 xtensa_switch_to_non_abs_literal_fragment (result);
10820
10821 /* Do a 4-byte align here. */
10822 frag_align (2, 0, 0);
10823 record_alignment (now_seg, 2);
10824}
10825
10826
7fa3d080
BW
10827static void
10828xtensa_switch_to_non_abs_literal_fragment (emit_state *result)
e0001a05 10829{
e0001a05
NC
10830 static bfd_boolean recursive = FALSE;
10831 fragS *pool_location = get_literal_pool_location (now_seg);
74869ac7 10832 segT lit_seg;
c138bc38 10833 bfd_boolean is_init =
e0001a05 10834 (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME));
c138bc38 10835 bfd_boolean is_fini =
e0001a05 10836 (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME));
e0001a05 10837
43cd72b9
BW
10838 if (pool_location == NULL
10839 && !use_literal_section
e0001a05
NC
10840 && !recursive
10841 && !is_init && ! is_fini)
10842 {
43cd72b9 10843 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
74869ac7
BW
10844
10845 /* When we mark a literal pool location, we want to put a frag in
10846 the literal pool that points to it. But to do that, we want to
10847 switch_to_literal_fragment. But literal sections don't have
10848 literal pools, so their location is always null, so we would
10849 recurse forever. This is kind of hacky, but it works. */
10850
e0001a05 10851 recursive = TRUE;
61846f28 10852 xtensa_mark_literal_pool_location ();
e0001a05
NC
10853 recursive = FALSE;
10854 }
10855
74869ac7
BW
10856 lit_seg = cache_literal_section (FALSE);
10857 xtensa_switch_section_emit_state (result, lit_seg, 0);
e0001a05 10858
43cd72b9
BW
10859 if (!use_literal_section
10860 && !is_init && !is_fini
10861 && get_literal_pool_location (now_seg) != pool_location)
e0001a05
NC
10862 {
10863 /* Close whatever frag is there. */
10864 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 10865 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
10866 frag_now->tc_frag_data.literal_frag = pool_location;
10867 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 10868 xtensa_set_frag_assembly_state (frag_now);
e0001a05 10869 }
e0001a05
NC
10870}
10871
10872
10873/* Call this function before emitting data into the literal section.
10874 This is a helper function for xtensa_switch_to_literal_fragment.
10875 This is similar to a .section new_now_seg subseg. */
10876
7fa3d080
BW
10877static void
10878xtensa_switch_section_emit_state (emit_state *state,
10879 segT new_now_seg,
10880 subsegT new_now_subseg)
e0001a05
NC
10881{
10882 state->name = now_seg->name;
10883 state->now_seg = now_seg;
10884 state->now_subseg = now_subseg;
10885 state->generating_literals = generating_literals;
10886 generating_literals++;
2b0210eb 10887 subseg_set (new_now_seg, new_now_subseg);
e0001a05
NC
10888}
10889
10890
10891/* Use to restore the emitting into the normal place. */
10892
7fa3d080
BW
10893static void
10894xtensa_restore_emit_state (emit_state *state)
e0001a05
NC
10895{
10896 generating_literals = state->generating_literals;
2b0210eb 10897 subseg_set (state->now_seg, state->now_subseg);
e0001a05
NC
10898}
10899
10900
74869ac7 10901/* Predicate function used to look up a section in a particular group. */
e0001a05 10902
74869ac7
BW
10903static bfd_boolean
10904match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
e0001a05 10905{
74869ac7
BW
10906 const char *gname = inf;
10907 const char *group_name = elf_group_name (sec);
10908
10909 return (group_name == gname
10910 || (group_name != NULL
10911 && gname != NULL
10912 && strcmp (group_name, gname) == 0));
10913}
e0001a05 10914
e0001a05 10915
74869ac7
BW
10916/* Get the literal section to be used for the current text section.
10917 The result may be cached in the default_lit_sections structure. */
10918
10919static segT
10920cache_literal_section (bfd_boolean use_abs_literals)
10921{
10922 const char *text_name, *group_name = 0;
10923 char *base_name, *name, *suffix;
10924 segT *pcached;
10925 segT seg, current_section;
10926 int current_subsec;
10927 bfd_boolean linkonce = FALSE;
10928
10929 /* Save the current section/subsection. */
10930 current_section = now_seg;
10931 current_subsec = now_subseg;
10932
10933 /* Clear the cached values if they are no longer valid. */
10934 if (now_seg != default_lit_sections.current_text_seg)
b08b5071 10935 {
74869ac7
BW
10936 default_lit_sections.current_text_seg = now_seg;
10937 default_lit_sections.lit_seg = NULL;
10938 default_lit_sections.lit4_seg = NULL;
10939 }
10940
10941 /* Check if the literal section is already cached. */
10942 if (use_abs_literals)
10943 pcached = &default_lit_sections.lit4_seg;
10944 else
10945 pcached = &default_lit_sections.lit_seg;
10946
10947 if (*pcached)
10948 return *pcached;
10949
10950 text_name = default_lit_sections.lit_prefix;
10951 if (! text_name || ! *text_name)
10952 {
10953 text_name = segment_name (current_section);
10954 group_name = elf_group_name (current_section);
10955 linkonce = (current_section->flags & SEC_LINK_ONCE) != 0;
10956 }
10957
10958 base_name = use_abs_literals ? ".lit4" : ".literal";
10959 if (group_name)
10960 {
10961 name = xmalloc (strlen (base_name) + strlen (group_name) + 2);
10962 sprintf (name, "%s.%s", base_name, group_name);
10963 }
10964 else if (strncmp (text_name, ".gnu.linkonce.", linkonce_len) == 0)
10965 {
10966 suffix = strchr (text_name + linkonce_len, '.');
10967
10968 name = xmalloc (linkonce_len + strlen (base_name) + 1
10969 + (suffix ? strlen (suffix) : 0));
10970 strcpy (name, ".gnu.linkonce");
10971 strcat (name, base_name);
10972 if (suffix)
10973 strcat (name, suffix);
10974 linkonce = TRUE;
10975 }
10976 else
10977 {
a89c407e
SA
10978 /* If the section name begins or ends with ".text", then replace
10979 that portion instead of appending an additional suffix. */
74869ac7 10980 size_t len = strlen (text_name);
a89c407e
SA
10981 if (len >= 5
10982 && (strcmp (text_name + len - 5, ".text") == 0
10983 || strncmp (text_name, ".text", 5) == 0))
74869ac7
BW
10984 len -= 5;
10985
10986 name = xmalloc (len + strlen (base_name) + 1);
a89c407e
SA
10987 if (strncmp (text_name, ".text", 5) == 0)
10988 {
10989 strcpy (name, base_name);
10990 strcat (name, text_name + 5);
10991 }
10992 else
10993 {
10994 strcpy (name, text_name);
10995 strcpy (name + len, base_name);
10996 }
b08b5071 10997 }
e0001a05 10998
74869ac7
BW
10999 /* Canonicalize section names to allow renaming literal sections.
11000 The group name, if any, came from the current text section and
11001 has already been canonicalized. */
11002 name = tc_canonicalize_symbol_name (name);
11003
11004 seg = bfd_get_section_by_name_if (stdoutput, name, match_section_group,
11005 (void *) group_name);
11006 if (! seg)
e0001a05 11007 {
74869ac7
BW
11008 flagword flags;
11009
11010 seg = subseg_force_new (name, 0);
11011
11012 if (! use_abs_literals)
b08b5071 11013 {
74869ac7 11014 /* Add the newly created literal segment to the list. */
b08b5071
BW
11015 seg_list *n = (seg_list *) xmalloc (sizeof (seg_list));
11016 n->seg = seg;
74869ac7
BW
11017 n->next = literal_head->next;
11018 literal_head->next = n;
b08b5071 11019 }
74869ac7
BW
11020
11021 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_ALLOC | SEC_LOAD
11022 | (linkonce ? (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD) : 0)
11023 | (use_abs_literals ? SEC_DATA : SEC_CODE));
11024
11025 elf_group_name (seg) = group_name;
11026
11027 bfd_set_section_flags (stdoutput, seg, flags);
b08b5071 11028 bfd_set_section_alignment (stdoutput, seg, 2);
e0001a05
NC
11029 }
11030
74869ac7 11031 *pcached = seg;
b08b5071 11032 subseg_set (current_section, current_subsec);
74869ac7 11033 return seg;
e0001a05
NC
11034}
11035
43cd72b9
BW
11036\f
11037/* Property Tables Stuff. */
11038
7fa3d080
BW
11039#define XTENSA_INSN_SEC_NAME ".xt.insn"
11040#define XTENSA_LIT_SEC_NAME ".xt.lit"
11041#define XTENSA_PROP_SEC_NAME ".xt.prop"
11042
11043typedef bfd_boolean (*frag_predicate) (const fragS *);
11044typedef void (*frag_flags_fn) (const fragS *, frag_flags *);
11045
b08b5071 11046static bfd_boolean get_frag_is_literal (const fragS *);
7fa3d080
BW
11047static void xtensa_create_property_segments
11048 (frag_predicate, frag_predicate, const char *, xt_section_type);
11049static void xtensa_create_xproperty_segments
11050 (frag_flags_fn, const char *, xt_section_type);
532f93bd 11051static bfd_boolean exclude_section_from_property_tables (segT);
7fa3d080
BW
11052static bfd_boolean section_has_property (segT, frag_predicate);
11053static bfd_boolean section_has_xproperty (segT, frag_flags_fn);
11054static void add_xt_block_frags
542f8b94 11055 (segT, xtensa_block_info **, frag_predicate, frag_predicate);
7fa3d080
BW
11056static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *);
11057static void xtensa_frag_flags_init (frag_flags *);
11058static void get_frag_property_flags (const fragS *, frag_flags *);
2f1bf5c1 11059static flagword frag_flags_to_number (const frag_flags *);
542f8b94 11060static void add_xt_prop_frags (segT, xtensa_block_info **, frag_flags_fn);
7fa3d080
BW
11061
11062/* Set up property tables after relaxation. */
11063
11064void
11065xtensa_post_relax_hook (void)
11066{
11067 xtensa_move_seg_list_to_beginning (literal_head);
7fa3d080
BW
11068
11069 xtensa_find_unmarked_state_frags ();
99ded152 11070 xtensa_mark_frags_for_org ();
6a7eedfe 11071 xtensa_mark_difference_of_two_symbols ();
7fa3d080 11072
b29757dc
BW
11073 xtensa_create_property_segments (get_frag_is_literal,
11074 NULL,
11075 XTENSA_LIT_SEC_NAME,
11076 xt_literal_sec);
7fa3d080
BW
11077 xtensa_create_xproperty_segments (get_frag_property_flags,
11078 XTENSA_PROP_SEC_NAME,
11079 xt_prop_sec);
11080
11081 if (warn_unaligned_branch_targets)
11082 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0);
11083 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0);
11084}
11085
11086
43cd72b9
BW
11087/* This function is only meaningful after xtensa_move_literals. */
11088
11089static bfd_boolean
7fa3d080 11090get_frag_is_literal (const fragS *fragP)
43cd72b9 11091{
9c2799c2 11092 gas_assert (fragP != NULL);
43cd72b9
BW
11093 return fragP->tc_frag_data.is_literal;
11094}
11095
11096
43cd72b9 11097static void
7fa3d080
BW
11098xtensa_create_property_segments (frag_predicate property_function,
11099 frag_predicate end_property_function,
11100 const char *section_name_base,
11101 xt_section_type sec_type)
43cd72b9
BW
11102{
11103 segT *seclist;
11104
11105 /* Walk over all of the current segments.
11106 Walk over each fragment
11107 For each non-empty fragment,
11108 Build a property record (append where possible). */
11109
11110 for (seclist = &stdoutput->sections;
11111 seclist && *seclist;
11112 seclist = &(*seclist)->next)
11113 {
11114 segT sec = *seclist;
43cd72b9 11115
532f93bd 11116 if (exclude_section_from_property_tables (sec))
43cd72b9
BW
11117 continue;
11118
11119 if (section_has_property (sec, property_function))
11120 {
542f8b94
BW
11121 segment_info_type *xt_seg_info;
11122 xtensa_block_info **xt_blocks;
51c8ebc1 11123 segT prop_sec = xtensa_make_property_section (sec, section_name_base);
542f8b94
BW
11124
11125 prop_sec->output_section = prop_sec;
11126 subseg_set (prop_sec, 0);
11127 xt_seg_info = seg_info (prop_sec);
11128 xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type];
11129
43cd72b9 11130 /* Walk over all of the frchains here and add new sections. */
542f8b94 11131 add_xt_block_frags (sec, xt_blocks, property_function,
43cd72b9
BW
11132 end_property_function);
11133 }
11134 }
11135
11136 /* Now we fill them out.... */
11137
11138 for (seclist = &stdoutput->sections;
11139 seclist && *seclist;
11140 seclist = &(*seclist)->next)
11141 {
11142 segment_info_type *seginfo;
11143 xtensa_block_info *block;
11144 segT sec = *seclist;
11145
11146 seginfo = seg_info (sec);
11147 block = seginfo->tc_segment_info_data.blocks[sec_type];
11148
11149 if (block)
11150 {
11151 xtensa_block_info *cur_block;
43cd72b9 11152 int num_recs = 0;
d77b99c9 11153 bfd_size_type rec_size;
43cd72b9
BW
11154
11155 for (cur_block = block; cur_block; cur_block = cur_block->next)
11156 num_recs++;
11157
11158 rec_size = num_recs * 8;
11159 bfd_set_section_size (stdoutput, sec, rec_size);
11160
43cd72b9
BW
11161 if (num_recs)
11162 {
43cd72b9 11163 char *frag_data;
542f8b94 11164 int i;
43cd72b9 11165
542f8b94
BW
11166 subseg_set (sec, 0);
11167 frag_data = frag_more (rec_size);
43cd72b9 11168 cur_block = block;
43cd72b9
BW
11169 for (i = 0; i < num_recs; i++)
11170 {
542f8b94 11171 fixS *fix;
e0001a05 11172
43cd72b9 11173 /* Write the fixup. */
9c2799c2 11174 gas_assert (cur_block);
542f8b94
BW
11175 fix = fix_new (frag_now, i * 8, 4,
11176 section_symbol (cur_block->sec),
11177 cur_block->offset,
11178 FALSE, BFD_RELOC_32);
11179 fix->fx_file = "<internal>";
43cd72b9 11180 fix->fx_line = 0;
e0001a05 11181
43cd72b9 11182 /* Write the length. */
542f8b94 11183 md_number_to_chars (&frag_data[4 + i * 8],
43cd72b9
BW
11184 cur_block->size, 4);
11185 cur_block = cur_block->next;
11186 }
542f8b94
BW
11187 frag_wane (frag_now);
11188 frag_new (0);
11189 frag_wane (frag_now);
43cd72b9
BW
11190 }
11191 }
11192 }
e0001a05
NC
11193}
11194
11195
7fa3d080
BW
11196static void
11197xtensa_create_xproperty_segments (frag_flags_fn flag_fn,
11198 const char *section_name_base,
11199 xt_section_type sec_type)
e0001a05
NC
11200{
11201 segT *seclist;
11202
11203 /* Walk over all of the current segments.
43cd72b9
BW
11204 Walk over each fragment.
11205 For each fragment that has instructions,
11206 build an instruction record (append where possible). */
e0001a05
NC
11207
11208 for (seclist = &stdoutput->sections;
11209 seclist && *seclist;
11210 seclist = &(*seclist)->next)
11211 {
11212 segT sec = *seclist;
43cd72b9 11213
532f93bd 11214 if (exclude_section_from_property_tables (sec))
43cd72b9
BW
11215 continue;
11216
11217 if (section_has_xproperty (sec, flag_fn))
e0001a05 11218 {
542f8b94
BW
11219 segment_info_type *xt_seg_info;
11220 xtensa_block_info **xt_blocks;
51c8ebc1 11221 segT prop_sec = xtensa_make_property_section (sec, section_name_base);
542f8b94
BW
11222
11223 prop_sec->output_section = prop_sec;
11224 subseg_set (prop_sec, 0);
11225 xt_seg_info = seg_info (prop_sec);
11226 xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type];
11227
e0001a05 11228 /* Walk over all of the frchains here and add new sections. */
542f8b94 11229 add_xt_prop_frags (sec, xt_blocks, flag_fn);
e0001a05
NC
11230 }
11231 }
11232
11233 /* Now we fill them out.... */
11234
11235 for (seclist = &stdoutput->sections;
11236 seclist && *seclist;
11237 seclist = &(*seclist)->next)
11238 {
11239 segment_info_type *seginfo;
11240 xtensa_block_info *block;
11241 segT sec = *seclist;
43cd72b9 11242
e0001a05
NC
11243 seginfo = seg_info (sec);
11244 block = seginfo->tc_segment_info_data.blocks[sec_type];
11245
11246 if (block)
11247 {
11248 xtensa_block_info *cur_block;
43cd72b9 11249 int num_recs = 0;
d77b99c9 11250 bfd_size_type rec_size;
e0001a05
NC
11251
11252 for (cur_block = block; cur_block; cur_block = cur_block->next)
11253 num_recs++;
11254
43cd72b9 11255 rec_size = num_recs * (8 + 4);
e0001a05 11256 bfd_set_section_size (stdoutput, sec, rec_size);
43cd72b9
BW
11257 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
11258
e0001a05
NC
11259 if (num_recs)
11260 {
e0001a05 11261 char *frag_data;
542f8b94 11262 int i;
e0001a05 11263
542f8b94
BW
11264 subseg_set (sec, 0);
11265 frag_data = frag_more (rec_size);
e0001a05 11266 cur_block = block;
e0001a05
NC
11267 for (i = 0; i < num_recs; i++)
11268 {
542f8b94 11269 fixS *fix;
e0001a05
NC
11270
11271 /* Write the fixup. */
9c2799c2 11272 gas_assert (cur_block);
542f8b94
BW
11273 fix = fix_new (frag_now, i * 12, 4,
11274 section_symbol (cur_block->sec),
11275 cur_block->offset,
11276 FALSE, BFD_RELOC_32);
11277 fix->fx_file = "<internal>";
e0001a05
NC
11278 fix->fx_line = 0;
11279
11280 /* Write the length. */
542f8b94 11281 md_number_to_chars (&frag_data[4 + i * 12],
e0001a05 11282 cur_block->size, 4);
542f8b94 11283 md_number_to_chars (&frag_data[8 + i * 12],
43cd72b9 11284 frag_flags_to_number (&cur_block->flags),
2f1bf5c1 11285 sizeof (flagword));
e0001a05
NC
11286 cur_block = cur_block->next;
11287 }
542f8b94
BW
11288 frag_wane (frag_now);
11289 frag_new (0);
11290 frag_wane (frag_now);
e0001a05
NC
11291 }
11292 }
11293 }
11294}
11295
11296
532f93bd
BW
11297static bfd_boolean
11298exclude_section_from_property_tables (segT sec)
11299{
11300 flagword flags = bfd_get_section_flags (stdoutput, sec);
11301
11302 /* Sections that don't contribute to the memory footprint are excluded. */
11303 if ((flags & SEC_DEBUGGING)
11304 || !(flags & SEC_ALLOC)
11305 || (flags & SEC_MERGE))
11306 return TRUE;
11307
11308 /* Linker cie and fde optimizations mess up property entries for
11309 eh_frame sections, but there is nothing inside them relevant to
11310 property tables anyway. */
11311 if (strcmp (sec->name, ".eh_frame") == 0)
11312 return TRUE;
11313
11314 return FALSE;
11315}
11316
11317
7fa3d080
BW
11318static bfd_boolean
11319section_has_property (segT sec, frag_predicate property_function)
e0001a05
NC
11320{
11321 segment_info_type *seginfo = seg_info (sec);
11322 fragS *fragP;
11323
11324 if (seginfo && seginfo->frchainP)
11325 {
11326 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
11327 {
11328 if (property_function (fragP)
11329 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
11330 return TRUE;
11331 }
11332 }
11333 return FALSE;
11334}
11335
11336
7fa3d080
BW
11337static bfd_boolean
11338section_has_xproperty (segT sec, frag_flags_fn property_function)
43cd72b9
BW
11339{
11340 segment_info_type *seginfo = seg_info (sec);
11341 fragS *fragP;
11342
11343 if (seginfo && seginfo->frchainP)
11344 {
11345 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
11346 {
11347 frag_flags prop_flags;
11348 property_function (fragP, &prop_flags);
11349 if (!xtensa_frag_flags_is_empty (&prop_flags))
11350 return TRUE;
11351 }
11352 }
11353 return FALSE;
11354}
11355
11356
e0001a05
NC
11357/* Two types of block sections exist right now: literal and insns. */
11358
7fa3d080
BW
11359static void
11360add_xt_block_frags (segT sec,
7fa3d080
BW
11361 xtensa_block_info **xt_block,
11362 frag_predicate property_function,
11363 frag_predicate end_property_function)
e0001a05 11364{
e0001a05
NC
11365 fragS *fragP;
11366
e0001a05
NC
11367 /* Build it if needed. */
11368 while (*xt_block != NULL)
11369 xt_block = &(*xt_block)->next;
11370 /* We are either at NULL at the beginning or at the end. */
11371
11372 /* Walk through the frags. */
542f8b94 11373 if (seg_info (sec)->frchainP)
e0001a05 11374 {
542f8b94 11375 for (fragP = seg_info (sec)->frchainP->frch_root;
e0001a05
NC
11376 fragP;
11377 fragP = fragP->fr_next)
11378 {
11379 if (property_function (fragP)
11380 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
11381 {
11382 if (*xt_block != NULL)
11383 {
11384 if ((*xt_block)->offset + (*xt_block)->size
11385 == fragP->fr_address)
11386 (*xt_block)->size += fragP->fr_fix;
11387 else
11388 xt_block = &((*xt_block)->next);
11389 }
11390 if (*xt_block == NULL)
11391 {
43cd72b9
BW
11392 xtensa_block_info *new_block = (xtensa_block_info *)
11393 xmalloc (sizeof (xtensa_block_info));
11394 new_block->sec = sec;
11395 new_block->offset = fragP->fr_address;
11396 new_block->size = fragP->fr_fix;
11397 new_block->next = NULL;
11398 xtensa_frag_flags_init (&new_block->flags);
11399 *xt_block = new_block;
11400 }
11401 if (end_property_function
11402 && end_property_function (fragP))
11403 {
11404 xt_block = &((*xt_block)->next);
11405 }
11406 }
11407 }
11408 }
11409}
11410
11411
11412/* Break the encapsulation of add_xt_prop_frags here. */
11413
7fa3d080
BW
11414static bfd_boolean
11415xtensa_frag_flags_is_empty (const frag_flags *prop_flags)
43cd72b9
BW
11416{
11417 if (prop_flags->is_literal
11418 || prop_flags->is_insn
11419 || prop_flags->is_data
11420 || prop_flags->is_unreachable)
11421 return FALSE;
11422 return TRUE;
11423}
11424
11425
7fa3d080
BW
11426static void
11427xtensa_frag_flags_init (frag_flags *prop_flags)
43cd72b9
BW
11428{
11429 memset (prop_flags, 0, sizeof (frag_flags));
11430}
11431
11432
7fa3d080
BW
11433static void
11434get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags)
43cd72b9
BW
11435{
11436 xtensa_frag_flags_init (prop_flags);
11437 if (fragP->tc_frag_data.is_literal)
11438 prop_flags->is_literal = TRUE;
99ded152
BW
11439 if (fragP->tc_frag_data.is_specific_opcode
11440 || fragP->tc_frag_data.is_no_transform)
1f7efbae
BW
11441 {
11442 prop_flags->is_no_transform = TRUE;
11443 if (xtensa_frag_flags_is_empty (prop_flags))
11444 prop_flags->is_data = TRUE;
11445 }
43cd72b9 11446 if (fragP->tc_frag_data.is_unreachable)
7fa3d080 11447 prop_flags->is_unreachable = TRUE;
43cd72b9
BW
11448 else if (fragP->tc_frag_data.is_insn)
11449 {
11450 prop_flags->is_insn = TRUE;
11451 if (fragP->tc_frag_data.is_loop_target)
11452 prop_flags->insn.is_loop_target = TRUE;
11453 if (fragP->tc_frag_data.is_branch_target)
11454 prop_flags->insn.is_branch_target = TRUE;
43cd72b9
BW
11455 if (fragP->tc_frag_data.is_no_density)
11456 prop_flags->insn.is_no_density = TRUE;
11457 if (fragP->tc_frag_data.use_absolute_literals)
11458 prop_flags->insn.is_abslit = TRUE;
11459 }
11460 if (fragP->tc_frag_data.is_align)
11461 {
11462 prop_flags->is_align = TRUE;
11463 prop_flags->alignment = fragP->tc_frag_data.alignment;
11464 if (xtensa_frag_flags_is_empty (prop_flags))
11465 prop_flags->is_data = TRUE;
11466 }
11467}
11468
11469
2f1bf5c1 11470static flagword
7fa3d080 11471frag_flags_to_number (const frag_flags *prop_flags)
43cd72b9 11472{
2f1bf5c1 11473 flagword num = 0;
43cd72b9
BW
11474 if (prop_flags->is_literal)
11475 num |= XTENSA_PROP_LITERAL;
11476 if (prop_flags->is_insn)
11477 num |= XTENSA_PROP_INSN;
11478 if (prop_flags->is_data)
11479 num |= XTENSA_PROP_DATA;
11480 if (prop_flags->is_unreachable)
11481 num |= XTENSA_PROP_UNREACHABLE;
11482 if (prop_flags->insn.is_loop_target)
11483 num |= XTENSA_PROP_INSN_LOOP_TARGET;
11484 if (prop_flags->insn.is_branch_target)
11485 {
11486 num |= XTENSA_PROP_INSN_BRANCH_TARGET;
11487 num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority);
11488 }
11489
11490 if (prop_flags->insn.is_no_density)
11491 num |= XTENSA_PROP_INSN_NO_DENSITY;
99ded152
BW
11492 if (prop_flags->is_no_transform)
11493 num |= XTENSA_PROP_NO_TRANSFORM;
43cd72b9
BW
11494 if (prop_flags->insn.is_no_reorder)
11495 num |= XTENSA_PROP_INSN_NO_REORDER;
11496 if (prop_flags->insn.is_abslit)
11497 num |= XTENSA_PROP_INSN_ABSLIT;
11498
11499 if (prop_flags->is_align)
11500 {
11501 num |= XTENSA_PROP_ALIGN;
11502 num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment);
11503 }
11504
11505 return num;
11506}
11507
11508
11509static bfd_boolean
7fa3d080
BW
11510xtensa_frag_flags_combinable (const frag_flags *prop_flags_1,
11511 const frag_flags *prop_flags_2)
43cd72b9
BW
11512{
11513 /* Cannot combine with an end marker. */
11514
11515 if (prop_flags_1->is_literal != prop_flags_2->is_literal)
11516 return FALSE;
11517 if (prop_flags_1->is_insn != prop_flags_2->is_insn)
11518 return FALSE;
11519 if (prop_flags_1->is_data != prop_flags_2->is_data)
11520 return FALSE;
11521
11522 if (prop_flags_1->is_insn)
11523 {
11524 /* Properties of the beginning of the frag. */
11525 if (prop_flags_2->insn.is_loop_target)
11526 return FALSE;
11527 if (prop_flags_2->insn.is_branch_target)
11528 return FALSE;
11529 if (prop_flags_1->insn.is_no_density !=
11530 prop_flags_2->insn.is_no_density)
11531 return FALSE;
99ded152
BW
11532 if (prop_flags_1->is_no_transform !=
11533 prop_flags_2->is_no_transform)
43cd72b9
BW
11534 return FALSE;
11535 if (prop_flags_1->insn.is_no_reorder !=
11536 prop_flags_2->insn.is_no_reorder)
11537 return FALSE;
11538 if (prop_flags_1->insn.is_abslit !=
11539 prop_flags_2->insn.is_abslit)
11540 return FALSE;
11541 }
11542
11543 if (prop_flags_1->is_align)
11544 return FALSE;
11545
11546 return TRUE;
11547}
11548
11549
7fa3d080
BW
11550static bfd_vma
11551xt_block_aligned_size (const xtensa_block_info *xt_block)
43cd72b9
BW
11552{
11553 bfd_vma end_addr;
d77b99c9 11554 unsigned align_bits;
43cd72b9
BW
11555
11556 if (!xt_block->flags.is_align)
11557 return xt_block->size;
11558
11559 end_addr = xt_block->offset + xt_block->size;
11560 align_bits = xt_block->flags.alignment;
11561 end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits;
11562 return end_addr - xt_block->offset;
11563}
11564
11565
11566static bfd_boolean
7fa3d080
BW
11567xtensa_xt_block_combine (xtensa_block_info *xt_block,
11568 const xtensa_block_info *xt_block_2)
43cd72b9
BW
11569{
11570 if (xt_block->sec != xt_block_2->sec)
11571 return FALSE;
11572 if (xt_block->offset + xt_block_aligned_size (xt_block)
11573 != xt_block_2->offset)
11574 return FALSE;
11575
11576 if (xt_block_2->size == 0
11577 && (!xt_block_2->flags.is_unreachable
11578 || xt_block->flags.is_unreachable))
11579 {
11580 if (xt_block_2->flags.is_align
11581 && xt_block->flags.is_align)
11582 {
11583 /* Nothing needed. */
11584 if (xt_block->flags.alignment >= xt_block_2->flags.alignment)
11585 return TRUE;
11586 }
11587 else
11588 {
11589 if (xt_block_2->flags.is_align)
11590 {
11591 /* Push alignment to previous entry. */
11592 xt_block->flags.is_align = xt_block_2->flags.is_align;
11593 xt_block->flags.alignment = xt_block_2->flags.alignment;
11594 }
11595 return TRUE;
11596 }
11597 }
11598 if (!xtensa_frag_flags_combinable (&xt_block->flags,
11599 &xt_block_2->flags))
11600 return FALSE;
11601
11602 xt_block->size += xt_block_2->size;
11603
11604 if (xt_block_2->flags.is_align)
11605 {
11606 xt_block->flags.is_align = TRUE;
11607 xt_block->flags.alignment = xt_block_2->flags.alignment;
11608 }
11609
11610 return TRUE;
11611}
11612
11613
7fa3d080
BW
11614static void
11615add_xt_prop_frags (segT sec,
7fa3d080
BW
11616 xtensa_block_info **xt_block,
11617 frag_flags_fn property_function)
43cd72b9 11618{
43cd72b9
BW
11619 fragS *fragP;
11620
43cd72b9
BW
11621 /* Build it if needed. */
11622 while (*xt_block != NULL)
11623 {
11624 xt_block = &(*xt_block)->next;
11625 }
11626 /* We are either at NULL at the beginning or at the end. */
11627
11628 /* Walk through the frags. */
542f8b94 11629 if (seg_info (sec)->frchainP)
43cd72b9 11630 {
542f8b94 11631 for (fragP = seg_info (sec)->frchainP->frch_root; fragP;
43cd72b9
BW
11632 fragP = fragP->fr_next)
11633 {
11634 xtensa_block_info tmp_block;
11635 tmp_block.sec = sec;
11636 tmp_block.offset = fragP->fr_address;
11637 tmp_block.size = fragP->fr_fix;
11638 tmp_block.next = NULL;
11639 property_function (fragP, &tmp_block.flags);
11640
11641 if (!xtensa_frag_flags_is_empty (&tmp_block.flags))
11642 /* && fragP->fr_fix != 0) */
11643 {
11644 if ((*xt_block) == NULL
11645 || !xtensa_xt_block_combine (*xt_block, &tmp_block))
11646 {
11647 xtensa_block_info *new_block;
11648 if ((*xt_block) != NULL)
11649 xt_block = &(*xt_block)->next;
11650 new_block = (xtensa_block_info *)
11651 xmalloc (sizeof (xtensa_block_info));
11652 *new_block = tmp_block;
11653 *xt_block = new_block;
11654 }
11655 }
11656 }
11657 }
11658}
11659
11660\f
11661/* op_placement_info_table */
11662
11663/* op_placement_info makes it easier to determine which
11664 ops can go in which slots. */
11665
11666static void
7fa3d080 11667init_op_placement_info_table (void)
43cd72b9
BW
11668{
11669 xtensa_isa isa = xtensa_default_isa;
11670 xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa);
11671 xtensa_opcode opcode;
11672 xtensa_format fmt;
11673 int slot;
11674 int num_opcodes = xtensa_isa_num_opcodes (isa);
11675
11676 op_placement_table = (op_placement_info_table)
11677 xmalloc (sizeof (op_placement_info) * num_opcodes);
9c2799c2 11678 gas_assert (xtensa_isa_num_formats (isa) < MAX_FORMATS);
43cd72b9
BW
11679
11680 for (opcode = 0; opcode < num_opcodes; opcode++)
11681 {
11682 op_placement_info *opi = &op_placement_table[opcode];
11683 /* FIXME: Make tinsn allocation dynamic. */
51add5c3 11684 if (xtensa_opcode_num_operands (isa, opcode) > MAX_INSN_ARGS)
43cd72b9 11685 as_fatal (_("too many operands in instruction"));
43cd72b9
BW
11686 opi->narrowest = XTENSA_UNDEFINED;
11687 opi->narrowest_size = 0x7F;
b2d179be 11688 opi->narrowest_slot = 0;
43cd72b9
BW
11689 opi->formats = 0;
11690 opi->num_formats = 0;
11691 opi->issuef = 0;
11692 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
11693 {
11694 opi->slots[fmt] = 0;
11695 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
11696 {
11697 if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0)
11698 {
11699 int fmt_length = xtensa_format_length (isa, fmt);
11700 opi->issuef++;
11701 set_bit (fmt, opi->formats);
11702 set_bit (slot, opi->slots[fmt]);
a02728c8
BW
11703 if (fmt_length < opi->narrowest_size
11704 || (fmt_length == opi->narrowest_size
11705 && (xtensa_format_num_slots (isa, fmt)
11706 < xtensa_format_num_slots (isa,
11707 opi->narrowest))))
43cd72b9
BW
11708 {
11709 opi->narrowest = fmt;
11710 opi->narrowest_size = fmt_length;
b2d179be 11711 opi->narrowest_slot = slot;
43cd72b9 11712 }
e0001a05
NC
11713 }
11714 }
43cd72b9
BW
11715 if (opi->formats)
11716 opi->num_formats++;
e0001a05
NC
11717 }
11718 }
43cd72b9
BW
11719 xtensa_insnbuf_free (isa, ibuf);
11720}
11721
11722
11723bfd_boolean
7fa3d080 11724opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot)
43cd72b9
BW
11725{
11726 return bit_is_set (slot, op_placement_table[opcode].slots[fmt]);
11727}
11728
11729
11730/* If the opcode is available in a single slot format, return its size. */
11731
7fa3d080
BW
11732static int
11733xg_get_single_size (xtensa_opcode opcode)
43cd72b9 11734{
b2d179be 11735 return op_placement_table[opcode].narrowest_size;
43cd72b9
BW
11736}
11737
11738
7fa3d080
BW
11739static xtensa_format
11740xg_get_single_format (xtensa_opcode opcode)
43cd72b9 11741{
b2d179be
BW
11742 return op_placement_table[opcode].narrowest;
11743}
11744
11745
11746static int
11747xg_get_single_slot (xtensa_opcode opcode)
11748{
11749 return op_placement_table[opcode].narrowest_slot;
e0001a05
NC
11750}
11751
11752\f
11753/* Instruction Stack Functions (from "xtensa-istack.h"). */
11754
11755void
7fa3d080 11756istack_init (IStack *stack)
e0001a05 11757{
e0001a05
NC
11758 stack->ninsn = 0;
11759}
11760
11761
11762bfd_boolean
7fa3d080 11763istack_empty (IStack *stack)
e0001a05
NC
11764{
11765 return (stack->ninsn == 0);
11766}
11767
11768
11769bfd_boolean
7fa3d080 11770istack_full (IStack *stack)
e0001a05
NC
11771{
11772 return (stack->ninsn == MAX_ISTACK);
11773}
11774
11775
11776/* Return a pointer to the top IStack entry.
43cd72b9 11777 It is an error to call this if istack_empty () is TRUE. */
e0001a05
NC
11778
11779TInsn *
7fa3d080 11780istack_top (IStack *stack)
e0001a05
NC
11781{
11782 int rec = stack->ninsn - 1;
9c2799c2 11783 gas_assert (!istack_empty (stack));
e0001a05
NC
11784 return &stack->insn[rec];
11785}
11786
11787
11788/* Add a new TInsn to an IStack.
43cd72b9 11789 It is an error to call this if istack_full () is TRUE. */
e0001a05
NC
11790
11791void
7fa3d080 11792istack_push (IStack *stack, TInsn *insn)
e0001a05
NC
11793{
11794 int rec = stack->ninsn;
9c2799c2 11795 gas_assert (!istack_full (stack));
43cd72b9 11796 stack->insn[rec] = *insn;
e0001a05
NC
11797 stack->ninsn++;
11798}
11799
11800
11801/* Clear space for the next TInsn on the IStack and return a pointer
43cd72b9 11802 to it. It is an error to call this if istack_full () is TRUE. */
e0001a05
NC
11803
11804TInsn *
7fa3d080 11805istack_push_space (IStack *stack)
e0001a05
NC
11806{
11807 int rec = stack->ninsn;
11808 TInsn *insn;
9c2799c2 11809 gas_assert (!istack_full (stack));
e0001a05 11810 insn = &stack->insn[rec];
60242db2 11811 tinsn_init (insn);
e0001a05
NC
11812 stack->ninsn++;
11813 return insn;
11814}
11815
11816
11817/* Remove the last pushed instruction. It is an error to call this if
43cd72b9 11818 istack_empty () returns TRUE. */
e0001a05
NC
11819
11820void
7fa3d080 11821istack_pop (IStack *stack)
e0001a05
NC
11822{
11823 int rec = stack->ninsn - 1;
9c2799c2 11824 gas_assert (!istack_empty (stack));
e0001a05 11825 stack->ninsn--;
60242db2 11826 tinsn_init (&stack->insn[rec]);
e0001a05
NC
11827}
11828
11829\f
11830/* TInsn functions. */
11831
11832void
7fa3d080 11833tinsn_init (TInsn *dst)
e0001a05
NC
11834{
11835 memset (dst, 0, sizeof (TInsn));
11836}
11837
11838
43cd72b9 11839/* Return TRUE if ANY of the operands in the insn are symbolic. */
e0001a05
NC
11840
11841static bfd_boolean
7fa3d080 11842tinsn_has_symbolic_operands (const TInsn *insn)
e0001a05
NC
11843{
11844 int i;
11845 int n = insn->ntok;
11846
9c2799c2 11847 gas_assert (insn->insn_type == ITYPE_INSN);
e0001a05
NC
11848
11849 for (i = 0; i < n; ++i)
11850 {
11851 switch (insn->tok[i].X_op)
11852 {
11853 case O_register:
11854 case O_constant:
11855 break;
11856 default:
11857 return TRUE;
11858 }
11859 }
11860 return FALSE;
11861}
11862
11863
11864bfd_boolean
7fa3d080 11865tinsn_has_invalid_symbolic_operands (const TInsn *insn)
e0001a05 11866{
43cd72b9 11867 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
11868 int i;
11869 int n = insn->ntok;
11870
9c2799c2 11871 gas_assert (insn->insn_type == ITYPE_INSN);
e0001a05
NC
11872
11873 for (i = 0; i < n; ++i)
11874 {
11875 switch (insn->tok[i].X_op)
11876 {
11877 case O_register:
11878 case O_constant:
11879 break;
43cd72b9
BW
11880 case O_big:
11881 case O_illegal:
11882 case O_absent:
11883 /* Errors for these types are caught later. */
11884 break;
11885 case O_hi16:
11886 case O_lo16:
e0001a05 11887 default:
43cd72b9
BW
11888 /* Symbolic immediates are only allowed on the last immediate
11889 operand. At this time, CONST16 is the only opcode where we
e7da6241 11890 support non-PC-relative relocations. */
43cd72b9
BW
11891 if (i != get_relaxable_immed (insn->opcode)
11892 || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1
11893 && insn->opcode != xtensa_const16_opcode))
11894 {
431ad2d0 11895 as_bad (_("invalid symbolic operand"));
43cd72b9
BW
11896 return TRUE;
11897 }
e0001a05
NC
11898 }
11899 }
11900 return FALSE;
11901}
11902
11903
11904/* For assembly code with complex expressions (e.g. subtraction),
11905 we have to build them in the literal pool so that
11906 their results are calculated correctly after relaxation.
11907 The relaxation only handles expressions that
11908 boil down to SYMBOL + OFFSET. */
11909
11910static bfd_boolean
7fa3d080 11911tinsn_has_complex_operands (const TInsn *insn)
e0001a05
NC
11912{
11913 int i;
11914 int n = insn->ntok;
9c2799c2 11915 gas_assert (insn->insn_type == ITYPE_INSN);
e0001a05
NC
11916 for (i = 0; i < n; ++i)
11917 {
11918 switch (insn->tok[i].X_op)
11919 {
11920 case O_register:
11921 case O_constant:
11922 case O_symbol:
43cd72b9
BW
11923 case O_lo16:
11924 case O_hi16:
e0001a05
NC
11925 break;
11926 default:
11927 return TRUE;
11928 }
11929 }
11930 return FALSE;
11931}
11932
11933
b2d179be
BW
11934/* Encode a TInsn opcode and its constant operands into slotbuf.
11935 Return TRUE if there is a symbol in the immediate field. This
11936 function assumes that:
11937 1) The number of operands are correct.
11938 2) The insn_type is ITYPE_INSN.
11939 3) The opcode can be encoded in the specified format and slot.
11940 4) Operands are either O_constant or O_symbol, and all constants fit. */
43cd72b9
BW
11941
11942static bfd_boolean
7fa3d080
BW
11943tinsn_to_slotbuf (xtensa_format fmt,
11944 int slot,
11945 TInsn *tinsn,
11946 xtensa_insnbuf slotbuf)
43cd72b9
BW
11947{
11948 xtensa_isa isa = xtensa_default_isa;
11949 xtensa_opcode opcode = tinsn->opcode;
11950 bfd_boolean has_fixup = FALSE;
11951 int noperands = xtensa_opcode_num_operands (isa, opcode);
11952 int i;
11953
9c2799c2 11954 gas_assert (tinsn->insn_type == ITYPE_INSN);
43cd72b9
BW
11955 if (noperands != tinsn->ntok)
11956 as_fatal (_("operand number mismatch"));
11957
11958 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode))
11959 {
11960 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
11961 xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt));
11962 return FALSE;
11963 }
11964
11965 for (i = 0; i < noperands; i++)
11966 {
91d6fa6a 11967 expressionS *exp = &tinsn->tok[i];
d77b99c9
BW
11968 int rc;
11969 unsigned line;
43cd72b9
BW
11970 char *file_name;
11971 uint32 opnd_value;
11972
91d6fa6a 11973 switch (exp->X_op)
43cd72b9
BW
11974 {
11975 case O_register:
11976 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11977 break;
11978 /* The register number has already been checked in
11979 expression_maybe_register, so we don't need to check here. */
91d6fa6a 11980 opnd_value = exp->X_add_number;
43cd72b9
BW
11981 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
11982 rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf,
11983 opnd_value);
11984 if (rc != 0)
11985 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa));
11986 break;
11987
11988 case O_constant:
11989 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11990 break;
11991 as_where (&file_name, &line);
11992 /* It is a constant and we called this function
11993 then we have to try to fit it. */
11994 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i,
91d6fa6a 11995 exp->X_add_number, file_name, line);
e0001a05
NC
11996 break;
11997
e0001a05
NC
11998 default:
11999 has_fixup = TRUE;
12000 break;
12001 }
12002 }
43cd72b9 12003
e0001a05
NC
12004 return has_fixup;
12005}
12006
12007
b2d179be
BW
12008/* Encode a single TInsn into an insnbuf. If the opcode can only be encoded
12009 into a multi-slot instruction, fill the other slots with NOPs.
12010 Return TRUE if there is a symbol in the immediate field. See also the
12011 assumptions listed for tinsn_to_slotbuf. */
12012
12013static bfd_boolean
12014tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf)
12015{
12016 static xtensa_insnbuf slotbuf = 0;
12017 static vliw_insn vinsn;
12018 xtensa_isa isa = xtensa_default_isa;
12019 bfd_boolean has_fixup = FALSE;
12020 int i;
12021
12022 if (!slotbuf)
12023 {
12024 slotbuf = xtensa_insnbuf_alloc (isa);
12025 xg_init_vinsn (&vinsn);
12026 }
12027
12028 xg_clear_vinsn (&vinsn);
12029
12030 bundle_tinsn (tinsn, &vinsn);
12031
12032 xtensa_format_encode (isa, vinsn.format, insnbuf);
12033
12034 for (i = 0; i < vinsn.num_slots; i++)
12035 {
12036 /* Only one slot may have a fix-up because the rest contains NOPs. */
12037 has_fixup |=
12038 tinsn_to_slotbuf (vinsn.format, i, &vinsn.slots[i], vinsn.slotbuf[i]);
12039 xtensa_format_set_slot (isa, vinsn.format, i, insnbuf, vinsn.slotbuf[i]);
12040 }
12041
12042 return has_fixup;
12043}
12044
12045
43cd72b9 12046/* Check the instruction arguments. Return TRUE on failure. */
e0001a05 12047
7fa3d080
BW
12048static bfd_boolean
12049tinsn_check_arguments (const TInsn *insn)
e0001a05
NC
12050{
12051 xtensa_isa isa = xtensa_default_isa;
12052 xtensa_opcode opcode = insn->opcode;
6dc6b655
BW
12053 xtensa_regfile t1_regfile, t2_regfile;
12054 int t1_reg, t2_reg;
12055 int t1_base_reg, t1_last_reg;
12056 int t2_base_reg, t2_last_reg;
12057 char t1_inout, t2_inout;
12058 int i, j;
e0001a05
NC
12059
12060 if (opcode == XTENSA_UNDEFINED)
12061 {
12062 as_bad (_("invalid opcode"));
12063 return TRUE;
12064 }
12065
43cd72b9 12066 if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok)
e0001a05
NC
12067 {
12068 as_bad (_("too few operands"));
12069 return TRUE;
12070 }
12071
43cd72b9 12072 if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok)
e0001a05
NC
12073 {
12074 as_bad (_("too many operands"));
12075 return TRUE;
12076 }
6dc6b655
BW
12077
12078 /* Check registers. */
12079 for (j = 0; j < insn->ntok; j++)
12080 {
12081 if (xtensa_operand_is_register (isa, insn->opcode, j) != 1)
12082 continue;
12083
12084 t2_regfile = xtensa_operand_regfile (isa, insn->opcode, j);
12085 t2_base_reg = insn->tok[j].X_add_number;
12086 t2_last_reg
12087 = t2_base_reg + xtensa_operand_num_regs (isa, insn->opcode, j);
12088
12089 for (i = 0; i < insn->ntok; i++)
12090 {
12091 if (i == j)
12092 continue;
12093
12094 if (xtensa_operand_is_register (isa, insn->opcode, i) != 1)
12095 continue;
12096
12097 t1_regfile = xtensa_operand_regfile (isa, insn->opcode, i);
12098
12099 if (t1_regfile != t2_regfile)
12100 continue;
12101
12102 t1_inout = xtensa_operand_inout (isa, insn->opcode, i);
12103 t2_inout = xtensa_operand_inout (isa, insn->opcode, j);
12104
12105 t1_base_reg = insn->tok[i].X_add_number;
12106 t1_last_reg = (t1_base_reg
12107 + xtensa_operand_num_regs (isa, insn->opcode, i));
12108
12109 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
12110 {
12111 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
12112 {
12113 if (t1_reg != t2_reg)
12114 continue;
12115
12116 if (t1_inout != 'i' && t2_inout != 'i')
12117 {
12118 as_bad (_("multiple writes to the same register"));
12119 return TRUE;
12120 }
12121 }
12122 }
12123 }
12124 }
e0001a05
NC
12125 return FALSE;
12126}
12127
12128
12129/* Load an instruction from its encoded form. */
12130
12131static void
7fa3d080 12132tinsn_from_chars (TInsn *tinsn, char *f, int slot)
e0001a05 12133{
43cd72b9 12134 vliw_insn vinsn;
e0001a05 12135
43cd72b9
BW
12136 xg_init_vinsn (&vinsn);
12137 vinsn_from_chars (&vinsn, f);
12138
12139 *tinsn = vinsn.slots[slot];
12140 xg_free_vinsn (&vinsn);
12141}
e0001a05 12142
43cd72b9
BW
12143
12144static void
7fa3d080
BW
12145tinsn_from_insnbuf (TInsn *tinsn,
12146 xtensa_insnbuf slotbuf,
12147 xtensa_format fmt,
12148 int slot)
43cd72b9
BW
12149{
12150 int i;
12151 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
12152
12153 /* Find the immed. */
43cd72b9
BW
12154 tinsn_init (tinsn);
12155 tinsn->insn_type = ITYPE_INSN;
12156 tinsn->is_specific_opcode = FALSE; /* must not be specific */
12157 tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
12158 tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode);
12159 for (i = 0; i < tinsn->ntok; i++)
e0001a05 12160 {
43cd72b9
BW
12161 set_expr_const (&tinsn->tok[i],
12162 xtensa_insnbuf_get_operand (slotbuf, fmt, slot,
12163 tinsn->opcode, i));
e0001a05
NC
12164 }
12165}
12166
12167
12168/* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
12169
12170static void
7fa3d080 12171tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot)
e0001a05 12172{
43cd72b9 12173 xtensa_opcode opcode = tinsn->opcode;
e0001a05
NC
12174 int opnum;
12175
43cd72b9 12176 if (fragP->tc_frag_data.slot_symbols[slot])
e0001a05
NC
12177 {
12178 opnum = get_relaxable_immed (opcode);
9c2799c2 12179 gas_assert (opnum >= 0);
e7da6241
BW
12180 set_expr_symbol_offset (&tinsn->tok[opnum],
12181 fragP->tc_frag_data.slot_symbols[slot],
12182 fragP->tc_frag_data.slot_offsets[slot]);
e0001a05 12183 }
19e8f41a 12184 tinsn->extra_arg = fragP->tc_frag_data.free_reg[slot];
e0001a05
NC
12185}
12186
12187
12188static int
7fa3d080 12189get_num_stack_text_bytes (IStack *istack)
e0001a05
NC
12190{
12191 int i;
12192 int text_bytes = 0;
12193
12194 for (i = 0; i < istack->ninsn; i++)
12195 {
43cd72b9
BW
12196 TInsn *tinsn = &istack->insn[i];
12197 if (tinsn->insn_type == ITYPE_INSN)
12198 text_bytes += xg_get_single_size (tinsn->opcode);
e0001a05
NC
12199 }
12200 return text_bytes;
12201}
12202
12203
12204static int
7fa3d080 12205get_num_stack_literal_bytes (IStack *istack)
e0001a05
NC
12206{
12207 int i;
12208 int lit_bytes = 0;
12209
12210 for (i = 0; i < istack->ninsn; i++)
12211 {
43cd72b9
BW
12212 TInsn *tinsn = &istack->insn[i];
12213 if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1)
e0001a05
NC
12214 lit_bytes += 4;
12215 }
12216 return lit_bytes;
12217}
12218
43cd72b9
BW
12219\f
12220/* vliw_insn functions. */
12221
7fa3d080
BW
12222static void
12223xg_init_vinsn (vliw_insn *v)
43cd72b9
BW
12224{
12225 int i;
12226 xtensa_isa isa = xtensa_default_isa;
12227
12228 xg_clear_vinsn (v);
12229
12230 v->insnbuf = xtensa_insnbuf_alloc (isa);
12231 if (v->insnbuf == NULL)
12232 as_fatal (_("out of memory"));
12233
62af60e2 12234 for (i = 0; i < config_max_slots; i++)
43cd72b9 12235 {
43cd72b9
BW
12236 v->slotbuf[i] = xtensa_insnbuf_alloc (isa);
12237 if (v->slotbuf[i] == NULL)
12238 as_fatal (_("out of memory"));
12239 }
12240}
12241
12242
7fa3d080
BW
12243static void
12244xg_clear_vinsn (vliw_insn *v)
43cd72b9
BW
12245{
12246 int i;
65738a7d 12247
62af60e2
SA
12248 memset (v, 0, offsetof (vliw_insn, slots)
12249 + sizeof(TInsn) * config_max_slots);
65738a7d 12250
43cd72b9
BW
12251 v->format = XTENSA_UNDEFINED;
12252 v->num_slots = 0;
12253 v->inside_bundle = FALSE;
12254
12255 if (xt_saved_debug_type != DEBUG_NONE)
12256 debug_type = xt_saved_debug_type;
12257
62af60e2 12258 for (i = 0; i < config_max_slots; i++)
65738a7d 12259 v->slots[i].opcode = XTENSA_UNDEFINED;
43cd72b9
BW
12260}
12261
12262
d8392fd9
SA
12263static void
12264xg_copy_vinsn (vliw_insn *dst, vliw_insn *src)
12265{
12266 memcpy (dst, src,
12267 offsetof(vliw_insn, slots) + src->num_slots * sizeof(TInsn));
12268 dst->insnbuf = src->insnbuf;
12269 memcpy (dst->slotbuf, src->slotbuf, src->num_slots * sizeof(xtensa_insnbuf));
12270}
12271
12272
7fa3d080
BW
12273static bfd_boolean
12274vinsn_has_specific_opcodes (vliw_insn *v)
43cd72b9
BW
12275{
12276 int i;
c138bc38 12277
43cd72b9
BW
12278 for (i = 0; i < v->num_slots; i++)
12279 {
12280 if (v->slots[i].is_specific_opcode)
12281 return TRUE;
12282 }
12283 return FALSE;
12284}
12285
12286
7fa3d080
BW
12287static void
12288xg_free_vinsn (vliw_insn *v)
43cd72b9
BW
12289{
12290 int i;
12291 xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf);
62af60e2 12292 for (i = 0; i < config_max_slots; i++)
43cd72b9
BW
12293 xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]);
12294}
12295
12296
e7da6241
BW
12297/* Encode a vliw_insn into an insnbuf. Return TRUE if there are any symbolic
12298 operands. See also the assumptions listed for tinsn_to_slotbuf. */
43cd72b9
BW
12299
12300static bfd_boolean
7fa3d080
BW
12301vinsn_to_insnbuf (vliw_insn *vinsn,
12302 char *frag_offset,
12303 fragS *fragP,
12304 bfd_boolean record_fixup)
43cd72b9
BW
12305{
12306 xtensa_isa isa = xtensa_default_isa;
12307 xtensa_format fmt = vinsn->format;
12308 xtensa_insnbuf insnbuf = vinsn->insnbuf;
12309 int slot;
12310 bfd_boolean has_fixup = FALSE;
12311
12312 xtensa_format_encode (isa, fmt, insnbuf);
12313
12314 for (slot = 0; slot < vinsn->num_slots; slot++)
12315 {
12316 TInsn *tinsn = &vinsn->slots[slot];
19e8f41a 12317 expressionS *extra_arg = &tinsn->extra_arg;
43cd72b9
BW
12318 bfd_boolean tinsn_has_fixup =
12319 tinsn_to_slotbuf (vinsn->format, slot, tinsn,
12320 vinsn->slotbuf[slot]);
12321
12322 xtensa_format_set_slot (isa, fmt, slot,
12323 insnbuf, vinsn->slotbuf[slot]);
19e8f41a 12324 if (extra_arg->X_op != O_illegal && extra_arg->X_op != O_register)
28dbbc02
BW
12325 {
12326 if (vinsn->num_slots != 1)
12327 as_bad (_("TLS relocation not allowed in FLIX bundle"));
12328 else if (record_fixup)
12329 /* Instructions that generate TLS relocations should always be
12330 relaxed in the front-end. If "record_fixup" is set, then this
12331 function is being called during back-end relaxation, so flag
12332 the unexpected behavior as an error. */
12333 as_bad (_("unexpected TLS relocation"));
12334 else
12335 fix_new (fragP, frag_offset - fragP->fr_literal,
12336 xtensa_format_length (isa, fmt),
19e8f41a
BW
12337 extra_arg->X_add_symbol, extra_arg->X_add_number,
12338 FALSE, map_operator_to_reloc (extra_arg->X_op, FALSE));
28dbbc02 12339 }
e7da6241 12340 if (tinsn_has_fixup)
43cd72b9
BW
12341 {
12342 int i;
12343 xtensa_opcode opcode = tinsn->opcode;
12344 int noperands = xtensa_opcode_num_operands (isa, opcode);
12345 has_fixup = TRUE;
12346
12347 for (i = 0; i < noperands; i++)
12348 {
91d6fa6a
NC
12349 expressionS* exp = &tinsn->tok[i];
12350 switch (exp->X_op)
43cd72b9
BW
12351 {
12352 case O_symbol:
12353 case O_lo16:
12354 case O_hi16:
12355 if (get_relaxable_immed (opcode) == i)
12356 {
e7da6241
BW
12357 /* Add a fix record for the instruction, except if this
12358 function is being called prior to relaxation, i.e.,
12359 if record_fixup is false, and the instruction might
12360 be relaxed later. */
12361 if (record_fixup
12362 || tinsn->is_specific_opcode
12363 || !xg_is_relaxable_insn (tinsn, 0))
43cd72b9 12364 {
91d6fa6a 12365 xg_add_opcode_fix (tinsn, i, fmt, slot, exp, fragP,
e7da6241 12366 frag_offset - fragP->fr_literal);
43cd72b9
BW
12367 }
12368 else
12369 {
91d6fa6a 12370 if (exp->X_op != O_symbol)
e7da6241 12371 as_bad (_("invalid operand"));
91d6fa6a
NC
12372 tinsn->symbol = exp->X_add_symbol;
12373 tinsn->offset = exp->X_add_number;
43cd72b9
BW
12374 }
12375 }
12376 else
e7da6241 12377 as_bad (_("symbolic operand not allowed"));
43cd72b9
BW
12378 break;
12379
12380 case O_constant:
12381 case O_register:
12382 break;
12383
43cd72b9 12384 default:
e7da6241 12385 as_bad (_("expression too complex"));
43cd72b9
BW
12386 break;
12387 }
12388 }
12389 }
12390 }
12391
12392 return has_fixup;
12393}
12394
12395
12396static void
7fa3d080 12397vinsn_from_chars (vliw_insn *vinsn, char *f)
43cd72b9
BW
12398{
12399 static xtensa_insnbuf insnbuf = NULL;
12400 static xtensa_insnbuf slotbuf = NULL;
12401 int i;
12402 xtensa_format fmt;
12403 xtensa_isa isa = xtensa_default_isa;
12404
12405 if (!insnbuf)
12406 {
12407 insnbuf = xtensa_insnbuf_alloc (isa);
12408 slotbuf = xtensa_insnbuf_alloc (isa);
12409 }
12410
d77b99c9 12411 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0);
43cd72b9
BW
12412 fmt = xtensa_format_decode (isa, insnbuf);
12413 if (fmt == XTENSA_UNDEFINED)
12414 as_fatal (_("cannot decode instruction format"));
12415 vinsn->format = fmt;
12416 vinsn->num_slots = xtensa_format_num_slots (isa, fmt);
12417
12418 for (i = 0; i < vinsn->num_slots; i++)
12419 {
12420 TInsn *tinsn = &vinsn->slots[i];
12421 xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf);
12422 tinsn_from_insnbuf (tinsn, slotbuf, fmt, i);
12423 }
12424}
12425
e0001a05
NC
12426\f
12427/* Expression utilities. */
12428
43cd72b9 12429/* Return TRUE if the expression is an integer constant. */
e0001a05
NC
12430
12431bfd_boolean
7fa3d080 12432expr_is_const (const expressionS *s)
e0001a05
NC
12433{
12434 return (s->X_op == O_constant);
12435}
12436
12437
12438/* Get the expression constant.
43cd72b9 12439 Calling this is illegal if expr_is_const () returns TRUE. */
e0001a05
NC
12440
12441offsetT
7fa3d080 12442get_expr_const (const expressionS *s)
e0001a05 12443{
9c2799c2 12444 gas_assert (expr_is_const (s));
e0001a05
NC
12445 return s->X_add_number;
12446}
12447
12448
12449/* Set the expression to a constant value. */
12450
12451void
7fa3d080 12452set_expr_const (expressionS *s, offsetT val)
e0001a05
NC
12453{
12454 s->X_op = O_constant;
12455 s->X_add_number = val;
12456 s->X_add_symbol = NULL;
12457 s->X_op_symbol = NULL;
12458}
12459
12460
43cd72b9 12461bfd_boolean
7fa3d080 12462expr_is_register (const expressionS *s)
43cd72b9
BW
12463{
12464 return (s->X_op == O_register);
12465}
12466
12467
12468/* Get the expression constant.
12469 Calling this is illegal if expr_is_const () returns TRUE. */
12470
12471offsetT
7fa3d080 12472get_expr_register (const expressionS *s)
43cd72b9 12473{
9c2799c2 12474 gas_assert (expr_is_register (s));
43cd72b9
BW
12475 return s->X_add_number;
12476}
12477
12478
e0001a05
NC
12479/* Set the expression to a symbol + constant offset. */
12480
12481void
7fa3d080 12482set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset)
e0001a05
NC
12483{
12484 s->X_op = O_symbol;
12485 s->X_add_symbol = sym;
12486 s->X_op_symbol = NULL; /* unused */
12487 s->X_add_number = offset;
12488}
12489
12490
43cd72b9
BW
12491/* Return TRUE if the two expressions are equal. */
12492
e0001a05 12493bfd_boolean
7fa3d080 12494expr_is_equal (expressionS *s1, expressionS *s2)
e0001a05
NC
12495{
12496 if (s1->X_op != s2->X_op)
12497 return FALSE;
12498 if (s1->X_add_symbol != s2->X_add_symbol)
12499 return FALSE;
12500 if (s1->X_op_symbol != s2->X_op_symbol)
12501 return FALSE;
12502 if (s1->X_add_number != s2->X_add_number)
12503 return FALSE;
12504 return TRUE;
12505}
12506
12507
12508static void
7fa3d080 12509copy_expr (expressionS *dst, const expressionS *src)
e0001a05
NC
12510{
12511 memcpy (dst, src, sizeof (expressionS));
12512}
12513
12514\f
9456465c 12515/* Support for the "--rename-section" option. */
e0001a05
NC
12516
12517struct rename_section_struct
12518{
12519 char *old_name;
12520 char *new_name;
12521 struct rename_section_struct *next;
12522};
12523
12524static struct rename_section_struct *section_rename;
12525
12526
9456465c
BW
12527/* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
12528 entries to the section_rename list. Note: Specifying multiple
12529 renamings separated by colons is not documented and is retained only
12530 for backward compatibility. */
e0001a05 12531
7fa3d080
BW
12532static void
12533build_section_rename (const char *arg)
e0001a05 12534{
9456465c 12535 struct rename_section_struct *r;
e0001a05
NC
12536 char *this_arg = NULL;
12537 char *next_arg = NULL;
12538
9456465c 12539 for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg)
e0001a05 12540 {
9456465c
BW
12541 char *old_name, *new_name;
12542
e0001a05
NC
12543 if (this_arg)
12544 {
12545 next_arg = strchr (this_arg, ':');
12546 if (next_arg)
12547 {
12548 *next_arg = '\0';
12549 next_arg++;
12550 }
12551 }
e0001a05 12552
9456465c
BW
12553 old_name = this_arg;
12554 new_name = strchr (this_arg, '=');
e0001a05 12555
9456465c
BW
12556 if (*old_name == '\0')
12557 {
12558 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
12559 continue;
12560 }
12561 if (!new_name || new_name[1] == '\0')
12562 {
12563 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
12564 old_name);
12565 continue;
12566 }
12567 *new_name = '\0';
12568 new_name++;
e0001a05 12569
9456465c
BW
12570 /* Check for invalid section renaming. */
12571 for (r = section_rename; r != NULL; r = r->next)
12572 {
12573 if (strcmp (r->old_name, old_name) == 0)
12574 as_bad (_("section %s renamed multiple times"), old_name);
12575 if (strcmp (r->new_name, new_name) == 0)
12576 as_bad (_("multiple sections remapped to output section %s"),
12577 new_name);
12578 }
e0001a05 12579
9456465c
BW
12580 /* Now add it. */
12581 r = (struct rename_section_struct *)
12582 xmalloc (sizeof (struct rename_section_struct));
12583 r->old_name = xstrdup (old_name);
12584 r->new_name = xstrdup (new_name);
12585 r->next = section_rename;
12586 section_rename = r;
e0001a05 12587 }
e0001a05
NC
12588}
12589
12590
9456465c
BW
12591char *
12592xtensa_section_rename (char *name)
e0001a05
NC
12593{
12594 struct rename_section_struct *r = section_rename;
12595
12596 for (r = section_rename; r != NULL; r = r->next)
43cd72b9
BW
12597 {
12598 if (strcmp (r->old_name, name) == 0)
12599 return r->new_name;
12600 }
e0001a05
NC
12601
12602 return name;
12603}
This page took 2.850045 seconds and 4 git commands to generate.