This patch adds support for Cortex-X1 for ARM.
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1996-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
4
5@ifset GENERIC
6@page
7@node ARM-Dependent
8@chapter ARM Dependent Features
9@end ifset
10
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter ARM Dependent Features
14@end ifclear
15
16@cindex ARM support
17@cindex Thumb support
18@menu
19* ARM Options:: Options
20* ARM Syntax:: Syntax
21* ARM Floating Point:: Floating Point
22* ARM Directives:: ARM Machine Directives
23* ARM Opcodes:: Opcodes
6057a28f 24* ARM Mapping Symbols:: Mapping Symbols
7da4f750 25* ARM Unwinding Tutorial:: Unwinding
252b5132
RH
26@end menu
27
28@node ARM Options
29@section Options
30@cindex ARM options (none)
31@cindex options for ARM (none)
adcf07e6 32
252b5132 33@table @code
adcf07e6 34
a05a5b64 35@cindex @code{-mcpu=} command-line option, ARM
92081f48 36@item -mcpu=@var{processor}[+@var{extension}@dots{}]
252b5132
RH
37This option specifies the target processor. The assembler will issue an
38error message if an attempt is made to assemble an instruction which
03b1477f 39will not execute on the target processor. The following processor names are
34bca508 40recognized:
03b1477f
RE
41@code{arm1},
42@code{arm2},
43@code{arm250},
44@code{arm3},
45@code{arm6},
46@code{arm60},
47@code{arm600},
48@code{arm610},
49@code{arm620},
50@code{arm7},
51@code{arm7m},
52@code{arm7d},
53@code{arm7dm},
54@code{arm7di},
55@code{arm7dmi},
56@code{arm70},
57@code{arm700},
58@code{arm700i},
59@code{arm710},
60@code{arm710t},
61@code{arm720},
62@code{arm720t},
63@code{arm740t},
64@code{arm710c},
65@code{arm7100},
66@code{arm7500},
67@code{arm7500fe},
68@code{arm7t},
69@code{arm7tdmi},
1ff4677c 70@code{arm7tdmi-s},
03b1477f
RE
71@code{arm8},
72@code{arm810},
73@code{strongarm},
74@code{strongarm1},
75@code{strongarm110},
76@code{strongarm1100},
77@code{strongarm1110},
78@code{arm9},
79@code{arm920},
80@code{arm920t},
81@code{arm922t},
82@code{arm940t},
83@code{arm9tdmi},
7fac0536
NC
84@code{fa526} (Faraday FA526 processor),
85@code{fa626} (Faraday FA626 processor),
03b1477f 86@code{arm9e},
7de9afa2 87@code{arm926e},
1ff4677c 88@code{arm926ej-s},
03b1477f
RE
89@code{arm946e-r0},
90@code{arm946e},
db8ac8f9 91@code{arm946e-s},
03b1477f
RE
92@code{arm966e-r0},
93@code{arm966e},
db8ac8f9
PB
94@code{arm966e-s},
95@code{arm968e-s},
03b1477f 96@code{arm10t},
db8ac8f9 97@code{arm10tdmi},
03b1477f
RE
98@code{arm10e},
99@code{arm1020},
100@code{arm1020t},
7de9afa2 101@code{arm1020e},
db8ac8f9 102@code{arm1022e},
1ff4677c 103@code{arm1026ej-s},
4a58c4bd
NC
104@code{fa606te} (Faraday FA606TE processor),
105@code{fa616te} (Faraday FA616TE processor),
7fac0536 106@code{fa626te} (Faraday FA626TE processor),
4a58c4bd 107@code{fmp626} (Faraday FMP626 processor),
7fac0536 108@code{fa726te} (Faraday FA726TE processor),
1ff4677c
RE
109@code{arm1136j-s},
110@code{arm1136jf-s},
db8ac8f9
PB
111@code{arm1156t2-s},
112@code{arm1156t2f-s},
0dd132b6
NC
113@code{arm1176jz-s},
114@code{arm1176jzf-s},
115@code{mpcore},
116@code{mpcorenovfp},
b38f9f31 117@code{cortex-a5},
c90460e4 118@code{cortex-a7},
62b3e311 119@code{cortex-a8},
15290f0a 120@code{cortex-a9},
dbb1f804 121@code{cortex-a15},
ed5491b9 122@code{cortex-a17},
6735952f 123@code{cortex-a32},
43cdc0a8 124@code{cortex-a35},
4469186b 125@code{cortex-a53},
15a7695f 126@code{cortex-a55},
4469186b
KT
127@code{cortex-a57},
128@code{cortex-a72},
362a3eba 129@code{cortex-a73},
15a7695f 130@code{cortex-a75},
7ebd1359 131@code{cortex-a76},
0535e5d7
DZ
132@code{cortex-a76ae},
133@code{cortex-a77},
ef8df4ca 134@code{ares},
62b3e311 135@code{cortex-r4},
307c948d 136@code{cortex-r4f},
70a8bc5b 137@code{cortex-r5},
138@code{cortex-r7},
5f474010 139@code{cortex-r8},
0cda1e19 140@code{cortex-r52},
0535e5d7 141@code{cortex-m35p},
b19ea8d2 142@code{cortex-m33},
ce1b0a45 143@code{cortex-m23},
a715796b 144@code{cortex-m7},
7ef07ba0 145@code{cortex-m4},
62b3e311 146@code{cortex-m3},
5b19eaba
NC
147@code{cortex-m1},
148@code{cortex-m0},
ce32bd10 149@code{cortex-m0plus},
394e9bf6 150@code{cortex-x1},
246496bb 151@code{exynos-m1},
ea0d6bb9
PT
152@code{marvell-pj4},
153@code{marvell-whitney},
83f43c83 154@code{neoverse-n1},
f3034e25 155@code{neoverse-n2},
6eee0315 156@code{neoverse-v1},
ea0d6bb9
PT
157@code{xgene1},
158@code{xgene2},
03b1477f
RE
159@code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
160@code{i80200} (Intel XScale processor)
334fe02b 161@code{iwmmxt} (Intel XScale processor with Wireless MMX technology coprocessor)
03b1477f 162and
34bca508 163@code{xscale}.
03b1477f
RE
164The special name @code{all} may be used to allow the
165assembler to accept instructions valid for any ARM processor.
166
34bca508
L
167In addition to the basic instruction set, the assembler can be told to
168accept various extension mnemonics that extend the processor using the
03b1477f 169co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
34bca508 170is equivalent to specifying @code{-mcpu=ep9312}.
69133863 171
34bca508 172Multiple extensions may be specified, separated by a @code{+}. The
69133863
MGD
173extensions should be specified in ascending alphabetical order.
174
34bca508 175Some extensions may be restricted to particular architectures; this is
60e5ef9f
MGD
176documented in the list of extensions below.
177
34bca508
L
178Extension mnemonics may also be removed from those the assembler accepts.
179This is done be prepending @code{no} to the option that adds the extension.
180Extensions that are removed should be listed after all extensions which have
181been added, again in ascending alphabetical order. For example,
69133863
MGD
182@code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
183
184
eea54501 185The following extensions are currently supported:
aab2c27d 186@code{bf16} (BFloat16 extensions for v8.6-A architecture),
616ce08e 187@code{i8mm} (Int8 Matrix Multiply extensions for v8.6-A architecture),
ea0d6bb9 188@code{crc}
bca38921 189@code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
c604a79a 190@code{dotprod} (Dot Product Extensions for v8.2-A architecture, implies @code{fp+simd}),
bca38921 191@code{fp} (Floating Point Extensions for v8-A architecture),
01f48020
TC
192@code{fp16} (FP16 Extensions for v8.2-A architecture, implies @code{fp}),
193@code{fp16fml} (FP16 Floating Point Multiplication Variant Extensions for v8.2-A architecture, implies @code{fp16}),
bca38921 194@code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
69133863
MGD
195@code{iwmmxt},
196@code{iwmmxt2},
ea0d6bb9 197@code{xscale},
69133863 198@code{maverick},
ea0d6bb9
PT
199@code{mp} (Multiprocessing Extensions for v7-A and v7-R
200architectures),
b2a5fbdc 201@code{os} (Operating System for v6M architecture),
dad0c3bf
SD
202@code{predres} (Execution and Data Prediction Restriction Instruction for
203v8-A architectures, added by default from v8.5-A),
7fadb25d
SD
204@code{sb} (Speculation Barrier Instruction for v8-A architectures, added by
205default from v8.5-A),
f4c65163 206@code{sec} (Security Extensions for v6K and v7-A architectures),
bca38921 207@code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
34bca508 208@code{virt} (Virtualization Extensions for v7-A architecture, implies
90ec0d68 209@code{idiv}),
33eaf5de 210@code{pan} (Privileged Access Never Extensions for v8-A architecture),
4d1464f2
MW
211@code{ras} (Reliability, Availability and Serviceability extensions
212for v8-A architecture),
d6b4b13e
MW
213@code{rdma} (ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies
214@code{simd})
03b1477f 215and
69133863 216@code{xscale}.
03b1477f 217
a05a5b64 218@cindex @code{-march=} command-line option, ARM
92081f48 219@item -march=@var{architecture}[+@var{extension}@dots{}]
252b5132
RH
220This option specifies the target architecture. The assembler will issue
221an error message if an attempt is made to assemble an instruction which
34bca508
L
222will not execute on the target architecture. The following architecture
223names are recognized:
03b1477f
RE
224@code{armv1},
225@code{armv2},
226@code{armv2a},
227@code{armv2s},
228@code{armv3},
229@code{armv3m},
230@code{armv4},
231@code{armv4xm},
232@code{armv4t},
233@code{armv4txm},
234@code{armv5},
235@code{armv5t},
236@code{armv5txm},
237@code{armv5te},
09d92015 238@code{armv5texp},
c5f98204 239@code{armv6},
1ddd7f43 240@code{armv6j},
0dd132b6
NC
241@code{armv6k},
242@code{armv6z},
f33026a9 243@code{armv6kz},
b2a5fbdc
MGD
244@code{armv6-m},
245@code{armv6s-m},
62b3e311 246@code{armv7},
c450d570 247@code{armv7-a},
c9fb6e58 248@code{armv7ve},
c450d570
PB
249@code{armv7-r},
250@code{armv7-m},
9e3c6df6 251@code{armv7e-m},
bca38921 252@code{armv8-a},
a5932920 253@code{armv8.1-a},
56a1b672 254@code{armv8.2-a},
a12fd8e1 255@code{armv8.3-a},
ced40572 256@code{armv8-r},
dec41383 257@code{armv8.4-a},
23f233a5 258@code{armv8.5-a},
34ef62f4
AV
259@code{armv8-m.base},
260@code{armv8-m.main},
e0991585 261@code{armv8.1-m.main},
aab2c27d 262@code{armv8.6-a},
34ef62f4 263@code{iwmmxt},
ea0d6bb9 264@code{iwmmxt2}
03b1477f
RE
265and
266@code{xscale}.
267If both @code{-mcpu} and
268@code{-march} are specified, the assembler will use
269the setting for @code{-mcpu}.
270
34ef62f4
AV
271The architecture option can be extended with a set extension options. These
272extensions are context sensitive, i.e. the same extension may mean different
273things when used with different architectures. When used together with a
274@code{-mfpu} option, the union of both feature enablement is taken.
275See their availability and meaning below:
276
277For @code{armv5te}, @code{armv5texp}, @code{armv5tej}, @code{armv6}, @code{armv6j}, @code{armv6k}, @code{armv6z}, @code{armv6kz}, @code{armv6zk}, @code{armv6t2}, @code{armv6kt2} and @code{armv6zt2}:
278
279@code{+fp}: Enables VFPv2 instructions.
280@code{+nofp}: Disables all FPU instrunctions.
281
282For @code{armv7}:
283
284@code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
285@code{+nofp}: Disables all FPU instructions.
286
287For @code{armv7-a}:
288
289@code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
290@code{+vfpv3-d16}: Alias for @code{+fp}.
291@code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
292@code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
293conversion instructions and 16 double-word registers.
294@code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
295instructions and 32 double-word registers.
296@code{+vfpv4-d16}: Enables VFPv4 instructions with 16 double-word registers.
297@code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
298@code{+simd}: Enables VFPv3 and NEONv1 instructions with 32 double-word
299registers.
300@code{+neon}: Alias for @code{+simd}.
301@code{+neon-vfpv3}: Alias for @code{+simd}.
302@code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
303NEONv1 instructions with 32 double-word registers.
304@code{+neon-vfpv4}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
305double-word registers.
306@code{+mp}: Enables Multiprocessing Extensions.
307@code{+sec}: Enables Security Extensions.
308@code{+nofp}: Disables all FPU and NEON instructions.
309@code{+nosimd}: Disables all NEON instructions.
310
311For @code{armv7ve}:
312
313@code{+fp}: Enables VFPv4 instructions with 16 double-word registers.
314@code{+vfpv4-d16}: Alias for @code{+fp}.
315@code{+vfpv3-d16}: Enables VFPv3 instructions with 16 double-word registers.
316@code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
317@code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
318conversion instructions and 16 double-word registers.
319@code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
320instructions and 32 double-word registers.
321@code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
322@code{+simd}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
323double-word registers.
324@code{+neon-vfpv4}: Alias for @code{+simd}.
325@code{+neon}: Enables VFPv3 and NEONv1 instructions with 32 double-word
326registers.
327@code{+neon-vfpv3}: Alias for @code{+neon}.
328@code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
329NEONv1 instructions with 32 double-word registers.
330double-word registers.
331@code{+nofp}: Disables all FPU and NEON instructions.
332@code{+nosimd}: Disables all NEON instructions.
333
334For @code{armv7-r}:
335
336@code{+fp.sp}: Enables single-precision only VFPv3 instructions with 16
337double-word registers.
338@code{+vfpv3xd}: Alias for @code{+fp.sp}.
339@code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
340@code{+vfpv3-d16}: Alias for @code{+fp}.
341@code{+vfpv3xd-fp16}: Enables single-precision only VFPv3 and half
342floating-point conversion instructions with 16 double-word registers.
343@code{+vfpv3-d16-fp16}: Enables VFPv3 and half precision floating-point
344conversion instructions with 16 double-word registers.
345@code{+idiv}: Enables integer division instructions in ARM mode.
346@code{+nofp}: Disables all FPU instructions.
347
348For @code{armv7e-m}:
349
350@code{+fp}: Enables single-precision only VFPv4 instructions with 16
351double-word registers.
352@code{+vfpvf4-sp-d16}: Alias for @code{+fp}.
353@code{+fpv5}: Enables single-precision only VFPv5 instructions with 16
354double-word registers.
355@code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
356@code{+fpv5-d16"}: Alias for @code{+fp.dp}.
357@code{+nofp}: Disables all FPU instructions.
358
359For @code{armv8-m.main}:
360
361@code{+dsp}: Enables DSP Extension.
362@code{+fp}: Enables single-precision only VFPv5 instructions with 16
363double-word registers.
364@code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
4934a27c
MM
365@code{+cdecp0} (CDE extensions for v8-m architecture with coprocessor 0),
366@code{+cdecp1} (CDE extensions for v8-m architecture with coprocessor 1),
367@code{+cdecp2} (CDE extensions for v8-m architecture with coprocessor 2),
368@code{+cdecp3} (CDE extensions for v8-m architecture with coprocessor 3),
369@code{+cdecp4} (CDE extensions for v8-m architecture with coprocessor 4),
370@code{+cdecp5} (CDE extensions for v8-m architecture with coprocessor 5),
371@code{+cdecp6} (CDE extensions for v8-m architecture with coprocessor 6),
372@code{+cdecp7} (CDE extensions for v8-m architecture with coprocessor 7),
34ef62f4
AV
373@code{+nofp}: Disables all FPU instructions.
374@code{+nodsp}: Disables DSP Extension.
375
e0991585
AV
376For @code{armv8.1-m.main}:
377
378@code{+dsp}: Enables DSP Extension.
379@code{+fp}: Enables single and half precision scalar Floating Point Extensions
380for Armv8.1-M Mainline with 16 double-word registers.
381@code{+fp.dp}: Enables double precision scalar Floating Point Extensions for
382Armv8.1-M Mainline, implies @code{+fp}.
a7ad558c
AV
383@code{+mve}: Enables integer only M-profile Vector Extension for
384Armv8.1-M Mainline, implies @code{+dsp}.
385@code{+mve.fp}: Enables Floating Point M-profile Vector Extension for
386Armv8.1-M Mainline, implies @code{+mve} and @code{+fp}.
e0991585
AV
387@code{+nofp}: Disables all FPU instructions.
388@code{+nodsp}: Disables DSP Extension.
a7ad558c 389@code{+nomve}: Disables all M-profile Vector Extensions.
e0991585 390
34ef62f4
AV
391For @code{armv8-a}:
392
393@code{+crc}: Enables CRC32 Extension.
394@code{+simd}: Enables VFP and NEON for Armv8-A.
395@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
396@code{+simd}.
397@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
398@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
399for Armv8-A.
400@code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
401@code{+nocrypto}: Disables Cryptography Extensions.
402
403For @code{armv8.1-a}:
404
405@code{+simd}: Enables VFP and NEON for Armv8.1-A.
406@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
407@code{+simd}.
408@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
409@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
410for Armv8-A.
411@code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
412@code{+nocrypto}: Disables Cryptography Extensions.
413
414For @code{armv8.2-a} and @code{armv8.3-a}:
415
416@code{+simd}: Enables VFP and NEON for Armv8.1-A.
417@code{+fp16}: Enables FP16 Extension for Armv8.2-A, implies @code{+simd}.
418@code{+fp16fml}: Enables FP16 Floating Point Multiplication Variant Extensions
419for Armv8.2-A, implies @code{+fp16}.
420@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
421@code{+simd}.
422@code{+dotprod}: Enables Dot Product Extensions for Armv8.2-A, implies
423@code{+simd}.
424@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
425@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
426for Armv8-A.
427@code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
428@code{+nocrypto}: Disables Cryptography Extensions.
429
430For @code{armv8.4-a}:
431
432@code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
433Armv8.2-A.
434@code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
435Variant Extensions for Armv8.2-A, implies @code{+simd}.
436@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
437@code{+simd}.
438@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
439@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
440for Armv8-A.
441@code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
442@code{+nocryptp}: Disables Cryptography Extensions.
443
444For @code{armv8.5-a}:
445
446@code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
447Armv8.2-A.
448@code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
449Variant Extensions for Armv8.2-A, implies @code{+simd}.
450@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
451@code{+simd}.
452@code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
453@code{+nocryptp}: Disables Cryptography Extensions.
454
03b1477f 455
a05a5b64 456@cindex @code{-mfpu=} command-line option, ARM
03b1477f
RE
457@item -mfpu=@var{floating-point-format}
458
459This option specifies the floating point format to assemble for. The
460assembler will issue an error message if an attempt is made to assemble
34bca508 461an instruction which will not execute on the target floating point unit.
03b1477f
RE
462The following format options are recognized:
463@code{softfpa},
464@code{fpe},
bc89618b
RE
465@code{fpe2},
466@code{fpe3},
03b1477f
RE
467@code{fpa},
468@code{fpa10},
469@code{fpa11},
470@code{arm7500fe},
471@code{softvfp},
472@code{softvfp+vfp},
473@code{vfp},
474@code{vfp10},
475@code{vfp10-r0},
476@code{vfp9},
477@code{vfpxd},
62f3b8c8
PB
478@code{vfpv2},
479@code{vfpv3},
480@code{vfpv3-fp16},
481@code{vfpv3-d16},
482@code{vfpv3-d16-fp16},
483@code{vfpv3xd},
484@code{vfpv3xd-d16},
485@code{vfpv4},
486@code{vfpv4-d16},
f0cd0667 487@code{fpv4-sp-d16},
a715796b
TG
488@code{fpv5-sp-d16},
489@code{fpv5-d16},
bca38921 490@code{fp-armv8},
09d92015
MM
491@code{arm1020t},
492@code{arm1020e},
b1cc4aeb 493@code{arm1136jf-s},
62f3b8c8
PB
494@code{maverick},
495@code{neon},
d5e0ba9c
RE
496@code{neon-vfpv3},
497@code{neon-fp16},
bca38921
MGD
498@code{neon-vfpv4},
499@code{neon-fp-armv8},
081e4c7d
MW
500@code{crypto-neon-fp-armv8},
501@code{neon-fp-armv8.1}
d6b4b13e 502and
081e4c7d 503@code{crypto-neon-fp-armv8.1}.
03b1477f
RE
504
505In addition to determining which instructions are assembled, this option
506also affects the way in which the @code{.double} assembler directive behaves
507when assembling little-endian code.
508
34bca508 509The default is dependent on the processor selected. For Architecture 5 or
d5e0ba9c 510later, the default is to assemble for VFP instructions; for earlier
03b1477f 511architectures the default is to assemble for FPA instructions.
adcf07e6 512
5312fe52
BW
513@cindex @code{-mfp16-format=} command-line option
514@item -mfp16-format=@var{format}
515This option specifies the half-precision floating point format to use
516when assembling floating point numbers emitted by the @code{.float16}
517directive.
518The following format options are recognized:
519@code{ieee},
520@code{alternative}.
521If @code{ieee} is specified then the IEEE 754-2008 half-precision floating
522point format is used, if @code{alternative} is specified then the Arm
523alternative half-precision format is used. If this option is set on the
524command line then the format is fixed and cannot be changed with
525the @code{float16_format} directive. If this value is not set then
526the IEEE 754-2008 format is used until the format is explicitly set with
527the @code{float16_format} directive.
528
a05a5b64 529@cindex @code{-mthumb} command-line option, ARM
252b5132 530@item -mthumb
03b1477f 531This option specifies that the assembler should start assembling Thumb
34bca508 532instructions; that is, it should behave as though the file starts with a
03b1477f 533@code{.code 16} directive.
adcf07e6 534
a05a5b64 535@cindex @code{-mthumb-interwork} command-line option, ARM
252b5132
RH
536@item -mthumb-interwork
537This option specifies that the output generated by the assembler should
fc6141f0
NC
538be marked as supporting interworking. It also affects the behaviour
539of the @code{ADR} and @code{ADRL} pseudo opcodes.
adcf07e6 540
a05a5b64 541@cindex @code{-mimplicit-it} command-line option, ARM
52970753
NC
542@item -mimplicit-it=never
543@itemx -mimplicit-it=always
544@itemx -mimplicit-it=arm
545@itemx -mimplicit-it=thumb
546The @code{-mimplicit-it} option controls the behavior of the assembler when
547conditional instructions are not enclosed in IT blocks.
548There are four possible behaviors.
549If @code{never} is specified, such constructs cause a warning in ARM
550code and an error in Thumb-2 code.
551If @code{always} is specified, such constructs are accepted in both
552ARM and Thumb-2 code, where the IT instruction is added implicitly.
553If @code{arm} is specified, such constructs are accepted in ARM code
554and cause an error in Thumb-2 code.
555If @code{thumb} is specified, such constructs cause a warning in ARM
556code and are accepted in Thumb-2 code. If you omit this option, the
557behavior is equivalent to @code{-mimplicit-it=arm}.
e07e6e58 558
a05a5b64
TP
559@cindex @code{-mapcs-26} command-line option, ARM
560@cindex @code{-mapcs-32} command-line option, ARM
5a5829dd
NS
561@item -mapcs-26
562@itemx -mapcs-32
563These options specify that the output generated by the assembler should
252b5132
RH
564be marked as supporting the indicated version of the Arm Procedure.
565Calling Standard.
adcf07e6 566
a05a5b64 567@cindex @code{-matpcs} command-line option, ARM
077b8428 568@item -matpcs
34bca508 569This option specifies that the output generated by the assembler should
077b8428
NC
570be marked as supporting the Arm/Thumb Procedure Calling Standard. If
571enabled this option will cause the assembler to create an empty
572debugging section in the object file called .arm.atpcs. Debuggers can
573use this to determine the ABI being used by.
574
a05a5b64 575@cindex @code{-mapcs-float} command-line option, ARM
252b5132 576@item -mapcs-float
1be59579 577This indicates the floating point variant of the APCS should be
252b5132 578used. In this variant floating point arguments are passed in FP
550262c4 579registers rather than integer registers.
adcf07e6 580
a05a5b64 581@cindex @code{-mapcs-reentrant} command-line option, ARM
252b5132
RH
582@item -mapcs-reentrant
583This indicates that the reentrant variant of the APCS should be used.
584This variant supports position independent code.
adcf07e6 585
a05a5b64 586@cindex @code{-mfloat-abi=} command-line option, ARM
33a392fb
PB
587@item -mfloat-abi=@var{abi}
588This option specifies that the output generated by the assembler should be
589marked as using specified floating point ABI.
590The following values are recognized:
591@code{soft},
592@code{softfp}
593and
594@code{hard}.
595
a05a5b64 596@cindex @code{-eabi=} command-line option, ARM
d507cf36
PB
597@item -meabi=@var{ver}
598This option specifies which EABI version the produced object files should
599conform to.
b45619c0 600The following values are recognized:
3a4a14e9
PB
601@code{gnu},
602@code{4}
d507cf36 603and
3a4a14e9 604@code{5}.
d507cf36 605
a05a5b64 606@cindex @code{-EB} command-line option, ARM
252b5132
RH
607@item -EB
608This option specifies that the output generated by the assembler should
609be marked as being encoded for a big-endian processor.
adcf07e6 610
080bb7bb
NC
611Note: If a program is being built for a system with big-endian data
612and little-endian instructions then it should be assembled with the
613@option{-EB} option, (all of it, code and data) and then linked with
614the @option{--be8} option. This will reverse the endianness of the
615instructions back to little-endian, but leave the data as big-endian.
616
a05a5b64 617@cindex @code{-EL} command-line option, ARM
252b5132
RH
618@item -EL
619This option specifies that the output generated by the assembler should
620be marked as being encoded for a little-endian processor.
adcf07e6 621
a05a5b64 622@cindex @code{-k} command-line option, ARM
252b5132
RH
623@cindex PIC code generation for ARM
624@item -k
a349d9dd
PB
625This option specifies that the output of the assembler should be marked
626as position-independent code (PIC).
adcf07e6 627
a05a5b64 628@cindex @code{--fix-v4bx} command-line option, ARM
845b51d6
PB
629@item --fix-v4bx
630Allow @code{BX} instructions in ARMv4 code. This is intended for use with
631the linker option of the same name.
632
a05a5b64 633@cindex @code{-mwarn-deprecated} command-line option, ARM
278df34e
NS
634@item -mwarn-deprecated
635@itemx -mno-warn-deprecated
636Enable or disable warnings about using deprecated options or
637features. The default is to warn.
638
a05a5b64 639@cindex @code{-mccs} command-line option, ARM
2e6976a8
DG
640@item -mccs
641Turns on CodeComposer Studio assembly syntax compatibility mode.
642
a05a5b64 643@cindex @code{-mwarn-syms} command-line option, ARM
8b2d793c
NC
644@item -mwarn-syms
645@itemx -mno-warn-syms
646Enable or disable warnings about symbols that match the names of ARM
647instructions. The default is to warn.
648
252b5132
RH
649@end table
650
651
652@node ARM Syntax
653@section Syntax
654@menu
cab7e4d9 655* ARM-Instruction-Set:: Instruction Set
252b5132
RH
656* ARM-Chars:: Special Characters
657* ARM-Regs:: Register Names
b6895b4f 658* ARM-Relocations:: Relocations
99f1a7a7 659* ARM-Neon-Alignment:: NEON Alignment Specifiers
252b5132
RH
660@end menu
661
cab7e4d9
NC
662@node ARM-Instruction-Set
663@subsection Instruction Set Syntax
664Two slightly different syntaxes are support for ARM and THUMB
665instructions. The default, @code{divided}, uses the old style where
666ARM and THUMB instructions had their own, separate syntaxes. The new,
667@code{unified} syntax, which can be selected via the @code{.syntax}
668directive, and has the following main features:
669
9e6f3811
AS
670@itemize @bullet
671@item
cab7e4d9
NC
672Immediate operands do not require a @code{#} prefix.
673
9e6f3811 674@item
cab7e4d9
NC
675The @code{IT} instruction may appear, and if it does it is validated
676against subsequent conditional affixes. In ARM mode it does not
677generate machine code, in THUMB mode it does.
678
9e6f3811 679@item
cab7e4d9
NC
680For ARM instructions the conditional affixes always appear at the end
681of the instruction. For THUMB instructions conditional affixes can be
682used, but only inside the scope of an @code{IT} instruction.
683
9e6f3811 684@item
cab7e4d9
NC
685All of the instructions new to the V6T2 architecture (and later) are
686available. (Only a few such instructions can be written in the
687@code{divided} syntax).
688
9e6f3811 689@item
cab7e4d9
NC
690The @code{.N} and @code{.W} suffixes are recognized and honored.
691
9e6f3811 692@item
cab7e4d9
NC
693All instructions set the flags if and only if they have an @code{s}
694affix.
9e6f3811 695@end itemize
cab7e4d9 696
252b5132
RH
697@node ARM-Chars
698@subsection Special Characters
699
700@cindex line comment character, ARM
701@cindex ARM line comment character
7c31ae13
NC
702The presence of a @samp{@@} anywhere on a line indicates the start of
703a comment that extends to the end of that line.
704
705If a @samp{#} appears as the first character of a line then the whole
706line is treated as a comment, but in this case the line could also be
707a logical line number directive (@pxref{Comments}) or a preprocessor
708control command (@pxref{Preprocessing}).
550262c4
NC
709
710@cindex line separator, ARM
711@cindex statement separator, ARM
712@cindex ARM line separator
a349d9dd
PB
713The @samp{;} character can be used instead of a newline to separate
714statements.
550262c4
NC
715
716@cindex immediate character, ARM
717@cindex ARM immediate character
718Either @samp{#} or @samp{$} can be used to indicate immediate operands.
252b5132
RH
719
720@cindex identifiers, ARM
721@cindex ARM identifiers
722*TODO* Explain about /data modifier on symbols.
723
724@node ARM-Regs
725@subsection Register Names
726
727@cindex ARM register names
728@cindex register names, ARM
729*TODO* Explain about ARM register naming, and the predefined names.
730
b6895b4f
PB
731@node ARM-Relocations
732@subsection ARM relocation generation
733
734@cindex data relocations, ARM
735@cindex ARM data relocations
736Specific data relocations can be generated by putting the relocation name
737in parentheses after the symbol name. For example:
738
739@smallexample
740 .word foo(TARGET1)
741@end smallexample
742
743This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
744@var{foo}.
745The following relocations are supported:
746@code{GOT},
747@code{GOTOFF},
748@code{TARGET1},
749@code{TARGET2},
750@code{SBREL},
751@code{TLSGD},
752@code{TLSLDM},
753@code{TLSLDO},
0855e32b
NS
754@code{TLSDESC},
755@code{TLSCALL},
b43420e6
NC
756@code{GOTTPOFF},
757@code{GOT_PREL}
b6895b4f
PB
758and
759@code{TPOFF}.
760
761For compatibility with older toolchains the assembler also accepts
3da1d841
NC
762@code{(PLT)} after branch targets. On legacy targets this will
763generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
764targets it will encode either the @samp{R_ARM_CALL} or
765@samp{R_ARM_JUMP24} relocation, as appropriate.
b6895b4f
PB
766
767@cindex MOVW and MOVT relocations, ARM
768Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
769by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
b45619c0 770respectively. For example to load the 32-bit address of foo into r0:
252b5132 771
b6895b4f
PB
772@smallexample
773 MOVW r0, #:lower16:foo
774 MOVT r0, #:upper16:foo
775@end smallexample
252b5132 776
72d98d16
MG
777Relocations @samp{R_ARM_THM_ALU_ABS_G0_NC}, @samp{R_ARM_THM_ALU_ABS_G1_NC},
778@samp{R_ARM_THM_ALU_ABS_G2_NC} and @samp{R_ARM_THM_ALU_ABS_G3_NC} can be
779generated by prefixing the value with @samp{#:lower0_7:#},
780@samp{#:lower8_15:#}, @samp{#:upper0_7:#} and @samp{#:upper8_15:#}
781respectively. For example to load the 32-bit address of foo into r0:
782
783@smallexample
784 MOVS r0, #:upper8_15:#foo
785 LSLS r0, r0, #8
786 ADDS r0, #:upper0_7:#foo
787 LSLS r0, r0, #8
788 ADDS r0, #:lower8_15:#foo
789 LSLS r0, r0, #8
790 ADDS r0, #:lower0_7:#foo
791@end smallexample
792
ba724cfc
NC
793@node ARM-Neon-Alignment
794@subsection NEON Alignment Specifiers
795
796@cindex alignment for NEON instructions
797Some NEON load/store instructions allow an optional address
798alignment qualifier.
799The ARM documentation specifies that this is indicated by
800@samp{@@ @var{align}}. However GAS already interprets
801the @samp{@@} character as a "line comment" start,
802so @samp{: @var{align}} is used instead. For example:
803
804@smallexample
805 vld1.8 @{q0@}, [r0, :128]
806@end smallexample
807
808@node ARM Floating Point
809@section Floating Point
810
811@cindex floating point, ARM (@sc{ieee})
812@cindex ARM floating point (@sc{ieee})
813The ARM family uses @sc{ieee} floating-point numbers.
814
252b5132
RH
815@node ARM Directives
816@section ARM Machine Directives
817
818@cindex machine directives, ARM
819@cindex ARM machine directives
820@table @code
821
4a6bc624
NS
822@c AAAAAAAAAAAAAAAAAAAAAAAAA
823
2b841ec2 824@ifclear ELF
4a6bc624
NS
825@cindex @code{.2byte} directive, ARM
826@cindex @code{.4byte} directive, ARM
827@cindex @code{.8byte} directive, ARM
828@item .2byte @var{expression} [, @var{expression}]*
829@itemx .4byte @var{expression} [, @var{expression}]*
830@itemx .8byte @var{expression} [, @var{expression}]*
831These directives write 2, 4 or 8 byte values to the output section.
2b841ec2 832@end ifclear
4a6bc624
NS
833
834@cindex @code{.align} directive, ARM
adcf07e6
NC
835@item .align @var{expression} [, @var{expression}]
836This is the generic @var{.align} directive. For the ARM however if the
837first argument is zero (ie no alignment is needed) the assembler will
838behave as if the argument had been 2 (ie pad to the next four byte
062b7c0c 839boundary). This is for compatibility with ARM's own assembler.
adcf07e6 840
4a6bc624
NS
841@cindex @code{.arch} directive, ARM
842@item .arch @var{name}
843Select the target architecture. Valid values for @var{name} are the same as
54691107
TP
844for the @option{-march} command-line option without the instruction set
845extension.
252b5132 846
34bca508 847Specifying @code{.arch} clears any previously selected architecture
69133863
MGD
848extensions.
849
850@cindex @code{.arch_extension} directive, ARM
851@item .arch_extension @var{name}
34bca508
L
852Add or remove an architecture extension to the target architecture. Valid
853values for @var{name} are the same as those accepted as architectural
a05a5b64 854extensions by the @option{-mcpu} and @option{-march} command-line options.
69133863
MGD
855
856@code{.arch_extension} may be used multiple times to add or remove extensions
857incrementally to the architecture being compiled for.
858
4a6bc624
NS
859@cindex @code{.arm} directive, ARM
860@item .arm
861This performs the same action as @var{.code 32}.
252b5132 862
4a6bc624 863@c BBBBBBBBBBBBBBBBBBBBBBBBBB
0bbf2aa4 864
4a6bc624
NS
865@cindex @code{.bss} directive, ARM
866@item .bss
867This directive switches to the @code{.bss} section.
0bbf2aa4 868
4a6bc624
NS
869@c CCCCCCCCCCCCCCCCCCCCCCCCCC
870
871@cindex @code{.cantunwind} directive, ARM
872@item .cantunwind
873Prevents unwinding through the current function. No personality routine
874or exception table data is required or permitted.
875
876@cindex @code{.code} directive, ARM
877@item .code @code{[16|32]}
878This directive selects the instruction set being generated. The value 16
879selects Thumb, with the value 32 selecting ARM.
880
881@cindex @code{.cpu} directive, ARM
882@item .cpu @var{name}
883Select the target processor. Valid values for @var{name} are the same as
54691107
TP
884for the @option{-mcpu} command-line option without the instruction set
885extension.
4a6bc624 886
34bca508 887Specifying @code{.cpu} clears any previously selected architecture
69133863
MGD
888extensions.
889
4a6bc624
NS
890@c DDDDDDDDDDDDDDDDDDDDDDDDDD
891
892@cindex @code{.dn} and @code{.qn} directives, ARM
f467aa98 893@item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
1f9bb1ca 894@itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
23753660
JB
895
896The @code{dn} and @code{qn} directives are used to create typed
897and/or indexed register aliases for use in Advanced SIMD Extension
898(Neon) instructions. The former should be used to create aliases
899of double-precision registers, and the latter to create aliases of
900quad-precision registers.
901
902If these directives are used to create typed aliases, those aliases can
903be used in Neon instructions instead of writing types after the mnemonic
904or after each operand. For example:
905
906@smallexample
907 x .dn d2.f32
908 y .dn d3.f32
909 z .dn d4.f32[1]
910 vmul x,y,z
911@end smallexample
912
913This is equivalent to writing the following:
914
915@smallexample
916 vmul.f32 d2,d3,d4[1]
917@end smallexample
918
919Aliases created using @code{dn} or @code{qn} can be destroyed using
920@code{unreq}.
921
4a6bc624 922@c EEEEEEEEEEEEEEEEEEEEEEEEEE
252b5132 923
4a6bc624
NS
924@cindex @code{.eabi_attribute} directive, ARM
925@item .eabi_attribute @var{tag}, @var{value}
926Set the EABI object attribute @var{tag} to @var{value}.
252b5132 927
4a6bc624
NS
928The @var{tag} is either an attribute number, or one of the following:
929@code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
930@code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
75375b3e 931@code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
a7ad558c 932@code{Tag_Advanced_SIMD_arch}, @code{Tag_MVE_arch}, @code{Tag_PCS_config},
4a6bc624
NS
933@code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
934@code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
935@code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
936@code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
937@code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
75375b3e 938@code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
4a6bc624
NS
939@code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
940@code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
941@code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
942@code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
75375b3e 943@code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
cd21e546 944@code{Tag_MPextension_use}, @code{Tag_DIV_use},
4a6bc624
NS
945@code{Tag_nodefaults}, @code{Tag_also_compatible_with},
946@code{Tag_conformance}, @code{Tag_T2EE_use},
cd21e546 947@code{Tag_Virtualization_use}
4a6bc624
NS
948
949The @var{value} is either a @code{number}, @code{"string"}, or
950@code{number, "string"} depending on the tag.
951
75375b3e 952Note - the following legacy values are also accepted by @var{tag}:
34bca508 953@code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
75375b3e
MGD
954@code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
955
4a6bc624
NS
956@cindex @code{.even} directive, ARM
957@item .even
958This directive aligns to an even-numbered address.
959
960@cindex @code{.extend} directive, ARM
961@cindex @code{.ldouble} directive, ARM
962@item .extend @var{expression} [, @var{expression}]*
963@itemx .ldouble @var{expression} [, @var{expression}]*
964These directives write 12byte long double floating-point values to the
965output section. These are not compatible with current ARM processors
966or ABIs.
967
968@c FFFFFFFFFFFFFFFFFFFFFFFFFF
969
5312fe52
BW
970@cindex @code{.float16} directive, ARM
971@item .float16 @var{value [,...,value_n]}
972Place the half precision floating point representation of one or more
973floating-point values into the current section. The exact format of the
974encoding is specified by @code{.float16_format}. If the format has not
975been explicitly set yet (either via the @code{.float16_format} directive or
976the command line option) then the IEEE 754-2008 format is used.
977
978@cindex @code{.float16_format} directive, ARM
979@item .float16_format @var{format}
980Set the format to use when encoding float16 values emitted by
981the @code{.float16} directive.
982Once the format has been set it cannot be changed.
983@code{format} should be one of the following: @code{ieee} (encode in
984the IEEE 754-2008 half precision format) or @code{alternative} (encode in
985the Arm alternative half precision format).
986
4a6bc624
NS
987@anchor{arm_fnend}
988@cindex @code{.fnend} directive, ARM
989@item .fnend
990Marks the end of a function with an unwind table entry. The unwind index
991table entry is created when this directive is processed.
252b5132 992
4a6bc624
NS
993If no personality routine has been specified then standard personality
994routine 0 or 1 will be used, depending on the number of unwind opcodes
995required.
996
997@anchor{arm_fnstart}
998@cindex @code{.fnstart} directive, ARM
999@item .fnstart
1000Marks the start of a function with an unwind table entry.
1001
1002@cindex @code{.force_thumb} directive, ARM
252b5132
RH
1003@item .force_thumb
1004This directive forces the selection of Thumb instructions, even if the
1005target processor does not support those instructions
1006
4a6bc624
NS
1007@cindex @code{.fpu} directive, ARM
1008@item .fpu @var{name}
1009Select the floating-point unit to assemble for. Valid values for @var{name}
a05a5b64 1010are the same as for the @option{-mfpu} command-line option.
252b5132 1011
4a6bc624
NS
1012@c GGGGGGGGGGGGGGGGGGGGGGGGGG
1013@c HHHHHHHHHHHHHHHHHHHHHHHHHH
e1da3f5b 1014
4a6bc624
NS
1015@cindex @code{.handlerdata} directive, ARM
1016@item .handlerdata
1017Marks the end of the current function, and the start of the exception table
1018entry for that function. Anything between this directive and the
1019@code{.fnend} directive will be added to the exception table entry.
1020
1021Must be preceded by a @code{.personality} or @code{.personalityindex}
1022directive.
1023
1024@c IIIIIIIIIIIIIIIIIIIIIIIIII
c921be7d
NC
1025
1026@cindex @code{.inst} directive, ARM
1027@item .inst @var{opcode} [ , @dots{} ]
1f9bb1ca
AS
1028@itemx .inst.n @var{opcode} [ , @dots{} ]
1029@itemx .inst.w @var{opcode} [ , @dots{} ]
c921be7d
NC
1030Generates the instruction corresponding to the numerical value @var{opcode}.
1031@code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
1032specified explicitly, overriding the normal encoding rules.
1033
4a6bc624
NS
1034@c JJJJJJJJJJJJJJJJJJJJJJJJJJ
1035@c KKKKKKKKKKKKKKKKKKKKKKKKKK
1036@c LLLLLLLLLLLLLLLLLLLLLLLLLL
1037
1038@item .ldouble @var{expression} [, @var{expression}]*
1039See @code{.extend}.
5395a469 1040
252b5132
RH
1041@cindex @code{.ltorg} directive, ARM
1042@item .ltorg
1043This directive causes the current contents of the literal pool to be
1044dumped into the current section (which is assumed to be the .text
1045section) at the current location (aligned to a word boundary).
3d0c9500
NC
1046@code{GAS} maintains a separate literal pool for each section and each
1047sub-section. The @code{.ltorg} directive will only affect the literal
1048pool of the current section and sub-section. At the end of assembly
1049all remaining, un-empty literal pools will automatically be dumped.
1050
1051Note - older versions of @code{GAS} would dump the current literal
1052pool any time a section change occurred. This is no longer done, since
1053it prevents accurate control of the placement of literal pools.
252b5132 1054
4a6bc624 1055@c MMMMMMMMMMMMMMMMMMMMMMMMMM
252b5132 1056
4a6bc624
NS
1057@cindex @code{.movsp} directive, ARM
1058@item .movsp @var{reg} [, #@var{offset}]
1059Tell the unwinder that @var{reg} contains an offset from the current
1060stack pointer. If @var{offset} is not specified then it is assumed to be
1061zero.
7ed4c4c5 1062
4a6bc624
NS
1063@c NNNNNNNNNNNNNNNNNNNNNNNNNN
1064@c OOOOOOOOOOOOOOOOOOOOOOOOOO
7ed4c4c5 1065
4a6bc624
NS
1066@cindex @code{.object_arch} directive, ARM
1067@item .object_arch @var{name}
1068Override the architecture recorded in the EABI object attribute section.
1069Valid values for @var{name} are the same as for the @code{.arch} directive.
1070Typically this is useful when code uses runtime detection of CPU features.
7ed4c4c5 1071
4a6bc624
NS
1072@c PPPPPPPPPPPPPPPPPPPPPPPPPP
1073
1074@cindex @code{.packed} directive, ARM
1075@item .packed @var{expression} [, @var{expression}]*
1076This directive writes 12-byte packed floating-point values to the
1077output section. These are not compatible with current ARM processors
1078or ABIs.
1079
ea4cff4f 1080@anchor{arm_pad}
4a6bc624
NS
1081@cindex @code{.pad} directive, ARM
1082@item .pad #@var{count}
1083Generate unwinder annotations for a stack adjustment of @var{count} bytes.
1084A positive value indicates the function prologue allocated stack space by
1085decrementing the stack pointer.
7ed4c4c5
NC
1086
1087@cindex @code{.personality} directive, ARM
1088@item .personality @var{name}
1089Sets the personality routine for the current function to @var{name}.
1090
1091@cindex @code{.personalityindex} directive, ARM
1092@item .personalityindex @var{index}
1093Sets the personality routine for the current function to the EABI standard
1094routine number @var{index}
1095
4a6bc624
NS
1096@cindex @code{.pool} directive, ARM
1097@item .pool
1098This is a synonym for .ltorg.
7ed4c4c5 1099
4a6bc624
NS
1100@c QQQQQQQQQQQQQQQQQQQQQQQQQQ
1101@c RRRRRRRRRRRRRRRRRRRRRRRRRR
1102
1103@cindex @code{.req} directive, ARM
1104@item @var{name} .req @var{register name}
1105This creates an alias for @var{register name} called @var{name}. For
1106example:
1107
1108@smallexample
1109 foo .req r0
1110@end smallexample
1111
1112@c SSSSSSSSSSSSSSSSSSSSSSSSSS
7ed4c4c5 1113
7da4f750 1114@anchor{arm_save}
7ed4c4c5
NC
1115@cindex @code{.save} directive, ARM
1116@item .save @var{reglist}
1117Generate unwinder annotations to restore the registers in @var{reglist}.
1118The format of @var{reglist} is the same as the corresponding store-multiple
1119instruction.
1120
1121@smallexample
1122@exdent @emph{core registers}
1123 .save @{r4, r5, r6, lr@}
1124 stmfd sp!, @{r4, r5, r6, lr@}
1125@exdent @emph{FPA registers}
1126 .save f4, 2
1127 sfmfd f4, 2, [sp]!
1128@exdent @emph{VFP registers}
1129 .save @{d8, d9, d10@}
fa073d69 1130 fstmdx sp!, @{d8, d9, d10@}
7ed4c4c5
NC
1131@exdent @emph{iWMMXt registers}
1132 .save @{wr10, wr11@}
1133 wstrd wr11, [sp, #-8]!
1134 wstrd wr10, [sp, #-8]!
1135or
1136 .save wr11
1137 wstrd wr11, [sp, #-8]!
1138 .save wr10
1139 wstrd wr10, [sp, #-8]!
1140@end smallexample
1141
7da4f750 1142@anchor{arm_setfp}
7ed4c4c5
NC
1143@cindex @code{.setfp} directive, ARM
1144@item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
4a6bc624 1145Make all unwinder annotations relative to a frame pointer. Without this
7ed4c4c5
NC
1146the unwinder will use offsets from the stack pointer.
1147
a5b82cbe 1148The syntax of this directive is the same as the @code{add} or @code{mov}
7ed4c4c5
NC
1149instruction used to set the frame pointer. @var{spreg} must be either
1150@code{sp} or mentioned in a previous @code{.movsp} directive.
1151
1152@smallexample
1153.movsp ip
1154mov ip, sp
1155@dots{}
1156.setfp fp, ip, #4
a5b82cbe 1157add fp, ip, #4
7ed4c4c5
NC
1158@end smallexample
1159
4a6bc624
NS
1160@cindex @code{.secrel32} directive, ARM
1161@item .secrel32 @var{expression} [, @var{expression}]*
1162This directive emits relocations that evaluate to the section-relative
1163offset of each expression's symbol. This directive is only supported
1164for PE targets.
1165
cab7e4d9
NC
1166@cindex @code{.syntax} directive, ARM
1167@item .syntax [@code{unified} | @code{divided}]
1168This directive sets the Instruction Set Syntax as described in the
1169@ref{ARM-Instruction-Set} section.
1170
4a6bc624
NS
1171@c TTTTTTTTTTTTTTTTTTTTTTTTTT
1172
1173@cindex @code{.thumb} directive, ARM
1174@item .thumb
1175This performs the same action as @var{.code 16}.
1176
1177@cindex @code{.thumb_func} directive, ARM
1178@item .thumb_func
1179This directive specifies that the following symbol is the name of a
1180Thumb encoded function. This information is necessary in order to allow
1181the assembler and linker to generate correct code for interworking
1182between Arm and Thumb instructions and should be used even if
1183interworking is not going to be performed. The presence of this
1184directive also implies @code{.thumb}
1185
33eaf5de 1186This directive is not necessary when generating EABI objects. On these
4a6bc624
NS
1187targets the encoding is implicit when generating Thumb code.
1188
1189@cindex @code{.thumb_set} directive, ARM
1190@item .thumb_set
1191This performs the equivalent of a @code{.set} directive in that it
1192creates a symbol which is an alias for another symbol (possibly not yet
1193defined). This directive also has the added property in that it marks
1194the aliased symbol as being a thumb function entry point, in the same
1195way that the @code{.thumb_func} directive does.
1196
0855e32b
NS
1197@cindex @code{.tlsdescseq} directive, ARM
1198@item .tlsdescseq @var{tls-variable}
1199This directive is used to annotate parts of an inlined TLS descriptor
1200trampoline. Normally the trampoline is provided by the linker, and
1201this directive is not needed.
1202
4a6bc624
NS
1203@c UUUUUUUUUUUUUUUUUUUUUUUUUU
1204
1205@cindex @code{.unreq} directive, ARM
1206@item .unreq @var{alias-name}
1207This undefines a register alias which was previously defined using the
1208@code{req}, @code{dn} or @code{qn} directives. For example:
1209
1210@smallexample
1211 foo .req r0
1212 .unreq foo
1213@end smallexample
1214
1215An error occurs if the name is undefined. Note - this pseudo op can
1216be used to delete builtin in register name aliases (eg 'r0'). This
1217should only be done if it is really necessary.
1218
7ed4c4c5 1219@cindex @code{.unwind_raw} directive, ARM
4a6bc624 1220@item .unwind_raw @var{offset}, @var{byte1}, @dots{}
33eaf5de 1221Insert one of more arbitrary unwind opcode bytes, which are known to adjust
7ed4c4c5
NC
1222the stack pointer by @var{offset} bytes.
1223
1224For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
1225@code{.save @{r0@}}
1226
4a6bc624 1227@c VVVVVVVVVVVVVVVVVVVVVVVVVV
ee065d83 1228
4a6bc624
NS
1229@cindex @code{.vsave} directive, ARM
1230@item .vsave @var{vfp-reglist}
1231Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
1232using FLDMD. Also works for VFPv3 registers
1233that are to be restored using VLDM.
1234The format of @var{vfp-reglist} is the same as the corresponding store-multiple
1235instruction.
ee065d83 1236
4a6bc624
NS
1237@smallexample
1238@exdent @emph{VFP registers}
1239 .vsave @{d8, d9, d10@}
1240 fstmdd sp!, @{d8, d9, d10@}
1241@exdent @emph{VFPv3 registers}
1242 .vsave @{d15, d16, d17@}
1243 vstm sp!, @{d15, d16, d17@}
1244@end smallexample
e04befd0 1245
4a6bc624
NS
1246Since FLDMX and FSTMX are now deprecated, this directive should be
1247used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
e04befd0 1248
4a6bc624
NS
1249@c WWWWWWWWWWWWWWWWWWWWWWWWWW
1250@c XXXXXXXXXXXXXXXXXXXXXXXXXX
1251@c YYYYYYYYYYYYYYYYYYYYYYYYYY
1252@c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
ee065d83 1253
252b5132
RH
1254@end table
1255
1256@node ARM Opcodes
1257@section Opcodes
1258
1259@cindex ARM opcodes
1260@cindex opcodes for ARM
49a5575c
NC
1261@code{@value{AS}} implements all the standard ARM opcodes. It also
1262implements several pseudo opcodes, including several synthetic load
34bca508 1263instructions.
252b5132 1264
49a5575c
NC
1265@table @code
1266
1267@cindex @code{NOP} pseudo op, ARM
1268@item NOP
1269@smallexample
1270 nop
1271@end smallexample
252b5132 1272
49a5575c
NC
1273This pseudo op will always evaluate to a legal ARM instruction that does
1274nothing. Currently it will evaluate to MOV r0, r0.
252b5132 1275
49a5575c 1276@cindex @code{LDR reg,=<label>} pseudo op, ARM
34bca508 1277@item LDR
252b5132
RH
1278@smallexample
1279 ldr <register> , = <expression>
1280@end smallexample
1281
1282If expression evaluates to a numeric constant then a MOV or MVN
1283instruction will be used in place of the LDR instruction, if the
1284constant can be generated by either of these instructions. Otherwise
1285the constant will be placed into the nearest literal pool (if it not
1286already there) and a PC relative LDR instruction will be generated.
1287
49a5575c
NC
1288@cindex @code{ADR reg,<label>} pseudo op, ARM
1289@item ADR
1290@smallexample
1291 adr <register> <label>
1292@end smallexample
1293
1294This instruction will load the address of @var{label} into the indicated
1295register. The instruction will evaluate to a PC relative ADD or SUB
1296instruction depending upon where the label is located. If the label is
1297out of range, or if it is not defined in the same file (and section) as
1298the ADR instruction, then an error will be generated. This instruction
1299will not make use of the literal pool.
1300
fc6141f0
NC
1301If @var{label} is a thumb function symbol, and thumb interworking has
1302been enabled via the @option{-mthumb-interwork} option then the bottom
1303bit of the value stored into @var{register} will be set. This allows
1304the following sequence to work as expected:
1305
1306@smallexample
1307 adr r0, thumb_function
1308 blx r0
1309@end smallexample
1310
49a5575c 1311@cindex @code{ADRL reg,<label>} pseudo op, ARM
34bca508 1312@item ADRL
49a5575c
NC
1313@smallexample
1314 adrl <register> <label>
1315@end smallexample
1316
1317This instruction will load the address of @var{label} into the indicated
a349d9dd 1318register. The instruction will evaluate to one or two PC relative ADD
49a5575c
NC
1319or SUB instructions depending upon where the label is located. If a
1320second instruction is not needed a NOP instruction will be generated in
1321its place, so that this instruction is always 8 bytes long.
1322
1323If the label is out of range, or if it is not defined in the same file
1324(and section) as the ADRL instruction, then an error will be generated.
1325This instruction will not make use of the literal pool.
1326
fc6141f0
NC
1327If @var{label} is a thumb function symbol, and thumb interworking has
1328been enabled via the @option{-mthumb-interwork} option then the bottom
1329bit of the value stored into @var{register} will be set.
1330
49a5575c
NC
1331@end table
1332
252b5132
RH
1333For information on the ARM or Thumb instruction sets, see @cite{ARM
1334Software Development Toolkit Reference Manual}, Advanced RISC Machines
1335Ltd.
1336
6057a28f
NC
1337@node ARM Mapping Symbols
1338@section Mapping Symbols
1339
1340The ARM ELF specification requires that special symbols be inserted
1341into object files to mark certain features:
1342
1343@table @code
1344
1345@cindex @code{$a}
1346@item $a
1347At the start of a region of code containing ARM instructions.
1348
1349@cindex @code{$t}
1350@item $t
1351At the start of a region of code containing THUMB instructions.
1352
1353@cindex @code{$d}
1354@item $d
1355At the start of a region of data.
1356
1357@end table
1358
1359The assembler will automatically insert these symbols for you - there
1360is no need to code them yourself. Support for tagging symbols ($b,
1361$f, $p and $m) which is also mentioned in the current ARM ELF
1362specification is not implemented. This is because they have been
1363dropped from the new EABI and so tools cannot rely upon their
1364presence.
1365
7da4f750
MM
1366@node ARM Unwinding Tutorial
1367@section Unwinding
1368
1369The ABI for the ARM Architecture specifies a standard format for
1370exception unwind information. This information is used when an
1371exception is thrown to determine where control should be transferred.
1372In particular, the unwind information is used to determine which
1373function called the function that threw the exception, and which
1374function called that one, and so forth. This information is also used
1375to restore the values of callee-saved registers in the function
1376catching the exception.
1377
1378If you are writing functions in assembly code, and those functions
1379call other functions that throw exceptions, you must use assembly
1380pseudo ops to ensure that appropriate exception unwind information is
1381generated. Otherwise, if one of the functions called by your assembly
1382code throws an exception, the run-time library will be unable to
1383unwind the stack through your assembly code and your program will not
1384behave correctly.
1385
1386To illustrate the use of these pseudo ops, we will examine the code
1387that G++ generates for the following C++ input:
1388
1389@verbatim
1390void callee (int *);
1391
34bca508
L
1392int
1393caller ()
7da4f750
MM
1394{
1395 int i;
1396 callee (&i);
34bca508 1397 return i;
7da4f750
MM
1398}
1399@end verbatim
1400
1401This example does not show how to throw or catch an exception from
1402assembly code. That is a much more complex operation and should
1403always be done in a high-level language, such as C++, that directly
1404supports exceptions.
1405
1406The code generated by one particular version of G++ when compiling the
1407example above is:
1408
1409@verbatim
1410_Z6callerv:
1411 .fnstart
1412.LFB2:
1413 @ Function supports interworking.
1414 @ args = 0, pretend = 0, frame = 8
1415 @ frame_needed = 1, uses_anonymous_args = 0
1416 stmfd sp!, {fp, lr}
1417 .save {fp, lr}
1418.LCFI0:
1419 .setfp fp, sp, #4
1420 add fp, sp, #4
1421.LCFI1:
1422 .pad #8
1423 sub sp, sp, #8
1424.LCFI2:
1425 sub r3, fp, #8
1426 mov r0, r3
1427 bl _Z6calleePi
1428 ldr r3, [fp, #-8]
1429 mov r0, r3
1430 sub sp, fp, #4
1431 ldmfd sp!, {fp, lr}
1432 bx lr
1433.LFE2:
1434 .fnend
1435@end verbatim
1436
1437Of course, the sequence of instructions varies based on the options
1438you pass to GCC and on the version of GCC in use. The exact
1439instructions are not important since we are focusing on the pseudo ops
1440that are used to generate unwind information.
1441
1442An important assumption made by the unwinder is that the stack frame
1443does not change during the body of the function. In particular, since
1444we assume that the assembly code does not itself throw an exception,
1445the only point where an exception can be thrown is from a call, such
1446as the @code{bl} instruction above. At each call site, the same saved
1447registers (including @code{lr}, which indicates the return address)
1448must be located in the same locations relative to the frame pointer.
1449
1450The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1451op appears immediately before the first instruction of the function
1452while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1453op appears immediately after the last instruction of the function.
34bca508 1454These pseudo ops specify the range of the function.
7da4f750
MM
1455
1456Only the order of the other pseudos ops (e.g., @code{.setfp} or
1457@code{.pad}) matters; their exact locations are irrelevant. In the
1458example above, the compiler emits the pseudo ops with particular
1459instructions. That makes it easier to understand the code, but it is
1460not required for correctness. It would work just as well to emit all
1461of the pseudo ops other than @code{.fnend} in the same order, but
1462immediately after @code{.fnstart}.
1463
1464The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1465indicates registers that have been saved to the stack so that they can
1466be restored before the function returns. The argument to the
1467@code{.save} pseudo op is a list of registers to save. If a register
1468is ``callee-saved'' (as specified by the ABI) and is modified by the
1469function you are writing, then your code must save the value before it
1470is modified and restore the original value before the function
1471returns. If an exception is thrown, the run-time library restores the
1472values of these registers from their locations on the stack before
1473returning control to the exception handler. (Of course, if an
1474exception is not thrown, the function that contains the @code{.save}
1475pseudo op restores these registers in the function epilogue, as is
1476done with the @code{ldmfd} instruction above.)
1477
1478You do not have to save callee-saved registers at the very beginning
1479of the function and you do not need to use the @code{.save} pseudo op
1480immediately following the point at which the registers are saved.
1481However, if you modify a callee-saved register, you must save it on
1482the stack before modifying it and before calling any functions which
1483might throw an exception. And, you must use the @code{.save} pseudo
1484op to indicate that you have done so.
1485
1486The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1487modification of the stack pointer that does not save any registers.
1488The argument is the number of bytes (in decimal) that are subtracted
1489from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1490subtracting from the stack pointer increases the size of the stack.)
1491
1492The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1493indicates the register that contains the frame pointer. The first
1494argument is the register that is set, which is typically @code{fp}.
1495The second argument indicates the register from which the frame
1496pointer takes its value. The third argument, if present, is the value
1497(in decimal) added to the register specified by the second argument to
1498compute the value of the frame pointer. You should not modify the
1499frame pointer in the body of the function.
1500
1501If you do not use a frame pointer, then you should not use the
1502@code{.setfp} pseudo op. If you do not use a frame pointer, then you
1503should avoid modifying the stack pointer outside of the function
1504prologue. Otherwise, the run-time library will be unable to find
1505saved registers when it is unwinding the stack.
1506
1507The pseudo ops described above are sufficient for writing assembly
1508code that calls functions which may throw exceptions. If you need to
1509know more about the object-file format used to represent unwind
1510information, you may consult the @cite{Exception Handling ABI for the
1511ARM Architecture} available from @uref{http://infocenter.arm.com}.
91f68a68 1512
This page took 1.152953 seconds and 4 git commands to generate.