Update descriptions of the .2byte, .4byte and .8byte directives.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2571583a 1@c Copyright (C) 1991-2017 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
7b458c12
L
125@code{btver1},
126@code{btver2},
9103f4f4
L
127@code{generic32} and
128@code{generic64}.
129
34bca508 130In addition to the basic instruction set, the assembler can be told to
6305a203
L
131accept various extension mnemonics. For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}. The following extensions are currently supported:
309d3373
JB
134@code{8087},
135@code{287},
136@code{387},
1848e567 137@code{687},
309d3373 138@code{no87},
1848e567
L
139@code{no287},
140@code{no387},
141@code{no687},
6305a203 142@code{mmx},
309d3373 143@code{nommx},
6305a203
L
144@code{sse},
145@code{sse2},
146@code{sse3},
147@code{ssse3},
148@code{sse4.1},
149@code{sse4.2},
150@code{sse4},
309d3373 151@code{nosse},
1848e567
L
152@code{nosse2},
153@code{nosse3},
154@code{nossse3},
155@code{nosse4.1},
156@code{nosse4.2},
157@code{nosse4},
c0f3af97 158@code{avx},
6c30d220 159@code{avx2},
1848e567
L
160@code{noavx},
161@code{noavx2},
e2e1fcde
L
162@code{adx},
163@code{rdseed},
164@code{prfchw},
5c111e37 165@code{smap},
7e8b059b 166@code{mpx},
a0046408 167@code{sha},
8bc52696 168@code{rdpid},
6b40c462 169@code{ptwrite},
603555e5 170@code{cet},
1dfc6506
L
171@code{prefetchwt1},
172@code{clflushopt},
173@code{se1},
c5e7287a 174@code{clwb},
43234a1e
L
175@code{avx512f},
176@code{avx512cd},
177@code{avx512er},
178@code{avx512pf},
1dfc6506
L
179@code{avx512vl},
180@code{avx512bw},
181@code{avx512dq},
2cc1b5aa 182@code{avx512ifma},
14f195c9 183@code{avx512vbmi},
920d2ddc 184@code{avx512_4fmaps},
47acf0bd 185@code{avx512_4vnniw},
620214f7 186@code{avx512_vpopcntdq},
144b71e2
L
187@code{noavx512f},
188@code{noavx512cd},
189@code{noavx512er},
190@code{noavx512pf},
191@code{noavx512vl},
192@code{noavx512bw},
193@code{noavx512dq},
194@code{noavx512ifma},
195@code{noavx512vbmi},
920d2ddc 196@code{noavx512_4fmaps},
47acf0bd 197@code{noavx512_4vnniw},
620214f7 198@code{noavx512_vpopcntdq},
6305a203 199@code{vmx},
8729a6f6 200@code{vmfunc},
6305a203 201@code{smx},
f03fe4c1 202@code{xsave},
c7b8aa3a 203@code{xsaveopt},
1dfc6506
L
204@code{xsavec},
205@code{xsaves},
c0f3af97 206@code{aes},
594ab6a3 207@code{pclmul},
c7b8aa3a
L
208@code{fsgsbase},
209@code{rdrnd},
210@code{f16c},
6c30d220 211@code{bmi2},
c0f3af97 212@code{fma},
f1f8f695
L
213@code{movbe},
214@code{ept},
6c30d220 215@code{lzcnt},
42164a71
L
216@code{hle},
217@code{rtm},
6c30d220 218@code{invpcid},
bd5295b2 219@code{clflush},
9916071f 220@code{mwaitx},
029f3522 221@code{clzero},
f88c9eb0 222@code{lwp},
5dd85c99
SP
223@code{fma4},
224@code{xop},
60aa667e 225@code{cx16},
bd5295b2 226@code{syscall},
1b7f3fb0 227@code{rdtscp},
6305a203
L
228@code{3dnow},
229@code{3dnowa},
230@code{sse4a},
231@code{sse5},
232@code{svme},
233@code{abm} and
234@code{padlock}.
309d3373
JB
235Note that rather than extending a basic instruction set, the extension
236mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
237
238When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
239@code{.arch} directive will take precedent.
240
241@cindex @samp{-mtune=} option, i386
242@cindex @samp{-mtune=} option, x86-64
243@item -mtune=@var{CPU}
244This option specifies a processor to optimize for. When used in
245conjunction with the @option{-march} option, only instructions
246of the processor specified by the @option{-march} option will be
247generated.
248
6305a203
L
249Valid @var{CPU} values are identical to the processor list of
250@option{-march=@var{CPU}}.
9103f4f4 251
c0f3af97
L
252@cindex @samp{-msse2avx} option, i386
253@cindex @samp{-msse2avx} option, x86-64
254@item -msse2avx
255This option specifies that the assembler should encode SSE instructions
256with VEX prefix.
257
daf50ae7
L
258@cindex @samp{-msse-check=} option, i386
259@cindex @samp{-msse-check=} option, x86-64
260@item -msse-check=@var{none}
1f9bb1ca
AS
261@itemx -msse-check=@var{warning}
262@itemx -msse-check=@var{error}
9aff4b7a 263These options control if the assembler should check SSE instructions.
daf50ae7
L
264@option{-msse-check=@var{none}} will make the assembler not to check SSE
265instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 266will make the assembler issue a warning for any SSE instruction.
daf50ae7 267@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 268for any SSE instruction.
daf50ae7 269
539f890d
L
270@cindex @samp{-mavxscalar=} option, i386
271@cindex @samp{-mavxscalar=} option, x86-64
272@item -mavxscalar=@var{128}
1f9bb1ca 273@itemx -mavxscalar=@var{256}
2aab8acd 274These options control how the assembler should encode scalar AVX
539f890d
L
275instructions. @option{-mavxscalar=@var{128}} will encode scalar
276AVX instructions with 128bit vector length, which is the default.
277@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
278with 256bit vector length.
279
43234a1e
L
280@cindex @samp{-mevexlig=} option, i386
281@cindex @samp{-mevexlig=} option, x86-64
282@item -mevexlig=@var{128}
283@itemx -mevexlig=@var{256}
284@itemx -mevexlig=@var{512}
285These options control how the assembler should encode length-ignored
286(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
287EVEX instructions with 128bit vector length, which is the default.
288@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
289encode LIG EVEX instructions with 256bit and 512bit vector length,
290respectively.
291
292@cindex @samp{-mevexwig=} option, i386
293@cindex @samp{-mevexwig=} option, x86-64
294@item -mevexwig=@var{0}
295@itemx -mevexwig=@var{1}
296These options control how the assembler should encode w-ignored (WIG)
297EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
298EVEX instructions with evex.w = 0, which is the default.
299@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
300evex.w = 1.
301
1efbbeb4
L
302@cindex @samp{-mmnemonic=} option, i386
303@cindex @samp{-mmnemonic=} option, x86-64
304@item -mmnemonic=@var{att}
1f9bb1ca 305@itemx -mmnemonic=@var{intel}
34bca508 306This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
307The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
308take precedent.
309
310@cindex @samp{-msyntax=} option, i386
311@cindex @samp{-msyntax=} option, x86-64
312@item -msyntax=@var{att}
1f9bb1ca 313@itemx -msyntax=@var{intel}
34bca508 314This option specifies instruction syntax when processing instructions.
1efbbeb4
L
315The @code{.att_syntax} and @code{.intel_syntax} directives will
316take precedent.
317
318@cindex @samp{-mnaked-reg} option, i386
319@cindex @samp{-mnaked-reg} option, x86-64
320@item -mnaked-reg
33eaf5de 321This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 322The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 323
7e8b059b
L
324@cindex @samp{-madd-bnd-prefix} option, i386
325@cindex @samp{-madd-bnd-prefix} option, x86-64
326@item -madd-bnd-prefix
327This option forces the assembler to add BND prefix to all branches, even
328if such prefix was not explicitly specified in the source code.
329
8dcea932
L
330@cindex @samp{-mshared} option, i386
331@cindex @samp{-mshared} option, x86-64
332@item -mno-shared
333On ELF target, the assembler normally optimizes out non-PLT relocations
334against defined non-weak global branch targets with default visibility.
335The @samp{-mshared} option tells the assembler to generate code which
336may go into a shared library where all non-weak global branch targets
337with default visibility can be preempted. The resulting code is
338slightly bigger. This option only affects the handling of branch
339instructions.
340
167ad85b
TG
341@cindex @samp{-mbig-obj} option, x86-64
342@item -mbig-obj
343On x86-64 PE/COFF target this option forces the use of big object file
344format, which allows more than 32768 sections.
345
d022bddd
IT
346@cindex @samp{-momit-lock-prefix=} option, i386
347@cindex @samp{-momit-lock-prefix=} option, x86-64
348@item -momit-lock-prefix=@var{no}
349@itemx -momit-lock-prefix=@var{yes}
350These options control how the assembler should encode lock prefix.
351This option is intended as a workaround for processors, that fail on
352lock prefix. This option can only be safely used with single-core,
353single-thread computers
354@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
355@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
356which is the default.
357
e4e00185
AS
358@cindex @samp{-mfence-as-lock-add=} option, i386
359@cindex @samp{-mfence-as-lock-add=} option, x86-64
360@item -mfence-as-lock-add=@var{no}
361@itemx -mfence-as-lock-add=@var{yes}
362These options control how the assembler should encode lfence, mfence and
363sfence.
364@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
365sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
366@samp{lock addl $0x0, (%esp)} in 32-bit mode.
367@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
368sfence as usual, which is the default.
369
0cb4071e
L
370@cindex @samp{-mrelax-relocations=} option, i386
371@cindex @samp{-mrelax-relocations=} option, x86-64
372@item -mrelax-relocations=@var{no}
373@itemx -mrelax-relocations=@var{yes}
374These options control whether the assembler should generate relax
375relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
376R_X86_64_REX_GOTPCRELX, in 64-bit mode.
377@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
378@option{-mrelax-relocations=@var{no}} will not generate relax
379relocations. The default can be controlled by a configure option
380@option{--enable-x86-relax-relocations}.
381
d3d3c6db
IT
382@cindex @samp{-mevexrcig=} option, i386
383@cindex @samp{-mevexrcig=} option, x86-64
384@item -mevexrcig=@var{rne}
385@itemx -mevexrcig=@var{rd}
386@itemx -mevexrcig=@var{ru}
387@itemx -mevexrcig=@var{rz}
388These options control how the assembler should encode SAE-only
389EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
390of EVEX instruction with 00, which is the default.
391@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
392and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
393with 01, 10 and 11 RC bits, respectively.
394
5db04b09
L
395@cindex @samp{-mamd64} option, x86-64
396@cindex @samp{-mintel64} option, x86-64
397@item -mamd64
398@itemx -mintel64
399This option specifies that the assembler should accept only AMD64 or
400Intel64 ISA in 64-bit mode. The default is to accept both.
401
55b62671 402@end table
731caf76 403@c man end
e413e4e9 404
a6c24e68
NC
405@node i386-Directives
406@section x86 specific Directives
407
408@cindex machine directives, x86
409@cindex x86 machine directives
410@table @code
411
412@cindex @code{lcomm} directive, COFF
413@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
414Reserve @var{length} (an absolute expression) bytes for a local common
415denoted by @var{symbol}. The section and value of @var{symbol} are
416those of the new local common. The addresses are allocated in the bss
704209c0
NC
417section, so that at run-time the bytes start off zeroed. Since
418@var{symbol} is not declared global, it is normally not visible to
419@code{@value{LD}}. The optional third parameter, @var{alignment},
420specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
421
422This directive is only available for COFF based x86 targets.
423
424@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
425@c .largecomm
426
427@end table
428
252b5132 429@node i386-Syntax
7c31ae13
NC
430@section i386 Syntactical Considerations
431@menu
432* i386-Variations:: AT&T Syntax versus Intel Syntax
433* i386-Chars:: Special Characters
434@end menu
435
436@node i386-Variations
437@subsection AT&T Syntax versus Intel Syntax
252b5132 438
e413e4e9
AM
439@cindex i386 intel_syntax pseudo op
440@cindex intel_syntax pseudo op, i386
441@cindex i386 att_syntax pseudo op
442@cindex att_syntax pseudo op, i386
252b5132
RH
443@cindex i386 syntax compatibility
444@cindex syntax compatibility, i386
55b62671
AJ
445@cindex x86-64 intel_syntax pseudo op
446@cindex intel_syntax pseudo op, x86-64
447@cindex x86-64 att_syntax pseudo op
448@cindex att_syntax pseudo op, x86-64
449@cindex x86-64 syntax compatibility
450@cindex syntax compatibility, x86-64
e413e4e9
AM
451
452@code{@value{AS}} now supports assembly using Intel assembler syntax.
453@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
454back to the usual AT&T mode for compatibility with the output of
455@code{@value{GCC}}. Either of these directives may have an optional
456argument, @code{prefix}, or @code{noprefix} specifying whether registers
457require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
458different from Intel syntax. We mention these differences because
459almost all 80386 documents use Intel syntax. Notable differences
460between the two syntaxes are:
461
462@cindex immediate operands, i386
463@cindex i386 immediate operands
464@cindex register operands, i386
465@cindex i386 register operands
466@cindex jump/call operands, i386
467@cindex i386 jump/call operands
468@cindex operand delimiters, i386
55b62671
AJ
469
470@cindex immediate operands, x86-64
471@cindex x86-64 immediate operands
472@cindex register operands, x86-64
473@cindex x86-64 register operands
474@cindex jump/call operands, x86-64
475@cindex x86-64 jump/call operands
476@cindex operand delimiters, x86-64
252b5132
RH
477@itemize @bullet
478@item
479AT&T immediate operands are preceded by @samp{$}; Intel immediate
480operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
481AT&T register operands are preceded by @samp{%}; Intel register operands
482are undelimited. AT&T absolute (as opposed to PC relative) jump/call
483operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
484
485@cindex i386 source, destination operands
486@cindex source, destination operands; i386
55b62671
AJ
487@cindex x86-64 source, destination operands
488@cindex source, destination operands; x86-64
252b5132
RH
489@item
490AT&T and Intel syntax use the opposite order for source and destination
491operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
492@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
493previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
494instructions with 2 immediate operands, such as the @samp{enter}
495instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
496
497@cindex mnemonic suffixes, i386
498@cindex sizes operands, i386
499@cindex i386 size suffixes
55b62671
AJ
500@cindex mnemonic suffixes, x86-64
501@cindex sizes operands, x86-64
502@cindex x86-64 size suffixes
252b5132
RH
503@item
504In AT&T syntax the size of memory operands is determined from the last
505character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
506@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
507(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
508this by prefixing memory operands (@emph{not} the instruction mnemonics) with
509@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
510Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
511syntax.
252b5132 512
4b06377f
L
513In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
514instruction with the 64-bit displacement or immediate operand.
515
252b5132
RH
516@cindex return instructions, i386
517@cindex i386 jump, call, return
55b62671
AJ
518@cindex return instructions, x86-64
519@cindex x86-64 jump, call, return
252b5132
RH
520@item
521Immediate form long jumps and calls are
522@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
523Intel syntax is
524@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
525instruction
526is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
527@samp{ret far @var{stack-adjust}}.
528
529@cindex sections, i386
530@cindex i386 sections
55b62671
AJ
531@cindex sections, x86-64
532@cindex x86-64 sections
252b5132
RH
533@item
534The AT&T assembler does not provide support for multiple section
535programs. Unix style systems expect all programs to be single sections.
536@end itemize
537
7c31ae13
NC
538@node i386-Chars
539@subsection Special Characters
540
541@cindex line comment character, i386
542@cindex i386 line comment character
543The presence of a @samp{#} appearing anywhere on a line indicates the
544start of a comment that extends to the end of that line.
545
546If a @samp{#} appears as the first character of a line then the whole
547line is treated as a comment, but in this case the line can also be a
548logical line number directive (@pxref{Comments}) or a preprocessor
549control command (@pxref{Preprocessing}).
550
551If the @option{--divide} command line option has not been specified
552then the @samp{/} character appearing anywhere on a line also
553introduces a line comment.
554
555@cindex line separator, i386
556@cindex statement separator, i386
557@cindex i386 line separator
558The @samp{;} character can be used to separate statements on the same
559line.
560
252b5132 561@node i386-Mnemonics
d3b47e2b
L
562@section i386-Mnemonics
563@subsection Instruction Naming
252b5132
RH
564
565@cindex i386 instruction naming
566@cindex instruction naming, i386
55b62671
AJ
567@cindex x86-64 instruction naming
568@cindex instruction naming, x86-64
569
252b5132 570Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
571specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
572and @samp{q} specify byte, word, long and quadruple word operands. If
573no suffix is specified by an instruction then @code{@value{AS}} tries to
574fill in the missing suffix based on the destination register operand
575(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
576to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
577@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
578assembler which assumes that a missing mnemonic suffix implies long
579operand size. (This incompatibility does not affect compiler output
580since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
581
582Almost all instructions have the same names in AT&T and Intel format.
583There are a few exceptions. The sign extend and zero extend
584instructions need two sizes to specify them. They need a size to
585sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
586is accomplished by using two instruction mnemonic suffixes in AT&T
587syntax. Base names for sign extend and zero extend are
588@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
589and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
590are tacked on to this base name, the @emph{from} suffix before the
591@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
592``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
593thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
594@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
595@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
596quadruple word).
252b5132 597
b6169b20
L
598@cindex encoding options, i386
599@cindex encoding options, x86-64
600
86fa6981
L
601Different encoding options can be specified via pseudo prefixes:
602
603@itemize @bullet
604@item
605@samp{@{disp8@}} -- prefer 8-bit displacement.
606
607@item
608@samp{@{disp32@}} -- prefer 32-bit displacement.
609
610@item
611@samp{@{load@}} -- prefer load-form instruction.
612
613@item
614@samp{@{store@}} -- prefer store-form instruction.
615
616@item
617@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
618
619@item
620@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
621
622@item
623@samp{@{evex@}} -- encode with EVEX prefix.
624@end itemize
b6169b20 625
252b5132
RH
626@cindex conversion instructions, i386
627@cindex i386 conversion instructions
55b62671
AJ
628@cindex conversion instructions, x86-64
629@cindex x86-64 conversion instructions
252b5132
RH
630The Intel-syntax conversion instructions
631
632@itemize @bullet
633@item
634@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
635
636@item
637@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
638
639@item
640@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
641
642@item
643@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
644
645@item
646@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
647(x86-64 only),
648
649@item
d5f0cf92 650@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 651@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
652@end itemize
653
654@noindent
55b62671
AJ
655are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
656@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
657instructions.
252b5132
RH
658
659@cindex jump instructions, i386
660@cindex call instructions, i386
55b62671
AJ
661@cindex jump instructions, x86-64
662@cindex call instructions, x86-64
252b5132
RH
663Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
664AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
665convention.
666
d3b47e2b 667@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
668
669@cindex i386 mnemonic compatibility
670@cindex mnemonic compatibility, i386
671
672@code{@value{AS}} supports assembly using Intel mnemonic.
673@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
674@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
675syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
676Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
677@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
678@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
679assembler with different mnemonics from those in Intel IA32 specification.
680@code{@value{GCC}} generates those instructions with AT&T mnemonic.
681
252b5132
RH
682@node i386-Regs
683@section Register Naming
684
685@cindex i386 registers
686@cindex registers, i386
55b62671
AJ
687@cindex x86-64 registers
688@cindex registers, x86-64
252b5132
RH
689Register operands are always prefixed with @samp{%}. The 80386 registers
690consist of
691
692@itemize @bullet
693@item
694the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
695@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
696frame pointer), and @samp{%esp} (the stack pointer).
697
698@item
699the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
700@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
701
702@item
703the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
704@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
705are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
706@samp{%cx}, and @samp{%dx})
707
708@item
709the 6 section registers @samp{%cs} (code section), @samp{%ds}
710(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
711and @samp{%gs}.
712
713@item
4bde3cdd
UD
714the 5 processor control registers @samp{%cr0}, @samp{%cr2},
715@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
716
717@item
718the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
719@samp{%db3}, @samp{%db6}, and @samp{%db7}.
720
721@item
722the 2 test registers @samp{%tr6} and @samp{%tr7}.
723
724@item
725the 8 floating point register stack @samp{%st} or equivalently
726@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
727@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
728These registers are overloaded by 8 MMX registers @samp{%mm0},
729@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
730@samp{%mm6} and @samp{%mm7}.
731
732@item
4bde3cdd 733the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
734@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
735@end itemize
736
737The AMD x86-64 architecture extends the register set by:
738
739@itemize @bullet
740@item
741enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
742accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
743@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
744pointer)
745
746@item
747the 8 extended registers @samp{%r8}--@samp{%r15}.
748
749@item
4bde3cdd 750the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
751
752@item
4bde3cdd 753the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
754
755@item
4bde3cdd 756the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
757
758@item
759the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
760
761@item
762the 8 debug registers: @samp{%db8}--@samp{%db15}.
763
764@item
4bde3cdd
UD
765the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
766@end itemize
767
768With the AVX extensions more registers were made available:
769
770@itemize @bullet
771
772@item
773the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
774available in 32-bit mode). The bottom 128 bits are overlaid with the
775@samp{xmm0}--@samp{xmm15} registers.
776
777@end itemize
778
779The AVX2 extensions made in 64-bit mode more registers available:
780
781@itemize @bullet
782
783@item
784the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
785registers @samp{%ymm16}--@samp{%ymm31}.
786
787@end itemize
788
789The AVX512 extensions added the following registers:
790
791@itemize @bullet
792
793@item
794the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
795available in 32-bit mode). The bottom 128 bits are overlaid with the
796@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
797overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
798
799@item
800the 8 mask registers @samp{%k0}--@samp{%k7}.
801
252b5132
RH
802@end itemize
803
804@node i386-Prefixes
805@section Instruction Prefixes
806
807@cindex i386 instruction prefixes
808@cindex instruction prefixes, i386
809@cindex prefixes, i386
810Instruction prefixes are used to modify the following instruction. They
811are used to repeat string instructions, to provide section overrides, to
812perform bus lock operations, and to change operand and address sizes.
813(Most instructions that normally operate on 32-bit operands will use
81416-bit operands if the instruction has an ``operand size'' prefix.)
815Instruction prefixes are best written on the same line as the instruction
816they act upon. For example, the @samp{scas} (scan string) instruction is
817repeated with:
818
819@smallexample
820 repne scas %es:(%edi),%al
821@end smallexample
822
823You may also place prefixes on the lines immediately preceding the
824instruction, but this circumvents checks that @code{@value{AS}} does
825with prefixes, and will not work with all prefixes.
826
827Here is a list of instruction prefixes:
828
829@cindex section override prefixes, i386
830@itemize @bullet
831@item
832Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
833@samp{fs}, @samp{gs}. These are automatically added by specifying
834using the @var{section}:@var{memory-operand} form for memory references.
835
836@cindex size prefixes, i386
837@item
838Operand/Address size prefixes @samp{data16} and @samp{addr16}
839change 32-bit operands/addresses into 16-bit operands/addresses,
840while @samp{data32} and @samp{addr32} change 16-bit ones (in a
841@code{.code16} section) into 32-bit operands/addresses. These prefixes
842@emph{must} appear on the same line of code as the instruction they
843modify. For example, in a 16-bit @code{.code16} section, you might
844write:
845
846@smallexample
847 addr32 jmpl *(%ebx)
848@end smallexample
849
850@cindex bus lock prefixes, i386
851@cindex inhibiting interrupts, i386
852@item
853The bus lock prefix @samp{lock} inhibits interrupts during execution of
854the instruction it precedes. (This is only valid with certain
855instructions; see a 80386 manual for details).
856
857@cindex coprocessor wait, i386
858@item
859The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
860complete the current instruction. This should never be needed for the
86180386/80387 combination.
862
863@cindex repeat prefixes, i386
864@item
865The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
866to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
867times if the current address size is 16-bits).
55b62671
AJ
868@cindex REX prefixes, i386
869@item
870The @samp{rex} family of prefixes is used by x86-64 to encode
871extensions to i386 instruction set. The @samp{rex} prefix has four
872bits --- an operand size overwrite (@code{64}) used to change operand size
873from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
874register set.
875
876You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
877instruction emits @samp{rex} prefix with all the bits set. By omitting
878the @code{64}, @code{x}, @code{y} or @code{z} you may write other
879prefixes as well. Normally, there is no need to write the prefixes
880explicitly, since gas will automatically generate them based on the
881instruction operands.
252b5132
RH
882@end itemize
883
884@node i386-Memory
885@section Memory References
886
887@cindex i386 memory references
888@cindex memory references, i386
55b62671
AJ
889@cindex x86-64 memory references
890@cindex memory references, x86-64
252b5132
RH
891An Intel syntax indirect memory reference of the form
892
893@smallexample
894@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
895@end smallexample
896
897@noindent
898is translated into the AT&T syntax
899
900@smallexample
901@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
902@end smallexample
903
904@noindent
905where @var{base} and @var{index} are the optional 32-bit base and
906index registers, @var{disp} is the optional displacement, and
907@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
908to calculate the address of the operand. If no @var{scale} is
909specified, @var{scale} is taken to be 1. @var{section} specifies the
910optional section register for the memory operand, and may override the
911default section register (see a 80386 manual for section register
912defaults). Note that section overrides in AT&T syntax @emph{must}
913be preceded by a @samp{%}. If you specify a section override which
914coincides with the default section register, @code{@value{AS}} does @emph{not}
915output any section register override prefixes to assemble the given
916instruction. Thus, section overrides can be specified to emphasize which
917section register is used for a given memory operand.
918
919Here are some examples of Intel and AT&T style memory references:
920
921@table @asis
922@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
923@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
924missing, and the default section is used (@samp{%ss} for addressing with
925@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
926
927@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
928@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
929@samp{foo}. All other fields are missing. The section register here
930defaults to @samp{%ds}.
931
932@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
933This uses the value pointed to by @samp{foo} as a memory operand.
934Note that @var{base} and @var{index} are both missing, but there is only
935@emph{one} @samp{,}. This is a syntactic exception.
936
937@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
938This selects the contents of the variable @samp{foo} with section
939register @var{section} being @samp{%gs}.
940@end table
941
942Absolute (as opposed to PC relative) call and jump operands must be
943prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
944always chooses PC relative addressing for jump/call labels.
945
946Any instruction that has a memory operand, but no register operand,
55b62671
AJ
947@emph{must} specify its size (byte, word, long, or quadruple) with an
948instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
949respectively).
950
951The x86-64 architecture adds an RIP (instruction pointer relative)
952addressing. This addressing mode is specified by using @samp{rip} as a
953base register. Only constant offsets are valid. For example:
954
955@table @asis
956@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
957Points to the address 1234 bytes past the end of the current
958instruction.
959
960@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
961Points to the @code{symbol} in RIP relative way, this is shorter than
962the default absolute addressing.
963@end table
964
965Other addressing modes remain unchanged in x86-64 architecture, except
966registers used are 64-bit instead of 32-bit.
252b5132 967
fddf5b5b 968@node i386-Jumps
252b5132
RH
969@section Handling of Jump Instructions
970
971@cindex jump optimization, i386
972@cindex i386 jump optimization
55b62671
AJ
973@cindex jump optimization, x86-64
974@cindex x86-64 jump optimization
252b5132
RH
975Jump instructions are always optimized to use the smallest possible
976displacements. This is accomplished by using byte (8-bit) displacement
977jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 978is insufficient a long displacement is used. We do not support
252b5132
RH
979word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
980instruction with the @samp{data16} instruction prefix), since the 80386
981insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 982is added. (See also @pxref{i386-Arch})
252b5132
RH
983
984Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
985@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
986displacements, so that if you use these instructions (@code{@value{GCC}} does
987not use them) you may get an error message (and incorrect code). The AT&T
98880386 assembler tries to get around this problem by expanding @samp{jcxz foo}
989to
990
991@smallexample
992 jcxz cx_zero
993 jmp cx_nonzero
994cx_zero: jmp foo
995cx_nonzero:
996@end smallexample
997
998@node i386-Float
999@section Floating Point
1000
1001@cindex i386 floating point
1002@cindex floating point, i386
55b62671
AJ
1003@cindex x86-64 floating point
1004@cindex floating point, x86-64
252b5132
RH
1005All 80387 floating point types except packed BCD are supported.
1006(BCD support may be added without much difficulty). These data
1007types are 16-, 32-, and 64- bit integers, and single (32-bit),
1008double (64-bit), and extended (80-bit) precision floating point.
1009Each supported type has an instruction mnemonic suffix and a constructor
1010associated with it. Instruction mnemonic suffixes specify the operand's
1011data type. Constructors build these data types into memory.
1012
1013@cindex @code{float} directive, i386
1014@cindex @code{single} directive, i386
1015@cindex @code{double} directive, i386
1016@cindex @code{tfloat} directive, i386
55b62671
AJ
1017@cindex @code{float} directive, x86-64
1018@cindex @code{single} directive, x86-64
1019@cindex @code{double} directive, x86-64
1020@cindex @code{tfloat} directive, x86-64
252b5132
RH
1021@itemize @bullet
1022@item
1023Floating point constructors are @samp{.float} or @samp{.single},
1024@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1025These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1026and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1027only supports this format via the @samp{fldt} (load 80-bit real to stack
1028top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1029
1030@cindex @code{word} directive, i386
1031@cindex @code{long} directive, i386
1032@cindex @code{int} directive, i386
1033@cindex @code{quad} directive, i386
55b62671
AJ
1034@cindex @code{word} directive, x86-64
1035@cindex @code{long} directive, x86-64
1036@cindex @code{int} directive, x86-64
1037@cindex @code{quad} directive, x86-64
252b5132
RH
1038@item
1039Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1040@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1041corresponding instruction mnemonic suffixes are @samp{s} (single),
1042@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1043the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1044quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1045stack) instructions.
1046@end itemize
1047
1048Register to register operations should not use instruction mnemonic suffixes.
1049@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1050wrote @samp{fst %st, %st(1)}, since all register to register operations
1051use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1052which converts @samp{%st} from 80-bit to 64-bit floating point format,
1053then stores the result in the 4 byte location @samp{mem})
1054
1055@node i386-SIMD
1056@section Intel's MMX and AMD's 3DNow! SIMD Operations
1057
1058@cindex MMX, i386
1059@cindex 3DNow!, i386
1060@cindex SIMD, i386
55b62671
AJ
1061@cindex MMX, x86-64
1062@cindex 3DNow!, x86-64
1063@cindex SIMD, x86-64
252b5132
RH
1064
1065@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1066instructions for integer data), available on Intel's Pentium MMX
1067processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1068Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1069instruction set (SIMD instructions for 32-bit floating point data)
1070available on AMD's K6-2 processor and possibly others in the future.
1071
1072Currently, @code{@value{AS}} does not support Intel's floating point
1073SIMD, Katmai (KNI).
1074
1075The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1076@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
107716-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1078floating point values. The MMX registers cannot be used at the same time
1079as the floating point stack.
1080
1081See Intel and AMD documentation, keeping in mind that the operand order in
1082instructions is reversed from the Intel syntax.
1083
f88c9eb0
SP
1084@node i386-LWP
1085@section AMD's Lightweight Profiling Instructions
1086
1087@cindex LWP, i386
1088@cindex LWP, x86-64
1089
1090@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1091instruction set, available on AMD's Family 15h (Orochi) processors.
1092
1093LWP enables applications to collect and manage performance data, and
1094react to performance events. The collection of performance data
1095requires no context switches. LWP runs in the context of a thread and
1096so several counters can be used independently across multiple threads.
1097LWP can be used in both 64-bit and legacy 32-bit modes.
1098
1099For detailed information on the LWP instruction set, see the
1100@cite{AMD Lightweight Profiling Specification} available at
1101@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1102
87973e9f
QN
1103@node i386-BMI
1104@section Bit Manipulation Instructions
1105
1106@cindex BMI, i386
1107@cindex BMI, x86-64
1108
1109@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1110
1111BMI instructions provide several instructions implementing individual
1112bit manipulation operations such as isolation, masking, setting, or
34bca508 1113resetting.
87973e9f
QN
1114
1115@c Need to add a specification citation here when available.
1116
2a2a0f38
QN
1117@node i386-TBM
1118@section AMD's Trailing Bit Manipulation Instructions
1119
1120@cindex TBM, i386
1121@cindex TBM, x86-64
1122
1123@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1124instruction set, available on AMD's BDVER2 processors (Trinity and
1125Viperfish).
1126
1127TBM instructions provide instructions implementing individual bit
1128manipulation operations such as isolating, masking, setting, resetting,
1129complementing, and operations on trailing zeros and ones.
1130
1131@c Need to add a specification citation here when available.
87973e9f 1132
252b5132
RH
1133@node i386-16bit
1134@section Writing 16-bit Code
1135
1136@cindex i386 16-bit code
1137@cindex 16-bit code, i386
1138@cindex real-mode code, i386
eecb386c 1139@cindex @code{code16gcc} directive, i386
252b5132
RH
1140@cindex @code{code16} directive, i386
1141@cindex @code{code32} directive, i386
55b62671
AJ
1142@cindex @code{code64} directive, i386
1143@cindex @code{code64} directive, x86-64
1144While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1145or 64-bit x86-64 code depending on the default configuration,
252b5132 1146it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1147mode code segments. To do this, put a @samp{.code16} or
1148@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1149be run in 16-bit mode. You can switch @code{@value{AS}} to writing
115032-bit code with the @samp{.code32} directive or 64-bit code with the
1151@samp{.code64} directive.
eecb386c
AM
1152
1153@samp{.code16gcc} provides experimental support for generating 16-bit
1154code from gcc, and differs from @samp{.code16} in that @samp{call},
1155@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1156@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1157default to 32-bit size. This is so that the stack pointer is
1158manipulated in the same way over function calls, allowing access to
1159function parameters at the same stack offsets as in 32-bit mode.
1160@samp{.code16gcc} also automatically adds address size prefixes where
1161necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1162
1163The code which @code{@value{AS}} generates in 16-bit mode will not
1164necessarily run on a 16-bit pre-80386 processor. To write code that
1165runs on such a processor, you must refrain from using @emph{any} 32-bit
1166constructs which require @code{@value{AS}} to output address or operand
1167size prefixes.
1168
1169Note that writing 16-bit code instructions by explicitly specifying a
1170prefix or an instruction mnemonic suffix within a 32-bit code section
1171generates different machine instructions than those generated for a
117216-bit code segment. In a 32-bit code section, the following code
1173generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1174value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1175
1176@smallexample
1177 pushw $4
1178@end smallexample
1179
1180The same code in a 16-bit code section would generate the machine
b45619c0 1181opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1182is correct since the processor default operand size is assumed to be 16
1183bits in a 16-bit code section.
1184
e413e4e9
AM
1185@node i386-Arch
1186@section Specifying CPU Architecture
1187
1188@cindex arch directive, i386
1189@cindex i386 arch directive
55b62671
AJ
1190@cindex arch directive, x86-64
1191@cindex x86-64 arch directive
e413e4e9
AM
1192
1193@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1194(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1195directive enables a warning when gas detects an instruction that is not
1196supported on the CPU specified. The choices for @var{cpu_type} are:
1197
1198@multitable @columnfractions .20 .20 .20 .20
1199@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1200@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1201@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1202@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1203@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1204@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1205@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1206@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1207@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1208@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1209@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1210@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1211@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1212@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1213@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1214@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1215@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1216@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1217@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1218@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1219@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1220@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
620214f7 1221@item @samp{.avx512_vpopcntdq} @tab @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite}
603555e5 1222@item @samp{.cet}
1ceab344 1223@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1224@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1225@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
920d2ddc 1226@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1227@end multitable
1228
fddf5b5b
AM
1229Apart from the warning, there are only two other effects on
1230@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1231@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1232will automatically use a two byte opcode sequence. The larger three
1233byte opcode sequence is used on the 486 (and when no architecture is
1234specified) because it executes faster on the 486. Note that you can
1235explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1236Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1237@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1238conditional jumps will be promoted when necessary to a two instruction
1239sequence consisting of a conditional jump of the opposite sense around
1240an unconditional jump to the target.
1241
5c6af06e
JB
1242Following the CPU architecture (but not a sub-architecture, which are those
1243starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1244control automatic promotion of conditional jumps. @samp{jumps} is the
1245default, and enables jump promotion; All external jumps will be of the long
1246variety, and file-local jumps will be promoted as necessary.
1247(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1248byte offset jumps, and warns about file-local conditional jumps that
1249@code{@value{AS}} promotes.
fddf5b5b
AM
1250Unconditional jumps are treated as for @samp{jumps}.
1251
1252For example
1253
1254@smallexample
1255 .arch i8086,nojumps
1256@end smallexample
e413e4e9 1257
5c9352f3
AM
1258@node i386-Bugs
1259@section AT&T Syntax bugs
1260
1261The UnixWare assembler, and probably other AT&T derived ix86 Unix
1262assemblers, generate floating point instructions with reversed source
1263and destination registers in certain cases. Unfortunately, gcc and
1264possibly many other programs use this reversed syntax, so we're stuck
1265with it.
1266
1267For example
1268
1269@smallexample
1270 fsub %st,%st(3)
1271@end smallexample
1272@noindent
1273results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1274than the expected @samp{%st(3) - %st}. This happens with all the
1275non-commutative arithmetic floating point operations with two register
1276operands where the source register is @samp{%st} and the destination
1277register is @samp{%st(i)}.
1278
252b5132
RH
1279@node i386-Notes
1280@section Notes
1281
1282@cindex i386 @code{mul}, @code{imul} instructions
1283@cindex @code{mul} instruction, i386
1284@cindex @code{imul} instruction, i386
55b62671
AJ
1285@cindex @code{mul} instruction, x86-64
1286@cindex @code{imul} instruction, x86-64
252b5132 1287There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1288instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1289multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1290for @samp{imul}) can be output only in the one operand form. Thus,
1291@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1292the expanding multiply would clobber the @samp{%edx} register, and this
1293would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
129464-bit product in @samp{%edx:%eax}.
1295
1296We have added a two operand form of @samp{imul} when the first operand
1297is an immediate mode expression and the second operand is a register.
1298This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1299example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1300$69, %eax, %eax}.
1301
This page took 1.1176 seconds and 4 git commands to generate.