daily update
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
aa820537 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
252b5132
RH
27* i386-Syntax:: AT&T Syntax versus Intel Syntax
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
252b5132 36* i386-16bit:: Writing 16-bit Code
e413e4e9 37* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
38* i386-Bugs:: AT&T Syntax bugs
39* i386-Notes:: Notes
40@end menu
41
42@node i386-Options
43@section Options
44
55b62671
AJ
45@cindex options for i386
46@cindex options for x86-64
47@cindex i386 options
48@cindex x86-64 options
49
50The i386 version of @code{@value{AS}} has a few machine
51dependent options:
52
53@table @code
54@cindex @samp{--32} option, i386
55@cindex @samp{--32} option, x86-64
56@cindex @samp{--64} option, i386
57@cindex @samp{--64} option, x86-64
58@item --32 | --64
59Select the word size, either 32 bits or 64 bits. Selecting 32-bit
60implies Intel i386 architecture, while 64-bit implies AMD x86-64
61architecture.
62
63These options are only available with the ELF object file format, and
64require that the necessary BFD support has been included (on a 32-bit
65platform you have to add --enable-64-bit-bfd to configure enable 64-bit
66usage and use x86-64 as target platform).
12b55ccc
L
67
68@item -n
69By default, x86 GAS replaces multiple nop instructions used for
70alignment within code sections with multi-byte nop instructions such
71as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
72
73@cindex @samp{--divide} option, i386
74@item --divide
75On SVR4-derived platforms, the character @samp{/} is treated as a comment
76character, which means that it cannot be used in expressions. The
77@samp{--divide} option turns @samp{/} into a normal character. This does
78not disable @samp{/} at the beginning of a line starting a comment, or
79affect using @samp{#} for starting a comment.
80
9103f4f4
L
81@cindex @samp{-march=} option, i386
82@cindex @samp{-march=} option, x86-64
6305a203
L
83@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
84This option specifies the target processor. The assembler will
85issue an error message if an attempt is made to assemble an instruction
86which will not execute on the target processor. The following
87processor names are recognized:
9103f4f4
L
88@code{i8086},
89@code{i186},
90@code{i286},
91@code{i386},
92@code{i486},
93@code{i586},
94@code{i686},
95@code{pentium},
96@code{pentiumpro},
97@code{pentiumii},
98@code{pentiumiii},
99@code{pentium4},
100@code{prescott},
101@code{nocona},
ef05d495
L
102@code{core},
103@code{core2},
bd5295b2 104@code{corei7},
8a9036a4 105@code{l1om},
9103f4f4
L
106@code{k6},
107@code{k6_2},
108@code{athlon},
9103f4f4
L
109@code{opteron},
110@code{k8},
1ceab344 111@code{amdfam10},
69dd9865 112@code{amdfam15},
9103f4f4
L
113@code{generic32} and
114@code{generic64}.
115
6305a203
L
116In addition to the basic instruction set, the assembler can be told to
117accept various extension mnemonics. For example,
118@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
119@var{vmx}. The following extensions are currently supported:
309d3373
JB
120@code{8087},
121@code{287},
122@code{387},
123@code{no87},
6305a203 124@code{mmx},
309d3373 125@code{nommx},
6305a203
L
126@code{sse},
127@code{sse2},
128@code{sse3},
129@code{ssse3},
130@code{sse4.1},
131@code{sse4.2},
132@code{sse4},
309d3373 133@code{nosse},
c0f3af97 134@code{avx},
309d3373 135@code{noavx},
6305a203
L
136@code{vmx},
137@code{smx},
f03fe4c1 138@code{xsave},
c0f3af97 139@code{aes},
594ab6a3 140@code{pclmul},
c0f3af97 141@code{fma},
f1f8f695
L
142@code{movbe},
143@code{ept},
bd5295b2 144@code{clflush},
f88c9eb0 145@code{lwp},
5dd85c99
SP
146@code{fma4},
147@code{xop},
bd5295b2 148@code{syscall},
1b7f3fb0 149@code{rdtscp},
6305a203
L
150@code{3dnow},
151@code{3dnowa},
152@code{sse4a},
153@code{sse5},
154@code{svme},
155@code{abm} and
156@code{padlock}.
309d3373
JB
157Note that rather than extending a basic instruction set, the extension
158mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
159
160When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
161@code{.arch} directive will take precedent.
162
163@cindex @samp{-mtune=} option, i386
164@cindex @samp{-mtune=} option, x86-64
165@item -mtune=@var{CPU}
166This option specifies a processor to optimize for. When used in
167conjunction with the @option{-march} option, only instructions
168of the processor specified by the @option{-march} option will be
169generated.
170
6305a203
L
171Valid @var{CPU} values are identical to the processor list of
172@option{-march=@var{CPU}}.
9103f4f4 173
c0f3af97
L
174@cindex @samp{-msse2avx} option, i386
175@cindex @samp{-msse2avx} option, x86-64
176@item -msse2avx
177This option specifies that the assembler should encode SSE instructions
178with VEX prefix.
179
daf50ae7
L
180@cindex @samp{-msse-check=} option, i386
181@cindex @samp{-msse-check=} option, x86-64
182@item -msse-check=@var{none}
183@item -msse-check=@var{warning}
184@item -msse-check=@var{error}
185These options control if the assembler should check SSE intructions.
186@option{-msse-check=@var{none}} will make the assembler not to check SSE
187instructions, which is the default. @option{-msse-check=@var{warning}}
188will make the assembler issue a warning for any SSE intruction.
189@option{-msse-check=@var{error}} will make the assembler issue an error
190for any SSE intruction.
191
1efbbeb4
L
192@cindex @samp{-mmnemonic=} option, i386
193@cindex @samp{-mmnemonic=} option, x86-64
194@item -mmnemonic=@var{att}
195@item -mmnemonic=@var{intel}
196This option specifies instruction mnemonic for matching instructions.
197The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
198take precedent.
199
200@cindex @samp{-msyntax=} option, i386
201@cindex @samp{-msyntax=} option, x86-64
202@item -msyntax=@var{att}
203@item -msyntax=@var{intel}
204This option specifies instruction syntax when processing instructions.
205The @code{.att_syntax} and @code{.intel_syntax} directives will
206take precedent.
207
208@cindex @samp{-mnaked-reg} option, i386
209@cindex @samp{-mnaked-reg} option, x86-64
210@item -mnaked-reg
211This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 212The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 213
55b62671 214@end table
e413e4e9 215
a6c24e68
NC
216@node i386-Directives
217@section x86 specific Directives
218
219@cindex machine directives, x86
220@cindex x86 machine directives
221@table @code
222
223@cindex @code{lcomm} directive, COFF
224@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
225Reserve @var{length} (an absolute expression) bytes for a local common
226denoted by @var{symbol}. The section and value of @var{symbol} are
227those of the new local common. The addresses are allocated in the bss
704209c0
NC
228section, so that at run-time the bytes start off zeroed. Since
229@var{symbol} is not declared global, it is normally not visible to
230@code{@value{LD}}. The optional third parameter, @var{alignment},
231specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
232
233This directive is only available for COFF based x86 targets.
234
235@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
236@c .largecomm
237
238@end table
239
252b5132
RH
240@node i386-Syntax
241@section AT&T Syntax versus Intel Syntax
242
e413e4e9
AM
243@cindex i386 intel_syntax pseudo op
244@cindex intel_syntax pseudo op, i386
245@cindex i386 att_syntax pseudo op
246@cindex att_syntax pseudo op, i386
252b5132
RH
247@cindex i386 syntax compatibility
248@cindex syntax compatibility, i386
55b62671
AJ
249@cindex x86-64 intel_syntax pseudo op
250@cindex intel_syntax pseudo op, x86-64
251@cindex x86-64 att_syntax pseudo op
252@cindex att_syntax pseudo op, x86-64
253@cindex x86-64 syntax compatibility
254@cindex syntax compatibility, x86-64
e413e4e9
AM
255
256@code{@value{AS}} now supports assembly using Intel assembler syntax.
257@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
258back to the usual AT&T mode for compatibility with the output of
259@code{@value{GCC}}. Either of these directives may have an optional
260argument, @code{prefix}, or @code{noprefix} specifying whether registers
261require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
262different from Intel syntax. We mention these differences because
263almost all 80386 documents use Intel syntax. Notable differences
264between the two syntaxes are:
265
266@cindex immediate operands, i386
267@cindex i386 immediate operands
268@cindex register operands, i386
269@cindex i386 register operands
270@cindex jump/call operands, i386
271@cindex i386 jump/call operands
272@cindex operand delimiters, i386
55b62671
AJ
273
274@cindex immediate operands, x86-64
275@cindex x86-64 immediate operands
276@cindex register operands, x86-64
277@cindex x86-64 register operands
278@cindex jump/call operands, x86-64
279@cindex x86-64 jump/call operands
280@cindex operand delimiters, x86-64
252b5132
RH
281@itemize @bullet
282@item
283AT&T immediate operands are preceded by @samp{$}; Intel immediate
284operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
285AT&T register operands are preceded by @samp{%}; Intel register operands
286are undelimited. AT&T absolute (as opposed to PC relative) jump/call
287operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
288
289@cindex i386 source, destination operands
290@cindex source, destination operands; i386
55b62671
AJ
291@cindex x86-64 source, destination operands
292@cindex source, destination operands; x86-64
252b5132
RH
293@item
294AT&T and Intel syntax use the opposite order for source and destination
295operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
296@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
297previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
298instructions with 2 immediate operands, such as the @samp{enter}
299instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
300
301@cindex mnemonic suffixes, i386
302@cindex sizes operands, i386
303@cindex i386 size suffixes
55b62671
AJ
304@cindex mnemonic suffixes, x86-64
305@cindex sizes operands, x86-64
306@cindex x86-64 size suffixes
252b5132
RH
307@item
308In AT&T syntax the size of memory operands is determined from the last
309character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
310@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
311(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
312this by prefixing memory operands (@emph{not} the instruction mnemonics) with
313@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
314Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
315syntax.
252b5132 316
4b06377f
L
317In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
318instruction with the 64-bit displacement or immediate operand.
319
252b5132
RH
320@cindex return instructions, i386
321@cindex i386 jump, call, return
55b62671
AJ
322@cindex return instructions, x86-64
323@cindex x86-64 jump, call, return
252b5132
RH
324@item
325Immediate form long jumps and calls are
326@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
327Intel syntax is
328@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
329instruction
330is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
331@samp{ret far @var{stack-adjust}}.
332
333@cindex sections, i386
334@cindex i386 sections
55b62671
AJ
335@cindex sections, x86-64
336@cindex x86-64 sections
252b5132
RH
337@item
338The AT&T assembler does not provide support for multiple section
339programs. Unix style systems expect all programs to be single sections.
340@end itemize
341
342@node i386-Mnemonics
343@section Instruction Naming
344
345@cindex i386 instruction naming
346@cindex instruction naming, i386
55b62671
AJ
347@cindex x86-64 instruction naming
348@cindex instruction naming, x86-64
349
252b5132 350Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
351specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
352and @samp{q} specify byte, word, long and quadruple word operands. If
353no suffix is specified by an instruction then @code{@value{AS}} tries to
354fill in the missing suffix based on the destination register operand
355(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
356to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
357@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
358assembler which assumes that a missing mnemonic suffix implies long
359operand size. (This incompatibility does not affect compiler output
360since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
361
362Almost all instructions have the same names in AT&T and Intel format.
363There are a few exceptions. The sign extend and zero extend
364instructions need two sizes to specify them. They need a size to
365sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
366is accomplished by using two instruction mnemonic suffixes in AT&T
367syntax. Base names for sign extend and zero extend are
368@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
369and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
370are tacked on to this base name, the @emph{from} suffix before the
371@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
372``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
373thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
374@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
375@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
376quadruple word).
252b5132 377
b6169b20
L
378@cindex encoding options, i386
379@cindex encoding options, x86-64
380
381Different encoding options can be specified via optional mnemonic
382suffix. @samp{.s} suffix swaps 2 register operands in encoding when
383moving from one register to another.
384
252b5132
RH
385@cindex conversion instructions, i386
386@cindex i386 conversion instructions
55b62671
AJ
387@cindex conversion instructions, x86-64
388@cindex x86-64 conversion instructions
252b5132
RH
389The Intel-syntax conversion instructions
390
391@itemize @bullet
392@item
393@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
394
395@item
396@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
397
398@item
399@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
400
401@item
402@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
403
404@item
405@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
406(x86-64 only),
407
408@item
d5f0cf92 409@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 410@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
411@end itemize
412
413@noindent
55b62671
AJ
414are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
415@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
416instructions.
252b5132
RH
417
418@cindex jump instructions, i386
419@cindex call instructions, i386
55b62671
AJ
420@cindex jump instructions, x86-64
421@cindex call instructions, x86-64
252b5132
RH
422Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
423AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
424convention.
425
1efbbeb4
L
426@section AT&T Mnemonic versus Intel Mnemonic
427
428@cindex i386 mnemonic compatibility
429@cindex mnemonic compatibility, i386
430
431@code{@value{AS}} supports assembly using Intel mnemonic.
432@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
433@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
434syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
435Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
436@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
437@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
438assembler with different mnemonics from those in Intel IA32 specification.
439@code{@value{GCC}} generates those instructions with AT&T mnemonic.
440
252b5132
RH
441@node i386-Regs
442@section Register Naming
443
444@cindex i386 registers
445@cindex registers, i386
55b62671
AJ
446@cindex x86-64 registers
447@cindex registers, x86-64
252b5132
RH
448Register operands are always prefixed with @samp{%}. The 80386 registers
449consist of
450
451@itemize @bullet
452@item
453the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
454@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
455frame pointer), and @samp{%esp} (the stack pointer).
456
457@item
458the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
459@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
460
461@item
462the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
463@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
464are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
465@samp{%cx}, and @samp{%dx})
466
467@item
468the 6 section registers @samp{%cs} (code section), @samp{%ds}
469(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
470and @samp{%gs}.
471
472@item
473the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
474@samp{%cr3}.
475
476@item
477the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
478@samp{%db3}, @samp{%db6}, and @samp{%db7}.
479
480@item
481the 2 test registers @samp{%tr6} and @samp{%tr7}.
482
483@item
484the 8 floating point register stack @samp{%st} or equivalently
485@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
486@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
487These registers are overloaded by 8 MMX registers @samp{%mm0},
488@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
489@samp{%mm6} and @samp{%mm7}.
490
491@item
492the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
493@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
494@end itemize
495
496The AMD x86-64 architecture extends the register set by:
497
498@itemize @bullet
499@item
500enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
501accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
502@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
503pointer)
504
505@item
506the 8 extended registers @samp{%r8}--@samp{%r15}.
507
508@item
509the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
510
511@item
512the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
513
514@item
515the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
516
517@item
518the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
519
520@item
521the 8 debug registers: @samp{%db8}--@samp{%db15}.
522
523@item
524the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
525@end itemize
526
527@node i386-Prefixes
528@section Instruction Prefixes
529
530@cindex i386 instruction prefixes
531@cindex instruction prefixes, i386
532@cindex prefixes, i386
533Instruction prefixes are used to modify the following instruction. They
534are used to repeat string instructions, to provide section overrides, to
535perform bus lock operations, and to change operand and address sizes.
536(Most instructions that normally operate on 32-bit operands will use
53716-bit operands if the instruction has an ``operand size'' prefix.)
538Instruction prefixes are best written on the same line as the instruction
539they act upon. For example, the @samp{scas} (scan string) instruction is
540repeated with:
541
542@smallexample
543 repne scas %es:(%edi),%al
544@end smallexample
545
546You may also place prefixes on the lines immediately preceding the
547instruction, but this circumvents checks that @code{@value{AS}} does
548with prefixes, and will not work with all prefixes.
549
550Here is a list of instruction prefixes:
551
552@cindex section override prefixes, i386
553@itemize @bullet
554@item
555Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
556@samp{fs}, @samp{gs}. These are automatically added by specifying
557using the @var{section}:@var{memory-operand} form for memory references.
558
559@cindex size prefixes, i386
560@item
561Operand/Address size prefixes @samp{data16} and @samp{addr16}
562change 32-bit operands/addresses into 16-bit operands/addresses,
563while @samp{data32} and @samp{addr32} change 16-bit ones (in a
564@code{.code16} section) into 32-bit operands/addresses. These prefixes
565@emph{must} appear on the same line of code as the instruction they
566modify. For example, in a 16-bit @code{.code16} section, you might
567write:
568
569@smallexample
570 addr32 jmpl *(%ebx)
571@end smallexample
572
573@cindex bus lock prefixes, i386
574@cindex inhibiting interrupts, i386
575@item
576The bus lock prefix @samp{lock} inhibits interrupts during execution of
577the instruction it precedes. (This is only valid with certain
578instructions; see a 80386 manual for details).
579
580@cindex coprocessor wait, i386
581@item
582The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
583complete the current instruction. This should never be needed for the
58480386/80387 combination.
585
586@cindex repeat prefixes, i386
587@item
588The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
589to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
590times if the current address size is 16-bits).
55b62671
AJ
591@cindex REX prefixes, i386
592@item
593The @samp{rex} family of prefixes is used by x86-64 to encode
594extensions to i386 instruction set. The @samp{rex} prefix has four
595bits --- an operand size overwrite (@code{64}) used to change operand size
596from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
597register set.
598
599You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
600instruction emits @samp{rex} prefix with all the bits set. By omitting
601the @code{64}, @code{x}, @code{y} or @code{z} you may write other
602prefixes as well. Normally, there is no need to write the prefixes
603explicitly, since gas will automatically generate them based on the
604instruction operands.
252b5132
RH
605@end itemize
606
607@node i386-Memory
608@section Memory References
609
610@cindex i386 memory references
611@cindex memory references, i386
55b62671
AJ
612@cindex x86-64 memory references
613@cindex memory references, x86-64
252b5132
RH
614An Intel syntax indirect memory reference of the form
615
616@smallexample
617@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
618@end smallexample
619
620@noindent
621is translated into the AT&T syntax
622
623@smallexample
624@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
625@end smallexample
626
627@noindent
628where @var{base} and @var{index} are the optional 32-bit base and
629index registers, @var{disp} is the optional displacement, and
630@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
631to calculate the address of the operand. If no @var{scale} is
632specified, @var{scale} is taken to be 1. @var{section} specifies the
633optional section register for the memory operand, and may override the
634default section register (see a 80386 manual for section register
635defaults). Note that section overrides in AT&T syntax @emph{must}
636be preceded by a @samp{%}. If you specify a section override which
637coincides with the default section register, @code{@value{AS}} does @emph{not}
638output any section register override prefixes to assemble the given
639instruction. Thus, section overrides can be specified to emphasize which
640section register is used for a given memory operand.
641
642Here are some examples of Intel and AT&T style memory references:
643
644@table @asis
645@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
646@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
647missing, and the default section is used (@samp{%ss} for addressing with
648@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
649
650@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
651@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
652@samp{foo}. All other fields are missing. The section register here
653defaults to @samp{%ds}.
654
655@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
656This uses the value pointed to by @samp{foo} as a memory operand.
657Note that @var{base} and @var{index} are both missing, but there is only
658@emph{one} @samp{,}. This is a syntactic exception.
659
660@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
661This selects the contents of the variable @samp{foo} with section
662register @var{section} being @samp{%gs}.
663@end table
664
665Absolute (as opposed to PC relative) call and jump operands must be
666prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
667always chooses PC relative addressing for jump/call labels.
668
669Any instruction that has a memory operand, but no register operand,
55b62671
AJ
670@emph{must} specify its size (byte, word, long, or quadruple) with an
671instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
672respectively).
673
674The x86-64 architecture adds an RIP (instruction pointer relative)
675addressing. This addressing mode is specified by using @samp{rip} as a
676base register. Only constant offsets are valid. For example:
677
678@table @asis
679@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
680Points to the address 1234 bytes past the end of the current
681instruction.
682
683@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
684Points to the @code{symbol} in RIP relative way, this is shorter than
685the default absolute addressing.
686@end table
687
688Other addressing modes remain unchanged in x86-64 architecture, except
689registers used are 64-bit instead of 32-bit.
252b5132 690
fddf5b5b 691@node i386-Jumps
252b5132
RH
692@section Handling of Jump Instructions
693
694@cindex jump optimization, i386
695@cindex i386 jump optimization
55b62671
AJ
696@cindex jump optimization, x86-64
697@cindex x86-64 jump optimization
252b5132
RH
698Jump instructions are always optimized to use the smallest possible
699displacements. This is accomplished by using byte (8-bit) displacement
700jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 701is insufficient a long displacement is used. We do not support
252b5132
RH
702word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
703instruction with the @samp{data16} instruction prefix), since the 80386
704insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 705is added. (See also @pxref{i386-Arch})
252b5132
RH
706
707Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
708@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
709displacements, so that if you use these instructions (@code{@value{GCC}} does
710not use them) you may get an error message (and incorrect code). The AT&T
71180386 assembler tries to get around this problem by expanding @samp{jcxz foo}
712to
713
714@smallexample
715 jcxz cx_zero
716 jmp cx_nonzero
717cx_zero: jmp foo
718cx_nonzero:
719@end smallexample
720
721@node i386-Float
722@section Floating Point
723
724@cindex i386 floating point
725@cindex floating point, i386
55b62671
AJ
726@cindex x86-64 floating point
727@cindex floating point, x86-64
252b5132
RH
728All 80387 floating point types except packed BCD are supported.
729(BCD support may be added without much difficulty). These data
730types are 16-, 32-, and 64- bit integers, and single (32-bit),
731double (64-bit), and extended (80-bit) precision floating point.
732Each supported type has an instruction mnemonic suffix and a constructor
733associated with it. Instruction mnemonic suffixes specify the operand's
734data type. Constructors build these data types into memory.
735
736@cindex @code{float} directive, i386
737@cindex @code{single} directive, i386
738@cindex @code{double} directive, i386
739@cindex @code{tfloat} directive, i386
55b62671
AJ
740@cindex @code{float} directive, x86-64
741@cindex @code{single} directive, x86-64
742@cindex @code{double} directive, x86-64
743@cindex @code{tfloat} directive, x86-64
252b5132
RH
744@itemize @bullet
745@item
746Floating point constructors are @samp{.float} or @samp{.single},
747@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
748These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
749and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
750only supports this format via the @samp{fldt} (load 80-bit real to stack
751top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
752
753@cindex @code{word} directive, i386
754@cindex @code{long} directive, i386
755@cindex @code{int} directive, i386
756@cindex @code{quad} directive, i386
55b62671
AJ
757@cindex @code{word} directive, x86-64
758@cindex @code{long} directive, x86-64
759@cindex @code{int} directive, x86-64
760@cindex @code{quad} directive, x86-64
252b5132
RH
761@item
762Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
763@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
764corresponding instruction mnemonic suffixes are @samp{s} (single),
765@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
766the 64-bit @samp{q} format is only present in the @samp{fildq} (load
767quad integer to stack top) and @samp{fistpq} (store quad integer and pop
768stack) instructions.
769@end itemize
770
771Register to register operations should not use instruction mnemonic suffixes.
772@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
773wrote @samp{fst %st, %st(1)}, since all register to register operations
774use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
775which converts @samp{%st} from 80-bit to 64-bit floating point format,
776then stores the result in the 4 byte location @samp{mem})
777
778@node i386-SIMD
779@section Intel's MMX and AMD's 3DNow! SIMD Operations
780
781@cindex MMX, i386
782@cindex 3DNow!, i386
783@cindex SIMD, i386
55b62671
AJ
784@cindex MMX, x86-64
785@cindex 3DNow!, x86-64
786@cindex SIMD, x86-64
252b5132
RH
787
788@code{@value{AS}} supports Intel's MMX instruction set (SIMD
789instructions for integer data), available on Intel's Pentium MMX
790processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 791Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
792instruction set (SIMD instructions for 32-bit floating point data)
793available on AMD's K6-2 processor and possibly others in the future.
794
795Currently, @code{@value{AS}} does not support Intel's floating point
796SIMD, Katmai (KNI).
797
798The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
799@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
80016-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
801floating point values. The MMX registers cannot be used at the same time
802as the floating point stack.
803
804See Intel and AMD documentation, keeping in mind that the operand order in
805instructions is reversed from the Intel syntax.
806
f88c9eb0
SP
807@node i386-LWP
808@section AMD's Lightweight Profiling Instructions
809
810@cindex LWP, i386
811@cindex LWP, x86-64
812
813@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
814instruction set, available on AMD's Family 15h (Orochi) processors.
815
816LWP enables applications to collect and manage performance data, and
817react to performance events. The collection of performance data
818requires no context switches. LWP runs in the context of a thread and
819so several counters can be used independently across multiple threads.
820LWP can be used in both 64-bit and legacy 32-bit modes.
821
822For detailed information on the LWP instruction set, see the
823@cite{AMD Lightweight Profiling Specification} available at
824@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
825
252b5132
RH
826@node i386-16bit
827@section Writing 16-bit Code
828
829@cindex i386 16-bit code
830@cindex 16-bit code, i386
831@cindex real-mode code, i386
eecb386c 832@cindex @code{code16gcc} directive, i386
252b5132
RH
833@cindex @code{code16} directive, i386
834@cindex @code{code32} directive, i386
55b62671
AJ
835@cindex @code{code64} directive, i386
836@cindex @code{code64} directive, x86-64
837While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
838or 64-bit x86-64 code depending on the default configuration,
252b5132 839it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
840mode code segments. To do this, put a @samp{.code16} or
841@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
842be run in 16-bit mode. You can switch @code{@value{AS}} to writing
84332-bit code with the @samp{.code32} directive or 64-bit code with the
844@samp{.code64} directive.
eecb386c
AM
845
846@samp{.code16gcc} provides experimental support for generating 16-bit
847code from gcc, and differs from @samp{.code16} in that @samp{call},
848@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
849@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
850default to 32-bit size. This is so that the stack pointer is
851manipulated in the same way over function calls, allowing access to
852function parameters at the same stack offsets as in 32-bit mode.
853@samp{.code16gcc} also automatically adds address size prefixes where
854necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
855
856The code which @code{@value{AS}} generates in 16-bit mode will not
857necessarily run on a 16-bit pre-80386 processor. To write code that
858runs on such a processor, you must refrain from using @emph{any} 32-bit
859constructs which require @code{@value{AS}} to output address or operand
860size prefixes.
861
862Note that writing 16-bit code instructions by explicitly specifying a
863prefix or an instruction mnemonic suffix within a 32-bit code section
864generates different machine instructions than those generated for a
86516-bit code segment. In a 32-bit code section, the following code
866generates the machine opcode bytes @samp{66 6a 04}, which pushes the
867value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
868
869@smallexample
870 pushw $4
871@end smallexample
872
873The same code in a 16-bit code section would generate the machine
b45619c0 874opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
875is correct since the processor default operand size is assumed to be 16
876bits in a 16-bit code section.
877
878@node i386-Bugs
879@section AT&T Syntax bugs
880
881The UnixWare assembler, and probably other AT&T derived ix86 Unix
882assemblers, generate floating point instructions with reversed source
883and destination registers in certain cases. Unfortunately, gcc and
884possibly many other programs use this reversed syntax, so we're stuck
885with it.
886
887For example
888
889@smallexample
890 fsub %st,%st(3)
891@end smallexample
892@noindent
893results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
894than the expected @samp{%st(3) - %st}. This happens with all the
895non-commutative arithmetic floating point operations with two register
896operands where the source register is @samp{%st} and the destination
897register is @samp{%st(i)}.
898
e413e4e9
AM
899@node i386-Arch
900@section Specifying CPU Architecture
901
902@cindex arch directive, i386
903@cindex i386 arch directive
55b62671
AJ
904@cindex arch directive, x86-64
905@cindex x86-64 arch directive
e413e4e9
AM
906
907@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 908(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
909directive enables a warning when gas detects an instruction that is not
910supported on the CPU specified. The choices for @var{cpu_type} are:
911
912@multitable @columnfractions .20 .20 .20 .20
913@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
914@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 915@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 916@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
8a9036a4 917@item @samp{corei7} @tab @samp{l1om}
1543849b 918@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
69dd9865 919@item @samp{amdfam10} @tab @samp{amdfam15}
1ceab344 920@item @samp{generic32} @tab @samp{generic64}
9103f4f4 921@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 922@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c0f3af97 923@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
f1f8f695 924@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
df6d8da1 925@item @samp{.ept} @tab @samp{.clflush}
1ceab344 926@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 927@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
f0ae4a24 928@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1ceab344 929@item @samp{.padlock}
e413e4e9
AM
930@end multitable
931
fddf5b5b
AM
932Apart from the warning, there are only two other effects on
933@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
934@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
935will automatically use a two byte opcode sequence. The larger three
936byte opcode sequence is used on the 486 (and when no architecture is
937specified) because it executes faster on the 486. Note that you can
938explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
939Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
940@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
941conditional jumps will be promoted when necessary to a two instruction
942sequence consisting of a conditional jump of the opposite sense around
943an unconditional jump to the target.
944
5c6af06e
JB
945Following the CPU architecture (but not a sub-architecture, which are those
946starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
947control automatic promotion of conditional jumps. @samp{jumps} is the
948default, and enables jump promotion; All external jumps will be of the long
949variety, and file-local jumps will be promoted as necessary.
950(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
951byte offset jumps, and warns about file-local conditional jumps that
952@code{@value{AS}} promotes.
fddf5b5b
AM
953Unconditional jumps are treated as for @samp{jumps}.
954
955For example
956
957@smallexample
958 .arch i8086,nojumps
959@end smallexample
e413e4e9 960
252b5132
RH
961@node i386-Notes
962@section Notes
963
964@cindex i386 @code{mul}, @code{imul} instructions
965@cindex @code{mul} instruction, i386
966@cindex @code{imul} instruction, i386
55b62671
AJ
967@cindex @code{mul} instruction, x86-64
968@cindex @code{imul} instruction, x86-64
252b5132 969There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 970instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
971multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
972for @samp{imul}) can be output only in the one operand form. Thus,
973@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
974the expanding multiply would clobber the @samp{%edx} register, and this
975would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
97664-bit product in @samp{%edx:%eax}.
977
978We have added a two operand form of @samp{imul} when the first operand
979is an immediate mode expression and the second operand is a register.
980This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
981example, can be done with @samp{imul $69, %eax} rather than @samp{imul
982$69, %eax, %eax}.
983
This page took 0.501999 seconds and 4 git commands to generate.