New 2016 binutils ChangeLog files
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b90efa5b 1@c Copyright (C) 1991-2015 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
7b458c12
L
125@code{btver1},
126@code{btver2},
9103f4f4
L
127@code{generic32} and
128@code{generic64}.
129
34bca508 130In addition to the basic instruction set, the assembler can be told to
6305a203
L
131accept various extension mnemonics. For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}. The following extensions are currently supported:
309d3373
JB
134@code{8087},
135@code{287},
136@code{387},
137@code{no87},
6305a203 138@code{mmx},
309d3373 139@code{nommx},
6305a203
L
140@code{sse},
141@code{sse2},
142@code{sse3},
143@code{ssse3},
144@code{sse4.1},
145@code{sse4.2},
146@code{sse4},
309d3373 147@code{nosse},
c0f3af97 148@code{avx},
6c30d220 149@code{avx2},
e2e1fcde
L
150@code{adx},
151@code{rdseed},
152@code{prfchw},
5c111e37 153@code{smap},
7e8b059b 154@code{mpx},
a0046408 155@code{sha},
1dfc6506
L
156@code{prefetchwt1},
157@code{clflushopt},
158@code{se1},
c5e7287a 159@code{clwb},
9d8596f0 160@code{pcommit},
43234a1e
L
161@code{avx512f},
162@code{avx512cd},
163@code{avx512er},
164@code{avx512pf},
1dfc6506
L
165@code{avx512vl},
166@code{avx512bw},
167@code{avx512dq},
2cc1b5aa 168@code{avx512ifma},
14f195c9 169@code{avx512vbmi},
309d3373 170@code{noavx},
6305a203 171@code{vmx},
8729a6f6 172@code{vmfunc},
6305a203 173@code{smx},
f03fe4c1 174@code{xsave},
c7b8aa3a 175@code{xsaveopt},
1dfc6506
L
176@code{xsavec},
177@code{xsaves},
c0f3af97 178@code{aes},
594ab6a3 179@code{pclmul},
c7b8aa3a
L
180@code{fsgsbase},
181@code{rdrnd},
182@code{f16c},
6c30d220 183@code{bmi2},
c0f3af97 184@code{fma},
f1f8f695
L
185@code{movbe},
186@code{ept},
6c30d220 187@code{lzcnt},
42164a71
L
188@code{hle},
189@code{rtm},
6c30d220 190@code{invpcid},
bd5295b2 191@code{clflush},
9916071f 192@code{mwaitx},
029f3522 193@code{clzero},
f88c9eb0 194@code{lwp},
5dd85c99
SP
195@code{fma4},
196@code{xop},
60aa667e 197@code{cx16},
bd5295b2 198@code{syscall},
1b7f3fb0 199@code{rdtscp},
6305a203
L
200@code{3dnow},
201@code{3dnowa},
202@code{sse4a},
203@code{sse5},
204@code{svme},
205@code{abm} and
206@code{padlock}.
309d3373
JB
207Note that rather than extending a basic instruction set, the extension
208mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
209
210When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
211@code{.arch} directive will take precedent.
212
213@cindex @samp{-mtune=} option, i386
214@cindex @samp{-mtune=} option, x86-64
215@item -mtune=@var{CPU}
216This option specifies a processor to optimize for. When used in
217conjunction with the @option{-march} option, only instructions
218of the processor specified by the @option{-march} option will be
219generated.
220
6305a203
L
221Valid @var{CPU} values are identical to the processor list of
222@option{-march=@var{CPU}}.
9103f4f4 223
c0f3af97
L
224@cindex @samp{-msse2avx} option, i386
225@cindex @samp{-msse2avx} option, x86-64
226@item -msse2avx
227This option specifies that the assembler should encode SSE instructions
228with VEX prefix.
229
daf50ae7
L
230@cindex @samp{-msse-check=} option, i386
231@cindex @samp{-msse-check=} option, x86-64
232@item -msse-check=@var{none}
1f9bb1ca
AS
233@itemx -msse-check=@var{warning}
234@itemx -msse-check=@var{error}
9aff4b7a 235These options control if the assembler should check SSE instructions.
daf50ae7
L
236@option{-msse-check=@var{none}} will make the assembler not to check SSE
237instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 238will make the assembler issue a warning for any SSE instruction.
daf50ae7 239@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 240for any SSE instruction.
daf50ae7 241
539f890d
L
242@cindex @samp{-mavxscalar=} option, i386
243@cindex @samp{-mavxscalar=} option, x86-64
244@item -mavxscalar=@var{128}
1f9bb1ca 245@itemx -mavxscalar=@var{256}
2aab8acd 246These options control how the assembler should encode scalar AVX
539f890d
L
247instructions. @option{-mavxscalar=@var{128}} will encode scalar
248AVX instructions with 128bit vector length, which is the default.
249@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
250with 256bit vector length.
251
43234a1e
L
252@cindex @samp{-mevexlig=} option, i386
253@cindex @samp{-mevexlig=} option, x86-64
254@item -mevexlig=@var{128}
255@itemx -mevexlig=@var{256}
256@itemx -mevexlig=@var{512}
257These options control how the assembler should encode length-ignored
258(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
259EVEX instructions with 128bit vector length, which is the default.
260@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
261encode LIG EVEX instructions with 256bit and 512bit vector length,
262respectively.
263
264@cindex @samp{-mevexwig=} option, i386
265@cindex @samp{-mevexwig=} option, x86-64
266@item -mevexwig=@var{0}
267@itemx -mevexwig=@var{1}
268These options control how the assembler should encode w-ignored (WIG)
269EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
270EVEX instructions with evex.w = 0, which is the default.
271@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
272evex.w = 1.
273
1efbbeb4
L
274@cindex @samp{-mmnemonic=} option, i386
275@cindex @samp{-mmnemonic=} option, x86-64
276@item -mmnemonic=@var{att}
1f9bb1ca 277@itemx -mmnemonic=@var{intel}
34bca508 278This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
279The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
280take precedent.
281
282@cindex @samp{-msyntax=} option, i386
283@cindex @samp{-msyntax=} option, x86-64
284@item -msyntax=@var{att}
1f9bb1ca 285@itemx -msyntax=@var{intel}
34bca508 286This option specifies instruction syntax when processing instructions.
1efbbeb4
L
287The @code{.att_syntax} and @code{.intel_syntax} directives will
288take precedent.
289
290@cindex @samp{-mnaked-reg} option, i386
291@cindex @samp{-mnaked-reg} option, x86-64
292@item -mnaked-reg
293This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 294The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 295
7e8b059b
L
296@cindex @samp{-madd-bnd-prefix} option, i386
297@cindex @samp{-madd-bnd-prefix} option, x86-64
298@item -madd-bnd-prefix
299This option forces the assembler to add BND prefix to all branches, even
300if such prefix was not explicitly specified in the source code.
301
8dcea932
L
302@cindex @samp{-mshared} option, i386
303@cindex @samp{-mshared} option, x86-64
304@item -mno-shared
305On ELF target, the assembler normally optimizes out non-PLT relocations
306against defined non-weak global branch targets with default visibility.
307The @samp{-mshared} option tells the assembler to generate code which
308may go into a shared library where all non-weak global branch targets
309with default visibility can be preempted. The resulting code is
310slightly bigger. This option only affects the handling of branch
311instructions.
312
167ad85b
TG
313@cindex @samp{-mbig-obj} option, x86-64
314@item -mbig-obj
315On x86-64 PE/COFF target this option forces the use of big object file
316format, which allows more than 32768 sections.
317
d022bddd
IT
318@cindex @samp{-momit-lock-prefix=} option, i386
319@cindex @samp{-momit-lock-prefix=} option, x86-64
320@item -momit-lock-prefix=@var{no}
321@itemx -momit-lock-prefix=@var{yes}
322These options control how the assembler should encode lock prefix.
323This option is intended as a workaround for processors, that fail on
324lock prefix. This option can only be safely used with single-core,
325single-thread computers
326@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
327@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
328which is the default.
329
d3d3c6db
IT
330@cindex @samp{-mevexrcig=} option, i386
331@cindex @samp{-mevexrcig=} option, x86-64
332@item -mevexrcig=@var{rne}
333@itemx -mevexrcig=@var{rd}
334@itemx -mevexrcig=@var{ru}
335@itemx -mevexrcig=@var{rz}
336These options control how the assembler should encode SAE-only
337EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
338of EVEX instruction with 00, which is the default.
339@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
340and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
341with 01, 10 and 11 RC bits, respectively.
342
5db04b09
L
343@cindex @samp{-mamd64} option, x86-64
344@cindex @samp{-mintel64} option, x86-64
345@item -mamd64
346@itemx -mintel64
347This option specifies that the assembler should accept only AMD64 or
348Intel64 ISA in 64-bit mode. The default is to accept both.
349
55b62671 350@end table
731caf76 351@c man end
e413e4e9 352
a6c24e68
NC
353@node i386-Directives
354@section x86 specific Directives
355
356@cindex machine directives, x86
357@cindex x86 machine directives
358@table @code
359
360@cindex @code{lcomm} directive, COFF
361@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
362Reserve @var{length} (an absolute expression) bytes for a local common
363denoted by @var{symbol}. The section and value of @var{symbol} are
364those of the new local common. The addresses are allocated in the bss
704209c0
NC
365section, so that at run-time the bytes start off zeroed. Since
366@var{symbol} is not declared global, it is normally not visible to
367@code{@value{LD}}. The optional third parameter, @var{alignment},
368specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
369
370This directive is only available for COFF based x86 targets.
371
372@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
373@c .largecomm
374
375@end table
376
252b5132 377@node i386-Syntax
7c31ae13
NC
378@section i386 Syntactical Considerations
379@menu
380* i386-Variations:: AT&T Syntax versus Intel Syntax
381* i386-Chars:: Special Characters
382@end menu
383
384@node i386-Variations
385@subsection AT&T Syntax versus Intel Syntax
252b5132 386
e413e4e9
AM
387@cindex i386 intel_syntax pseudo op
388@cindex intel_syntax pseudo op, i386
389@cindex i386 att_syntax pseudo op
390@cindex att_syntax pseudo op, i386
252b5132
RH
391@cindex i386 syntax compatibility
392@cindex syntax compatibility, i386
55b62671
AJ
393@cindex x86-64 intel_syntax pseudo op
394@cindex intel_syntax pseudo op, x86-64
395@cindex x86-64 att_syntax pseudo op
396@cindex att_syntax pseudo op, x86-64
397@cindex x86-64 syntax compatibility
398@cindex syntax compatibility, x86-64
e413e4e9
AM
399
400@code{@value{AS}} now supports assembly using Intel assembler syntax.
401@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
402back to the usual AT&T mode for compatibility with the output of
403@code{@value{GCC}}. Either of these directives may have an optional
404argument, @code{prefix}, or @code{noprefix} specifying whether registers
405require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
406different from Intel syntax. We mention these differences because
407almost all 80386 documents use Intel syntax. Notable differences
408between the two syntaxes are:
409
410@cindex immediate operands, i386
411@cindex i386 immediate operands
412@cindex register operands, i386
413@cindex i386 register operands
414@cindex jump/call operands, i386
415@cindex i386 jump/call operands
416@cindex operand delimiters, i386
55b62671
AJ
417
418@cindex immediate operands, x86-64
419@cindex x86-64 immediate operands
420@cindex register operands, x86-64
421@cindex x86-64 register operands
422@cindex jump/call operands, x86-64
423@cindex x86-64 jump/call operands
424@cindex operand delimiters, x86-64
252b5132
RH
425@itemize @bullet
426@item
427AT&T immediate operands are preceded by @samp{$}; Intel immediate
428operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
429AT&T register operands are preceded by @samp{%}; Intel register operands
430are undelimited. AT&T absolute (as opposed to PC relative) jump/call
431operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
432
433@cindex i386 source, destination operands
434@cindex source, destination operands; i386
55b62671
AJ
435@cindex x86-64 source, destination operands
436@cindex source, destination operands; x86-64
252b5132
RH
437@item
438AT&T and Intel syntax use the opposite order for source and destination
439operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
440@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
441previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
442instructions with 2 immediate operands, such as the @samp{enter}
443instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
444
445@cindex mnemonic suffixes, i386
446@cindex sizes operands, i386
447@cindex i386 size suffixes
55b62671
AJ
448@cindex mnemonic suffixes, x86-64
449@cindex sizes operands, x86-64
450@cindex x86-64 size suffixes
252b5132
RH
451@item
452In AT&T syntax the size of memory operands is determined from the last
453character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
454@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
455(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
456this by prefixing memory operands (@emph{not} the instruction mnemonics) with
457@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
458Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
459syntax.
252b5132 460
4b06377f
L
461In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
462instruction with the 64-bit displacement or immediate operand.
463
252b5132
RH
464@cindex return instructions, i386
465@cindex i386 jump, call, return
55b62671
AJ
466@cindex return instructions, x86-64
467@cindex x86-64 jump, call, return
252b5132
RH
468@item
469Immediate form long jumps and calls are
470@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
471Intel syntax is
472@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
473instruction
474is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
475@samp{ret far @var{stack-adjust}}.
476
477@cindex sections, i386
478@cindex i386 sections
55b62671
AJ
479@cindex sections, x86-64
480@cindex x86-64 sections
252b5132
RH
481@item
482The AT&T assembler does not provide support for multiple section
483programs. Unix style systems expect all programs to be single sections.
484@end itemize
485
7c31ae13
NC
486@node i386-Chars
487@subsection Special Characters
488
489@cindex line comment character, i386
490@cindex i386 line comment character
491The presence of a @samp{#} appearing anywhere on a line indicates the
492start of a comment that extends to the end of that line.
493
494If a @samp{#} appears as the first character of a line then the whole
495line is treated as a comment, but in this case the line can also be a
496logical line number directive (@pxref{Comments}) or a preprocessor
497control command (@pxref{Preprocessing}).
498
499If the @option{--divide} command line option has not been specified
500then the @samp{/} character appearing anywhere on a line also
501introduces a line comment.
502
503@cindex line separator, i386
504@cindex statement separator, i386
505@cindex i386 line separator
506The @samp{;} character can be used to separate statements on the same
507line.
508
252b5132 509@node i386-Mnemonics
d3b47e2b
L
510@section i386-Mnemonics
511@subsection Instruction Naming
252b5132
RH
512
513@cindex i386 instruction naming
514@cindex instruction naming, i386
55b62671
AJ
515@cindex x86-64 instruction naming
516@cindex instruction naming, x86-64
517
252b5132 518Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
519specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
520and @samp{q} specify byte, word, long and quadruple word operands. If
521no suffix is specified by an instruction then @code{@value{AS}} tries to
522fill in the missing suffix based on the destination register operand
523(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
524to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
525@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
526assembler which assumes that a missing mnemonic suffix implies long
527operand size. (This incompatibility does not affect compiler output
528since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
529
530Almost all instructions have the same names in AT&T and Intel format.
531There are a few exceptions. The sign extend and zero extend
532instructions need two sizes to specify them. They need a size to
533sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
534is accomplished by using two instruction mnemonic suffixes in AT&T
535syntax. Base names for sign extend and zero extend are
536@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
537and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
538are tacked on to this base name, the @emph{from} suffix before the
539@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
540``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
541thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
542@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
543@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
544quadruple word).
252b5132 545
b6169b20
L
546@cindex encoding options, i386
547@cindex encoding options, x86-64
548
549Different encoding options can be specified via optional mnemonic
550suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
551moving from one register to another. @samp{.d8} or @samp{.d32} suffix
552prefers 8bit or 32bit displacement in encoding.
b6169b20 553
252b5132
RH
554@cindex conversion instructions, i386
555@cindex i386 conversion instructions
55b62671
AJ
556@cindex conversion instructions, x86-64
557@cindex x86-64 conversion instructions
252b5132
RH
558The Intel-syntax conversion instructions
559
560@itemize @bullet
561@item
562@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
563
564@item
565@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
566
567@item
568@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
569
570@item
571@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
572
573@item
574@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
575(x86-64 only),
576
577@item
d5f0cf92 578@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 579@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
580@end itemize
581
582@noindent
55b62671
AJ
583are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
584@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
585instructions.
252b5132
RH
586
587@cindex jump instructions, i386
588@cindex call instructions, i386
55b62671
AJ
589@cindex jump instructions, x86-64
590@cindex call instructions, x86-64
252b5132
RH
591Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
592AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
593convention.
594
d3b47e2b 595@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
596
597@cindex i386 mnemonic compatibility
598@cindex mnemonic compatibility, i386
599
600@code{@value{AS}} supports assembly using Intel mnemonic.
601@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
602@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
603syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
604Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
605@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
606@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
607assembler with different mnemonics from those in Intel IA32 specification.
608@code{@value{GCC}} generates those instructions with AT&T mnemonic.
609
252b5132
RH
610@node i386-Regs
611@section Register Naming
612
613@cindex i386 registers
614@cindex registers, i386
55b62671
AJ
615@cindex x86-64 registers
616@cindex registers, x86-64
252b5132
RH
617Register operands are always prefixed with @samp{%}. The 80386 registers
618consist of
619
620@itemize @bullet
621@item
622the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
623@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
624frame pointer), and @samp{%esp} (the stack pointer).
625
626@item
627the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
628@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
629
630@item
631the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
632@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
633are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
634@samp{%cx}, and @samp{%dx})
635
636@item
637the 6 section registers @samp{%cs} (code section), @samp{%ds}
638(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
639and @samp{%gs}.
640
641@item
642the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
643@samp{%cr3}.
644
645@item
646the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
647@samp{%db3}, @samp{%db6}, and @samp{%db7}.
648
649@item
650the 2 test registers @samp{%tr6} and @samp{%tr7}.
651
652@item
653the 8 floating point register stack @samp{%st} or equivalently
654@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
655@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
656These registers are overloaded by 8 MMX registers @samp{%mm0},
657@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
658@samp{%mm6} and @samp{%mm7}.
659
660@item
661the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
662@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
663@end itemize
664
665The AMD x86-64 architecture extends the register set by:
666
667@itemize @bullet
668@item
669enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
670accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
671@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
672pointer)
673
674@item
675the 8 extended registers @samp{%r8}--@samp{%r15}.
676
677@item
678the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
679
680@item
681the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
682
683@item
684the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
685
686@item
687the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
688
689@item
690the 8 debug registers: @samp{%db8}--@samp{%db15}.
691
692@item
693the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
694@end itemize
695
696@node i386-Prefixes
697@section Instruction Prefixes
698
699@cindex i386 instruction prefixes
700@cindex instruction prefixes, i386
701@cindex prefixes, i386
702Instruction prefixes are used to modify the following instruction. They
703are used to repeat string instructions, to provide section overrides, to
704perform bus lock operations, and to change operand and address sizes.
705(Most instructions that normally operate on 32-bit operands will use
70616-bit operands if the instruction has an ``operand size'' prefix.)
707Instruction prefixes are best written on the same line as the instruction
708they act upon. For example, the @samp{scas} (scan string) instruction is
709repeated with:
710
711@smallexample
712 repne scas %es:(%edi),%al
713@end smallexample
714
715You may also place prefixes on the lines immediately preceding the
716instruction, but this circumvents checks that @code{@value{AS}} does
717with prefixes, and will not work with all prefixes.
718
719Here is a list of instruction prefixes:
720
721@cindex section override prefixes, i386
722@itemize @bullet
723@item
724Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
725@samp{fs}, @samp{gs}. These are automatically added by specifying
726using the @var{section}:@var{memory-operand} form for memory references.
727
728@cindex size prefixes, i386
729@item
730Operand/Address size prefixes @samp{data16} and @samp{addr16}
731change 32-bit operands/addresses into 16-bit operands/addresses,
732while @samp{data32} and @samp{addr32} change 16-bit ones (in a
733@code{.code16} section) into 32-bit operands/addresses. These prefixes
734@emph{must} appear on the same line of code as the instruction they
735modify. For example, in a 16-bit @code{.code16} section, you might
736write:
737
738@smallexample
739 addr32 jmpl *(%ebx)
740@end smallexample
741
742@cindex bus lock prefixes, i386
743@cindex inhibiting interrupts, i386
744@item
745The bus lock prefix @samp{lock} inhibits interrupts during execution of
746the instruction it precedes. (This is only valid with certain
747instructions; see a 80386 manual for details).
748
749@cindex coprocessor wait, i386
750@item
751The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
752complete the current instruction. This should never be needed for the
75380386/80387 combination.
754
755@cindex repeat prefixes, i386
756@item
757The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
758to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
759times if the current address size is 16-bits).
55b62671
AJ
760@cindex REX prefixes, i386
761@item
762The @samp{rex} family of prefixes is used by x86-64 to encode
763extensions to i386 instruction set. The @samp{rex} prefix has four
764bits --- an operand size overwrite (@code{64}) used to change operand size
765from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
766register set.
767
768You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
769instruction emits @samp{rex} prefix with all the bits set. By omitting
770the @code{64}, @code{x}, @code{y} or @code{z} you may write other
771prefixes as well. Normally, there is no need to write the prefixes
772explicitly, since gas will automatically generate them based on the
773instruction operands.
252b5132
RH
774@end itemize
775
776@node i386-Memory
777@section Memory References
778
779@cindex i386 memory references
780@cindex memory references, i386
55b62671
AJ
781@cindex x86-64 memory references
782@cindex memory references, x86-64
252b5132
RH
783An Intel syntax indirect memory reference of the form
784
785@smallexample
786@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
787@end smallexample
788
789@noindent
790is translated into the AT&T syntax
791
792@smallexample
793@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
794@end smallexample
795
796@noindent
797where @var{base} and @var{index} are the optional 32-bit base and
798index registers, @var{disp} is the optional displacement, and
799@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
800to calculate the address of the operand. If no @var{scale} is
801specified, @var{scale} is taken to be 1. @var{section} specifies the
802optional section register for the memory operand, and may override the
803default section register (see a 80386 manual for section register
804defaults). Note that section overrides in AT&T syntax @emph{must}
805be preceded by a @samp{%}. If you specify a section override which
806coincides with the default section register, @code{@value{AS}} does @emph{not}
807output any section register override prefixes to assemble the given
808instruction. Thus, section overrides can be specified to emphasize which
809section register is used for a given memory operand.
810
811Here are some examples of Intel and AT&T style memory references:
812
813@table @asis
814@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
815@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
816missing, and the default section is used (@samp{%ss} for addressing with
817@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
818
819@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
820@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
821@samp{foo}. All other fields are missing. The section register here
822defaults to @samp{%ds}.
823
824@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
825This uses the value pointed to by @samp{foo} as a memory operand.
826Note that @var{base} and @var{index} are both missing, but there is only
827@emph{one} @samp{,}. This is a syntactic exception.
828
829@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
830This selects the contents of the variable @samp{foo} with section
831register @var{section} being @samp{%gs}.
832@end table
833
834Absolute (as opposed to PC relative) call and jump operands must be
835prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
836always chooses PC relative addressing for jump/call labels.
837
838Any instruction that has a memory operand, but no register operand,
55b62671
AJ
839@emph{must} specify its size (byte, word, long, or quadruple) with an
840instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
841respectively).
842
843The x86-64 architecture adds an RIP (instruction pointer relative)
844addressing. This addressing mode is specified by using @samp{rip} as a
845base register. Only constant offsets are valid. For example:
846
847@table @asis
848@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
849Points to the address 1234 bytes past the end of the current
850instruction.
851
852@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
853Points to the @code{symbol} in RIP relative way, this is shorter than
854the default absolute addressing.
855@end table
856
857Other addressing modes remain unchanged in x86-64 architecture, except
858registers used are 64-bit instead of 32-bit.
252b5132 859
fddf5b5b 860@node i386-Jumps
252b5132
RH
861@section Handling of Jump Instructions
862
863@cindex jump optimization, i386
864@cindex i386 jump optimization
55b62671
AJ
865@cindex jump optimization, x86-64
866@cindex x86-64 jump optimization
252b5132
RH
867Jump instructions are always optimized to use the smallest possible
868displacements. This is accomplished by using byte (8-bit) displacement
869jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 870is insufficient a long displacement is used. We do not support
252b5132
RH
871word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
872instruction with the @samp{data16} instruction prefix), since the 80386
873insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 874is added. (See also @pxref{i386-Arch})
252b5132
RH
875
876Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
877@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
878displacements, so that if you use these instructions (@code{@value{GCC}} does
879not use them) you may get an error message (and incorrect code). The AT&T
88080386 assembler tries to get around this problem by expanding @samp{jcxz foo}
881to
882
883@smallexample
884 jcxz cx_zero
885 jmp cx_nonzero
886cx_zero: jmp foo
887cx_nonzero:
888@end smallexample
889
890@node i386-Float
891@section Floating Point
892
893@cindex i386 floating point
894@cindex floating point, i386
55b62671
AJ
895@cindex x86-64 floating point
896@cindex floating point, x86-64
252b5132
RH
897All 80387 floating point types except packed BCD are supported.
898(BCD support may be added without much difficulty). These data
899types are 16-, 32-, and 64- bit integers, and single (32-bit),
900double (64-bit), and extended (80-bit) precision floating point.
901Each supported type has an instruction mnemonic suffix and a constructor
902associated with it. Instruction mnemonic suffixes specify the operand's
903data type. Constructors build these data types into memory.
904
905@cindex @code{float} directive, i386
906@cindex @code{single} directive, i386
907@cindex @code{double} directive, i386
908@cindex @code{tfloat} directive, i386
55b62671
AJ
909@cindex @code{float} directive, x86-64
910@cindex @code{single} directive, x86-64
911@cindex @code{double} directive, x86-64
912@cindex @code{tfloat} directive, x86-64
252b5132
RH
913@itemize @bullet
914@item
915Floating point constructors are @samp{.float} or @samp{.single},
916@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
917These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
918and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
919only supports this format via the @samp{fldt} (load 80-bit real to stack
920top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
921
922@cindex @code{word} directive, i386
923@cindex @code{long} directive, i386
924@cindex @code{int} directive, i386
925@cindex @code{quad} directive, i386
55b62671
AJ
926@cindex @code{word} directive, x86-64
927@cindex @code{long} directive, x86-64
928@cindex @code{int} directive, x86-64
929@cindex @code{quad} directive, x86-64
252b5132
RH
930@item
931Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
932@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
933corresponding instruction mnemonic suffixes are @samp{s} (single),
934@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
935the 64-bit @samp{q} format is only present in the @samp{fildq} (load
936quad integer to stack top) and @samp{fistpq} (store quad integer and pop
937stack) instructions.
938@end itemize
939
940Register to register operations should not use instruction mnemonic suffixes.
941@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
942wrote @samp{fst %st, %st(1)}, since all register to register operations
943use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
944which converts @samp{%st} from 80-bit to 64-bit floating point format,
945then stores the result in the 4 byte location @samp{mem})
946
947@node i386-SIMD
948@section Intel's MMX and AMD's 3DNow! SIMD Operations
949
950@cindex MMX, i386
951@cindex 3DNow!, i386
952@cindex SIMD, i386
55b62671
AJ
953@cindex MMX, x86-64
954@cindex 3DNow!, x86-64
955@cindex SIMD, x86-64
252b5132
RH
956
957@code{@value{AS}} supports Intel's MMX instruction set (SIMD
958instructions for integer data), available on Intel's Pentium MMX
959processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 960Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
961instruction set (SIMD instructions for 32-bit floating point data)
962available on AMD's K6-2 processor and possibly others in the future.
963
964Currently, @code{@value{AS}} does not support Intel's floating point
965SIMD, Katmai (KNI).
966
967The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
968@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
96916-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
970floating point values. The MMX registers cannot be used at the same time
971as the floating point stack.
972
973See Intel and AMD documentation, keeping in mind that the operand order in
974instructions is reversed from the Intel syntax.
975
f88c9eb0
SP
976@node i386-LWP
977@section AMD's Lightweight Profiling Instructions
978
979@cindex LWP, i386
980@cindex LWP, x86-64
981
982@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
983instruction set, available on AMD's Family 15h (Orochi) processors.
984
985LWP enables applications to collect and manage performance data, and
986react to performance events. The collection of performance data
987requires no context switches. LWP runs in the context of a thread and
988so several counters can be used independently across multiple threads.
989LWP can be used in both 64-bit and legacy 32-bit modes.
990
991For detailed information on the LWP instruction set, see the
992@cite{AMD Lightweight Profiling Specification} available at
993@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
994
87973e9f
QN
995@node i386-BMI
996@section Bit Manipulation Instructions
997
998@cindex BMI, i386
999@cindex BMI, x86-64
1000
1001@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1002
1003BMI instructions provide several instructions implementing individual
1004bit manipulation operations such as isolation, masking, setting, or
34bca508 1005resetting.
87973e9f
QN
1006
1007@c Need to add a specification citation here when available.
1008
2a2a0f38
QN
1009@node i386-TBM
1010@section AMD's Trailing Bit Manipulation Instructions
1011
1012@cindex TBM, i386
1013@cindex TBM, x86-64
1014
1015@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1016instruction set, available on AMD's BDVER2 processors (Trinity and
1017Viperfish).
1018
1019TBM instructions provide instructions implementing individual bit
1020manipulation operations such as isolating, masking, setting, resetting,
1021complementing, and operations on trailing zeros and ones.
1022
1023@c Need to add a specification citation here when available.
87973e9f 1024
252b5132
RH
1025@node i386-16bit
1026@section Writing 16-bit Code
1027
1028@cindex i386 16-bit code
1029@cindex 16-bit code, i386
1030@cindex real-mode code, i386
eecb386c 1031@cindex @code{code16gcc} directive, i386
252b5132
RH
1032@cindex @code{code16} directive, i386
1033@cindex @code{code32} directive, i386
55b62671
AJ
1034@cindex @code{code64} directive, i386
1035@cindex @code{code64} directive, x86-64
1036While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1037or 64-bit x86-64 code depending on the default configuration,
252b5132 1038it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1039mode code segments. To do this, put a @samp{.code16} or
1040@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1041be run in 16-bit mode. You can switch @code{@value{AS}} to writing
104232-bit code with the @samp{.code32} directive or 64-bit code with the
1043@samp{.code64} directive.
eecb386c
AM
1044
1045@samp{.code16gcc} provides experimental support for generating 16-bit
1046code from gcc, and differs from @samp{.code16} in that @samp{call},
1047@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1048@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1049default to 32-bit size. This is so that the stack pointer is
1050manipulated in the same way over function calls, allowing access to
1051function parameters at the same stack offsets as in 32-bit mode.
1052@samp{.code16gcc} also automatically adds address size prefixes where
1053necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1054
1055The code which @code{@value{AS}} generates in 16-bit mode will not
1056necessarily run on a 16-bit pre-80386 processor. To write code that
1057runs on such a processor, you must refrain from using @emph{any} 32-bit
1058constructs which require @code{@value{AS}} to output address or operand
1059size prefixes.
1060
1061Note that writing 16-bit code instructions by explicitly specifying a
1062prefix or an instruction mnemonic suffix within a 32-bit code section
1063generates different machine instructions than those generated for a
106416-bit code segment. In a 32-bit code section, the following code
1065generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1066value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1067
1068@smallexample
1069 pushw $4
1070@end smallexample
1071
1072The same code in a 16-bit code section would generate the machine
b45619c0 1073opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1074is correct since the processor default operand size is assumed to be 16
1075bits in a 16-bit code section.
1076
e413e4e9
AM
1077@node i386-Arch
1078@section Specifying CPU Architecture
1079
1080@cindex arch directive, i386
1081@cindex i386 arch directive
55b62671
AJ
1082@cindex arch directive, x86-64
1083@cindex x86-64 arch directive
e413e4e9
AM
1084
1085@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1086(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1087directive enables a warning when gas detects an instruction that is not
1088supported on the CPU specified. The choices for @var{cpu_type} are:
1089
1090@multitable @columnfractions .20 .20 .20 .20
1091@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1092@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1093@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1094@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1095@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1096@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1097@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1098@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1099@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1100@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1101@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1102@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1103@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1104@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1105@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1106@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1107@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1108@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1109@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1110@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1111@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
14f195c9 1112@item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1ceab344 1113@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1114@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1115@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
9916071f 1116@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1117@end multitable
1118
fddf5b5b
AM
1119Apart from the warning, there are only two other effects on
1120@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1121@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1122will automatically use a two byte opcode sequence. The larger three
1123byte opcode sequence is used on the 486 (and when no architecture is
1124specified) because it executes faster on the 486. Note that you can
1125explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1126Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1127@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1128conditional jumps will be promoted when necessary to a two instruction
1129sequence consisting of a conditional jump of the opposite sense around
1130an unconditional jump to the target.
1131
5c6af06e
JB
1132Following the CPU architecture (but not a sub-architecture, which are those
1133starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1134control automatic promotion of conditional jumps. @samp{jumps} is the
1135default, and enables jump promotion; All external jumps will be of the long
1136variety, and file-local jumps will be promoted as necessary.
1137(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1138byte offset jumps, and warns about file-local conditional jumps that
1139@code{@value{AS}} promotes.
fddf5b5b
AM
1140Unconditional jumps are treated as for @samp{jumps}.
1141
1142For example
1143
1144@smallexample
1145 .arch i8086,nojumps
1146@end smallexample
e413e4e9 1147
5c9352f3
AM
1148@node i386-Bugs
1149@section AT&T Syntax bugs
1150
1151The UnixWare assembler, and probably other AT&T derived ix86 Unix
1152assemblers, generate floating point instructions with reversed source
1153and destination registers in certain cases. Unfortunately, gcc and
1154possibly many other programs use this reversed syntax, so we're stuck
1155with it.
1156
1157For example
1158
1159@smallexample
1160 fsub %st,%st(3)
1161@end smallexample
1162@noindent
1163results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1164than the expected @samp{%st(3) - %st}. This happens with all the
1165non-commutative arithmetic floating point operations with two register
1166operands where the source register is @samp{%st} and the destination
1167register is @samp{%st(i)}.
1168
252b5132
RH
1169@node i386-Notes
1170@section Notes
1171
1172@cindex i386 @code{mul}, @code{imul} instructions
1173@cindex @code{mul} instruction, i386
1174@cindex @code{imul} instruction, i386
55b62671
AJ
1175@cindex @code{mul} instruction, x86-64
1176@cindex @code{imul} instruction, x86-64
252b5132 1177There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1178instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1179multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1180for @samp{imul}) can be output only in the one operand form. Thus,
1181@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1182the expanding multiply would clobber the @samp{%edx} register, and this
1183would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
118464-bit product in @samp{%edx:%eax}.
1185
1186We have added a two operand form of @samp{imul} when the first operand
1187is an immediate mode expression and the second operand is a register.
1188This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1189example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1190$69, %eax, %eax}.
1191
This page took 0.704026 seconds and 4 git commands to generate.