gas/
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
7c31ae13 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
731caf76
L
6@c man end
7
252b5132
RH
8@ifset GENERIC
9@page
10@node i386-Dependent
11@chapter 80386 Dependent Features
12@end ifset
13@ifclear GENERIC
14@node Machine Dependencies
15@chapter 80386 Dependent Features
16@end ifclear
17
18@cindex i386 support
b6169b20 19@cindex i80386 support
55b62671
AJ
20@cindex x86-64 support
21
22The i386 version @code{@value{AS}} supports both the original Intel 386
23architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24extending the Intel architecture to 64-bits.
25
252b5132
RH
26@menu
27* i386-Options:: Options
a6c24e68 28* i386-Directives:: X86 specific directives
7c31ae13 29* i386-Syntax:: Syntactical considerations
252b5132
RH
30* i386-Mnemonics:: Instruction Naming
31* i386-Regs:: Register Naming
32* i386-Prefixes:: Instruction Prefixes
33* i386-Memory:: Memory References
fddf5b5b 34* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
35* i386-Float:: Floating Point
36* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 37* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 38* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 39* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 40* i386-16bit:: Writing 16-bit Code
e413e4e9 41* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
42* i386-Bugs:: AT&T Syntax bugs
43* i386-Notes:: Notes
44@end menu
45
46@node i386-Options
47@section Options
48
55b62671
AJ
49@cindex options for i386
50@cindex options for x86-64
51@cindex i386 options
52@cindex x86-64 options
53
54The i386 version of @code{@value{AS}} has a few machine
55dependent options:
56
731caf76
L
57@c man begin OPTIONS
58@table @gcctabopt
55b62671
AJ
59@cindex @samp{--32} option, i386
60@cindex @samp{--32} option, x86-64
570561f7
L
61@cindex @samp{--x32} option, i386
62@cindex @samp{--x32} option, x86-64
55b62671
AJ
63@cindex @samp{--64} option, i386
64@cindex @samp{--64} option, x86-64
570561f7 65@item --32 | --x32 | --64
35cc6a0b 66Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 67implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
68imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69respectively.
55b62671
AJ
70
71These options are only available with the ELF object file format, and
72require that the necessary BFD support has been included (on a 32-bit
73platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74usage and use x86-64 as target platform).
12b55ccc
L
75
76@item -n
77By default, x86 GAS replaces multiple nop instructions used for
78alignment within code sections with multi-byte nop instructions such
79as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
9103f4f4
L
123@code{generic32} and
124@code{generic64}.
125
6305a203
L
126In addition to the basic instruction set, the assembler can be told to
127accept various extension mnemonics. For example,
128@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
129@var{vmx}. The following extensions are currently supported:
309d3373
JB
130@code{8087},
131@code{287},
132@code{387},
133@code{no87},
6305a203 134@code{mmx},
309d3373 135@code{nommx},
6305a203
L
136@code{sse},
137@code{sse2},
138@code{sse3},
139@code{ssse3},
140@code{sse4.1},
141@code{sse4.2},
142@code{sse4},
309d3373 143@code{nosse},
c0f3af97 144@code{avx},
6c30d220 145@code{avx2},
309d3373 146@code{noavx},
6305a203 147@code{vmx},
8729a6f6 148@code{vmfunc},
6305a203 149@code{smx},
f03fe4c1 150@code{xsave},
c7b8aa3a 151@code{xsaveopt},
c0f3af97 152@code{aes},
594ab6a3 153@code{pclmul},
c7b8aa3a
L
154@code{fsgsbase},
155@code{rdrnd},
156@code{f16c},
6c30d220 157@code{bmi2},
c0f3af97 158@code{fma},
f1f8f695
L
159@code{movbe},
160@code{ept},
6c30d220 161@code{lzcnt},
42164a71
L
162@code{hle},
163@code{rtm},
6c30d220 164@code{invpcid},
bd5295b2 165@code{clflush},
f88c9eb0 166@code{lwp},
5dd85c99
SP
167@code{fma4},
168@code{xop},
bd5295b2 169@code{syscall},
1b7f3fb0 170@code{rdtscp},
6305a203
L
171@code{3dnow},
172@code{3dnowa},
173@code{sse4a},
174@code{sse5},
175@code{svme},
176@code{abm} and
177@code{padlock}.
309d3373
JB
178Note that rather than extending a basic instruction set, the extension
179mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
180
181When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
182@code{.arch} directive will take precedent.
183
184@cindex @samp{-mtune=} option, i386
185@cindex @samp{-mtune=} option, x86-64
186@item -mtune=@var{CPU}
187This option specifies a processor to optimize for. When used in
188conjunction with the @option{-march} option, only instructions
189of the processor specified by the @option{-march} option will be
190generated.
191
6305a203
L
192Valid @var{CPU} values are identical to the processor list of
193@option{-march=@var{CPU}}.
9103f4f4 194
c0f3af97
L
195@cindex @samp{-msse2avx} option, i386
196@cindex @samp{-msse2avx} option, x86-64
197@item -msse2avx
198This option specifies that the assembler should encode SSE instructions
199with VEX prefix.
200
daf50ae7
L
201@cindex @samp{-msse-check=} option, i386
202@cindex @samp{-msse-check=} option, x86-64
203@item -msse-check=@var{none}
1f9bb1ca
AS
204@itemx -msse-check=@var{warning}
205@itemx -msse-check=@var{error}
daf50ae7
L
206These options control if the assembler should check SSE intructions.
207@option{-msse-check=@var{none}} will make the assembler not to check SSE
208instructions, which is the default. @option{-msse-check=@var{warning}}
209will make the assembler issue a warning for any SSE intruction.
210@option{-msse-check=@var{error}} will make the assembler issue an error
211for any SSE intruction.
212
539f890d
L
213@cindex @samp{-mavxscalar=} option, i386
214@cindex @samp{-mavxscalar=} option, x86-64
215@item -mavxscalar=@var{128}
1f9bb1ca 216@itemx -mavxscalar=@var{256}
2aab8acd 217These options control how the assembler should encode scalar AVX
539f890d
L
218instructions. @option{-mavxscalar=@var{128}} will encode scalar
219AVX instructions with 128bit vector length, which is the default.
220@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
221with 256bit vector length.
222
1efbbeb4
L
223@cindex @samp{-mmnemonic=} option, i386
224@cindex @samp{-mmnemonic=} option, x86-64
225@item -mmnemonic=@var{att}
1f9bb1ca 226@itemx -mmnemonic=@var{intel}
1efbbeb4
L
227This option specifies instruction mnemonic for matching instructions.
228The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
229take precedent.
230
231@cindex @samp{-msyntax=} option, i386
232@cindex @samp{-msyntax=} option, x86-64
233@item -msyntax=@var{att}
1f9bb1ca 234@itemx -msyntax=@var{intel}
1efbbeb4
L
235This option specifies instruction syntax when processing instructions.
236The @code{.att_syntax} and @code{.intel_syntax} directives will
237take precedent.
238
239@cindex @samp{-mnaked-reg} option, i386
240@cindex @samp{-mnaked-reg} option, x86-64
241@item -mnaked-reg
242This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 243The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 244
55b62671 245@end table
731caf76 246@c man end
e413e4e9 247
a6c24e68
NC
248@node i386-Directives
249@section x86 specific Directives
250
251@cindex machine directives, x86
252@cindex x86 machine directives
253@table @code
254
255@cindex @code{lcomm} directive, COFF
256@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
257Reserve @var{length} (an absolute expression) bytes for a local common
258denoted by @var{symbol}. The section and value of @var{symbol} are
259those of the new local common. The addresses are allocated in the bss
704209c0
NC
260section, so that at run-time the bytes start off zeroed. Since
261@var{symbol} is not declared global, it is normally not visible to
262@code{@value{LD}}. The optional third parameter, @var{alignment},
263specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
264
265This directive is only available for COFF based x86 targets.
266
267@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
268@c .largecomm
269
270@end table
271
252b5132 272@node i386-Syntax
7c31ae13
NC
273@section i386 Syntactical Considerations
274@menu
275* i386-Variations:: AT&T Syntax versus Intel Syntax
276* i386-Chars:: Special Characters
277@end menu
278
279@node i386-Variations
280@subsection AT&T Syntax versus Intel Syntax
252b5132 281
e413e4e9
AM
282@cindex i386 intel_syntax pseudo op
283@cindex intel_syntax pseudo op, i386
284@cindex i386 att_syntax pseudo op
285@cindex att_syntax pseudo op, i386
252b5132
RH
286@cindex i386 syntax compatibility
287@cindex syntax compatibility, i386
55b62671
AJ
288@cindex x86-64 intel_syntax pseudo op
289@cindex intel_syntax pseudo op, x86-64
290@cindex x86-64 att_syntax pseudo op
291@cindex att_syntax pseudo op, x86-64
292@cindex x86-64 syntax compatibility
293@cindex syntax compatibility, x86-64
e413e4e9
AM
294
295@code{@value{AS}} now supports assembly using Intel assembler syntax.
296@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
297back to the usual AT&T mode for compatibility with the output of
298@code{@value{GCC}}. Either of these directives may have an optional
299argument, @code{prefix}, or @code{noprefix} specifying whether registers
300require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
301different from Intel syntax. We mention these differences because
302almost all 80386 documents use Intel syntax. Notable differences
303between the two syntaxes are:
304
305@cindex immediate operands, i386
306@cindex i386 immediate operands
307@cindex register operands, i386
308@cindex i386 register operands
309@cindex jump/call operands, i386
310@cindex i386 jump/call operands
311@cindex operand delimiters, i386
55b62671
AJ
312
313@cindex immediate operands, x86-64
314@cindex x86-64 immediate operands
315@cindex register operands, x86-64
316@cindex x86-64 register operands
317@cindex jump/call operands, x86-64
318@cindex x86-64 jump/call operands
319@cindex operand delimiters, x86-64
252b5132
RH
320@itemize @bullet
321@item
322AT&T immediate operands are preceded by @samp{$}; Intel immediate
323operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
324AT&T register operands are preceded by @samp{%}; Intel register operands
325are undelimited. AT&T absolute (as opposed to PC relative) jump/call
326operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
327
328@cindex i386 source, destination operands
329@cindex source, destination operands; i386
55b62671
AJ
330@cindex x86-64 source, destination operands
331@cindex source, destination operands; x86-64
252b5132
RH
332@item
333AT&T and Intel syntax use the opposite order for source and destination
334operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
335@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
336previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
337instructions with 2 immediate operands, such as the @samp{enter}
338instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
339
340@cindex mnemonic suffixes, i386
341@cindex sizes operands, i386
342@cindex i386 size suffixes
55b62671
AJ
343@cindex mnemonic suffixes, x86-64
344@cindex sizes operands, x86-64
345@cindex x86-64 size suffixes
252b5132
RH
346@item
347In AT&T syntax the size of memory operands is determined from the last
348character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
349@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
350(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
351this by prefixing memory operands (@emph{not} the instruction mnemonics) with
352@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
353Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
354syntax.
252b5132 355
4b06377f
L
356In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
357instruction with the 64-bit displacement or immediate operand.
358
252b5132
RH
359@cindex return instructions, i386
360@cindex i386 jump, call, return
55b62671
AJ
361@cindex return instructions, x86-64
362@cindex x86-64 jump, call, return
252b5132
RH
363@item
364Immediate form long jumps and calls are
365@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
366Intel syntax is
367@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
368instruction
369is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
370@samp{ret far @var{stack-adjust}}.
371
372@cindex sections, i386
373@cindex i386 sections
55b62671
AJ
374@cindex sections, x86-64
375@cindex x86-64 sections
252b5132
RH
376@item
377The AT&T assembler does not provide support for multiple section
378programs. Unix style systems expect all programs to be single sections.
379@end itemize
380
7c31ae13
NC
381@node i386-Chars
382@subsection Special Characters
383
384@cindex line comment character, i386
385@cindex i386 line comment character
386The presence of a @samp{#} appearing anywhere on a line indicates the
387start of a comment that extends to the end of that line.
388
389If a @samp{#} appears as the first character of a line then the whole
390line is treated as a comment, but in this case the line can also be a
391logical line number directive (@pxref{Comments}) or a preprocessor
392control command (@pxref{Preprocessing}).
393
394If the @option{--divide} command line option has not been specified
395then the @samp{/} character appearing anywhere on a line also
396introduces a line comment.
397
398@cindex line separator, i386
399@cindex statement separator, i386
400@cindex i386 line separator
401The @samp{;} character can be used to separate statements on the same
402line.
403
252b5132
RH
404@node i386-Mnemonics
405@section Instruction Naming
406
407@cindex i386 instruction naming
408@cindex instruction naming, i386
55b62671
AJ
409@cindex x86-64 instruction naming
410@cindex instruction naming, x86-64
411
252b5132 412Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
413specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
414and @samp{q} specify byte, word, long and quadruple word operands. If
415no suffix is specified by an instruction then @code{@value{AS}} tries to
416fill in the missing suffix based on the destination register operand
417(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
418to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
419@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
420assembler which assumes that a missing mnemonic suffix implies long
421operand size. (This incompatibility does not affect compiler output
422since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
423
424Almost all instructions have the same names in AT&T and Intel format.
425There are a few exceptions. The sign extend and zero extend
426instructions need two sizes to specify them. They need a size to
427sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
428is accomplished by using two instruction mnemonic suffixes in AT&T
429syntax. Base names for sign extend and zero extend are
430@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
431and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
432are tacked on to this base name, the @emph{from} suffix before the
433@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
434``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
435thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
436@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
437@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
438quadruple word).
252b5132 439
b6169b20
L
440@cindex encoding options, i386
441@cindex encoding options, x86-64
442
443Different encoding options can be specified via optional mnemonic
444suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
445moving from one register to another. @samp{.d8} or @samp{.d32} suffix
446prefers 8bit or 32bit displacement in encoding.
b6169b20 447
252b5132
RH
448@cindex conversion instructions, i386
449@cindex i386 conversion instructions
55b62671
AJ
450@cindex conversion instructions, x86-64
451@cindex x86-64 conversion instructions
252b5132
RH
452The Intel-syntax conversion instructions
453
454@itemize @bullet
455@item
456@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
457
458@item
459@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
460
461@item
462@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
463
464@item
465@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
466
467@item
468@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
469(x86-64 only),
470
471@item
d5f0cf92 472@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 473@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
474@end itemize
475
476@noindent
55b62671
AJ
477are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
478@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
479instructions.
252b5132
RH
480
481@cindex jump instructions, i386
482@cindex call instructions, i386
55b62671
AJ
483@cindex jump instructions, x86-64
484@cindex call instructions, x86-64
252b5132
RH
485Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
486AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
487convention.
488
1efbbeb4
L
489@section AT&T Mnemonic versus Intel Mnemonic
490
491@cindex i386 mnemonic compatibility
492@cindex mnemonic compatibility, i386
493
494@code{@value{AS}} supports assembly using Intel mnemonic.
495@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
496@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
497syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
498Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
499@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
500@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
501assembler with different mnemonics from those in Intel IA32 specification.
502@code{@value{GCC}} generates those instructions with AT&T mnemonic.
503
252b5132
RH
504@node i386-Regs
505@section Register Naming
506
507@cindex i386 registers
508@cindex registers, i386
55b62671
AJ
509@cindex x86-64 registers
510@cindex registers, x86-64
252b5132
RH
511Register operands are always prefixed with @samp{%}. The 80386 registers
512consist of
513
514@itemize @bullet
515@item
516the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
517@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
518frame pointer), and @samp{%esp} (the stack pointer).
519
520@item
521the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
522@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
523
524@item
525the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
526@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
527are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
528@samp{%cx}, and @samp{%dx})
529
530@item
531the 6 section registers @samp{%cs} (code section), @samp{%ds}
532(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
533and @samp{%gs}.
534
535@item
536the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
537@samp{%cr3}.
538
539@item
540the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
541@samp{%db3}, @samp{%db6}, and @samp{%db7}.
542
543@item
544the 2 test registers @samp{%tr6} and @samp{%tr7}.
545
546@item
547the 8 floating point register stack @samp{%st} or equivalently
548@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
549@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
550These registers are overloaded by 8 MMX registers @samp{%mm0},
551@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
552@samp{%mm6} and @samp{%mm7}.
553
554@item
555the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
556@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
557@end itemize
558
559The AMD x86-64 architecture extends the register set by:
560
561@itemize @bullet
562@item
563enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
564accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
565@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
566pointer)
567
568@item
569the 8 extended registers @samp{%r8}--@samp{%r15}.
570
571@item
572the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
573
574@item
575the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
576
577@item
578the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
579
580@item
581the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
582
583@item
584the 8 debug registers: @samp{%db8}--@samp{%db15}.
585
586@item
587the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
588@end itemize
589
590@node i386-Prefixes
591@section Instruction Prefixes
592
593@cindex i386 instruction prefixes
594@cindex instruction prefixes, i386
595@cindex prefixes, i386
596Instruction prefixes are used to modify the following instruction. They
597are used to repeat string instructions, to provide section overrides, to
598perform bus lock operations, and to change operand and address sizes.
599(Most instructions that normally operate on 32-bit operands will use
60016-bit operands if the instruction has an ``operand size'' prefix.)
601Instruction prefixes are best written on the same line as the instruction
602they act upon. For example, the @samp{scas} (scan string) instruction is
603repeated with:
604
605@smallexample
606 repne scas %es:(%edi),%al
607@end smallexample
608
609You may also place prefixes on the lines immediately preceding the
610instruction, but this circumvents checks that @code{@value{AS}} does
611with prefixes, and will not work with all prefixes.
612
613Here is a list of instruction prefixes:
614
615@cindex section override prefixes, i386
616@itemize @bullet
617@item
618Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
619@samp{fs}, @samp{gs}. These are automatically added by specifying
620using the @var{section}:@var{memory-operand} form for memory references.
621
622@cindex size prefixes, i386
623@item
624Operand/Address size prefixes @samp{data16} and @samp{addr16}
625change 32-bit operands/addresses into 16-bit operands/addresses,
626while @samp{data32} and @samp{addr32} change 16-bit ones (in a
627@code{.code16} section) into 32-bit operands/addresses. These prefixes
628@emph{must} appear on the same line of code as the instruction they
629modify. For example, in a 16-bit @code{.code16} section, you might
630write:
631
632@smallexample
633 addr32 jmpl *(%ebx)
634@end smallexample
635
636@cindex bus lock prefixes, i386
637@cindex inhibiting interrupts, i386
638@item
639The bus lock prefix @samp{lock} inhibits interrupts during execution of
640the instruction it precedes. (This is only valid with certain
641instructions; see a 80386 manual for details).
642
643@cindex coprocessor wait, i386
644@item
645The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
646complete the current instruction. This should never be needed for the
64780386/80387 combination.
648
649@cindex repeat prefixes, i386
650@item
651The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
652to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
653times if the current address size is 16-bits).
55b62671
AJ
654@cindex REX prefixes, i386
655@item
656The @samp{rex} family of prefixes is used by x86-64 to encode
657extensions to i386 instruction set. The @samp{rex} prefix has four
658bits --- an operand size overwrite (@code{64}) used to change operand size
659from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
660register set.
661
662You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
663instruction emits @samp{rex} prefix with all the bits set. By omitting
664the @code{64}, @code{x}, @code{y} or @code{z} you may write other
665prefixes as well. Normally, there is no need to write the prefixes
666explicitly, since gas will automatically generate them based on the
667instruction operands.
252b5132
RH
668@end itemize
669
670@node i386-Memory
671@section Memory References
672
673@cindex i386 memory references
674@cindex memory references, i386
55b62671
AJ
675@cindex x86-64 memory references
676@cindex memory references, x86-64
252b5132
RH
677An Intel syntax indirect memory reference of the form
678
679@smallexample
680@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
681@end smallexample
682
683@noindent
684is translated into the AT&T syntax
685
686@smallexample
687@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
688@end smallexample
689
690@noindent
691where @var{base} and @var{index} are the optional 32-bit base and
692index registers, @var{disp} is the optional displacement, and
693@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
694to calculate the address of the operand. If no @var{scale} is
695specified, @var{scale} is taken to be 1. @var{section} specifies the
696optional section register for the memory operand, and may override the
697default section register (see a 80386 manual for section register
698defaults). Note that section overrides in AT&T syntax @emph{must}
699be preceded by a @samp{%}. If you specify a section override which
700coincides with the default section register, @code{@value{AS}} does @emph{not}
701output any section register override prefixes to assemble the given
702instruction. Thus, section overrides can be specified to emphasize which
703section register is used for a given memory operand.
704
705Here are some examples of Intel and AT&T style memory references:
706
707@table @asis
708@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
709@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
710missing, and the default section is used (@samp{%ss} for addressing with
711@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
712
713@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
714@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
715@samp{foo}. All other fields are missing. The section register here
716defaults to @samp{%ds}.
717
718@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
719This uses the value pointed to by @samp{foo} as a memory operand.
720Note that @var{base} and @var{index} are both missing, but there is only
721@emph{one} @samp{,}. This is a syntactic exception.
722
723@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
724This selects the contents of the variable @samp{foo} with section
725register @var{section} being @samp{%gs}.
726@end table
727
728Absolute (as opposed to PC relative) call and jump operands must be
729prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
730always chooses PC relative addressing for jump/call labels.
731
732Any instruction that has a memory operand, but no register operand,
55b62671
AJ
733@emph{must} specify its size (byte, word, long, or quadruple) with an
734instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
735respectively).
736
737The x86-64 architecture adds an RIP (instruction pointer relative)
738addressing. This addressing mode is specified by using @samp{rip} as a
739base register. Only constant offsets are valid. For example:
740
741@table @asis
742@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
743Points to the address 1234 bytes past the end of the current
744instruction.
745
746@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
747Points to the @code{symbol} in RIP relative way, this is shorter than
748the default absolute addressing.
749@end table
750
751Other addressing modes remain unchanged in x86-64 architecture, except
752registers used are 64-bit instead of 32-bit.
252b5132 753
fddf5b5b 754@node i386-Jumps
252b5132
RH
755@section Handling of Jump Instructions
756
757@cindex jump optimization, i386
758@cindex i386 jump optimization
55b62671
AJ
759@cindex jump optimization, x86-64
760@cindex x86-64 jump optimization
252b5132
RH
761Jump instructions are always optimized to use the smallest possible
762displacements. This is accomplished by using byte (8-bit) displacement
763jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 764is insufficient a long displacement is used. We do not support
252b5132
RH
765word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
766instruction with the @samp{data16} instruction prefix), since the 80386
767insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 768is added. (See also @pxref{i386-Arch})
252b5132
RH
769
770Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
771@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
772displacements, so that if you use these instructions (@code{@value{GCC}} does
773not use them) you may get an error message (and incorrect code). The AT&T
77480386 assembler tries to get around this problem by expanding @samp{jcxz foo}
775to
776
777@smallexample
778 jcxz cx_zero
779 jmp cx_nonzero
780cx_zero: jmp foo
781cx_nonzero:
782@end smallexample
783
784@node i386-Float
785@section Floating Point
786
787@cindex i386 floating point
788@cindex floating point, i386
55b62671
AJ
789@cindex x86-64 floating point
790@cindex floating point, x86-64
252b5132
RH
791All 80387 floating point types except packed BCD are supported.
792(BCD support may be added without much difficulty). These data
793types are 16-, 32-, and 64- bit integers, and single (32-bit),
794double (64-bit), and extended (80-bit) precision floating point.
795Each supported type has an instruction mnemonic suffix and a constructor
796associated with it. Instruction mnemonic suffixes specify the operand's
797data type. Constructors build these data types into memory.
798
799@cindex @code{float} directive, i386
800@cindex @code{single} directive, i386
801@cindex @code{double} directive, i386
802@cindex @code{tfloat} directive, i386
55b62671
AJ
803@cindex @code{float} directive, x86-64
804@cindex @code{single} directive, x86-64
805@cindex @code{double} directive, x86-64
806@cindex @code{tfloat} directive, x86-64
252b5132
RH
807@itemize @bullet
808@item
809Floating point constructors are @samp{.float} or @samp{.single},
810@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
811These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
812and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
813only supports this format via the @samp{fldt} (load 80-bit real to stack
814top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
815
816@cindex @code{word} directive, i386
817@cindex @code{long} directive, i386
818@cindex @code{int} directive, i386
819@cindex @code{quad} directive, i386
55b62671
AJ
820@cindex @code{word} directive, x86-64
821@cindex @code{long} directive, x86-64
822@cindex @code{int} directive, x86-64
823@cindex @code{quad} directive, x86-64
252b5132
RH
824@item
825Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
826@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
827corresponding instruction mnemonic suffixes are @samp{s} (single),
828@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
829the 64-bit @samp{q} format is only present in the @samp{fildq} (load
830quad integer to stack top) and @samp{fistpq} (store quad integer and pop
831stack) instructions.
832@end itemize
833
834Register to register operations should not use instruction mnemonic suffixes.
835@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
836wrote @samp{fst %st, %st(1)}, since all register to register operations
837use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
838which converts @samp{%st} from 80-bit to 64-bit floating point format,
839then stores the result in the 4 byte location @samp{mem})
840
841@node i386-SIMD
842@section Intel's MMX and AMD's 3DNow! SIMD Operations
843
844@cindex MMX, i386
845@cindex 3DNow!, i386
846@cindex SIMD, i386
55b62671
AJ
847@cindex MMX, x86-64
848@cindex 3DNow!, x86-64
849@cindex SIMD, x86-64
252b5132
RH
850
851@code{@value{AS}} supports Intel's MMX instruction set (SIMD
852instructions for integer data), available on Intel's Pentium MMX
853processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 854Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
855instruction set (SIMD instructions for 32-bit floating point data)
856available on AMD's K6-2 processor and possibly others in the future.
857
858Currently, @code{@value{AS}} does not support Intel's floating point
859SIMD, Katmai (KNI).
860
861The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
862@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
86316-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
864floating point values. The MMX registers cannot be used at the same time
865as the floating point stack.
866
867See Intel and AMD documentation, keeping in mind that the operand order in
868instructions is reversed from the Intel syntax.
869
f88c9eb0
SP
870@node i386-LWP
871@section AMD's Lightweight Profiling Instructions
872
873@cindex LWP, i386
874@cindex LWP, x86-64
875
876@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
877instruction set, available on AMD's Family 15h (Orochi) processors.
878
879LWP enables applications to collect and manage performance data, and
880react to performance events. The collection of performance data
881requires no context switches. LWP runs in the context of a thread and
882so several counters can be used independently across multiple threads.
883LWP can be used in both 64-bit and legacy 32-bit modes.
884
885For detailed information on the LWP instruction set, see the
886@cite{AMD Lightweight Profiling Specification} available at
887@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
888
87973e9f
QN
889@node i386-BMI
890@section Bit Manipulation Instructions
891
892@cindex BMI, i386
893@cindex BMI, x86-64
894
895@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
896
897BMI instructions provide several instructions implementing individual
898bit manipulation operations such as isolation, masking, setting, or
899resetting.
900
901@c Need to add a specification citation here when available.
902
2a2a0f38
QN
903@node i386-TBM
904@section AMD's Trailing Bit Manipulation Instructions
905
906@cindex TBM, i386
907@cindex TBM, x86-64
908
909@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
910instruction set, available on AMD's BDVER2 processors (Trinity and
911Viperfish).
912
913TBM instructions provide instructions implementing individual bit
914manipulation operations such as isolating, masking, setting, resetting,
915complementing, and operations on trailing zeros and ones.
916
917@c Need to add a specification citation here when available.
87973e9f 918
252b5132
RH
919@node i386-16bit
920@section Writing 16-bit Code
921
922@cindex i386 16-bit code
923@cindex 16-bit code, i386
924@cindex real-mode code, i386
eecb386c 925@cindex @code{code16gcc} directive, i386
252b5132
RH
926@cindex @code{code16} directive, i386
927@cindex @code{code32} directive, i386
55b62671
AJ
928@cindex @code{code64} directive, i386
929@cindex @code{code64} directive, x86-64
930While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
931or 64-bit x86-64 code depending on the default configuration,
252b5132 932it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
933mode code segments. To do this, put a @samp{.code16} or
934@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
935be run in 16-bit mode. You can switch @code{@value{AS}} to writing
93632-bit code with the @samp{.code32} directive or 64-bit code with the
937@samp{.code64} directive.
eecb386c
AM
938
939@samp{.code16gcc} provides experimental support for generating 16-bit
940code from gcc, and differs from @samp{.code16} in that @samp{call},
941@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
942@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
943default to 32-bit size. This is so that the stack pointer is
944manipulated in the same way over function calls, allowing access to
945function parameters at the same stack offsets as in 32-bit mode.
946@samp{.code16gcc} also automatically adds address size prefixes where
947necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
948
949The code which @code{@value{AS}} generates in 16-bit mode will not
950necessarily run on a 16-bit pre-80386 processor. To write code that
951runs on such a processor, you must refrain from using @emph{any} 32-bit
952constructs which require @code{@value{AS}} to output address or operand
953size prefixes.
954
955Note that writing 16-bit code instructions by explicitly specifying a
956prefix or an instruction mnemonic suffix within a 32-bit code section
957generates different machine instructions than those generated for a
95816-bit code segment. In a 32-bit code section, the following code
959generates the machine opcode bytes @samp{66 6a 04}, which pushes the
960value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
961
962@smallexample
963 pushw $4
964@end smallexample
965
966The same code in a 16-bit code section would generate the machine
b45619c0 967opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
968is correct since the processor default operand size is assumed to be 16
969bits in a 16-bit code section.
970
971@node i386-Bugs
972@section AT&T Syntax bugs
973
974The UnixWare assembler, and probably other AT&T derived ix86 Unix
975assemblers, generate floating point instructions with reversed source
976and destination registers in certain cases. Unfortunately, gcc and
977possibly many other programs use this reversed syntax, so we're stuck
978with it.
979
980For example
981
982@smallexample
983 fsub %st,%st(3)
984@end smallexample
985@noindent
986results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
987than the expected @samp{%st(3) - %st}. This happens with all the
988non-commutative arithmetic floating point operations with two register
989operands where the source register is @samp{%st} and the destination
990register is @samp{%st(i)}.
991
e413e4e9
AM
992@node i386-Arch
993@section Specifying CPU Architecture
994
995@cindex arch directive, i386
996@cindex i386 arch directive
55b62671
AJ
997@cindex arch directive, x86-64
998@cindex x86-64 arch directive
e413e4e9
AM
999
1000@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1001(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1002directive enables a warning when gas detects an instruction that is not
1003supported on the CPU specified. The choices for @var{cpu_type} are:
1004
1005@multitable @columnfractions .20 .20 .20 .20
1006@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1007@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1008@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1009@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1010@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1011@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
af2f724e 1012@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2}
1ceab344 1013@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1014@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1015@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1016@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1017@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1018@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1019@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71
L
1020@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1021@item @samp{.rtm}
1ceab344 1022@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1023@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
f0ae4a24 1024@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1ceab344 1025@item @samp{.padlock}
e413e4e9
AM
1026@end multitable
1027
fddf5b5b
AM
1028Apart from the warning, there are only two other effects on
1029@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1030@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1031will automatically use a two byte opcode sequence. The larger three
1032byte opcode sequence is used on the 486 (and when no architecture is
1033specified) because it executes faster on the 486. Note that you can
1034explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1035Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1036@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1037conditional jumps will be promoted when necessary to a two instruction
1038sequence consisting of a conditional jump of the opposite sense around
1039an unconditional jump to the target.
1040
5c6af06e
JB
1041Following the CPU architecture (but not a sub-architecture, which are those
1042starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1043control automatic promotion of conditional jumps. @samp{jumps} is the
1044default, and enables jump promotion; All external jumps will be of the long
1045variety, and file-local jumps will be promoted as necessary.
1046(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1047byte offset jumps, and warns about file-local conditional jumps that
1048@code{@value{AS}} promotes.
fddf5b5b
AM
1049Unconditional jumps are treated as for @samp{jumps}.
1050
1051For example
1052
1053@smallexample
1054 .arch i8086,nojumps
1055@end smallexample
e413e4e9 1056
252b5132
RH
1057@node i386-Notes
1058@section Notes
1059
1060@cindex i386 @code{mul}, @code{imul} instructions
1061@cindex @code{mul} instruction, i386
1062@cindex @code{imul} instruction, i386
55b62671
AJ
1063@cindex @code{mul} instruction, x86-64
1064@cindex @code{imul} instruction, x86-64
252b5132 1065There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1066instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1067multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1068for @samp{imul}) can be output only in the one operand form. Thus,
1069@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1070the expanding multiply would clobber the @samp{%edx} register, and this
1071would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
107264-bit product in @samp{%edx:%eax}.
1073
1074We have added a two operand form of @samp{imul} when the first operand
1075is an immediate mode expression and the second operand is a register.
1076This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1077example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1078$69, %eax, %eax}.
1079
This page took 0.559653 seconds and 4 git commands to generate.