Remove i860, i960, bout and aout-adobe targets
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
219d1afa 1@c Copyright (C) 1991-2018 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
7b458c12
L
126@code{btver1},
127@code{btver2},
9103f4f4
L
128@code{generic32} and
129@code{generic64}.
130
34bca508 131In addition to the basic instruction set, the assembler can be told to
6305a203
L
132accept various extension mnemonics. For example,
133@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
134@var{vmx}. The following extensions are currently supported:
309d3373
JB
135@code{8087},
136@code{287},
137@code{387},
1848e567 138@code{687},
309d3373 139@code{no87},
1848e567
L
140@code{no287},
141@code{no387},
142@code{no687},
6305a203 143@code{mmx},
309d3373 144@code{nommx},
6305a203
L
145@code{sse},
146@code{sse2},
147@code{sse3},
148@code{ssse3},
149@code{sse4.1},
150@code{sse4.2},
151@code{sse4},
309d3373 152@code{nosse},
1848e567
L
153@code{nosse2},
154@code{nosse3},
155@code{nossse3},
156@code{nosse4.1},
157@code{nosse4.2},
158@code{nosse4},
c0f3af97 159@code{avx},
6c30d220 160@code{avx2},
1848e567
L
161@code{noavx},
162@code{noavx2},
e2e1fcde
L
163@code{adx},
164@code{rdseed},
165@code{prfchw},
5c111e37 166@code{smap},
7e8b059b 167@code{mpx},
a0046408 168@code{sha},
8bc52696 169@code{rdpid},
6b40c462 170@code{ptwrite},
603555e5 171@code{cet},
48521003 172@code{gfni},
8dcf1fad 173@code{vaes},
ff1982d5 174@code{vpclmulqdq},
1dfc6506
L
175@code{prefetchwt1},
176@code{clflushopt},
177@code{se1},
c5e7287a 178@code{clwb},
43234a1e
L
179@code{avx512f},
180@code{avx512cd},
181@code{avx512er},
182@code{avx512pf},
1dfc6506
L
183@code{avx512vl},
184@code{avx512bw},
185@code{avx512dq},
2cc1b5aa 186@code{avx512ifma},
14f195c9 187@code{avx512vbmi},
920d2ddc 188@code{avx512_4fmaps},
47acf0bd 189@code{avx512_4vnniw},
620214f7 190@code{avx512_vpopcntdq},
53467f57 191@code{avx512_vbmi2},
8cfcb765 192@code{avx512_vnni},
ee6872be 193@code{avx512_bitalg},
144b71e2
L
194@code{noavx512f},
195@code{noavx512cd},
196@code{noavx512er},
197@code{noavx512pf},
198@code{noavx512vl},
199@code{noavx512bw},
200@code{noavx512dq},
201@code{noavx512ifma},
202@code{noavx512vbmi},
920d2ddc 203@code{noavx512_4fmaps},
47acf0bd 204@code{noavx512_4vnniw},
620214f7 205@code{noavx512_vpopcntdq},
53467f57 206@code{noavx512_vbmi2},
8cfcb765 207@code{noavx512_vnni},
ee6872be 208@code{noavx512_bitalg},
6305a203 209@code{vmx},
8729a6f6 210@code{vmfunc},
6305a203 211@code{smx},
f03fe4c1 212@code{xsave},
c7b8aa3a 213@code{xsaveopt},
1dfc6506
L
214@code{xsavec},
215@code{xsaves},
c0f3af97 216@code{aes},
594ab6a3 217@code{pclmul},
c7b8aa3a
L
218@code{fsgsbase},
219@code{rdrnd},
220@code{f16c},
6c30d220 221@code{bmi2},
c0f3af97 222@code{fma},
f1f8f695
L
223@code{movbe},
224@code{ept},
6c30d220 225@code{lzcnt},
42164a71
L
226@code{hle},
227@code{rtm},
6c30d220 228@code{invpcid},
bd5295b2 229@code{clflush},
9916071f 230@code{mwaitx},
029f3522 231@code{clzero},
3233d7d0 232@code{wbnoinvd},
be3a8dca 233@code{pconfig},
f88c9eb0 234@code{lwp},
5dd85c99
SP
235@code{fma4},
236@code{xop},
60aa667e 237@code{cx16},
bd5295b2 238@code{syscall},
1b7f3fb0 239@code{rdtscp},
6305a203
L
240@code{3dnow},
241@code{3dnowa},
242@code{sse4a},
243@code{sse5},
244@code{svme},
245@code{abm} and
246@code{padlock}.
309d3373
JB
247Note that rather than extending a basic instruction set, the extension
248mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
249
250When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
251@code{.arch} directive will take precedent.
252
253@cindex @samp{-mtune=} option, i386
254@cindex @samp{-mtune=} option, x86-64
255@item -mtune=@var{CPU}
256This option specifies a processor to optimize for. When used in
257conjunction with the @option{-march} option, only instructions
258of the processor specified by the @option{-march} option will be
259generated.
260
6305a203
L
261Valid @var{CPU} values are identical to the processor list of
262@option{-march=@var{CPU}}.
9103f4f4 263
c0f3af97
L
264@cindex @samp{-msse2avx} option, i386
265@cindex @samp{-msse2avx} option, x86-64
266@item -msse2avx
267This option specifies that the assembler should encode SSE instructions
268with VEX prefix.
269
daf50ae7
L
270@cindex @samp{-msse-check=} option, i386
271@cindex @samp{-msse-check=} option, x86-64
272@item -msse-check=@var{none}
1f9bb1ca
AS
273@itemx -msse-check=@var{warning}
274@itemx -msse-check=@var{error}
9aff4b7a 275These options control if the assembler should check SSE instructions.
daf50ae7
L
276@option{-msse-check=@var{none}} will make the assembler not to check SSE
277instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 278will make the assembler issue a warning for any SSE instruction.
daf50ae7 279@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 280for any SSE instruction.
daf50ae7 281
539f890d
L
282@cindex @samp{-mavxscalar=} option, i386
283@cindex @samp{-mavxscalar=} option, x86-64
284@item -mavxscalar=@var{128}
1f9bb1ca 285@itemx -mavxscalar=@var{256}
2aab8acd 286These options control how the assembler should encode scalar AVX
539f890d
L
287instructions. @option{-mavxscalar=@var{128}} will encode scalar
288AVX instructions with 128bit vector length, which is the default.
289@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
290with 256bit vector length.
291
43234a1e
L
292@cindex @samp{-mevexlig=} option, i386
293@cindex @samp{-mevexlig=} option, x86-64
294@item -mevexlig=@var{128}
295@itemx -mevexlig=@var{256}
296@itemx -mevexlig=@var{512}
297These options control how the assembler should encode length-ignored
298(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
299EVEX instructions with 128bit vector length, which is the default.
300@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
301encode LIG EVEX instructions with 256bit and 512bit vector length,
302respectively.
303
304@cindex @samp{-mevexwig=} option, i386
305@cindex @samp{-mevexwig=} option, x86-64
306@item -mevexwig=@var{0}
307@itemx -mevexwig=@var{1}
308These options control how the assembler should encode w-ignored (WIG)
309EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
310EVEX instructions with evex.w = 0, which is the default.
311@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
312evex.w = 1.
313
1efbbeb4
L
314@cindex @samp{-mmnemonic=} option, i386
315@cindex @samp{-mmnemonic=} option, x86-64
316@item -mmnemonic=@var{att}
1f9bb1ca 317@itemx -mmnemonic=@var{intel}
34bca508 318This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
319The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
320take precedent.
321
322@cindex @samp{-msyntax=} option, i386
323@cindex @samp{-msyntax=} option, x86-64
324@item -msyntax=@var{att}
1f9bb1ca 325@itemx -msyntax=@var{intel}
34bca508 326This option specifies instruction syntax when processing instructions.
1efbbeb4
L
327The @code{.att_syntax} and @code{.intel_syntax} directives will
328take precedent.
329
330@cindex @samp{-mnaked-reg} option, i386
331@cindex @samp{-mnaked-reg} option, x86-64
332@item -mnaked-reg
33eaf5de 333This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 334The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 335
7e8b059b
L
336@cindex @samp{-madd-bnd-prefix} option, i386
337@cindex @samp{-madd-bnd-prefix} option, x86-64
338@item -madd-bnd-prefix
339This option forces the assembler to add BND prefix to all branches, even
340if such prefix was not explicitly specified in the source code.
341
8dcea932
L
342@cindex @samp{-mshared} option, i386
343@cindex @samp{-mshared} option, x86-64
344@item -mno-shared
345On ELF target, the assembler normally optimizes out non-PLT relocations
346against defined non-weak global branch targets with default visibility.
347The @samp{-mshared} option tells the assembler to generate code which
348may go into a shared library where all non-weak global branch targets
349with default visibility can be preempted. The resulting code is
350slightly bigger. This option only affects the handling of branch
351instructions.
352
167ad85b
TG
353@cindex @samp{-mbig-obj} option, x86-64
354@item -mbig-obj
355On x86-64 PE/COFF target this option forces the use of big object file
356format, which allows more than 32768 sections.
357
d022bddd
IT
358@cindex @samp{-momit-lock-prefix=} option, i386
359@cindex @samp{-momit-lock-prefix=} option, x86-64
360@item -momit-lock-prefix=@var{no}
361@itemx -momit-lock-prefix=@var{yes}
362These options control how the assembler should encode lock prefix.
363This option is intended as a workaround for processors, that fail on
364lock prefix. This option can only be safely used with single-core,
365single-thread computers
366@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
367@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
368which is the default.
369
e4e00185
AS
370@cindex @samp{-mfence-as-lock-add=} option, i386
371@cindex @samp{-mfence-as-lock-add=} option, x86-64
372@item -mfence-as-lock-add=@var{no}
373@itemx -mfence-as-lock-add=@var{yes}
374These options control how the assembler should encode lfence, mfence and
375sfence.
376@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
377sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
378@samp{lock addl $0x0, (%esp)} in 32-bit mode.
379@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
380sfence as usual, which is the default.
381
0cb4071e
L
382@cindex @samp{-mrelax-relocations=} option, i386
383@cindex @samp{-mrelax-relocations=} option, x86-64
384@item -mrelax-relocations=@var{no}
385@itemx -mrelax-relocations=@var{yes}
386These options control whether the assembler should generate relax
387relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
388R_X86_64_REX_GOTPCRELX, in 64-bit mode.
389@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
390@option{-mrelax-relocations=@var{no}} will not generate relax
391relocations. The default can be controlled by a configure option
392@option{--enable-x86-relax-relocations}.
393
d3d3c6db
IT
394@cindex @samp{-mevexrcig=} option, i386
395@cindex @samp{-mevexrcig=} option, x86-64
396@item -mevexrcig=@var{rne}
397@itemx -mevexrcig=@var{rd}
398@itemx -mevexrcig=@var{ru}
399@itemx -mevexrcig=@var{rz}
400These options control how the assembler should encode SAE-only
401EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
402of EVEX instruction with 00, which is the default.
403@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
404and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
405with 01, 10 and 11 RC bits, respectively.
406
5db04b09
L
407@cindex @samp{-mamd64} option, x86-64
408@cindex @samp{-mintel64} option, x86-64
409@item -mamd64
410@itemx -mintel64
411This option specifies that the assembler should accept only AMD64 or
412Intel64 ISA in 64-bit mode. The default is to accept both.
413
b6f8c7c4
L
414@cindex @samp{-O0} option, i386
415@cindex @samp{-O0} option, x86-64
416@cindex @samp{-O} option, i386
417@cindex @samp{-O} option, x86-64
418@cindex @samp{-O1} option, i386
419@cindex @samp{-O1} option, x86-64
420@cindex @samp{-O2} option, i386
421@cindex @samp{-O2} option, x86-64
422@cindex @samp{-Os} option, i386
423@cindex @samp{-Os} option, x86-64
424@item -O0 | -O | -O1 | -O2 | -Os
425Optimize instruction encoding with smaller instruction size. @samp{-O}
426and @samp{-O1} encode 64-bit register load instructions with 64-bit
427immediate as 32-bit register load instructions with 31-bit or 32-bits
428immediates and encode 64-bit register clearing instructions with 32-bit
429register clearing instructions. @samp{-O2} includes @samp{-O1}
430optimization plus encodes 256-bit and 512-bit vector register clearing
431instructions with 128-bit vector register clearing instructions.
432@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
433and 64-bit register tests with immediate as 8-bit register test with
434immediate. @samp{-O0} turns off this optimization.
435
55b62671 436@end table
731caf76 437@c man end
e413e4e9 438
a6c24e68
NC
439@node i386-Directives
440@section x86 specific Directives
441
442@cindex machine directives, x86
443@cindex x86 machine directives
444@table @code
445
446@cindex @code{lcomm} directive, COFF
447@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
448Reserve @var{length} (an absolute expression) bytes for a local common
449denoted by @var{symbol}. The section and value of @var{symbol} are
450those of the new local common. The addresses are allocated in the bss
704209c0
NC
451section, so that at run-time the bytes start off zeroed. Since
452@var{symbol} is not declared global, it is normally not visible to
453@code{@value{LD}}. The optional third parameter, @var{alignment},
454specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
455
456This directive is only available for COFF based x86 targets.
457
102e9361
NC
458@cindex @code{largecomm} directive, ELF
459@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
460This directive behaves in the same way as the @code{comm} directive
461except that the data is placed into the @var{.lbss} section instead of
462the @var{.bss} section @ref{Comm}.
463
464The directive is intended to be used for data which requires a large
465amount of space, and it is only available for ELF based x86_64
466targets.
467
a6c24e68 468@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
469
470@end table
471
252b5132 472@node i386-Syntax
7c31ae13
NC
473@section i386 Syntactical Considerations
474@menu
475* i386-Variations:: AT&T Syntax versus Intel Syntax
476* i386-Chars:: Special Characters
477@end menu
478
479@node i386-Variations
480@subsection AT&T Syntax versus Intel Syntax
252b5132 481
e413e4e9
AM
482@cindex i386 intel_syntax pseudo op
483@cindex intel_syntax pseudo op, i386
484@cindex i386 att_syntax pseudo op
485@cindex att_syntax pseudo op, i386
252b5132
RH
486@cindex i386 syntax compatibility
487@cindex syntax compatibility, i386
55b62671
AJ
488@cindex x86-64 intel_syntax pseudo op
489@cindex intel_syntax pseudo op, x86-64
490@cindex x86-64 att_syntax pseudo op
491@cindex att_syntax pseudo op, x86-64
492@cindex x86-64 syntax compatibility
493@cindex syntax compatibility, x86-64
e413e4e9
AM
494
495@code{@value{AS}} now supports assembly using Intel assembler syntax.
496@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
497back to the usual AT&T mode for compatibility with the output of
498@code{@value{GCC}}. Either of these directives may have an optional
499argument, @code{prefix}, or @code{noprefix} specifying whether registers
500require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
501different from Intel syntax. We mention these differences because
502almost all 80386 documents use Intel syntax. Notable differences
503between the two syntaxes are:
504
505@cindex immediate operands, i386
506@cindex i386 immediate operands
507@cindex register operands, i386
508@cindex i386 register operands
509@cindex jump/call operands, i386
510@cindex i386 jump/call operands
511@cindex operand delimiters, i386
55b62671
AJ
512
513@cindex immediate operands, x86-64
514@cindex x86-64 immediate operands
515@cindex register operands, x86-64
516@cindex x86-64 register operands
517@cindex jump/call operands, x86-64
518@cindex x86-64 jump/call operands
519@cindex operand delimiters, x86-64
252b5132
RH
520@itemize @bullet
521@item
522AT&T immediate operands are preceded by @samp{$}; Intel immediate
523operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
524AT&T register operands are preceded by @samp{%}; Intel register operands
525are undelimited. AT&T absolute (as opposed to PC relative) jump/call
526operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
527
528@cindex i386 source, destination operands
529@cindex source, destination operands; i386
55b62671
AJ
530@cindex x86-64 source, destination operands
531@cindex source, destination operands; x86-64
252b5132
RH
532@item
533AT&T and Intel syntax use the opposite order for source and destination
534operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
535@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
536previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
537instructions with 2 immediate operands, such as the @samp{enter}
538instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
539
540@cindex mnemonic suffixes, i386
541@cindex sizes operands, i386
542@cindex i386 size suffixes
55b62671
AJ
543@cindex mnemonic suffixes, x86-64
544@cindex sizes operands, x86-64
545@cindex x86-64 size suffixes
252b5132
RH
546@item
547In AT&T syntax the size of memory operands is determined from the last
548character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
549@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
550(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
551this by prefixing memory operands (@emph{not} the instruction mnemonics) with
552@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
553Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
554syntax.
252b5132 555
4b06377f
L
556In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
557instruction with the 64-bit displacement or immediate operand.
558
252b5132
RH
559@cindex return instructions, i386
560@cindex i386 jump, call, return
55b62671
AJ
561@cindex return instructions, x86-64
562@cindex x86-64 jump, call, return
252b5132
RH
563@item
564Immediate form long jumps and calls are
565@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
566Intel syntax is
567@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
568instruction
569is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
570@samp{ret far @var{stack-adjust}}.
571
572@cindex sections, i386
573@cindex i386 sections
55b62671
AJ
574@cindex sections, x86-64
575@cindex x86-64 sections
252b5132
RH
576@item
577The AT&T assembler does not provide support for multiple section
578programs. Unix style systems expect all programs to be single sections.
579@end itemize
580
7c31ae13
NC
581@node i386-Chars
582@subsection Special Characters
583
584@cindex line comment character, i386
585@cindex i386 line comment character
586The presence of a @samp{#} appearing anywhere on a line indicates the
587start of a comment that extends to the end of that line.
588
589If a @samp{#} appears as the first character of a line then the whole
590line is treated as a comment, but in this case the line can also be a
591logical line number directive (@pxref{Comments}) or a preprocessor
592control command (@pxref{Preprocessing}).
593
594If the @option{--divide} command line option has not been specified
595then the @samp{/} character appearing anywhere on a line also
596introduces a line comment.
597
598@cindex line separator, i386
599@cindex statement separator, i386
600@cindex i386 line separator
601The @samp{;} character can be used to separate statements on the same
602line.
603
252b5132 604@node i386-Mnemonics
d3b47e2b
L
605@section i386-Mnemonics
606@subsection Instruction Naming
252b5132
RH
607
608@cindex i386 instruction naming
609@cindex instruction naming, i386
55b62671
AJ
610@cindex x86-64 instruction naming
611@cindex instruction naming, x86-64
612
252b5132 613Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
614specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
615and @samp{q} specify byte, word, long and quadruple word operands. If
616no suffix is specified by an instruction then @code{@value{AS}} tries to
617fill in the missing suffix based on the destination register operand
618(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
619to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
620@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
621assembler which assumes that a missing mnemonic suffix implies long
622operand size. (This incompatibility does not affect compiler output
623since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
624
625Almost all instructions have the same names in AT&T and Intel format.
626There are a few exceptions. The sign extend and zero extend
627instructions need two sizes to specify them. They need a size to
628sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
629is accomplished by using two instruction mnemonic suffixes in AT&T
630syntax. Base names for sign extend and zero extend are
631@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
632and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
633are tacked on to this base name, the @emph{from} suffix before the
634@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
635``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
636thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
637@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
638@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
639quadruple word).
252b5132 640
b6169b20
L
641@cindex encoding options, i386
642@cindex encoding options, x86-64
643
86fa6981
L
644Different encoding options can be specified via pseudo prefixes:
645
646@itemize @bullet
647@item
648@samp{@{disp8@}} -- prefer 8-bit displacement.
649
650@item
651@samp{@{disp32@}} -- prefer 32-bit displacement.
652
653@item
654@samp{@{load@}} -- prefer load-form instruction.
655
656@item
657@samp{@{store@}} -- prefer store-form instruction.
658
659@item
660@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
661
662@item
663@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
664
665@item
666@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
667
668@item
669@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
670instructions (x86-64 only). Note that this differs from the @samp{rex}
671prefix which generates REX prefix unconditionally.
b6f8c7c4
L
672
673@item
674@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 675@end itemize
b6169b20 676
252b5132
RH
677@cindex conversion instructions, i386
678@cindex i386 conversion instructions
55b62671
AJ
679@cindex conversion instructions, x86-64
680@cindex x86-64 conversion instructions
252b5132
RH
681The Intel-syntax conversion instructions
682
683@itemize @bullet
684@item
685@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
686
687@item
688@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
689
690@item
691@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
692
693@item
694@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
695
696@item
697@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
698(x86-64 only),
699
700@item
d5f0cf92 701@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 702@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
703@end itemize
704
705@noindent
55b62671
AJ
706are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
707@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
708instructions.
252b5132
RH
709
710@cindex jump instructions, i386
711@cindex call instructions, i386
55b62671
AJ
712@cindex jump instructions, x86-64
713@cindex call instructions, x86-64
252b5132
RH
714Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
715AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
716convention.
717
d3b47e2b 718@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
719
720@cindex i386 mnemonic compatibility
721@cindex mnemonic compatibility, i386
722
723@code{@value{AS}} supports assembly using Intel mnemonic.
724@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
725@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
726syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
727Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
728@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
729@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
730assembler with different mnemonics from those in Intel IA32 specification.
731@code{@value{GCC}} generates those instructions with AT&T mnemonic.
732
252b5132
RH
733@node i386-Regs
734@section Register Naming
735
736@cindex i386 registers
737@cindex registers, i386
55b62671
AJ
738@cindex x86-64 registers
739@cindex registers, x86-64
252b5132
RH
740Register operands are always prefixed with @samp{%}. The 80386 registers
741consist of
742
743@itemize @bullet
744@item
745the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
746@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
747frame pointer), and @samp{%esp} (the stack pointer).
748
749@item
750the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
751@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
752
753@item
754the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
755@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
756are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
757@samp{%cx}, and @samp{%dx})
758
759@item
760the 6 section registers @samp{%cs} (code section), @samp{%ds}
761(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
762and @samp{%gs}.
763
764@item
4bde3cdd
UD
765the 5 processor control registers @samp{%cr0}, @samp{%cr2},
766@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
767
768@item
769the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
770@samp{%db3}, @samp{%db6}, and @samp{%db7}.
771
772@item
773the 2 test registers @samp{%tr6} and @samp{%tr7}.
774
775@item
776the 8 floating point register stack @samp{%st} or equivalently
777@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
778@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
779These registers are overloaded by 8 MMX registers @samp{%mm0},
780@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
781@samp{%mm6} and @samp{%mm7}.
782
783@item
4bde3cdd 784the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
785@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
786@end itemize
787
788The AMD x86-64 architecture extends the register set by:
789
790@itemize @bullet
791@item
792enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
793accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
794@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
795pointer)
796
797@item
798the 8 extended registers @samp{%r8}--@samp{%r15}.
799
800@item
4bde3cdd 801the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
802
803@item
4bde3cdd 804the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
805
806@item
4bde3cdd 807the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
808
809@item
810the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
811
812@item
813the 8 debug registers: @samp{%db8}--@samp{%db15}.
814
815@item
4bde3cdd
UD
816the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
817@end itemize
818
819With the AVX extensions more registers were made available:
820
821@itemize @bullet
822
823@item
824the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
825available in 32-bit mode). The bottom 128 bits are overlaid with the
826@samp{xmm0}--@samp{xmm15} registers.
827
828@end itemize
829
830The AVX2 extensions made in 64-bit mode more registers available:
831
832@itemize @bullet
833
834@item
835the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
836registers @samp{%ymm16}--@samp{%ymm31}.
837
838@end itemize
839
840The AVX512 extensions added the following registers:
841
842@itemize @bullet
843
844@item
845the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
846available in 32-bit mode). The bottom 128 bits are overlaid with the
847@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
848overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
849
850@item
851the 8 mask registers @samp{%k0}--@samp{%k7}.
852
252b5132
RH
853@end itemize
854
855@node i386-Prefixes
856@section Instruction Prefixes
857
858@cindex i386 instruction prefixes
859@cindex instruction prefixes, i386
860@cindex prefixes, i386
861Instruction prefixes are used to modify the following instruction. They
862are used to repeat string instructions, to provide section overrides, to
863perform bus lock operations, and to change operand and address sizes.
864(Most instructions that normally operate on 32-bit operands will use
86516-bit operands if the instruction has an ``operand size'' prefix.)
866Instruction prefixes are best written on the same line as the instruction
867they act upon. For example, the @samp{scas} (scan string) instruction is
868repeated with:
869
870@smallexample
871 repne scas %es:(%edi),%al
872@end smallexample
873
874You may also place prefixes on the lines immediately preceding the
875instruction, but this circumvents checks that @code{@value{AS}} does
876with prefixes, and will not work with all prefixes.
877
878Here is a list of instruction prefixes:
879
880@cindex section override prefixes, i386
881@itemize @bullet
882@item
883Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
884@samp{fs}, @samp{gs}. These are automatically added by specifying
885using the @var{section}:@var{memory-operand} form for memory references.
886
887@cindex size prefixes, i386
888@item
889Operand/Address size prefixes @samp{data16} and @samp{addr16}
890change 32-bit operands/addresses into 16-bit operands/addresses,
891while @samp{data32} and @samp{addr32} change 16-bit ones (in a
892@code{.code16} section) into 32-bit operands/addresses. These prefixes
893@emph{must} appear on the same line of code as the instruction they
894modify. For example, in a 16-bit @code{.code16} section, you might
895write:
896
897@smallexample
898 addr32 jmpl *(%ebx)
899@end smallexample
900
901@cindex bus lock prefixes, i386
902@cindex inhibiting interrupts, i386
903@item
904The bus lock prefix @samp{lock} inhibits interrupts during execution of
905the instruction it precedes. (This is only valid with certain
906instructions; see a 80386 manual for details).
907
908@cindex coprocessor wait, i386
909@item
910The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
911complete the current instruction. This should never be needed for the
91280386/80387 combination.
913
914@cindex repeat prefixes, i386
915@item
916The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
917to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
918times if the current address size is 16-bits).
55b62671
AJ
919@cindex REX prefixes, i386
920@item
921The @samp{rex} family of prefixes is used by x86-64 to encode
922extensions to i386 instruction set. The @samp{rex} prefix has four
923bits --- an operand size overwrite (@code{64}) used to change operand size
924from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
925register set.
926
927You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
928instruction emits @samp{rex} prefix with all the bits set. By omitting
929the @code{64}, @code{x}, @code{y} or @code{z} you may write other
930prefixes as well. Normally, there is no need to write the prefixes
931explicitly, since gas will automatically generate them based on the
932instruction operands.
252b5132
RH
933@end itemize
934
935@node i386-Memory
936@section Memory References
937
938@cindex i386 memory references
939@cindex memory references, i386
55b62671
AJ
940@cindex x86-64 memory references
941@cindex memory references, x86-64
252b5132
RH
942An Intel syntax indirect memory reference of the form
943
944@smallexample
945@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
946@end smallexample
947
948@noindent
949is translated into the AT&T syntax
950
951@smallexample
952@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
953@end smallexample
954
955@noindent
956where @var{base} and @var{index} are the optional 32-bit base and
957index registers, @var{disp} is the optional displacement, and
958@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
959to calculate the address of the operand. If no @var{scale} is
960specified, @var{scale} is taken to be 1. @var{section} specifies the
961optional section register for the memory operand, and may override the
962default section register (see a 80386 manual for section register
963defaults). Note that section overrides in AT&T syntax @emph{must}
964be preceded by a @samp{%}. If you specify a section override which
965coincides with the default section register, @code{@value{AS}} does @emph{not}
966output any section register override prefixes to assemble the given
967instruction. Thus, section overrides can be specified to emphasize which
968section register is used for a given memory operand.
969
970Here are some examples of Intel and AT&T style memory references:
971
972@table @asis
973@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
974@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
975missing, and the default section is used (@samp{%ss} for addressing with
976@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
977
978@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
979@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
980@samp{foo}. All other fields are missing. The section register here
981defaults to @samp{%ds}.
982
983@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
984This uses the value pointed to by @samp{foo} as a memory operand.
985Note that @var{base} and @var{index} are both missing, but there is only
986@emph{one} @samp{,}. This is a syntactic exception.
987
988@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
989This selects the contents of the variable @samp{foo} with section
990register @var{section} being @samp{%gs}.
991@end table
992
993Absolute (as opposed to PC relative) call and jump operands must be
994prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
995always chooses PC relative addressing for jump/call labels.
996
997Any instruction that has a memory operand, but no register operand,
55b62671
AJ
998@emph{must} specify its size (byte, word, long, or quadruple) with an
999instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1000respectively).
1001
1002The x86-64 architecture adds an RIP (instruction pointer relative)
1003addressing. This addressing mode is specified by using @samp{rip} as a
1004base register. Only constant offsets are valid. For example:
1005
1006@table @asis
1007@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1008Points to the address 1234 bytes past the end of the current
1009instruction.
1010
1011@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1012Points to the @code{symbol} in RIP relative way, this is shorter than
1013the default absolute addressing.
1014@end table
1015
1016Other addressing modes remain unchanged in x86-64 architecture, except
1017registers used are 64-bit instead of 32-bit.
252b5132 1018
fddf5b5b 1019@node i386-Jumps
252b5132
RH
1020@section Handling of Jump Instructions
1021
1022@cindex jump optimization, i386
1023@cindex i386 jump optimization
55b62671
AJ
1024@cindex jump optimization, x86-64
1025@cindex x86-64 jump optimization
252b5132
RH
1026Jump instructions are always optimized to use the smallest possible
1027displacements. This is accomplished by using byte (8-bit) displacement
1028jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1029is insufficient a long displacement is used. We do not support
252b5132
RH
1030word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1031instruction with the @samp{data16} instruction prefix), since the 80386
1032insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1033is added. (See also @pxref{i386-Arch})
252b5132
RH
1034
1035Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1036@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1037displacements, so that if you use these instructions (@code{@value{GCC}} does
1038not use them) you may get an error message (and incorrect code). The AT&T
103980386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1040to
1041
1042@smallexample
1043 jcxz cx_zero
1044 jmp cx_nonzero
1045cx_zero: jmp foo
1046cx_nonzero:
1047@end smallexample
1048
1049@node i386-Float
1050@section Floating Point
1051
1052@cindex i386 floating point
1053@cindex floating point, i386
55b62671
AJ
1054@cindex x86-64 floating point
1055@cindex floating point, x86-64
252b5132
RH
1056All 80387 floating point types except packed BCD are supported.
1057(BCD support may be added without much difficulty). These data
1058types are 16-, 32-, and 64- bit integers, and single (32-bit),
1059double (64-bit), and extended (80-bit) precision floating point.
1060Each supported type has an instruction mnemonic suffix and a constructor
1061associated with it. Instruction mnemonic suffixes specify the operand's
1062data type. Constructors build these data types into memory.
1063
1064@cindex @code{float} directive, i386
1065@cindex @code{single} directive, i386
1066@cindex @code{double} directive, i386
1067@cindex @code{tfloat} directive, i386
55b62671
AJ
1068@cindex @code{float} directive, x86-64
1069@cindex @code{single} directive, x86-64
1070@cindex @code{double} directive, x86-64
1071@cindex @code{tfloat} directive, x86-64
252b5132
RH
1072@itemize @bullet
1073@item
1074Floating point constructors are @samp{.float} or @samp{.single},
1075@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1076These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1077and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1078only supports this format via the @samp{fldt} (load 80-bit real to stack
1079top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1080
1081@cindex @code{word} directive, i386
1082@cindex @code{long} directive, i386
1083@cindex @code{int} directive, i386
1084@cindex @code{quad} directive, i386
55b62671
AJ
1085@cindex @code{word} directive, x86-64
1086@cindex @code{long} directive, x86-64
1087@cindex @code{int} directive, x86-64
1088@cindex @code{quad} directive, x86-64
252b5132
RH
1089@item
1090Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1091@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1092corresponding instruction mnemonic suffixes are @samp{s} (single),
1093@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1094the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1095quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1096stack) instructions.
1097@end itemize
1098
1099Register to register operations should not use instruction mnemonic suffixes.
1100@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1101wrote @samp{fst %st, %st(1)}, since all register to register operations
1102use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1103which converts @samp{%st} from 80-bit to 64-bit floating point format,
1104then stores the result in the 4 byte location @samp{mem})
1105
1106@node i386-SIMD
1107@section Intel's MMX and AMD's 3DNow! SIMD Operations
1108
1109@cindex MMX, i386
1110@cindex 3DNow!, i386
1111@cindex SIMD, i386
55b62671
AJ
1112@cindex MMX, x86-64
1113@cindex 3DNow!, x86-64
1114@cindex SIMD, x86-64
252b5132
RH
1115
1116@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1117instructions for integer data), available on Intel's Pentium MMX
1118processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1119Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1120instruction set (SIMD instructions for 32-bit floating point data)
1121available on AMD's K6-2 processor and possibly others in the future.
1122
1123Currently, @code{@value{AS}} does not support Intel's floating point
1124SIMD, Katmai (KNI).
1125
1126The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1127@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
112816-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1129floating point values. The MMX registers cannot be used at the same time
1130as the floating point stack.
1131
1132See Intel and AMD documentation, keeping in mind that the operand order in
1133instructions is reversed from the Intel syntax.
1134
f88c9eb0
SP
1135@node i386-LWP
1136@section AMD's Lightweight Profiling Instructions
1137
1138@cindex LWP, i386
1139@cindex LWP, x86-64
1140
1141@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1142instruction set, available on AMD's Family 15h (Orochi) processors.
1143
1144LWP enables applications to collect and manage performance data, and
1145react to performance events. The collection of performance data
1146requires no context switches. LWP runs in the context of a thread and
1147so several counters can be used independently across multiple threads.
1148LWP can be used in both 64-bit and legacy 32-bit modes.
1149
1150For detailed information on the LWP instruction set, see the
1151@cite{AMD Lightweight Profiling Specification} available at
1152@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1153
87973e9f
QN
1154@node i386-BMI
1155@section Bit Manipulation Instructions
1156
1157@cindex BMI, i386
1158@cindex BMI, x86-64
1159
1160@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1161
1162BMI instructions provide several instructions implementing individual
1163bit manipulation operations such as isolation, masking, setting, or
34bca508 1164resetting.
87973e9f
QN
1165
1166@c Need to add a specification citation here when available.
1167
2a2a0f38
QN
1168@node i386-TBM
1169@section AMD's Trailing Bit Manipulation Instructions
1170
1171@cindex TBM, i386
1172@cindex TBM, x86-64
1173
1174@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1175instruction set, available on AMD's BDVER2 processors (Trinity and
1176Viperfish).
1177
1178TBM instructions provide instructions implementing individual bit
1179manipulation operations such as isolating, masking, setting, resetting,
1180complementing, and operations on trailing zeros and ones.
1181
1182@c Need to add a specification citation here when available.
87973e9f 1183
252b5132
RH
1184@node i386-16bit
1185@section Writing 16-bit Code
1186
1187@cindex i386 16-bit code
1188@cindex 16-bit code, i386
1189@cindex real-mode code, i386
eecb386c 1190@cindex @code{code16gcc} directive, i386
252b5132
RH
1191@cindex @code{code16} directive, i386
1192@cindex @code{code32} directive, i386
55b62671
AJ
1193@cindex @code{code64} directive, i386
1194@cindex @code{code64} directive, x86-64
1195While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1196or 64-bit x86-64 code depending on the default configuration,
252b5132 1197it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1198mode code segments. To do this, put a @samp{.code16} or
1199@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1200be run in 16-bit mode. You can switch @code{@value{AS}} to writing
120132-bit code with the @samp{.code32} directive or 64-bit code with the
1202@samp{.code64} directive.
eecb386c
AM
1203
1204@samp{.code16gcc} provides experimental support for generating 16-bit
1205code from gcc, and differs from @samp{.code16} in that @samp{call},
1206@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1207@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1208default to 32-bit size. This is so that the stack pointer is
1209manipulated in the same way over function calls, allowing access to
1210function parameters at the same stack offsets as in 32-bit mode.
1211@samp{.code16gcc} also automatically adds address size prefixes where
1212necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1213
1214The code which @code{@value{AS}} generates in 16-bit mode will not
1215necessarily run on a 16-bit pre-80386 processor. To write code that
1216runs on such a processor, you must refrain from using @emph{any} 32-bit
1217constructs which require @code{@value{AS}} to output address or operand
1218size prefixes.
1219
1220Note that writing 16-bit code instructions by explicitly specifying a
1221prefix or an instruction mnemonic suffix within a 32-bit code section
1222generates different machine instructions than those generated for a
122316-bit code segment. In a 32-bit code section, the following code
1224generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1225value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1226
1227@smallexample
1228 pushw $4
1229@end smallexample
1230
1231The same code in a 16-bit code section would generate the machine
b45619c0 1232opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1233is correct since the processor default operand size is assumed to be 16
1234bits in a 16-bit code section.
1235
e413e4e9
AM
1236@node i386-Arch
1237@section Specifying CPU Architecture
1238
1239@cindex arch directive, i386
1240@cindex i386 arch directive
55b62671
AJ
1241@cindex arch directive, x86-64
1242@cindex x86-64 arch directive
e413e4e9
AM
1243
1244@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1245(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1246directive enables a warning when gas detects an instruction that is not
1247supported on the CPU specified. The choices for @var{cpu_type} are:
1248
1249@multitable @columnfractions .20 .20 .20 .20
1250@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1251@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1252@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1253@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1254@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1255@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1256@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1257@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1258@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1259@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1260@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1261@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1262@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1263@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1264@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1265@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1266@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1267@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1268@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1269@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1270@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1271@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1272@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
ee6872be 1273@item @samp{.avx512_bitalg}
d777820b 1274@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
be3a8dca 1275@item @samp{.wbnoinvd} @tab @samp{.pconfig}
d777820b 1276@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1ceab344 1277@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1278@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1279@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
d777820b 1280@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1281@end multitable
1282
fddf5b5b
AM
1283Apart from the warning, there are only two other effects on
1284@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1285@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1286will automatically use a two byte opcode sequence. The larger three
1287byte opcode sequence is used on the 486 (and when no architecture is
1288specified) because it executes faster on the 486. Note that you can
1289explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1290Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1291@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1292conditional jumps will be promoted when necessary to a two instruction
1293sequence consisting of a conditional jump of the opposite sense around
1294an unconditional jump to the target.
1295
5c6af06e
JB
1296Following the CPU architecture (but not a sub-architecture, which are those
1297starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1298control automatic promotion of conditional jumps. @samp{jumps} is the
1299default, and enables jump promotion; All external jumps will be of the long
1300variety, and file-local jumps will be promoted as necessary.
1301(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1302byte offset jumps, and warns about file-local conditional jumps that
1303@code{@value{AS}} promotes.
fddf5b5b
AM
1304Unconditional jumps are treated as for @samp{jumps}.
1305
1306For example
1307
1308@smallexample
1309 .arch i8086,nojumps
1310@end smallexample
e413e4e9 1311
5c9352f3
AM
1312@node i386-Bugs
1313@section AT&T Syntax bugs
1314
1315The UnixWare assembler, and probably other AT&T derived ix86 Unix
1316assemblers, generate floating point instructions with reversed source
1317and destination registers in certain cases. Unfortunately, gcc and
1318possibly many other programs use this reversed syntax, so we're stuck
1319with it.
1320
1321For example
1322
1323@smallexample
1324 fsub %st,%st(3)
1325@end smallexample
1326@noindent
1327results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1328than the expected @samp{%st(3) - %st}. This happens with all the
1329non-commutative arithmetic floating point operations with two register
1330operands where the source register is @samp{%st} and the destination
1331register is @samp{%st(i)}.
1332
252b5132
RH
1333@node i386-Notes
1334@section Notes
1335
1336@cindex i386 @code{mul}, @code{imul} instructions
1337@cindex @code{mul} instruction, i386
1338@cindex @code{imul} instruction, i386
55b62671
AJ
1339@cindex @code{mul} instruction, x86-64
1340@cindex @code{imul} instruction, x86-64
252b5132 1341There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1342instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1343multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1344for @samp{imul}) can be output only in the one operand form. Thus,
1345@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1346the expanding multiply would clobber the @samp{%edx} register, and this
1347would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
134864-bit product in @samp{%edx:%eax}.
1349
1350We have added a two operand form of @samp{imul} when the first operand
1351is an immediate mode expression and the second operand is a register.
1352This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1353example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1354$69, %eax, %eax}.
1355
This page took 0.809918 seconds and 4 git commands to generate.