*** empty log message ***
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037
AM
1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2@c 2001, 2003, 2004
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
252b5132
RH
27* i386-Syntax:: AT&T Syntax versus Intel Syntax
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35* i386-16bit:: Writing 16-bit Code
e413e4e9 36* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
37* i386-Bugs:: AT&T Syntax bugs
38* i386-Notes:: Notes
39@end menu
40
41@node i386-Options
42@section Options
43
55b62671
AJ
44@cindex options for i386
45@cindex options for x86-64
46@cindex i386 options
47@cindex x86-64 options
48
49The i386 version of @code{@value{AS}} has a few machine
50dependent options:
51
52@table @code
53@cindex @samp{--32} option, i386
54@cindex @samp{--32} option, x86-64
55@cindex @samp{--64} option, i386
56@cindex @samp{--64} option, x86-64
57@item --32 | --64
58Select the word size, either 32 bits or 64 bits. Selecting 32-bit
59implies Intel i386 architecture, while 64-bit implies AMD x86-64
60architecture.
61
62These options are only available with the ELF object file format, and
63require that the necessary BFD support has been included (on a 32-bit
64platform you have to add --enable-64-bit-bfd to configure enable 64-bit
65usage and use x86-64 as target platform).
12b55ccc
L
66
67@item -n
68By default, x86 GAS replaces multiple nop instructions used for
69alignment within code sections with multi-byte nop instructions such
70as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
71
72@cindex @samp{--divide} option, i386
73@item --divide
74On SVR4-derived platforms, the character @samp{/} is treated as a comment
75character, which means that it cannot be used in expressions. The
76@samp{--divide} option turns @samp{/} into a normal character. This does
77not disable @samp{/} at the beginning of a line starting a comment, or
78affect using @samp{#} for starting a comment.
79
9103f4f4
L
80@cindex @samp{-march=} option, i386
81@cindex @samp{-march=} option, x86-64
6305a203
L
82@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
83This option specifies the target processor. The assembler will
84issue an error message if an attempt is made to assemble an instruction
85which will not execute on the target processor. The following
86processor names are recognized:
9103f4f4
L
87@code{i8086},
88@code{i186},
89@code{i286},
90@code{i386},
91@code{i486},
92@code{i586},
93@code{i686},
94@code{pentium},
95@code{pentiumpro},
96@code{pentiumii},
97@code{pentiumiii},
98@code{pentium4},
99@code{prescott},
100@code{nocona},
ef05d495
L
101@code{core},
102@code{core2},
bd5295b2 103@code{corei7},
9103f4f4
L
104@code{k6},
105@code{k6_2},
106@code{athlon},
9103f4f4
L
107@code{opteron},
108@code{k8},
1ceab344 109@code{amdfam10},
9103f4f4
L
110@code{generic32} and
111@code{generic64}.
112
6305a203
L
113In addition to the basic instruction set, the assembler can be told to
114accept various extension mnemonics. For example,
115@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
116@var{vmx}. The following extensions are currently supported:
117@code{mmx},
118@code{sse},
119@code{sse2},
120@code{sse3},
121@code{ssse3},
122@code{sse4.1},
123@code{sse4.2},
124@code{sse4},
c0f3af97 125@code{avx},
6305a203
L
126@code{vmx},
127@code{smx},
f03fe4c1 128@code{xsave},
c0f3af97 129@code{aes},
594ab6a3 130@code{pclmul},
c0f3af97 131@code{fma},
f1f8f695
L
132@code{movbe},
133@code{ept},
bd5295b2
L
134@code{clflush},
135@code{syscall},
1b7f3fb0 136@code{rdtscp},
6305a203
L
137@code{3dnow},
138@code{3dnowa},
139@code{sse4a},
140@code{sse5},
141@code{svme},
142@code{abm} and
143@code{padlock}.
144
145When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
146@code{.arch} directive will take precedent.
147
148@cindex @samp{-mtune=} option, i386
149@cindex @samp{-mtune=} option, x86-64
150@item -mtune=@var{CPU}
151This option specifies a processor to optimize for. When used in
152conjunction with the @option{-march} option, only instructions
153of the processor specified by the @option{-march} option will be
154generated.
155
6305a203
L
156Valid @var{CPU} values are identical to the processor list of
157@option{-march=@var{CPU}}.
9103f4f4 158
c0f3af97
L
159@cindex @samp{-msse2avx} option, i386
160@cindex @samp{-msse2avx} option, x86-64
161@item -msse2avx
162This option specifies that the assembler should encode SSE instructions
163with VEX prefix.
164
daf50ae7
L
165@cindex @samp{-msse-check=} option, i386
166@cindex @samp{-msse-check=} option, x86-64
167@item -msse-check=@var{none}
168@item -msse-check=@var{warning}
169@item -msse-check=@var{error}
170These options control if the assembler should check SSE intructions.
171@option{-msse-check=@var{none}} will make the assembler not to check SSE
172instructions, which is the default. @option{-msse-check=@var{warning}}
173will make the assembler issue a warning for any SSE intruction.
174@option{-msse-check=@var{error}} will make the assembler issue an error
175for any SSE intruction.
176
1efbbeb4
L
177@cindex @samp{-mmnemonic=} option, i386
178@cindex @samp{-mmnemonic=} option, x86-64
179@item -mmnemonic=@var{att}
180@item -mmnemonic=@var{intel}
181This option specifies instruction mnemonic for matching instructions.
182The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
183take precedent.
184
185@cindex @samp{-msyntax=} option, i386
186@cindex @samp{-msyntax=} option, x86-64
187@item -msyntax=@var{att}
188@item -msyntax=@var{intel}
189This option specifies instruction syntax when processing instructions.
190The @code{.att_syntax} and @code{.intel_syntax} directives will
191take precedent.
192
193@cindex @samp{-mnaked-reg} option, i386
194@cindex @samp{-mnaked-reg} option, x86-64
195@item -mnaked-reg
196This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 197The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 198
55b62671 199@end table
e413e4e9 200
a6c24e68
NC
201@node i386-Directives
202@section x86 specific Directives
203
204@cindex machine directives, x86
205@cindex x86 machine directives
206@table @code
207
208@cindex @code{lcomm} directive, COFF
209@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
210Reserve @var{length} (an absolute expression) bytes for a local common
211denoted by @var{symbol}. The section and value of @var{symbol} are
212those of the new local common. The addresses are allocated in the bss
704209c0
NC
213section, so that at run-time the bytes start off zeroed. Since
214@var{symbol} is not declared global, it is normally not visible to
215@code{@value{LD}}. The optional third parameter, @var{alignment},
216specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
217
218This directive is only available for COFF based x86 targets.
219
220@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
221@c .largecomm
222
223@end table
224
252b5132
RH
225@node i386-Syntax
226@section AT&T Syntax versus Intel Syntax
227
e413e4e9
AM
228@cindex i386 intel_syntax pseudo op
229@cindex intel_syntax pseudo op, i386
230@cindex i386 att_syntax pseudo op
231@cindex att_syntax pseudo op, i386
252b5132
RH
232@cindex i386 syntax compatibility
233@cindex syntax compatibility, i386
55b62671
AJ
234@cindex x86-64 intel_syntax pseudo op
235@cindex intel_syntax pseudo op, x86-64
236@cindex x86-64 att_syntax pseudo op
237@cindex att_syntax pseudo op, x86-64
238@cindex x86-64 syntax compatibility
239@cindex syntax compatibility, x86-64
e413e4e9
AM
240
241@code{@value{AS}} now supports assembly using Intel assembler syntax.
242@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
243back to the usual AT&T mode for compatibility with the output of
244@code{@value{GCC}}. Either of these directives may have an optional
245argument, @code{prefix}, or @code{noprefix} specifying whether registers
246require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
247different from Intel syntax. We mention these differences because
248almost all 80386 documents use Intel syntax. Notable differences
249between the two syntaxes are:
250
251@cindex immediate operands, i386
252@cindex i386 immediate operands
253@cindex register operands, i386
254@cindex i386 register operands
255@cindex jump/call operands, i386
256@cindex i386 jump/call operands
257@cindex operand delimiters, i386
55b62671
AJ
258
259@cindex immediate operands, x86-64
260@cindex x86-64 immediate operands
261@cindex register operands, x86-64
262@cindex x86-64 register operands
263@cindex jump/call operands, x86-64
264@cindex x86-64 jump/call operands
265@cindex operand delimiters, x86-64
252b5132
RH
266@itemize @bullet
267@item
268AT&T immediate operands are preceded by @samp{$}; Intel immediate
269operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
270AT&T register operands are preceded by @samp{%}; Intel register operands
271are undelimited. AT&T absolute (as opposed to PC relative) jump/call
272operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
273
274@cindex i386 source, destination operands
275@cindex source, destination operands; i386
55b62671
AJ
276@cindex x86-64 source, destination operands
277@cindex source, destination operands; x86-64
252b5132
RH
278@item
279AT&T and Intel syntax use the opposite order for source and destination
280operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
281@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
282previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
283instructions with 2 immediate operands, such as the @samp{enter}
284instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
285
286@cindex mnemonic suffixes, i386
287@cindex sizes operands, i386
288@cindex i386 size suffixes
55b62671
AJ
289@cindex mnemonic suffixes, x86-64
290@cindex sizes operands, x86-64
291@cindex x86-64 size suffixes
252b5132
RH
292@item
293In AT&T syntax the size of memory operands is determined from the last
294character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
295@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
296(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
297this by prefixing memory operands (@emph{not} the instruction mnemonics) with
298@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
299Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
300syntax.
252b5132
RH
301
302@cindex return instructions, i386
303@cindex i386 jump, call, return
55b62671
AJ
304@cindex return instructions, x86-64
305@cindex x86-64 jump, call, return
252b5132
RH
306@item
307Immediate form long jumps and calls are
308@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
309Intel syntax is
310@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
311instruction
312is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
313@samp{ret far @var{stack-adjust}}.
314
315@cindex sections, i386
316@cindex i386 sections
55b62671
AJ
317@cindex sections, x86-64
318@cindex x86-64 sections
252b5132
RH
319@item
320The AT&T assembler does not provide support for multiple section
321programs. Unix style systems expect all programs to be single sections.
322@end itemize
323
324@node i386-Mnemonics
325@section Instruction Naming
326
327@cindex i386 instruction naming
328@cindex instruction naming, i386
55b62671
AJ
329@cindex x86-64 instruction naming
330@cindex instruction naming, x86-64
331
252b5132 332Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
333specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
334and @samp{q} specify byte, word, long and quadruple word operands. If
335no suffix is specified by an instruction then @code{@value{AS}} tries to
336fill in the missing suffix based on the destination register operand
337(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
338to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
339@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
340assembler which assumes that a missing mnemonic suffix implies long
341operand size. (This incompatibility does not affect compiler output
342since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
343
344Almost all instructions have the same names in AT&T and Intel format.
345There are a few exceptions. The sign extend and zero extend
346instructions need two sizes to specify them. They need a size to
347sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
348is accomplished by using two instruction mnemonic suffixes in AT&T
349syntax. Base names for sign extend and zero extend are
350@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
351and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
352are tacked on to this base name, the @emph{from} suffix before the
353@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
354``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
355thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
356@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
357@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
358quadruple word).
252b5132 359
b6169b20
L
360@cindex encoding options, i386
361@cindex encoding options, x86-64
362
363Different encoding options can be specified via optional mnemonic
364suffix. @samp{.s} suffix swaps 2 register operands in encoding when
365moving from one register to another.
366
252b5132
RH
367@cindex conversion instructions, i386
368@cindex i386 conversion instructions
55b62671
AJ
369@cindex conversion instructions, x86-64
370@cindex x86-64 conversion instructions
252b5132
RH
371The Intel-syntax conversion instructions
372
373@itemize @bullet
374@item
375@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
376
377@item
378@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
379
380@item
381@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
382
383@item
384@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
385
386@item
387@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
388(x86-64 only),
389
390@item
d5f0cf92 391@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 392@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
393@end itemize
394
395@noindent
55b62671
AJ
396are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
397@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
398instructions.
252b5132
RH
399
400@cindex jump instructions, i386
401@cindex call instructions, i386
55b62671
AJ
402@cindex jump instructions, x86-64
403@cindex call instructions, x86-64
252b5132
RH
404Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
405AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
406convention.
407
1efbbeb4
L
408@section AT&T Mnemonic versus Intel Mnemonic
409
410@cindex i386 mnemonic compatibility
411@cindex mnemonic compatibility, i386
412
413@code{@value{AS}} supports assembly using Intel mnemonic.
414@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
415@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
416syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
417Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
418@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
419@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
420assembler with different mnemonics from those in Intel IA32 specification.
421@code{@value{GCC}} generates those instructions with AT&T mnemonic.
422
252b5132
RH
423@node i386-Regs
424@section Register Naming
425
426@cindex i386 registers
427@cindex registers, i386
55b62671
AJ
428@cindex x86-64 registers
429@cindex registers, x86-64
252b5132
RH
430Register operands are always prefixed with @samp{%}. The 80386 registers
431consist of
432
433@itemize @bullet
434@item
435the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
436@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
437frame pointer), and @samp{%esp} (the stack pointer).
438
439@item
440the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
441@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
442
443@item
444the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
445@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
446are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
447@samp{%cx}, and @samp{%dx})
448
449@item
450the 6 section registers @samp{%cs} (code section), @samp{%ds}
451(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
452and @samp{%gs}.
453
454@item
455the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
456@samp{%cr3}.
457
458@item
459the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
460@samp{%db3}, @samp{%db6}, and @samp{%db7}.
461
462@item
463the 2 test registers @samp{%tr6} and @samp{%tr7}.
464
465@item
466the 8 floating point register stack @samp{%st} or equivalently
467@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
468@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
469These registers are overloaded by 8 MMX registers @samp{%mm0},
470@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
471@samp{%mm6} and @samp{%mm7}.
472
473@item
474the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
475@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
476@end itemize
477
478The AMD x86-64 architecture extends the register set by:
479
480@itemize @bullet
481@item
482enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
483accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
484@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
485pointer)
486
487@item
488the 8 extended registers @samp{%r8}--@samp{%r15}.
489
490@item
491the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
492
493@item
494the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
495
496@item
497the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
498
499@item
500the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
501
502@item
503the 8 debug registers: @samp{%db8}--@samp{%db15}.
504
505@item
506the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
507@end itemize
508
509@node i386-Prefixes
510@section Instruction Prefixes
511
512@cindex i386 instruction prefixes
513@cindex instruction prefixes, i386
514@cindex prefixes, i386
515Instruction prefixes are used to modify the following instruction. They
516are used to repeat string instructions, to provide section overrides, to
517perform bus lock operations, and to change operand and address sizes.
518(Most instructions that normally operate on 32-bit operands will use
51916-bit operands if the instruction has an ``operand size'' prefix.)
520Instruction prefixes are best written on the same line as the instruction
521they act upon. For example, the @samp{scas} (scan string) instruction is
522repeated with:
523
524@smallexample
525 repne scas %es:(%edi),%al
526@end smallexample
527
528You may also place prefixes on the lines immediately preceding the
529instruction, but this circumvents checks that @code{@value{AS}} does
530with prefixes, and will not work with all prefixes.
531
532Here is a list of instruction prefixes:
533
534@cindex section override prefixes, i386
535@itemize @bullet
536@item
537Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
538@samp{fs}, @samp{gs}. These are automatically added by specifying
539using the @var{section}:@var{memory-operand} form for memory references.
540
541@cindex size prefixes, i386
542@item
543Operand/Address size prefixes @samp{data16} and @samp{addr16}
544change 32-bit operands/addresses into 16-bit operands/addresses,
545while @samp{data32} and @samp{addr32} change 16-bit ones (in a
546@code{.code16} section) into 32-bit operands/addresses. These prefixes
547@emph{must} appear on the same line of code as the instruction they
548modify. For example, in a 16-bit @code{.code16} section, you might
549write:
550
551@smallexample
552 addr32 jmpl *(%ebx)
553@end smallexample
554
555@cindex bus lock prefixes, i386
556@cindex inhibiting interrupts, i386
557@item
558The bus lock prefix @samp{lock} inhibits interrupts during execution of
559the instruction it precedes. (This is only valid with certain
560instructions; see a 80386 manual for details).
561
562@cindex coprocessor wait, i386
563@item
564The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
565complete the current instruction. This should never be needed for the
56680386/80387 combination.
567
568@cindex repeat prefixes, i386
569@item
570The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
571to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
572times if the current address size is 16-bits).
55b62671
AJ
573@cindex REX prefixes, i386
574@item
575The @samp{rex} family of prefixes is used by x86-64 to encode
576extensions to i386 instruction set. The @samp{rex} prefix has four
577bits --- an operand size overwrite (@code{64}) used to change operand size
578from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
579register set.
580
581You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
582instruction emits @samp{rex} prefix with all the bits set. By omitting
583the @code{64}, @code{x}, @code{y} or @code{z} you may write other
584prefixes as well. Normally, there is no need to write the prefixes
585explicitly, since gas will automatically generate them based on the
586instruction operands.
252b5132
RH
587@end itemize
588
589@node i386-Memory
590@section Memory References
591
592@cindex i386 memory references
593@cindex memory references, i386
55b62671
AJ
594@cindex x86-64 memory references
595@cindex memory references, x86-64
252b5132
RH
596An Intel syntax indirect memory reference of the form
597
598@smallexample
599@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
600@end smallexample
601
602@noindent
603is translated into the AT&T syntax
604
605@smallexample
606@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
607@end smallexample
608
609@noindent
610where @var{base} and @var{index} are the optional 32-bit base and
611index registers, @var{disp} is the optional displacement, and
612@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
613to calculate the address of the operand. If no @var{scale} is
614specified, @var{scale} is taken to be 1. @var{section} specifies the
615optional section register for the memory operand, and may override the
616default section register (see a 80386 manual for section register
617defaults). Note that section overrides in AT&T syntax @emph{must}
618be preceded by a @samp{%}. If you specify a section override which
619coincides with the default section register, @code{@value{AS}} does @emph{not}
620output any section register override prefixes to assemble the given
621instruction. Thus, section overrides can be specified to emphasize which
622section register is used for a given memory operand.
623
624Here are some examples of Intel and AT&T style memory references:
625
626@table @asis
627@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
628@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
629missing, and the default section is used (@samp{%ss} for addressing with
630@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
631
632@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
633@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
634@samp{foo}. All other fields are missing. The section register here
635defaults to @samp{%ds}.
636
637@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
638This uses the value pointed to by @samp{foo} as a memory operand.
639Note that @var{base} and @var{index} are both missing, but there is only
640@emph{one} @samp{,}. This is a syntactic exception.
641
642@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
643This selects the contents of the variable @samp{foo} with section
644register @var{section} being @samp{%gs}.
645@end table
646
647Absolute (as opposed to PC relative) call and jump operands must be
648prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
649always chooses PC relative addressing for jump/call labels.
650
651Any instruction that has a memory operand, but no register operand,
55b62671
AJ
652@emph{must} specify its size (byte, word, long, or quadruple) with an
653instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
654respectively).
655
656The x86-64 architecture adds an RIP (instruction pointer relative)
657addressing. This addressing mode is specified by using @samp{rip} as a
658base register. Only constant offsets are valid. For example:
659
660@table @asis
661@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
662Points to the address 1234 bytes past the end of the current
663instruction.
664
665@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
666Points to the @code{symbol} in RIP relative way, this is shorter than
667the default absolute addressing.
668@end table
669
670Other addressing modes remain unchanged in x86-64 architecture, except
671registers used are 64-bit instead of 32-bit.
252b5132 672
fddf5b5b 673@node i386-Jumps
252b5132
RH
674@section Handling of Jump Instructions
675
676@cindex jump optimization, i386
677@cindex i386 jump optimization
55b62671
AJ
678@cindex jump optimization, x86-64
679@cindex x86-64 jump optimization
252b5132
RH
680Jump instructions are always optimized to use the smallest possible
681displacements. This is accomplished by using byte (8-bit) displacement
682jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 683is insufficient a long displacement is used. We do not support
252b5132
RH
684word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
685instruction with the @samp{data16} instruction prefix), since the 80386
686insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 687is added. (See also @pxref{i386-Arch})
252b5132
RH
688
689Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
690@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
691displacements, so that if you use these instructions (@code{@value{GCC}} does
692not use them) you may get an error message (and incorrect code). The AT&T
69380386 assembler tries to get around this problem by expanding @samp{jcxz foo}
694to
695
696@smallexample
697 jcxz cx_zero
698 jmp cx_nonzero
699cx_zero: jmp foo
700cx_nonzero:
701@end smallexample
702
703@node i386-Float
704@section Floating Point
705
706@cindex i386 floating point
707@cindex floating point, i386
55b62671
AJ
708@cindex x86-64 floating point
709@cindex floating point, x86-64
252b5132
RH
710All 80387 floating point types except packed BCD are supported.
711(BCD support may be added without much difficulty). These data
712types are 16-, 32-, and 64- bit integers, and single (32-bit),
713double (64-bit), and extended (80-bit) precision floating point.
714Each supported type has an instruction mnemonic suffix and a constructor
715associated with it. Instruction mnemonic suffixes specify the operand's
716data type. Constructors build these data types into memory.
717
718@cindex @code{float} directive, i386
719@cindex @code{single} directive, i386
720@cindex @code{double} directive, i386
721@cindex @code{tfloat} directive, i386
55b62671
AJ
722@cindex @code{float} directive, x86-64
723@cindex @code{single} directive, x86-64
724@cindex @code{double} directive, x86-64
725@cindex @code{tfloat} directive, x86-64
252b5132
RH
726@itemize @bullet
727@item
728Floating point constructors are @samp{.float} or @samp{.single},
729@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
730These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
731and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
732only supports this format via the @samp{fldt} (load 80-bit real to stack
733top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
734
735@cindex @code{word} directive, i386
736@cindex @code{long} directive, i386
737@cindex @code{int} directive, i386
738@cindex @code{quad} directive, i386
55b62671
AJ
739@cindex @code{word} directive, x86-64
740@cindex @code{long} directive, x86-64
741@cindex @code{int} directive, x86-64
742@cindex @code{quad} directive, x86-64
252b5132
RH
743@item
744Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
745@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
746corresponding instruction mnemonic suffixes are @samp{s} (single),
747@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
748the 64-bit @samp{q} format is only present in the @samp{fildq} (load
749quad integer to stack top) and @samp{fistpq} (store quad integer and pop
750stack) instructions.
751@end itemize
752
753Register to register operations should not use instruction mnemonic suffixes.
754@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
755wrote @samp{fst %st, %st(1)}, since all register to register operations
756use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
757which converts @samp{%st} from 80-bit to 64-bit floating point format,
758then stores the result in the 4 byte location @samp{mem})
759
760@node i386-SIMD
761@section Intel's MMX and AMD's 3DNow! SIMD Operations
762
763@cindex MMX, i386
764@cindex 3DNow!, i386
765@cindex SIMD, i386
55b62671
AJ
766@cindex MMX, x86-64
767@cindex 3DNow!, x86-64
768@cindex SIMD, x86-64
252b5132
RH
769
770@code{@value{AS}} supports Intel's MMX instruction set (SIMD
771instructions for integer data), available on Intel's Pentium MMX
772processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 773Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
774instruction set (SIMD instructions for 32-bit floating point data)
775available on AMD's K6-2 processor and possibly others in the future.
776
777Currently, @code{@value{AS}} does not support Intel's floating point
778SIMD, Katmai (KNI).
779
780The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
781@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
78216-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
783floating point values. The MMX registers cannot be used at the same time
784as the floating point stack.
785
786See Intel and AMD documentation, keeping in mind that the operand order in
787instructions is reversed from the Intel syntax.
788
789@node i386-16bit
790@section Writing 16-bit Code
791
792@cindex i386 16-bit code
793@cindex 16-bit code, i386
794@cindex real-mode code, i386
eecb386c 795@cindex @code{code16gcc} directive, i386
252b5132
RH
796@cindex @code{code16} directive, i386
797@cindex @code{code32} directive, i386
55b62671
AJ
798@cindex @code{code64} directive, i386
799@cindex @code{code64} directive, x86-64
800While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
801or 64-bit x86-64 code depending on the default configuration,
252b5132 802it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
803mode code segments. To do this, put a @samp{.code16} or
804@samp{.code16gcc} directive before the assembly language instructions to
805be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
806normal 32-bit code with the @samp{.code32} directive.
807
808@samp{.code16gcc} provides experimental support for generating 16-bit
809code from gcc, and differs from @samp{.code16} in that @samp{call},
810@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
811@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
812default to 32-bit size. This is so that the stack pointer is
813manipulated in the same way over function calls, allowing access to
814function parameters at the same stack offsets as in 32-bit mode.
815@samp{.code16gcc} also automatically adds address size prefixes where
816necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
817
818The code which @code{@value{AS}} generates in 16-bit mode will not
819necessarily run on a 16-bit pre-80386 processor. To write code that
820runs on such a processor, you must refrain from using @emph{any} 32-bit
821constructs which require @code{@value{AS}} to output address or operand
822size prefixes.
823
824Note that writing 16-bit code instructions by explicitly specifying a
825prefix or an instruction mnemonic suffix within a 32-bit code section
826generates different machine instructions than those generated for a
82716-bit code segment. In a 32-bit code section, the following code
828generates the machine opcode bytes @samp{66 6a 04}, which pushes the
829value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
830
831@smallexample
832 pushw $4
833@end smallexample
834
835The same code in a 16-bit code section would generate the machine
b45619c0 836opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
837is correct since the processor default operand size is assumed to be 16
838bits in a 16-bit code section.
839
840@node i386-Bugs
841@section AT&T Syntax bugs
842
843The UnixWare assembler, and probably other AT&T derived ix86 Unix
844assemblers, generate floating point instructions with reversed source
845and destination registers in certain cases. Unfortunately, gcc and
846possibly many other programs use this reversed syntax, so we're stuck
847with it.
848
849For example
850
851@smallexample
852 fsub %st,%st(3)
853@end smallexample
854@noindent
855results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
856than the expected @samp{%st(3) - %st}. This happens with all the
857non-commutative arithmetic floating point operations with two register
858operands where the source register is @samp{%st} and the destination
859register is @samp{%st(i)}.
860
e413e4e9
AM
861@node i386-Arch
862@section Specifying CPU Architecture
863
864@cindex arch directive, i386
865@cindex i386 arch directive
55b62671
AJ
866@cindex arch directive, x86-64
867@cindex x86-64 arch directive
e413e4e9
AM
868
869@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 870(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
871directive enables a warning when gas detects an instruction that is not
872supported on the CPU specified. The choices for @var{cpu_type} are:
873
874@multitable @columnfractions .20 .20 .20 .20
875@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
876@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 877@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 878@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1543849b
L
879@item @samp{corei7}
880@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
881@item @samp{amdfam10}
1ceab344 882@item @samp{generic32} @tab @samp{generic64}
9103f4f4 883@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 884@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c0f3af97 885@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
f1f8f695 886@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
f72d7f29 887@item @samp{.ept} @tab @samp{.clflush}
1ceab344 888@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 889@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1ceab344 890@item @samp{.padlock}
e413e4e9
AM
891@end multitable
892
fddf5b5b
AM
893Apart from the warning, there are only two other effects on
894@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
895@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
896will automatically use a two byte opcode sequence. The larger three
897byte opcode sequence is used on the 486 (and when no architecture is
898specified) because it executes faster on the 486. Note that you can
899explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
900Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
901@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
902conditional jumps will be promoted when necessary to a two instruction
903sequence consisting of a conditional jump of the opposite sense around
904an unconditional jump to the target.
905
5c6af06e
JB
906Following the CPU architecture (but not a sub-architecture, which are those
907starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
908control automatic promotion of conditional jumps. @samp{jumps} is the
909default, and enables jump promotion; All external jumps will be of the long
910variety, and file-local jumps will be promoted as necessary.
911(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
912byte offset jumps, and warns about file-local conditional jumps that
913@code{@value{AS}} promotes.
fddf5b5b
AM
914Unconditional jumps are treated as for @samp{jumps}.
915
916For example
917
918@smallexample
919 .arch i8086,nojumps
920@end smallexample
e413e4e9 921
252b5132
RH
922@node i386-Notes
923@section Notes
924
925@cindex i386 @code{mul}, @code{imul} instructions
926@cindex @code{mul} instruction, i386
927@cindex @code{imul} instruction, i386
55b62671
AJ
928@cindex @code{mul} instruction, x86-64
929@cindex @code{imul} instruction, x86-64
252b5132 930There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 931instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
932multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
933for @samp{imul}) can be output only in the one operand form. Thus,
934@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
935the expanding multiply would clobber the @samp{%edx} register, and this
936would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
93764-bit product in @samp{%edx:%eax}.
938
939We have added a two operand form of @samp{imul} when the first operand
940is an immediate mode expression and the second operand is a register.
941This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
942example, can be done with @samp{imul $69, %eax} rather than @samp{imul
943$69, %eax, %eax}.
944
This page took 0.43016 seconds and 4 git commands to generate.