* config/tc-arm.c (arm_ext_v6m): New variable.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
aa820537 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
252b5132
RH
27* i386-Syntax:: AT&T Syntax versus Intel Syntax
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
252b5132 36* i386-16bit:: Writing 16-bit Code
e413e4e9 37* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
38* i386-Bugs:: AT&T Syntax bugs
39* i386-Notes:: Notes
40@end menu
41
42@node i386-Options
43@section Options
44
55b62671
AJ
45@cindex options for i386
46@cindex options for x86-64
47@cindex i386 options
48@cindex x86-64 options
49
50The i386 version of @code{@value{AS}} has a few machine
51dependent options:
52
53@table @code
54@cindex @samp{--32} option, i386
55@cindex @samp{--32} option, x86-64
56@cindex @samp{--64} option, i386
57@cindex @samp{--64} option, x86-64
58@item --32 | --64
59Select the word size, either 32 bits or 64 bits. Selecting 32-bit
60implies Intel i386 architecture, while 64-bit implies AMD x86-64
61architecture.
62
63These options are only available with the ELF object file format, and
64require that the necessary BFD support has been included (on a 32-bit
65platform you have to add --enable-64-bit-bfd to configure enable 64-bit
66usage and use x86-64 as target platform).
12b55ccc
L
67
68@item -n
69By default, x86 GAS replaces multiple nop instructions used for
70alignment within code sections with multi-byte nop instructions such
71as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
72
73@cindex @samp{--divide} option, i386
74@item --divide
75On SVR4-derived platforms, the character @samp{/} is treated as a comment
76character, which means that it cannot be used in expressions. The
77@samp{--divide} option turns @samp{/} into a normal character. This does
78not disable @samp{/} at the beginning of a line starting a comment, or
79affect using @samp{#} for starting a comment.
80
9103f4f4
L
81@cindex @samp{-march=} option, i386
82@cindex @samp{-march=} option, x86-64
6305a203
L
83@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
84This option specifies the target processor. The assembler will
85issue an error message if an attempt is made to assemble an instruction
86which will not execute on the target processor. The following
87processor names are recognized:
9103f4f4
L
88@code{i8086},
89@code{i186},
90@code{i286},
91@code{i386},
92@code{i486},
93@code{i586},
94@code{i686},
95@code{pentium},
96@code{pentiumpro},
97@code{pentiumii},
98@code{pentiumiii},
99@code{pentium4},
100@code{prescott},
101@code{nocona},
ef05d495
L
102@code{core},
103@code{core2},
bd5295b2 104@code{corei7},
8a9036a4 105@code{l1om},
9103f4f4
L
106@code{k6},
107@code{k6_2},
108@code{athlon},
9103f4f4
L
109@code{opteron},
110@code{k8},
1ceab344 111@code{amdfam10},
68339fdf 112@code{bdver1},
9103f4f4
L
113@code{generic32} and
114@code{generic64}.
115
6305a203
L
116In addition to the basic instruction set, the assembler can be told to
117accept various extension mnemonics. For example,
118@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
119@var{vmx}. The following extensions are currently supported:
309d3373
JB
120@code{8087},
121@code{287},
122@code{387},
123@code{no87},
6305a203 124@code{mmx},
309d3373 125@code{nommx},
6305a203
L
126@code{sse},
127@code{sse2},
128@code{sse3},
129@code{ssse3},
130@code{sse4.1},
131@code{sse4.2},
132@code{sse4},
309d3373 133@code{nosse},
c0f3af97 134@code{avx},
309d3373 135@code{noavx},
6305a203
L
136@code{vmx},
137@code{smx},
f03fe4c1 138@code{xsave},
c7b8aa3a 139@code{xsaveopt},
c0f3af97 140@code{aes},
594ab6a3 141@code{pclmul},
c7b8aa3a
L
142@code{fsgsbase},
143@code{rdrnd},
144@code{f16c},
c0f3af97 145@code{fma},
f1f8f695
L
146@code{movbe},
147@code{ept},
bd5295b2 148@code{clflush},
f88c9eb0 149@code{lwp},
5dd85c99
SP
150@code{fma4},
151@code{xop},
bd5295b2 152@code{syscall},
1b7f3fb0 153@code{rdtscp},
6305a203
L
154@code{3dnow},
155@code{3dnowa},
156@code{sse4a},
157@code{sse5},
158@code{svme},
159@code{abm} and
160@code{padlock}.
309d3373
JB
161Note that rather than extending a basic instruction set, the extension
162mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
163
164When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
165@code{.arch} directive will take precedent.
166
167@cindex @samp{-mtune=} option, i386
168@cindex @samp{-mtune=} option, x86-64
169@item -mtune=@var{CPU}
170This option specifies a processor to optimize for. When used in
171conjunction with the @option{-march} option, only instructions
172of the processor specified by the @option{-march} option will be
173generated.
174
6305a203
L
175Valid @var{CPU} values are identical to the processor list of
176@option{-march=@var{CPU}}.
9103f4f4 177
c0f3af97
L
178@cindex @samp{-msse2avx} option, i386
179@cindex @samp{-msse2avx} option, x86-64
180@item -msse2avx
181This option specifies that the assembler should encode SSE instructions
182with VEX prefix.
183
daf50ae7
L
184@cindex @samp{-msse-check=} option, i386
185@cindex @samp{-msse-check=} option, x86-64
186@item -msse-check=@var{none}
1f9bb1ca
AS
187@itemx -msse-check=@var{warning}
188@itemx -msse-check=@var{error}
daf50ae7
L
189These options control if the assembler should check SSE intructions.
190@option{-msse-check=@var{none}} will make the assembler not to check SSE
191instructions, which is the default. @option{-msse-check=@var{warning}}
192will make the assembler issue a warning for any SSE intruction.
193@option{-msse-check=@var{error}} will make the assembler issue an error
194for any SSE intruction.
195
539f890d
L
196@cindex @samp{-mavxscalar=} option, i386
197@cindex @samp{-mavxscalar=} option, x86-64
198@item -mavxscalar=@var{128}
1f9bb1ca 199@itemx -mavxscalar=@var{256}
539f890d
L
200This options control how the assembler should encode scalar AVX
201instructions. @option{-mavxscalar=@var{128}} will encode scalar
202AVX instructions with 128bit vector length, which is the default.
203@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
204with 256bit vector length.
205
1efbbeb4
L
206@cindex @samp{-mmnemonic=} option, i386
207@cindex @samp{-mmnemonic=} option, x86-64
208@item -mmnemonic=@var{att}
1f9bb1ca 209@itemx -mmnemonic=@var{intel}
1efbbeb4
L
210This option specifies instruction mnemonic for matching instructions.
211The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
212take precedent.
213
214@cindex @samp{-msyntax=} option, i386
215@cindex @samp{-msyntax=} option, x86-64
216@item -msyntax=@var{att}
1f9bb1ca 217@itemx -msyntax=@var{intel}
1efbbeb4
L
218This option specifies instruction syntax when processing instructions.
219The @code{.att_syntax} and @code{.intel_syntax} directives will
220take precedent.
221
222@cindex @samp{-mnaked-reg} option, i386
223@cindex @samp{-mnaked-reg} option, x86-64
224@item -mnaked-reg
225This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 226The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 227
55b62671 228@end table
e413e4e9 229
a6c24e68
NC
230@node i386-Directives
231@section x86 specific Directives
232
233@cindex machine directives, x86
234@cindex x86 machine directives
235@table @code
236
237@cindex @code{lcomm} directive, COFF
238@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
239Reserve @var{length} (an absolute expression) bytes for a local common
240denoted by @var{symbol}. The section and value of @var{symbol} are
241those of the new local common. The addresses are allocated in the bss
704209c0
NC
242section, so that at run-time the bytes start off zeroed. Since
243@var{symbol} is not declared global, it is normally not visible to
244@code{@value{LD}}. The optional third parameter, @var{alignment},
245specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
246
247This directive is only available for COFF based x86 targets.
248
249@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
250@c .largecomm
251
252@end table
253
252b5132
RH
254@node i386-Syntax
255@section AT&T Syntax versus Intel Syntax
256
e413e4e9
AM
257@cindex i386 intel_syntax pseudo op
258@cindex intel_syntax pseudo op, i386
259@cindex i386 att_syntax pseudo op
260@cindex att_syntax pseudo op, i386
252b5132
RH
261@cindex i386 syntax compatibility
262@cindex syntax compatibility, i386
55b62671
AJ
263@cindex x86-64 intel_syntax pseudo op
264@cindex intel_syntax pseudo op, x86-64
265@cindex x86-64 att_syntax pseudo op
266@cindex att_syntax pseudo op, x86-64
267@cindex x86-64 syntax compatibility
268@cindex syntax compatibility, x86-64
e413e4e9
AM
269
270@code{@value{AS}} now supports assembly using Intel assembler syntax.
271@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
272back to the usual AT&T mode for compatibility with the output of
273@code{@value{GCC}}. Either of these directives may have an optional
274argument, @code{prefix}, or @code{noprefix} specifying whether registers
275require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
276different from Intel syntax. We mention these differences because
277almost all 80386 documents use Intel syntax. Notable differences
278between the two syntaxes are:
279
280@cindex immediate operands, i386
281@cindex i386 immediate operands
282@cindex register operands, i386
283@cindex i386 register operands
284@cindex jump/call operands, i386
285@cindex i386 jump/call operands
286@cindex operand delimiters, i386
55b62671
AJ
287
288@cindex immediate operands, x86-64
289@cindex x86-64 immediate operands
290@cindex register operands, x86-64
291@cindex x86-64 register operands
292@cindex jump/call operands, x86-64
293@cindex x86-64 jump/call operands
294@cindex operand delimiters, x86-64
252b5132
RH
295@itemize @bullet
296@item
297AT&T immediate operands are preceded by @samp{$}; Intel immediate
298operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
299AT&T register operands are preceded by @samp{%}; Intel register operands
300are undelimited. AT&T absolute (as opposed to PC relative) jump/call
301operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
302
303@cindex i386 source, destination operands
304@cindex source, destination operands; i386
55b62671
AJ
305@cindex x86-64 source, destination operands
306@cindex source, destination operands; x86-64
252b5132
RH
307@item
308AT&T and Intel syntax use the opposite order for source and destination
309operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
310@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
311previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
312instructions with 2 immediate operands, such as the @samp{enter}
313instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
314
315@cindex mnemonic suffixes, i386
316@cindex sizes operands, i386
317@cindex i386 size suffixes
55b62671
AJ
318@cindex mnemonic suffixes, x86-64
319@cindex sizes operands, x86-64
320@cindex x86-64 size suffixes
252b5132
RH
321@item
322In AT&T syntax the size of memory operands is determined from the last
323character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
324@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
325(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
326this by prefixing memory operands (@emph{not} the instruction mnemonics) with
327@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
328Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
329syntax.
252b5132 330
4b06377f
L
331In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
332instruction with the 64-bit displacement or immediate operand.
333
252b5132
RH
334@cindex return instructions, i386
335@cindex i386 jump, call, return
55b62671
AJ
336@cindex return instructions, x86-64
337@cindex x86-64 jump, call, return
252b5132
RH
338@item
339Immediate form long jumps and calls are
340@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
341Intel syntax is
342@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
343instruction
344is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
345@samp{ret far @var{stack-adjust}}.
346
347@cindex sections, i386
348@cindex i386 sections
55b62671
AJ
349@cindex sections, x86-64
350@cindex x86-64 sections
252b5132
RH
351@item
352The AT&T assembler does not provide support for multiple section
353programs. Unix style systems expect all programs to be single sections.
354@end itemize
355
356@node i386-Mnemonics
357@section Instruction Naming
358
359@cindex i386 instruction naming
360@cindex instruction naming, i386
55b62671
AJ
361@cindex x86-64 instruction naming
362@cindex instruction naming, x86-64
363
252b5132 364Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
365specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
366and @samp{q} specify byte, word, long and quadruple word operands. If
367no suffix is specified by an instruction then @code{@value{AS}} tries to
368fill in the missing suffix based on the destination register operand
369(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
370to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
371@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
372assembler which assumes that a missing mnemonic suffix implies long
373operand size. (This incompatibility does not affect compiler output
374since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
375
376Almost all instructions have the same names in AT&T and Intel format.
377There are a few exceptions. The sign extend and zero extend
378instructions need two sizes to specify them. They need a size to
379sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
380is accomplished by using two instruction mnemonic suffixes in AT&T
381syntax. Base names for sign extend and zero extend are
382@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
383and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
384are tacked on to this base name, the @emph{from} suffix before the
385@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
386``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
387thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
388@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
389@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
390quadruple word).
252b5132 391
b6169b20
L
392@cindex encoding options, i386
393@cindex encoding options, x86-64
394
395Different encoding options can be specified via optional mnemonic
396suffix. @samp{.s} suffix swaps 2 register operands in encoding when
397moving from one register to another.
398
252b5132
RH
399@cindex conversion instructions, i386
400@cindex i386 conversion instructions
55b62671
AJ
401@cindex conversion instructions, x86-64
402@cindex x86-64 conversion instructions
252b5132
RH
403The Intel-syntax conversion instructions
404
405@itemize @bullet
406@item
407@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
408
409@item
410@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
411
412@item
413@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
414
415@item
416@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
417
418@item
419@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
420(x86-64 only),
421
422@item
d5f0cf92 423@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 424@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
425@end itemize
426
427@noindent
55b62671
AJ
428are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
429@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
430instructions.
252b5132
RH
431
432@cindex jump instructions, i386
433@cindex call instructions, i386
55b62671
AJ
434@cindex jump instructions, x86-64
435@cindex call instructions, x86-64
252b5132
RH
436Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
437AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
438convention.
439
1efbbeb4
L
440@section AT&T Mnemonic versus Intel Mnemonic
441
442@cindex i386 mnemonic compatibility
443@cindex mnemonic compatibility, i386
444
445@code{@value{AS}} supports assembly using Intel mnemonic.
446@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
447@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
448syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
449Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
450@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
451@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
452assembler with different mnemonics from those in Intel IA32 specification.
453@code{@value{GCC}} generates those instructions with AT&T mnemonic.
454
252b5132
RH
455@node i386-Regs
456@section Register Naming
457
458@cindex i386 registers
459@cindex registers, i386
55b62671
AJ
460@cindex x86-64 registers
461@cindex registers, x86-64
252b5132
RH
462Register operands are always prefixed with @samp{%}. The 80386 registers
463consist of
464
465@itemize @bullet
466@item
467the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
468@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
469frame pointer), and @samp{%esp} (the stack pointer).
470
471@item
472the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
473@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
474
475@item
476the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
477@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
478are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
479@samp{%cx}, and @samp{%dx})
480
481@item
482the 6 section registers @samp{%cs} (code section), @samp{%ds}
483(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
484and @samp{%gs}.
485
486@item
487the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
488@samp{%cr3}.
489
490@item
491the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
492@samp{%db3}, @samp{%db6}, and @samp{%db7}.
493
494@item
495the 2 test registers @samp{%tr6} and @samp{%tr7}.
496
497@item
498the 8 floating point register stack @samp{%st} or equivalently
499@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
500@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
501These registers are overloaded by 8 MMX registers @samp{%mm0},
502@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
503@samp{%mm6} and @samp{%mm7}.
504
505@item
506the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
507@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
508@end itemize
509
510The AMD x86-64 architecture extends the register set by:
511
512@itemize @bullet
513@item
514enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
515accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
516@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
517pointer)
518
519@item
520the 8 extended registers @samp{%r8}--@samp{%r15}.
521
522@item
523the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
524
525@item
526the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
527
528@item
529the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
530
531@item
532the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
533
534@item
535the 8 debug registers: @samp{%db8}--@samp{%db15}.
536
537@item
538the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
539@end itemize
540
541@node i386-Prefixes
542@section Instruction Prefixes
543
544@cindex i386 instruction prefixes
545@cindex instruction prefixes, i386
546@cindex prefixes, i386
547Instruction prefixes are used to modify the following instruction. They
548are used to repeat string instructions, to provide section overrides, to
549perform bus lock operations, and to change operand and address sizes.
550(Most instructions that normally operate on 32-bit operands will use
55116-bit operands if the instruction has an ``operand size'' prefix.)
552Instruction prefixes are best written on the same line as the instruction
553they act upon. For example, the @samp{scas} (scan string) instruction is
554repeated with:
555
556@smallexample
557 repne scas %es:(%edi),%al
558@end smallexample
559
560You may also place prefixes on the lines immediately preceding the
561instruction, but this circumvents checks that @code{@value{AS}} does
562with prefixes, and will not work with all prefixes.
563
564Here is a list of instruction prefixes:
565
566@cindex section override prefixes, i386
567@itemize @bullet
568@item
569Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
570@samp{fs}, @samp{gs}. These are automatically added by specifying
571using the @var{section}:@var{memory-operand} form for memory references.
572
573@cindex size prefixes, i386
574@item
575Operand/Address size prefixes @samp{data16} and @samp{addr16}
576change 32-bit operands/addresses into 16-bit operands/addresses,
577while @samp{data32} and @samp{addr32} change 16-bit ones (in a
578@code{.code16} section) into 32-bit operands/addresses. These prefixes
579@emph{must} appear on the same line of code as the instruction they
580modify. For example, in a 16-bit @code{.code16} section, you might
581write:
582
583@smallexample
584 addr32 jmpl *(%ebx)
585@end smallexample
586
587@cindex bus lock prefixes, i386
588@cindex inhibiting interrupts, i386
589@item
590The bus lock prefix @samp{lock} inhibits interrupts during execution of
591the instruction it precedes. (This is only valid with certain
592instructions; see a 80386 manual for details).
593
594@cindex coprocessor wait, i386
595@item
596The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
597complete the current instruction. This should never be needed for the
59880386/80387 combination.
599
600@cindex repeat prefixes, i386
601@item
602The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
603to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
604times if the current address size is 16-bits).
55b62671
AJ
605@cindex REX prefixes, i386
606@item
607The @samp{rex} family of prefixes is used by x86-64 to encode
608extensions to i386 instruction set. The @samp{rex} prefix has four
609bits --- an operand size overwrite (@code{64}) used to change operand size
610from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
611register set.
612
613You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
614instruction emits @samp{rex} prefix with all the bits set. By omitting
615the @code{64}, @code{x}, @code{y} or @code{z} you may write other
616prefixes as well. Normally, there is no need to write the prefixes
617explicitly, since gas will automatically generate them based on the
618instruction operands.
252b5132
RH
619@end itemize
620
621@node i386-Memory
622@section Memory References
623
624@cindex i386 memory references
625@cindex memory references, i386
55b62671
AJ
626@cindex x86-64 memory references
627@cindex memory references, x86-64
252b5132
RH
628An Intel syntax indirect memory reference of the form
629
630@smallexample
631@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
632@end smallexample
633
634@noindent
635is translated into the AT&T syntax
636
637@smallexample
638@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
639@end smallexample
640
641@noindent
642where @var{base} and @var{index} are the optional 32-bit base and
643index registers, @var{disp} is the optional displacement, and
644@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
645to calculate the address of the operand. If no @var{scale} is
646specified, @var{scale} is taken to be 1. @var{section} specifies the
647optional section register for the memory operand, and may override the
648default section register (see a 80386 manual for section register
649defaults). Note that section overrides in AT&T syntax @emph{must}
650be preceded by a @samp{%}. If you specify a section override which
651coincides with the default section register, @code{@value{AS}} does @emph{not}
652output any section register override prefixes to assemble the given
653instruction. Thus, section overrides can be specified to emphasize which
654section register is used for a given memory operand.
655
656Here are some examples of Intel and AT&T style memory references:
657
658@table @asis
659@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
660@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
661missing, and the default section is used (@samp{%ss} for addressing with
662@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
663
664@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
665@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
666@samp{foo}. All other fields are missing. The section register here
667defaults to @samp{%ds}.
668
669@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
670This uses the value pointed to by @samp{foo} as a memory operand.
671Note that @var{base} and @var{index} are both missing, but there is only
672@emph{one} @samp{,}. This is a syntactic exception.
673
674@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
675This selects the contents of the variable @samp{foo} with section
676register @var{section} being @samp{%gs}.
677@end table
678
679Absolute (as opposed to PC relative) call and jump operands must be
680prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
681always chooses PC relative addressing for jump/call labels.
682
683Any instruction that has a memory operand, but no register operand,
55b62671
AJ
684@emph{must} specify its size (byte, word, long, or quadruple) with an
685instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
686respectively).
687
688The x86-64 architecture adds an RIP (instruction pointer relative)
689addressing. This addressing mode is specified by using @samp{rip} as a
690base register. Only constant offsets are valid. For example:
691
692@table @asis
693@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
694Points to the address 1234 bytes past the end of the current
695instruction.
696
697@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
698Points to the @code{symbol} in RIP relative way, this is shorter than
699the default absolute addressing.
700@end table
701
702Other addressing modes remain unchanged in x86-64 architecture, except
703registers used are 64-bit instead of 32-bit.
252b5132 704
fddf5b5b 705@node i386-Jumps
252b5132
RH
706@section Handling of Jump Instructions
707
708@cindex jump optimization, i386
709@cindex i386 jump optimization
55b62671
AJ
710@cindex jump optimization, x86-64
711@cindex x86-64 jump optimization
252b5132
RH
712Jump instructions are always optimized to use the smallest possible
713displacements. This is accomplished by using byte (8-bit) displacement
714jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 715is insufficient a long displacement is used. We do not support
252b5132
RH
716word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
717instruction with the @samp{data16} instruction prefix), since the 80386
718insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 719is added. (See also @pxref{i386-Arch})
252b5132
RH
720
721Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
722@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
723displacements, so that if you use these instructions (@code{@value{GCC}} does
724not use them) you may get an error message (and incorrect code). The AT&T
72580386 assembler tries to get around this problem by expanding @samp{jcxz foo}
726to
727
728@smallexample
729 jcxz cx_zero
730 jmp cx_nonzero
731cx_zero: jmp foo
732cx_nonzero:
733@end smallexample
734
735@node i386-Float
736@section Floating Point
737
738@cindex i386 floating point
739@cindex floating point, i386
55b62671
AJ
740@cindex x86-64 floating point
741@cindex floating point, x86-64
252b5132
RH
742All 80387 floating point types except packed BCD are supported.
743(BCD support may be added without much difficulty). These data
744types are 16-, 32-, and 64- bit integers, and single (32-bit),
745double (64-bit), and extended (80-bit) precision floating point.
746Each supported type has an instruction mnemonic suffix and a constructor
747associated with it. Instruction mnemonic suffixes specify the operand's
748data type. Constructors build these data types into memory.
749
750@cindex @code{float} directive, i386
751@cindex @code{single} directive, i386
752@cindex @code{double} directive, i386
753@cindex @code{tfloat} directive, i386
55b62671
AJ
754@cindex @code{float} directive, x86-64
755@cindex @code{single} directive, x86-64
756@cindex @code{double} directive, x86-64
757@cindex @code{tfloat} directive, x86-64
252b5132
RH
758@itemize @bullet
759@item
760Floating point constructors are @samp{.float} or @samp{.single},
761@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
762These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
763and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
764only supports this format via the @samp{fldt} (load 80-bit real to stack
765top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
766
767@cindex @code{word} directive, i386
768@cindex @code{long} directive, i386
769@cindex @code{int} directive, i386
770@cindex @code{quad} directive, i386
55b62671
AJ
771@cindex @code{word} directive, x86-64
772@cindex @code{long} directive, x86-64
773@cindex @code{int} directive, x86-64
774@cindex @code{quad} directive, x86-64
252b5132
RH
775@item
776Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
777@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
778corresponding instruction mnemonic suffixes are @samp{s} (single),
779@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
780the 64-bit @samp{q} format is only present in the @samp{fildq} (load
781quad integer to stack top) and @samp{fistpq} (store quad integer and pop
782stack) instructions.
783@end itemize
784
785Register to register operations should not use instruction mnemonic suffixes.
786@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
787wrote @samp{fst %st, %st(1)}, since all register to register operations
788use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
789which converts @samp{%st} from 80-bit to 64-bit floating point format,
790then stores the result in the 4 byte location @samp{mem})
791
792@node i386-SIMD
793@section Intel's MMX and AMD's 3DNow! SIMD Operations
794
795@cindex MMX, i386
796@cindex 3DNow!, i386
797@cindex SIMD, i386
55b62671
AJ
798@cindex MMX, x86-64
799@cindex 3DNow!, x86-64
800@cindex SIMD, x86-64
252b5132
RH
801
802@code{@value{AS}} supports Intel's MMX instruction set (SIMD
803instructions for integer data), available on Intel's Pentium MMX
804processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 805Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
806instruction set (SIMD instructions for 32-bit floating point data)
807available on AMD's K6-2 processor and possibly others in the future.
808
809Currently, @code{@value{AS}} does not support Intel's floating point
810SIMD, Katmai (KNI).
811
812The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
813@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
81416-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
815floating point values. The MMX registers cannot be used at the same time
816as the floating point stack.
817
818See Intel and AMD documentation, keeping in mind that the operand order in
819instructions is reversed from the Intel syntax.
820
f88c9eb0
SP
821@node i386-LWP
822@section AMD's Lightweight Profiling Instructions
823
824@cindex LWP, i386
825@cindex LWP, x86-64
826
827@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
828instruction set, available on AMD's Family 15h (Orochi) processors.
829
830LWP enables applications to collect and manage performance data, and
831react to performance events. The collection of performance data
832requires no context switches. LWP runs in the context of a thread and
833so several counters can be used independently across multiple threads.
834LWP can be used in both 64-bit and legacy 32-bit modes.
835
836For detailed information on the LWP instruction set, see the
837@cite{AMD Lightweight Profiling Specification} available at
838@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
839
252b5132
RH
840@node i386-16bit
841@section Writing 16-bit Code
842
843@cindex i386 16-bit code
844@cindex 16-bit code, i386
845@cindex real-mode code, i386
eecb386c 846@cindex @code{code16gcc} directive, i386
252b5132
RH
847@cindex @code{code16} directive, i386
848@cindex @code{code32} directive, i386
55b62671
AJ
849@cindex @code{code64} directive, i386
850@cindex @code{code64} directive, x86-64
851While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
852or 64-bit x86-64 code depending on the default configuration,
252b5132 853it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
854mode code segments. To do this, put a @samp{.code16} or
855@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
856be run in 16-bit mode. You can switch @code{@value{AS}} to writing
85732-bit code with the @samp{.code32} directive or 64-bit code with the
858@samp{.code64} directive.
eecb386c
AM
859
860@samp{.code16gcc} provides experimental support for generating 16-bit
861code from gcc, and differs from @samp{.code16} in that @samp{call},
862@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
863@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
864default to 32-bit size. This is so that the stack pointer is
865manipulated in the same way over function calls, allowing access to
866function parameters at the same stack offsets as in 32-bit mode.
867@samp{.code16gcc} also automatically adds address size prefixes where
868necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
869
870The code which @code{@value{AS}} generates in 16-bit mode will not
871necessarily run on a 16-bit pre-80386 processor. To write code that
872runs on such a processor, you must refrain from using @emph{any} 32-bit
873constructs which require @code{@value{AS}} to output address or operand
874size prefixes.
875
876Note that writing 16-bit code instructions by explicitly specifying a
877prefix or an instruction mnemonic suffix within a 32-bit code section
878generates different machine instructions than those generated for a
87916-bit code segment. In a 32-bit code section, the following code
880generates the machine opcode bytes @samp{66 6a 04}, which pushes the
881value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
882
883@smallexample
884 pushw $4
885@end smallexample
886
887The same code in a 16-bit code section would generate the machine
b45619c0 888opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
889is correct since the processor default operand size is assumed to be 16
890bits in a 16-bit code section.
891
892@node i386-Bugs
893@section AT&T Syntax bugs
894
895The UnixWare assembler, and probably other AT&T derived ix86 Unix
896assemblers, generate floating point instructions with reversed source
897and destination registers in certain cases. Unfortunately, gcc and
898possibly many other programs use this reversed syntax, so we're stuck
899with it.
900
901For example
902
903@smallexample
904 fsub %st,%st(3)
905@end smallexample
906@noindent
907results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
908than the expected @samp{%st(3) - %st}. This happens with all the
909non-commutative arithmetic floating point operations with two register
910operands where the source register is @samp{%st} and the destination
911register is @samp{%st(i)}.
912
e413e4e9
AM
913@node i386-Arch
914@section Specifying CPU Architecture
915
916@cindex arch directive, i386
917@cindex i386 arch directive
55b62671
AJ
918@cindex arch directive, x86-64
919@cindex x86-64 arch directive
e413e4e9
AM
920
921@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 922(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
923directive enables a warning when gas detects an instruction that is not
924supported on the CPU specified. The choices for @var{cpu_type} are:
925
926@multitable @columnfractions .20 .20 .20 .20
927@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
928@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 929@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 930@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
8a9036a4 931@item @samp{corei7} @tab @samp{l1om}
1543849b 932@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
68339fdf 933@item @samp{amdfam10} @tab @samp{bdver1}
1ceab344 934@item @samp{generic32} @tab @samp{generic64}
9103f4f4 935@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 936@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
937@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
938@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
939@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
940@item @samp{.rdrnd} @tab @samp{.f16c}
1ceab344 941@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 942@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
f0ae4a24 943@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1ceab344 944@item @samp{.padlock}
e413e4e9
AM
945@end multitable
946
fddf5b5b
AM
947Apart from the warning, there are only two other effects on
948@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
949@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
950will automatically use a two byte opcode sequence. The larger three
951byte opcode sequence is used on the 486 (and when no architecture is
952specified) because it executes faster on the 486. Note that you can
953explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
954Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
955@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
956conditional jumps will be promoted when necessary to a two instruction
957sequence consisting of a conditional jump of the opposite sense around
958an unconditional jump to the target.
959
5c6af06e
JB
960Following the CPU architecture (but not a sub-architecture, which are those
961starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
962control automatic promotion of conditional jumps. @samp{jumps} is the
963default, and enables jump promotion; All external jumps will be of the long
964variety, and file-local jumps will be promoted as necessary.
965(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
966byte offset jumps, and warns about file-local conditional jumps that
967@code{@value{AS}} promotes.
fddf5b5b
AM
968Unconditional jumps are treated as for @samp{jumps}.
969
970For example
971
972@smallexample
973 .arch i8086,nojumps
974@end smallexample
e413e4e9 975
252b5132
RH
976@node i386-Notes
977@section Notes
978
979@cindex i386 @code{mul}, @code{imul} instructions
980@cindex @code{mul} instruction, i386
981@cindex @code{imul} instruction, i386
55b62671
AJ
982@cindex @code{mul} instruction, x86-64
983@cindex @code{imul} instruction, x86-64
252b5132 984There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 985instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
986multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
987for @samp{imul}) can be output only in the one operand form. Thus,
988@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
989the expanding multiply would clobber the @samp{%edx} register, and this
990would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
99164-bit product in @samp{%edx:%eax}.
992
993We have added a two operand form of @samp{imul} when the first operand
994is an immediate mode expression and the second operand is a register.
995This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
996example, can be done with @samp{imul $69, %eax} rather than @samp{imul
997$69, %eax, %eax}.
998
This page took 0.510181 seconds and 4 git commands to generate.