Add AVX512IFMA instructions
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
4b95cf5c 1@c Copyright (C) 1991-2014 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
9103f4f4
L
113@code{k6},
114@code{k6_2},
115@code{athlon},
9103f4f4
L
116@code{opteron},
117@code{k8},
1ceab344 118@code{amdfam10},
68339fdf 119@code{bdver1},
af2f724e 120@code{bdver2},
5e5c50d3 121@code{bdver3},
c7b0bd56 122@code{bdver4},
7b458c12
L
123@code{btver1},
124@code{btver2},
9103f4f4
L
125@code{generic32} and
126@code{generic64}.
127
34bca508 128In addition to the basic instruction set, the assembler can be told to
6305a203
L
129accept various extension mnemonics. For example,
130@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
131@var{vmx}. The following extensions are currently supported:
309d3373
JB
132@code{8087},
133@code{287},
134@code{387},
135@code{no87},
6305a203 136@code{mmx},
309d3373 137@code{nommx},
6305a203
L
138@code{sse},
139@code{sse2},
140@code{sse3},
141@code{ssse3},
142@code{sse4.1},
143@code{sse4.2},
144@code{sse4},
309d3373 145@code{nosse},
c0f3af97 146@code{avx},
6c30d220 147@code{avx2},
e2e1fcde
L
148@code{adx},
149@code{rdseed},
150@code{prfchw},
5c111e37 151@code{smap},
7e8b059b 152@code{mpx},
a0046408 153@code{sha},
1dfc6506
L
154@code{prefetchwt1},
155@code{clflushopt},
156@code{se1},
c5e7287a 157@code{clwb},
9d8596f0 158@code{pcommit},
43234a1e
L
159@code{avx512f},
160@code{avx512cd},
161@code{avx512er},
162@code{avx512pf},
1dfc6506
L
163@code{avx512vl},
164@code{avx512bw},
165@code{avx512dq},
2cc1b5aa 166@code{avx512ifma},
309d3373 167@code{noavx},
6305a203 168@code{vmx},
8729a6f6 169@code{vmfunc},
6305a203 170@code{smx},
f03fe4c1 171@code{xsave},
c7b8aa3a 172@code{xsaveopt},
1dfc6506
L
173@code{xsavec},
174@code{xsaves},
c0f3af97 175@code{aes},
594ab6a3 176@code{pclmul},
c7b8aa3a
L
177@code{fsgsbase},
178@code{rdrnd},
179@code{f16c},
6c30d220 180@code{bmi2},
c0f3af97 181@code{fma},
f1f8f695
L
182@code{movbe},
183@code{ept},
6c30d220 184@code{lzcnt},
42164a71
L
185@code{hle},
186@code{rtm},
6c30d220 187@code{invpcid},
bd5295b2 188@code{clflush},
f88c9eb0 189@code{lwp},
5dd85c99
SP
190@code{fma4},
191@code{xop},
60aa667e 192@code{cx16},
bd5295b2 193@code{syscall},
1b7f3fb0 194@code{rdtscp},
6305a203
L
195@code{3dnow},
196@code{3dnowa},
197@code{sse4a},
198@code{sse5},
199@code{svme},
200@code{abm} and
201@code{padlock}.
309d3373
JB
202Note that rather than extending a basic instruction set, the extension
203mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
204
205When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
206@code{.arch} directive will take precedent.
207
208@cindex @samp{-mtune=} option, i386
209@cindex @samp{-mtune=} option, x86-64
210@item -mtune=@var{CPU}
211This option specifies a processor to optimize for. When used in
212conjunction with the @option{-march} option, only instructions
213of the processor specified by the @option{-march} option will be
214generated.
215
6305a203
L
216Valid @var{CPU} values are identical to the processor list of
217@option{-march=@var{CPU}}.
9103f4f4 218
c0f3af97
L
219@cindex @samp{-msse2avx} option, i386
220@cindex @samp{-msse2avx} option, x86-64
221@item -msse2avx
222This option specifies that the assembler should encode SSE instructions
223with VEX prefix.
224
daf50ae7
L
225@cindex @samp{-msse-check=} option, i386
226@cindex @samp{-msse-check=} option, x86-64
227@item -msse-check=@var{none}
1f9bb1ca
AS
228@itemx -msse-check=@var{warning}
229@itemx -msse-check=@var{error}
9aff4b7a 230These options control if the assembler should check SSE instructions.
daf50ae7
L
231@option{-msse-check=@var{none}} will make the assembler not to check SSE
232instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 233will make the assembler issue a warning for any SSE instruction.
daf50ae7 234@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 235for any SSE instruction.
daf50ae7 236
539f890d
L
237@cindex @samp{-mavxscalar=} option, i386
238@cindex @samp{-mavxscalar=} option, x86-64
239@item -mavxscalar=@var{128}
1f9bb1ca 240@itemx -mavxscalar=@var{256}
2aab8acd 241These options control how the assembler should encode scalar AVX
539f890d
L
242instructions. @option{-mavxscalar=@var{128}} will encode scalar
243AVX instructions with 128bit vector length, which is the default.
244@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
245with 256bit vector length.
246
43234a1e
L
247@cindex @samp{-mevexlig=} option, i386
248@cindex @samp{-mevexlig=} option, x86-64
249@item -mevexlig=@var{128}
250@itemx -mevexlig=@var{256}
251@itemx -mevexlig=@var{512}
252These options control how the assembler should encode length-ignored
253(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
254EVEX instructions with 128bit vector length, which is the default.
255@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
256encode LIG EVEX instructions with 256bit and 512bit vector length,
257respectively.
258
259@cindex @samp{-mevexwig=} option, i386
260@cindex @samp{-mevexwig=} option, x86-64
261@item -mevexwig=@var{0}
262@itemx -mevexwig=@var{1}
263These options control how the assembler should encode w-ignored (WIG)
264EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
265EVEX instructions with evex.w = 0, which is the default.
266@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
267evex.w = 1.
268
1efbbeb4
L
269@cindex @samp{-mmnemonic=} option, i386
270@cindex @samp{-mmnemonic=} option, x86-64
271@item -mmnemonic=@var{att}
1f9bb1ca 272@itemx -mmnemonic=@var{intel}
34bca508 273This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
274The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
275take precedent.
276
277@cindex @samp{-msyntax=} option, i386
278@cindex @samp{-msyntax=} option, x86-64
279@item -msyntax=@var{att}
1f9bb1ca 280@itemx -msyntax=@var{intel}
34bca508 281This option specifies instruction syntax when processing instructions.
1efbbeb4
L
282The @code{.att_syntax} and @code{.intel_syntax} directives will
283take precedent.
284
285@cindex @samp{-mnaked-reg} option, i386
286@cindex @samp{-mnaked-reg} option, x86-64
287@item -mnaked-reg
288This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 289The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 290
7e8b059b
L
291@cindex @samp{-madd-bnd-prefix} option, i386
292@cindex @samp{-madd-bnd-prefix} option, x86-64
293@item -madd-bnd-prefix
294This option forces the assembler to add BND prefix to all branches, even
295if such prefix was not explicitly specified in the source code.
296
167ad85b
TG
297@cindex @samp{-mbig-obj} option, x86-64
298@item -mbig-obj
299On x86-64 PE/COFF target this option forces the use of big object file
300format, which allows more than 32768 sections.
301
d022bddd
IT
302@cindex @samp{-momit-lock-prefix=} option, i386
303@cindex @samp{-momit-lock-prefix=} option, x86-64
304@item -momit-lock-prefix=@var{no}
305@itemx -momit-lock-prefix=@var{yes}
306These options control how the assembler should encode lock prefix.
307This option is intended as a workaround for processors, that fail on
308lock prefix. This option can only be safely used with single-core,
309single-thread computers
310@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
311@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
312which is the default.
313
d3d3c6db
IT
314@cindex @samp{-mevexrcig=} option, i386
315@cindex @samp{-mevexrcig=} option, x86-64
316@item -mevexrcig=@var{rne}
317@itemx -mevexrcig=@var{rd}
318@itemx -mevexrcig=@var{ru}
319@itemx -mevexrcig=@var{rz}
320These options control how the assembler should encode SAE-only
321EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
322of EVEX instruction with 00, which is the default.
323@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
324and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
325with 01, 10 and 11 RC bits, respectively.
326
55b62671 327@end table
731caf76 328@c man end
e413e4e9 329
a6c24e68
NC
330@node i386-Directives
331@section x86 specific Directives
332
333@cindex machine directives, x86
334@cindex x86 machine directives
335@table @code
336
337@cindex @code{lcomm} directive, COFF
338@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
339Reserve @var{length} (an absolute expression) bytes for a local common
340denoted by @var{symbol}. The section and value of @var{symbol} are
341those of the new local common. The addresses are allocated in the bss
704209c0
NC
342section, so that at run-time the bytes start off zeroed. Since
343@var{symbol} is not declared global, it is normally not visible to
344@code{@value{LD}}. The optional third parameter, @var{alignment},
345specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
346
347This directive is only available for COFF based x86 targets.
348
349@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
350@c .largecomm
351
352@end table
353
252b5132 354@node i386-Syntax
7c31ae13
NC
355@section i386 Syntactical Considerations
356@menu
357* i386-Variations:: AT&T Syntax versus Intel Syntax
358* i386-Chars:: Special Characters
359@end menu
360
361@node i386-Variations
362@subsection AT&T Syntax versus Intel Syntax
252b5132 363
e413e4e9
AM
364@cindex i386 intel_syntax pseudo op
365@cindex intel_syntax pseudo op, i386
366@cindex i386 att_syntax pseudo op
367@cindex att_syntax pseudo op, i386
252b5132
RH
368@cindex i386 syntax compatibility
369@cindex syntax compatibility, i386
55b62671
AJ
370@cindex x86-64 intel_syntax pseudo op
371@cindex intel_syntax pseudo op, x86-64
372@cindex x86-64 att_syntax pseudo op
373@cindex att_syntax pseudo op, x86-64
374@cindex x86-64 syntax compatibility
375@cindex syntax compatibility, x86-64
e413e4e9
AM
376
377@code{@value{AS}} now supports assembly using Intel assembler syntax.
378@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
379back to the usual AT&T mode for compatibility with the output of
380@code{@value{GCC}}. Either of these directives may have an optional
381argument, @code{prefix}, or @code{noprefix} specifying whether registers
382require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
383different from Intel syntax. We mention these differences because
384almost all 80386 documents use Intel syntax. Notable differences
385between the two syntaxes are:
386
387@cindex immediate operands, i386
388@cindex i386 immediate operands
389@cindex register operands, i386
390@cindex i386 register operands
391@cindex jump/call operands, i386
392@cindex i386 jump/call operands
393@cindex operand delimiters, i386
55b62671
AJ
394
395@cindex immediate operands, x86-64
396@cindex x86-64 immediate operands
397@cindex register operands, x86-64
398@cindex x86-64 register operands
399@cindex jump/call operands, x86-64
400@cindex x86-64 jump/call operands
401@cindex operand delimiters, x86-64
252b5132
RH
402@itemize @bullet
403@item
404AT&T immediate operands are preceded by @samp{$}; Intel immediate
405operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
406AT&T register operands are preceded by @samp{%}; Intel register operands
407are undelimited. AT&T absolute (as opposed to PC relative) jump/call
408operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
409
410@cindex i386 source, destination operands
411@cindex source, destination operands; i386
55b62671
AJ
412@cindex x86-64 source, destination operands
413@cindex source, destination operands; x86-64
252b5132
RH
414@item
415AT&T and Intel syntax use the opposite order for source and destination
416operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
417@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
418previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
419instructions with 2 immediate operands, such as the @samp{enter}
420instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
421
422@cindex mnemonic suffixes, i386
423@cindex sizes operands, i386
424@cindex i386 size suffixes
55b62671
AJ
425@cindex mnemonic suffixes, x86-64
426@cindex sizes operands, x86-64
427@cindex x86-64 size suffixes
252b5132
RH
428@item
429In AT&T syntax the size of memory operands is determined from the last
430character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
431@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
432(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
433this by prefixing memory operands (@emph{not} the instruction mnemonics) with
434@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
435Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
436syntax.
252b5132 437
4b06377f
L
438In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
439instruction with the 64-bit displacement or immediate operand.
440
252b5132
RH
441@cindex return instructions, i386
442@cindex i386 jump, call, return
55b62671
AJ
443@cindex return instructions, x86-64
444@cindex x86-64 jump, call, return
252b5132
RH
445@item
446Immediate form long jumps and calls are
447@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
448Intel syntax is
449@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
450instruction
451is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
452@samp{ret far @var{stack-adjust}}.
453
454@cindex sections, i386
455@cindex i386 sections
55b62671
AJ
456@cindex sections, x86-64
457@cindex x86-64 sections
252b5132
RH
458@item
459The AT&T assembler does not provide support for multiple section
460programs. Unix style systems expect all programs to be single sections.
461@end itemize
462
7c31ae13
NC
463@node i386-Chars
464@subsection Special Characters
465
466@cindex line comment character, i386
467@cindex i386 line comment character
468The presence of a @samp{#} appearing anywhere on a line indicates the
469start of a comment that extends to the end of that line.
470
471If a @samp{#} appears as the first character of a line then the whole
472line is treated as a comment, but in this case the line can also be a
473logical line number directive (@pxref{Comments}) or a preprocessor
474control command (@pxref{Preprocessing}).
475
476If the @option{--divide} command line option has not been specified
477then the @samp{/} character appearing anywhere on a line also
478introduces a line comment.
479
480@cindex line separator, i386
481@cindex statement separator, i386
482@cindex i386 line separator
483The @samp{;} character can be used to separate statements on the same
484line.
485
252b5132
RH
486@node i386-Mnemonics
487@section Instruction Naming
488
489@cindex i386 instruction naming
490@cindex instruction naming, i386
55b62671
AJ
491@cindex x86-64 instruction naming
492@cindex instruction naming, x86-64
493
252b5132 494Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
495specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
496and @samp{q} specify byte, word, long and quadruple word operands. If
497no suffix is specified by an instruction then @code{@value{AS}} tries to
498fill in the missing suffix based on the destination register operand
499(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
500to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
501@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
502assembler which assumes that a missing mnemonic suffix implies long
503operand size. (This incompatibility does not affect compiler output
504since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
505
506Almost all instructions have the same names in AT&T and Intel format.
507There are a few exceptions. The sign extend and zero extend
508instructions need two sizes to specify them. They need a size to
509sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
510is accomplished by using two instruction mnemonic suffixes in AT&T
511syntax. Base names for sign extend and zero extend are
512@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
513and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
514are tacked on to this base name, the @emph{from} suffix before the
515@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
516``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
517thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
518@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
519@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
520quadruple word).
252b5132 521
b6169b20
L
522@cindex encoding options, i386
523@cindex encoding options, x86-64
524
525Different encoding options can be specified via optional mnemonic
526suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
527moving from one register to another. @samp{.d8} or @samp{.d32} suffix
528prefers 8bit or 32bit displacement in encoding.
b6169b20 529
252b5132
RH
530@cindex conversion instructions, i386
531@cindex i386 conversion instructions
55b62671
AJ
532@cindex conversion instructions, x86-64
533@cindex x86-64 conversion instructions
252b5132
RH
534The Intel-syntax conversion instructions
535
536@itemize @bullet
537@item
538@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
539
540@item
541@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
542
543@item
544@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
545
546@item
547@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
548
549@item
550@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
551(x86-64 only),
552
553@item
d5f0cf92 554@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 555@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
556@end itemize
557
558@noindent
55b62671
AJ
559are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
560@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
561instructions.
252b5132
RH
562
563@cindex jump instructions, i386
564@cindex call instructions, i386
55b62671
AJ
565@cindex jump instructions, x86-64
566@cindex call instructions, x86-64
252b5132
RH
567Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
568AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
569convention.
570
1efbbeb4
L
571@section AT&T Mnemonic versus Intel Mnemonic
572
573@cindex i386 mnemonic compatibility
574@cindex mnemonic compatibility, i386
575
576@code{@value{AS}} supports assembly using Intel mnemonic.
577@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
578@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
579syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
580Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
581@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
582@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
583assembler with different mnemonics from those in Intel IA32 specification.
584@code{@value{GCC}} generates those instructions with AT&T mnemonic.
585
252b5132
RH
586@node i386-Regs
587@section Register Naming
588
589@cindex i386 registers
590@cindex registers, i386
55b62671
AJ
591@cindex x86-64 registers
592@cindex registers, x86-64
252b5132
RH
593Register operands are always prefixed with @samp{%}. The 80386 registers
594consist of
595
596@itemize @bullet
597@item
598the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
599@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
600frame pointer), and @samp{%esp} (the stack pointer).
601
602@item
603the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
604@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
605
606@item
607the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
608@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
609are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
610@samp{%cx}, and @samp{%dx})
611
612@item
613the 6 section registers @samp{%cs} (code section), @samp{%ds}
614(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
615and @samp{%gs}.
616
617@item
618the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
619@samp{%cr3}.
620
621@item
622the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
623@samp{%db3}, @samp{%db6}, and @samp{%db7}.
624
625@item
626the 2 test registers @samp{%tr6} and @samp{%tr7}.
627
628@item
629the 8 floating point register stack @samp{%st} or equivalently
630@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
631@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
632These registers are overloaded by 8 MMX registers @samp{%mm0},
633@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
634@samp{%mm6} and @samp{%mm7}.
635
636@item
637the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
638@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
639@end itemize
640
641The AMD x86-64 architecture extends the register set by:
642
643@itemize @bullet
644@item
645enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
646accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
647@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
648pointer)
649
650@item
651the 8 extended registers @samp{%r8}--@samp{%r15}.
652
653@item
654the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
655
656@item
657the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
658
659@item
660the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
661
662@item
663the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
664
665@item
666the 8 debug registers: @samp{%db8}--@samp{%db15}.
667
668@item
669the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
670@end itemize
671
672@node i386-Prefixes
673@section Instruction Prefixes
674
675@cindex i386 instruction prefixes
676@cindex instruction prefixes, i386
677@cindex prefixes, i386
678Instruction prefixes are used to modify the following instruction. They
679are used to repeat string instructions, to provide section overrides, to
680perform bus lock operations, and to change operand and address sizes.
681(Most instructions that normally operate on 32-bit operands will use
68216-bit operands if the instruction has an ``operand size'' prefix.)
683Instruction prefixes are best written on the same line as the instruction
684they act upon. For example, the @samp{scas} (scan string) instruction is
685repeated with:
686
687@smallexample
688 repne scas %es:(%edi),%al
689@end smallexample
690
691You may also place prefixes on the lines immediately preceding the
692instruction, but this circumvents checks that @code{@value{AS}} does
693with prefixes, and will not work with all prefixes.
694
695Here is a list of instruction prefixes:
696
697@cindex section override prefixes, i386
698@itemize @bullet
699@item
700Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
701@samp{fs}, @samp{gs}. These are automatically added by specifying
702using the @var{section}:@var{memory-operand} form for memory references.
703
704@cindex size prefixes, i386
705@item
706Operand/Address size prefixes @samp{data16} and @samp{addr16}
707change 32-bit operands/addresses into 16-bit operands/addresses,
708while @samp{data32} and @samp{addr32} change 16-bit ones (in a
709@code{.code16} section) into 32-bit operands/addresses. These prefixes
710@emph{must} appear on the same line of code as the instruction they
711modify. For example, in a 16-bit @code{.code16} section, you might
712write:
713
714@smallexample
715 addr32 jmpl *(%ebx)
716@end smallexample
717
718@cindex bus lock prefixes, i386
719@cindex inhibiting interrupts, i386
720@item
721The bus lock prefix @samp{lock} inhibits interrupts during execution of
722the instruction it precedes. (This is only valid with certain
723instructions; see a 80386 manual for details).
724
725@cindex coprocessor wait, i386
726@item
727The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
728complete the current instruction. This should never be needed for the
72980386/80387 combination.
730
731@cindex repeat prefixes, i386
732@item
733The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
734to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
735times if the current address size is 16-bits).
55b62671
AJ
736@cindex REX prefixes, i386
737@item
738The @samp{rex} family of prefixes is used by x86-64 to encode
739extensions to i386 instruction set. The @samp{rex} prefix has four
740bits --- an operand size overwrite (@code{64}) used to change operand size
741from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
742register set.
743
744You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
745instruction emits @samp{rex} prefix with all the bits set. By omitting
746the @code{64}, @code{x}, @code{y} or @code{z} you may write other
747prefixes as well. Normally, there is no need to write the prefixes
748explicitly, since gas will automatically generate them based on the
749instruction operands.
252b5132
RH
750@end itemize
751
752@node i386-Memory
753@section Memory References
754
755@cindex i386 memory references
756@cindex memory references, i386
55b62671
AJ
757@cindex x86-64 memory references
758@cindex memory references, x86-64
252b5132
RH
759An Intel syntax indirect memory reference of the form
760
761@smallexample
762@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
763@end smallexample
764
765@noindent
766is translated into the AT&T syntax
767
768@smallexample
769@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
770@end smallexample
771
772@noindent
773where @var{base} and @var{index} are the optional 32-bit base and
774index registers, @var{disp} is the optional displacement, and
775@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
776to calculate the address of the operand. If no @var{scale} is
777specified, @var{scale} is taken to be 1. @var{section} specifies the
778optional section register for the memory operand, and may override the
779default section register (see a 80386 manual for section register
780defaults). Note that section overrides in AT&T syntax @emph{must}
781be preceded by a @samp{%}. If you specify a section override which
782coincides with the default section register, @code{@value{AS}} does @emph{not}
783output any section register override prefixes to assemble the given
784instruction. Thus, section overrides can be specified to emphasize which
785section register is used for a given memory operand.
786
787Here are some examples of Intel and AT&T style memory references:
788
789@table @asis
790@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
791@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
792missing, and the default section is used (@samp{%ss} for addressing with
793@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
794
795@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
796@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
797@samp{foo}. All other fields are missing. The section register here
798defaults to @samp{%ds}.
799
800@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
801This uses the value pointed to by @samp{foo} as a memory operand.
802Note that @var{base} and @var{index} are both missing, but there is only
803@emph{one} @samp{,}. This is a syntactic exception.
804
805@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
806This selects the contents of the variable @samp{foo} with section
807register @var{section} being @samp{%gs}.
808@end table
809
810Absolute (as opposed to PC relative) call and jump operands must be
811prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
812always chooses PC relative addressing for jump/call labels.
813
814Any instruction that has a memory operand, but no register operand,
55b62671
AJ
815@emph{must} specify its size (byte, word, long, or quadruple) with an
816instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
817respectively).
818
819The x86-64 architecture adds an RIP (instruction pointer relative)
820addressing. This addressing mode is specified by using @samp{rip} as a
821base register. Only constant offsets are valid. For example:
822
823@table @asis
824@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
825Points to the address 1234 bytes past the end of the current
826instruction.
827
828@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
829Points to the @code{symbol} in RIP relative way, this is shorter than
830the default absolute addressing.
831@end table
832
833Other addressing modes remain unchanged in x86-64 architecture, except
834registers used are 64-bit instead of 32-bit.
252b5132 835
fddf5b5b 836@node i386-Jumps
252b5132
RH
837@section Handling of Jump Instructions
838
839@cindex jump optimization, i386
840@cindex i386 jump optimization
55b62671
AJ
841@cindex jump optimization, x86-64
842@cindex x86-64 jump optimization
252b5132
RH
843Jump instructions are always optimized to use the smallest possible
844displacements. This is accomplished by using byte (8-bit) displacement
845jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 846is insufficient a long displacement is used. We do not support
252b5132
RH
847word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
848instruction with the @samp{data16} instruction prefix), since the 80386
849insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 850is added. (See also @pxref{i386-Arch})
252b5132
RH
851
852Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
853@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
854displacements, so that if you use these instructions (@code{@value{GCC}} does
855not use them) you may get an error message (and incorrect code). The AT&T
85680386 assembler tries to get around this problem by expanding @samp{jcxz foo}
857to
858
859@smallexample
860 jcxz cx_zero
861 jmp cx_nonzero
862cx_zero: jmp foo
863cx_nonzero:
864@end smallexample
865
866@node i386-Float
867@section Floating Point
868
869@cindex i386 floating point
870@cindex floating point, i386
55b62671
AJ
871@cindex x86-64 floating point
872@cindex floating point, x86-64
252b5132
RH
873All 80387 floating point types except packed BCD are supported.
874(BCD support may be added without much difficulty). These data
875types are 16-, 32-, and 64- bit integers, and single (32-bit),
876double (64-bit), and extended (80-bit) precision floating point.
877Each supported type has an instruction mnemonic suffix and a constructor
878associated with it. Instruction mnemonic suffixes specify the operand's
879data type. Constructors build these data types into memory.
880
881@cindex @code{float} directive, i386
882@cindex @code{single} directive, i386
883@cindex @code{double} directive, i386
884@cindex @code{tfloat} directive, i386
55b62671
AJ
885@cindex @code{float} directive, x86-64
886@cindex @code{single} directive, x86-64
887@cindex @code{double} directive, x86-64
888@cindex @code{tfloat} directive, x86-64
252b5132
RH
889@itemize @bullet
890@item
891Floating point constructors are @samp{.float} or @samp{.single},
892@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
893These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
894and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
895only supports this format via the @samp{fldt} (load 80-bit real to stack
896top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
897
898@cindex @code{word} directive, i386
899@cindex @code{long} directive, i386
900@cindex @code{int} directive, i386
901@cindex @code{quad} directive, i386
55b62671
AJ
902@cindex @code{word} directive, x86-64
903@cindex @code{long} directive, x86-64
904@cindex @code{int} directive, x86-64
905@cindex @code{quad} directive, x86-64
252b5132
RH
906@item
907Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
908@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
909corresponding instruction mnemonic suffixes are @samp{s} (single),
910@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
911the 64-bit @samp{q} format is only present in the @samp{fildq} (load
912quad integer to stack top) and @samp{fistpq} (store quad integer and pop
913stack) instructions.
914@end itemize
915
916Register to register operations should not use instruction mnemonic suffixes.
917@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
918wrote @samp{fst %st, %st(1)}, since all register to register operations
919use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
920which converts @samp{%st} from 80-bit to 64-bit floating point format,
921then stores the result in the 4 byte location @samp{mem})
922
923@node i386-SIMD
924@section Intel's MMX and AMD's 3DNow! SIMD Operations
925
926@cindex MMX, i386
927@cindex 3DNow!, i386
928@cindex SIMD, i386
55b62671
AJ
929@cindex MMX, x86-64
930@cindex 3DNow!, x86-64
931@cindex SIMD, x86-64
252b5132
RH
932
933@code{@value{AS}} supports Intel's MMX instruction set (SIMD
934instructions for integer data), available on Intel's Pentium MMX
935processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 936Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
937instruction set (SIMD instructions for 32-bit floating point data)
938available on AMD's K6-2 processor and possibly others in the future.
939
940Currently, @code{@value{AS}} does not support Intel's floating point
941SIMD, Katmai (KNI).
942
943The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
944@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
94516-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
946floating point values. The MMX registers cannot be used at the same time
947as the floating point stack.
948
949See Intel and AMD documentation, keeping in mind that the operand order in
950instructions is reversed from the Intel syntax.
951
f88c9eb0
SP
952@node i386-LWP
953@section AMD's Lightweight Profiling Instructions
954
955@cindex LWP, i386
956@cindex LWP, x86-64
957
958@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
959instruction set, available on AMD's Family 15h (Orochi) processors.
960
961LWP enables applications to collect and manage performance data, and
962react to performance events. The collection of performance data
963requires no context switches. LWP runs in the context of a thread and
964so several counters can be used independently across multiple threads.
965LWP can be used in both 64-bit and legacy 32-bit modes.
966
967For detailed information on the LWP instruction set, see the
968@cite{AMD Lightweight Profiling Specification} available at
969@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
970
87973e9f
QN
971@node i386-BMI
972@section Bit Manipulation Instructions
973
974@cindex BMI, i386
975@cindex BMI, x86-64
976
977@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
978
979BMI instructions provide several instructions implementing individual
980bit manipulation operations such as isolation, masking, setting, or
34bca508 981resetting.
87973e9f
QN
982
983@c Need to add a specification citation here when available.
984
2a2a0f38
QN
985@node i386-TBM
986@section AMD's Trailing Bit Manipulation Instructions
987
988@cindex TBM, i386
989@cindex TBM, x86-64
990
991@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
992instruction set, available on AMD's BDVER2 processors (Trinity and
993Viperfish).
994
995TBM instructions provide instructions implementing individual bit
996manipulation operations such as isolating, masking, setting, resetting,
997complementing, and operations on trailing zeros and ones.
998
999@c Need to add a specification citation here when available.
87973e9f 1000
252b5132
RH
1001@node i386-16bit
1002@section Writing 16-bit Code
1003
1004@cindex i386 16-bit code
1005@cindex 16-bit code, i386
1006@cindex real-mode code, i386
eecb386c 1007@cindex @code{code16gcc} directive, i386
252b5132
RH
1008@cindex @code{code16} directive, i386
1009@cindex @code{code32} directive, i386
55b62671
AJ
1010@cindex @code{code64} directive, i386
1011@cindex @code{code64} directive, x86-64
1012While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1013or 64-bit x86-64 code depending on the default configuration,
252b5132 1014it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1015mode code segments. To do this, put a @samp{.code16} or
1016@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1017be run in 16-bit mode. You can switch @code{@value{AS}} to writing
101832-bit code with the @samp{.code32} directive or 64-bit code with the
1019@samp{.code64} directive.
eecb386c
AM
1020
1021@samp{.code16gcc} provides experimental support for generating 16-bit
1022code from gcc, and differs from @samp{.code16} in that @samp{call},
1023@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1024@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1025default to 32-bit size. This is so that the stack pointer is
1026manipulated in the same way over function calls, allowing access to
1027function parameters at the same stack offsets as in 32-bit mode.
1028@samp{.code16gcc} also automatically adds address size prefixes where
1029necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1030
1031The code which @code{@value{AS}} generates in 16-bit mode will not
1032necessarily run on a 16-bit pre-80386 processor. To write code that
1033runs on such a processor, you must refrain from using @emph{any} 32-bit
1034constructs which require @code{@value{AS}} to output address or operand
1035size prefixes.
1036
1037Note that writing 16-bit code instructions by explicitly specifying a
1038prefix or an instruction mnemonic suffix within a 32-bit code section
1039generates different machine instructions than those generated for a
104016-bit code segment. In a 32-bit code section, the following code
1041generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1042value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1043
1044@smallexample
1045 pushw $4
1046@end smallexample
1047
1048The same code in a 16-bit code section would generate the machine
b45619c0 1049opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1050is correct since the processor default operand size is assumed to be 16
1051bits in a 16-bit code section.
1052
1053@node i386-Bugs
1054@section AT&T Syntax bugs
1055
1056The UnixWare assembler, and probably other AT&T derived ix86 Unix
1057assemblers, generate floating point instructions with reversed source
1058and destination registers in certain cases. Unfortunately, gcc and
1059possibly many other programs use this reversed syntax, so we're stuck
1060with it.
1061
1062For example
1063
1064@smallexample
1065 fsub %st,%st(3)
1066@end smallexample
1067@noindent
1068results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1069than the expected @samp{%st(3) - %st}. This happens with all the
1070non-commutative arithmetic floating point operations with two register
1071operands where the source register is @samp{%st} and the destination
1072register is @samp{%st(i)}.
1073
e413e4e9
AM
1074@node i386-Arch
1075@section Specifying CPU Architecture
1076
1077@cindex arch directive, i386
1078@cindex i386 arch directive
55b62671
AJ
1079@cindex arch directive, x86-64
1080@cindex x86-64 arch directive
e413e4e9
AM
1081
1082@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1083(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1084directive enables a warning when gas detects an instruction that is not
1085supported on the CPU specified. The choices for @var{cpu_type} are:
1086
1087@multitable @columnfractions .20 .20 .20 .20
1088@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1089@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1090@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1091@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1092@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1093@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1094@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
c7b0bd56 1095@item @samp{bdver4} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1096@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1097@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1098@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1099@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1100@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1101@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1102@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1103@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1104@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1105@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1106@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1107@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1108@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
9d8596f0 1109@item @samp{.clwb} @tab @samp{.pcommit}
1ceab344 1110@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1111@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1112@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1ceab344 1113@item @samp{.padlock}
e413e4e9
AM
1114@end multitable
1115
fddf5b5b
AM
1116Apart from the warning, there are only two other effects on
1117@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1118@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1119will automatically use a two byte opcode sequence. The larger three
1120byte opcode sequence is used on the 486 (and when no architecture is
1121specified) because it executes faster on the 486. Note that you can
1122explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1123Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1124@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1125conditional jumps will be promoted when necessary to a two instruction
1126sequence consisting of a conditional jump of the opposite sense around
1127an unconditional jump to the target.
1128
5c6af06e
JB
1129Following the CPU architecture (but not a sub-architecture, which are those
1130starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1131control automatic promotion of conditional jumps. @samp{jumps} is the
1132default, and enables jump promotion; All external jumps will be of the long
1133variety, and file-local jumps will be promoted as necessary.
1134(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1135byte offset jumps, and warns about file-local conditional jumps that
1136@code{@value{AS}} promotes.
fddf5b5b
AM
1137Unconditional jumps are treated as for @samp{jumps}.
1138
1139For example
1140
1141@smallexample
1142 .arch i8086,nojumps
1143@end smallexample
e413e4e9 1144
252b5132
RH
1145@node i386-Notes
1146@section Notes
1147
1148@cindex i386 @code{mul}, @code{imul} instructions
1149@cindex @code{mul} instruction, i386
1150@cindex @code{imul} instruction, i386
55b62671
AJ
1151@cindex @code{mul} instruction, x86-64
1152@cindex @code{imul} instruction, x86-64
252b5132 1153There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1154instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1155multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1156for @samp{imul}) can be output only in the one operand form. Thus,
1157@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1158the expanding multiply would clobber the @samp{%edx} register, and this
1159would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
116064-bit product in @samp{%edx:%eax}.
1161
1162We have added a two operand form of @samp{imul} when the first operand
1163is an immediate mode expression and the second operand is a register.
1164This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1165example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1166$69, %eax, %eax}.
1167
This page took 1.151143 seconds and 4 git commands to generate.