gas/
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037
AM
1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2@c 2001, 2003, 2004
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
252b5132
RH
27* i386-Syntax:: AT&T Syntax versus Intel Syntax
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35* i386-16bit:: Writing 16-bit Code
e413e4e9 36* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
37* i386-Bugs:: AT&T Syntax bugs
38* i386-Notes:: Notes
39@end menu
40
41@node i386-Options
42@section Options
43
55b62671
AJ
44@cindex options for i386
45@cindex options for x86-64
46@cindex i386 options
47@cindex x86-64 options
48
49The i386 version of @code{@value{AS}} has a few machine
50dependent options:
51
52@table @code
53@cindex @samp{--32} option, i386
54@cindex @samp{--32} option, x86-64
55@cindex @samp{--64} option, i386
56@cindex @samp{--64} option, x86-64
57@item --32 | --64
58Select the word size, either 32 bits or 64 bits. Selecting 32-bit
59implies Intel i386 architecture, while 64-bit implies AMD x86-64
60architecture.
61
62These options are only available with the ELF object file format, and
63require that the necessary BFD support has been included (on a 32-bit
64platform you have to add --enable-64-bit-bfd to configure enable 64-bit
65usage and use x86-64 as target platform).
12b55ccc
L
66
67@item -n
68By default, x86 GAS replaces multiple nop instructions used for
69alignment within code sections with multi-byte nop instructions such
70as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
71
72@cindex @samp{--divide} option, i386
73@item --divide
74On SVR4-derived platforms, the character @samp{/} is treated as a comment
75character, which means that it cannot be used in expressions. The
76@samp{--divide} option turns @samp{/} into a normal character. This does
77not disable @samp{/} at the beginning of a line starting a comment, or
78affect using @samp{#} for starting a comment.
79
9103f4f4
L
80@cindex @samp{-march=} option, i386
81@cindex @samp{-march=} option, x86-64
6305a203
L
82@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
83This option specifies the target processor. The assembler will
84issue an error message if an attempt is made to assemble an instruction
85which will not execute on the target processor. The following
86processor names are recognized:
9103f4f4
L
87@code{i8086},
88@code{i186},
89@code{i286},
90@code{i386},
91@code{i486},
92@code{i586},
93@code{i686},
94@code{pentium},
95@code{pentiumpro},
96@code{pentiumii},
97@code{pentiumiii},
98@code{pentium4},
99@code{prescott},
100@code{nocona},
ef05d495
L
101@code{core},
102@code{core2},
bd5295b2 103@code{corei7},
9103f4f4
L
104@code{k6},
105@code{k6_2},
106@code{athlon},
9103f4f4
L
107@code{opteron},
108@code{k8},
1ceab344 109@code{amdfam10},
9103f4f4
L
110@code{generic32} and
111@code{generic64}.
112
6305a203
L
113In addition to the basic instruction set, the assembler can be told to
114accept various extension mnemonics. For example,
115@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
116@var{vmx}. The following extensions are currently supported:
309d3373
JB
117@code{8087},
118@code{287},
119@code{387},
120@code{no87},
6305a203 121@code{mmx},
309d3373 122@code{nommx},
6305a203
L
123@code{sse},
124@code{sse2},
125@code{sse3},
126@code{ssse3},
127@code{sse4.1},
128@code{sse4.2},
129@code{sse4},
309d3373 130@code{nosse},
c0f3af97 131@code{avx},
309d3373 132@code{noavx},
6305a203
L
133@code{vmx},
134@code{smx},
f03fe4c1 135@code{xsave},
c0f3af97 136@code{aes},
594ab6a3 137@code{pclmul},
c0f3af97 138@code{fma},
f1f8f695
L
139@code{movbe},
140@code{ept},
bd5295b2
L
141@code{clflush},
142@code{syscall},
1b7f3fb0 143@code{rdtscp},
6305a203
L
144@code{3dnow},
145@code{3dnowa},
146@code{sse4a},
147@code{sse5},
148@code{svme},
149@code{abm} and
150@code{padlock}.
309d3373
JB
151Note that rather than extending a basic instruction set, the extension
152mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
153
154When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
155@code{.arch} directive will take precedent.
156
157@cindex @samp{-mtune=} option, i386
158@cindex @samp{-mtune=} option, x86-64
159@item -mtune=@var{CPU}
160This option specifies a processor to optimize for. When used in
161conjunction with the @option{-march} option, only instructions
162of the processor specified by the @option{-march} option will be
163generated.
164
6305a203
L
165Valid @var{CPU} values are identical to the processor list of
166@option{-march=@var{CPU}}.
9103f4f4 167
c0f3af97
L
168@cindex @samp{-msse2avx} option, i386
169@cindex @samp{-msse2avx} option, x86-64
170@item -msse2avx
171This option specifies that the assembler should encode SSE instructions
172with VEX prefix.
173
daf50ae7
L
174@cindex @samp{-msse-check=} option, i386
175@cindex @samp{-msse-check=} option, x86-64
176@item -msse-check=@var{none}
177@item -msse-check=@var{warning}
178@item -msse-check=@var{error}
179These options control if the assembler should check SSE intructions.
180@option{-msse-check=@var{none}} will make the assembler not to check SSE
181instructions, which is the default. @option{-msse-check=@var{warning}}
182will make the assembler issue a warning for any SSE intruction.
183@option{-msse-check=@var{error}} will make the assembler issue an error
184for any SSE intruction.
185
1efbbeb4
L
186@cindex @samp{-mmnemonic=} option, i386
187@cindex @samp{-mmnemonic=} option, x86-64
188@item -mmnemonic=@var{att}
189@item -mmnemonic=@var{intel}
190This option specifies instruction mnemonic for matching instructions.
191The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
192take precedent.
193
194@cindex @samp{-msyntax=} option, i386
195@cindex @samp{-msyntax=} option, x86-64
196@item -msyntax=@var{att}
197@item -msyntax=@var{intel}
198This option specifies instruction syntax when processing instructions.
199The @code{.att_syntax} and @code{.intel_syntax} directives will
200take precedent.
201
202@cindex @samp{-mnaked-reg} option, i386
203@cindex @samp{-mnaked-reg} option, x86-64
204@item -mnaked-reg
205This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 206The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 207
55b62671 208@end table
e413e4e9 209
a6c24e68
NC
210@node i386-Directives
211@section x86 specific Directives
212
213@cindex machine directives, x86
214@cindex x86 machine directives
215@table @code
216
217@cindex @code{lcomm} directive, COFF
218@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
219Reserve @var{length} (an absolute expression) bytes for a local common
220denoted by @var{symbol}. The section and value of @var{symbol} are
221those of the new local common. The addresses are allocated in the bss
704209c0
NC
222section, so that at run-time the bytes start off zeroed. Since
223@var{symbol} is not declared global, it is normally not visible to
224@code{@value{LD}}. The optional third parameter, @var{alignment},
225specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
226
227This directive is only available for COFF based x86 targets.
228
229@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
230@c .largecomm
231
232@end table
233
252b5132
RH
234@node i386-Syntax
235@section AT&T Syntax versus Intel Syntax
236
e413e4e9
AM
237@cindex i386 intel_syntax pseudo op
238@cindex intel_syntax pseudo op, i386
239@cindex i386 att_syntax pseudo op
240@cindex att_syntax pseudo op, i386
252b5132
RH
241@cindex i386 syntax compatibility
242@cindex syntax compatibility, i386
55b62671
AJ
243@cindex x86-64 intel_syntax pseudo op
244@cindex intel_syntax pseudo op, x86-64
245@cindex x86-64 att_syntax pseudo op
246@cindex att_syntax pseudo op, x86-64
247@cindex x86-64 syntax compatibility
248@cindex syntax compatibility, x86-64
e413e4e9
AM
249
250@code{@value{AS}} now supports assembly using Intel assembler syntax.
251@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
252back to the usual AT&T mode for compatibility with the output of
253@code{@value{GCC}}. Either of these directives may have an optional
254argument, @code{prefix}, or @code{noprefix} specifying whether registers
255require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
256different from Intel syntax. We mention these differences because
257almost all 80386 documents use Intel syntax. Notable differences
258between the two syntaxes are:
259
260@cindex immediate operands, i386
261@cindex i386 immediate operands
262@cindex register operands, i386
263@cindex i386 register operands
264@cindex jump/call operands, i386
265@cindex i386 jump/call operands
266@cindex operand delimiters, i386
55b62671
AJ
267
268@cindex immediate operands, x86-64
269@cindex x86-64 immediate operands
270@cindex register operands, x86-64
271@cindex x86-64 register operands
272@cindex jump/call operands, x86-64
273@cindex x86-64 jump/call operands
274@cindex operand delimiters, x86-64
252b5132
RH
275@itemize @bullet
276@item
277AT&T immediate operands are preceded by @samp{$}; Intel immediate
278operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
279AT&T register operands are preceded by @samp{%}; Intel register operands
280are undelimited. AT&T absolute (as opposed to PC relative) jump/call
281operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
282
283@cindex i386 source, destination operands
284@cindex source, destination operands; i386
55b62671
AJ
285@cindex x86-64 source, destination operands
286@cindex source, destination operands; x86-64
252b5132
RH
287@item
288AT&T and Intel syntax use the opposite order for source and destination
289operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
290@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
291previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
292instructions with 2 immediate operands, such as the @samp{enter}
293instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
294
295@cindex mnemonic suffixes, i386
296@cindex sizes operands, i386
297@cindex i386 size suffixes
55b62671
AJ
298@cindex mnemonic suffixes, x86-64
299@cindex sizes operands, x86-64
300@cindex x86-64 size suffixes
252b5132
RH
301@item
302In AT&T syntax the size of memory operands is determined from the last
303character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
304@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
305(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
306this by prefixing memory operands (@emph{not} the instruction mnemonics) with
307@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
308Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
309syntax.
252b5132
RH
310
311@cindex return instructions, i386
312@cindex i386 jump, call, return
55b62671
AJ
313@cindex return instructions, x86-64
314@cindex x86-64 jump, call, return
252b5132
RH
315@item
316Immediate form long jumps and calls are
317@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
318Intel syntax is
319@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
320instruction
321is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
322@samp{ret far @var{stack-adjust}}.
323
324@cindex sections, i386
325@cindex i386 sections
55b62671
AJ
326@cindex sections, x86-64
327@cindex x86-64 sections
252b5132
RH
328@item
329The AT&T assembler does not provide support for multiple section
330programs. Unix style systems expect all programs to be single sections.
331@end itemize
332
333@node i386-Mnemonics
334@section Instruction Naming
335
336@cindex i386 instruction naming
337@cindex instruction naming, i386
55b62671
AJ
338@cindex x86-64 instruction naming
339@cindex instruction naming, x86-64
340
252b5132 341Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
342specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
343and @samp{q} specify byte, word, long and quadruple word operands. If
344no suffix is specified by an instruction then @code{@value{AS}} tries to
345fill in the missing suffix based on the destination register operand
346(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
347to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
348@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
349assembler which assumes that a missing mnemonic suffix implies long
350operand size. (This incompatibility does not affect compiler output
351since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
352
353Almost all instructions have the same names in AT&T and Intel format.
354There are a few exceptions. The sign extend and zero extend
355instructions need two sizes to specify them. They need a size to
356sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
357is accomplished by using two instruction mnemonic suffixes in AT&T
358syntax. Base names for sign extend and zero extend are
359@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
360and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
361are tacked on to this base name, the @emph{from} suffix before the
362@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
363``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
364thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
365@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
366@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
367quadruple word).
252b5132 368
b6169b20
L
369@cindex encoding options, i386
370@cindex encoding options, x86-64
371
372Different encoding options can be specified via optional mnemonic
373suffix. @samp{.s} suffix swaps 2 register operands in encoding when
374moving from one register to another.
375
252b5132
RH
376@cindex conversion instructions, i386
377@cindex i386 conversion instructions
55b62671
AJ
378@cindex conversion instructions, x86-64
379@cindex x86-64 conversion instructions
252b5132
RH
380The Intel-syntax conversion instructions
381
382@itemize @bullet
383@item
384@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
385
386@item
387@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
388
389@item
390@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
391
392@item
393@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
394
395@item
396@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
397(x86-64 only),
398
399@item
d5f0cf92 400@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 401@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
402@end itemize
403
404@noindent
55b62671
AJ
405are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
406@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
407instructions.
252b5132
RH
408
409@cindex jump instructions, i386
410@cindex call instructions, i386
55b62671
AJ
411@cindex jump instructions, x86-64
412@cindex call instructions, x86-64
252b5132
RH
413Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
414AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
415convention.
416
1efbbeb4
L
417@section AT&T Mnemonic versus Intel Mnemonic
418
419@cindex i386 mnemonic compatibility
420@cindex mnemonic compatibility, i386
421
422@code{@value{AS}} supports assembly using Intel mnemonic.
423@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
424@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
425syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
426Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
427@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
428@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
429assembler with different mnemonics from those in Intel IA32 specification.
430@code{@value{GCC}} generates those instructions with AT&T mnemonic.
431
252b5132
RH
432@node i386-Regs
433@section Register Naming
434
435@cindex i386 registers
436@cindex registers, i386
55b62671
AJ
437@cindex x86-64 registers
438@cindex registers, x86-64
252b5132
RH
439Register operands are always prefixed with @samp{%}. The 80386 registers
440consist of
441
442@itemize @bullet
443@item
444the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
445@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
446frame pointer), and @samp{%esp} (the stack pointer).
447
448@item
449the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
450@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
451
452@item
453the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
454@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
455are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
456@samp{%cx}, and @samp{%dx})
457
458@item
459the 6 section registers @samp{%cs} (code section), @samp{%ds}
460(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
461and @samp{%gs}.
462
463@item
464the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
465@samp{%cr3}.
466
467@item
468the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
469@samp{%db3}, @samp{%db6}, and @samp{%db7}.
470
471@item
472the 2 test registers @samp{%tr6} and @samp{%tr7}.
473
474@item
475the 8 floating point register stack @samp{%st} or equivalently
476@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
477@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
478These registers are overloaded by 8 MMX registers @samp{%mm0},
479@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
480@samp{%mm6} and @samp{%mm7}.
481
482@item
483the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
484@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
485@end itemize
486
487The AMD x86-64 architecture extends the register set by:
488
489@itemize @bullet
490@item
491enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
492accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
493@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
494pointer)
495
496@item
497the 8 extended registers @samp{%r8}--@samp{%r15}.
498
499@item
500the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
501
502@item
503the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
504
505@item
506the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
507
508@item
509the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
510
511@item
512the 8 debug registers: @samp{%db8}--@samp{%db15}.
513
514@item
515the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
516@end itemize
517
518@node i386-Prefixes
519@section Instruction Prefixes
520
521@cindex i386 instruction prefixes
522@cindex instruction prefixes, i386
523@cindex prefixes, i386
524Instruction prefixes are used to modify the following instruction. They
525are used to repeat string instructions, to provide section overrides, to
526perform bus lock operations, and to change operand and address sizes.
527(Most instructions that normally operate on 32-bit operands will use
52816-bit operands if the instruction has an ``operand size'' prefix.)
529Instruction prefixes are best written on the same line as the instruction
530they act upon. For example, the @samp{scas} (scan string) instruction is
531repeated with:
532
533@smallexample
534 repne scas %es:(%edi),%al
535@end smallexample
536
537You may also place prefixes on the lines immediately preceding the
538instruction, but this circumvents checks that @code{@value{AS}} does
539with prefixes, and will not work with all prefixes.
540
541Here is a list of instruction prefixes:
542
543@cindex section override prefixes, i386
544@itemize @bullet
545@item
546Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
547@samp{fs}, @samp{gs}. These are automatically added by specifying
548using the @var{section}:@var{memory-operand} form for memory references.
549
550@cindex size prefixes, i386
551@item
552Operand/Address size prefixes @samp{data16} and @samp{addr16}
553change 32-bit operands/addresses into 16-bit operands/addresses,
554while @samp{data32} and @samp{addr32} change 16-bit ones (in a
555@code{.code16} section) into 32-bit operands/addresses. These prefixes
556@emph{must} appear on the same line of code as the instruction they
557modify. For example, in a 16-bit @code{.code16} section, you might
558write:
559
560@smallexample
561 addr32 jmpl *(%ebx)
562@end smallexample
563
564@cindex bus lock prefixes, i386
565@cindex inhibiting interrupts, i386
566@item
567The bus lock prefix @samp{lock} inhibits interrupts during execution of
568the instruction it precedes. (This is only valid with certain
569instructions; see a 80386 manual for details).
570
571@cindex coprocessor wait, i386
572@item
573The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
574complete the current instruction. This should never be needed for the
57580386/80387 combination.
576
577@cindex repeat prefixes, i386
578@item
579The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
580to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
581times if the current address size is 16-bits).
55b62671
AJ
582@cindex REX prefixes, i386
583@item
584The @samp{rex} family of prefixes is used by x86-64 to encode
585extensions to i386 instruction set. The @samp{rex} prefix has four
586bits --- an operand size overwrite (@code{64}) used to change operand size
587from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
588register set.
589
590You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
591instruction emits @samp{rex} prefix with all the bits set. By omitting
592the @code{64}, @code{x}, @code{y} or @code{z} you may write other
593prefixes as well. Normally, there is no need to write the prefixes
594explicitly, since gas will automatically generate them based on the
595instruction operands.
252b5132
RH
596@end itemize
597
598@node i386-Memory
599@section Memory References
600
601@cindex i386 memory references
602@cindex memory references, i386
55b62671
AJ
603@cindex x86-64 memory references
604@cindex memory references, x86-64
252b5132
RH
605An Intel syntax indirect memory reference of the form
606
607@smallexample
608@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
609@end smallexample
610
611@noindent
612is translated into the AT&T syntax
613
614@smallexample
615@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
616@end smallexample
617
618@noindent
619where @var{base} and @var{index} are the optional 32-bit base and
620index registers, @var{disp} is the optional displacement, and
621@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
622to calculate the address of the operand. If no @var{scale} is
623specified, @var{scale} is taken to be 1. @var{section} specifies the
624optional section register for the memory operand, and may override the
625default section register (see a 80386 manual for section register
626defaults). Note that section overrides in AT&T syntax @emph{must}
627be preceded by a @samp{%}. If you specify a section override which
628coincides with the default section register, @code{@value{AS}} does @emph{not}
629output any section register override prefixes to assemble the given
630instruction. Thus, section overrides can be specified to emphasize which
631section register is used for a given memory operand.
632
633Here are some examples of Intel and AT&T style memory references:
634
635@table @asis
636@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
637@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
638missing, and the default section is used (@samp{%ss} for addressing with
639@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
640
641@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
642@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
643@samp{foo}. All other fields are missing. The section register here
644defaults to @samp{%ds}.
645
646@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
647This uses the value pointed to by @samp{foo} as a memory operand.
648Note that @var{base} and @var{index} are both missing, but there is only
649@emph{one} @samp{,}. This is a syntactic exception.
650
651@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
652This selects the contents of the variable @samp{foo} with section
653register @var{section} being @samp{%gs}.
654@end table
655
656Absolute (as opposed to PC relative) call and jump operands must be
657prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
658always chooses PC relative addressing for jump/call labels.
659
660Any instruction that has a memory operand, but no register operand,
55b62671
AJ
661@emph{must} specify its size (byte, word, long, or quadruple) with an
662instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
663respectively).
664
665The x86-64 architecture adds an RIP (instruction pointer relative)
666addressing. This addressing mode is specified by using @samp{rip} as a
667base register. Only constant offsets are valid. For example:
668
669@table @asis
670@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
671Points to the address 1234 bytes past the end of the current
672instruction.
673
674@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
675Points to the @code{symbol} in RIP relative way, this is shorter than
676the default absolute addressing.
677@end table
678
679Other addressing modes remain unchanged in x86-64 architecture, except
680registers used are 64-bit instead of 32-bit.
252b5132 681
fddf5b5b 682@node i386-Jumps
252b5132
RH
683@section Handling of Jump Instructions
684
685@cindex jump optimization, i386
686@cindex i386 jump optimization
55b62671
AJ
687@cindex jump optimization, x86-64
688@cindex x86-64 jump optimization
252b5132
RH
689Jump instructions are always optimized to use the smallest possible
690displacements. This is accomplished by using byte (8-bit) displacement
691jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 692is insufficient a long displacement is used. We do not support
252b5132
RH
693word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
694instruction with the @samp{data16} instruction prefix), since the 80386
695insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 696is added. (See also @pxref{i386-Arch})
252b5132
RH
697
698Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
699@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
700displacements, so that if you use these instructions (@code{@value{GCC}} does
701not use them) you may get an error message (and incorrect code). The AT&T
70280386 assembler tries to get around this problem by expanding @samp{jcxz foo}
703to
704
705@smallexample
706 jcxz cx_zero
707 jmp cx_nonzero
708cx_zero: jmp foo
709cx_nonzero:
710@end smallexample
711
712@node i386-Float
713@section Floating Point
714
715@cindex i386 floating point
716@cindex floating point, i386
55b62671
AJ
717@cindex x86-64 floating point
718@cindex floating point, x86-64
252b5132
RH
719All 80387 floating point types except packed BCD are supported.
720(BCD support may be added without much difficulty). These data
721types are 16-, 32-, and 64- bit integers, and single (32-bit),
722double (64-bit), and extended (80-bit) precision floating point.
723Each supported type has an instruction mnemonic suffix and a constructor
724associated with it. Instruction mnemonic suffixes specify the operand's
725data type. Constructors build these data types into memory.
726
727@cindex @code{float} directive, i386
728@cindex @code{single} directive, i386
729@cindex @code{double} directive, i386
730@cindex @code{tfloat} directive, i386
55b62671
AJ
731@cindex @code{float} directive, x86-64
732@cindex @code{single} directive, x86-64
733@cindex @code{double} directive, x86-64
734@cindex @code{tfloat} directive, x86-64
252b5132
RH
735@itemize @bullet
736@item
737Floating point constructors are @samp{.float} or @samp{.single},
738@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
739These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
740and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
741only supports this format via the @samp{fldt} (load 80-bit real to stack
742top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
743
744@cindex @code{word} directive, i386
745@cindex @code{long} directive, i386
746@cindex @code{int} directive, i386
747@cindex @code{quad} directive, i386
55b62671
AJ
748@cindex @code{word} directive, x86-64
749@cindex @code{long} directive, x86-64
750@cindex @code{int} directive, x86-64
751@cindex @code{quad} directive, x86-64
252b5132
RH
752@item
753Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
754@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
755corresponding instruction mnemonic suffixes are @samp{s} (single),
756@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
757the 64-bit @samp{q} format is only present in the @samp{fildq} (load
758quad integer to stack top) and @samp{fistpq} (store quad integer and pop
759stack) instructions.
760@end itemize
761
762Register to register operations should not use instruction mnemonic suffixes.
763@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
764wrote @samp{fst %st, %st(1)}, since all register to register operations
765use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
766which converts @samp{%st} from 80-bit to 64-bit floating point format,
767then stores the result in the 4 byte location @samp{mem})
768
769@node i386-SIMD
770@section Intel's MMX and AMD's 3DNow! SIMD Operations
771
772@cindex MMX, i386
773@cindex 3DNow!, i386
774@cindex SIMD, i386
55b62671
AJ
775@cindex MMX, x86-64
776@cindex 3DNow!, x86-64
777@cindex SIMD, x86-64
252b5132
RH
778
779@code{@value{AS}} supports Intel's MMX instruction set (SIMD
780instructions for integer data), available on Intel's Pentium MMX
781processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 782Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
783instruction set (SIMD instructions for 32-bit floating point data)
784available on AMD's K6-2 processor and possibly others in the future.
785
786Currently, @code{@value{AS}} does not support Intel's floating point
787SIMD, Katmai (KNI).
788
789The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
790@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
79116-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
792floating point values. The MMX registers cannot be used at the same time
793as the floating point stack.
794
795See Intel and AMD documentation, keeping in mind that the operand order in
796instructions is reversed from the Intel syntax.
797
798@node i386-16bit
799@section Writing 16-bit Code
800
801@cindex i386 16-bit code
802@cindex 16-bit code, i386
803@cindex real-mode code, i386
eecb386c 804@cindex @code{code16gcc} directive, i386
252b5132
RH
805@cindex @code{code16} directive, i386
806@cindex @code{code32} directive, i386
55b62671
AJ
807@cindex @code{code64} directive, i386
808@cindex @code{code64} directive, x86-64
809While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
810or 64-bit x86-64 code depending on the default configuration,
252b5132 811it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
812mode code segments. To do this, put a @samp{.code16} or
813@samp{.code16gcc} directive before the assembly language instructions to
814be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
815normal 32-bit code with the @samp{.code32} directive.
816
817@samp{.code16gcc} provides experimental support for generating 16-bit
818code from gcc, and differs from @samp{.code16} in that @samp{call},
819@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
820@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
821default to 32-bit size. This is so that the stack pointer is
822manipulated in the same way over function calls, allowing access to
823function parameters at the same stack offsets as in 32-bit mode.
824@samp{.code16gcc} also automatically adds address size prefixes where
825necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
826
827The code which @code{@value{AS}} generates in 16-bit mode will not
828necessarily run on a 16-bit pre-80386 processor. To write code that
829runs on such a processor, you must refrain from using @emph{any} 32-bit
830constructs which require @code{@value{AS}} to output address or operand
831size prefixes.
832
833Note that writing 16-bit code instructions by explicitly specifying a
834prefix or an instruction mnemonic suffix within a 32-bit code section
835generates different machine instructions than those generated for a
83616-bit code segment. In a 32-bit code section, the following code
837generates the machine opcode bytes @samp{66 6a 04}, which pushes the
838value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
839
840@smallexample
841 pushw $4
842@end smallexample
843
844The same code in a 16-bit code section would generate the machine
b45619c0 845opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
846is correct since the processor default operand size is assumed to be 16
847bits in a 16-bit code section.
848
849@node i386-Bugs
850@section AT&T Syntax bugs
851
852The UnixWare assembler, and probably other AT&T derived ix86 Unix
853assemblers, generate floating point instructions with reversed source
854and destination registers in certain cases. Unfortunately, gcc and
855possibly many other programs use this reversed syntax, so we're stuck
856with it.
857
858For example
859
860@smallexample
861 fsub %st,%st(3)
862@end smallexample
863@noindent
864results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
865than the expected @samp{%st(3) - %st}. This happens with all the
866non-commutative arithmetic floating point operations with two register
867operands where the source register is @samp{%st} and the destination
868register is @samp{%st(i)}.
869
e413e4e9
AM
870@node i386-Arch
871@section Specifying CPU Architecture
872
873@cindex arch directive, i386
874@cindex i386 arch directive
55b62671
AJ
875@cindex arch directive, x86-64
876@cindex x86-64 arch directive
e413e4e9
AM
877
878@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 879(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
880directive enables a warning when gas detects an instruction that is not
881supported on the CPU specified. The choices for @var{cpu_type} are:
882
883@multitable @columnfractions .20 .20 .20 .20
884@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
885@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 886@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 887@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1543849b
L
888@item @samp{corei7}
889@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
890@item @samp{amdfam10}
1ceab344 891@item @samp{generic32} @tab @samp{generic64}
9103f4f4 892@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 893@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c0f3af97 894@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
f1f8f695 895@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
f72d7f29 896@item @samp{.ept} @tab @samp{.clflush}
1ceab344 897@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 898@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1ceab344 899@item @samp{.padlock}
e413e4e9
AM
900@end multitable
901
fddf5b5b
AM
902Apart from the warning, there are only two other effects on
903@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
904@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
905will automatically use a two byte opcode sequence. The larger three
906byte opcode sequence is used on the 486 (and when no architecture is
907specified) because it executes faster on the 486. Note that you can
908explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
909Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
910@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
911conditional jumps will be promoted when necessary to a two instruction
912sequence consisting of a conditional jump of the opposite sense around
913an unconditional jump to the target.
914
5c6af06e
JB
915Following the CPU architecture (but not a sub-architecture, which are those
916starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
917control automatic promotion of conditional jumps. @samp{jumps} is the
918default, and enables jump promotion; All external jumps will be of the long
919variety, and file-local jumps will be promoted as necessary.
920(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
921byte offset jumps, and warns about file-local conditional jumps that
922@code{@value{AS}} promotes.
fddf5b5b
AM
923Unconditional jumps are treated as for @samp{jumps}.
924
925For example
926
927@smallexample
928 .arch i8086,nojumps
929@end smallexample
e413e4e9 930
252b5132
RH
931@node i386-Notes
932@section Notes
933
934@cindex i386 @code{mul}, @code{imul} instructions
935@cindex @code{mul} instruction, i386
936@cindex @code{imul} instruction, i386
55b62671
AJ
937@cindex @code{mul} instruction, x86-64
938@cindex @code{imul} instruction, x86-64
252b5132 939There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 940instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
941multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
942for @samp{imul}) can be output only in the one operand form. Thus,
943@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
944the expanding multiply would clobber the @samp{%edx} register, and this
945would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
94664-bit product in @samp{%edx:%eax}.
947
948We have added a two operand form of @samp{imul} when the first operand
949is an immediate mode expression and the second operand is a register.
950This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
951example, can be done with @samp{imul $69, %eax} rather than @samp{imul
952$69, %eax, %eax}.
953
This page took 0.565598 seconds and 4 git commands to generate.