daily update
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037
AM
1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2@c 2001, 2003, 2004
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
252b5132
RH
27* i386-Syntax:: AT&T Syntax versus Intel Syntax
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35* i386-16bit:: Writing 16-bit Code
e413e4e9 36* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
37* i386-Bugs:: AT&T Syntax bugs
38* i386-Notes:: Notes
39@end menu
40
41@node i386-Options
42@section Options
43
55b62671
AJ
44@cindex options for i386
45@cindex options for x86-64
46@cindex i386 options
47@cindex x86-64 options
48
49The i386 version of @code{@value{AS}} has a few machine
50dependent options:
51
52@table @code
53@cindex @samp{--32} option, i386
54@cindex @samp{--32} option, x86-64
55@cindex @samp{--64} option, i386
56@cindex @samp{--64} option, x86-64
57@item --32 | --64
58Select the word size, either 32 bits or 64 bits. Selecting 32-bit
59implies Intel i386 architecture, while 64-bit implies AMD x86-64
60architecture.
61
62These options are only available with the ELF object file format, and
63require that the necessary BFD support has been included (on a 32-bit
64platform you have to add --enable-64-bit-bfd to configure enable 64-bit
65usage and use x86-64 as target platform).
12b55ccc
L
66
67@item -n
68By default, x86 GAS replaces multiple nop instructions used for
69alignment within code sections with multi-byte nop instructions such
70as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
71
72@cindex @samp{--divide} option, i386
73@item --divide
74On SVR4-derived platforms, the character @samp{/} is treated as a comment
75character, which means that it cannot be used in expressions. The
76@samp{--divide} option turns @samp{/} into a normal character. This does
77not disable @samp{/} at the beginning of a line starting a comment, or
78affect using @samp{#} for starting a comment.
79
9103f4f4
L
80@cindex @samp{-march=} option, i386
81@cindex @samp{-march=} option, x86-64
6305a203
L
82@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
83This option specifies the target processor. The assembler will
84issue an error message if an attempt is made to assemble an instruction
85which will not execute on the target processor. The following
86processor names are recognized:
9103f4f4
L
87@code{i8086},
88@code{i186},
89@code{i286},
90@code{i386},
91@code{i486},
92@code{i586},
93@code{i686},
94@code{pentium},
95@code{pentiumpro},
96@code{pentiumii},
97@code{pentiumiii},
98@code{pentium4},
99@code{prescott},
100@code{nocona},
ef05d495
L
101@code{core},
102@code{core2},
9103f4f4
L
103@code{k6},
104@code{k6_2},
105@code{athlon},
9103f4f4
L
106@code{opteron},
107@code{k8},
1ceab344 108@code{amdfam10},
9103f4f4
L
109@code{generic32} and
110@code{generic64}.
111
6305a203
L
112In addition to the basic instruction set, the assembler can be told to
113accept various extension mnemonics. For example,
114@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
115@var{vmx}. The following extensions are currently supported:
116@code{mmx},
117@code{sse},
118@code{sse2},
119@code{sse3},
120@code{ssse3},
121@code{sse4.1},
122@code{sse4.2},
123@code{sse4},
c0f3af97 124@code{avx},
6305a203
L
125@code{vmx},
126@code{smx},
f03fe4c1 127@code{xsave},
c0f3af97 128@code{aes},
594ab6a3 129@code{pclmul},
c0f3af97 130@code{fma},
f1f8f695
L
131@code{movbe},
132@code{ept},
1b7f3fb0 133@code{rdtscp},
6305a203
L
134@code{3dnow},
135@code{3dnowa},
136@code{sse4a},
137@code{sse5},
138@code{svme},
139@code{abm} and
140@code{padlock}.
141
142When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
143@code{.arch} directive will take precedent.
144
145@cindex @samp{-mtune=} option, i386
146@cindex @samp{-mtune=} option, x86-64
147@item -mtune=@var{CPU}
148This option specifies a processor to optimize for. When used in
149conjunction with the @option{-march} option, only instructions
150of the processor specified by the @option{-march} option will be
151generated.
152
6305a203
L
153Valid @var{CPU} values are identical to the processor list of
154@option{-march=@var{CPU}}.
9103f4f4 155
c0f3af97
L
156@cindex @samp{-msse2avx} option, i386
157@cindex @samp{-msse2avx} option, x86-64
158@item -msse2avx
159This option specifies that the assembler should encode SSE instructions
160with VEX prefix.
161
daf50ae7
L
162@cindex @samp{-msse-check=} option, i386
163@cindex @samp{-msse-check=} option, x86-64
164@item -msse-check=@var{none}
165@item -msse-check=@var{warning}
166@item -msse-check=@var{error}
167These options control if the assembler should check SSE intructions.
168@option{-msse-check=@var{none}} will make the assembler not to check SSE
169instructions, which is the default. @option{-msse-check=@var{warning}}
170will make the assembler issue a warning for any SSE intruction.
171@option{-msse-check=@var{error}} will make the assembler issue an error
172for any SSE intruction.
173
1efbbeb4
L
174@cindex @samp{-mmnemonic=} option, i386
175@cindex @samp{-mmnemonic=} option, x86-64
176@item -mmnemonic=@var{att}
177@item -mmnemonic=@var{intel}
178This option specifies instruction mnemonic for matching instructions.
179The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
180take precedent.
181
182@cindex @samp{-msyntax=} option, i386
183@cindex @samp{-msyntax=} option, x86-64
184@item -msyntax=@var{att}
185@item -msyntax=@var{intel}
186This option specifies instruction syntax when processing instructions.
187The @code{.att_syntax} and @code{.intel_syntax} directives will
188take precedent.
189
190@cindex @samp{-mnaked-reg} option, i386
191@cindex @samp{-mnaked-reg} option, x86-64
192@item -mnaked-reg
193This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 194The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 195
55b62671 196@end table
e413e4e9 197
a6c24e68
NC
198@node i386-Directives
199@section x86 specific Directives
200
201@cindex machine directives, x86
202@cindex x86 machine directives
203@table @code
204
205@cindex @code{lcomm} directive, COFF
206@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
207Reserve @var{length} (an absolute expression) bytes for a local common
208denoted by @var{symbol}. The section and value of @var{symbol} are
209those of the new local common. The addresses are allocated in the bss
704209c0
NC
210section, so that at run-time the bytes start off zeroed. Since
211@var{symbol} is not declared global, it is normally not visible to
212@code{@value{LD}}. The optional third parameter, @var{alignment},
213specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
214
215This directive is only available for COFF based x86 targets.
216
217@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
218@c .largecomm
219
220@end table
221
252b5132
RH
222@node i386-Syntax
223@section AT&T Syntax versus Intel Syntax
224
e413e4e9
AM
225@cindex i386 intel_syntax pseudo op
226@cindex intel_syntax pseudo op, i386
227@cindex i386 att_syntax pseudo op
228@cindex att_syntax pseudo op, i386
252b5132
RH
229@cindex i386 syntax compatibility
230@cindex syntax compatibility, i386
55b62671
AJ
231@cindex x86-64 intel_syntax pseudo op
232@cindex intel_syntax pseudo op, x86-64
233@cindex x86-64 att_syntax pseudo op
234@cindex att_syntax pseudo op, x86-64
235@cindex x86-64 syntax compatibility
236@cindex syntax compatibility, x86-64
e413e4e9
AM
237
238@code{@value{AS}} now supports assembly using Intel assembler syntax.
239@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
240back to the usual AT&T mode for compatibility with the output of
241@code{@value{GCC}}. Either of these directives may have an optional
242argument, @code{prefix}, or @code{noprefix} specifying whether registers
243require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
244different from Intel syntax. We mention these differences because
245almost all 80386 documents use Intel syntax. Notable differences
246between the two syntaxes are:
247
248@cindex immediate operands, i386
249@cindex i386 immediate operands
250@cindex register operands, i386
251@cindex i386 register operands
252@cindex jump/call operands, i386
253@cindex i386 jump/call operands
254@cindex operand delimiters, i386
55b62671
AJ
255
256@cindex immediate operands, x86-64
257@cindex x86-64 immediate operands
258@cindex register operands, x86-64
259@cindex x86-64 register operands
260@cindex jump/call operands, x86-64
261@cindex x86-64 jump/call operands
262@cindex operand delimiters, x86-64
252b5132
RH
263@itemize @bullet
264@item
265AT&T immediate operands are preceded by @samp{$}; Intel immediate
266operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
267AT&T register operands are preceded by @samp{%}; Intel register operands
268are undelimited. AT&T absolute (as opposed to PC relative) jump/call
269operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
270
271@cindex i386 source, destination operands
272@cindex source, destination operands; i386
55b62671
AJ
273@cindex x86-64 source, destination operands
274@cindex source, destination operands; x86-64
252b5132
RH
275@item
276AT&T and Intel syntax use the opposite order for source and destination
277operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
278@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
279previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
280instructions with 2 immediate operands, such as the @samp{enter}
281instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
282
283@cindex mnemonic suffixes, i386
284@cindex sizes operands, i386
285@cindex i386 size suffixes
55b62671
AJ
286@cindex mnemonic suffixes, x86-64
287@cindex sizes operands, x86-64
288@cindex x86-64 size suffixes
252b5132
RH
289@item
290In AT&T syntax the size of memory operands is determined from the last
291character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
292@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
293(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
294this by prefixing memory operands (@emph{not} the instruction mnemonics) with
295@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
296Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
297syntax.
252b5132
RH
298
299@cindex return instructions, i386
300@cindex i386 jump, call, return
55b62671
AJ
301@cindex return instructions, x86-64
302@cindex x86-64 jump, call, return
252b5132
RH
303@item
304Immediate form long jumps and calls are
305@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
306Intel syntax is
307@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
308instruction
309is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
310@samp{ret far @var{stack-adjust}}.
311
312@cindex sections, i386
313@cindex i386 sections
55b62671
AJ
314@cindex sections, x86-64
315@cindex x86-64 sections
252b5132
RH
316@item
317The AT&T assembler does not provide support for multiple section
318programs. Unix style systems expect all programs to be single sections.
319@end itemize
320
321@node i386-Mnemonics
322@section Instruction Naming
323
324@cindex i386 instruction naming
325@cindex instruction naming, i386
55b62671
AJ
326@cindex x86-64 instruction naming
327@cindex instruction naming, x86-64
328
252b5132 329Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
330specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
331and @samp{q} specify byte, word, long and quadruple word operands. If
332no suffix is specified by an instruction then @code{@value{AS}} tries to
333fill in the missing suffix based on the destination register operand
334(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
335to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
336@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
337assembler which assumes that a missing mnemonic suffix implies long
338operand size. (This incompatibility does not affect compiler output
339since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
340
341Almost all instructions have the same names in AT&T and Intel format.
342There are a few exceptions. The sign extend and zero extend
343instructions need two sizes to specify them. They need a size to
344sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
345is accomplished by using two instruction mnemonic suffixes in AT&T
346syntax. Base names for sign extend and zero extend are
347@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
348and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
349are tacked on to this base name, the @emph{from} suffix before the
350@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
351``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
352thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
353@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
354@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
355quadruple word).
252b5132 356
b6169b20
L
357@cindex encoding options, i386
358@cindex encoding options, x86-64
359
360Different encoding options can be specified via optional mnemonic
361suffix. @samp{.s} suffix swaps 2 register operands in encoding when
362moving from one register to another.
363
252b5132
RH
364@cindex conversion instructions, i386
365@cindex i386 conversion instructions
55b62671
AJ
366@cindex conversion instructions, x86-64
367@cindex x86-64 conversion instructions
252b5132
RH
368The Intel-syntax conversion instructions
369
370@itemize @bullet
371@item
372@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
373
374@item
375@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
376
377@item
378@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
379
380@item
381@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
382
383@item
384@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
385(x86-64 only),
386
387@item
d5f0cf92 388@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 389@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
390@end itemize
391
392@noindent
55b62671
AJ
393are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
394@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
395instructions.
252b5132
RH
396
397@cindex jump instructions, i386
398@cindex call instructions, i386
55b62671
AJ
399@cindex jump instructions, x86-64
400@cindex call instructions, x86-64
252b5132
RH
401Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
402AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
403convention.
404
1efbbeb4
L
405@section AT&T Mnemonic versus Intel Mnemonic
406
407@cindex i386 mnemonic compatibility
408@cindex mnemonic compatibility, i386
409
410@code{@value{AS}} supports assembly using Intel mnemonic.
411@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
412@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
413syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
414Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
415@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
416@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
417assembler with different mnemonics from those in Intel IA32 specification.
418@code{@value{GCC}} generates those instructions with AT&T mnemonic.
419
252b5132
RH
420@node i386-Regs
421@section Register Naming
422
423@cindex i386 registers
424@cindex registers, i386
55b62671
AJ
425@cindex x86-64 registers
426@cindex registers, x86-64
252b5132
RH
427Register operands are always prefixed with @samp{%}. The 80386 registers
428consist of
429
430@itemize @bullet
431@item
432the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
433@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
434frame pointer), and @samp{%esp} (the stack pointer).
435
436@item
437the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
438@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
439
440@item
441the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
442@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
443are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
444@samp{%cx}, and @samp{%dx})
445
446@item
447the 6 section registers @samp{%cs} (code section), @samp{%ds}
448(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
449and @samp{%gs}.
450
451@item
452the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
453@samp{%cr3}.
454
455@item
456the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
457@samp{%db3}, @samp{%db6}, and @samp{%db7}.
458
459@item
460the 2 test registers @samp{%tr6} and @samp{%tr7}.
461
462@item
463the 8 floating point register stack @samp{%st} or equivalently
464@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
465@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
466These registers are overloaded by 8 MMX registers @samp{%mm0},
467@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
468@samp{%mm6} and @samp{%mm7}.
469
470@item
471the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
472@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
473@end itemize
474
475The AMD x86-64 architecture extends the register set by:
476
477@itemize @bullet
478@item
479enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
480accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
481@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
482pointer)
483
484@item
485the 8 extended registers @samp{%r8}--@samp{%r15}.
486
487@item
488the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
489
490@item
491the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
492
493@item
494the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
495
496@item
497the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
498
499@item
500the 8 debug registers: @samp{%db8}--@samp{%db15}.
501
502@item
503the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
504@end itemize
505
506@node i386-Prefixes
507@section Instruction Prefixes
508
509@cindex i386 instruction prefixes
510@cindex instruction prefixes, i386
511@cindex prefixes, i386
512Instruction prefixes are used to modify the following instruction. They
513are used to repeat string instructions, to provide section overrides, to
514perform bus lock operations, and to change operand and address sizes.
515(Most instructions that normally operate on 32-bit operands will use
51616-bit operands if the instruction has an ``operand size'' prefix.)
517Instruction prefixes are best written on the same line as the instruction
518they act upon. For example, the @samp{scas} (scan string) instruction is
519repeated with:
520
521@smallexample
522 repne scas %es:(%edi),%al
523@end smallexample
524
525You may also place prefixes on the lines immediately preceding the
526instruction, but this circumvents checks that @code{@value{AS}} does
527with prefixes, and will not work with all prefixes.
528
529Here is a list of instruction prefixes:
530
531@cindex section override prefixes, i386
532@itemize @bullet
533@item
534Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
535@samp{fs}, @samp{gs}. These are automatically added by specifying
536using the @var{section}:@var{memory-operand} form for memory references.
537
538@cindex size prefixes, i386
539@item
540Operand/Address size prefixes @samp{data16} and @samp{addr16}
541change 32-bit operands/addresses into 16-bit operands/addresses,
542while @samp{data32} and @samp{addr32} change 16-bit ones (in a
543@code{.code16} section) into 32-bit operands/addresses. These prefixes
544@emph{must} appear on the same line of code as the instruction they
545modify. For example, in a 16-bit @code{.code16} section, you might
546write:
547
548@smallexample
549 addr32 jmpl *(%ebx)
550@end smallexample
551
552@cindex bus lock prefixes, i386
553@cindex inhibiting interrupts, i386
554@item
555The bus lock prefix @samp{lock} inhibits interrupts during execution of
556the instruction it precedes. (This is only valid with certain
557instructions; see a 80386 manual for details).
558
559@cindex coprocessor wait, i386
560@item
561The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
562complete the current instruction. This should never be needed for the
56380386/80387 combination.
564
565@cindex repeat prefixes, i386
566@item
567The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
568to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
569times if the current address size is 16-bits).
55b62671
AJ
570@cindex REX prefixes, i386
571@item
572The @samp{rex} family of prefixes is used by x86-64 to encode
573extensions to i386 instruction set. The @samp{rex} prefix has four
574bits --- an operand size overwrite (@code{64}) used to change operand size
575from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
576register set.
577
578You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
579instruction emits @samp{rex} prefix with all the bits set. By omitting
580the @code{64}, @code{x}, @code{y} or @code{z} you may write other
581prefixes as well. Normally, there is no need to write the prefixes
582explicitly, since gas will automatically generate them based on the
583instruction operands.
252b5132
RH
584@end itemize
585
586@node i386-Memory
587@section Memory References
588
589@cindex i386 memory references
590@cindex memory references, i386
55b62671
AJ
591@cindex x86-64 memory references
592@cindex memory references, x86-64
252b5132
RH
593An Intel syntax indirect memory reference of the form
594
595@smallexample
596@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
597@end smallexample
598
599@noindent
600is translated into the AT&T syntax
601
602@smallexample
603@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
604@end smallexample
605
606@noindent
607where @var{base} and @var{index} are the optional 32-bit base and
608index registers, @var{disp} is the optional displacement, and
609@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
610to calculate the address of the operand. If no @var{scale} is
611specified, @var{scale} is taken to be 1. @var{section} specifies the
612optional section register for the memory operand, and may override the
613default section register (see a 80386 manual for section register
614defaults). Note that section overrides in AT&T syntax @emph{must}
615be preceded by a @samp{%}. If you specify a section override which
616coincides with the default section register, @code{@value{AS}} does @emph{not}
617output any section register override prefixes to assemble the given
618instruction. Thus, section overrides can be specified to emphasize which
619section register is used for a given memory operand.
620
621Here are some examples of Intel and AT&T style memory references:
622
623@table @asis
624@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
625@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
626missing, and the default section is used (@samp{%ss} for addressing with
627@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
628
629@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
630@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
631@samp{foo}. All other fields are missing. The section register here
632defaults to @samp{%ds}.
633
634@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
635This uses the value pointed to by @samp{foo} as a memory operand.
636Note that @var{base} and @var{index} are both missing, but there is only
637@emph{one} @samp{,}. This is a syntactic exception.
638
639@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
640This selects the contents of the variable @samp{foo} with section
641register @var{section} being @samp{%gs}.
642@end table
643
644Absolute (as opposed to PC relative) call and jump operands must be
645prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
646always chooses PC relative addressing for jump/call labels.
647
648Any instruction that has a memory operand, but no register operand,
55b62671
AJ
649@emph{must} specify its size (byte, word, long, or quadruple) with an
650instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
651respectively).
652
653The x86-64 architecture adds an RIP (instruction pointer relative)
654addressing. This addressing mode is specified by using @samp{rip} as a
655base register. Only constant offsets are valid. For example:
656
657@table @asis
658@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
659Points to the address 1234 bytes past the end of the current
660instruction.
661
662@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
663Points to the @code{symbol} in RIP relative way, this is shorter than
664the default absolute addressing.
665@end table
666
667Other addressing modes remain unchanged in x86-64 architecture, except
668registers used are 64-bit instead of 32-bit.
252b5132 669
fddf5b5b 670@node i386-Jumps
252b5132
RH
671@section Handling of Jump Instructions
672
673@cindex jump optimization, i386
674@cindex i386 jump optimization
55b62671
AJ
675@cindex jump optimization, x86-64
676@cindex x86-64 jump optimization
252b5132
RH
677Jump instructions are always optimized to use the smallest possible
678displacements. This is accomplished by using byte (8-bit) displacement
679jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 680is insufficient a long displacement is used. We do not support
252b5132
RH
681word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
682instruction with the @samp{data16} instruction prefix), since the 80386
683insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 684is added. (See also @pxref{i386-Arch})
252b5132
RH
685
686Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
687@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
688displacements, so that if you use these instructions (@code{@value{GCC}} does
689not use them) you may get an error message (and incorrect code). The AT&T
69080386 assembler tries to get around this problem by expanding @samp{jcxz foo}
691to
692
693@smallexample
694 jcxz cx_zero
695 jmp cx_nonzero
696cx_zero: jmp foo
697cx_nonzero:
698@end smallexample
699
700@node i386-Float
701@section Floating Point
702
703@cindex i386 floating point
704@cindex floating point, i386
55b62671
AJ
705@cindex x86-64 floating point
706@cindex floating point, x86-64
252b5132
RH
707All 80387 floating point types except packed BCD are supported.
708(BCD support may be added without much difficulty). These data
709types are 16-, 32-, and 64- bit integers, and single (32-bit),
710double (64-bit), and extended (80-bit) precision floating point.
711Each supported type has an instruction mnemonic suffix and a constructor
712associated with it. Instruction mnemonic suffixes specify the operand's
713data type. Constructors build these data types into memory.
714
715@cindex @code{float} directive, i386
716@cindex @code{single} directive, i386
717@cindex @code{double} directive, i386
718@cindex @code{tfloat} directive, i386
55b62671
AJ
719@cindex @code{float} directive, x86-64
720@cindex @code{single} directive, x86-64
721@cindex @code{double} directive, x86-64
722@cindex @code{tfloat} directive, x86-64
252b5132
RH
723@itemize @bullet
724@item
725Floating point constructors are @samp{.float} or @samp{.single},
726@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
727These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
728and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
729only supports this format via the @samp{fldt} (load 80-bit real to stack
730top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
731
732@cindex @code{word} directive, i386
733@cindex @code{long} directive, i386
734@cindex @code{int} directive, i386
735@cindex @code{quad} directive, i386
55b62671
AJ
736@cindex @code{word} directive, x86-64
737@cindex @code{long} directive, x86-64
738@cindex @code{int} directive, x86-64
739@cindex @code{quad} directive, x86-64
252b5132
RH
740@item
741Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
742@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
743corresponding instruction mnemonic suffixes are @samp{s} (single),
744@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
745the 64-bit @samp{q} format is only present in the @samp{fildq} (load
746quad integer to stack top) and @samp{fistpq} (store quad integer and pop
747stack) instructions.
748@end itemize
749
750Register to register operations should not use instruction mnemonic suffixes.
751@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
752wrote @samp{fst %st, %st(1)}, since all register to register operations
753use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
754which converts @samp{%st} from 80-bit to 64-bit floating point format,
755then stores the result in the 4 byte location @samp{mem})
756
757@node i386-SIMD
758@section Intel's MMX and AMD's 3DNow! SIMD Operations
759
760@cindex MMX, i386
761@cindex 3DNow!, i386
762@cindex SIMD, i386
55b62671
AJ
763@cindex MMX, x86-64
764@cindex 3DNow!, x86-64
765@cindex SIMD, x86-64
252b5132
RH
766
767@code{@value{AS}} supports Intel's MMX instruction set (SIMD
768instructions for integer data), available on Intel's Pentium MMX
769processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 770Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
771instruction set (SIMD instructions for 32-bit floating point data)
772available on AMD's K6-2 processor and possibly others in the future.
773
774Currently, @code{@value{AS}} does not support Intel's floating point
775SIMD, Katmai (KNI).
776
777The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
778@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
77916-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
780floating point values. The MMX registers cannot be used at the same time
781as the floating point stack.
782
783See Intel and AMD documentation, keeping in mind that the operand order in
784instructions is reversed from the Intel syntax.
785
786@node i386-16bit
787@section Writing 16-bit Code
788
789@cindex i386 16-bit code
790@cindex 16-bit code, i386
791@cindex real-mode code, i386
eecb386c 792@cindex @code{code16gcc} directive, i386
252b5132
RH
793@cindex @code{code16} directive, i386
794@cindex @code{code32} directive, i386
55b62671
AJ
795@cindex @code{code64} directive, i386
796@cindex @code{code64} directive, x86-64
797While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
798or 64-bit x86-64 code depending on the default configuration,
252b5132 799it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
800mode code segments. To do this, put a @samp{.code16} or
801@samp{.code16gcc} directive before the assembly language instructions to
802be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
803normal 32-bit code with the @samp{.code32} directive.
804
805@samp{.code16gcc} provides experimental support for generating 16-bit
806code from gcc, and differs from @samp{.code16} in that @samp{call},
807@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
808@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
809default to 32-bit size. This is so that the stack pointer is
810manipulated in the same way over function calls, allowing access to
811function parameters at the same stack offsets as in 32-bit mode.
812@samp{.code16gcc} also automatically adds address size prefixes where
813necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
814
815The code which @code{@value{AS}} generates in 16-bit mode will not
816necessarily run on a 16-bit pre-80386 processor. To write code that
817runs on such a processor, you must refrain from using @emph{any} 32-bit
818constructs which require @code{@value{AS}} to output address or operand
819size prefixes.
820
821Note that writing 16-bit code instructions by explicitly specifying a
822prefix or an instruction mnemonic suffix within a 32-bit code section
823generates different machine instructions than those generated for a
82416-bit code segment. In a 32-bit code section, the following code
825generates the machine opcode bytes @samp{66 6a 04}, which pushes the
826value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
827
828@smallexample
829 pushw $4
830@end smallexample
831
832The same code in a 16-bit code section would generate the machine
b45619c0 833opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
834is correct since the processor default operand size is assumed to be 16
835bits in a 16-bit code section.
836
837@node i386-Bugs
838@section AT&T Syntax bugs
839
840The UnixWare assembler, and probably other AT&T derived ix86 Unix
841assemblers, generate floating point instructions with reversed source
842and destination registers in certain cases. Unfortunately, gcc and
843possibly many other programs use this reversed syntax, so we're stuck
844with it.
845
846For example
847
848@smallexample
849 fsub %st,%st(3)
850@end smallexample
851@noindent
852results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
853than the expected @samp{%st(3) - %st}. This happens with all the
854non-commutative arithmetic floating point operations with two register
855operands where the source register is @samp{%st} and the destination
856register is @samp{%st(i)}.
857
e413e4e9
AM
858@node i386-Arch
859@section Specifying CPU Architecture
860
861@cindex arch directive, i386
862@cindex i386 arch directive
55b62671
AJ
863@cindex arch directive, x86-64
864@cindex x86-64 arch directive
e413e4e9
AM
865
866@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 867(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
868directive enables a warning when gas detects an instruction that is not
869supported on the CPU specified. The choices for @var{cpu_type} are:
870
871@multitable @columnfractions .20 .20 .20 .20
872@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
873@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 874@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 875@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1ceab344 876@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
7918206c 877@item @samp{amdfam10}
1ceab344 878@item @samp{generic32} @tab @samp{generic64}
9103f4f4 879@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 880@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c0f3af97 881@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
f1f8f695 882@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
1b7f3fb0 883@item @samp{.ept} @tab @samp{.rdtscp}
1ceab344
L
884@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
885@item @samp{.svme} @tab @samp{.abm}
886@item @samp{.padlock}
e413e4e9
AM
887@end multitable
888
fddf5b5b
AM
889Apart from the warning, there are only two other effects on
890@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
891@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
892will automatically use a two byte opcode sequence. The larger three
893byte opcode sequence is used on the 486 (and when no architecture is
894specified) because it executes faster on the 486. Note that you can
895explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
896Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
897@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
898conditional jumps will be promoted when necessary to a two instruction
899sequence consisting of a conditional jump of the opposite sense around
900an unconditional jump to the target.
901
5c6af06e
JB
902Following the CPU architecture (but not a sub-architecture, which are those
903starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
904control automatic promotion of conditional jumps. @samp{jumps} is the
905default, and enables jump promotion; All external jumps will be of the long
906variety, and file-local jumps will be promoted as necessary.
907(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
908byte offset jumps, and warns about file-local conditional jumps that
909@code{@value{AS}} promotes.
fddf5b5b
AM
910Unconditional jumps are treated as for @samp{jumps}.
911
912For example
913
914@smallexample
915 .arch i8086,nojumps
916@end smallexample
e413e4e9 917
252b5132
RH
918@node i386-Notes
919@section Notes
920
921@cindex i386 @code{mul}, @code{imul} instructions
922@cindex @code{mul} instruction, i386
923@cindex @code{imul} instruction, i386
55b62671
AJ
924@cindex @code{mul} instruction, x86-64
925@cindex @code{imul} instruction, x86-64
252b5132 926There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 927instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
928multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
929for @samp{imul}) can be output only in the one operand form. Thus,
930@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
931the expanding multiply would clobber the @samp{%edx} register, and this
932would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
93364-bit product in @samp{%edx:%eax}.
934
935We have added a two operand form of @samp{imul} when the first operand
936is an immediate mode expression and the second operand is a register.
937This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
938example, can be done with @samp{imul $69, %eax} rather than @samp{imul
939$69, %eax, %eax}.
940
This page took 0.401534 seconds and 4 git commands to generate.