x86: optimize AND/OR with twice the same register
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
82704155 1@c Copyright (C) 1991-2019 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
a9660a6f 126@code{znver2},
7b458c12
L
127@code{btver1},
128@code{btver2},
9103f4f4
L
129@code{generic32} and
130@code{generic64}.
131
34bca508 132In addition to the basic instruction set, the assembler can be told to
6305a203
L
133accept various extension mnemonics. For example,
134@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135@var{vmx}. The following extensions are currently supported:
309d3373
JB
136@code{8087},
137@code{287},
138@code{387},
1848e567 139@code{687},
309d3373 140@code{no87},
1848e567
L
141@code{no287},
142@code{no387},
143@code{no687},
d871f3f4
L
144@code{cmov},
145@code{nocmov},
146@code{fxsr},
147@code{nofxsr},
6305a203 148@code{mmx},
309d3373 149@code{nommx},
6305a203
L
150@code{sse},
151@code{sse2},
152@code{sse3},
153@code{ssse3},
154@code{sse4.1},
155@code{sse4.2},
156@code{sse4},
309d3373 157@code{nosse},
1848e567
L
158@code{nosse2},
159@code{nosse3},
160@code{nossse3},
161@code{nosse4.1},
162@code{nosse4.2},
163@code{nosse4},
c0f3af97 164@code{avx},
6c30d220 165@code{avx2},
1848e567
L
166@code{noavx},
167@code{noavx2},
e2e1fcde
L
168@code{adx},
169@code{rdseed},
170@code{prfchw},
5c111e37 171@code{smap},
7e8b059b 172@code{mpx},
a0046408 173@code{sha},
8bc52696 174@code{rdpid},
6b40c462 175@code{ptwrite},
603555e5 176@code{cet},
48521003 177@code{gfni},
8dcf1fad 178@code{vaes},
ff1982d5 179@code{vpclmulqdq},
1dfc6506
L
180@code{prefetchwt1},
181@code{clflushopt},
182@code{se1},
c5e7287a 183@code{clwb},
c0a30a9f
L
184@code{movdiri},
185@code{movdir64b},
5d79adc4 186@code{enqcmd},
43234a1e
L
187@code{avx512f},
188@code{avx512cd},
189@code{avx512er},
190@code{avx512pf},
1dfc6506
L
191@code{avx512vl},
192@code{avx512bw},
193@code{avx512dq},
2cc1b5aa 194@code{avx512ifma},
14f195c9 195@code{avx512vbmi},
920d2ddc 196@code{avx512_4fmaps},
47acf0bd 197@code{avx512_4vnniw},
620214f7 198@code{avx512_vpopcntdq},
53467f57 199@code{avx512_vbmi2},
8cfcb765 200@code{avx512_vnni},
ee6872be 201@code{avx512_bitalg},
d6aab7a1 202@code{avx512_bf16},
144b71e2
L
203@code{noavx512f},
204@code{noavx512cd},
205@code{noavx512er},
206@code{noavx512pf},
207@code{noavx512vl},
208@code{noavx512bw},
209@code{noavx512dq},
210@code{noavx512ifma},
211@code{noavx512vbmi},
920d2ddc 212@code{noavx512_4fmaps},
47acf0bd 213@code{noavx512_4vnniw},
620214f7 214@code{noavx512_vpopcntdq},
53467f57 215@code{noavx512_vbmi2},
8cfcb765 216@code{noavx512_vnni},
ee6872be 217@code{noavx512_bitalg},
9186c494 218@code{noavx512_vp2intersect},
d6aab7a1 219@code{noavx512_bf16},
dd455cf5 220@code{noenqcmd},
6305a203 221@code{vmx},
8729a6f6 222@code{vmfunc},
6305a203 223@code{smx},
f03fe4c1 224@code{xsave},
c7b8aa3a 225@code{xsaveopt},
1dfc6506
L
226@code{xsavec},
227@code{xsaves},
c0f3af97 228@code{aes},
594ab6a3 229@code{pclmul},
c7b8aa3a
L
230@code{fsgsbase},
231@code{rdrnd},
232@code{f16c},
6c30d220 233@code{bmi2},
c0f3af97 234@code{fma},
f1f8f695
L
235@code{movbe},
236@code{ept},
6c30d220 237@code{lzcnt},
42164a71
L
238@code{hle},
239@code{rtm},
6c30d220 240@code{invpcid},
bd5295b2 241@code{clflush},
9916071f 242@code{mwaitx},
029f3522 243@code{clzero},
3233d7d0 244@code{wbnoinvd},
be3a8dca 245@code{pconfig},
de89d0a3 246@code{waitpkg},
c48935d7 247@code{cldemote},
f88c9eb0 248@code{lwp},
5dd85c99
SP
249@code{fma4},
250@code{xop},
60aa667e 251@code{cx16},
bd5295b2 252@code{syscall},
1b7f3fb0 253@code{rdtscp},
6305a203
L
254@code{3dnow},
255@code{3dnowa},
256@code{sse4a},
257@code{sse5},
258@code{svme},
259@code{abm} and
260@code{padlock}.
309d3373
JB
261Note that rather than extending a basic instruction set, the extension
262mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
263
264When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
265@code{.arch} directive will take precedent.
266
267@cindex @samp{-mtune=} option, i386
268@cindex @samp{-mtune=} option, x86-64
269@item -mtune=@var{CPU}
270This option specifies a processor to optimize for. When used in
271conjunction with the @option{-march} option, only instructions
272of the processor specified by the @option{-march} option will be
273generated.
274
6305a203
L
275Valid @var{CPU} values are identical to the processor list of
276@option{-march=@var{CPU}}.
9103f4f4 277
c0f3af97
L
278@cindex @samp{-msse2avx} option, i386
279@cindex @samp{-msse2avx} option, x86-64
280@item -msse2avx
281This option specifies that the assembler should encode SSE instructions
282with VEX prefix.
283
daf50ae7
L
284@cindex @samp{-msse-check=} option, i386
285@cindex @samp{-msse-check=} option, x86-64
286@item -msse-check=@var{none}
1f9bb1ca
AS
287@itemx -msse-check=@var{warning}
288@itemx -msse-check=@var{error}
9aff4b7a 289These options control if the assembler should check SSE instructions.
daf50ae7
L
290@option{-msse-check=@var{none}} will make the assembler not to check SSE
291instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 292will make the assembler issue a warning for any SSE instruction.
daf50ae7 293@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 294for any SSE instruction.
daf50ae7 295
539f890d
L
296@cindex @samp{-mavxscalar=} option, i386
297@cindex @samp{-mavxscalar=} option, x86-64
298@item -mavxscalar=@var{128}
1f9bb1ca 299@itemx -mavxscalar=@var{256}
2aab8acd 300These options control how the assembler should encode scalar AVX
539f890d
L
301instructions. @option{-mavxscalar=@var{128}} will encode scalar
302AVX instructions with 128bit vector length, which is the default.
303@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
304with 256bit vector length.
305
4970191f
JB
306WARNING: Don't use this for production code - due to CPU errata the
307resulting code may not work on certain models.
308
03751133
L
309@cindex @samp{-mvexwig=} option, i386
310@cindex @samp{-mvexwig=} option, x86-64
311@item -mvexwig=@var{0}
312@itemx -mvexwig=@var{1}
313These options control how the assembler should encode VEX.W-ignored (WIG)
314VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
315instructions with vex.w = 0, which is the default.
316@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
317vex.w = 1.
318
4970191f
JB
319WARNING: Don't use this for production code - due to CPU errata the
320resulting code may not work on certain models.
321
43234a1e
L
322@cindex @samp{-mevexlig=} option, i386
323@cindex @samp{-mevexlig=} option, x86-64
324@item -mevexlig=@var{128}
325@itemx -mevexlig=@var{256}
326@itemx -mevexlig=@var{512}
327These options control how the assembler should encode length-ignored
328(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
329EVEX instructions with 128bit vector length, which is the default.
330@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
331encode LIG EVEX instructions with 256bit and 512bit vector length,
332respectively.
333
334@cindex @samp{-mevexwig=} option, i386
335@cindex @samp{-mevexwig=} option, x86-64
336@item -mevexwig=@var{0}
337@itemx -mevexwig=@var{1}
338These options control how the assembler should encode w-ignored (WIG)
339EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
340EVEX instructions with evex.w = 0, which is the default.
341@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
342evex.w = 1.
343
1efbbeb4
L
344@cindex @samp{-mmnemonic=} option, i386
345@cindex @samp{-mmnemonic=} option, x86-64
346@item -mmnemonic=@var{att}
1f9bb1ca 347@itemx -mmnemonic=@var{intel}
34bca508 348This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
349The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
350take precedent.
351
352@cindex @samp{-msyntax=} option, i386
353@cindex @samp{-msyntax=} option, x86-64
354@item -msyntax=@var{att}
1f9bb1ca 355@itemx -msyntax=@var{intel}
34bca508 356This option specifies instruction syntax when processing instructions.
1efbbeb4
L
357The @code{.att_syntax} and @code{.intel_syntax} directives will
358take precedent.
359
360@cindex @samp{-mnaked-reg} option, i386
361@cindex @samp{-mnaked-reg} option, x86-64
362@item -mnaked-reg
33eaf5de 363This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 364The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 365
7e8b059b
L
366@cindex @samp{-madd-bnd-prefix} option, i386
367@cindex @samp{-madd-bnd-prefix} option, x86-64
368@item -madd-bnd-prefix
369This option forces the assembler to add BND prefix to all branches, even
370if such prefix was not explicitly specified in the source code.
371
8dcea932
L
372@cindex @samp{-mshared} option, i386
373@cindex @samp{-mshared} option, x86-64
374@item -mno-shared
375On ELF target, the assembler normally optimizes out non-PLT relocations
376against defined non-weak global branch targets with default visibility.
377The @samp{-mshared} option tells the assembler to generate code which
378may go into a shared library where all non-weak global branch targets
379with default visibility can be preempted. The resulting code is
380slightly bigger. This option only affects the handling of branch
381instructions.
382
167ad85b
TG
383@cindex @samp{-mbig-obj} option, x86-64
384@item -mbig-obj
385On x86-64 PE/COFF target this option forces the use of big object file
386format, which allows more than 32768 sections.
387
d022bddd
IT
388@cindex @samp{-momit-lock-prefix=} option, i386
389@cindex @samp{-momit-lock-prefix=} option, x86-64
390@item -momit-lock-prefix=@var{no}
391@itemx -momit-lock-prefix=@var{yes}
392These options control how the assembler should encode lock prefix.
393This option is intended as a workaround for processors, that fail on
394lock prefix. This option can only be safely used with single-core,
395single-thread computers
396@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
397@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
398which is the default.
399
e4e00185
AS
400@cindex @samp{-mfence-as-lock-add=} option, i386
401@cindex @samp{-mfence-as-lock-add=} option, x86-64
402@item -mfence-as-lock-add=@var{no}
403@itemx -mfence-as-lock-add=@var{yes}
404These options control how the assembler should encode lfence, mfence and
405sfence.
406@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
407sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
408@samp{lock addl $0x0, (%esp)} in 32-bit mode.
409@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
410sfence as usual, which is the default.
411
0cb4071e
L
412@cindex @samp{-mrelax-relocations=} option, i386
413@cindex @samp{-mrelax-relocations=} option, x86-64
414@item -mrelax-relocations=@var{no}
415@itemx -mrelax-relocations=@var{yes}
416These options control whether the assembler should generate relax
417relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
418R_X86_64_REX_GOTPCRELX, in 64-bit mode.
419@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
420@option{-mrelax-relocations=@var{no}} will not generate relax
421relocations. The default can be controlled by a configure option
422@option{--enable-x86-relax-relocations}.
423
b4a3a7b4
L
424@cindex @samp{-mx86-used-note=} option, i386
425@cindex @samp{-mx86-used-note=} option, x86-64
426@item -mx86-used-note=@var{no}
427@itemx -mx86-used-note=@var{yes}
428These options control whether the assembler should generate
429GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
430GNU property notes. The default can be controlled by the
431@option{--enable-x86-used-note} configure option.
432
d3d3c6db
IT
433@cindex @samp{-mevexrcig=} option, i386
434@cindex @samp{-mevexrcig=} option, x86-64
435@item -mevexrcig=@var{rne}
436@itemx -mevexrcig=@var{rd}
437@itemx -mevexrcig=@var{ru}
438@itemx -mevexrcig=@var{rz}
439These options control how the assembler should encode SAE-only
440EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
441of EVEX instruction with 00, which is the default.
442@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
443and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
444with 01, 10 and 11 RC bits, respectively.
445
5db04b09
L
446@cindex @samp{-mamd64} option, x86-64
447@cindex @samp{-mintel64} option, x86-64
448@item -mamd64
449@itemx -mintel64
450This option specifies that the assembler should accept only AMD64 or
451Intel64 ISA in 64-bit mode. The default is to accept both.
452
b6f8c7c4
L
453@cindex @samp{-O0} option, i386
454@cindex @samp{-O0} option, x86-64
455@cindex @samp{-O} option, i386
456@cindex @samp{-O} option, x86-64
457@cindex @samp{-O1} option, i386
458@cindex @samp{-O1} option, x86-64
459@cindex @samp{-O2} option, i386
460@cindex @samp{-O2} option, x86-64
461@cindex @samp{-Os} option, i386
462@cindex @samp{-Os} option, x86-64
463@item -O0 | -O | -O1 | -O2 | -Os
464Optimize instruction encoding with smaller instruction size. @samp{-O}
465and @samp{-O1} encode 64-bit register load instructions with 64-bit
466immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 467immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
468register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
469register clearing instructions with 128-bit VEX vector register
470clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 471register load/store instructions with VEX vector register load/store
a0a1771e
JB
472instructions, and encode 128-bit/256-bit EVEX packed integer logical
473instructions with 128-bit/256-bit VEX packed integer logical.
474
475@samp{-O2} includes @samp{-O1} optimization plus encodes
476256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
477EVEX vector register clearing instructions. In 64-bit mode VEX encoded
478instructions with commutative source operands will also have their
479source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
480instead of the 3-byte one. Certain forms of AND as well as OR with the
481same (register) operand specified twice will also be changed to TEST.
a0a1771e 482
b6f8c7c4
L
483@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
484and 64-bit register tests with immediate as 8-bit register test with
485immediate. @samp{-O0} turns off this optimization.
486
55b62671 487@end table
731caf76 488@c man end
e413e4e9 489
a6c24e68
NC
490@node i386-Directives
491@section x86 specific Directives
492
493@cindex machine directives, x86
494@cindex x86 machine directives
495@table @code
496
497@cindex @code{lcomm} directive, COFF
498@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
499Reserve @var{length} (an absolute expression) bytes for a local common
500denoted by @var{symbol}. The section and value of @var{symbol} are
501those of the new local common. The addresses are allocated in the bss
704209c0
NC
502section, so that at run-time the bytes start off zeroed. Since
503@var{symbol} is not declared global, it is normally not visible to
504@code{@value{LD}}. The optional third parameter, @var{alignment},
505specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
506
507This directive is only available for COFF based x86 targets.
508
102e9361
NC
509@cindex @code{largecomm} directive, ELF
510@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
511This directive behaves in the same way as the @code{comm} directive
512except that the data is placed into the @var{.lbss} section instead of
513the @var{.bss} section @ref{Comm}.
514
515The directive is intended to be used for data which requires a large
516amount of space, and it is only available for ELF based x86_64
517targets.
518
a6c24e68 519@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
520
521@end table
522
252b5132 523@node i386-Syntax
7c31ae13
NC
524@section i386 Syntactical Considerations
525@menu
526* i386-Variations:: AT&T Syntax versus Intel Syntax
527* i386-Chars:: Special Characters
528@end menu
529
530@node i386-Variations
531@subsection AT&T Syntax versus Intel Syntax
252b5132 532
e413e4e9
AM
533@cindex i386 intel_syntax pseudo op
534@cindex intel_syntax pseudo op, i386
535@cindex i386 att_syntax pseudo op
536@cindex att_syntax pseudo op, i386
252b5132
RH
537@cindex i386 syntax compatibility
538@cindex syntax compatibility, i386
55b62671
AJ
539@cindex x86-64 intel_syntax pseudo op
540@cindex intel_syntax pseudo op, x86-64
541@cindex x86-64 att_syntax pseudo op
542@cindex att_syntax pseudo op, x86-64
543@cindex x86-64 syntax compatibility
544@cindex syntax compatibility, x86-64
e413e4e9
AM
545
546@code{@value{AS}} now supports assembly using Intel assembler syntax.
547@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
548back to the usual AT&T mode for compatibility with the output of
549@code{@value{GCC}}. Either of these directives may have an optional
550argument, @code{prefix}, or @code{noprefix} specifying whether registers
551require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
552different from Intel syntax. We mention these differences because
553almost all 80386 documents use Intel syntax. Notable differences
554between the two syntaxes are:
555
556@cindex immediate operands, i386
557@cindex i386 immediate operands
558@cindex register operands, i386
559@cindex i386 register operands
560@cindex jump/call operands, i386
561@cindex i386 jump/call operands
562@cindex operand delimiters, i386
55b62671
AJ
563
564@cindex immediate operands, x86-64
565@cindex x86-64 immediate operands
566@cindex register operands, x86-64
567@cindex x86-64 register operands
568@cindex jump/call operands, x86-64
569@cindex x86-64 jump/call operands
570@cindex operand delimiters, x86-64
252b5132
RH
571@itemize @bullet
572@item
573AT&T immediate operands are preceded by @samp{$}; Intel immediate
574operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
575AT&T register operands are preceded by @samp{%}; Intel register operands
576are undelimited. AT&T absolute (as opposed to PC relative) jump/call
577operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
578
579@cindex i386 source, destination operands
580@cindex source, destination operands; i386
55b62671
AJ
581@cindex x86-64 source, destination operands
582@cindex source, destination operands; x86-64
252b5132
RH
583@item
584AT&T and Intel syntax use the opposite order for source and destination
585operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
586@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
587previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
588instructions with 2 immediate operands, such as the @samp{enter}
589instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
590
591@cindex mnemonic suffixes, i386
592@cindex sizes operands, i386
593@cindex i386 size suffixes
55b62671
AJ
594@cindex mnemonic suffixes, x86-64
595@cindex sizes operands, x86-64
596@cindex x86-64 size suffixes
252b5132
RH
597@item
598In AT&T syntax the size of memory operands is determined from the last
599character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 600@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
601(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
602of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
603(256-bit vector) and zmm (512-bit vector) memory references, only when there's
604no other way to disambiguate an instruction. Intel syntax accomplishes this by
605prefixing memory operands (@emph{not} the instruction mnemonics) with
606@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
607@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
608syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
609syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
610@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 611
4b06377f
L
612In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
613instruction with the 64-bit displacement or immediate operand.
614
252b5132
RH
615@cindex return instructions, i386
616@cindex i386 jump, call, return
55b62671
AJ
617@cindex return instructions, x86-64
618@cindex x86-64 jump, call, return
252b5132
RH
619@item
620Immediate form long jumps and calls are
621@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
622Intel syntax is
623@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
624instruction
625is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
626@samp{ret far @var{stack-adjust}}.
627
628@cindex sections, i386
629@cindex i386 sections
55b62671
AJ
630@cindex sections, x86-64
631@cindex x86-64 sections
252b5132
RH
632@item
633The AT&T assembler does not provide support for multiple section
634programs. Unix style systems expect all programs to be single sections.
635@end itemize
636
7c31ae13
NC
637@node i386-Chars
638@subsection Special Characters
639
640@cindex line comment character, i386
641@cindex i386 line comment character
642The presence of a @samp{#} appearing anywhere on a line indicates the
643start of a comment that extends to the end of that line.
644
645If a @samp{#} appears as the first character of a line then the whole
646line is treated as a comment, but in this case the line can also be a
647logical line number directive (@pxref{Comments}) or a preprocessor
648control command (@pxref{Preprocessing}).
649
a05a5b64 650If the @option{--divide} command-line option has not been specified
7c31ae13
NC
651then the @samp{/} character appearing anywhere on a line also
652introduces a line comment.
653
654@cindex line separator, i386
655@cindex statement separator, i386
656@cindex i386 line separator
657The @samp{;} character can be used to separate statements on the same
658line.
659
252b5132 660@node i386-Mnemonics
d3b47e2b
L
661@section i386-Mnemonics
662@subsection Instruction Naming
252b5132
RH
663
664@cindex i386 instruction naming
665@cindex instruction naming, i386
55b62671
AJ
666@cindex x86-64 instruction naming
667@cindex instruction naming, x86-64
668
252b5132 669Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
670specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
671and @samp{q} specify byte, word, long and quadruple word operands. If
672no suffix is specified by an instruction then @code{@value{AS}} tries to
673fill in the missing suffix based on the destination register operand
674(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
675to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
676@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
677assembler which assumes that a missing mnemonic suffix implies long
678operand size. (This incompatibility does not affect compiler output
679since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
680
681Almost all instructions have the same names in AT&T and Intel format.
682There are a few exceptions. The sign extend and zero extend
683instructions need two sizes to specify them. They need a size to
684sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
685is accomplished by using two instruction mnemonic suffixes in AT&T
686syntax. Base names for sign extend and zero extend are
687@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
688and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
689are tacked on to this base name, the @emph{from} suffix before the
690@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
691``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
692thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
693@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
694@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
695quadruple word).
252b5132 696
b6169b20
L
697@cindex encoding options, i386
698@cindex encoding options, x86-64
699
86fa6981
L
700Different encoding options can be specified via pseudo prefixes:
701
702@itemize @bullet
703@item
704@samp{@{disp8@}} -- prefer 8-bit displacement.
705
706@item
707@samp{@{disp32@}} -- prefer 32-bit displacement.
708
709@item
710@samp{@{load@}} -- prefer load-form instruction.
711
712@item
713@samp{@{store@}} -- prefer store-form instruction.
714
715@item
716@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
717
718@item
719@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
720
721@item
722@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
723
724@item
725@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
726instructions (x86-64 only). Note that this differs from the @samp{rex}
727prefix which generates REX prefix unconditionally.
b6f8c7c4
L
728
729@item
730@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 731@end itemize
b6169b20 732
252b5132
RH
733@cindex conversion instructions, i386
734@cindex i386 conversion instructions
55b62671
AJ
735@cindex conversion instructions, x86-64
736@cindex x86-64 conversion instructions
252b5132
RH
737The Intel-syntax conversion instructions
738
739@itemize @bullet
740@item
741@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
742
743@item
744@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
745
746@item
747@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
748
749@item
750@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
751
752@item
753@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
754(x86-64 only),
755
756@item
d5f0cf92 757@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 758@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
759@end itemize
760
761@noindent
55b62671
AJ
762are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
763@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
764instructions.
252b5132
RH
765
766@cindex jump instructions, i386
767@cindex call instructions, i386
55b62671
AJ
768@cindex jump instructions, x86-64
769@cindex call instructions, x86-64
252b5132
RH
770Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
771AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
772convention.
773
d3b47e2b 774@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
775
776@cindex i386 mnemonic compatibility
777@cindex mnemonic compatibility, i386
778
779@code{@value{AS}} supports assembly using Intel mnemonic.
780@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
781@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
782syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
783Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
784@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
785@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
786assembler with different mnemonics from those in Intel IA32 specification.
787@code{@value{GCC}} generates those instructions with AT&T mnemonic.
788
252b5132
RH
789@node i386-Regs
790@section Register Naming
791
792@cindex i386 registers
793@cindex registers, i386
55b62671
AJ
794@cindex x86-64 registers
795@cindex registers, x86-64
252b5132
RH
796Register operands are always prefixed with @samp{%}. The 80386 registers
797consist of
798
799@itemize @bullet
800@item
801the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
802@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
803frame pointer), and @samp{%esp} (the stack pointer).
804
805@item
806the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
807@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
808
809@item
810the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
811@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
812are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
813@samp{%cx}, and @samp{%dx})
814
815@item
816the 6 section registers @samp{%cs} (code section), @samp{%ds}
817(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
818and @samp{%gs}.
819
820@item
4bde3cdd
UD
821the 5 processor control registers @samp{%cr0}, @samp{%cr2},
822@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
823
824@item
825the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
826@samp{%db3}, @samp{%db6}, and @samp{%db7}.
827
828@item
829the 2 test registers @samp{%tr6} and @samp{%tr7}.
830
831@item
832the 8 floating point register stack @samp{%st} or equivalently
833@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
834@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
835These registers are overloaded by 8 MMX registers @samp{%mm0},
836@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
837@samp{%mm6} and @samp{%mm7}.
838
839@item
4bde3cdd 840the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
841@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
842@end itemize
843
844The AMD x86-64 architecture extends the register set by:
845
846@itemize @bullet
847@item
848enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
849accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
850@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
851pointer)
852
853@item
854the 8 extended registers @samp{%r8}--@samp{%r15}.
855
856@item
4bde3cdd 857the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
858
859@item
4bde3cdd 860the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
861
862@item
4bde3cdd 863the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
864
865@item
866the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
867
868@item
869the 8 debug registers: @samp{%db8}--@samp{%db15}.
870
871@item
4bde3cdd
UD
872the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
873@end itemize
874
875With the AVX extensions more registers were made available:
876
877@itemize @bullet
878
879@item
880the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
881available in 32-bit mode). The bottom 128 bits are overlaid with the
882@samp{xmm0}--@samp{xmm15} registers.
883
884@end itemize
885
886The AVX2 extensions made in 64-bit mode more registers available:
887
888@itemize @bullet
889
890@item
891the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
892registers @samp{%ymm16}--@samp{%ymm31}.
893
894@end itemize
895
896The AVX512 extensions added the following registers:
897
898@itemize @bullet
899
900@item
901the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
902available in 32-bit mode). The bottom 128 bits are overlaid with the
903@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
904overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
905
906@item
907the 8 mask registers @samp{%k0}--@samp{%k7}.
908
252b5132
RH
909@end itemize
910
911@node i386-Prefixes
912@section Instruction Prefixes
913
914@cindex i386 instruction prefixes
915@cindex instruction prefixes, i386
916@cindex prefixes, i386
917Instruction prefixes are used to modify the following instruction. They
918are used to repeat string instructions, to provide section overrides, to
919perform bus lock operations, and to change operand and address sizes.
920(Most instructions that normally operate on 32-bit operands will use
92116-bit operands if the instruction has an ``operand size'' prefix.)
922Instruction prefixes are best written on the same line as the instruction
923they act upon. For example, the @samp{scas} (scan string) instruction is
924repeated with:
925
926@smallexample
927 repne scas %es:(%edi),%al
928@end smallexample
929
930You may also place prefixes on the lines immediately preceding the
931instruction, but this circumvents checks that @code{@value{AS}} does
932with prefixes, and will not work with all prefixes.
933
934Here is a list of instruction prefixes:
935
936@cindex section override prefixes, i386
937@itemize @bullet
938@item
939Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
940@samp{fs}, @samp{gs}. These are automatically added by specifying
941using the @var{section}:@var{memory-operand} form for memory references.
942
943@cindex size prefixes, i386
944@item
945Operand/Address size prefixes @samp{data16} and @samp{addr16}
946change 32-bit operands/addresses into 16-bit operands/addresses,
947while @samp{data32} and @samp{addr32} change 16-bit ones (in a
948@code{.code16} section) into 32-bit operands/addresses. These prefixes
949@emph{must} appear on the same line of code as the instruction they
950modify. For example, in a 16-bit @code{.code16} section, you might
951write:
952
953@smallexample
954 addr32 jmpl *(%ebx)
955@end smallexample
956
957@cindex bus lock prefixes, i386
958@cindex inhibiting interrupts, i386
959@item
960The bus lock prefix @samp{lock} inhibits interrupts during execution of
961the instruction it precedes. (This is only valid with certain
962instructions; see a 80386 manual for details).
963
964@cindex coprocessor wait, i386
965@item
966The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
967complete the current instruction. This should never be needed for the
96880386/80387 combination.
969
970@cindex repeat prefixes, i386
971@item
972The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
973to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
974times if the current address size is 16-bits).
55b62671
AJ
975@cindex REX prefixes, i386
976@item
977The @samp{rex} family of prefixes is used by x86-64 to encode
978extensions to i386 instruction set. The @samp{rex} prefix has four
979bits --- an operand size overwrite (@code{64}) used to change operand size
980from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
981register set.
982
983You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
984instruction emits @samp{rex} prefix with all the bits set. By omitting
985the @code{64}, @code{x}, @code{y} or @code{z} you may write other
986prefixes as well. Normally, there is no need to write the prefixes
987explicitly, since gas will automatically generate them based on the
988instruction operands.
252b5132
RH
989@end itemize
990
991@node i386-Memory
992@section Memory References
993
994@cindex i386 memory references
995@cindex memory references, i386
55b62671
AJ
996@cindex x86-64 memory references
997@cindex memory references, x86-64
252b5132
RH
998An Intel syntax indirect memory reference of the form
999
1000@smallexample
1001@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1002@end smallexample
1003
1004@noindent
1005is translated into the AT&T syntax
1006
1007@smallexample
1008@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1009@end smallexample
1010
1011@noindent
1012where @var{base} and @var{index} are the optional 32-bit base and
1013index registers, @var{disp} is the optional displacement, and
1014@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1015to calculate the address of the operand. If no @var{scale} is
1016specified, @var{scale} is taken to be 1. @var{section} specifies the
1017optional section register for the memory operand, and may override the
1018default section register (see a 80386 manual for section register
1019defaults). Note that section overrides in AT&T syntax @emph{must}
1020be preceded by a @samp{%}. If you specify a section override which
1021coincides with the default section register, @code{@value{AS}} does @emph{not}
1022output any section register override prefixes to assemble the given
1023instruction. Thus, section overrides can be specified to emphasize which
1024section register is used for a given memory operand.
1025
1026Here are some examples of Intel and AT&T style memory references:
1027
1028@table @asis
1029@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1030@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1031missing, and the default section is used (@samp{%ss} for addressing with
1032@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1033
1034@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1035@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1036@samp{foo}. All other fields are missing. The section register here
1037defaults to @samp{%ds}.
1038
1039@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1040This uses the value pointed to by @samp{foo} as a memory operand.
1041Note that @var{base} and @var{index} are both missing, but there is only
1042@emph{one} @samp{,}. This is a syntactic exception.
1043
1044@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1045This selects the contents of the variable @samp{foo} with section
1046register @var{section} being @samp{%gs}.
1047@end table
1048
1049Absolute (as opposed to PC relative) call and jump operands must be
1050prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1051always chooses PC relative addressing for jump/call labels.
1052
1053Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1054@emph{must} specify its size (byte, word, long, or quadruple) with an
1055instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1056respectively).
1057
1058The x86-64 architecture adds an RIP (instruction pointer relative)
1059addressing. This addressing mode is specified by using @samp{rip} as a
1060base register. Only constant offsets are valid. For example:
1061
1062@table @asis
1063@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1064Points to the address 1234 bytes past the end of the current
1065instruction.
1066
1067@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1068Points to the @code{symbol} in RIP relative way, this is shorter than
1069the default absolute addressing.
1070@end table
1071
1072Other addressing modes remain unchanged in x86-64 architecture, except
1073registers used are 64-bit instead of 32-bit.
252b5132 1074
fddf5b5b 1075@node i386-Jumps
252b5132
RH
1076@section Handling of Jump Instructions
1077
1078@cindex jump optimization, i386
1079@cindex i386 jump optimization
55b62671
AJ
1080@cindex jump optimization, x86-64
1081@cindex x86-64 jump optimization
252b5132
RH
1082Jump instructions are always optimized to use the smallest possible
1083displacements. This is accomplished by using byte (8-bit) displacement
1084jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1085is insufficient a long displacement is used. We do not support
252b5132
RH
1086word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1087instruction with the @samp{data16} instruction prefix), since the 80386
1088insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1089is added. (See also @pxref{i386-Arch})
252b5132
RH
1090
1091Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1092@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1093displacements, so that if you use these instructions (@code{@value{GCC}} does
1094not use them) you may get an error message (and incorrect code). The AT&T
109580386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1096to
1097
1098@smallexample
1099 jcxz cx_zero
1100 jmp cx_nonzero
1101cx_zero: jmp foo
1102cx_nonzero:
1103@end smallexample
1104
1105@node i386-Float
1106@section Floating Point
1107
1108@cindex i386 floating point
1109@cindex floating point, i386
55b62671
AJ
1110@cindex x86-64 floating point
1111@cindex floating point, x86-64
252b5132
RH
1112All 80387 floating point types except packed BCD are supported.
1113(BCD support may be added without much difficulty). These data
1114types are 16-, 32-, and 64- bit integers, and single (32-bit),
1115double (64-bit), and extended (80-bit) precision floating point.
1116Each supported type has an instruction mnemonic suffix and a constructor
1117associated with it. Instruction mnemonic suffixes specify the operand's
1118data type. Constructors build these data types into memory.
1119
1120@cindex @code{float} directive, i386
1121@cindex @code{single} directive, i386
1122@cindex @code{double} directive, i386
1123@cindex @code{tfloat} directive, i386
55b62671
AJ
1124@cindex @code{float} directive, x86-64
1125@cindex @code{single} directive, x86-64
1126@cindex @code{double} directive, x86-64
1127@cindex @code{tfloat} directive, x86-64
252b5132
RH
1128@itemize @bullet
1129@item
1130Floating point constructors are @samp{.float} or @samp{.single},
1131@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1132These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1133and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1134only supports this format via the @samp{fldt} (load 80-bit real to stack
1135top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1136
1137@cindex @code{word} directive, i386
1138@cindex @code{long} directive, i386
1139@cindex @code{int} directive, i386
1140@cindex @code{quad} directive, i386
55b62671
AJ
1141@cindex @code{word} directive, x86-64
1142@cindex @code{long} directive, x86-64
1143@cindex @code{int} directive, x86-64
1144@cindex @code{quad} directive, x86-64
252b5132
RH
1145@item
1146Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1147@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1148corresponding instruction mnemonic suffixes are @samp{s} (single),
1149@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1150the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1151quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1152stack) instructions.
1153@end itemize
1154
1155Register to register operations should not use instruction mnemonic suffixes.
1156@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1157wrote @samp{fst %st, %st(1)}, since all register to register operations
1158use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1159which converts @samp{%st} from 80-bit to 64-bit floating point format,
1160then stores the result in the 4 byte location @samp{mem})
1161
1162@node i386-SIMD
1163@section Intel's MMX and AMD's 3DNow! SIMD Operations
1164
1165@cindex MMX, i386
1166@cindex 3DNow!, i386
1167@cindex SIMD, i386
55b62671
AJ
1168@cindex MMX, x86-64
1169@cindex 3DNow!, x86-64
1170@cindex SIMD, x86-64
252b5132
RH
1171
1172@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1173instructions for integer data), available on Intel's Pentium MMX
1174processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1175Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1176instruction set (SIMD instructions for 32-bit floating point data)
1177available on AMD's K6-2 processor and possibly others in the future.
1178
1179Currently, @code{@value{AS}} does not support Intel's floating point
1180SIMD, Katmai (KNI).
1181
1182The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1183@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
118416-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1185floating point values. The MMX registers cannot be used at the same time
1186as the floating point stack.
1187
1188See Intel and AMD documentation, keeping in mind that the operand order in
1189instructions is reversed from the Intel syntax.
1190
f88c9eb0
SP
1191@node i386-LWP
1192@section AMD's Lightweight Profiling Instructions
1193
1194@cindex LWP, i386
1195@cindex LWP, x86-64
1196
1197@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1198instruction set, available on AMD's Family 15h (Orochi) processors.
1199
1200LWP enables applications to collect and manage performance data, and
1201react to performance events. The collection of performance data
1202requires no context switches. LWP runs in the context of a thread and
1203so several counters can be used independently across multiple threads.
1204LWP can be used in both 64-bit and legacy 32-bit modes.
1205
1206For detailed information on the LWP instruction set, see the
1207@cite{AMD Lightweight Profiling Specification} available at
1208@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1209
87973e9f
QN
1210@node i386-BMI
1211@section Bit Manipulation Instructions
1212
1213@cindex BMI, i386
1214@cindex BMI, x86-64
1215
1216@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1217
1218BMI instructions provide several instructions implementing individual
1219bit manipulation operations such as isolation, masking, setting, or
34bca508 1220resetting.
87973e9f
QN
1221
1222@c Need to add a specification citation here when available.
1223
2a2a0f38
QN
1224@node i386-TBM
1225@section AMD's Trailing Bit Manipulation Instructions
1226
1227@cindex TBM, i386
1228@cindex TBM, x86-64
1229
1230@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1231instruction set, available on AMD's BDVER2 processors (Trinity and
1232Viperfish).
1233
1234TBM instructions provide instructions implementing individual bit
1235manipulation operations such as isolating, masking, setting, resetting,
1236complementing, and operations on trailing zeros and ones.
1237
1238@c Need to add a specification citation here when available.
87973e9f 1239
252b5132
RH
1240@node i386-16bit
1241@section Writing 16-bit Code
1242
1243@cindex i386 16-bit code
1244@cindex 16-bit code, i386
1245@cindex real-mode code, i386
eecb386c 1246@cindex @code{code16gcc} directive, i386
252b5132
RH
1247@cindex @code{code16} directive, i386
1248@cindex @code{code32} directive, i386
55b62671
AJ
1249@cindex @code{code64} directive, i386
1250@cindex @code{code64} directive, x86-64
1251While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1252or 64-bit x86-64 code depending on the default configuration,
252b5132 1253it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1254mode code segments. To do this, put a @samp{.code16} or
1255@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1256be run in 16-bit mode. You can switch @code{@value{AS}} to writing
125732-bit code with the @samp{.code32} directive or 64-bit code with the
1258@samp{.code64} directive.
eecb386c
AM
1259
1260@samp{.code16gcc} provides experimental support for generating 16-bit
1261code from gcc, and differs from @samp{.code16} in that @samp{call},
1262@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1263@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1264default to 32-bit size. This is so that the stack pointer is
1265manipulated in the same way over function calls, allowing access to
1266function parameters at the same stack offsets as in 32-bit mode.
1267@samp{.code16gcc} also automatically adds address size prefixes where
1268necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1269
1270The code which @code{@value{AS}} generates in 16-bit mode will not
1271necessarily run on a 16-bit pre-80386 processor. To write code that
1272runs on such a processor, you must refrain from using @emph{any} 32-bit
1273constructs which require @code{@value{AS}} to output address or operand
1274size prefixes.
1275
1276Note that writing 16-bit code instructions by explicitly specifying a
1277prefix or an instruction mnemonic suffix within a 32-bit code section
1278generates different machine instructions than those generated for a
127916-bit code segment. In a 32-bit code section, the following code
1280generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1281value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1282
1283@smallexample
1284 pushw $4
1285@end smallexample
1286
1287The same code in a 16-bit code section would generate the machine
b45619c0 1288opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1289is correct since the processor default operand size is assumed to be 16
1290bits in a 16-bit code section.
1291
e413e4e9
AM
1292@node i386-Arch
1293@section Specifying CPU Architecture
1294
1295@cindex arch directive, i386
1296@cindex i386 arch directive
55b62671
AJ
1297@cindex arch directive, x86-64
1298@cindex x86-64 arch directive
e413e4e9
AM
1299
1300@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1301(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1302directive enables a warning when gas detects an instruction that is not
1303supported on the CPU specified. The choices for @var{cpu_type} are:
1304
1305@multitable @columnfractions .20 .20 .20 .20
1306@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1307@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1308@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1309@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1310@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1311@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1312@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1313@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1314@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1315@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1316@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1317@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1318@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1319@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1320@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1321@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1322@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1323@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1324@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1325@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1326@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1327@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1328@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1329@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1330@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1331@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1332@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1333@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
5d79adc4 1334@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1ceab344 1335@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1336@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1337@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
d777820b 1338@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1339@end multitable
1340
fddf5b5b
AM
1341Apart from the warning, there are only two other effects on
1342@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1343@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1344will automatically use a two byte opcode sequence. The larger three
1345byte opcode sequence is used on the 486 (and when no architecture is
1346specified) because it executes faster on the 486. Note that you can
1347explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1348Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1349@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1350conditional jumps will be promoted when necessary to a two instruction
1351sequence consisting of a conditional jump of the opposite sense around
1352an unconditional jump to the target.
1353
5c6af06e
JB
1354Following the CPU architecture (but not a sub-architecture, which are those
1355starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1356control automatic promotion of conditional jumps. @samp{jumps} is the
1357default, and enables jump promotion; All external jumps will be of the long
1358variety, and file-local jumps will be promoted as necessary.
1359(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1360byte offset jumps, and warns about file-local conditional jumps that
1361@code{@value{AS}} promotes.
fddf5b5b
AM
1362Unconditional jumps are treated as for @samp{jumps}.
1363
1364For example
1365
1366@smallexample
1367 .arch i8086,nojumps
1368@end smallexample
e413e4e9 1369
5c9352f3
AM
1370@node i386-Bugs
1371@section AT&T Syntax bugs
1372
1373The UnixWare assembler, and probably other AT&T derived ix86 Unix
1374assemblers, generate floating point instructions with reversed source
1375and destination registers in certain cases. Unfortunately, gcc and
1376possibly many other programs use this reversed syntax, so we're stuck
1377with it.
1378
1379For example
1380
1381@smallexample
1382 fsub %st,%st(3)
1383@end smallexample
1384@noindent
1385results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1386than the expected @samp{%st(3) - %st}. This happens with all the
1387non-commutative arithmetic floating point operations with two register
1388operands where the source register is @samp{%st} and the destination
1389register is @samp{%st(i)}.
1390
252b5132
RH
1391@node i386-Notes
1392@section Notes
1393
1394@cindex i386 @code{mul}, @code{imul} instructions
1395@cindex @code{mul} instruction, i386
1396@cindex @code{imul} instruction, i386
55b62671
AJ
1397@cindex @code{mul} instruction, x86-64
1398@cindex @code{imul} instruction, x86-64
252b5132 1399There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1400instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1401multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1402for @samp{imul}) can be output only in the one operand form. Thus,
1403@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1404the expanding multiply would clobber the @samp{%edx} register, and this
1405would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
140664-bit product in @samp{%edx:%eax}.
1407
1408We have added a two operand form of @samp{imul} when the first operand
1409is an immediate mode expression and the second operand is a register.
1410This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1411example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1412$69, %eax, %eax}.
1413
This page took 0.977061 seconds and 4 git commands to generate.