Add initial Intel K1OM support.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
7c31ae13 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
731caf76
L
6@c man end
7
252b5132
RH
8@ifset GENERIC
9@page
10@node i386-Dependent
11@chapter 80386 Dependent Features
12@end ifset
13@ifclear GENERIC
14@node Machine Dependencies
15@chapter 80386 Dependent Features
16@end ifclear
17
18@cindex i386 support
b6169b20 19@cindex i80386 support
55b62671
AJ
20@cindex x86-64 support
21
22The i386 version @code{@value{AS}} supports both the original Intel 386
23architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24extending the Intel architecture to 64-bits.
25
252b5132
RH
26@menu
27* i386-Options:: Options
a6c24e68 28* i386-Directives:: X86 specific directives
7c31ae13 29* i386-Syntax:: Syntactical considerations
252b5132
RH
30* i386-Mnemonics:: Instruction Naming
31* i386-Regs:: Register Naming
32* i386-Prefixes:: Instruction Prefixes
33* i386-Memory:: Memory References
fddf5b5b 34* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
35* i386-Float:: Floating Point
36* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 37* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 38* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 39* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 40* i386-16bit:: Writing 16-bit Code
e413e4e9 41* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
42* i386-Bugs:: AT&T Syntax bugs
43* i386-Notes:: Notes
44@end menu
45
46@node i386-Options
47@section Options
48
55b62671
AJ
49@cindex options for i386
50@cindex options for x86-64
51@cindex i386 options
52@cindex x86-64 options
53
54The i386 version of @code{@value{AS}} has a few machine
55dependent options:
56
731caf76
L
57@c man begin OPTIONS
58@table @gcctabopt
55b62671
AJ
59@cindex @samp{--32} option, i386
60@cindex @samp{--32} option, x86-64
570561f7
L
61@cindex @samp{--x32} option, i386
62@cindex @samp{--x32} option, x86-64
55b62671
AJ
63@cindex @samp{--64} option, i386
64@cindex @samp{--64} option, x86-64
570561f7 65@item --32 | --x32 | --64
35cc6a0b 66Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 67implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
68imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69respectively.
55b62671
AJ
70
71These options are only available with the ELF object file format, and
72require that the necessary BFD support has been included (on a 32-bit
73platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74usage and use x86-64 as target platform).
12b55ccc
L
75
76@item -n
77By default, x86 GAS replaces multiple nop instructions used for
78alignment within code sections with multi-byte nop instructions such
79as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
9103f4f4
L
123@code{generic32} and
124@code{generic64}.
125
6305a203
L
126In addition to the basic instruction set, the assembler can be told to
127accept various extension mnemonics. For example,
128@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
129@var{vmx}. The following extensions are currently supported:
309d3373
JB
130@code{8087},
131@code{287},
132@code{387},
133@code{no87},
6305a203 134@code{mmx},
309d3373 135@code{nommx},
6305a203
L
136@code{sse},
137@code{sse2},
138@code{sse3},
139@code{ssse3},
140@code{sse4.1},
141@code{sse4.2},
142@code{sse4},
309d3373 143@code{nosse},
c0f3af97 144@code{avx},
6c30d220 145@code{avx2},
309d3373 146@code{noavx},
6305a203
L
147@code{vmx},
148@code{smx},
f03fe4c1 149@code{xsave},
c7b8aa3a 150@code{xsaveopt},
c0f3af97 151@code{aes},
594ab6a3 152@code{pclmul},
c7b8aa3a
L
153@code{fsgsbase},
154@code{rdrnd},
155@code{f16c},
6c30d220 156@code{bmi2},
c0f3af97 157@code{fma},
f1f8f695
L
158@code{movbe},
159@code{ept},
6c30d220
L
160@code{lzcnt},
161@code{invpcid},
bd5295b2 162@code{clflush},
f88c9eb0 163@code{lwp},
5dd85c99
SP
164@code{fma4},
165@code{xop},
bd5295b2 166@code{syscall},
1b7f3fb0 167@code{rdtscp},
6305a203
L
168@code{3dnow},
169@code{3dnowa},
170@code{sse4a},
171@code{sse5},
172@code{svme},
173@code{abm} and
174@code{padlock}.
309d3373
JB
175Note that rather than extending a basic instruction set, the extension
176mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
177
178When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
179@code{.arch} directive will take precedent.
180
181@cindex @samp{-mtune=} option, i386
182@cindex @samp{-mtune=} option, x86-64
183@item -mtune=@var{CPU}
184This option specifies a processor to optimize for. When used in
185conjunction with the @option{-march} option, only instructions
186of the processor specified by the @option{-march} option will be
187generated.
188
6305a203
L
189Valid @var{CPU} values are identical to the processor list of
190@option{-march=@var{CPU}}.
9103f4f4 191
c0f3af97
L
192@cindex @samp{-msse2avx} option, i386
193@cindex @samp{-msse2avx} option, x86-64
194@item -msse2avx
195This option specifies that the assembler should encode SSE instructions
196with VEX prefix.
197
daf50ae7
L
198@cindex @samp{-msse-check=} option, i386
199@cindex @samp{-msse-check=} option, x86-64
200@item -msse-check=@var{none}
1f9bb1ca
AS
201@itemx -msse-check=@var{warning}
202@itemx -msse-check=@var{error}
daf50ae7
L
203These options control if the assembler should check SSE intructions.
204@option{-msse-check=@var{none}} will make the assembler not to check SSE
205instructions, which is the default. @option{-msse-check=@var{warning}}
206will make the assembler issue a warning for any SSE intruction.
207@option{-msse-check=@var{error}} will make the assembler issue an error
208for any SSE intruction.
209
539f890d
L
210@cindex @samp{-mavxscalar=} option, i386
211@cindex @samp{-mavxscalar=} option, x86-64
212@item -mavxscalar=@var{128}
1f9bb1ca 213@itemx -mavxscalar=@var{256}
2aab8acd 214These options control how the assembler should encode scalar AVX
539f890d
L
215instructions. @option{-mavxscalar=@var{128}} will encode scalar
216AVX instructions with 128bit vector length, which is the default.
217@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
218with 256bit vector length.
219
1efbbeb4
L
220@cindex @samp{-mmnemonic=} option, i386
221@cindex @samp{-mmnemonic=} option, x86-64
222@item -mmnemonic=@var{att}
1f9bb1ca 223@itemx -mmnemonic=@var{intel}
1efbbeb4
L
224This option specifies instruction mnemonic for matching instructions.
225The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
226take precedent.
227
228@cindex @samp{-msyntax=} option, i386
229@cindex @samp{-msyntax=} option, x86-64
230@item -msyntax=@var{att}
1f9bb1ca 231@itemx -msyntax=@var{intel}
1efbbeb4
L
232This option specifies instruction syntax when processing instructions.
233The @code{.att_syntax} and @code{.intel_syntax} directives will
234take precedent.
235
236@cindex @samp{-mnaked-reg} option, i386
237@cindex @samp{-mnaked-reg} option, x86-64
238@item -mnaked-reg
239This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 240The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 241
55b62671 242@end table
731caf76 243@c man end
e413e4e9 244
a6c24e68
NC
245@node i386-Directives
246@section x86 specific Directives
247
248@cindex machine directives, x86
249@cindex x86 machine directives
250@table @code
251
252@cindex @code{lcomm} directive, COFF
253@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
254Reserve @var{length} (an absolute expression) bytes for a local common
255denoted by @var{symbol}. The section and value of @var{symbol} are
256those of the new local common. The addresses are allocated in the bss
704209c0
NC
257section, so that at run-time the bytes start off zeroed. Since
258@var{symbol} is not declared global, it is normally not visible to
259@code{@value{LD}}. The optional third parameter, @var{alignment},
260specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
261
262This directive is only available for COFF based x86 targets.
263
264@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
265@c .largecomm
266
267@end table
268
252b5132 269@node i386-Syntax
7c31ae13
NC
270@section i386 Syntactical Considerations
271@menu
272* i386-Variations:: AT&T Syntax versus Intel Syntax
273* i386-Chars:: Special Characters
274@end menu
275
276@node i386-Variations
277@subsection AT&T Syntax versus Intel Syntax
252b5132 278
e413e4e9
AM
279@cindex i386 intel_syntax pseudo op
280@cindex intel_syntax pseudo op, i386
281@cindex i386 att_syntax pseudo op
282@cindex att_syntax pseudo op, i386
252b5132
RH
283@cindex i386 syntax compatibility
284@cindex syntax compatibility, i386
55b62671
AJ
285@cindex x86-64 intel_syntax pseudo op
286@cindex intel_syntax pseudo op, x86-64
287@cindex x86-64 att_syntax pseudo op
288@cindex att_syntax pseudo op, x86-64
289@cindex x86-64 syntax compatibility
290@cindex syntax compatibility, x86-64
e413e4e9
AM
291
292@code{@value{AS}} now supports assembly using Intel assembler syntax.
293@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
294back to the usual AT&T mode for compatibility with the output of
295@code{@value{GCC}}. Either of these directives may have an optional
296argument, @code{prefix}, or @code{noprefix} specifying whether registers
297require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
298different from Intel syntax. We mention these differences because
299almost all 80386 documents use Intel syntax. Notable differences
300between the two syntaxes are:
301
302@cindex immediate operands, i386
303@cindex i386 immediate operands
304@cindex register operands, i386
305@cindex i386 register operands
306@cindex jump/call operands, i386
307@cindex i386 jump/call operands
308@cindex operand delimiters, i386
55b62671
AJ
309
310@cindex immediate operands, x86-64
311@cindex x86-64 immediate operands
312@cindex register operands, x86-64
313@cindex x86-64 register operands
314@cindex jump/call operands, x86-64
315@cindex x86-64 jump/call operands
316@cindex operand delimiters, x86-64
252b5132
RH
317@itemize @bullet
318@item
319AT&T immediate operands are preceded by @samp{$}; Intel immediate
320operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
321AT&T register operands are preceded by @samp{%}; Intel register operands
322are undelimited. AT&T absolute (as opposed to PC relative) jump/call
323operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
324
325@cindex i386 source, destination operands
326@cindex source, destination operands; i386
55b62671
AJ
327@cindex x86-64 source, destination operands
328@cindex source, destination operands; x86-64
252b5132
RH
329@item
330AT&T and Intel syntax use the opposite order for source and destination
331operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
332@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
333previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
334instructions with 2 immediate operands, such as the @samp{enter}
335instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
336
337@cindex mnemonic suffixes, i386
338@cindex sizes operands, i386
339@cindex i386 size suffixes
55b62671
AJ
340@cindex mnemonic suffixes, x86-64
341@cindex sizes operands, x86-64
342@cindex x86-64 size suffixes
252b5132
RH
343@item
344In AT&T syntax the size of memory operands is determined from the last
345character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
346@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
347(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
348this by prefixing memory operands (@emph{not} the instruction mnemonics) with
349@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
350Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
351syntax.
252b5132 352
4b06377f
L
353In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
354instruction with the 64-bit displacement or immediate operand.
355
252b5132
RH
356@cindex return instructions, i386
357@cindex i386 jump, call, return
55b62671
AJ
358@cindex return instructions, x86-64
359@cindex x86-64 jump, call, return
252b5132
RH
360@item
361Immediate form long jumps and calls are
362@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
363Intel syntax is
364@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
365instruction
366is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
367@samp{ret far @var{stack-adjust}}.
368
369@cindex sections, i386
370@cindex i386 sections
55b62671
AJ
371@cindex sections, x86-64
372@cindex x86-64 sections
252b5132
RH
373@item
374The AT&T assembler does not provide support for multiple section
375programs. Unix style systems expect all programs to be single sections.
376@end itemize
377
7c31ae13
NC
378@node i386-Chars
379@subsection Special Characters
380
381@cindex line comment character, i386
382@cindex i386 line comment character
383The presence of a @samp{#} appearing anywhere on a line indicates the
384start of a comment that extends to the end of that line.
385
386If a @samp{#} appears as the first character of a line then the whole
387line is treated as a comment, but in this case the line can also be a
388logical line number directive (@pxref{Comments}) or a preprocessor
389control command (@pxref{Preprocessing}).
390
391If the @option{--divide} command line option has not been specified
392then the @samp{/} character appearing anywhere on a line also
393introduces a line comment.
394
395@cindex line separator, i386
396@cindex statement separator, i386
397@cindex i386 line separator
398The @samp{;} character can be used to separate statements on the same
399line.
400
252b5132
RH
401@node i386-Mnemonics
402@section Instruction Naming
403
404@cindex i386 instruction naming
405@cindex instruction naming, i386
55b62671
AJ
406@cindex x86-64 instruction naming
407@cindex instruction naming, x86-64
408
252b5132 409Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
410specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
411and @samp{q} specify byte, word, long and quadruple word operands. If
412no suffix is specified by an instruction then @code{@value{AS}} tries to
413fill in the missing suffix based on the destination register operand
414(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
415to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
416@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
417assembler which assumes that a missing mnemonic suffix implies long
418operand size. (This incompatibility does not affect compiler output
419since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
420
421Almost all instructions have the same names in AT&T and Intel format.
422There are a few exceptions. The sign extend and zero extend
423instructions need two sizes to specify them. They need a size to
424sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
425is accomplished by using two instruction mnemonic suffixes in AT&T
426syntax. Base names for sign extend and zero extend are
427@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
428and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
429are tacked on to this base name, the @emph{from} suffix before the
430@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
431``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
432thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
433@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
434@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
435quadruple word).
252b5132 436
b6169b20
L
437@cindex encoding options, i386
438@cindex encoding options, x86-64
439
440Different encoding options can be specified via optional mnemonic
441suffix. @samp{.s} suffix swaps 2 register operands in encoding when
f8a5c266
L
442moving from one register to another. @samp{.d32} suffix forces 32bit
443displacement in encoding.
b6169b20 444
252b5132
RH
445@cindex conversion instructions, i386
446@cindex i386 conversion instructions
55b62671
AJ
447@cindex conversion instructions, x86-64
448@cindex x86-64 conversion instructions
252b5132
RH
449The Intel-syntax conversion instructions
450
451@itemize @bullet
452@item
453@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
454
455@item
456@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
457
458@item
459@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
460
461@item
462@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
463
464@item
465@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
466(x86-64 only),
467
468@item
d5f0cf92 469@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 470@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
471@end itemize
472
473@noindent
55b62671
AJ
474are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
475@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
476instructions.
252b5132
RH
477
478@cindex jump instructions, i386
479@cindex call instructions, i386
55b62671
AJ
480@cindex jump instructions, x86-64
481@cindex call instructions, x86-64
252b5132
RH
482Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
483AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
484convention.
485
1efbbeb4
L
486@section AT&T Mnemonic versus Intel Mnemonic
487
488@cindex i386 mnemonic compatibility
489@cindex mnemonic compatibility, i386
490
491@code{@value{AS}} supports assembly using Intel mnemonic.
492@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
493@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
494syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
495Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
496@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
497@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
498assembler with different mnemonics from those in Intel IA32 specification.
499@code{@value{GCC}} generates those instructions with AT&T mnemonic.
500
252b5132
RH
501@node i386-Regs
502@section Register Naming
503
504@cindex i386 registers
505@cindex registers, i386
55b62671
AJ
506@cindex x86-64 registers
507@cindex registers, x86-64
252b5132
RH
508Register operands are always prefixed with @samp{%}. The 80386 registers
509consist of
510
511@itemize @bullet
512@item
513the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
514@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
515frame pointer), and @samp{%esp} (the stack pointer).
516
517@item
518the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
519@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
520
521@item
522the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
523@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
524are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
525@samp{%cx}, and @samp{%dx})
526
527@item
528the 6 section registers @samp{%cs} (code section), @samp{%ds}
529(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
530and @samp{%gs}.
531
532@item
533the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
534@samp{%cr3}.
535
536@item
537the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
538@samp{%db3}, @samp{%db6}, and @samp{%db7}.
539
540@item
541the 2 test registers @samp{%tr6} and @samp{%tr7}.
542
543@item
544the 8 floating point register stack @samp{%st} or equivalently
545@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
546@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
547These registers are overloaded by 8 MMX registers @samp{%mm0},
548@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
549@samp{%mm6} and @samp{%mm7}.
550
551@item
552the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
553@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
554@end itemize
555
556The AMD x86-64 architecture extends the register set by:
557
558@itemize @bullet
559@item
560enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
561accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
562@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
563pointer)
564
565@item
566the 8 extended registers @samp{%r8}--@samp{%r15}.
567
568@item
569the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
570
571@item
572the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
573
574@item
575the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
576
577@item
578the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
579
580@item
581the 8 debug registers: @samp{%db8}--@samp{%db15}.
582
583@item
584the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
585@end itemize
586
587@node i386-Prefixes
588@section Instruction Prefixes
589
590@cindex i386 instruction prefixes
591@cindex instruction prefixes, i386
592@cindex prefixes, i386
593Instruction prefixes are used to modify the following instruction. They
594are used to repeat string instructions, to provide section overrides, to
595perform bus lock operations, and to change operand and address sizes.
596(Most instructions that normally operate on 32-bit operands will use
59716-bit operands if the instruction has an ``operand size'' prefix.)
598Instruction prefixes are best written on the same line as the instruction
599they act upon. For example, the @samp{scas} (scan string) instruction is
600repeated with:
601
602@smallexample
603 repne scas %es:(%edi),%al
604@end smallexample
605
606You may also place prefixes on the lines immediately preceding the
607instruction, but this circumvents checks that @code{@value{AS}} does
608with prefixes, and will not work with all prefixes.
609
610Here is a list of instruction prefixes:
611
612@cindex section override prefixes, i386
613@itemize @bullet
614@item
615Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
616@samp{fs}, @samp{gs}. These are automatically added by specifying
617using the @var{section}:@var{memory-operand} form for memory references.
618
619@cindex size prefixes, i386
620@item
621Operand/Address size prefixes @samp{data16} and @samp{addr16}
622change 32-bit operands/addresses into 16-bit operands/addresses,
623while @samp{data32} and @samp{addr32} change 16-bit ones (in a
624@code{.code16} section) into 32-bit operands/addresses. These prefixes
625@emph{must} appear on the same line of code as the instruction they
626modify. For example, in a 16-bit @code{.code16} section, you might
627write:
628
629@smallexample
630 addr32 jmpl *(%ebx)
631@end smallexample
632
633@cindex bus lock prefixes, i386
634@cindex inhibiting interrupts, i386
635@item
636The bus lock prefix @samp{lock} inhibits interrupts during execution of
637the instruction it precedes. (This is only valid with certain
638instructions; see a 80386 manual for details).
639
640@cindex coprocessor wait, i386
641@item
642The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
643complete the current instruction. This should never be needed for the
64480386/80387 combination.
645
646@cindex repeat prefixes, i386
647@item
648The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
649to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
650times if the current address size is 16-bits).
55b62671
AJ
651@cindex REX prefixes, i386
652@item
653The @samp{rex} family of prefixes is used by x86-64 to encode
654extensions to i386 instruction set. The @samp{rex} prefix has four
655bits --- an operand size overwrite (@code{64}) used to change operand size
656from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
657register set.
658
659You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
660instruction emits @samp{rex} prefix with all the bits set. By omitting
661the @code{64}, @code{x}, @code{y} or @code{z} you may write other
662prefixes as well. Normally, there is no need to write the prefixes
663explicitly, since gas will automatically generate them based on the
664instruction operands.
252b5132
RH
665@end itemize
666
667@node i386-Memory
668@section Memory References
669
670@cindex i386 memory references
671@cindex memory references, i386
55b62671
AJ
672@cindex x86-64 memory references
673@cindex memory references, x86-64
252b5132
RH
674An Intel syntax indirect memory reference of the form
675
676@smallexample
677@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
678@end smallexample
679
680@noindent
681is translated into the AT&T syntax
682
683@smallexample
684@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
685@end smallexample
686
687@noindent
688where @var{base} and @var{index} are the optional 32-bit base and
689index registers, @var{disp} is the optional displacement, and
690@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
691to calculate the address of the operand. If no @var{scale} is
692specified, @var{scale} is taken to be 1. @var{section} specifies the
693optional section register for the memory operand, and may override the
694default section register (see a 80386 manual for section register
695defaults). Note that section overrides in AT&T syntax @emph{must}
696be preceded by a @samp{%}. If you specify a section override which
697coincides with the default section register, @code{@value{AS}} does @emph{not}
698output any section register override prefixes to assemble the given
699instruction. Thus, section overrides can be specified to emphasize which
700section register is used for a given memory operand.
701
702Here are some examples of Intel and AT&T style memory references:
703
704@table @asis
705@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
706@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
707missing, and the default section is used (@samp{%ss} for addressing with
708@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
709
710@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
711@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
712@samp{foo}. All other fields are missing. The section register here
713defaults to @samp{%ds}.
714
715@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
716This uses the value pointed to by @samp{foo} as a memory operand.
717Note that @var{base} and @var{index} are both missing, but there is only
718@emph{one} @samp{,}. This is a syntactic exception.
719
720@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
721This selects the contents of the variable @samp{foo} with section
722register @var{section} being @samp{%gs}.
723@end table
724
725Absolute (as opposed to PC relative) call and jump operands must be
726prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
727always chooses PC relative addressing for jump/call labels.
728
729Any instruction that has a memory operand, but no register operand,
55b62671
AJ
730@emph{must} specify its size (byte, word, long, or quadruple) with an
731instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
732respectively).
733
734The x86-64 architecture adds an RIP (instruction pointer relative)
735addressing. This addressing mode is specified by using @samp{rip} as a
736base register. Only constant offsets are valid. For example:
737
738@table @asis
739@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
740Points to the address 1234 bytes past the end of the current
741instruction.
742
743@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
744Points to the @code{symbol} in RIP relative way, this is shorter than
745the default absolute addressing.
746@end table
747
748Other addressing modes remain unchanged in x86-64 architecture, except
749registers used are 64-bit instead of 32-bit.
252b5132 750
fddf5b5b 751@node i386-Jumps
252b5132
RH
752@section Handling of Jump Instructions
753
754@cindex jump optimization, i386
755@cindex i386 jump optimization
55b62671
AJ
756@cindex jump optimization, x86-64
757@cindex x86-64 jump optimization
252b5132
RH
758Jump instructions are always optimized to use the smallest possible
759displacements. This is accomplished by using byte (8-bit) displacement
760jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 761is insufficient a long displacement is used. We do not support
252b5132
RH
762word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
763instruction with the @samp{data16} instruction prefix), since the 80386
764insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 765is added. (See also @pxref{i386-Arch})
252b5132
RH
766
767Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
768@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
769displacements, so that if you use these instructions (@code{@value{GCC}} does
770not use them) you may get an error message (and incorrect code). The AT&T
77180386 assembler tries to get around this problem by expanding @samp{jcxz foo}
772to
773
774@smallexample
775 jcxz cx_zero
776 jmp cx_nonzero
777cx_zero: jmp foo
778cx_nonzero:
779@end smallexample
780
781@node i386-Float
782@section Floating Point
783
784@cindex i386 floating point
785@cindex floating point, i386
55b62671
AJ
786@cindex x86-64 floating point
787@cindex floating point, x86-64
252b5132
RH
788All 80387 floating point types except packed BCD are supported.
789(BCD support may be added without much difficulty). These data
790types are 16-, 32-, and 64- bit integers, and single (32-bit),
791double (64-bit), and extended (80-bit) precision floating point.
792Each supported type has an instruction mnemonic suffix and a constructor
793associated with it. Instruction mnemonic suffixes specify the operand's
794data type. Constructors build these data types into memory.
795
796@cindex @code{float} directive, i386
797@cindex @code{single} directive, i386
798@cindex @code{double} directive, i386
799@cindex @code{tfloat} directive, i386
55b62671
AJ
800@cindex @code{float} directive, x86-64
801@cindex @code{single} directive, x86-64
802@cindex @code{double} directive, x86-64
803@cindex @code{tfloat} directive, x86-64
252b5132
RH
804@itemize @bullet
805@item
806Floating point constructors are @samp{.float} or @samp{.single},
807@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
808These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
809and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
810only supports this format via the @samp{fldt} (load 80-bit real to stack
811top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
812
813@cindex @code{word} directive, i386
814@cindex @code{long} directive, i386
815@cindex @code{int} directive, i386
816@cindex @code{quad} directive, i386
55b62671
AJ
817@cindex @code{word} directive, x86-64
818@cindex @code{long} directive, x86-64
819@cindex @code{int} directive, x86-64
820@cindex @code{quad} directive, x86-64
252b5132
RH
821@item
822Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
823@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
824corresponding instruction mnemonic suffixes are @samp{s} (single),
825@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
826the 64-bit @samp{q} format is only present in the @samp{fildq} (load
827quad integer to stack top) and @samp{fistpq} (store quad integer and pop
828stack) instructions.
829@end itemize
830
831Register to register operations should not use instruction mnemonic suffixes.
832@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
833wrote @samp{fst %st, %st(1)}, since all register to register operations
834use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
835which converts @samp{%st} from 80-bit to 64-bit floating point format,
836then stores the result in the 4 byte location @samp{mem})
837
838@node i386-SIMD
839@section Intel's MMX and AMD's 3DNow! SIMD Operations
840
841@cindex MMX, i386
842@cindex 3DNow!, i386
843@cindex SIMD, i386
55b62671
AJ
844@cindex MMX, x86-64
845@cindex 3DNow!, x86-64
846@cindex SIMD, x86-64
252b5132
RH
847
848@code{@value{AS}} supports Intel's MMX instruction set (SIMD
849instructions for integer data), available on Intel's Pentium MMX
850processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 851Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
852instruction set (SIMD instructions for 32-bit floating point data)
853available on AMD's K6-2 processor and possibly others in the future.
854
855Currently, @code{@value{AS}} does not support Intel's floating point
856SIMD, Katmai (KNI).
857
858The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
859@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
86016-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
861floating point values. The MMX registers cannot be used at the same time
862as the floating point stack.
863
864See Intel and AMD documentation, keeping in mind that the operand order in
865instructions is reversed from the Intel syntax.
866
f88c9eb0
SP
867@node i386-LWP
868@section AMD's Lightweight Profiling Instructions
869
870@cindex LWP, i386
871@cindex LWP, x86-64
872
873@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
874instruction set, available on AMD's Family 15h (Orochi) processors.
875
876LWP enables applications to collect and manage performance data, and
877react to performance events. The collection of performance data
878requires no context switches. LWP runs in the context of a thread and
879so several counters can be used independently across multiple threads.
880LWP can be used in both 64-bit and legacy 32-bit modes.
881
882For detailed information on the LWP instruction set, see the
883@cite{AMD Lightweight Profiling Specification} available at
884@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
885
87973e9f
QN
886@node i386-BMI
887@section Bit Manipulation Instructions
888
889@cindex BMI, i386
890@cindex BMI, x86-64
891
892@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
893
894BMI instructions provide several instructions implementing individual
895bit manipulation operations such as isolation, masking, setting, or
896resetting.
897
898@c Need to add a specification citation here when available.
899
2a2a0f38
QN
900@node i386-TBM
901@section AMD's Trailing Bit Manipulation Instructions
902
903@cindex TBM, i386
904@cindex TBM, x86-64
905
906@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
907instruction set, available on AMD's BDVER2 processors (Trinity and
908Viperfish).
909
910TBM instructions provide instructions implementing individual bit
911manipulation operations such as isolating, masking, setting, resetting,
912complementing, and operations on trailing zeros and ones.
913
914@c Need to add a specification citation here when available.
87973e9f 915
252b5132
RH
916@node i386-16bit
917@section Writing 16-bit Code
918
919@cindex i386 16-bit code
920@cindex 16-bit code, i386
921@cindex real-mode code, i386
eecb386c 922@cindex @code{code16gcc} directive, i386
252b5132
RH
923@cindex @code{code16} directive, i386
924@cindex @code{code32} directive, i386
55b62671
AJ
925@cindex @code{code64} directive, i386
926@cindex @code{code64} directive, x86-64
927While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
928or 64-bit x86-64 code depending on the default configuration,
252b5132 929it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
930mode code segments. To do this, put a @samp{.code16} or
931@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
932be run in 16-bit mode. You can switch @code{@value{AS}} to writing
93332-bit code with the @samp{.code32} directive or 64-bit code with the
934@samp{.code64} directive.
eecb386c
AM
935
936@samp{.code16gcc} provides experimental support for generating 16-bit
937code from gcc, and differs from @samp{.code16} in that @samp{call},
938@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
939@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
940default to 32-bit size. This is so that the stack pointer is
941manipulated in the same way over function calls, allowing access to
942function parameters at the same stack offsets as in 32-bit mode.
943@samp{.code16gcc} also automatically adds address size prefixes where
944necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
945
946The code which @code{@value{AS}} generates in 16-bit mode will not
947necessarily run on a 16-bit pre-80386 processor. To write code that
948runs on such a processor, you must refrain from using @emph{any} 32-bit
949constructs which require @code{@value{AS}} to output address or operand
950size prefixes.
951
952Note that writing 16-bit code instructions by explicitly specifying a
953prefix or an instruction mnemonic suffix within a 32-bit code section
954generates different machine instructions than those generated for a
95516-bit code segment. In a 32-bit code section, the following code
956generates the machine opcode bytes @samp{66 6a 04}, which pushes the
957value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
958
959@smallexample
960 pushw $4
961@end smallexample
962
963The same code in a 16-bit code section would generate the machine
b45619c0 964opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
965is correct since the processor default operand size is assumed to be 16
966bits in a 16-bit code section.
967
968@node i386-Bugs
969@section AT&T Syntax bugs
970
971The UnixWare assembler, and probably other AT&T derived ix86 Unix
972assemblers, generate floating point instructions with reversed source
973and destination registers in certain cases. Unfortunately, gcc and
974possibly many other programs use this reversed syntax, so we're stuck
975with it.
976
977For example
978
979@smallexample
980 fsub %st,%st(3)
981@end smallexample
982@noindent
983results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
984than the expected @samp{%st(3) - %st}. This happens with all the
985non-commutative arithmetic floating point operations with two register
986operands where the source register is @samp{%st} and the destination
987register is @samp{%st(i)}.
988
e413e4e9
AM
989@node i386-Arch
990@section Specifying CPU Architecture
991
992@cindex arch directive, i386
993@cindex i386 arch directive
55b62671
AJ
994@cindex arch directive, x86-64
995@cindex x86-64 arch directive
e413e4e9
AM
996
997@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 998(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
999directive enables a warning when gas detects an instruction that is not
1000supported on the CPU specified. The choices for @var{cpu_type} are:
1001
1002@multitable @columnfractions .20 .20 .20 .20
1003@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1004@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1005@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1006@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1007@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1008@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
af2f724e 1009@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2}
1ceab344 1010@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1011@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1012@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1013@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1014@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1015@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220
L
1016@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1017@item @samp{.lzcnt} @tab @samp{.invpcid}
1ceab344 1018@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1019@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
f0ae4a24 1020@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1ceab344 1021@item @samp{.padlock}
e413e4e9
AM
1022@end multitable
1023
fddf5b5b
AM
1024Apart from the warning, there are only two other effects on
1025@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1026@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1027will automatically use a two byte opcode sequence. The larger three
1028byte opcode sequence is used on the 486 (and when no architecture is
1029specified) because it executes faster on the 486. Note that you can
1030explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1031Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1032@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1033conditional jumps will be promoted when necessary to a two instruction
1034sequence consisting of a conditional jump of the opposite sense around
1035an unconditional jump to the target.
1036
5c6af06e
JB
1037Following the CPU architecture (but not a sub-architecture, which are those
1038starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1039control automatic promotion of conditional jumps. @samp{jumps} is the
1040default, and enables jump promotion; All external jumps will be of the long
1041variety, and file-local jumps will be promoted as necessary.
1042(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1043byte offset jumps, and warns about file-local conditional jumps that
1044@code{@value{AS}} promotes.
fddf5b5b
AM
1045Unconditional jumps are treated as for @samp{jumps}.
1046
1047For example
1048
1049@smallexample
1050 .arch i8086,nojumps
1051@end smallexample
e413e4e9 1052
252b5132
RH
1053@node i386-Notes
1054@section Notes
1055
1056@cindex i386 @code{mul}, @code{imul} instructions
1057@cindex @code{mul} instruction, i386
1058@cindex @code{imul} instruction, i386
55b62671
AJ
1059@cindex @code{mul} instruction, x86-64
1060@cindex @code{imul} instruction, x86-64
252b5132 1061There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1062instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1063multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1064for @samp{imul}) can be output only in the one operand form. Thus,
1065@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1066the expanding multiply would clobber the @samp{%edx} register, and this
1067would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
106864-bit product in @samp{%edx:%eax}.
1069
1070We have added a two operand form of @samp{imul} when the first operand
1071is an immediate mode expression and the second operand is a register.
1072This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1073example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1074$69, %eax, %eax}.
1075
This page took 0.604062 seconds and 4 git commands to generate.