Add support for Intel TDX instructions.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1991-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
81486035 115@code{iamcu},
9103f4f4
L
116@code{k6},
117@code{k6_2},
118@code{athlon},
9103f4f4
L
119@code{opteron},
120@code{k8},
1ceab344 121@code{amdfam10},
68339fdf 122@code{bdver1},
af2f724e 123@code{bdver2},
5e5c50d3 124@code{bdver3},
c7b0bd56 125@code{bdver4},
029f3522 126@code{znver1},
a9660a6f 127@code{znver2},
7b458c12
L
128@code{btver1},
129@code{btver2},
9103f4f4
L
130@code{generic32} and
131@code{generic64}.
132
34bca508 133In addition to the basic instruction set, the assembler can be told to
6305a203
L
134accept various extension mnemonics. For example,
135@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136@var{vmx}. The following extensions are currently supported:
309d3373
JB
137@code{8087},
138@code{287},
139@code{387},
1848e567 140@code{687},
309d3373 141@code{no87},
1848e567
L
142@code{no287},
143@code{no387},
144@code{no687},
d871f3f4
L
145@code{cmov},
146@code{nocmov},
147@code{fxsr},
148@code{nofxsr},
6305a203 149@code{mmx},
309d3373 150@code{nommx},
6305a203
L
151@code{sse},
152@code{sse2},
153@code{sse3},
af5c13b0 154@code{sse4a},
6305a203
L
155@code{ssse3},
156@code{sse4.1},
157@code{sse4.2},
158@code{sse4},
309d3373 159@code{nosse},
1848e567
L
160@code{nosse2},
161@code{nosse3},
af5c13b0 162@code{nosse4a},
1848e567
L
163@code{nossse3},
164@code{nosse4.1},
165@code{nosse4.2},
166@code{nosse4},
c0f3af97 167@code{avx},
6c30d220 168@code{avx2},
1848e567
L
169@code{noavx},
170@code{noavx2},
e2e1fcde
L
171@code{adx},
172@code{rdseed},
173@code{prfchw},
5c111e37 174@code{smap},
7e8b059b 175@code{mpx},
a0046408 176@code{sha},
8bc52696 177@code{rdpid},
6b40c462 178@code{ptwrite},
603555e5 179@code{cet},
48521003 180@code{gfni},
8dcf1fad 181@code{vaes},
ff1982d5 182@code{vpclmulqdq},
1dfc6506
L
183@code{prefetchwt1},
184@code{clflushopt},
185@code{se1},
c5e7287a 186@code{clwb},
c0a30a9f
L
187@code{movdiri},
188@code{movdir64b},
5d79adc4 189@code{enqcmd},
4b27d27c 190@code{serialize},
bb651e8b 191@code{tsxldtrk},
c4694f17
TG
192@code{kl},
193@code{nokl},
194@code{widekl},
195@code{nowidekl},
43234a1e
L
196@code{avx512f},
197@code{avx512cd},
198@code{avx512er},
199@code{avx512pf},
1dfc6506
L
200@code{avx512vl},
201@code{avx512bw},
202@code{avx512dq},
2cc1b5aa 203@code{avx512ifma},
14f195c9 204@code{avx512vbmi},
920d2ddc 205@code{avx512_4fmaps},
47acf0bd 206@code{avx512_4vnniw},
620214f7 207@code{avx512_vpopcntdq},
53467f57 208@code{avx512_vbmi2},
8cfcb765 209@code{avx512_vnni},
ee6872be 210@code{avx512_bitalg},
708a2fff 211@code{avx512_vp2intersect},
81d54bb7 212@code{tdx},
d6aab7a1 213@code{avx512_bf16},
144b71e2
L
214@code{noavx512f},
215@code{noavx512cd},
216@code{noavx512er},
217@code{noavx512pf},
218@code{noavx512vl},
219@code{noavx512bw},
220@code{noavx512dq},
221@code{noavx512ifma},
222@code{noavx512vbmi},
920d2ddc 223@code{noavx512_4fmaps},
47acf0bd 224@code{noavx512_4vnniw},
620214f7 225@code{noavx512_vpopcntdq},
53467f57 226@code{noavx512_vbmi2},
8cfcb765 227@code{noavx512_vnni},
ee6872be 228@code{noavx512_bitalg},
9186c494 229@code{noavx512_vp2intersect},
81d54bb7 230@code{notdx},
d6aab7a1 231@code{noavx512_bf16},
dd455cf5 232@code{noenqcmd},
4b27d27c 233@code{noserialize},
bb651e8b 234@code{notsxldtrk},
260cd341
LC
235@code{amx_int8},
236@code{noamx_int8},
237@code{amx_bf16},
238@code{noamx_bf16},
239@code{amx_tile},
240@code{noamx_tile},
6305a203 241@code{vmx},
8729a6f6 242@code{vmfunc},
6305a203 243@code{smx},
f03fe4c1 244@code{xsave},
c7b8aa3a 245@code{xsaveopt},
1dfc6506
L
246@code{xsavec},
247@code{xsaves},
c0f3af97 248@code{aes},
594ab6a3 249@code{pclmul},
c7b8aa3a
L
250@code{fsgsbase},
251@code{rdrnd},
252@code{f16c},
6c30d220 253@code{bmi2},
c0f3af97 254@code{fma},
f1f8f695
L
255@code{movbe},
256@code{ept},
6c30d220 257@code{lzcnt},
272a84b1 258@code{popcnt},
42164a71
L
259@code{hle},
260@code{rtm},
6c30d220 261@code{invpcid},
bd5295b2 262@code{clflush},
9916071f 263@code{mwaitx},
029f3522 264@code{clzero},
3233d7d0 265@code{wbnoinvd},
be3a8dca 266@code{pconfig},
de89d0a3 267@code{waitpkg},
c48935d7 268@code{cldemote},
142861df
JB
269@code{rdpru},
270@code{mcommit},
a847e322 271@code{sev_es},
f88c9eb0 272@code{lwp},
5dd85c99
SP
273@code{fma4},
274@code{xop},
60aa667e 275@code{cx16},
bd5295b2 276@code{syscall},
1b7f3fb0 277@code{rdtscp},
6305a203
L
278@code{3dnow},
279@code{3dnowa},
280@code{sse4a},
281@code{sse5},
272a84b1 282@code{svme} and
6305a203 283@code{padlock}.
309d3373
JB
284Note that rather than extending a basic instruction set, the extension
285mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
286
287When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
288@code{.arch} directive will take precedent.
289
290@cindex @samp{-mtune=} option, i386
291@cindex @samp{-mtune=} option, x86-64
292@item -mtune=@var{CPU}
293This option specifies a processor to optimize for. When used in
294conjunction with the @option{-march} option, only instructions
295of the processor specified by the @option{-march} option will be
296generated.
297
6305a203
L
298Valid @var{CPU} values are identical to the processor list of
299@option{-march=@var{CPU}}.
9103f4f4 300
c0f3af97
L
301@cindex @samp{-msse2avx} option, i386
302@cindex @samp{-msse2avx} option, x86-64
303@item -msse2avx
304This option specifies that the assembler should encode SSE instructions
305with VEX prefix.
306
daf50ae7
L
307@cindex @samp{-msse-check=} option, i386
308@cindex @samp{-msse-check=} option, x86-64
309@item -msse-check=@var{none}
1f9bb1ca
AS
310@itemx -msse-check=@var{warning}
311@itemx -msse-check=@var{error}
9aff4b7a 312These options control if the assembler should check SSE instructions.
daf50ae7
L
313@option{-msse-check=@var{none}} will make the assembler not to check SSE
314instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 315will make the assembler issue a warning for any SSE instruction.
daf50ae7 316@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 317for any SSE instruction.
daf50ae7 318
539f890d
L
319@cindex @samp{-mavxscalar=} option, i386
320@cindex @samp{-mavxscalar=} option, x86-64
321@item -mavxscalar=@var{128}
1f9bb1ca 322@itemx -mavxscalar=@var{256}
2aab8acd 323These options control how the assembler should encode scalar AVX
539f890d
L
324instructions. @option{-mavxscalar=@var{128}} will encode scalar
325AVX instructions with 128bit vector length, which is the default.
326@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
327with 256bit vector length.
328
4970191f
JB
329WARNING: Don't use this for production code - due to CPU errata the
330resulting code may not work on certain models.
331
03751133
L
332@cindex @samp{-mvexwig=} option, i386
333@cindex @samp{-mvexwig=} option, x86-64
334@item -mvexwig=@var{0}
335@itemx -mvexwig=@var{1}
336These options control how the assembler should encode VEX.W-ignored (WIG)
337VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
338instructions with vex.w = 0, which is the default.
339@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
340vex.w = 1.
341
4970191f
JB
342WARNING: Don't use this for production code - due to CPU errata the
343resulting code may not work on certain models.
344
43234a1e
L
345@cindex @samp{-mevexlig=} option, i386
346@cindex @samp{-mevexlig=} option, x86-64
347@item -mevexlig=@var{128}
348@itemx -mevexlig=@var{256}
349@itemx -mevexlig=@var{512}
350These options control how the assembler should encode length-ignored
351(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
352EVEX instructions with 128bit vector length, which is the default.
353@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
354encode LIG EVEX instructions with 256bit and 512bit vector length,
355respectively.
356
357@cindex @samp{-mevexwig=} option, i386
358@cindex @samp{-mevexwig=} option, x86-64
359@item -mevexwig=@var{0}
360@itemx -mevexwig=@var{1}
361These options control how the assembler should encode w-ignored (WIG)
362EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
363EVEX instructions with evex.w = 0, which is the default.
364@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
365evex.w = 1.
366
1efbbeb4
L
367@cindex @samp{-mmnemonic=} option, i386
368@cindex @samp{-mmnemonic=} option, x86-64
369@item -mmnemonic=@var{att}
1f9bb1ca 370@itemx -mmnemonic=@var{intel}
34bca508 371This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
372The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
373take precedent.
374
375@cindex @samp{-msyntax=} option, i386
376@cindex @samp{-msyntax=} option, x86-64
377@item -msyntax=@var{att}
1f9bb1ca 378@itemx -msyntax=@var{intel}
34bca508 379This option specifies instruction syntax when processing instructions.
1efbbeb4
L
380The @code{.att_syntax} and @code{.intel_syntax} directives will
381take precedent.
382
383@cindex @samp{-mnaked-reg} option, i386
384@cindex @samp{-mnaked-reg} option, x86-64
385@item -mnaked-reg
33eaf5de 386This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 387The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 388
7e8b059b
L
389@cindex @samp{-madd-bnd-prefix} option, i386
390@cindex @samp{-madd-bnd-prefix} option, x86-64
391@item -madd-bnd-prefix
392This option forces the assembler to add BND prefix to all branches, even
393if such prefix was not explicitly specified in the source code.
394
8dcea932
L
395@cindex @samp{-mshared} option, i386
396@cindex @samp{-mshared} option, x86-64
397@item -mno-shared
398On ELF target, the assembler normally optimizes out non-PLT relocations
399against defined non-weak global branch targets with default visibility.
400The @samp{-mshared} option tells the assembler to generate code which
401may go into a shared library where all non-weak global branch targets
402with default visibility can be preempted. The resulting code is
403slightly bigger. This option only affects the handling of branch
404instructions.
405
251dae91 406@cindex @samp{-mbig-obj} option, i386
167ad85b
TG
407@cindex @samp{-mbig-obj} option, x86-64
408@item -mbig-obj
251dae91 409On PE/COFF target this option forces the use of big object file
167ad85b
TG
410format, which allows more than 32768 sections.
411
d022bddd
IT
412@cindex @samp{-momit-lock-prefix=} option, i386
413@cindex @samp{-momit-lock-prefix=} option, x86-64
414@item -momit-lock-prefix=@var{no}
415@itemx -momit-lock-prefix=@var{yes}
416These options control how the assembler should encode lock prefix.
417This option is intended as a workaround for processors, that fail on
418lock prefix. This option can only be safely used with single-core,
419single-thread computers
420@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
421@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
422which is the default.
423
e4e00185
AS
424@cindex @samp{-mfence-as-lock-add=} option, i386
425@cindex @samp{-mfence-as-lock-add=} option, x86-64
426@item -mfence-as-lock-add=@var{no}
427@itemx -mfence-as-lock-add=@var{yes}
428These options control how the assembler should encode lfence, mfence and
429sfence.
430@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
431sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
432@samp{lock addl $0x0, (%esp)} in 32-bit mode.
433@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
434sfence as usual, which is the default.
435
0cb4071e
L
436@cindex @samp{-mrelax-relocations=} option, i386
437@cindex @samp{-mrelax-relocations=} option, x86-64
438@item -mrelax-relocations=@var{no}
439@itemx -mrelax-relocations=@var{yes}
440These options control whether the assembler should generate relax
441relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
442R_X86_64_REX_GOTPCRELX, in 64-bit mode.
443@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
444@option{-mrelax-relocations=@var{no}} will not generate relax
445relocations. The default can be controlled by a configure option
446@option{--enable-x86-relax-relocations}.
447
e379e5f3
L
448@cindex @samp{-malign-branch-boundary=} option, i386
449@cindex @samp{-malign-branch-boundary=} option, x86-64
450@item -malign-branch-boundary=@var{NUM}
451This option controls how the assembler should align branches with segment
452prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
453no less than 16. Branches will be aligned within @var{NUM} byte
454boundary. @option{-malign-branch-boundary=0}, which is the default,
455doesn't align branches.
456
457@cindex @samp{-malign-branch=} option, i386
458@cindex @samp{-malign-branch=} option, x86-64
459@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
460This option specifies types of branches to align. @var{TYPE} is
461combination of @samp{jcc}, which aligns conditional jumps,
462@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
463which aligns unconditional jumps, @samp{call} which aligns calls,
464@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
465jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
466
467@cindex @samp{-malign-branch-prefix-size=} option, i386
468@cindex @samp{-malign-branch-prefix-size=} option, x86-64
469@item -malign-branch-prefix-size=@var{NUM}
470This option specifies the maximum number of prefixes on an instruction
471to align branches. @var{NUM} should be between 0 and 5. The default
472@var{NUM} is 5.
473
76cf450b
L
474@cindex @samp{-mbranches-within-32B-boundaries} option, i386
475@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
476@item -mbranches-within-32B-boundaries
477This option aligns conditional jumps, fused conditional jumps and
478unconditional jumps within 32 byte boundary with up to 5 segment prefixes
479on an instruction. It is equivalent to
480@option{-malign-branch-boundary=32}
481@option{-malign-branch=jcc+fused+jmp}
482@option{-malign-branch-prefix-size=5}.
483The default doesn't align branches.
484
ae531041
L
485@cindex @samp{-mlfence-after-load=} option, i386
486@cindex @samp{-mlfence-after-load=} option, x86-64
487@item -mlfence-after-load=@var{no}
488@itemx -mlfence-after-load=@var{yes}
489These options control whether the assembler should generate lfence
490after load instructions. @option{-mlfence-after-load=@var{yes}} will
491generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
492lfence, which is the default.
493
494@cindex @samp{-mlfence-before-indirect-branch=} option, i386
495@cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
496@item -mlfence-before-indirect-branch=@var{none}
497@item -mlfence-before-indirect-branch=@var{all}
498@item -mlfence-before-indirect-branch=@var{register}
499@itemx -mlfence-before-indirect-branch=@var{memory}
500These options control whether the assembler should generate lfence
3071b197 501before indirect near branch instructions.
ae531041 502@option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
3071b197 503before indirect near branch via register and issue a warning before
ae531041 504indirect near branch via memory.
a09f656b 505It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
506there's no explict @option{-mlfence-before-ret=}.
ae531041 507@option{-mlfence-before-indirect-branch=@var{register}} will generate
3071b197 508lfence before indirect near branch via register.
ae531041
L
509@option{-mlfence-before-indirect-branch=@var{memory}} will issue a
510warning before indirect near branch via memory.
511@option{-mlfence-before-indirect-branch=@var{none}} will not generate
512lfence nor issue warning, which is the default. Note that lfence won't
513be generated before indirect near branch via register with
514@option{-mlfence-after-load=@var{yes}} since lfence will be generated
515after loading branch target register.
516
517@cindex @samp{-mlfence-before-ret=} option, i386
518@cindex @samp{-mlfence-before-ret=} option, x86-64
519@item -mlfence-before-ret=@var{none}
a09f656b 520@item -mlfence-before-ret=@var{shl}
ae531041 521@item -mlfence-before-ret=@var{or}
a09f656b 522@item -mlfence-before-ret=@var{yes}
ae531041
L
523@itemx -mlfence-before-ret=@var{not}
524These options control whether the assembler should generate lfence
525before ret. @option{-mlfence-before-ret=@var{or}} will generate
526generate or instruction with lfence.
a09f656b 527@option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
528with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
529instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
530generate lfence, which is the default.
ae531041 531
b4a3a7b4
L
532@cindex @samp{-mx86-used-note=} option, i386
533@cindex @samp{-mx86-used-note=} option, x86-64
534@item -mx86-used-note=@var{no}
535@itemx -mx86-used-note=@var{yes}
536These options control whether the assembler should generate
537GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
538GNU property notes. The default can be controlled by the
539@option{--enable-x86-used-note} configure option.
540
d3d3c6db
IT
541@cindex @samp{-mevexrcig=} option, i386
542@cindex @samp{-mevexrcig=} option, x86-64
543@item -mevexrcig=@var{rne}
544@itemx -mevexrcig=@var{rd}
545@itemx -mevexrcig=@var{ru}
546@itemx -mevexrcig=@var{rz}
547These options control how the assembler should encode SAE-only
548EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
549of EVEX instruction with 00, which is the default.
550@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
551and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
552with 01, 10 and 11 RC bits, respectively.
553
5db04b09
L
554@cindex @samp{-mamd64} option, x86-64
555@cindex @samp{-mintel64} option, x86-64
556@item -mamd64
557@itemx -mintel64
558This option specifies that the assembler should accept only AMD64 or
4b5aaf5f
L
559Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
560only and AMD64 ISAs.
5db04b09 561
b6f8c7c4
L
562@cindex @samp{-O0} option, i386
563@cindex @samp{-O0} option, x86-64
564@cindex @samp{-O} option, i386
565@cindex @samp{-O} option, x86-64
566@cindex @samp{-O1} option, i386
567@cindex @samp{-O1} option, x86-64
568@cindex @samp{-O2} option, i386
569@cindex @samp{-O2} option, x86-64
570@cindex @samp{-Os} option, i386
571@cindex @samp{-Os} option, x86-64
572@item -O0 | -O | -O1 | -O2 | -Os
573Optimize instruction encoding with smaller instruction size. @samp{-O}
574and @samp{-O1} encode 64-bit register load instructions with 64-bit
575immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 576immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
577register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
578register clearing instructions with 128-bit VEX vector register
579clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 580register load/store instructions with VEX vector register load/store
a0a1771e
JB
581instructions, and encode 128-bit/256-bit EVEX packed integer logical
582instructions with 128-bit/256-bit VEX packed integer logical.
583
584@samp{-O2} includes @samp{-O1} optimization plus encodes
585256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
586EVEX vector register clearing instructions. In 64-bit mode VEX encoded
587instructions with commutative source operands will also have their
588source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
589instead of the 3-byte one. Certain forms of AND as well as OR with the
590same (register) operand specified twice will also be changed to TEST.
a0a1771e 591
b6f8c7c4
L
592@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
593and 64-bit register tests with immediate as 8-bit register test with
594immediate. @samp{-O0} turns off this optimization.
595
55b62671 596@end table
731caf76 597@c man end
e413e4e9 598
a6c24e68
NC
599@node i386-Directives
600@section x86 specific Directives
601
602@cindex machine directives, x86
603@cindex x86 machine directives
604@table @code
605
606@cindex @code{lcomm} directive, COFF
607@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
608Reserve @var{length} (an absolute expression) bytes for a local common
609denoted by @var{symbol}. The section and value of @var{symbol} are
610those of the new local common. The addresses are allocated in the bss
704209c0
NC
611section, so that at run-time the bytes start off zeroed. Since
612@var{symbol} is not declared global, it is normally not visible to
613@code{@value{LD}}. The optional third parameter, @var{alignment},
614specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
615
616This directive is only available for COFF based x86 targets.
617
102e9361
NC
618@cindex @code{largecomm} directive, ELF
619@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
620This directive behaves in the same way as the @code{comm} directive
621except that the data is placed into the @var{.lbss} section instead of
622the @var{.bss} section @ref{Comm}.
623
624The directive is intended to be used for data which requires a large
625amount of space, and it is only available for ELF based x86_64
626targets.
627
f2f51cd5
NC
628@cindex @code{value} directive
629@item .value @var{expression} [, @var{expression}]
630This directive behaves in the same way as the @code{.short} directive,
631taking a series of comma separated expressions and storing them as
632two-byte wide values into the current section.
633
a6c24e68 634@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
635
636@end table
637
252b5132 638@node i386-Syntax
7c31ae13
NC
639@section i386 Syntactical Considerations
640@menu
641* i386-Variations:: AT&T Syntax versus Intel Syntax
642* i386-Chars:: Special Characters
643@end menu
644
645@node i386-Variations
646@subsection AT&T Syntax versus Intel Syntax
252b5132 647
e413e4e9
AM
648@cindex i386 intel_syntax pseudo op
649@cindex intel_syntax pseudo op, i386
650@cindex i386 att_syntax pseudo op
651@cindex att_syntax pseudo op, i386
252b5132
RH
652@cindex i386 syntax compatibility
653@cindex syntax compatibility, i386
55b62671
AJ
654@cindex x86-64 intel_syntax pseudo op
655@cindex intel_syntax pseudo op, x86-64
656@cindex x86-64 att_syntax pseudo op
657@cindex att_syntax pseudo op, x86-64
658@cindex x86-64 syntax compatibility
659@cindex syntax compatibility, x86-64
e413e4e9
AM
660
661@code{@value{AS}} now supports assembly using Intel assembler syntax.
662@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
663back to the usual AT&T mode for compatibility with the output of
664@code{@value{GCC}}. Either of these directives may have an optional
665argument, @code{prefix}, or @code{noprefix} specifying whether registers
666require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
667different from Intel syntax. We mention these differences because
668almost all 80386 documents use Intel syntax. Notable differences
669between the two syntaxes are:
670
671@cindex immediate operands, i386
672@cindex i386 immediate operands
673@cindex register operands, i386
674@cindex i386 register operands
675@cindex jump/call operands, i386
676@cindex i386 jump/call operands
677@cindex operand delimiters, i386
55b62671
AJ
678
679@cindex immediate operands, x86-64
680@cindex x86-64 immediate operands
681@cindex register operands, x86-64
682@cindex x86-64 register operands
683@cindex jump/call operands, x86-64
684@cindex x86-64 jump/call operands
685@cindex operand delimiters, x86-64
252b5132
RH
686@itemize @bullet
687@item
688AT&T immediate operands are preceded by @samp{$}; Intel immediate
689operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
690AT&T register operands are preceded by @samp{%}; Intel register operands
691are undelimited. AT&T absolute (as opposed to PC relative) jump/call
692operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
693
694@cindex i386 source, destination operands
695@cindex source, destination operands; i386
55b62671
AJ
696@cindex x86-64 source, destination operands
697@cindex source, destination operands; x86-64
252b5132
RH
698@item
699AT&T and Intel syntax use the opposite order for source and destination
700operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
701@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
702previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
703instructions with 2 immediate operands, such as the @samp{enter}
704instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
705
706@cindex mnemonic suffixes, i386
707@cindex sizes operands, i386
708@cindex i386 size suffixes
55b62671
AJ
709@cindex mnemonic suffixes, x86-64
710@cindex sizes operands, x86-64
711@cindex x86-64 size suffixes
252b5132
RH
712@item
713In AT&T syntax the size of memory operands is determined from the last
714character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 715@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
716(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
717of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
718(256-bit vector) and zmm (512-bit vector) memory references, only when there's
719no other way to disambiguate an instruction. Intel syntax accomplishes this by
720prefixing memory operands (@emph{not} the instruction mnemonics) with
721@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
722@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
723syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
724syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
725@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 726
4b06377f
L
727In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
728instruction with the 64-bit displacement or immediate operand.
729
252b5132
RH
730@cindex return instructions, i386
731@cindex i386 jump, call, return
55b62671
AJ
732@cindex return instructions, x86-64
733@cindex x86-64 jump, call, return
252b5132
RH
734@item
735Immediate form long jumps and calls are
736@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
737Intel syntax is
738@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
739instruction
740is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
741@samp{ret far @var{stack-adjust}}.
742
743@cindex sections, i386
744@cindex i386 sections
55b62671
AJ
745@cindex sections, x86-64
746@cindex x86-64 sections
252b5132
RH
747@item
748The AT&T assembler does not provide support for multiple section
749programs. Unix style systems expect all programs to be single sections.
750@end itemize
751
7c31ae13
NC
752@node i386-Chars
753@subsection Special Characters
754
755@cindex line comment character, i386
756@cindex i386 line comment character
757The presence of a @samp{#} appearing anywhere on a line indicates the
758start of a comment that extends to the end of that line.
759
760If a @samp{#} appears as the first character of a line then the whole
761line is treated as a comment, but in this case the line can also be a
762logical line number directive (@pxref{Comments}) or a preprocessor
763control command (@pxref{Preprocessing}).
764
a05a5b64 765If the @option{--divide} command-line option has not been specified
7c31ae13
NC
766then the @samp{/} character appearing anywhere on a line also
767introduces a line comment.
768
769@cindex line separator, i386
770@cindex statement separator, i386
771@cindex i386 line separator
772The @samp{;} character can be used to separate statements on the same
773line.
774
252b5132 775@node i386-Mnemonics
d3b47e2b
L
776@section i386-Mnemonics
777@subsection Instruction Naming
252b5132
RH
778
779@cindex i386 instruction naming
780@cindex instruction naming, i386
55b62671
AJ
781@cindex x86-64 instruction naming
782@cindex instruction naming, x86-64
783
252b5132 784Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
785specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
786and @samp{q} specify byte, word, long and quadruple word operands. If
787no suffix is specified by an instruction then @code{@value{AS}} tries to
788fill in the missing suffix based on the destination register operand
789(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
790to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
791@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
792assembler which assumes that a missing mnemonic suffix implies long
793operand size. (This incompatibility does not affect compiler output
794since compilers always explicitly specify the mnemonic suffix.)
252b5132 795
c006a730
JB
796When there is no sizing suffix and no (suitable) register operands to
797deduce the size of memory operands, with a few exceptions and where long
798operand size is possible in the first place, operand size will default
799to long in 32- and 64-bit modes. Similarly it will default to short in
80016-bit mode. Noteworthy exceptions are
801
802@itemize @bullet
803@item
804Instructions with an implicit on-stack operand as well as branches,
805which default to quad in 64-bit mode.
806
807@item
808Sign- and zero-extending moves, which default to byte size source
809operands.
810
811@item
812Floating point insns with integer operands, which default to short (for
813perhaps historical reasons).
814
815@item
816CRC32 with a 64-bit destination, which defaults to a quad source
817operand.
818
819@end itemize
820
b6169b20
L
821@cindex encoding options, i386
822@cindex encoding options, x86-64
823
86fa6981
L
824Different encoding options can be specified via pseudo prefixes:
825
826@itemize @bullet
827@item
828@samp{@{disp8@}} -- prefer 8-bit displacement.
829
830@item
41eb8e88
L
831@samp{@{disp32@}} -- prefer 32-bit displacement.
832
833@item
834@samp{@{disp16@}} -- prefer 16-bit displacement.
86fa6981
L
835
836@item
837@samp{@{load@}} -- prefer load-form instruction.
838
839@item
840@samp{@{store@}} -- prefer store-form instruction.
841
842@item
42e04b36 843@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
844
845@item
42e04b36 846@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
847
848@item
849@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
850
851@item
852@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
853instructions (x86-64 only). Note that this differs from the @samp{rex}
854prefix which generates REX prefix unconditionally.
b6f8c7c4
L
855
856@item
857@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 858@end itemize
b6169b20 859
252b5132
RH
860@cindex conversion instructions, i386
861@cindex i386 conversion instructions
55b62671
AJ
862@cindex conversion instructions, x86-64
863@cindex x86-64 conversion instructions
252b5132
RH
864The Intel-syntax conversion instructions
865
866@itemize @bullet
867@item
868@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
869
870@item
871@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
872
873@item
874@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
875
876@item
877@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
878
879@item
880@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
881(x86-64 only),
882
883@item
d5f0cf92 884@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 885@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
886@end itemize
887
888@noindent
55b62671
AJ
889are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
890@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
891instructions.
252b5132 892
0e6724de
L
893@cindex extension instructions, i386
894@cindex i386 extension instructions
895@cindex extension instructions, x86-64
896@cindex x86-64 extension instructions
897The Intel-syntax extension instructions
898
899@itemize @bullet
900@item
901@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
902
903@item
904@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
905
906@item
907@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
908(x86-64 only).
909
910@item
911@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
912
913@item
914@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
915(x86-64 only).
916
917@item
918@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
919(x86-64 only).
920
921@item
922@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
923
924@item
925@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
926
927@item
928@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
929(x86-64 only).
930
931@item
932@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
933
934@item
935@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
936(x86-64 only).
937@end itemize
938
939@noindent
940are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
941@samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
942@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
943@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
944@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
945
252b5132
RH
946@cindex jump instructions, i386
947@cindex call instructions, i386
55b62671
AJ
948@cindex jump instructions, x86-64
949@cindex call instructions, x86-64
252b5132
RH
950Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
951AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
952convention.
953
d3b47e2b 954@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
955
956@cindex i386 mnemonic compatibility
957@cindex mnemonic compatibility, i386
958
959@code{@value{AS}} supports assembly using Intel mnemonic.
960@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
961@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
962syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
963Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
964@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
965@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
966assembler with different mnemonics from those in Intel IA32 specification.
967@code{@value{GCC}} generates those instructions with AT&T mnemonic.
968
bc31405e
L
969@itemize @bullet
970@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
971register. @samp{movsxd} should be used to encode 16-bit or 32-bit
972destination register with both AT&T and Intel mnemonics.
973@end itemize
974
252b5132
RH
975@node i386-Regs
976@section Register Naming
977
978@cindex i386 registers
979@cindex registers, i386
55b62671
AJ
980@cindex x86-64 registers
981@cindex registers, x86-64
252b5132
RH
982Register operands are always prefixed with @samp{%}. The 80386 registers
983consist of
984
985@itemize @bullet
986@item
987the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
988@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
989frame pointer), and @samp{%esp} (the stack pointer).
990
991@item
992the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
993@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
994
995@item
996the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
997@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
998are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
999@samp{%cx}, and @samp{%dx})
1000
1001@item
1002the 6 section registers @samp{%cs} (code section), @samp{%ds}
1003(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
1004and @samp{%gs}.
1005
1006@item
4bde3cdd
UD
1007the 5 processor control registers @samp{%cr0}, @samp{%cr2},
1008@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
1009
1010@item
1011the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
1012@samp{%db3}, @samp{%db6}, and @samp{%db7}.
1013
1014@item
1015the 2 test registers @samp{%tr6} and @samp{%tr7}.
1016
1017@item
1018the 8 floating point register stack @samp{%st} or equivalently
1019@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1020@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
1021These registers are overloaded by 8 MMX registers @samp{%mm0},
1022@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1023@samp{%mm6} and @samp{%mm7}.
1024
1025@item
4bde3cdd 1026the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
1027@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1028@end itemize
1029
1030The AMD x86-64 architecture extends the register set by:
1031
1032@itemize @bullet
1033@item
1034enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1035accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1036@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1037pointer)
1038
1039@item
1040the 8 extended registers @samp{%r8}--@samp{%r15}.
1041
1042@item
4bde3cdd 1043the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
1044
1045@item
4bde3cdd 1046the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
1047
1048@item
4bde3cdd 1049the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
1050
1051@item
1052the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1053
1054@item
1055the 8 debug registers: @samp{%db8}--@samp{%db15}.
1056
1057@item
4bde3cdd
UD
1058the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1059@end itemize
1060
1061With the AVX extensions more registers were made available:
1062
1063@itemize @bullet
1064
1065@item
1066the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1067available in 32-bit mode). The bottom 128 bits are overlaid with the
1068@samp{xmm0}--@samp{xmm15} registers.
1069
1070@end itemize
1071
4bde3cdd
UD
1072The AVX512 extensions added the following registers:
1073
1074@itemize @bullet
1075
1076@item
1077the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1078available in 32-bit mode). The bottom 128 bits are overlaid with the
1079@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1080overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1081
1082@item
1083the 8 mask registers @samp{%k0}--@samp{%k7}.
1084
252b5132
RH
1085@end itemize
1086
1087@node i386-Prefixes
1088@section Instruction Prefixes
1089
1090@cindex i386 instruction prefixes
1091@cindex instruction prefixes, i386
1092@cindex prefixes, i386
1093Instruction prefixes are used to modify the following instruction. They
1094are used to repeat string instructions, to provide section overrides, to
1095perform bus lock operations, and to change operand and address sizes.
1096(Most instructions that normally operate on 32-bit operands will use
109716-bit operands if the instruction has an ``operand size'' prefix.)
1098Instruction prefixes are best written on the same line as the instruction
1099they act upon. For example, the @samp{scas} (scan string) instruction is
1100repeated with:
1101
1102@smallexample
1103 repne scas %es:(%edi),%al
1104@end smallexample
1105
1106You may also place prefixes on the lines immediately preceding the
1107instruction, but this circumvents checks that @code{@value{AS}} does
1108with prefixes, and will not work with all prefixes.
1109
1110Here is a list of instruction prefixes:
1111
1112@cindex section override prefixes, i386
1113@itemize @bullet
1114@item
1115Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1116@samp{fs}, @samp{gs}. These are automatically added by specifying
1117using the @var{section}:@var{memory-operand} form for memory references.
1118
1119@cindex size prefixes, i386
1120@item
1121Operand/Address size prefixes @samp{data16} and @samp{addr16}
1122change 32-bit operands/addresses into 16-bit operands/addresses,
1123while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1124@code{.code16} section) into 32-bit operands/addresses. These prefixes
1125@emph{must} appear on the same line of code as the instruction they
1126modify. For example, in a 16-bit @code{.code16} section, you might
1127write:
1128
1129@smallexample
1130 addr32 jmpl *(%ebx)
1131@end smallexample
1132
1133@cindex bus lock prefixes, i386
1134@cindex inhibiting interrupts, i386
1135@item
1136The bus lock prefix @samp{lock} inhibits interrupts during execution of
1137the instruction it precedes. (This is only valid with certain
1138instructions; see a 80386 manual for details).
1139
1140@cindex coprocessor wait, i386
1141@item
1142The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1143complete the current instruction. This should never be needed for the
114480386/80387 combination.
1145
1146@cindex repeat prefixes, i386
1147@item
1148The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1149to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1150times if the current address size is 16-bits).
55b62671
AJ
1151@cindex REX prefixes, i386
1152@item
1153The @samp{rex} family of prefixes is used by x86-64 to encode
1154extensions to i386 instruction set. The @samp{rex} prefix has four
1155bits --- an operand size overwrite (@code{64}) used to change operand size
1156from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1157register set.
1158
1159You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1160instruction emits @samp{rex} prefix with all the bits set. By omitting
1161the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1162prefixes as well. Normally, there is no need to write the prefixes
1163explicitly, since gas will automatically generate them based on the
1164instruction operands.
252b5132
RH
1165@end itemize
1166
1167@node i386-Memory
1168@section Memory References
1169
1170@cindex i386 memory references
1171@cindex memory references, i386
55b62671
AJ
1172@cindex x86-64 memory references
1173@cindex memory references, x86-64
252b5132
RH
1174An Intel syntax indirect memory reference of the form
1175
1176@smallexample
1177@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1178@end smallexample
1179
1180@noindent
1181is translated into the AT&T syntax
1182
1183@smallexample
1184@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1185@end smallexample
1186
1187@noindent
1188where @var{base} and @var{index} are the optional 32-bit base and
1189index registers, @var{disp} is the optional displacement, and
1190@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1191to calculate the address of the operand. If no @var{scale} is
1192specified, @var{scale} is taken to be 1. @var{section} specifies the
1193optional section register for the memory operand, and may override the
1194default section register (see a 80386 manual for section register
1195defaults). Note that section overrides in AT&T syntax @emph{must}
1196be preceded by a @samp{%}. If you specify a section override which
1197coincides with the default section register, @code{@value{AS}} does @emph{not}
1198output any section register override prefixes to assemble the given
1199instruction. Thus, section overrides can be specified to emphasize which
1200section register is used for a given memory operand.
1201
1202Here are some examples of Intel and AT&T style memory references:
1203
1204@table @asis
1205@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1206@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1207missing, and the default section is used (@samp{%ss} for addressing with
1208@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1209
1210@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1211@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1212@samp{foo}. All other fields are missing. The section register here
1213defaults to @samp{%ds}.
1214
1215@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1216This uses the value pointed to by @samp{foo} as a memory operand.
1217Note that @var{base} and @var{index} are both missing, but there is only
1218@emph{one} @samp{,}. This is a syntactic exception.
1219
1220@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1221This selects the contents of the variable @samp{foo} with section
1222register @var{section} being @samp{%gs}.
1223@end table
1224
1225Absolute (as opposed to PC relative) call and jump operands must be
1226prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1227always chooses PC relative addressing for jump/call labels.
1228
1229Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1230@emph{must} specify its size (byte, word, long, or quadruple) with an
1231instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1232respectively).
1233
1234The x86-64 architecture adds an RIP (instruction pointer relative)
1235addressing. This addressing mode is specified by using @samp{rip} as a
1236base register. Only constant offsets are valid. For example:
1237
1238@table @asis
1239@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1240Points to the address 1234 bytes past the end of the current
1241instruction.
1242
1243@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1244Points to the @code{symbol} in RIP relative way, this is shorter than
1245the default absolute addressing.
1246@end table
1247
1248Other addressing modes remain unchanged in x86-64 architecture, except
1249registers used are 64-bit instead of 32-bit.
252b5132 1250
fddf5b5b 1251@node i386-Jumps
252b5132
RH
1252@section Handling of Jump Instructions
1253
1254@cindex jump optimization, i386
1255@cindex i386 jump optimization
55b62671
AJ
1256@cindex jump optimization, x86-64
1257@cindex x86-64 jump optimization
252b5132
RH
1258Jump instructions are always optimized to use the smallest possible
1259displacements. This is accomplished by using byte (8-bit) displacement
1260jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1261is insufficient a long displacement is used. We do not support
252b5132
RH
1262word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1263instruction with the @samp{data16} instruction prefix), since the 80386
1264insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1265is added. (See also @pxref{i386-Arch})
252b5132
RH
1266
1267Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1268@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1269displacements, so that if you use these instructions (@code{@value{GCC}} does
1270not use them) you may get an error message (and incorrect code). The AT&T
127180386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1272to
1273
1274@smallexample
1275 jcxz cx_zero
1276 jmp cx_nonzero
1277cx_zero: jmp foo
1278cx_nonzero:
1279@end smallexample
1280
1281@node i386-Float
1282@section Floating Point
1283
1284@cindex i386 floating point
1285@cindex floating point, i386
55b62671
AJ
1286@cindex x86-64 floating point
1287@cindex floating point, x86-64
252b5132
RH
1288All 80387 floating point types except packed BCD are supported.
1289(BCD support may be added without much difficulty). These data
1290types are 16-, 32-, and 64- bit integers, and single (32-bit),
1291double (64-bit), and extended (80-bit) precision floating point.
1292Each supported type has an instruction mnemonic suffix and a constructor
1293associated with it. Instruction mnemonic suffixes specify the operand's
1294data type. Constructors build these data types into memory.
1295
1296@cindex @code{float} directive, i386
1297@cindex @code{single} directive, i386
1298@cindex @code{double} directive, i386
1299@cindex @code{tfloat} directive, i386
55b62671
AJ
1300@cindex @code{float} directive, x86-64
1301@cindex @code{single} directive, x86-64
1302@cindex @code{double} directive, x86-64
1303@cindex @code{tfloat} directive, x86-64
252b5132
RH
1304@itemize @bullet
1305@item
1306Floating point constructors are @samp{.float} or @samp{.single},
1307@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1308These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1309and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1310only supports this format via the @samp{fldt} (load 80-bit real to stack
1311top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1312
1313@cindex @code{word} directive, i386
1314@cindex @code{long} directive, i386
1315@cindex @code{int} directive, i386
1316@cindex @code{quad} directive, i386
55b62671
AJ
1317@cindex @code{word} directive, x86-64
1318@cindex @code{long} directive, x86-64
1319@cindex @code{int} directive, x86-64
1320@cindex @code{quad} directive, x86-64
252b5132
RH
1321@item
1322Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1323@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1324corresponding instruction mnemonic suffixes are @samp{s} (single),
1325@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1326the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1327quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1328stack) instructions.
1329@end itemize
1330
1331Register to register operations should not use instruction mnemonic suffixes.
1332@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1333wrote @samp{fst %st, %st(1)}, since all register to register operations
1334use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1335which converts @samp{%st} from 80-bit to 64-bit floating point format,
1336then stores the result in the 4 byte location @samp{mem})
1337
1338@node i386-SIMD
1339@section Intel's MMX and AMD's 3DNow! SIMD Operations
1340
1341@cindex MMX, i386
1342@cindex 3DNow!, i386
1343@cindex SIMD, i386
55b62671
AJ
1344@cindex MMX, x86-64
1345@cindex 3DNow!, x86-64
1346@cindex SIMD, x86-64
252b5132
RH
1347
1348@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1349instructions for integer data), available on Intel's Pentium MMX
1350processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1351Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1352instruction set (SIMD instructions for 32-bit floating point data)
1353available on AMD's K6-2 processor and possibly others in the future.
1354
1355Currently, @code{@value{AS}} does not support Intel's floating point
1356SIMD, Katmai (KNI).
1357
1358The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1359@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
136016-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1361floating point values. The MMX registers cannot be used at the same time
1362as the floating point stack.
1363
1364See Intel and AMD documentation, keeping in mind that the operand order in
1365instructions is reversed from the Intel syntax.
1366
f88c9eb0
SP
1367@node i386-LWP
1368@section AMD's Lightweight Profiling Instructions
1369
1370@cindex LWP, i386
1371@cindex LWP, x86-64
1372
1373@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1374instruction set, available on AMD's Family 15h (Orochi) processors.
1375
1376LWP enables applications to collect and manage performance data, and
1377react to performance events. The collection of performance data
1378requires no context switches. LWP runs in the context of a thread and
1379so several counters can be used independently across multiple threads.
1380LWP can be used in both 64-bit and legacy 32-bit modes.
1381
1382For detailed information on the LWP instruction set, see the
1383@cite{AMD Lightweight Profiling Specification} available at
1384@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1385
87973e9f
QN
1386@node i386-BMI
1387@section Bit Manipulation Instructions
1388
1389@cindex BMI, i386
1390@cindex BMI, x86-64
1391
1392@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1393
1394BMI instructions provide several instructions implementing individual
1395bit manipulation operations such as isolation, masking, setting, or
34bca508 1396resetting.
87973e9f
QN
1397
1398@c Need to add a specification citation here when available.
1399
2a2a0f38
QN
1400@node i386-TBM
1401@section AMD's Trailing Bit Manipulation Instructions
1402
1403@cindex TBM, i386
1404@cindex TBM, x86-64
1405
1406@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1407instruction set, available on AMD's BDVER2 processors (Trinity and
1408Viperfish).
1409
1410TBM instructions provide instructions implementing individual bit
1411manipulation operations such as isolating, masking, setting, resetting,
1412complementing, and operations on trailing zeros and ones.
1413
1414@c Need to add a specification citation here when available.
87973e9f 1415
252b5132
RH
1416@node i386-16bit
1417@section Writing 16-bit Code
1418
1419@cindex i386 16-bit code
1420@cindex 16-bit code, i386
1421@cindex real-mode code, i386
eecb386c 1422@cindex @code{code16gcc} directive, i386
252b5132
RH
1423@cindex @code{code16} directive, i386
1424@cindex @code{code32} directive, i386
55b62671
AJ
1425@cindex @code{code64} directive, i386
1426@cindex @code{code64} directive, x86-64
1427While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1428or 64-bit x86-64 code depending on the default configuration,
252b5132 1429it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1430mode code segments. To do this, put a @samp{.code16} or
1431@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1432be run in 16-bit mode. You can switch @code{@value{AS}} to writing
143332-bit code with the @samp{.code32} directive or 64-bit code with the
1434@samp{.code64} directive.
eecb386c
AM
1435
1436@samp{.code16gcc} provides experimental support for generating 16-bit
1437code from gcc, and differs from @samp{.code16} in that @samp{call},
1438@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1439@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1440default to 32-bit size. This is so that the stack pointer is
1441manipulated in the same way over function calls, allowing access to
1442function parameters at the same stack offsets as in 32-bit mode.
1443@samp{.code16gcc} also automatically adds address size prefixes where
1444necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1445
1446The code which @code{@value{AS}} generates in 16-bit mode will not
1447necessarily run on a 16-bit pre-80386 processor. To write code that
1448runs on such a processor, you must refrain from using @emph{any} 32-bit
1449constructs which require @code{@value{AS}} to output address or operand
1450size prefixes.
1451
1452Note that writing 16-bit code instructions by explicitly specifying a
1453prefix or an instruction mnemonic suffix within a 32-bit code section
1454generates different machine instructions than those generated for a
145516-bit code segment. In a 32-bit code section, the following code
1456generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1457value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1458
1459@smallexample
1460 pushw $4
1461@end smallexample
1462
1463The same code in a 16-bit code section would generate the machine
b45619c0 1464opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1465is correct since the processor default operand size is assumed to be 16
1466bits in a 16-bit code section.
1467
e413e4e9
AM
1468@node i386-Arch
1469@section Specifying CPU Architecture
1470
1471@cindex arch directive, i386
1472@cindex i386 arch directive
55b62671
AJ
1473@cindex arch directive, x86-64
1474@cindex x86-64 arch directive
e413e4e9
AM
1475
1476@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1477(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1478directive enables a warning when gas detects an instruction that is not
1479supported on the CPU specified. The choices for @var{cpu_type} are:
1480
1481@multitable @columnfractions .20 .20 .20 .20
1482@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1483@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1484@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1485@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1486@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1487@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1488@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1489@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1490@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1491@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
272a84b1 1492@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
d76f7bc1 1493@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1494@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1495@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1496@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1497@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
272a84b1
L
1498@item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1499@item @samp{.hle}
e2e1fcde 1500@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1501@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1502@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1503@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1504@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1505@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1506@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1507@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
81d54bb7 1508@item @samp{.tdx}
d777820b 1509@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1510@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1511@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
bb651e8b 1512@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
260cd341 1513@item @samp{.amx_int8} @tab @samp{.amx_bf16} @tab @samp{.amx_tile}
c4694f17 1514@item @samp{.kl} @tab @samp{.widekl}
1ceab344 1515@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
272a84b1 1516@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
60aa667e 1517@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df 1518@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
a847e322 1519@item @samp{.mcommit} @tab @samp{.sev_es}
e413e4e9
AM
1520@end multitable
1521
fddf5b5b
AM
1522Apart from the warning, there are only two other effects on
1523@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1524@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1525will automatically use a two byte opcode sequence. The larger three
1526byte opcode sequence is used on the 486 (and when no architecture is
1527specified) because it executes faster on the 486. Note that you can
1528explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1529Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1530@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1531conditional jumps will be promoted when necessary to a two instruction
1532sequence consisting of a conditional jump of the opposite sense around
1533an unconditional jump to the target.
1534
5c6af06e
JB
1535Following the CPU architecture (but not a sub-architecture, which are those
1536starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1537control automatic promotion of conditional jumps. @samp{jumps} is the
1538default, and enables jump promotion; All external jumps will be of the long
1539variety, and file-local jumps will be promoted as necessary.
1540(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1541byte offset jumps, and warns about file-local conditional jumps that
1542@code{@value{AS}} promotes.
fddf5b5b
AM
1543Unconditional jumps are treated as for @samp{jumps}.
1544
1545For example
1546
1547@smallexample
1548 .arch i8086,nojumps
1549@end smallexample
e413e4e9 1550
bc31405e
L
1551@node i386-ISA
1552@section AMD64 ISA vs. Intel64 ISA
1553
1554There are some discrepancies between AMD64 and Intel64 ISAs.
1555
1556@itemize @bullet
1557@item For @samp{movsxd} with 16-bit destination register, AMD64
1558supports 32-bit source operand and Intel64 supports 16-bit source
1559operand.
5990e377
JB
1560
1561@item For far branches (with explicit memory operand), both ISAs support
156232- and 16-bit operand size. Intel64 additionally supports 64-bit
1563operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1564and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1565syntax.
1566
1567@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1568and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1569while Intel64 additionally supports 64-bit operand sise (80-bit memory
1570operands).
1571
bc31405e
L
1572@end itemize
1573
5c9352f3
AM
1574@node i386-Bugs
1575@section AT&T Syntax bugs
1576
1577The UnixWare assembler, and probably other AT&T derived ix86 Unix
1578assemblers, generate floating point instructions with reversed source
1579and destination registers in certain cases. Unfortunately, gcc and
1580possibly many other programs use this reversed syntax, so we're stuck
1581with it.
1582
1583For example
1584
1585@smallexample
1586 fsub %st,%st(3)
1587@end smallexample
1588@noindent
1589results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1590than the expected @samp{%st(3) - %st}. This happens with all the
1591non-commutative arithmetic floating point operations with two register
1592operands where the source register is @samp{%st} and the destination
1593register is @samp{%st(i)}.
1594
252b5132
RH
1595@node i386-Notes
1596@section Notes
1597
1598@cindex i386 @code{mul}, @code{imul} instructions
1599@cindex @code{mul} instruction, i386
1600@cindex @code{imul} instruction, i386
55b62671
AJ
1601@cindex @code{mul} instruction, x86-64
1602@cindex @code{imul} instruction, x86-64
252b5132 1603There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1604instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1605multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1606for @samp{imul}) can be output only in the one operand form. Thus,
1607@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1608the expanding multiply would clobber the @samp{%edx} register, and this
1609would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
161064-bit product in @samp{%edx:%eax}.
1611
1612We have added a two operand form of @samp{imul} when the first operand
1613is an immediate mode expression and the second operand is a register.
1614This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1615example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1616$69, %eax, %eax}.
1617
This page took 1.219632 seconds and 4 git commands to generate.