Enable Intel AVX512_VNNI instructions.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2571583a 1@c Copyright (C) 1991-2017 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
7b458c12
L
125@code{btver1},
126@code{btver2},
9103f4f4
L
127@code{generic32} and
128@code{generic64}.
129
34bca508 130In addition to the basic instruction set, the assembler can be told to
6305a203
L
131accept various extension mnemonics. For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}. The following extensions are currently supported:
309d3373
JB
134@code{8087},
135@code{287},
136@code{387},
1848e567 137@code{687},
309d3373 138@code{no87},
1848e567
L
139@code{no287},
140@code{no387},
141@code{no687},
6305a203 142@code{mmx},
309d3373 143@code{nommx},
6305a203
L
144@code{sse},
145@code{sse2},
146@code{sse3},
147@code{ssse3},
148@code{sse4.1},
149@code{sse4.2},
150@code{sse4},
309d3373 151@code{nosse},
1848e567
L
152@code{nosse2},
153@code{nosse3},
154@code{nossse3},
155@code{nosse4.1},
156@code{nosse4.2},
157@code{nosse4},
c0f3af97 158@code{avx},
6c30d220 159@code{avx2},
1848e567
L
160@code{noavx},
161@code{noavx2},
e2e1fcde
L
162@code{adx},
163@code{rdseed},
164@code{prfchw},
5c111e37 165@code{smap},
7e8b059b 166@code{mpx},
a0046408 167@code{sha},
8bc52696 168@code{rdpid},
6b40c462 169@code{ptwrite},
603555e5 170@code{cet},
48521003 171@code{gfni},
8dcf1fad 172@code{vaes},
ff1982d5 173@code{vpclmulqdq},
1dfc6506
L
174@code{prefetchwt1},
175@code{clflushopt},
176@code{se1},
c5e7287a 177@code{clwb},
43234a1e
L
178@code{avx512f},
179@code{avx512cd},
180@code{avx512er},
181@code{avx512pf},
1dfc6506
L
182@code{avx512vl},
183@code{avx512bw},
184@code{avx512dq},
2cc1b5aa 185@code{avx512ifma},
14f195c9 186@code{avx512vbmi},
920d2ddc 187@code{avx512_4fmaps},
47acf0bd 188@code{avx512_4vnniw},
620214f7 189@code{avx512_vpopcntdq},
53467f57 190@code{avx512_vbmi2},
8cfcb765 191@code{avx512_vnni},
144b71e2
L
192@code{noavx512f},
193@code{noavx512cd},
194@code{noavx512er},
195@code{noavx512pf},
196@code{noavx512vl},
197@code{noavx512bw},
198@code{noavx512dq},
199@code{noavx512ifma},
200@code{noavx512vbmi},
920d2ddc 201@code{noavx512_4fmaps},
47acf0bd 202@code{noavx512_4vnniw},
620214f7 203@code{noavx512_vpopcntdq},
53467f57 204@code{noavx512_vbmi2},
8cfcb765 205@code{noavx512_vnni},
6305a203 206@code{vmx},
8729a6f6 207@code{vmfunc},
6305a203 208@code{smx},
f03fe4c1 209@code{xsave},
c7b8aa3a 210@code{xsaveopt},
1dfc6506
L
211@code{xsavec},
212@code{xsaves},
c0f3af97 213@code{aes},
594ab6a3 214@code{pclmul},
c7b8aa3a
L
215@code{fsgsbase},
216@code{rdrnd},
217@code{f16c},
6c30d220 218@code{bmi2},
c0f3af97 219@code{fma},
f1f8f695
L
220@code{movbe},
221@code{ept},
6c30d220 222@code{lzcnt},
42164a71
L
223@code{hle},
224@code{rtm},
6c30d220 225@code{invpcid},
bd5295b2 226@code{clflush},
9916071f 227@code{mwaitx},
029f3522 228@code{clzero},
f88c9eb0 229@code{lwp},
5dd85c99
SP
230@code{fma4},
231@code{xop},
60aa667e 232@code{cx16},
bd5295b2 233@code{syscall},
1b7f3fb0 234@code{rdtscp},
6305a203
L
235@code{3dnow},
236@code{3dnowa},
237@code{sse4a},
238@code{sse5},
239@code{svme},
240@code{abm} and
241@code{padlock}.
309d3373
JB
242Note that rather than extending a basic instruction set, the extension
243mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
244
245When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
246@code{.arch} directive will take precedent.
247
248@cindex @samp{-mtune=} option, i386
249@cindex @samp{-mtune=} option, x86-64
250@item -mtune=@var{CPU}
251This option specifies a processor to optimize for. When used in
252conjunction with the @option{-march} option, only instructions
253of the processor specified by the @option{-march} option will be
254generated.
255
6305a203
L
256Valid @var{CPU} values are identical to the processor list of
257@option{-march=@var{CPU}}.
9103f4f4 258
c0f3af97
L
259@cindex @samp{-msse2avx} option, i386
260@cindex @samp{-msse2avx} option, x86-64
261@item -msse2avx
262This option specifies that the assembler should encode SSE instructions
263with VEX prefix.
264
daf50ae7
L
265@cindex @samp{-msse-check=} option, i386
266@cindex @samp{-msse-check=} option, x86-64
267@item -msse-check=@var{none}
1f9bb1ca
AS
268@itemx -msse-check=@var{warning}
269@itemx -msse-check=@var{error}
9aff4b7a 270These options control if the assembler should check SSE instructions.
daf50ae7
L
271@option{-msse-check=@var{none}} will make the assembler not to check SSE
272instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 273will make the assembler issue a warning for any SSE instruction.
daf50ae7 274@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 275for any SSE instruction.
daf50ae7 276
539f890d
L
277@cindex @samp{-mavxscalar=} option, i386
278@cindex @samp{-mavxscalar=} option, x86-64
279@item -mavxscalar=@var{128}
1f9bb1ca 280@itemx -mavxscalar=@var{256}
2aab8acd 281These options control how the assembler should encode scalar AVX
539f890d
L
282instructions. @option{-mavxscalar=@var{128}} will encode scalar
283AVX instructions with 128bit vector length, which is the default.
284@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
285with 256bit vector length.
286
43234a1e
L
287@cindex @samp{-mevexlig=} option, i386
288@cindex @samp{-mevexlig=} option, x86-64
289@item -mevexlig=@var{128}
290@itemx -mevexlig=@var{256}
291@itemx -mevexlig=@var{512}
292These options control how the assembler should encode length-ignored
293(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
294EVEX instructions with 128bit vector length, which is the default.
295@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
296encode LIG EVEX instructions with 256bit and 512bit vector length,
297respectively.
298
299@cindex @samp{-mevexwig=} option, i386
300@cindex @samp{-mevexwig=} option, x86-64
301@item -mevexwig=@var{0}
302@itemx -mevexwig=@var{1}
303These options control how the assembler should encode w-ignored (WIG)
304EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
305EVEX instructions with evex.w = 0, which is the default.
306@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
307evex.w = 1.
308
1efbbeb4
L
309@cindex @samp{-mmnemonic=} option, i386
310@cindex @samp{-mmnemonic=} option, x86-64
311@item -mmnemonic=@var{att}
1f9bb1ca 312@itemx -mmnemonic=@var{intel}
34bca508 313This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
314The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
315take precedent.
316
317@cindex @samp{-msyntax=} option, i386
318@cindex @samp{-msyntax=} option, x86-64
319@item -msyntax=@var{att}
1f9bb1ca 320@itemx -msyntax=@var{intel}
34bca508 321This option specifies instruction syntax when processing instructions.
1efbbeb4
L
322The @code{.att_syntax} and @code{.intel_syntax} directives will
323take precedent.
324
325@cindex @samp{-mnaked-reg} option, i386
326@cindex @samp{-mnaked-reg} option, x86-64
327@item -mnaked-reg
33eaf5de 328This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 329The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 330
7e8b059b
L
331@cindex @samp{-madd-bnd-prefix} option, i386
332@cindex @samp{-madd-bnd-prefix} option, x86-64
333@item -madd-bnd-prefix
334This option forces the assembler to add BND prefix to all branches, even
335if such prefix was not explicitly specified in the source code.
336
8dcea932
L
337@cindex @samp{-mshared} option, i386
338@cindex @samp{-mshared} option, x86-64
339@item -mno-shared
340On ELF target, the assembler normally optimizes out non-PLT relocations
341against defined non-weak global branch targets with default visibility.
342The @samp{-mshared} option tells the assembler to generate code which
343may go into a shared library where all non-weak global branch targets
344with default visibility can be preempted. The resulting code is
345slightly bigger. This option only affects the handling of branch
346instructions.
347
167ad85b
TG
348@cindex @samp{-mbig-obj} option, x86-64
349@item -mbig-obj
350On x86-64 PE/COFF target this option forces the use of big object file
351format, which allows more than 32768 sections.
352
d022bddd
IT
353@cindex @samp{-momit-lock-prefix=} option, i386
354@cindex @samp{-momit-lock-prefix=} option, x86-64
355@item -momit-lock-prefix=@var{no}
356@itemx -momit-lock-prefix=@var{yes}
357These options control how the assembler should encode lock prefix.
358This option is intended as a workaround for processors, that fail on
359lock prefix. This option can only be safely used with single-core,
360single-thread computers
361@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
362@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
363which is the default.
364
e4e00185
AS
365@cindex @samp{-mfence-as-lock-add=} option, i386
366@cindex @samp{-mfence-as-lock-add=} option, x86-64
367@item -mfence-as-lock-add=@var{no}
368@itemx -mfence-as-lock-add=@var{yes}
369These options control how the assembler should encode lfence, mfence and
370sfence.
371@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
372sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
373@samp{lock addl $0x0, (%esp)} in 32-bit mode.
374@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
375sfence as usual, which is the default.
376
0cb4071e
L
377@cindex @samp{-mrelax-relocations=} option, i386
378@cindex @samp{-mrelax-relocations=} option, x86-64
379@item -mrelax-relocations=@var{no}
380@itemx -mrelax-relocations=@var{yes}
381These options control whether the assembler should generate relax
382relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
383R_X86_64_REX_GOTPCRELX, in 64-bit mode.
384@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
385@option{-mrelax-relocations=@var{no}} will not generate relax
386relocations. The default can be controlled by a configure option
387@option{--enable-x86-relax-relocations}.
388
d3d3c6db
IT
389@cindex @samp{-mevexrcig=} option, i386
390@cindex @samp{-mevexrcig=} option, x86-64
391@item -mevexrcig=@var{rne}
392@itemx -mevexrcig=@var{rd}
393@itemx -mevexrcig=@var{ru}
394@itemx -mevexrcig=@var{rz}
395These options control how the assembler should encode SAE-only
396EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
397of EVEX instruction with 00, which is the default.
398@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
399and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
400with 01, 10 and 11 RC bits, respectively.
401
5db04b09
L
402@cindex @samp{-mamd64} option, x86-64
403@cindex @samp{-mintel64} option, x86-64
404@item -mamd64
405@itemx -mintel64
406This option specifies that the assembler should accept only AMD64 or
407Intel64 ISA in 64-bit mode. The default is to accept both.
408
55b62671 409@end table
731caf76 410@c man end
e413e4e9 411
a6c24e68
NC
412@node i386-Directives
413@section x86 specific Directives
414
415@cindex machine directives, x86
416@cindex x86 machine directives
417@table @code
418
419@cindex @code{lcomm} directive, COFF
420@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
421Reserve @var{length} (an absolute expression) bytes for a local common
422denoted by @var{symbol}. The section and value of @var{symbol} are
423those of the new local common. The addresses are allocated in the bss
704209c0
NC
424section, so that at run-time the bytes start off zeroed. Since
425@var{symbol} is not declared global, it is normally not visible to
426@code{@value{LD}}. The optional third parameter, @var{alignment},
427specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
428
429This directive is only available for COFF based x86 targets.
430
431@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
432@c .largecomm
433
434@end table
435
252b5132 436@node i386-Syntax
7c31ae13
NC
437@section i386 Syntactical Considerations
438@menu
439* i386-Variations:: AT&T Syntax versus Intel Syntax
440* i386-Chars:: Special Characters
441@end menu
442
443@node i386-Variations
444@subsection AT&T Syntax versus Intel Syntax
252b5132 445
e413e4e9
AM
446@cindex i386 intel_syntax pseudo op
447@cindex intel_syntax pseudo op, i386
448@cindex i386 att_syntax pseudo op
449@cindex att_syntax pseudo op, i386
252b5132
RH
450@cindex i386 syntax compatibility
451@cindex syntax compatibility, i386
55b62671
AJ
452@cindex x86-64 intel_syntax pseudo op
453@cindex intel_syntax pseudo op, x86-64
454@cindex x86-64 att_syntax pseudo op
455@cindex att_syntax pseudo op, x86-64
456@cindex x86-64 syntax compatibility
457@cindex syntax compatibility, x86-64
e413e4e9
AM
458
459@code{@value{AS}} now supports assembly using Intel assembler syntax.
460@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
461back to the usual AT&T mode for compatibility with the output of
462@code{@value{GCC}}. Either of these directives may have an optional
463argument, @code{prefix}, or @code{noprefix} specifying whether registers
464require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
465different from Intel syntax. We mention these differences because
466almost all 80386 documents use Intel syntax. Notable differences
467between the two syntaxes are:
468
469@cindex immediate operands, i386
470@cindex i386 immediate operands
471@cindex register operands, i386
472@cindex i386 register operands
473@cindex jump/call operands, i386
474@cindex i386 jump/call operands
475@cindex operand delimiters, i386
55b62671
AJ
476
477@cindex immediate operands, x86-64
478@cindex x86-64 immediate operands
479@cindex register operands, x86-64
480@cindex x86-64 register operands
481@cindex jump/call operands, x86-64
482@cindex x86-64 jump/call operands
483@cindex operand delimiters, x86-64
252b5132
RH
484@itemize @bullet
485@item
486AT&T immediate operands are preceded by @samp{$}; Intel immediate
487operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
488AT&T register operands are preceded by @samp{%}; Intel register operands
489are undelimited. AT&T absolute (as opposed to PC relative) jump/call
490operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
491
492@cindex i386 source, destination operands
493@cindex source, destination operands; i386
55b62671
AJ
494@cindex x86-64 source, destination operands
495@cindex source, destination operands; x86-64
252b5132
RH
496@item
497AT&T and Intel syntax use the opposite order for source and destination
498operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
499@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
500previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
501instructions with 2 immediate operands, such as the @samp{enter}
502instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
503
504@cindex mnemonic suffixes, i386
505@cindex sizes operands, i386
506@cindex i386 size suffixes
55b62671
AJ
507@cindex mnemonic suffixes, x86-64
508@cindex sizes operands, x86-64
509@cindex x86-64 size suffixes
252b5132
RH
510@item
511In AT&T syntax the size of memory operands is determined from the last
512character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
513@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
514(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
515this by prefixing memory operands (@emph{not} the instruction mnemonics) with
516@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
517Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
518syntax.
252b5132 519
4b06377f
L
520In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
521instruction with the 64-bit displacement or immediate operand.
522
252b5132
RH
523@cindex return instructions, i386
524@cindex i386 jump, call, return
55b62671
AJ
525@cindex return instructions, x86-64
526@cindex x86-64 jump, call, return
252b5132
RH
527@item
528Immediate form long jumps and calls are
529@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
530Intel syntax is
531@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
532instruction
533is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
534@samp{ret far @var{stack-adjust}}.
535
536@cindex sections, i386
537@cindex i386 sections
55b62671
AJ
538@cindex sections, x86-64
539@cindex x86-64 sections
252b5132
RH
540@item
541The AT&T assembler does not provide support for multiple section
542programs. Unix style systems expect all programs to be single sections.
543@end itemize
544
7c31ae13
NC
545@node i386-Chars
546@subsection Special Characters
547
548@cindex line comment character, i386
549@cindex i386 line comment character
550The presence of a @samp{#} appearing anywhere on a line indicates the
551start of a comment that extends to the end of that line.
552
553If a @samp{#} appears as the first character of a line then the whole
554line is treated as a comment, but in this case the line can also be a
555logical line number directive (@pxref{Comments}) or a preprocessor
556control command (@pxref{Preprocessing}).
557
558If the @option{--divide} command line option has not been specified
559then the @samp{/} character appearing anywhere on a line also
560introduces a line comment.
561
562@cindex line separator, i386
563@cindex statement separator, i386
564@cindex i386 line separator
565The @samp{;} character can be used to separate statements on the same
566line.
567
252b5132 568@node i386-Mnemonics
d3b47e2b
L
569@section i386-Mnemonics
570@subsection Instruction Naming
252b5132
RH
571
572@cindex i386 instruction naming
573@cindex instruction naming, i386
55b62671
AJ
574@cindex x86-64 instruction naming
575@cindex instruction naming, x86-64
576
252b5132 577Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
578specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
579and @samp{q} specify byte, word, long and quadruple word operands. If
580no suffix is specified by an instruction then @code{@value{AS}} tries to
581fill in the missing suffix based on the destination register operand
582(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
583to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
584@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
585assembler which assumes that a missing mnemonic suffix implies long
586operand size. (This incompatibility does not affect compiler output
587since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
588
589Almost all instructions have the same names in AT&T and Intel format.
590There are a few exceptions. The sign extend and zero extend
591instructions need two sizes to specify them. They need a size to
592sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
593is accomplished by using two instruction mnemonic suffixes in AT&T
594syntax. Base names for sign extend and zero extend are
595@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
596and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
597are tacked on to this base name, the @emph{from} suffix before the
598@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
599``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
600thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
601@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
602@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
603quadruple word).
252b5132 604
b6169b20
L
605@cindex encoding options, i386
606@cindex encoding options, x86-64
607
86fa6981
L
608Different encoding options can be specified via pseudo prefixes:
609
610@itemize @bullet
611@item
612@samp{@{disp8@}} -- prefer 8-bit displacement.
613
614@item
615@samp{@{disp32@}} -- prefer 32-bit displacement.
616
617@item
618@samp{@{load@}} -- prefer load-form instruction.
619
620@item
621@samp{@{store@}} -- prefer store-form instruction.
622
623@item
624@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
625
626@item
627@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
628
629@item
630@samp{@{evex@}} -- encode with EVEX prefix.
631@end itemize
b6169b20 632
252b5132
RH
633@cindex conversion instructions, i386
634@cindex i386 conversion instructions
55b62671
AJ
635@cindex conversion instructions, x86-64
636@cindex x86-64 conversion instructions
252b5132
RH
637The Intel-syntax conversion instructions
638
639@itemize @bullet
640@item
641@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
642
643@item
644@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
645
646@item
647@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
648
649@item
650@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
651
652@item
653@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
654(x86-64 only),
655
656@item
d5f0cf92 657@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 658@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
659@end itemize
660
661@noindent
55b62671
AJ
662are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
663@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
664instructions.
252b5132
RH
665
666@cindex jump instructions, i386
667@cindex call instructions, i386
55b62671
AJ
668@cindex jump instructions, x86-64
669@cindex call instructions, x86-64
252b5132
RH
670Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
671AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
672convention.
673
d3b47e2b 674@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
675
676@cindex i386 mnemonic compatibility
677@cindex mnemonic compatibility, i386
678
679@code{@value{AS}} supports assembly using Intel mnemonic.
680@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
681@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
682syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
683Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
684@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
685@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
686assembler with different mnemonics from those in Intel IA32 specification.
687@code{@value{GCC}} generates those instructions with AT&T mnemonic.
688
252b5132
RH
689@node i386-Regs
690@section Register Naming
691
692@cindex i386 registers
693@cindex registers, i386
55b62671
AJ
694@cindex x86-64 registers
695@cindex registers, x86-64
252b5132
RH
696Register operands are always prefixed with @samp{%}. The 80386 registers
697consist of
698
699@itemize @bullet
700@item
701the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
702@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
703frame pointer), and @samp{%esp} (the stack pointer).
704
705@item
706the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
707@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
708
709@item
710the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
711@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
712are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
713@samp{%cx}, and @samp{%dx})
714
715@item
716the 6 section registers @samp{%cs} (code section), @samp{%ds}
717(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
718and @samp{%gs}.
719
720@item
4bde3cdd
UD
721the 5 processor control registers @samp{%cr0}, @samp{%cr2},
722@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
723
724@item
725the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
726@samp{%db3}, @samp{%db6}, and @samp{%db7}.
727
728@item
729the 2 test registers @samp{%tr6} and @samp{%tr7}.
730
731@item
732the 8 floating point register stack @samp{%st} or equivalently
733@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
734@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
735These registers are overloaded by 8 MMX registers @samp{%mm0},
736@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
737@samp{%mm6} and @samp{%mm7}.
738
739@item
4bde3cdd 740the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
741@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
742@end itemize
743
744The AMD x86-64 architecture extends the register set by:
745
746@itemize @bullet
747@item
748enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
749accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
750@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
751pointer)
752
753@item
754the 8 extended registers @samp{%r8}--@samp{%r15}.
755
756@item
4bde3cdd 757the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
758
759@item
4bde3cdd 760the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
761
762@item
4bde3cdd 763the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
764
765@item
766the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
767
768@item
769the 8 debug registers: @samp{%db8}--@samp{%db15}.
770
771@item
4bde3cdd
UD
772the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
773@end itemize
774
775With the AVX extensions more registers were made available:
776
777@itemize @bullet
778
779@item
780the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
781available in 32-bit mode). The bottom 128 bits are overlaid with the
782@samp{xmm0}--@samp{xmm15} registers.
783
784@end itemize
785
786The AVX2 extensions made in 64-bit mode more registers available:
787
788@itemize @bullet
789
790@item
791the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
792registers @samp{%ymm16}--@samp{%ymm31}.
793
794@end itemize
795
796The AVX512 extensions added the following registers:
797
798@itemize @bullet
799
800@item
801the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
802available in 32-bit mode). The bottom 128 bits are overlaid with the
803@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
804overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
805
806@item
807the 8 mask registers @samp{%k0}--@samp{%k7}.
808
252b5132
RH
809@end itemize
810
811@node i386-Prefixes
812@section Instruction Prefixes
813
814@cindex i386 instruction prefixes
815@cindex instruction prefixes, i386
816@cindex prefixes, i386
817Instruction prefixes are used to modify the following instruction. They
818are used to repeat string instructions, to provide section overrides, to
819perform bus lock operations, and to change operand and address sizes.
820(Most instructions that normally operate on 32-bit operands will use
82116-bit operands if the instruction has an ``operand size'' prefix.)
822Instruction prefixes are best written on the same line as the instruction
823they act upon. For example, the @samp{scas} (scan string) instruction is
824repeated with:
825
826@smallexample
827 repne scas %es:(%edi),%al
828@end smallexample
829
830You may also place prefixes on the lines immediately preceding the
831instruction, but this circumvents checks that @code{@value{AS}} does
832with prefixes, and will not work with all prefixes.
833
834Here is a list of instruction prefixes:
835
836@cindex section override prefixes, i386
837@itemize @bullet
838@item
839Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
840@samp{fs}, @samp{gs}. These are automatically added by specifying
841using the @var{section}:@var{memory-operand} form for memory references.
842
843@cindex size prefixes, i386
844@item
845Operand/Address size prefixes @samp{data16} and @samp{addr16}
846change 32-bit operands/addresses into 16-bit operands/addresses,
847while @samp{data32} and @samp{addr32} change 16-bit ones (in a
848@code{.code16} section) into 32-bit operands/addresses. These prefixes
849@emph{must} appear on the same line of code as the instruction they
850modify. For example, in a 16-bit @code{.code16} section, you might
851write:
852
853@smallexample
854 addr32 jmpl *(%ebx)
855@end smallexample
856
857@cindex bus lock prefixes, i386
858@cindex inhibiting interrupts, i386
859@item
860The bus lock prefix @samp{lock} inhibits interrupts during execution of
861the instruction it precedes. (This is only valid with certain
862instructions; see a 80386 manual for details).
863
864@cindex coprocessor wait, i386
865@item
866The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
867complete the current instruction. This should never be needed for the
86880386/80387 combination.
869
870@cindex repeat prefixes, i386
871@item
872The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
873to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
874times if the current address size is 16-bits).
55b62671
AJ
875@cindex REX prefixes, i386
876@item
877The @samp{rex} family of prefixes is used by x86-64 to encode
878extensions to i386 instruction set. The @samp{rex} prefix has four
879bits --- an operand size overwrite (@code{64}) used to change operand size
880from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
881register set.
882
883You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
884instruction emits @samp{rex} prefix with all the bits set. By omitting
885the @code{64}, @code{x}, @code{y} or @code{z} you may write other
886prefixes as well. Normally, there is no need to write the prefixes
887explicitly, since gas will automatically generate them based on the
888instruction operands.
252b5132
RH
889@end itemize
890
891@node i386-Memory
892@section Memory References
893
894@cindex i386 memory references
895@cindex memory references, i386
55b62671
AJ
896@cindex x86-64 memory references
897@cindex memory references, x86-64
252b5132
RH
898An Intel syntax indirect memory reference of the form
899
900@smallexample
901@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
902@end smallexample
903
904@noindent
905is translated into the AT&T syntax
906
907@smallexample
908@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
909@end smallexample
910
911@noindent
912where @var{base} and @var{index} are the optional 32-bit base and
913index registers, @var{disp} is the optional displacement, and
914@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
915to calculate the address of the operand. If no @var{scale} is
916specified, @var{scale} is taken to be 1. @var{section} specifies the
917optional section register for the memory operand, and may override the
918default section register (see a 80386 manual for section register
919defaults). Note that section overrides in AT&T syntax @emph{must}
920be preceded by a @samp{%}. If you specify a section override which
921coincides with the default section register, @code{@value{AS}} does @emph{not}
922output any section register override prefixes to assemble the given
923instruction. Thus, section overrides can be specified to emphasize which
924section register is used for a given memory operand.
925
926Here are some examples of Intel and AT&T style memory references:
927
928@table @asis
929@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
930@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
931missing, and the default section is used (@samp{%ss} for addressing with
932@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
933
934@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
935@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
936@samp{foo}. All other fields are missing. The section register here
937defaults to @samp{%ds}.
938
939@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
940This uses the value pointed to by @samp{foo} as a memory operand.
941Note that @var{base} and @var{index} are both missing, but there is only
942@emph{one} @samp{,}. This is a syntactic exception.
943
944@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
945This selects the contents of the variable @samp{foo} with section
946register @var{section} being @samp{%gs}.
947@end table
948
949Absolute (as opposed to PC relative) call and jump operands must be
950prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
951always chooses PC relative addressing for jump/call labels.
952
953Any instruction that has a memory operand, but no register operand,
55b62671
AJ
954@emph{must} specify its size (byte, word, long, or quadruple) with an
955instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
956respectively).
957
958The x86-64 architecture adds an RIP (instruction pointer relative)
959addressing. This addressing mode is specified by using @samp{rip} as a
960base register. Only constant offsets are valid. For example:
961
962@table @asis
963@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
964Points to the address 1234 bytes past the end of the current
965instruction.
966
967@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
968Points to the @code{symbol} in RIP relative way, this is shorter than
969the default absolute addressing.
970@end table
971
972Other addressing modes remain unchanged in x86-64 architecture, except
973registers used are 64-bit instead of 32-bit.
252b5132 974
fddf5b5b 975@node i386-Jumps
252b5132
RH
976@section Handling of Jump Instructions
977
978@cindex jump optimization, i386
979@cindex i386 jump optimization
55b62671
AJ
980@cindex jump optimization, x86-64
981@cindex x86-64 jump optimization
252b5132
RH
982Jump instructions are always optimized to use the smallest possible
983displacements. This is accomplished by using byte (8-bit) displacement
984jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 985is insufficient a long displacement is used. We do not support
252b5132
RH
986word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
987instruction with the @samp{data16} instruction prefix), since the 80386
988insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 989is added. (See also @pxref{i386-Arch})
252b5132
RH
990
991Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
992@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
993displacements, so that if you use these instructions (@code{@value{GCC}} does
994not use them) you may get an error message (and incorrect code). The AT&T
99580386 assembler tries to get around this problem by expanding @samp{jcxz foo}
996to
997
998@smallexample
999 jcxz cx_zero
1000 jmp cx_nonzero
1001cx_zero: jmp foo
1002cx_nonzero:
1003@end smallexample
1004
1005@node i386-Float
1006@section Floating Point
1007
1008@cindex i386 floating point
1009@cindex floating point, i386
55b62671
AJ
1010@cindex x86-64 floating point
1011@cindex floating point, x86-64
252b5132
RH
1012All 80387 floating point types except packed BCD are supported.
1013(BCD support may be added without much difficulty). These data
1014types are 16-, 32-, and 64- bit integers, and single (32-bit),
1015double (64-bit), and extended (80-bit) precision floating point.
1016Each supported type has an instruction mnemonic suffix and a constructor
1017associated with it. Instruction mnemonic suffixes specify the operand's
1018data type. Constructors build these data types into memory.
1019
1020@cindex @code{float} directive, i386
1021@cindex @code{single} directive, i386
1022@cindex @code{double} directive, i386
1023@cindex @code{tfloat} directive, i386
55b62671
AJ
1024@cindex @code{float} directive, x86-64
1025@cindex @code{single} directive, x86-64
1026@cindex @code{double} directive, x86-64
1027@cindex @code{tfloat} directive, x86-64
252b5132
RH
1028@itemize @bullet
1029@item
1030Floating point constructors are @samp{.float} or @samp{.single},
1031@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1032These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1033and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1034only supports this format via the @samp{fldt} (load 80-bit real to stack
1035top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1036
1037@cindex @code{word} directive, i386
1038@cindex @code{long} directive, i386
1039@cindex @code{int} directive, i386
1040@cindex @code{quad} directive, i386
55b62671
AJ
1041@cindex @code{word} directive, x86-64
1042@cindex @code{long} directive, x86-64
1043@cindex @code{int} directive, x86-64
1044@cindex @code{quad} directive, x86-64
252b5132
RH
1045@item
1046Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1047@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1048corresponding instruction mnemonic suffixes are @samp{s} (single),
1049@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1050the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1051quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1052stack) instructions.
1053@end itemize
1054
1055Register to register operations should not use instruction mnemonic suffixes.
1056@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1057wrote @samp{fst %st, %st(1)}, since all register to register operations
1058use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1059which converts @samp{%st} from 80-bit to 64-bit floating point format,
1060then stores the result in the 4 byte location @samp{mem})
1061
1062@node i386-SIMD
1063@section Intel's MMX and AMD's 3DNow! SIMD Operations
1064
1065@cindex MMX, i386
1066@cindex 3DNow!, i386
1067@cindex SIMD, i386
55b62671
AJ
1068@cindex MMX, x86-64
1069@cindex 3DNow!, x86-64
1070@cindex SIMD, x86-64
252b5132
RH
1071
1072@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1073instructions for integer data), available on Intel's Pentium MMX
1074processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1075Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1076instruction set (SIMD instructions for 32-bit floating point data)
1077available on AMD's K6-2 processor and possibly others in the future.
1078
1079Currently, @code{@value{AS}} does not support Intel's floating point
1080SIMD, Katmai (KNI).
1081
1082The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1083@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
108416-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1085floating point values. The MMX registers cannot be used at the same time
1086as the floating point stack.
1087
1088See Intel and AMD documentation, keeping in mind that the operand order in
1089instructions is reversed from the Intel syntax.
1090
f88c9eb0
SP
1091@node i386-LWP
1092@section AMD's Lightweight Profiling Instructions
1093
1094@cindex LWP, i386
1095@cindex LWP, x86-64
1096
1097@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1098instruction set, available on AMD's Family 15h (Orochi) processors.
1099
1100LWP enables applications to collect and manage performance data, and
1101react to performance events. The collection of performance data
1102requires no context switches. LWP runs in the context of a thread and
1103so several counters can be used independently across multiple threads.
1104LWP can be used in both 64-bit and legacy 32-bit modes.
1105
1106For detailed information on the LWP instruction set, see the
1107@cite{AMD Lightweight Profiling Specification} available at
1108@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1109
87973e9f
QN
1110@node i386-BMI
1111@section Bit Manipulation Instructions
1112
1113@cindex BMI, i386
1114@cindex BMI, x86-64
1115
1116@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1117
1118BMI instructions provide several instructions implementing individual
1119bit manipulation operations such as isolation, masking, setting, or
34bca508 1120resetting.
87973e9f
QN
1121
1122@c Need to add a specification citation here when available.
1123
2a2a0f38
QN
1124@node i386-TBM
1125@section AMD's Trailing Bit Manipulation Instructions
1126
1127@cindex TBM, i386
1128@cindex TBM, x86-64
1129
1130@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1131instruction set, available on AMD's BDVER2 processors (Trinity and
1132Viperfish).
1133
1134TBM instructions provide instructions implementing individual bit
1135manipulation operations such as isolating, masking, setting, resetting,
1136complementing, and operations on trailing zeros and ones.
1137
1138@c Need to add a specification citation here when available.
87973e9f 1139
252b5132
RH
1140@node i386-16bit
1141@section Writing 16-bit Code
1142
1143@cindex i386 16-bit code
1144@cindex 16-bit code, i386
1145@cindex real-mode code, i386
eecb386c 1146@cindex @code{code16gcc} directive, i386
252b5132
RH
1147@cindex @code{code16} directive, i386
1148@cindex @code{code32} directive, i386
55b62671
AJ
1149@cindex @code{code64} directive, i386
1150@cindex @code{code64} directive, x86-64
1151While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1152or 64-bit x86-64 code depending on the default configuration,
252b5132 1153it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1154mode code segments. To do this, put a @samp{.code16} or
1155@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1156be run in 16-bit mode. You can switch @code{@value{AS}} to writing
115732-bit code with the @samp{.code32} directive or 64-bit code with the
1158@samp{.code64} directive.
eecb386c
AM
1159
1160@samp{.code16gcc} provides experimental support for generating 16-bit
1161code from gcc, and differs from @samp{.code16} in that @samp{call},
1162@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1163@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1164default to 32-bit size. This is so that the stack pointer is
1165manipulated in the same way over function calls, allowing access to
1166function parameters at the same stack offsets as in 32-bit mode.
1167@samp{.code16gcc} also automatically adds address size prefixes where
1168necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1169
1170The code which @code{@value{AS}} generates in 16-bit mode will not
1171necessarily run on a 16-bit pre-80386 processor. To write code that
1172runs on such a processor, you must refrain from using @emph{any} 32-bit
1173constructs which require @code{@value{AS}} to output address or operand
1174size prefixes.
1175
1176Note that writing 16-bit code instructions by explicitly specifying a
1177prefix or an instruction mnemonic suffix within a 32-bit code section
1178generates different machine instructions than those generated for a
117916-bit code segment. In a 32-bit code section, the following code
1180generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1181value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1182
1183@smallexample
1184 pushw $4
1185@end smallexample
1186
1187The same code in a 16-bit code section would generate the machine
b45619c0 1188opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1189is correct since the processor default operand size is assumed to be 16
1190bits in a 16-bit code section.
1191
e413e4e9
AM
1192@node i386-Arch
1193@section Specifying CPU Architecture
1194
1195@cindex arch directive, i386
1196@cindex i386 arch directive
55b62671
AJ
1197@cindex arch directive, x86-64
1198@cindex x86-64 arch directive
e413e4e9
AM
1199
1200@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1201(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1202directive enables a warning when gas detects an instruction that is not
1203supported on the CPU specified. The choices for @var{cpu_type} are:
1204
1205@multitable @columnfractions .20 .20 .20 .20
1206@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1207@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1208@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1209@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1210@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1211@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1212@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1213@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1214@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1215@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1216@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1217@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1218@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1219@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1220@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1221@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1222@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1223@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1224@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1225@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1226@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1227@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1228@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
53467f57 1229@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.cet}
1ceab344 1230@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1231@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1232@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
48521003 1233@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.gfni}
ff1982d5 1234@item @samp{.vaes} @tab @samp{.vpclmulqdq}
e413e4e9
AM
1235@end multitable
1236
fddf5b5b
AM
1237Apart from the warning, there are only two other effects on
1238@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1239@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1240will automatically use a two byte opcode sequence. The larger three
1241byte opcode sequence is used on the 486 (and when no architecture is
1242specified) because it executes faster on the 486. Note that you can
1243explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1244Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1245@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1246conditional jumps will be promoted when necessary to a two instruction
1247sequence consisting of a conditional jump of the opposite sense around
1248an unconditional jump to the target.
1249
5c6af06e
JB
1250Following the CPU architecture (but not a sub-architecture, which are those
1251starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1252control automatic promotion of conditional jumps. @samp{jumps} is the
1253default, and enables jump promotion; All external jumps will be of the long
1254variety, and file-local jumps will be promoted as necessary.
1255(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1256byte offset jumps, and warns about file-local conditional jumps that
1257@code{@value{AS}} promotes.
fddf5b5b
AM
1258Unconditional jumps are treated as for @samp{jumps}.
1259
1260For example
1261
1262@smallexample
1263 .arch i8086,nojumps
1264@end smallexample
e413e4e9 1265
5c9352f3
AM
1266@node i386-Bugs
1267@section AT&T Syntax bugs
1268
1269The UnixWare assembler, and probably other AT&T derived ix86 Unix
1270assemblers, generate floating point instructions with reversed source
1271and destination registers in certain cases. Unfortunately, gcc and
1272possibly many other programs use this reversed syntax, so we're stuck
1273with it.
1274
1275For example
1276
1277@smallexample
1278 fsub %st,%st(3)
1279@end smallexample
1280@noindent
1281results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1282than the expected @samp{%st(3) - %st}. This happens with all the
1283non-commutative arithmetic floating point operations with two register
1284operands where the source register is @samp{%st} and the destination
1285register is @samp{%st(i)}.
1286
252b5132
RH
1287@node i386-Notes
1288@section Notes
1289
1290@cindex i386 @code{mul}, @code{imul} instructions
1291@cindex @code{mul} instruction, i386
1292@cindex @code{imul} instruction, i386
55b62671
AJ
1293@cindex @code{mul} instruction, x86-64
1294@cindex @code{imul} instruction, x86-64
252b5132 1295There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1296instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1297multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1298for @samp{imul}) can be output only in the one operand form. Thus,
1299@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1300the expanding multiply would clobber the @samp{%edx} register, and this
1301would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
130264-bit product in @samp{%edx:%eax}.
1303
1304We have added a two operand form of @samp{imul} when the first operand
1305is an immediate mode expression and the second operand is a register.
1306This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1307example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1308$69, %eax, %eax}.
1309
This page took 0.911462 seconds and 4 git commands to generate.