Enable Intel AVX512_4FMAPS instructions
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
6f2750fe 1@c Copyright (C) 1991-2016 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
7b458c12
L
125@code{btver1},
126@code{btver2},
9103f4f4
L
127@code{generic32} and
128@code{generic64}.
129
34bca508 130In addition to the basic instruction set, the assembler can be told to
6305a203
L
131accept various extension mnemonics. For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}. The following extensions are currently supported:
309d3373
JB
134@code{8087},
135@code{287},
136@code{387},
1848e567 137@code{687},
309d3373 138@code{no87},
1848e567
L
139@code{no287},
140@code{no387},
141@code{no687},
6305a203 142@code{mmx},
309d3373 143@code{nommx},
6305a203
L
144@code{sse},
145@code{sse2},
146@code{sse3},
147@code{ssse3},
148@code{sse4.1},
149@code{sse4.2},
150@code{sse4},
309d3373 151@code{nosse},
1848e567
L
152@code{nosse2},
153@code{nosse3},
154@code{nossse3},
155@code{nosse4.1},
156@code{nosse4.2},
157@code{nosse4},
c0f3af97 158@code{avx},
6c30d220 159@code{avx2},
1848e567
L
160@code{noavx},
161@code{noavx2},
e2e1fcde
L
162@code{adx},
163@code{rdseed},
164@code{prfchw},
5c111e37 165@code{smap},
7e8b059b 166@code{mpx},
a0046408 167@code{sha},
8bc52696 168@code{rdpid},
6b40c462 169@code{ptwrite},
1dfc6506
L
170@code{prefetchwt1},
171@code{clflushopt},
172@code{se1},
c5e7287a 173@code{clwb},
43234a1e
L
174@code{avx512f},
175@code{avx512cd},
176@code{avx512er},
177@code{avx512pf},
1dfc6506
L
178@code{avx512vl},
179@code{avx512bw},
180@code{avx512dq},
2cc1b5aa 181@code{avx512ifma},
14f195c9 182@code{avx512vbmi},
920d2ddc 183@code{avx512_4fmaps},
144b71e2
L
184@code{noavx512f},
185@code{noavx512cd},
186@code{noavx512er},
187@code{noavx512pf},
188@code{noavx512vl},
189@code{noavx512bw},
190@code{noavx512dq},
191@code{noavx512ifma},
192@code{noavx512vbmi},
920d2ddc 193@code{noavx512_4fmaps},
6305a203 194@code{vmx},
8729a6f6 195@code{vmfunc},
6305a203 196@code{smx},
f03fe4c1 197@code{xsave},
c7b8aa3a 198@code{xsaveopt},
1dfc6506
L
199@code{xsavec},
200@code{xsaves},
c0f3af97 201@code{aes},
594ab6a3 202@code{pclmul},
c7b8aa3a
L
203@code{fsgsbase},
204@code{rdrnd},
205@code{f16c},
6c30d220 206@code{bmi2},
c0f3af97 207@code{fma},
f1f8f695
L
208@code{movbe},
209@code{ept},
6c30d220 210@code{lzcnt},
42164a71
L
211@code{hle},
212@code{rtm},
6c30d220 213@code{invpcid},
bd5295b2 214@code{clflush},
9916071f 215@code{mwaitx},
029f3522 216@code{clzero},
f88c9eb0 217@code{lwp},
5dd85c99
SP
218@code{fma4},
219@code{xop},
60aa667e 220@code{cx16},
bd5295b2 221@code{syscall},
1b7f3fb0 222@code{rdtscp},
6305a203
L
223@code{3dnow},
224@code{3dnowa},
225@code{sse4a},
226@code{sse5},
227@code{svme},
228@code{abm} and
229@code{padlock}.
309d3373
JB
230Note that rather than extending a basic instruction set, the extension
231mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
232
233When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
234@code{.arch} directive will take precedent.
235
236@cindex @samp{-mtune=} option, i386
237@cindex @samp{-mtune=} option, x86-64
238@item -mtune=@var{CPU}
239This option specifies a processor to optimize for. When used in
240conjunction with the @option{-march} option, only instructions
241of the processor specified by the @option{-march} option will be
242generated.
243
6305a203
L
244Valid @var{CPU} values are identical to the processor list of
245@option{-march=@var{CPU}}.
9103f4f4 246
c0f3af97
L
247@cindex @samp{-msse2avx} option, i386
248@cindex @samp{-msse2avx} option, x86-64
249@item -msse2avx
250This option specifies that the assembler should encode SSE instructions
251with VEX prefix.
252
daf50ae7
L
253@cindex @samp{-msse-check=} option, i386
254@cindex @samp{-msse-check=} option, x86-64
255@item -msse-check=@var{none}
1f9bb1ca
AS
256@itemx -msse-check=@var{warning}
257@itemx -msse-check=@var{error}
9aff4b7a 258These options control if the assembler should check SSE instructions.
daf50ae7
L
259@option{-msse-check=@var{none}} will make the assembler not to check SSE
260instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 261will make the assembler issue a warning for any SSE instruction.
daf50ae7 262@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 263for any SSE instruction.
daf50ae7 264
539f890d
L
265@cindex @samp{-mavxscalar=} option, i386
266@cindex @samp{-mavxscalar=} option, x86-64
267@item -mavxscalar=@var{128}
1f9bb1ca 268@itemx -mavxscalar=@var{256}
2aab8acd 269These options control how the assembler should encode scalar AVX
539f890d
L
270instructions. @option{-mavxscalar=@var{128}} will encode scalar
271AVX instructions with 128bit vector length, which is the default.
272@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
273with 256bit vector length.
274
43234a1e
L
275@cindex @samp{-mevexlig=} option, i386
276@cindex @samp{-mevexlig=} option, x86-64
277@item -mevexlig=@var{128}
278@itemx -mevexlig=@var{256}
279@itemx -mevexlig=@var{512}
280These options control how the assembler should encode length-ignored
281(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
282EVEX instructions with 128bit vector length, which is the default.
283@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
284encode LIG EVEX instructions with 256bit and 512bit vector length,
285respectively.
286
287@cindex @samp{-mevexwig=} option, i386
288@cindex @samp{-mevexwig=} option, x86-64
289@item -mevexwig=@var{0}
290@itemx -mevexwig=@var{1}
291These options control how the assembler should encode w-ignored (WIG)
292EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
293EVEX instructions with evex.w = 0, which is the default.
294@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
295evex.w = 1.
296
1efbbeb4
L
297@cindex @samp{-mmnemonic=} option, i386
298@cindex @samp{-mmnemonic=} option, x86-64
299@item -mmnemonic=@var{att}
1f9bb1ca 300@itemx -mmnemonic=@var{intel}
34bca508 301This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
302The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
303take precedent.
304
305@cindex @samp{-msyntax=} option, i386
306@cindex @samp{-msyntax=} option, x86-64
307@item -msyntax=@var{att}
1f9bb1ca 308@itemx -msyntax=@var{intel}
34bca508 309This option specifies instruction syntax when processing instructions.
1efbbeb4
L
310The @code{.att_syntax} and @code{.intel_syntax} directives will
311take precedent.
312
313@cindex @samp{-mnaked-reg} option, i386
314@cindex @samp{-mnaked-reg} option, x86-64
315@item -mnaked-reg
316This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 317The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 318
7e8b059b
L
319@cindex @samp{-madd-bnd-prefix} option, i386
320@cindex @samp{-madd-bnd-prefix} option, x86-64
321@item -madd-bnd-prefix
322This option forces the assembler to add BND prefix to all branches, even
323if such prefix was not explicitly specified in the source code.
324
8dcea932
L
325@cindex @samp{-mshared} option, i386
326@cindex @samp{-mshared} option, x86-64
327@item -mno-shared
328On ELF target, the assembler normally optimizes out non-PLT relocations
329against defined non-weak global branch targets with default visibility.
330The @samp{-mshared} option tells the assembler to generate code which
331may go into a shared library where all non-weak global branch targets
332with default visibility can be preempted. The resulting code is
333slightly bigger. This option only affects the handling of branch
334instructions.
335
167ad85b
TG
336@cindex @samp{-mbig-obj} option, x86-64
337@item -mbig-obj
338On x86-64 PE/COFF target this option forces the use of big object file
339format, which allows more than 32768 sections.
340
d022bddd
IT
341@cindex @samp{-momit-lock-prefix=} option, i386
342@cindex @samp{-momit-lock-prefix=} option, x86-64
343@item -momit-lock-prefix=@var{no}
344@itemx -momit-lock-prefix=@var{yes}
345These options control how the assembler should encode lock prefix.
346This option is intended as a workaround for processors, that fail on
347lock prefix. This option can only be safely used with single-core,
348single-thread computers
349@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
350@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
351which is the default.
352
e4e00185
AS
353@cindex @samp{-mfence-as-lock-add=} option, i386
354@cindex @samp{-mfence-as-lock-add=} option, x86-64
355@item -mfence-as-lock-add=@var{no}
356@itemx -mfence-as-lock-add=@var{yes}
357These options control how the assembler should encode lfence, mfence and
358sfence.
359@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
360sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
361@samp{lock addl $0x0, (%esp)} in 32-bit mode.
362@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
363sfence as usual, which is the default.
364
0cb4071e
L
365@cindex @samp{-mrelax-relocations=} option, i386
366@cindex @samp{-mrelax-relocations=} option, x86-64
367@item -mrelax-relocations=@var{no}
368@itemx -mrelax-relocations=@var{yes}
369These options control whether the assembler should generate relax
370relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
371R_X86_64_REX_GOTPCRELX, in 64-bit mode.
372@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
373@option{-mrelax-relocations=@var{no}} will not generate relax
374relocations. The default can be controlled by a configure option
375@option{--enable-x86-relax-relocations}.
376
d3d3c6db
IT
377@cindex @samp{-mevexrcig=} option, i386
378@cindex @samp{-mevexrcig=} option, x86-64
379@item -mevexrcig=@var{rne}
380@itemx -mevexrcig=@var{rd}
381@itemx -mevexrcig=@var{ru}
382@itemx -mevexrcig=@var{rz}
383These options control how the assembler should encode SAE-only
384EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
385of EVEX instruction with 00, which is the default.
386@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
387and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
388with 01, 10 and 11 RC bits, respectively.
389
5db04b09
L
390@cindex @samp{-mamd64} option, x86-64
391@cindex @samp{-mintel64} option, x86-64
392@item -mamd64
393@itemx -mintel64
394This option specifies that the assembler should accept only AMD64 or
395Intel64 ISA in 64-bit mode. The default is to accept both.
396
55b62671 397@end table
731caf76 398@c man end
e413e4e9 399
a6c24e68
NC
400@node i386-Directives
401@section x86 specific Directives
402
403@cindex machine directives, x86
404@cindex x86 machine directives
405@table @code
406
407@cindex @code{lcomm} directive, COFF
408@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
409Reserve @var{length} (an absolute expression) bytes for a local common
410denoted by @var{symbol}. The section and value of @var{symbol} are
411those of the new local common. The addresses are allocated in the bss
704209c0
NC
412section, so that at run-time the bytes start off zeroed. Since
413@var{symbol} is not declared global, it is normally not visible to
414@code{@value{LD}}. The optional third parameter, @var{alignment},
415specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
416
417This directive is only available for COFF based x86 targets.
418
419@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
420@c .largecomm
421
422@end table
423
252b5132 424@node i386-Syntax
7c31ae13
NC
425@section i386 Syntactical Considerations
426@menu
427* i386-Variations:: AT&T Syntax versus Intel Syntax
428* i386-Chars:: Special Characters
429@end menu
430
431@node i386-Variations
432@subsection AT&T Syntax versus Intel Syntax
252b5132 433
e413e4e9
AM
434@cindex i386 intel_syntax pseudo op
435@cindex intel_syntax pseudo op, i386
436@cindex i386 att_syntax pseudo op
437@cindex att_syntax pseudo op, i386
252b5132
RH
438@cindex i386 syntax compatibility
439@cindex syntax compatibility, i386
55b62671
AJ
440@cindex x86-64 intel_syntax pseudo op
441@cindex intel_syntax pseudo op, x86-64
442@cindex x86-64 att_syntax pseudo op
443@cindex att_syntax pseudo op, x86-64
444@cindex x86-64 syntax compatibility
445@cindex syntax compatibility, x86-64
e413e4e9
AM
446
447@code{@value{AS}} now supports assembly using Intel assembler syntax.
448@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
449back to the usual AT&T mode for compatibility with the output of
450@code{@value{GCC}}. Either of these directives may have an optional
451argument, @code{prefix}, or @code{noprefix} specifying whether registers
452require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
453different from Intel syntax. We mention these differences because
454almost all 80386 documents use Intel syntax. Notable differences
455between the two syntaxes are:
456
457@cindex immediate operands, i386
458@cindex i386 immediate operands
459@cindex register operands, i386
460@cindex i386 register operands
461@cindex jump/call operands, i386
462@cindex i386 jump/call operands
463@cindex operand delimiters, i386
55b62671
AJ
464
465@cindex immediate operands, x86-64
466@cindex x86-64 immediate operands
467@cindex register operands, x86-64
468@cindex x86-64 register operands
469@cindex jump/call operands, x86-64
470@cindex x86-64 jump/call operands
471@cindex operand delimiters, x86-64
252b5132
RH
472@itemize @bullet
473@item
474AT&T immediate operands are preceded by @samp{$}; Intel immediate
475operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
476AT&T register operands are preceded by @samp{%}; Intel register operands
477are undelimited. AT&T absolute (as opposed to PC relative) jump/call
478operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
479
480@cindex i386 source, destination operands
481@cindex source, destination operands; i386
55b62671
AJ
482@cindex x86-64 source, destination operands
483@cindex source, destination operands; x86-64
252b5132
RH
484@item
485AT&T and Intel syntax use the opposite order for source and destination
486operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
487@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
488previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
489instructions with 2 immediate operands, such as the @samp{enter}
490instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
491
492@cindex mnemonic suffixes, i386
493@cindex sizes operands, i386
494@cindex i386 size suffixes
55b62671
AJ
495@cindex mnemonic suffixes, x86-64
496@cindex sizes operands, x86-64
497@cindex x86-64 size suffixes
252b5132
RH
498@item
499In AT&T syntax the size of memory operands is determined from the last
500character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
501@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
502(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
503this by prefixing memory operands (@emph{not} the instruction mnemonics) with
504@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
505Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
506syntax.
252b5132 507
4b06377f
L
508In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
509instruction with the 64-bit displacement or immediate operand.
510
252b5132
RH
511@cindex return instructions, i386
512@cindex i386 jump, call, return
55b62671
AJ
513@cindex return instructions, x86-64
514@cindex x86-64 jump, call, return
252b5132
RH
515@item
516Immediate form long jumps and calls are
517@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
518Intel syntax is
519@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
520instruction
521is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
522@samp{ret far @var{stack-adjust}}.
523
524@cindex sections, i386
525@cindex i386 sections
55b62671
AJ
526@cindex sections, x86-64
527@cindex x86-64 sections
252b5132
RH
528@item
529The AT&T assembler does not provide support for multiple section
530programs. Unix style systems expect all programs to be single sections.
531@end itemize
532
7c31ae13
NC
533@node i386-Chars
534@subsection Special Characters
535
536@cindex line comment character, i386
537@cindex i386 line comment character
538The presence of a @samp{#} appearing anywhere on a line indicates the
539start of a comment that extends to the end of that line.
540
541If a @samp{#} appears as the first character of a line then the whole
542line is treated as a comment, but in this case the line can also be a
543logical line number directive (@pxref{Comments}) or a preprocessor
544control command (@pxref{Preprocessing}).
545
546If the @option{--divide} command line option has not been specified
547then the @samp{/} character appearing anywhere on a line also
548introduces a line comment.
549
550@cindex line separator, i386
551@cindex statement separator, i386
552@cindex i386 line separator
553The @samp{;} character can be used to separate statements on the same
554line.
555
252b5132 556@node i386-Mnemonics
d3b47e2b
L
557@section i386-Mnemonics
558@subsection Instruction Naming
252b5132
RH
559
560@cindex i386 instruction naming
561@cindex instruction naming, i386
55b62671
AJ
562@cindex x86-64 instruction naming
563@cindex instruction naming, x86-64
564
252b5132 565Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
566specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
567and @samp{q} specify byte, word, long and quadruple word operands. If
568no suffix is specified by an instruction then @code{@value{AS}} tries to
569fill in the missing suffix based on the destination register operand
570(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
571to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
572@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
573assembler which assumes that a missing mnemonic suffix implies long
574operand size. (This incompatibility does not affect compiler output
575since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
576
577Almost all instructions have the same names in AT&T and Intel format.
578There are a few exceptions. The sign extend and zero extend
579instructions need two sizes to specify them. They need a size to
580sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
581is accomplished by using two instruction mnemonic suffixes in AT&T
582syntax. Base names for sign extend and zero extend are
583@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
584and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
585are tacked on to this base name, the @emph{from} suffix before the
586@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
587``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
588thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
589@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
590@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
591quadruple word).
252b5132 592
b6169b20
L
593@cindex encoding options, i386
594@cindex encoding options, x86-64
595
596Different encoding options can be specified via optional mnemonic
597suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
598moving from one register to another. @samp{.d8} or @samp{.d32} suffix
599prefers 8bit or 32bit displacement in encoding.
b6169b20 600
252b5132
RH
601@cindex conversion instructions, i386
602@cindex i386 conversion instructions
55b62671
AJ
603@cindex conversion instructions, x86-64
604@cindex x86-64 conversion instructions
252b5132
RH
605The Intel-syntax conversion instructions
606
607@itemize @bullet
608@item
609@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
610
611@item
612@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
613
614@item
615@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
616
617@item
618@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
619
620@item
621@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
622(x86-64 only),
623
624@item
d5f0cf92 625@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 626@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
627@end itemize
628
629@noindent
55b62671
AJ
630are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
631@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
632instructions.
252b5132
RH
633
634@cindex jump instructions, i386
635@cindex call instructions, i386
55b62671
AJ
636@cindex jump instructions, x86-64
637@cindex call instructions, x86-64
252b5132
RH
638Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
639AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
640convention.
641
d3b47e2b 642@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
643
644@cindex i386 mnemonic compatibility
645@cindex mnemonic compatibility, i386
646
647@code{@value{AS}} supports assembly using Intel mnemonic.
648@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
649@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
650syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
651Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
652@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
653@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
654assembler with different mnemonics from those in Intel IA32 specification.
655@code{@value{GCC}} generates those instructions with AT&T mnemonic.
656
252b5132
RH
657@node i386-Regs
658@section Register Naming
659
660@cindex i386 registers
661@cindex registers, i386
55b62671
AJ
662@cindex x86-64 registers
663@cindex registers, x86-64
252b5132
RH
664Register operands are always prefixed with @samp{%}. The 80386 registers
665consist of
666
667@itemize @bullet
668@item
669the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
670@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
671frame pointer), and @samp{%esp} (the stack pointer).
672
673@item
674the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
675@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
676
677@item
678the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
679@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
680are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
681@samp{%cx}, and @samp{%dx})
682
683@item
684the 6 section registers @samp{%cs} (code section), @samp{%ds}
685(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
686and @samp{%gs}.
687
688@item
4bde3cdd
UD
689the 5 processor control registers @samp{%cr0}, @samp{%cr2},
690@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
691
692@item
693the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
694@samp{%db3}, @samp{%db6}, and @samp{%db7}.
695
696@item
697the 2 test registers @samp{%tr6} and @samp{%tr7}.
698
699@item
700the 8 floating point register stack @samp{%st} or equivalently
701@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
702@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
703These registers are overloaded by 8 MMX registers @samp{%mm0},
704@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
705@samp{%mm6} and @samp{%mm7}.
706
707@item
4bde3cdd 708the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
709@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
710@end itemize
711
712The AMD x86-64 architecture extends the register set by:
713
714@itemize @bullet
715@item
716enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
717accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
718@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
719pointer)
720
721@item
722the 8 extended registers @samp{%r8}--@samp{%r15}.
723
724@item
4bde3cdd 725the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
726
727@item
4bde3cdd 728the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
729
730@item
4bde3cdd 731the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
732
733@item
734the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
735
736@item
737the 8 debug registers: @samp{%db8}--@samp{%db15}.
738
739@item
4bde3cdd
UD
740the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
741@end itemize
742
743With the AVX extensions more registers were made available:
744
745@itemize @bullet
746
747@item
748the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
749available in 32-bit mode). The bottom 128 bits are overlaid with the
750@samp{xmm0}--@samp{xmm15} registers.
751
752@end itemize
753
754The AVX2 extensions made in 64-bit mode more registers available:
755
756@itemize @bullet
757
758@item
759the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
760registers @samp{%ymm16}--@samp{%ymm31}.
761
762@end itemize
763
764The AVX512 extensions added the following registers:
765
766@itemize @bullet
767
768@item
769the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
770available in 32-bit mode). The bottom 128 bits are overlaid with the
771@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
772overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
773
774@item
775the 8 mask registers @samp{%k0}--@samp{%k7}.
776
252b5132
RH
777@end itemize
778
779@node i386-Prefixes
780@section Instruction Prefixes
781
782@cindex i386 instruction prefixes
783@cindex instruction prefixes, i386
784@cindex prefixes, i386
785Instruction prefixes are used to modify the following instruction. They
786are used to repeat string instructions, to provide section overrides, to
787perform bus lock operations, and to change operand and address sizes.
788(Most instructions that normally operate on 32-bit operands will use
78916-bit operands if the instruction has an ``operand size'' prefix.)
790Instruction prefixes are best written on the same line as the instruction
791they act upon. For example, the @samp{scas} (scan string) instruction is
792repeated with:
793
794@smallexample
795 repne scas %es:(%edi),%al
796@end smallexample
797
798You may also place prefixes on the lines immediately preceding the
799instruction, but this circumvents checks that @code{@value{AS}} does
800with prefixes, and will not work with all prefixes.
801
802Here is a list of instruction prefixes:
803
804@cindex section override prefixes, i386
805@itemize @bullet
806@item
807Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
808@samp{fs}, @samp{gs}. These are automatically added by specifying
809using the @var{section}:@var{memory-operand} form for memory references.
810
811@cindex size prefixes, i386
812@item
813Operand/Address size prefixes @samp{data16} and @samp{addr16}
814change 32-bit operands/addresses into 16-bit operands/addresses,
815while @samp{data32} and @samp{addr32} change 16-bit ones (in a
816@code{.code16} section) into 32-bit operands/addresses. These prefixes
817@emph{must} appear on the same line of code as the instruction they
818modify. For example, in a 16-bit @code{.code16} section, you might
819write:
820
821@smallexample
822 addr32 jmpl *(%ebx)
823@end smallexample
824
825@cindex bus lock prefixes, i386
826@cindex inhibiting interrupts, i386
827@item
828The bus lock prefix @samp{lock} inhibits interrupts during execution of
829the instruction it precedes. (This is only valid with certain
830instructions; see a 80386 manual for details).
831
832@cindex coprocessor wait, i386
833@item
834The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
835complete the current instruction. This should never be needed for the
83680386/80387 combination.
837
838@cindex repeat prefixes, i386
839@item
840The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
841to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
842times if the current address size is 16-bits).
55b62671
AJ
843@cindex REX prefixes, i386
844@item
845The @samp{rex} family of prefixes is used by x86-64 to encode
846extensions to i386 instruction set. The @samp{rex} prefix has four
847bits --- an operand size overwrite (@code{64}) used to change operand size
848from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
849register set.
850
851You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
852instruction emits @samp{rex} prefix with all the bits set. By omitting
853the @code{64}, @code{x}, @code{y} or @code{z} you may write other
854prefixes as well. Normally, there is no need to write the prefixes
855explicitly, since gas will automatically generate them based on the
856instruction operands.
252b5132
RH
857@end itemize
858
859@node i386-Memory
860@section Memory References
861
862@cindex i386 memory references
863@cindex memory references, i386
55b62671
AJ
864@cindex x86-64 memory references
865@cindex memory references, x86-64
252b5132
RH
866An Intel syntax indirect memory reference of the form
867
868@smallexample
869@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
870@end smallexample
871
872@noindent
873is translated into the AT&T syntax
874
875@smallexample
876@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
877@end smallexample
878
879@noindent
880where @var{base} and @var{index} are the optional 32-bit base and
881index registers, @var{disp} is the optional displacement, and
882@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
883to calculate the address of the operand. If no @var{scale} is
884specified, @var{scale} is taken to be 1. @var{section} specifies the
885optional section register for the memory operand, and may override the
886default section register (see a 80386 manual for section register
887defaults). Note that section overrides in AT&T syntax @emph{must}
888be preceded by a @samp{%}. If you specify a section override which
889coincides with the default section register, @code{@value{AS}} does @emph{not}
890output any section register override prefixes to assemble the given
891instruction. Thus, section overrides can be specified to emphasize which
892section register is used for a given memory operand.
893
894Here are some examples of Intel and AT&T style memory references:
895
896@table @asis
897@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
898@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
899missing, and the default section is used (@samp{%ss} for addressing with
900@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
901
902@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
903@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
904@samp{foo}. All other fields are missing. The section register here
905defaults to @samp{%ds}.
906
907@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
908This uses the value pointed to by @samp{foo} as a memory operand.
909Note that @var{base} and @var{index} are both missing, but there is only
910@emph{one} @samp{,}. This is a syntactic exception.
911
912@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
913This selects the contents of the variable @samp{foo} with section
914register @var{section} being @samp{%gs}.
915@end table
916
917Absolute (as opposed to PC relative) call and jump operands must be
918prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
919always chooses PC relative addressing for jump/call labels.
920
921Any instruction that has a memory operand, but no register operand,
55b62671
AJ
922@emph{must} specify its size (byte, word, long, or quadruple) with an
923instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
924respectively).
925
926The x86-64 architecture adds an RIP (instruction pointer relative)
927addressing. This addressing mode is specified by using @samp{rip} as a
928base register. Only constant offsets are valid. For example:
929
930@table @asis
931@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
932Points to the address 1234 bytes past the end of the current
933instruction.
934
935@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
936Points to the @code{symbol} in RIP relative way, this is shorter than
937the default absolute addressing.
938@end table
939
940Other addressing modes remain unchanged in x86-64 architecture, except
941registers used are 64-bit instead of 32-bit.
252b5132 942
fddf5b5b 943@node i386-Jumps
252b5132
RH
944@section Handling of Jump Instructions
945
946@cindex jump optimization, i386
947@cindex i386 jump optimization
55b62671
AJ
948@cindex jump optimization, x86-64
949@cindex x86-64 jump optimization
252b5132
RH
950Jump instructions are always optimized to use the smallest possible
951displacements. This is accomplished by using byte (8-bit) displacement
952jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 953is insufficient a long displacement is used. We do not support
252b5132
RH
954word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
955instruction with the @samp{data16} instruction prefix), since the 80386
956insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 957is added. (See also @pxref{i386-Arch})
252b5132
RH
958
959Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
960@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
961displacements, so that if you use these instructions (@code{@value{GCC}} does
962not use them) you may get an error message (and incorrect code). The AT&T
96380386 assembler tries to get around this problem by expanding @samp{jcxz foo}
964to
965
966@smallexample
967 jcxz cx_zero
968 jmp cx_nonzero
969cx_zero: jmp foo
970cx_nonzero:
971@end smallexample
972
973@node i386-Float
974@section Floating Point
975
976@cindex i386 floating point
977@cindex floating point, i386
55b62671
AJ
978@cindex x86-64 floating point
979@cindex floating point, x86-64
252b5132
RH
980All 80387 floating point types except packed BCD are supported.
981(BCD support may be added without much difficulty). These data
982types are 16-, 32-, and 64- bit integers, and single (32-bit),
983double (64-bit), and extended (80-bit) precision floating point.
984Each supported type has an instruction mnemonic suffix and a constructor
985associated with it. Instruction mnemonic suffixes specify the operand's
986data type. Constructors build these data types into memory.
987
988@cindex @code{float} directive, i386
989@cindex @code{single} directive, i386
990@cindex @code{double} directive, i386
991@cindex @code{tfloat} directive, i386
55b62671
AJ
992@cindex @code{float} directive, x86-64
993@cindex @code{single} directive, x86-64
994@cindex @code{double} directive, x86-64
995@cindex @code{tfloat} directive, x86-64
252b5132
RH
996@itemize @bullet
997@item
998Floating point constructors are @samp{.float} or @samp{.single},
999@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1000These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1001and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1002only supports this format via the @samp{fldt} (load 80-bit real to stack
1003top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1004
1005@cindex @code{word} directive, i386
1006@cindex @code{long} directive, i386
1007@cindex @code{int} directive, i386
1008@cindex @code{quad} directive, i386
55b62671
AJ
1009@cindex @code{word} directive, x86-64
1010@cindex @code{long} directive, x86-64
1011@cindex @code{int} directive, x86-64
1012@cindex @code{quad} directive, x86-64
252b5132
RH
1013@item
1014Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1015@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1016corresponding instruction mnemonic suffixes are @samp{s} (single),
1017@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1018the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1019quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1020stack) instructions.
1021@end itemize
1022
1023Register to register operations should not use instruction mnemonic suffixes.
1024@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1025wrote @samp{fst %st, %st(1)}, since all register to register operations
1026use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1027which converts @samp{%st} from 80-bit to 64-bit floating point format,
1028then stores the result in the 4 byte location @samp{mem})
1029
1030@node i386-SIMD
1031@section Intel's MMX and AMD's 3DNow! SIMD Operations
1032
1033@cindex MMX, i386
1034@cindex 3DNow!, i386
1035@cindex SIMD, i386
55b62671
AJ
1036@cindex MMX, x86-64
1037@cindex 3DNow!, x86-64
1038@cindex SIMD, x86-64
252b5132
RH
1039
1040@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1041instructions for integer data), available on Intel's Pentium MMX
1042processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1043Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1044instruction set (SIMD instructions for 32-bit floating point data)
1045available on AMD's K6-2 processor and possibly others in the future.
1046
1047Currently, @code{@value{AS}} does not support Intel's floating point
1048SIMD, Katmai (KNI).
1049
1050The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1051@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
105216-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1053floating point values. The MMX registers cannot be used at the same time
1054as the floating point stack.
1055
1056See Intel and AMD documentation, keeping in mind that the operand order in
1057instructions is reversed from the Intel syntax.
1058
f88c9eb0
SP
1059@node i386-LWP
1060@section AMD's Lightweight Profiling Instructions
1061
1062@cindex LWP, i386
1063@cindex LWP, x86-64
1064
1065@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1066instruction set, available on AMD's Family 15h (Orochi) processors.
1067
1068LWP enables applications to collect and manage performance data, and
1069react to performance events. The collection of performance data
1070requires no context switches. LWP runs in the context of a thread and
1071so several counters can be used independently across multiple threads.
1072LWP can be used in both 64-bit and legacy 32-bit modes.
1073
1074For detailed information on the LWP instruction set, see the
1075@cite{AMD Lightweight Profiling Specification} available at
1076@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1077
87973e9f
QN
1078@node i386-BMI
1079@section Bit Manipulation Instructions
1080
1081@cindex BMI, i386
1082@cindex BMI, x86-64
1083
1084@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1085
1086BMI instructions provide several instructions implementing individual
1087bit manipulation operations such as isolation, masking, setting, or
34bca508 1088resetting.
87973e9f
QN
1089
1090@c Need to add a specification citation here when available.
1091
2a2a0f38
QN
1092@node i386-TBM
1093@section AMD's Trailing Bit Manipulation Instructions
1094
1095@cindex TBM, i386
1096@cindex TBM, x86-64
1097
1098@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1099instruction set, available on AMD's BDVER2 processors (Trinity and
1100Viperfish).
1101
1102TBM instructions provide instructions implementing individual bit
1103manipulation operations such as isolating, masking, setting, resetting,
1104complementing, and operations on trailing zeros and ones.
1105
1106@c Need to add a specification citation here when available.
87973e9f 1107
252b5132
RH
1108@node i386-16bit
1109@section Writing 16-bit Code
1110
1111@cindex i386 16-bit code
1112@cindex 16-bit code, i386
1113@cindex real-mode code, i386
eecb386c 1114@cindex @code{code16gcc} directive, i386
252b5132
RH
1115@cindex @code{code16} directive, i386
1116@cindex @code{code32} directive, i386
55b62671
AJ
1117@cindex @code{code64} directive, i386
1118@cindex @code{code64} directive, x86-64
1119While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1120or 64-bit x86-64 code depending on the default configuration,
252b5132 1121it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1122mode code segments. To do this, put a @samp{.code16} or
1123@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1124be run in 16-bit mode. You can switch @code{@value{AS}} to writing
112532-bit code with the @samp{.code32} directive or 64-bit code with the
1126@samp{.code64} directive.
eecb386c
AM
1127
1128@samp{.code16gcc} provides experimental support for generating 16-bit
1129code from gcc, and differs from @samp{.code16} in that @samp{call},
1130@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1131@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1132default to 32-bit size. This is so that the stack pointer is
1133manipulated in the same way over function calls, allowing access to
1134function parameters at the same stack offsets as in 32-bit mode.
1135@samp{.code16gcc} also automatically adds address size prefixes where
1136necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1137
1138The code which @code{@value{AS}} generates in 16-bit mode will not
1139necessarily run on a 16-bit pre-80386 processor. To write code that
1140runs on such a processor, you must refrain from using @emph{any} 32-bit
1141constructs which require @code{@value{AS}} to output address or operand
1142size prefixes.
1143
1144Note that writing 16-bit code instructions by explicitly specifying a
1145prefix or an instruction mnemonic suffix within a 32-bit code section
1146generates different machine instructions than those generated for a
114716-bit code segment. In a 32-bit code section, the following code
1148generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1149value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1150
1151@smallexample
1152 pushw $4
1153@end smallexample
1154
1155The same code in a 16-bit code section would generate the machine
b45619c0 1156opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1157is correct since the processor default operand size is assumed to be 16
1158bits in a 16-bit code section.
1159
e413e4e9
AM
1160@node i386-Arch
1161@section Specifying CPU Architecture
1162
1163@cindex arch directive, i386
1164@cindex i386 arch directive
55b62671
AJ
1165@cindex arch directive, x86-64
1166@cindex x86-64 arch directive
e413e4e9
AM
1167
1168@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1169(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1170directive enables a warning when gas detects an instruction that is not
1171supported on the CPU specified. The choices for @var{cpu_type} are:
1172
1173@multitable @columnfractions .20 .20 .20 .20
1174@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1175@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1176@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1177@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1178@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1179@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1180@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1181@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1182@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1183@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1184@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1185@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1186@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1187@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1188@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1189@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1190@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1191@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1192@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1193@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1194@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
920d2ddc
IT
1195@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.clwb}
1196@item @samp{.rdpid} @tab @samp{.ptwrite}
1ceab344 1197@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1198@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1199@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
920d2ddc 1200@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1201@end multitable
1202
fddf5b5b
AM
1203Apart from the warning, there are only two other effects on
1204@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1205@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1206will automatically use a two byte opcode sequence. The larger three
1207byte opcode sequence is used on the 486 (and when no architecture is
1208specified) because it executes faster on the 486. Note that you can
1209explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1210Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1211@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1212conditional jumps will be promoted when necessary to a two instruction
1213sequence consisting of a conditional jump of the opposite sense around
1214an unconditional jump to the target.
1215
5c6af06e
JB
1216Following the CPU architecture (but not a sub-architecture, which are those
1217starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1218control automatic promotion of conditional jumps. @samp{jumps} is the
1219default, and enables jump promotion; All external jumps will be of the long
1220variety, and file-local jumps will be promoted as necessary.
1221(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1222byte offset jumps, and warns about file-local conditional jumps that
1223@code{@value{AS}} promotes.
fddf5b5b
AM
1224Unconditional jumps are treated as for @samp{jumps}.
1225
1226For example
1227
1228@smallexample
1229 .arch i8086,nojumps
1230@end smallexample
e413e4e9 1231
5c9352f3
AM
1232@node i386-Bugs
1233@section AT&T Syntax bugs
1234
1235The UnixWare assembler, and probably other AT&T derived ix86 Unix
1236assemblers, generate floating point instructions with reversed source
1237and destination registers in certain cases. Unfortunately, gcc and
1238possibly many other programs use this reversed syntax, so we're stuck
1239with it.
1240
1241For example
1242
1243@smallexample
1244 fsub %st,%st(3)
1245@end smallexample
1246@noindent
1247results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1248than the expected @samp{%st(3) - %st}. This happens with all the
1249non-commutative arithmetic floating point operations with two register
1250operands where the source register is @samp{%st} and the destination
1251register is @samp{%st(i)}.
1252
252b5132
RH
1253@node i386-Notes
1254@section Notes
1255
1256@cindex i386 @code{mul}, @code{imul} instructions
1257@cindex @code{mul} instruction, i386
1258@cindex @code{imul} instruction, i386
55b62671
AJ
1259@cindex @code{mul} instruction, x86-64
1260@cindex @code{imul} instruction, x86-64
252b5132 1261There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1262instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1263multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1264for @samp{imul}) can be output only in the one operand form. Thus,
1265@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1266the expanding multiply would clobber the @samp{%edx} register, and this
1267would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
126864-bit product in @samp{%edx:%eax}.
1269
1270We have added a two operand form of @samp{imul} when the first operand
1271is an immediate mode expression and the second operand is a register.
1272This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1273example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1274$69, %eax, %eax}.
1275
This page took 0.808302 seconds and 4 git commands to generate.