x86: optimize EVEX packed integer logical instructions
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
82704155 1@c Copyright (C) 1991-2019 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
a9660a6f 126@code{znver2},
7b458c12
L
127@code{btver1},
128@code{btver2},
9103f4f4
L
129@code{generic32} and
130@code{generic64}.
131
34bca508 132In addition to the basic instruction set, the assembler can be told to
6305a203
L
133accept various extension mnemonics. For example,
134@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135@var{vmx}. The following extensions are currently supported:
309d3373
JB
136@code{8087},
137@code{287},
138@code{387},
1848e567 139@code{687},
309d3373 140@code{no87},
1848e567
L
141@code{no287},
142@code{no387},
143@code{no687},
d871f3f4
L
144@code{cmov},
145@code{nocmov},
146@code{fxsr},
147@code{nofxsr},
6305a203 148@code{mmx},
309d3373 149@code{nommx},
6305a203
L
150@code{sse},
151@code{sse2},
152@code{sse3},
153@code{ssse3},
154@code{sse4.1},
155@code{sse4.2},
156@code{sse4},
309d3373 157@code{nosse},
1848e567
L
158@code{nosse2},
159@code{nosse3},
160@code{nossse3},
161@code{nosse4.1},
162@code{nosse4.2},
163@code{nosse4},
c0f3af97 164@code{avx},
6c30d220 165@code{avx2},
1848e567
L
166@code{noavx},
167@code{noavx2},
e2e1fcde
L
168@code{adx},
169@code{rdseed},
170@code{prfchw},
5c111e37 171@code{smap},
7e8b059b 172@code{mpx},
a0046408 173@code{sha},
8bc52696 174@code{rdpid},
6b40c462 175@code{ptwrite},
603555e5 176@code{cet},
48521003 177@code{gfni},
8dcf1fad 178@code{vaes},
ff1982d5 179@code{vpclmulqdq},
1dfc6506
L
180@code{prefetchwt1},
181@code{clflushopt},
182@code{se1},
c5e7287a 183@code{clwb},
c0a30a9f
L
184@code{movdiri},
185@code{movdir64b},
5d79adc4 186@code{enqcmd},
43234a1e
L
187@code{avx512f},
188@code{avx512cd},
189@code{avx512er},
190@code{avx512pf},
1dfc6506
L
191@code{avx512vl},
192@code{avx512bw},
193@code{avx512dq},
2cc1b5aa 194@code{avx512ifma},
14f195c9 195@code{avx512vbmi},
920d2ddc 196@code{avx512_4fmaps},
47acf0bd 197@code{avx512_4vnniw},
620214f7 198@code{avx512_vpopcntdq},
53467f57 199@code{avx512_vbmi2},
8cfcb765 200@code{avx512_vnni},
ee6872be 201@code{avx512_bitalg},
d6aab7a1 202@code{avx512_bf16},
144b71e2
L
203@code{noavx512f},
204@code{noavx512cd},
205@code{noavx512er},
206@code{noavx512pf},
207@code{noavx512vl},
208@code{noavx512bw},
209@code{noavx512dq},
210@code{noavx512ifma},
211@code{noavx512vbmi},
920d2ddc 212@code{noavx512_4fmaps},
47acf0bd 213@code{noavx512_4vnniw},
620214f7 214@code{noavx512_vpopcntdq},
53467f57 215@code{noavx512_vbmi2},
8cfcb765 216@code{noavx512_vnni},
ee6872be 217@code{noavx512_bitalg},
9186c494 218@code{noavx512_vp2intersect},
d6aab7a1 219@code{noavx512_bf16},
dd455cf5 220@code{noenqcmd},
6305a203 221@code{vmx},
8729a6f6 222@code{vmfunc},
6305a203 223@code{smx},
f03fe4c1 224@code{xsave},
c7b8aa3a 225@code{xsaveopt},
1dfc6506
L
226@code{xsavec},
227@code{xsaves},
c0f3af97 228@code{aes},
594ab6a3 229@code{pclmul},
c7b8aa3a
L
230@code{fsgsbase},
231@code{rdrnd},
232@code{f16c},
6c30d220 233@code{bmi2},
c0f3af97 234@code{fma},
f1f8f695
L
235@code{movbe},
236@code{ept},
6c30d220 237@code{lzcnt},
42164a71
L
238@code{hle},
239@code{rtm},
6c30d220 240@code{invpcid},
bd5295b2 241@code{clflush},
9916071f 242@code{mwaitx},
029f3522 243@code{clzero},
3233d7d0 244@code{wbnoinvd},
be3a8dca 245@code{pconfig},
de89d0a3 246@code{waitpkg},
c48935d7 247@code{cldemote},
f88c9eb0 248@code{lwp},
5dd85c99
SP
249@code{fma4},
250@code{xop},
60aa667e 251@code{cx16},
bd5295b2 252@code{syscall},
1b7f3fb0 253@code{rdtscp},
6305a203
L
254@code{3dnow},
255@code{3dnowa},
256@code{sse4a},
257@code{sse5},
258@code{svme},
259@code{abm} and
260@code{padlock}.
309d3373
JB
261Note that rather than extending a basic instruction set, the extension
262mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
263
264When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
265@code{.arch} directive will take precedent.
266
267@cindex @samp{-mtune=} option, i386
268@cindex @samp{-mtune=} option, x86-64
269@item -mtune=@var{CPU}
270This option specifies a processor to optimize for. When used in
271conjunction with the @option{-march} option, only instructions
272of the processor specified by the @option{-march} option will be
273generated.
274
6305a203
L
275Valid @var{CPU} values are identical to the processor list of
276@option{-march=@var{CPU}}.
9103f4f4 277
c0f3af97
L
278@cindex @samp{-msse2avx} option, i386
279@cindex @samp{-msse2avx} option, x86-64
280@item -msse2avx
281This option specifies that the assembler should encode SSE instructions
282with VEX prefix.
283
daf50ae7
L
284@cindex @samp{-msse-check=} option, i386
285@cindex @samp{-msse-check=} option, x86-64
286@item -msse-check=@var{none}
1f9bb1ca
AS
287@itemx -msse-check=@var{warning}
288@itemx -msse-check=@var{error}
9aff4b7a 289These options control if the assembler should check SSE instructions.
daf50ae7
L
290@option{-msse-check=@var{none}} will make the assembler not to check SSE
291instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 292will make the assembler issue a warning for any SSE instruction.
daf50ae7 293@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 294for any SSE instruction.
daf50ae7 295
539f890d
L
296@cindex @samp{-mavxscalar=} option, i386
297@cindex @samp{-mavxscalar=} option, x86-64
298@item -mavxscalar=@var{128}
1f9bb1ca 299@itemx -mavxscalar=@var{256}
2aab8acd 300These options control how the assembler should encode scalar AVX
539f890d
L
301instructions. @option{-mavxscalar=@var{128}} will encode scalar
302AVX instructions with 128bit vector length, which is the default.
303@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
304with 256bit vector length.
305
4970191f
JB
306WARNING: Don't use this for production code - due to CPU errata the
307resulting code may not work on certain models.
308
03751133
L
309@cindex @samp{-mvexwig=} option, i386
310@cindex @samp{-mvexwig=} option, x86-64
311@item -mvexwig=@var{0}
312@itemx -mvexwig=@var{1}
313These options control how the assembler should encode VEX.W-ignored (WIG)
314VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
315instructions with vex.w = 0, which is the default.
316@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
317vex.w = 1.
318
4970191f
JB
319WARNING: Don't use this for production code - due to CPU errata the
320resulting code may not work on certain models.
321
43234a1e
L
322@cindex @samp{-mevexlig=} option, i386
323@cindex @samp{-mevexlig=} option, x86-64
324@item -mevexlig=@var{128}
325@itemx -mevexlig=@var{256}
326@itemx -mevexlig=@var{512}
327These options control how the assembler should encode length-ignored
328(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
329EVEX instructions with 128bit vector length, which is the default.
330@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
331encode LIG EVEX instructions with 256bit and 512bit vector length,
332respectively.
333
334@cindex @samp{-mevexwig=} option, i386
335@cindex @samp{-mevexwig=} option, x86-64
336@item -mevexwig=@var{0}
337@itemx -mevexwig=@var{1}
338These options control how the assembler should encode w-ignored (WIG)
339EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
340EVEX instructions with evex.w = 0, which is the default.
341@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
342evex.w = 1.
343
1efbbeb4
L
344@cindex @samp{-mmnemonic=} option, i386
345@cindex @samp{-mmnemonic=} option, x86-64
346@item -mmnemonic=@var{att}
1f9bb1ca 347@itemx -mmnemonic=@var{intel}
34bca508 348This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
349The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
350take precedent.
351
352@cindex @samp{-msyntax=} option, i386
353@cindex @samp{-msyntax=} option, x86-64
354@item -msyntax=@var{att}
1f9bb1ca 355@itemx -msyntax=@var{intel}
34bca508 356This option specifies instruction syntax when processing instructions.
1efbbeb4
L
357The @code{.att_syntax} and @code{.intel_syntax} directives will
358take precedent.
359
360@cindex @samp{-mnaked-reg} option, i386
361@cindex @samp{-mnaked-reg} option, x86-64
362@item -mnaked-reg
33eaf5de 363This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 364The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 365
7e8b059b
L
366@cindex @samp{-madd-bnd-prefix} option, i386
367@cindex @samp{-madd-bnd-prefix} option, x86-64
368@item -madd-bnd-prefix
369This option forces the assembler to add BND prefix to all branches, even
370if such prefix was not explicitly specified in the source code.
371
8dcea932
L
372@cindex @samp{-mshared} option, i386
373@cindex @samp{-mshared} option, x86-64
374@item -mno-shared
375On ELF target, the assembler normally optimizes out non-PLT relocations
376against defined non-weak global branch targets with default visibility.
377The @samp{-mshared} option tells the assembler to generate code which
378may go into a shared library where all non-weak global branch targets
379with default visibility can be preempted. The resulting code is
380slightly bigger. This option only affects the handling of branch
381instructions.
382
167ad85b
TG
383@cindex @samp{-mbig-obj} option, x86-64
384@item -mbig-obj
385On x86-64 PE/COFF target this option forces the use of big object file
386format, which allows more than 32768 sections.
387
d022bddd
IT
388@cindex @samp{-momit-lock-prefix=} option, i386
389@cindex @samp{-momit-lock-prefix=} option, x86-64
390@item -momit-lock-prefix=@var{no}
391@itemx -momit-lock-prefix=@var{yes}
392These options control how the assembler should encode lock prefix.
393This option is intended as a workaround for processors, that fail on
394lock prefix. This option can only be safely used with single-core,
395single-thread computers
396@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
397@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
398which is the default.
399
e4e00185
AS
400@cindex @samp{-mfence-as-lock-add=} option, i386
401@cindex @samp{-mfence-as-lock-add=} option, x86-64
402@item -mfence-as-lock-add=@var{no}
403@itemx -mfence-as-lock-add=@var{yes}
404These options control how the assembler should encode lfence, mfence and
405sfence.
406@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
407sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
408@samp{lock addl $0x0, (%esp)} in 32-bit mode.
409@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
410sfence as usual, which is the default.
411
0cb4071e
L
412@cindex @samp{-mrelax-relocations=} option, i386
413@cindex @samp{-mrelax-relocations=} option, x86-64
414@item -mrelax-relocations=@var{no}
415@itemx -mrelax-relocations=@var{yes}
416These options control whether the assembler should generate relax
417relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
418R_X86_64_REX_GOTPCRELX, in 64-bit mode.
419@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
420@option{-mrelax-relocations=@var{no}} will not generate relax
421relocations. The default can be controlled by a configure option
422@option{--enable-x86-relax-relocations}.
423
b4a3a7b4
L
424@cindex @samp{-mx86-used-note=} option, i386
425@cindex @samp{-mx86-used-note=} option, x86-64
426@item -mx86-used-note=@var{no}
427@itemx -mx86-used-note=@var{yes}
428These options control whether the assembler should generate
429GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
430GNU property notes. The default can be controlled by the
431@option{--enable-x86-used-note} configure option.
432
d3d3c6db
IT
433@cindex @samp{-mevexrcig=} option, i386
434@cindex @samp{-mevexrcig=} option, x86-64
435@item -mevexrcig=@var{rne}
436@itemx -mevexrcig=@var{rd}
437@itemx -mevexrcig=@var{ru}
438@itemx -mevexrcig=@var{rz}
439These options control how the assembler should encode SAE-only
440EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
441of EVEX instruction with 00, which is the default.
442@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
443and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
444with 01, 10 and 11 RC bits, respectively.
445
5db04b09
L
446@cindex @samp{-mamd64} option, x86-64
447@cindex @samp{-mintel64} option, x86-64
448@item -mamd64
449@itemx -mintel64
450This option specifies that the assembler should accept only AMD64 or
451Intel64 ISA in 64-bit mode. The default is to accept both.
452
b6f8c7c4
L
453@cindex @samp{-O0} option, i386
454@cindex @samp{-O0} option, x86-64
455@cindex @samp{-O} option, i386
456@cindex @samp{-O} option, x86-64
457@cindex @samp{-O1} option, i386
458@cindex @samp{-O1} option, x86-64
459@cindex @samp{-O2} option, i386
460@cindex @samp{-O2} option, x86-64
461@cindex @samp{-Os} option, i386
462@cindex @samp{-Os} option, x86-64
463@item -O0 | -O | -O1 | -O2 | -Os
464Optimize instruction encoding with smaller instruction size. @samp{-O}
465and @samp{-O1} encode 64-bit register load instructions with 64-bit
466immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 467immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
468register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
469register clearing instructions with 128-bit VEX vector register
470clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 471register load/store instructions with VEX vector register load/store
a0a1771e
JB
472instructions, and encode 128-bit/256-bit EVEX packed integer logical
473instructions with 128-bit/256-bit VEX packed integer logical.
474
475@samp{-O2} includes @samp{-O1} optimization plus encodes
476256-bit/512-bit EVEX vector register clearing instructions with 128-bit
477EVEX vector register clearing instructions.
478
b6f8c7c4
L
479@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
480and 64-bit register tests with immediate as 8-bit register test with
481immediate. @samp{-O0} turns off this optimization.
482
55b62671 483@end table
731caf76 484@c man end
e413e4e9 485
a6c24e68
NC
486@node i386-Directives
487@section x86 specific Directives
488
489@cindex machine directives, x86
490@cindex x86 machine directives
491@table @code
492
493@cindex @code{lcomm} directive, COFF
494@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
495Reserve @var{length} (an absolute expression) bytes for a local common
496denoted by @var{symbol}. The section and value of @var{symbol} are
497those of the new local common. The addresses are allocated in the bss
704209c0
NC
498section, so that at run-time the bytes start off zeroed. Since
499@var{symbol} is not declared global, it is normally not visible to
500@code{@value{LD}}. The optional third parameter, @var{alignment},
501specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
502
503This directive is only available for COFF based x86 targets.
504
102e9361
NC
505@cindex @code{largecomm} directive, ELF
506@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
507This directive behaves in the same way as the @code{comm} directive
508except that the data is placed into the @var{.lbss} section instead of
509the @var{.bss} section @ref{Comm}.
510
511The directive is intended to be used for data which requires a large
512amount of space, and it is only available for ELF based x86_64
513targets.
514
a6c24e68 515@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
516
517@end table
518
252b5132 519@node i386-Syntax
7c31ae13
NC
520@section i386 Syntactical Considerations
521@menu
522* i386-Variations:: AT&T Syntax versus Intel Syntax
523* i386-Chars:: Special Characters
524@end menu
525
526@node i386-Variations
527@subsection AT&T Syntax versus Intel Syntax
252b5132 528
e413e4e9
AM
529@cindex i386 intel_syntax pseudo op
530@cindex intel_syntax pseudo op, i386
531@cindex i386 att_syntax pseudo op
532@cindex att_syntax pseudo op, i386
252b5132
RH
533@cindex i386 syntax compatibility
534@cindex syntax compatibility, i386
55b62671
AJ
535@cindex x86-64 intel_syntax pseudo op
536@cindex intel_syntax pseudo op, x86-64
537@cindex x86-64 att_syntax pseudo op
538@cindex att_syntax pseudo op, x86-64
539@cindex x86-64 syntax compatibility
540@cindex syntax compatibility, x86-64
e413e4e9
AM
541
542@code{@value{AS}} now supports assembly using Intel assembler syntax.
543@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
544back to the usual AT&T mode for compatibility with the output of
545@code{@value{GCC}}. Either of these directives may have an optional
546argument, @code{prefix}, or @code{noprefix} specifying whether registers
547require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
548different from Intel syntax. We mention these differences because
549almost all 80386 documents use Intel syntax. Notable differences
550between the two syntaxes are:
551
552@cindex immediate operands, i386
553@cindex i386 immediate operands
554@cindex register operands, i386
555@cindex i386 register operands
556@cindex jump/call operands, i386
557@cindex i386 jump/call operands
558@cindex operand delimiters, i386
55b62671
AJ
559
560@cindex immediate operands, x86-64
561@cindex x86-64 immediate operands
562@cindex register operands, x86-64
563@cindex x86-64 register operands
564@cindex jump/call operands, x86-64
565@cindex x86-64 jump/call operands
566@cindex operand delimiters, x86-64
252b5132
RH
567@itemize @bullet
568@item
569AT&T immediate operands are preceded by @samp{$}; Intel immediate
570operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
571AT&T register operands are preceded by @samp{%}; Intel register operands
572are undelimited. AT&T absolute (as opposed to PC relative) jump/call
573operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
574
575@cindex i386 source, destination operands
576@cindex source, destination operands; i386
55b62671
AJ
577@cindex x86-64 source, destination operands
578@cindex source, destination operands; x86-64
252b5132
RH
579@item
580AT&T and Intel syntax use the opposite order for source and destination
581operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
582@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
583previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
584instructions with 2 immediate operands, such as the @samp{enter}
585instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
586
587@cindex mnemonic suffixes, i386
588@cindex sizes operands, i386
589@cindex i386 size suffixes
55b62671
AJ
590@cindex mnemonic suffixes, x86-64
591@cindex sizes operands, x86-64
592@cindex x86-64 size suffixes
252b5132
RH
593@item
594In AT&T syntax the size of memory operands is determined from the last
595character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 596@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
597(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
598of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
599(256-bit vector) and zmm (512-bit vector) memory references, only when there's
600no other way to disambiguate an instruction. Intel syntax accomplishes this by
601prefixing memory operands (@emph{not} the instruction mnemonics) with
602@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
603@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
604syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
605syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
606@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 607
4b06377f
L
608In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
609instruction with the 64-bit displacement or immediate operand.
610
252b5132
RH
611@cindex return instructions, i386
612@cindex i386 jump, call, return
55b62671
AJ
613@cindex return instructions, x86-64
614@cindex x86-64 jump, call, return
252b5132
RH
615@item
616Immediate form long jumps and calls are
617@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
618Intel syntax is
619@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
620instruction
621is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
622@samp{ret far @var{stack-adjust}}.
623
624@cindex sections, i386
625@cindex i386 sections
55b62671
AJ
626@cindex sections, x86-64
627@cindex x86-64 sections
252b5132
RH
628@item
629The AT&T assembler does not provide support for multiple section
630programs. Unix style systems expect all programs to be single sections.
631@end itemize
632
7c31ae13
NC
633@node i386-Chars
634@subsection Special Characters
635
636@cindex line comment character, i386
637@cindex i386 line comment character
638The presence of a @samp{#} appearing anywhere on a line indicates the
639start of a comment that extends to the end of that line.
640
641If a @samp{#} appears as the first character of a line then the whole
642line is treated as a comment, but in this case the line can also be a
643logical line number directive (@pxref{Comments}) or a preprocessor
644control command (@pxref{Preprocessing}).
645
a05a5b64 646If the @option{--divide} command-line option has not been specified
7c31ae13
NC
647then the @samp{/} character appearing anywhere on a line also
648introduces a line comment.
649
650@cindex line separator, i386
651@cindex statement separator, i386
652@cindex i386 line separator
653The @samp{;} character can be used to separate statements on the same
654line.
655
252b5132 656@node i386-Mnemonics
d3b47e2b
L
657@section i386-Mnemonics
658@subsection Instruction Naming
252b5132
RH
659
660@cindex i386 instruction naming
661@cindex instruction naming, i386
55b62671
AJ
662@cindex x86-64 instruction naming
663@cindex instruction naming, x86-64
664
252b5132 665Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
666specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
667and @samp{q} specify byte, word, long and quadruple word operands. If
668no suffix is specified by an instruction then @code{@value{AS}} tries to
669fill in the missing suffix based on the destination register operand
670(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
671to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
672@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
673assembler which assumes that a missing mnemonic suffix implies long
674operand size. (This incompatibility does not affect compiler output
675since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
676
677Almost all instructions have the same names in AT&T and Intel format.
678There are a few exceptions. The sign extend and zero extend
679instructions need two sizes to specify them. They need a size to
680sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
681is accomplished by using two instruction mnemonic suffixes in AT&T
682syntax. Base names for sign extend and zero extend are
683@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
684and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
685are tacked on to this base name, the @emph{from} suffix before the
686@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
687``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
688thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
689@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
690@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
691quadruple word).
252b5132 692
b6169b20
L
693@cindex encoding options, i386
694@cindex encoding options, x86-64
695
86fa6981
L
696Different encoding options can be specified via pseudo prefixes:
697
698@itemize @bullet
699@item
700@samp{@{disp8@}} -- prefer 8-bit displacement.
701
702@item
703@samp{@{disp32@}} -- prefer 32-bit displacement.
704
705@item
706@samp{@{load@}} -- prefer load-form instruction.
707
708@item
709@samp{@{store@}} -- prefer store-form instruction.
710
711@item
712@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
713
714@item
715@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
716
717@item
718@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
719
720@item
721@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
722instructions (x86-64 only). Note that this differs from the @samp{rex}
723prefix which generates REX prefix unconditionally.
b6f8c7c4
L
724
725@item
726@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 727@end itemize
b6169b20 728
252b5132
RH
729@cindex conversion instructions, i386
730@cindex i386 conversion instructions
55b62671
AJ
731@cindex conversion instructions, x86-64
732@cindex x86-64 conversion instructions
252b5132
RH
733The Intel-syntax conversion instructions
734
735@itemize @bullet
736@item
737@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
738
739@item
740@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
741
742@item
743@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
744
745@item
746@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
747
748@item
749@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
750(x86-64 only),
751
752@item
d5f0cf92 753@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 754@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
755@end itemize
756
757@noindent
55b62671
AJ
758are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
759@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
760instructions.
252b5132
RH
761
762@cindex jump instructions, i386
763@cindex call instructions, i386
55b62671
AJ
764@cindex jump instructions, x86-64
765@cindex call instructions, x86-64
252b5132
RH
766Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
767AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
768convention.
769
d3b47e2b 770@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
771
772@cindex i386 mnemonic compatibility
773@cindex mnemonic compatibility, i386
774
775@code{@value{AS}} supports assembly using Intel mnemonic.
776@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
777@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
778syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
779Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
780@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
781@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
782assembler with different mnemonics from those in Intel IA32 specification.
783@code{@value{GCC}} generates those instructions with AT&T mnemonic.
784
252b5132
RH
785@node i386-Regs
786@section Register Naming
787
788@cindex i386 registers
789@cindex registers, i386
55b62671
AJ
790@cindex x86-64 registers
791@cindex registers, x86-64
252b5132
RH
792Register operands are always prefixed with @samp{%}. The 80386 registers
793consist of
794
795@itemize @bullet
796@item
797the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
798@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
799frame pointer), and @samp{%esp} (the stack pointer).
800
801@item
802the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
803@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
804
805@item
806the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
807@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
808are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
809@samp{%cx}, and @samp{%dx})
810
811@item
812the 6 section registers @samp{%cs} (code section), @samp{%ds}
813(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
814and @samp{%gs}.
815
816@item
4bde3cdd
UD
817the 5 processor control registers @samp{%cr0}, @samp{%cr2},
818@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
819
820@item
821the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
822@samp{%db3}, @samp{%db6}, and @samp{%db7}.
823
824@item
825the 2 test registers @samp{%tr6} and @samp{%tr7}.
826
827@item
828the 8 floating point register stack @samp{%st} or equivalently
829@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
830@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
831These registers are overloaded by 8 MMX registers @samp{%mm0},
832@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
833@samp{%mm6} and @samp{%mm7}.
834
835@item
4bde3cdd 836the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
837@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
838@end itemize
839
840The AMD x86-64 architecture extends the register set by:
841
842@itemize @bullet
843@item
844enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
845accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
846@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
847pointer)
848
849@item
850the 8 extended registers @samp{%r8}--@samp{%r15}.
851
852@item
4bde3cdd 853the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
854
855@item
4bde3cdd 856the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
857
858@item
4bde3cdd 859the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
860
861@item
862the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
863
864@item
865the 8 debug registers: @samp{%db8}--@samp{%db15}.
866
867@item
4bde3cdd
UD
868the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
869@end itemize
870
871With the AVX extensions more registers were made available:
872
873@itemize @bullet
874
875@item
876the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
877available in 32-bit mode). The bottom 128 bits are overlaid with the
878@samp{xmm0}--@samp{xmm15} registers.
879
880@end itemize
881
882The AVX2 extensions made in 64-bit mode more registers available:
883
884@itemize @bullet
885
886@item
887the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
888registers @samp{%ymm16}--@samp{%ymm31}.
889
890@end itemize
891
892The AVX512 extensions added the following registers:
893
894@itemize @bullet
895
896@item
897the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
898available in 32-bit mode). The bottom 128 bits are overlaid with the
899@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
900overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
901
902@item
903the 8 mask registers @samp{%k0}--@samp{%k7}.
904
252b5132
RH
905@end itemize
906
907@node i386-Prefixes
908@section Instruction Prefixes
909
910@cindex i386 instruction prefixes
911@cindex instruction prefixes, i386
912@cindex prefixes, i386
913Instruction prefixes are used to modify the following instruction. They
914are used to repeat string instructions, to provide section overrides, to
915perform bus lock operations, and to change operand and address sizes.
916(Most instructions that normally operate on 32-bit operands will use
91716-bit operands if the instruction has an ``operand size'' prefix.)
918Instruction prefixes are best written on the same line as the instruction
919they act upon. For example, the @samp{scas} (scan string) instruction is
920repeated with:
921
922@smallexample
923 repne scas %es:(%edi),%al
924@end smallexample
925
926You may also place prefixes on the lines immediately preceding the
927instruction, but this circumvents checks that @code{@value{AS}} does
928with prefixes, and will not work with all prefixes.
929
930Here is a list of instruction prefixes:
931
932@cindex section override prefixes, i386
933@itemize @bullet
934@item
935Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
936@samp{fs}, @samp{gs}. These are automatically added by specifying
937using the @var{section}:@var{memory-operand} form for memory references.
938
939@cindex size prefixes, i386
940@item
941Operand/Address size prefixes @samp{data16} and @samp{addr16}
942change 32-bit operands/addresses into 16-bit operands/addresses,
943while @samp{data32} and @samp{addr32} change 16-bit ones (in a
944@code{.code16} section) into 32-bit operands/addresses. These prefixes
945@emph{must} appear on the same line of code as the instruction they
946modify. For example, in a 16-bit @code{.code16} section, you might
947write:
948
949@smallexample
950 addr32 jmpl *(%ebx)
951@end smallexample
952
953@cindex bus lock prefixes, i386
954@cindex inhibiting interrupts, i386
955@item
956The bus lock prefix @samp{lock} inhibits interrupts during execution of
957the instruction it precedes. (This is only valid with certain
958instructions; see a 80386 manual for details).
959
960@cindex coprocessor wait, i386
961@item
962The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
963complete the current instruction. This should never be needed for the
96480386/80387 combination.
965
966@cindex repeat prefixes, i386
967@item
968The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
969to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
970times if the current address size is 16-bits).
55b62671
AJ
971@cindex REX prefixes, i386
972@item
973The @samp{rex} family of prefixes is used by x86-64 to encode
974extensions to i386 instruction set. The @samp{rex} prefix has four
975bits --- an operand size overwrite (@code{64}) used to change operand size
976from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
977register set.
978
979You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
980instruction emits @samp{rex} prefix with all the bits set. By omitting
981the @code{64}, @code{x}, @code{y} or @code{z} you may write other
982prefixes as well. Normally, there is no need to write the prefixes
983explicitly, since gas will automatically generate them based on the
984instruction operands.
252b5132
RH
985@end itemize
986
987@node i386-Memory
988@section Memory References
989
990@cindex i386 memory references
991@cindex memory references, i386
55b62671
AJ
992@cindex x86-64 memory references
993@cindex memory references, x86-64
252b5132
RH
994An Intel syntax indirect memory reference of the form
995
996@smallexample
997@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
998@end smallexample
999
1000@noindent
1001is translated into the AT&T syntax
1002
1003@smallexample
1004@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1005@end smallexample
1006
1007@noindent
1008where @var{base} and @var{index} are the optional 32-bit base and
1009index registers, @var{disp} is the optional displacement, and
1010@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1011to calculate the address of the operand. If no @var{scale} is
1012specified, @var{scale} is taken to be 1. @var{section} specifies the
1013optional section register for the memory operand, and may override the
1014default section register (see a 80386 manual for section register
1015defaults). Note that section overrides in AT&T syntax @emph{must}
1016be preceded by a @samp{%}. If you specify a section override which
1017coincides with the default section register, @code{@value{AS}} does @emph{not}
1018output any section register override prefixes to assemble the given
1019instruction. Thus, section overrides can be specified to emphasize which
1020section register is used for a given memory operand.
1021
1022Here are some examples of Intel and AT&T style memory references:
1023
1024@table @asis
1025@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1026@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1027missing, and the default section is used (@samp{%ss} for addressing with
1028@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1029
1030@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1031@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1032@samp{foo}. All other fields are missing. The section register here
1033defaults to @samp{%ds}.
1034
1035@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1036This uses the value pointed to by @samp{foo} as a memory operand.
1037Note that @var{base} and @var{index} are both missing, but there is only
1038@emph{one} @samp{,}. This is a syntactic exception.
1039
1040@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1041This selects the contents of the variable @samp{foo} with section
1042register @var{section} being @samp{%gs}.
1043@end table
1044
1045Absolute (as opposed to PC relative) call and jump operands must be
1046prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1047always chooses PC relative addressing for jump/call labels.
1048
1049Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1050@emph{must} specify its size (byte, word, long, or quadruple) with an
1051instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1052respectively).
1053
1054The x86-64 architecture adds an RIP (instruction pointer relative)
1055addressing. This addressing mode is specified by using @samp{rip} as a
1056base register. Only constant offsets are valid. For example:
1057
1058@table @asis
1059@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1060Points to the address 1234 bytes past the end of the current
1061instruction.
1062
1063@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1064Points to the @code{symbol} in RIP relative way, this is shorter than
1065the default absolute addressing.
1066@end table
1067
1068Other addressing modes remain unchanged in x86-64 architecture, except
1069registers used are 64-bit instead of 32-bit.
252b5132 1070
fddf5b5b 1071@node i386-Jumps
252b5132
RH
1072@section Handling of Jump Instructions
1073
1074@cindex jump optimization, i386
1075@cindex i386 jump optimization
55b62671
AJ
1076@cindex jump optimization, x86-64
1077@cindex x86-64 jump optimization
252b5132
RH
1078Jump instructions are always optimized to use the smallest possible
1079displacements. This is accomplished by using byte (8-bit) displacement
1080jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1081is insufficient a long displacement is used. We do not support
252b5132
RH
1082word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1083instruction with the @samp{data16} instruction prefix), since the 80386
1084insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1085is added. (See also @pxref{i386-Arch})
252b5132
RH
1086
1087Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1088@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1089displacements, so that if you use these instructions (@code{@value{GCC}} does
1090not use them) you may get an error message (and incorrect code). The AT&T
109180386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1092to
1093
1094@smallexample
1095 jcxz cx_zero
1096 jmp cx_nonzero
1097cx_zero: jmp foo
1098cx_nonzero:
1099@end smallexample
1100
1101@node i386-Float
1102@section Floating Point
1103
1104@cindex i386 floating point
1105@cindex floating point, i386
55b62671
AJ
1106@cindex x86-64 floating point
1107@cindex floating point, x86-64
252b5132
RH
1108All 80387 floating point types except packed BCD are supported.
1109(BCD support may be added without much difficulty). These data
1110types are 16-, 32-, and 64- bit integers, and single (32-bit),
1111double (64-bit), and extended (80-bit) precision floating point.
1112Each supported type has an instruction mnemonic suffix and a constructor
1113associated with it. Instruction mnemonic suffixes specify the operand's
1114data type. Constructors build these data types into memory.
1115
1116@cindex @code{float} directive, i386
1117@cindex @code{single} directive, i386
1118@cindex @code{double} directive, i386
1119@cindex @code{tfloat} directive, i386
55b62671
AJ
1120@cindex @code{float} directive, x86-64
1121@cindex @code{single} directive, x86-64
1122@cindex @code{double} directive, x86-64
1123@cindex @code{tfloat} directive, x86-64
252b5132
RH
1124@itemize @bullet
1125@item
1126Floating point constructors are @samp{.float} or @samp{.single},
1127@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1128These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1129and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1130only supports this format via the @samp{fldt} (load 80-bit real to stack
1131top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1132
1133@cindex @code{word} directive, i386
1134@cindex @code{long} directive, i386
1135@cindex @code{int} directive, i386
1136@cindex @code{quad} directive, i386
55b62671
AJ
1137@cindex @code{word} directive, x86-64
1138@cindex @code{long} directive, x86-64
1139@cindex @code{int} directive, x86-64
1140@cindex @code{quad} directive, x86-64
252b5132
RH
1141@item
1142Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1143@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1144corresponding instruction mnemonic suffixes are @samp{s} (single),
1145@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1146the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1147quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1148stack) instructions.
1149@end itemize
1150
1151Register to register operations should not use instruction mnemonic suffixes.
1152@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1153wrote @samp{fst %st, %st(1)}, since all register to register operations
1154use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1155which converts @samp{%st} from 80-bit to 64-bit floating point format,
1156then stores the result in the 4 byte location @samp{mem})
1157
1158@node i386-SIMD
1159@section Intel's MMX and AMD's 3DNow! SIMD Operations
1160
1161@cindex MMX, i386
1162@cindex 3DNow!, i386
1163@cindex SIMD, i386
55b62671
AJ
1164@cindex MMX, x86-64
1165@cindex 3DNow!, x86-64
1166@cindex SIMD, x86-64
252b5132
RH
1167
1168@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1169instructions for integer data), available on Intel's Pentium MMX
1170processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1171Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1172instruction set (SIMD instructions for 32-bit floating point data)
1173available on AMD's K6-2 processor and possibly others in the future.
1174
1175Currently, @code{@value{AS}} does not support Intel's floating point
1176SIMD, Katmai (KNI).
1177
1178The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1179@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
118016-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1181floating point values. The MMX registers cannot be used at the same time
1182as the floating point stack.
1183
1184See Intel and AMD documentation, keeping in mind that the operand order in
1185instructions is reversed from the Intel syntax.
1186
f88c9eb0
SP
1187@node i386-LWP
1188@section AMD's Lightweight Profiling Instructions
1189
1190@cindex LWP, i386
1191@cindex LWP, x86-64
1192
1193@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1194instruction set, available on AMD's Family 15h (Orochi) processors.
1195
1196LWP enables applications to collect and manage performance data, and
1197react to performance events. The collection of performance data
1198requires no context switches. LWP runs in the context of a thread and
1199so several counters can be used independently across multiple threads.
1200LWP can be used in both 64-bit and legacy 32-bit modes.
1201
1202For detailed information on the LWP instruction set, see the
1203@cite{AMD Lightweight Profiling Specification} available at
1204@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1205
87973e9f
QN
1206@node i386-BMI
1207@section Bit Manipulation Instructions
1208
1209@cindex BMI, i386
1210@cindex BMI, x86-64
1211
1212@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1213
1214BMI instructions provide several instructions implementing individual
1215bit manipulation operations such as isolation, masking, setting, or
34bca508 1216resetting.
87973e9f
QN
1217
1218@c Need to add a specification citation here when available.
1219
2a2a0f38
QN
1220@node i386-TBM
1221@section AMD's Trailing Bit Manipulation Instructions
1222
1223@cindex TBM, i386
1224@cindex TBM, x86-64
1225
1226@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1227instruction set, available on AMD's BDVER2 processors (Trinity and
1228Viperfish).
1229
1230TBM instructions provide instructions implementing individual bit
1231manipulation operations such as isolating, masking, setting, resetting,
1232complementing, and operations on trailing zeros and ones.
1233
1234@c Need to add a specification citation here when available.
87973e9f 1235
252b5132
RH
1236@node i386-16bit
1237@section Writing 16-bit Code
1238
1239@cindex i386 16-bit code
1240@cindex 16-bit code, i386
1241@cindex real-mode code, i386
eecb386c 1242@cindex @code{code16gcc} directive, i386
252b5132
RH
1243@cindex @code{code16} directive, i386
1244@cindex @code{code32} directive, i386
55b62671
AJ
1245@cindex @code{code64} directive, i386
1246@cindex @code{code64} directive, x86-64
1247While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1248or 64-bit x86-64 code depending on the default configuration,
252b5132 1249it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1250mode code segments. To do this, put a @samp{.code16} or
1251@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1252be run in 16-bit mode. You can switch @code{@value{AS}} to writing
125332-bit code with the @samp{.code32} directive or 64-bit code with the
1254@samp{.code64} directive.
eecb386c
AM
1255
1256@samp{.code16gcc} provides experimental support for generating 16-bit
1257code from gcc, and differs from @samp{.code16} in that @samp{call},
1258@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1259@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1260default to 32-bit size. This is so that the stack pointer is
1261manipulated in the same way over function calls, allowing access to
1262function parameters at the same stack offsets as in 32-bit mode.
1263@samp{.code16gcc} also automatically adds address size prefixes where
1264necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1265
1266The code which @code{@value{AS}} generates in 16-bit mode will not
1267necessarily run on a 16-bit pre-80386 processor. To write code that
1268runs on such a processor, you must refrain from using @emph{any} 32-bit
1269constructs which require @code{@value{AS}} to output address or operand
1270size prefixes.
1271
1272Note that writing 16-bit code instructions by explicitly specifying a
1273prefix or an instruction mnemonic suffix within a 32-bit code section
1274generates different machine instructions than those generated for a
127516-bit code segment. In a 32-bit code section, the following code
1276generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1277value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1278
1279@smallexample
1280 pushw $4
1281@end smallexample
1282
1283The same code in a 16-bit code section would generate the machine
b45619c0 1284opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1285is correct since the processor default operand size is assumed to be 16
1286bits in a 16-bit code section.
1287
e413e4e9
AM
1288@node i386-Arch
1289@section Specifying CPU Architecture
1290
1291@cindex arch directive, i386
1292@cindex i386 arch directive
55b62671
AJ
1293@cindex arch directive, x86-64
1294@cindex x86-64 arch directive
e413e4e9
AM
1295
1296@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1297(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1298directive enables a warning when gas detects an instruction that is not
1299supported on the CPU specified. The choices for @var{cpu_type} are:
1300
1301@multitable @columnfractions .20 .20 .20 .20
1302@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1303@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1304@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1305@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1306@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1307@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1308@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1309@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1310@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1311@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1312@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1313@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1314@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1315@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1316@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1317@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1318@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1319@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1320@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1321@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1322@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1323@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1324@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1325@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1326@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1327@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1328@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1329@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
5d79adc4 1330@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1ceab344 1331@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1332@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1333@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
d777820b 1334@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1335@end multitable
1336
fddf5b5b
AM
1337Apart from the warning, there are only two other effects on
1338@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1339@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1340will automatically use a two byte opcode sequence. The larger three
1341byte opcode sequence is used on the 486 (and when no architecture is
1342specified) because it executes faster on the 486. Note that you can
1343explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1344Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1345@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1346conditional jumps will be promoted when necessary to a two instruction
1347sequence consisting of a conditional jump of the opposite sense around
1348an unconditional jump to the target.
1349
5c6af06e
JB
1350Following the CPU architecture (but not a sub-architecture, which are those
1351starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1352control automatic promotion of conditional jumps. @samp{jumps} is the
1353default, and enables jump promotion; All external jumps will be of the long
1354variety, and file-local jumps will be promoted as necessary.
1355(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1356byte offset jumps, and warns about file-local conditional jumps that
1357@code{@value{AS}} promotes.
fddf5b5b
AM
1358Unconditional jumps are treated as for @samp{jumps}.
1359
1360For example
1361
1362@smallexample
1363 .arch i8086,nojumps
1364@end smallexample
e413e4e9 1365
5c9352f3
AM
1366@node i386-Bugs
1367@section AT&T Syntax bugs
1368
1369The UnixWare assembler, and probably other AT&T derived ix86 Unix
1370assemblers, generate floating point instructions with reversed source
1371and destination registers in certain cases. Unfortunately, gcc and
1372possibly many other programs use this reversed syntax, so we're stuck
1373with it.
1374
1375For example
1376
1377@smallexample
1378 fsub %st,%st(3)
1379@end smallexample
1380@noindent
1381results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1382than the expected @samp{%st(3) - %st}. This happens with all the
1383non-commutative arithmetic floating point operations with two register
1384operands where the source register is @samp{%st} and the destination
1385register is @samp{%st(i)}.
1386
252b5132
RH
1387@node i386-Notes
1388@section Notes
1389
1390@cindex i386 @code{mul}, @code{imul} instructions
1391@cindex @code{mul} instruction, i386
1392@cindex @code{imul} instruction, i386
55b62671
AJ
1393@cindex @code{mul} instruction, x86-64
1394@cindex @code{imul} instruction, x86-64
252b5132 1395There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1396instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1397multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1398for @samp{imul}) can be output only in the one operand form. Thus,
1399@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1400the expanding multiply would clobber the @samp{%edx} register, and this
1401would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
140264-bit product in @samp{%edx:%eax}.
1403
1404We have added a two operand form of @samp{imul} when the first operand
1405is an immediate mode expression and the second operand is a register.
1406This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1407example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1408$69, %eax, %eax}.
1409
This page took 0.879453 seconds and 4 git commands to generate.