i386: Generate lfence with load/indirect branch/ret [CVE-2020-0551]
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1991-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
bc31405e 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA
252b5132
RH
41* i386-Bugs:: AT&T Syntax bugs
42* i386-Notes:: Notes
43@end menu
44
45@node i386-Options
46@section Options
47
55b62671
AJ
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
34bca508 51@cindex x86-64 options
55b62671
AJ
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
731caf76
L
56@c man begin OPTIONS
57@table @gcctabopt
55b62671
AJ
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
570561f7
L
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
55b62671
AJ
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
570561f7 64@item --32 | --x32 | --64
35cc6a0b 65Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
55b62671
AJ
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
12b55ccc
L
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
f9233288
JW
78as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
34bca508 95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
81486035 115@code{iamcu},
9103f4f4
L
116@code{k6},
117@code{k6_2},
118@code{athlon},
9103f4f4
L
119@code{opteron},
120@code{k8},
1ceab344 121@code{amdfam10},
68339fdf 122@code{bdver1},
af2f724e 123@code{bdver2},
5e5c50d3 124@code{bdver3},
c7b0bd56 125@code{bdver4},
029f3522 126@code{znver1},
a9660a6f 127@code{znver2},
7b458c12
L
128@code{btver1},
129@code{btver2},
9103f4f4
L
130@code{generic32} and
131@code{generic64}.
132
34bca508 133In addition to the basic instruction set, the assembler can be told to
6305a203
L
134accept various extension mnemonics. For example,
135@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136@var{vmx}. The following extensions are currently supported:
309d3373
JB
137@code{8087},
138@code{287},
139@code{387},
1848e567 140@code{687},
309d3373 141@code{no87},
1848e567
L
142@code{no287},
143@code{no387},
144@code{no687},
d871f3f4
L
145@code{cmov},
146@code{nocmov},
147@code{fxsr},
148@code{nofxsr},
6305a203 149@code{mmx},
309d3373 150@code{nommx},
6305a203
L
151@code{sse},
152@code{sse2},
153@code{sse3},
af5c13b0 154@code{sse4a},
6305a203
L
155@code{ssse3},
156@code{sse4.1},
157@code{sse4.2},
158@code{sse4},
309d3373 159@code{nosse},
1848e567
L
160@code{nosse2},
161@code{nosse3},
af5c13b0 162@code{nosse4a},
1848e567
L
163@code{nossse3},
164@code{nosse4.1},
165@code{nosse4.2},
166@code{nosse4},
c0f3af97 167@code{avx},
6c30d220 168@code{avx2},
1848e567
L
169@code{noavx},
170@code{noavx2},
e2e1fcde
L
171@code{adx},
172@code{rdseed},
173@code{prfchw},
5c111e37 174@code{smap},
7e8b059b 175@code{mpx},
a0046408 176@code{sha},
8bc52696 177@code{rdpid},
6b40c462 178@code{ptwrite},
603555e5 179@code{cet},
48521003 180@code{gfni},
8dcf1fad 181@code{vaes},
ff1982d5 182@code{vpclmulqdq},
1dfc6506
L
183@code{prefetchwt1},
184@code{clflushopt},
185@code{se1},
c5e7287a 186@code{clwb},
c0a30a9f
L
187@code{movdiri},
188@code{movdir64b},
5d79adc4 189@code{enqcmd},
43234a1e
L
190@code{avx512f},
191@code{avx512cd},
192@code{avx512er},
193@code{avx512pf},
1dfc6506
L
194@code{avx512vl},
195@code{avx512bw},
196@code{avx512dq},
2cc1b5aa 197@code{avx512ifma},
14f195c9 198@code{avx512vbmi},
920d2ddc 199@code{avx512_4fmaps},
47acf0bd 200@code{avx512_4vnniw},
620214f7 201@code{avx512_vpopcntdq},
53467f57 202@code{avx512_vbmi2},
8cfcb765 203@code{avx512_vnni},
ee6872be 204@code{avx512_bitalg},
d6aab7a1 205@code{avx512_bf16},
144b71e2
L
206@code{noavx512f},
207@code{noavx512cd},
208@code{noavx512er},
209@code{noavx512pf},
210@code{noavx512vl},
211@code{noavx512bw},
212@code{noavx512dq},
213@code{noavx512ifma},
214@code{noavx512vbmi},
920d2ddc 215@code{noavx512_4fmaps},
47acf0bd 216@code{noavx512_4vnniw},
620214f7 217@code{noavx512_vpopcntdq},
53467f57 218@code{noavx512_vbmi2},
8cfcb765 219@code{noavx512_vnni},
ee6872be 220@code{noavx512_bitalg},
9186c494 221@code{noavx512_vp2intersect},
d6aab7a1 222@code{noavx512_bf16},
dd455cf5 223@code{noenqcmd},
6305a203 224@code{vmx},
8729a6f6 225@code{vmfunc},
6305a203 226@code{smx},
f03fe4c1 227@code{xsave},
c7b8aa3a 228@code{xsaveopt},
1dfc6506
L
229@code{xsavec},
230@code{xsaves},
c0f3af97 231@code{aes},
594ab6a3 232@code{pclmul},
c7b8aa3a
L
233@code{fsgsbase},
234@code{rdrnd},
235@code{f16c},
6c30d220 236@code{bmi2},
c0f3af97 237@code{fma},
f1f8f695
L
238@code{movbe},
239@code{ept},
6c30d220 240@code{lzcnt},
272a84b1 241@code{popcnt},
42164a71
L
242@code{hle},
243@code{rtm},
6c30d220 244@code{invpcid},
bd5295b2 245@code{clflush},
9916071f 246@code{mwaitx},
029f3522 247@code{clzero},
3233d7d0 248@code{wbnoinvd},
be3a8dca 249@code{pconfig},
de89d0a3 250@code{waitpkg},
c48935d7 251@code{cldemote},
142861df
JB
252@code{rdpru},
253@code{mcommit},
a847e322 254@code{sev_es},
f88c9eb0 255@code{lwp},
5dd85c99
SP
256@code{fma4},
257@code{xop},
60aa667e 258@code{cx16},
bd5295b2 259@code{syscall},
1b7f3fb0 260@code{rdtscp},
6305a203
L
261@code{3dnow},
262@code{3dnowa},
263@code{sse4a},
264@code{sse5},
272a84b1 265@code{svme} and
6305a203 266@code{padlock}.
309d3373
JB
267Note that rather than extending a basic instruction set, the extension
268mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
269
270When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
271@code{.arch} directive will take precedent.
272
273@cindex @samp{-mtune=} option, i386
274@cindex @samp{-mtune=} option, x86-64
275@item -mtune=@var{CPU}
276This option specifies a processor to optimize for. When used in
277conjunction with the @option{-march} option, only instructions
278of the processor specified by the @option{-march} option will be
279generated.
280
6305a203
L
281Valid @var{CPU} values are identical to the processor list of
282@option{-march=@var{CPU}}.
9103f4f4 283
c0f3af97
L
284@cindex @samp{-msse2avx} option, i386
285@cindex @samp{-msse2avx} option, x86-64
286@item -msse2avx
287This option specifies that the assembler should encode SSE instructions
288with VEX prefix.
289
daf50ae7
L
290@cindex @samp{-msse-check=} option, i386
291@cindex @samp{-msse-check=} option, x86-64
292@item -msse-check=@var{none}
1f9bb1ca
AS
293@itemx -msse-check=@var{warning}
294@itemx -msse-check=@var{error}
9aff4b7a 295These options control if the assembler should check SSE instructions.
daf50ae7
L
296@option{-msse-check=@var{none}} will make the assembler not to check SSE
297instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 298will make the assembler issue a warning for any SSE instruction.
daf50ae7 299@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 300for any SSE instruction.
daf50ae7 301
539f890d
L
302@cindex @samp{-mavxscalar=} option, i386
303@cindex @samp{-mavxscalar=} option, x86-64
304@item -mavxscalar=@var{128}
1f9bb1ca 305@itemx -mavxscalar=@var{256}
2aab8acd 306These options control how the assembler should encode scalar AVX
539f890d
L
307instructions. @option{-mavxscalar=@var{128}} will encode scalar
308AVX instructions with 128bit vector length, which is the default.
309@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
310with 256bit vector length.
311
4970191f
JB
312WARNING: Don't use this for production code - due to CPU errata the
313resulting code may not work on certain models.
314
03751133
L
315@cindex @samp{-mvexwig=} option, i386
316@cindex @samp{-mvexwig=} option, x86-64
317@item -mvexwig=@var{0}
318@itemx -mvexwig=@var{1}
319These options control how the assembler should encode VEX.W-ignored (WIG)
320VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
321instructions with vex.w = 0, which is the default.
322@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
323vex.w = 1.
324
4970191f
JB
325WARNING: Don't use this for production code - due to CPU errata the
326resulting code may not work on certain models.
327
43234a1e
L
328@cindex @samp{-mevexlig=} option, i386
329@cindex @samp{-mevexlig=} option, x86-64
330@item -mevexlig=@var{128}
331@itemx -mevexlig=@var{256}
332@itemx -mevexlig=@var{512}
333These options control how the assembler should encode length-ignored
334(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
335EVEX instructions with 128bit vector length, which is the default.
336@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
337encode LIG EVEX instructions with 256bit and 512bit vector length,
338respectively.
339
340@cindex @samp{-mevexwig=} option, i386
341@cindex @samp{-mevexwig=} option, x86-64
342@item -mevexwig=@var{0}
343@itemx -mevexwig=@var{1}
344These options control how the assembler should encode w-ignored (WIG)
345EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
346EVEX instructions with evex.w = 0, which is the default.
347@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
348evex.w = 1.
349
1efbbeb4
L
350@cindex @samp{-mmnemonic=} option, i386
351@cindex @samp{-mmnemonic=} option, x86-64
352@item -mmnemonic=@var{att}
1f9bb1ca 353@itemx -mmnemonic=@var{intel}
34bca508 354This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
355The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
356take precedent.
357
358@cindex @samp{-msyntax=} option, i386
359@cindex @samp{-msyntax=} option, x86-64
360@item -msyntax=@var{att}
1f9bb1ca 361@itemx -msyntax=@var{intel}
34bca508 362This option specifies instruction syntax when processing instructions.
1efbbeb4
L
363The @code{.att_syntax} and @code{.intel_syntax} directives will
364take precedent.
365
366@cindex @samp{-mnaked-reg} option, i386
367@cindex @samp{-mnaked-reg} option, x86-64
368@item -mnaked-reg
33eaf5de 369This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 370The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 371
7e8b059b
L
372@cindex @samp{-madd-bnd-prefix} option, i386
373@cindex @samp{-madd-bnd-prefix} option, x86-64
374@item -madd-bnd-prefix
375This option forces the assembler to add BND prefix to all branches, even
376if such prefix was not explicitly specified in the source code.
377
8dcea932
L
378@cindex @samp{-mshared} option, i386
379@cindex @samp{-mshared} option, x86-64
380@item -mno-shared
381On ELF target, the assembler normally optimizes out non-PLT relocations
382against defined non-weak global branch targets with default visibility.
383The @samp{-mshared} option tells the assembler to generate code which
384may go into a shared library where all non-weak global branch targets
385with default visibility can be preempted. The resulting code is
386slightly bigger. This option only affects the handling of branch
387instructions.
388
167ad85b
TG
389@cindex @samp{-mbig-obj} option, x86-64
390@item -mbig-obj
391On x86-64 PE/COFF target this option forces the use of big object file
392format, which allows more than 32768 sections.
393
d022bddd
IT
394@cindex @samp{-momit-lock-prefix=} option, i386
395@cindex @samp{-momit-lock-prefix=} option, x86-64
396@item -momit-lock-prefix=@var{no}
397@itemx -momit-lock-prefix=@var{yes}
398These options control how the assembler should encode lock prefix.
399This option is intended as a workaround for processors, that fail on
400lock prefix. This option can only be safely used with single-core,
401single-thread computers
402@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
403@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
404which is the default.
405
e4e00185
AS
406@cindex @samp{-mfence-as-lock-add=} option, i386
407@cindex @samp{-mfence-as-lock-add=} option, x86-64
408@item -mfence-as-lock-add=@var{no}
409@itemx -mfence-as-lock-add=@var{yes}
410These options control how the assembler should encode lfence, mfence and
411sfence.
412@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
413sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
414@samp{lock addl $0x0, (%esp)} in 32-bit mode.
415@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
416sfence as usual, which is the default.
417
0cb4071e
L
418@cindex @samp{-mrelax-relocations=} option, i386
419@cindex @samp{-mrelax-relocations=} option, x86-64
420@item -mrelax-relocations=@var{no}
421@itemx -mrelax-relocations=@var{yes}
422These options control whether the assembler should generate relax
423relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
424R_X86_64_REX_GOTPCRELX, in 64-bit mode.
425@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
426@option{-mrelax-relocations=@var{no}} will not generate relax
427relocations. The default can be controlled by a configure option
428@option{--enable-x86-relax-relocations}.
429
e379e5f3
L
430@cindex @samp{-malign-branch-boundary=} option, i386
431@cindex @samp{-malign-branch-boundary=} option, x86-64
432@item -malign-branch-boundary=@var{NUM}
433This option controls how the assembler should align branches with segment
434prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
435no less than 16. Branches will be aligned within @var{NUM} byte
436boundary. @option{-malign-branch-boundary=0}, which is the default,
437doesn't align branches.
438
439@cindex @samp{-malign-branch=} option, i386
440@cindex @samp{-malign-branch=} option, x86-64
441@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
442This option specifies types of branches to align. @var{TYPE} is
443combination of @samp{jcc}, which aligns conditional jumps,
444@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
445which aligns unconditional jumps, @samp{call} which aligns calls,
446@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
447jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
448
449@cindex @samp{-malign-branch-prefix-size=} option, i386
450@cindex @samp{-malign-branch-prefix-size=} option, x86-64
451@item -malign-branch-prefix-size=@var{NUM}
452This option specifies the maximum number of prefixes on an instruction
453to align branches. @var{NUM} should be between 0 and 5. The default
454@var{NUM} is 5.
455
76cf450b
L
456@cindex @samp{-mbranches-within-32B-boundaries} option, i386
457@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
458@item -mbranches-within-32B-boundaries
459This option aligns conditional jumps, fused conditional jumps and
460unconditional jumps within 32 byte boundary with up to 5 segment prefixes
461on an instruction. It is equivalent to
462@option{-malign-branch-boundary=32}
463@option{-malign-branch=jcc+fused+jmp}
464@option{-malign-branch-prefix-size=5}.
465The default doesn't align branches.
466
ae531041
L
467@cindex @samp{-mlfence-after-load=} option, i386
468@cindex @samp{-mlfence-after-load=} option, x86-64
469@item -mlfence-after-load=@var{no}
470@itemx -mlfence-after-load=@var{yes}
471These options control whether the assembler should generate lfence
472after load instructions. @option{-mlfence-after-load=@var{yes}} will
473generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
474lfence, which is the default.
475
476@cindex @samp{-mlfence-before-indirect-branch=} option, i386
477@cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
478@item -mlfence-before-indirect-branch=@var{none}
479@item -mlfence-before-indirect-branch=@var{all}
480@item -mlfence-before-indirect-branch=@var{register}
481@itemx -mlfence-before-indirect-branch=@var{memory}
482These options control whether the assembler should generate lfence
483after indirect near branch instructions.
484@option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
485after indirect near branch via register and issue a warning before
486indirect near branch via memory.
487@option{-mlfence-before-indirect-branch=@var{register}} will generate
488lfence after indirect near branch via register.
489@option{-mlfence-before-indirect-branch=@var{memory}} will issue a
490warning before indirect near branch via memory.
491@option{-mlfence-before-indirect-branch=@var{none}} will not generate
492lfence nor issue warning, which is the default. Note that lfence won't
493be generated before indirect near branch via register with
494@option{-mlfence-after-load=@var{yes}} since lfence will be generated
495after loading branch target register.
496
497@cindex @samp{-mlfence-before-ret=} option, i386
498@cindex @samp{-mlfence-before-ret=} option, x86-64
499@item -mlfence-before-ret=@var{none}
500@item -mlfence-before-ret=@var{or}
501@itemx -mlfence-before-ret=@var{not}
502These options control whether the assembler should generate lfence
503before ret. @option{-mlfence-before-ret=@var{or}} will generate
504generate or instruction with lfence.
505@option{-mlfence-before-ret=@var{not}} will generate not instruction
506with lfence.
507@option{-mlfence-before-ret=@var{none}} will not generate lfence,
508which is the default.
509
b4a3a7b4
L
510@cindex @samp{-mx86-used-note=} option, i386
511@cindex @samp{-mx86-used-note=} option, x86-64
512@item -mx86-used-note=@var{no}
513@itemx -mx86-used-note=@var{yes}
514These options control whether the assembler should generate
515GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
516GNU property notes. The default can be controlled by the
517@option{--enable-x86-used-note} configure option.
518
d3d3c6db
IT
519@cindex @samp{-mevexrcig=} option, i386
520@cindex @samp{-mevexrcig=} option, x86-64
521@item -mevexrcig=@var{rne}
522@itemx -mevexrcig=@var{rd}
523@itemx -mevexrcig=@var{ru}
524@itemx -mevexrcig=@var{rz}
525These options control how the assembler should encode SAE-only
526EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
527of EVEX instruction with 00, which is the default.
528@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
529and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
530with 01, 10 and 11 RC bits, respectively.
531
5db04b09
L
532@cindex @samp{-mamd64} option, x86-64
533@cindex @samp{-mintel64} option, x86-64
534@item -mamd64
535@itemx -mintel64
536This option specifies that the assembler should accept only AMD64 or
4b5aaf5f
L
537Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
538only and AMD64 ISAs.
5db04b09 539
b6f8c7c4
L
540@cindex @samp{-O0} option, i386
541@cindex @samp{-O0} option, x86-64
542@cindex @samp{-O} option, i386
543@cindex @samp{-O} option, x86-64
544@cindex @samp{-O1} option, i386
545@cindex @samp{-O1} option, x86-64
546@cindex @samp{-O2} option, i386
547@cindex @samp{-O2} option, x86-64
548@cindex @samp{-Os} option, i386
549@cindex @samp{-Os} option, x86-64
550@item -O0 | -O | -O1 | -O2 | -Os
551Optimize instruction encoding with smaller instruction size. @samp{-O}
552and @samp{-O1} encode 64-bit register load instructions with 64-bit
553immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 554immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
555register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
556register clearing instructions with 128-bit VEX vector register
557clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 558register load/store instructions with VEX vector register load/store
a0a1771e
JB
559instructions, and encode 128-bit/256-bit EVEX packed integer logical
560instructions with 128-bit/256-bit VEX packed integer logical.
561
562@samp{-O2} includes @samp{-O1} optimization plus encodes
563256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
564EVEX vector register clearing instructions. In 64-bit mode VEX encoded
565instructions with commutative source operands will also have their
566source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
567instead of the 3-byte one. Certain forms of AND as well as OR with the
568same (register) operand specified twice will also be changed to TEST.
a0a1771e 569
b6f8c7c4
L
570@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
571and 64-bit register tests with immediate as 8-bit register test with
572immediate. @samp{-O0} turns off this optimization.
573
55b62671 574@end table
731caf76 575@c man end
e413e4e9 576
a6c24e68
NC
577@node i386-Directives
578@section x86 specific Directives
579
580@cindex machine directives, x86
581@cindex x86 machine directives
582@table @code
583
584@cindex @code{lcomm} directive, COFF
585@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
586Reserve @var{length} (an absolute expression) bytes for a local common
587denoted by @var{symbol}. The section and value of @var{symbol} are
588those of the new local common. The addresses are allocated in the bss
704209c0
NC
589section, so that at run-time the bytes start off zeroed. Since
590@var{symbol} is not declared global, it is normally not visible to
591@code{@value{LD}}. The optional third parameter, @var{alignment},
592specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
593
594This directive is only available for COFF based x86 targets.
595
102e9361
NC
596@cindex @code{largecomm} directive, ELF
597@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
598This directive behaves in the same way as the @code{comm} directive
599except that the data is placed into the @var{.lbss} section instead of
600the @var{.bss} section @ref{Comm}.
601
602The directive is intended to be used for data which requires a large
603amount of space, and it is only available for ELF based x86_64
604targets.
605
f2f51cd5
NC
606@cindex @code{value} directive
607@item .value @var{expression} [, @var{expression}]
608This directive behaves in the same way as the @code{.short} directive,
609taking a series of comma separated expressions and storing them as
610two-byte wide values into the current section.
611
a6c24e68 612@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
613
614@end table
615
252b5132 616@node i386-Syntax
7c31ae13
NC
617@section i386 Syntactical Considerations
618@menu
619* i386-Variations:: AT&T Syntax versus Intel Syntax
620* i386-Chars:: Special Characters
621@end menu
622
623@node i386-Variations
624@subsection AT&T Syntax versus Intel Syntax
252b5132 625
e413e4e9
AM
626@cindex i386 intel_syntax pseudo op
627@cindex intel_syntax pseudo op, i386
628@cindex i386 att_syntax pseudo op
629@cindex att_syntax pseudo op, i386
252b5132
RH
630@cindex i386 syntax compatibility
631@cindex syntax compatibility, i386
55b62671
AJ
632@cindex x86-64 intel_syntax pseudo op
633@cindex intel_syntax pseudo op, x86-64
634@cindex x86-64 att_syntax pseudo op
635@cindex att_syntax pseudo op, x86-64
636@cindex x86-64 syntax compatibility
637@cindex syntax compatibility, x86-64
e413e4e9
AM
638
639@code{@value{AS}} now supports assembly using Intel assembler syntax.
640@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
641back to the usual AT&T mode for compatibility with the output of
642@code{@value{GCC}}. Either of these directives may have an optional
643argument, @code{prefix}, or @code{noprefix} specifying whether registers
644require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
645different from Intel syntax. We mention these differences because
646almost all 80386 documents use Intel syntax. Notable differences
647between the two syntaxes are:
648
649@cindex immediate operands, i386
650@cindex i386 immediate operands
651@cindex register operands, i386
652@cindex i386 register operands
653@cindex jump/call operands, i386
654@cindex i386 jump/call operands
655@cindex operand delimiters, i386
55b62671
AJ
656
657@cindex immediate operands, x86-64
658@cindex x86-64 immediate operands
659@cindex register operands, x86-64
660@cindex x86-64 register operands
661@cindex jump/call operands, x86-64
662@cindex x86-64 jump/call operands
663@cindex operand delimiters, x86-64
252b5132
RH
664@itemize @bullet
665@item
666AT&T immediate operands are preceded by @samp{$}; Intel immediate
667operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
668AT&T register operands are preceded by @samp{%}; Intel register operands
669are undelimited. AT&T absolute (as opposed to PC relative) jump/call
670operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
671
672@cindex i386 source, destination operands
673@cindex source, destination operands; i386
55b62671
AJ
674@cindex x86-64 source, destination operands
675@cindex source, destination operands; x86-64
252b5132
RH
676@item
677AT&T and Intel syntax use the opposite order for source and destination
678operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
679@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
680previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
681instructions with 2 immediate operands, such as the @samp{enter}
682instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
683
684@cindex mnemonic suffixes, i386
685@cindex sizes operands, i386
686@cindex i386 size suffixes
55b62671
AJ
687@cindex mnemonic suffixes, x86-64
688@cindex sizes operands, x86-64
689@cindex x86-64 size suffixes
252b5132
RH
690@item
691In AT&T syntax the size of memory operands is determined from the last
692character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 693@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
694(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
695of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
696(256-bit vector) and zmm (512-bit vector) memory references, only when there's
697no other way to disambiguate an instruction. Intel syntax accomplishes this by
698prefixing memory operands (@emph{not} the instruction mnemonics) with
699@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
700@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
701syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
702syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
703@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 704
4b06377f
L
705In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
706instruction with the 64-bit displacement or immediate operand.
707
252b5132
RH
708@cindex return instructions, i386
709@cindex i386 jump, call, return
55b62671
AJ
710@cindex return instructions, x86-64
711@cindex x86-64 jump, call, return
252b5132
RH
712@item
713Immediate form long jumps and calls are
714@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
715Intel syntax is
716@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
717instruction
718is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
719@samp{ret far @var{stack-adjust}}.
720
721@cindex sections, i386
722@cindex i386 sections
55b62671
AJ
723@cindex sections, x86-64
724@cindex x86-64 sections
252b5132
RH
725@item
726The AT&T assembler does not provide support for multiple section
727programs. Unix style systems expect all programs to be single sections.
728@end itemize
729
7c31ae13
NC
730@node i386-Chars
731@subsection Special Characters
732
733@cindex line comment character, i386
734@cindex i386 line comment character
735The presence of a @samp{#} appearing anywhere on a line indicates the
736start of a comment that extends to the end of that line.
737
738If a @samp{#} appears as the first character of a line then the whole
739line is treated as a comment, but in this case the line can also be a
740logical line number directive (@pxref{Comments}) or a preprocessor
741control command (@pxref{Preprocessing}).
742
a05a5b64 743If the @option{--divide} command-line option has not been specified
7c31ae13
NC
744then the @samp{/} character appearing anywhere on a line also
745introduces a line comment.
746
747@cindex line separator, i386
748@cindex statement separator, i386
749@cindex i386 line separator
750The @samp{;} character can be used to separate statements on the same
751line.
752
252b5132 753@node i386-Mnemonics
d3b47e2b
L
754@section i386-Mnemonics
755@subsection Instruction Naming
252b5132
RH
756
757@cindex i386 instruction naming
758@cindex instruction naming, i386
55b62671
AJ
759@cindex x86-64 instruction naming
760@cindex instruction naming, x86-64
761
252b5132 762Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
763specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
764and @samp{q} specify byte, word, long and quadruple word operands. If
765no suffix is specified by an instruction then @code{@value{AS}} tries to
766fill in the missing suffix based on the destination register operand
767(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
768to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
769@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
770assembler which assumes that a missing mnemonic suffix implies long
771operand size. (This incompatibility does not affect compiler output
772since compilers always explicitly specify the mnemonic suffix.)
252b5132 773
c006a730
JB
774When there is no sizing suffix and no (suitable) register operands to
775deduce the size of memory operands, with a few exceptions and where long
776operand size is possible in the first place, operand size will default
777to long in 32- and 64-bit modes. Similarly it will default to short in
77816-bit mode. Noteworthy exceptions are
779
780@itemize @bullet
781@item
782Instructions with an implicit on-stack operand as well as branches,
783which default to quad in 64-bit mode.
784
785@item
786Sign- and zero-extending moves, which default to byte size source
787operands.
788
789@item
790Floating point insns with integer operands, which default to short (for
791perhaps historical reasons).
792
793@item
794CRC32 with a 64-bit destination, which defaults to a quad source
795operand.
796
797@end itemize
798
b6169b20
L
799@cindex encoding options, i386
800@cindex encoding options, x86-64
801
86fa6981
L
802Different encoding options can be specified via pseudo prefixes:
803
804@itemize @bullet
805@item
806@samp{@{disp8@}} -- prefer 8-bit displacement.
807
808@item
809@samp{@{disp32@}} -- prefer 32-bit displacement.
810
811@item
812@samp{@{load@}} -- prefer load-form instruction.
813
814@item
815@samp{@{store@}} -- prefer store-form instruction.
816
817@item
42e04b36 818@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
819
820@item
42e04b36 821@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
822
823@item
824@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
825
826@item
827@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
828instructions (x86-64 only). Note that this differs from the @samp{rex}
829prefix which generates REX prefix unconditionally.
b6f8c7c4
L
830
831@item
832@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 833@end itemize
b6169b20 834
252b5132
RH
835@cindex conversion instructions, i386
836@cindex i386 conversion instructions
55b62671
AJ
837@cindex conversion instructions, x86-64
838@cindex x86-64 conversion instructions
252b5132
RH
839The Intel-syntax conversion instructions
840
841@itemize @bullet
842@item
843@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
844
845@item
846@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
847
848@item
849@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
850
851@item
852@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
853
854@item
855@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
856(x86-64 only),
857
858@item
d5f0cf92 859@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 860@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
861@end itemize
862
863@noindent
55b62671
AJ
864are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
865@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
866instructions.
252b5132 867
0e6724de
L
868@cindex extension instructions, i386
869@cindex i386 extension instructions
870@cindex extension instructions, x86-64
871@cindex x86-64 extension instructions
872The Intel-syntax extension instructions
873
874@itemize @bullet
875@item
876@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
877
878@item
879@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
880
881@item
882@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
883(x86-64 only).
884
885@item
886@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
887
888@item
889@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
890(x86-64 only).
891
892@item
893@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
894(x86-64 only).
895
896@item
897@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
898
899@item
900@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
901
902@item
903@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
904(x86-64 only).
905
906@item
907@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
908
909@item
910@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
911(x86-64 only).
912@end itemize
913
914@noindent
915are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
916@samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
917@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
918@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
919@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
920
252b5132
RH
921@cindex jump instructions, i386
922@cindex call instructions, i386
55b62671
AJ
923@cindex jump instructions, x86-64
924@cindex call instructions, x86-64
252b5132
RH
925Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
926AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
927convention.
928
d3b47e2b 929@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
930
931@cindex i386 mnemonic compatibility
932@cindex mnemonic compatibility, i386
933
934@code{@value{AS}} supports assembly using Intel mnemonic.
935@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
936@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
937syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
938Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
939@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
940@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
941assembler with different mnemonics from those in Intel IA32 specification.
942@code{@value{GCC}} generates those instructions with AT&T mnemonic.
943
bc31405e
L
944@itemize @bullet
945@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
946register. @samp{movsxd} should be used to encode 16-bit or 32-bit
947destination register with both AT&T and Intel mnemonics.
948@end itemize
949
252b5132
RH
950@node i386-Regs
951@section Register Naming
952
953@cindex i386 registers
954@cindex registers, i386
55b62671
AJ
955@cindex x86-64 registers
956@cindex registers, x86-64
252b5132
RH
957Register operands are always prefixed with @samp{%}. The 80386 registers
958consist of
959
960@itemize @bullet
961@item
962the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
963@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
964frame pointer), and @samp{%esp} (the stack pointer).
965
966@item
967the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
968@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
969
970@item
971the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
972@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
973are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
974@samp{%cx}, and @samp{%dx})
975
976@item
977the 6 section registers @samp{%cs} (code section), @samp{%ds}
978(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
979and @samp{%gs}.
980
981@item
4bde3cdd
UD
982the 5 processor control registers @samp{%cr0}, @samp{%cr2},
983@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
984
985@item
986the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
987@samp{%db3}, @samp{%db6}, and @samp{%db7}.
988
989@item
990the 2 test registers @samp{%tr6} and @samp{%tr7}.
991
992@item
993the 8 floating point register stack @samp{%st} or equivalently
994@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
995@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
996These registers are overloaded by 8 MMX registers @samp{%mm0},
997@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
998@samp{%mm6} and @samp{%mm7}.
999
1000@item
4bde3cdd 1001the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
1002@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1003@end itemize
1004
1005The AMD x86-64 architecture extends the register set by:
1006
1007@itemize @bullet
1008@item
1009enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1010accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1011@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1012pointer)
1013
1014@item
1015the 8 extended registers @samp{%r8}--@samp{%r15}.
1016
1017@item
4bde3cdd 1018the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
1019
1020@item
4bde3cdd 1021the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
1022
1023@item
4bde3cdd 1024the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
1025
1026@item
1027the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1028
1029@item
1030the 8 debug registers: @samp{%db8}--@samp{%db15}.
1031
1032@item
4bde3cdd
UD
1033the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1034@end itemize
1035
1036With the AVX extensions more registers were made available:
1037
1038@itemize @bullet
1039
1040@item
1041the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1042available in 32-bit mode). The bottom 128 bits are overlaid with the
1043@samp{xmm0}--@samp{xmm15} registers.
1044
1045@end itemize
1046
1047The AVX2 extensions made in 64-bit mode more registers available:
1048
1049@itemize @bullet
1050
1051@item
1052the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
1053registers @samp{%ymm16}--@samp{%ymm31}.
1054
1055@end itemize
1056
1057The AVX512 extensions added the following registers:
1058
1059@itemize @bullet
1060
1061@item
1062the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1063available in 32-bit mode). The bottom 128 bits are overlaid with the
1064@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1065overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1066
1067@item
1068the 8 mask registers @samp{%k0}--@samp{%k7}.
1069
252b5132
RH
1070@end itemize
1071
1072@node i386-Prefixes
1073@section Instruction Prefixes
1074
1075@cindex i386 instruction prefixes
1076@cindex instruction prefixes, i386
1077@cindex prefixes, i386
1078Instruction prefixes are used to modify the following instruction. They
1079are used to repeat string instructions, to provide section overrides, to
1080perform bus lock operations, and to change operand and address sizes.
1081(Most instructions that normally operate on 32-bit operands will use
108216-bit operands if the instruction has an ``operand size'' prefix.)
1083Instruction prefixes are best written on the same line as the instruction
1084they act upon. For example, the @samp{scas} (scan string) instruction is
1085repeated with:
1086
1087@smallexample
1088 repne scas %es:(%edi),%al
1089@end smallexample
1090
1091You may also place prefixes on the lines immediately preceding the
1092instruction, but this circumvents checks that @code{@value{AS}} does
1093with prefixes, and will not work with all prefixes.
1094
1095Here is a list of instruction prefixes:
1096
1097@cindex section override prefixes, i386
1098@itemize @bullet
1099@item
1100Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1101@samp{fs}, @samp{gs}. These are automatically added by specifying
1102using the @var{section}:@var{memory-operand} form for memory references.
1103
1104@cindex size prefixes, i386
1105@item
1106Operand/Address size prefixes @samp{data16} and @samp{addr16}
1107change 32-bit operands/addresses into 16-bit operands/addresses,
1108while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1109@code{.code16} section) into 32-bit operands/addresses. These prefixes
1110@emph{must} appear on the same line of code as the instruction they
1111modify. For example, in a 16-bit @code{.code16} section, you might
1112write:
1113
1114@smallexample
1115 addr32 jmpl *(%ebx)
1116@end smallexample
1117
1118@cindex bus lock prefixes, i386
1119@cindex inhibiting interrupts, i386
1120@item
1121The bus lock prefix @samp{lock} inhibits interrupts during execution of
1122the instruction it precedes. (This is only valid with certain
1123instructions; see a 80386 manual for details).
1124
1125@cindex coprocessor wait, i386
1126@item
1127The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1128complete the current instruction. This should never be needed for the
112980386/80387 combination.
1130
1131@cindex repeat prefixes, i386
1132@item
1133The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1134to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1135times if the current address size is 16-bits).
55b62671
AJ
1136@cindex REX prefixes, i386
1137@item
1138The @samp{rex} family of prefixes is used by x86-64 to encode
1139extensions to i386 instruction set. The @samp{rex} prefix has four
1140bits --- an operand size overwrite (@code{64}) used to change operand size
1141from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1142register set.
1143
1144You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1145instruction emits @samp{rex} prefix with all the bits set. By omitting
1146the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1147prefixes as well. Normally, there is no need to write the prefixes
1148explicitly, since gas will automatically generate them based on the
1149instruction operands.
252b5132
RH
1150@end itemize
1151
1152@node i386-Memory
1153@section Memory References
1154
1155@cindex i386 memory references
1156@cindex memory references, i386
55b62671
AJ
1157@cindex x86-64 memory references
1158@cindex memory references, x86-64
252b5132
RH
1159An Intel syntax indirect memory reference of the form
1160
1161@smallexample
1162@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1163@end smallexample
1164
1165@noindent
1166is translated into the AT&T syntax
1167
1168@smallexample
1169@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1170@end smallexample
1171
1172@noindent
1173where @var{base} and @var{index} are the optional 32-bit base and
1174index registers, @var{disp} is the optional displacement, and
1175@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1176to calculate the address of the operand. If no @var{scale} is
1177specified, @var{scale} is taken to be 1. @var{section} specifies the
1178optional section register for the memory operand, and may override the
1179default section register (see a 80386 manual for section register
1180defaults). Note that section overrides in AT&T syntax @emph{must}
1181be preceded by a @samp{%}. If you specify a section override which
1182coincides with the default section register, @code{@value{AS}} does @emph{not}
1183output any section register override prefixes to assemble the given
1184instruction. Thus, section overrides can be specified to emphasize which
1185section register is used for a given memory operand.
1186
1187Here are some examples of Intel and AT&T style memory references:
1188
1189@table @asis
1190@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1191@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1192missing, and the default section is used (@samp{%ss} for addressing with
1193@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1194
1195@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1196@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1197@samp{foo}. All other fields are missing. The section register here
1198defaults to @samp{%ds}.
1199
1200@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1201This uses the value pointed to by @samp{foo} as a memory operand.
1202Note that @var{base} and @var{index} are both missing, but there is only
1203@emph{one} @samp{,}. This is a syntactic exception.
1204
1205@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1206This selects the contents of the variable @samp{foo} with section
1207register @var{section} being @samp{%gs}.
1208@end table
1209
1210Absolute (as opposed to PC relative) call and jump operands must be
1211prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1212always chooses PC relative addressing for jump/call labels.
1213
1214Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1215@emph{must} specify its size (byte, word, long, or quadruple) with an
1216instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1217respectively).
1218
1219The x86-64 architecture adds an RIP (instruction pointer relative)
1220addressing. This addressing mode is specified by using @samp{rip} as a
1221base register. Only constant offsets are valid. For example:
1222
1223@table @asis
1224@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1225Points to the address 1234 bytes past the end of the current
1226instruction.
1227
1228@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1229Points to the @code{symbol} in RIP relative way, this is shorter than
1230the default absolute addressing.
1231@end table
1232
1233Other addressing modes remain unchanged in x86-64 architecture, except
1234registers used are 64-bit instead of 32-bit.
252b5132 1235
fddf5b5b 1236@node i386-Jumps
252b5132
RH
1237@section Handling of Jump Instructions
1238
1239@cindex jump optimization, i386
1240@cindex i386 jump optimization
55b62671
AJ
1241@cindex jump optimization, x86-64
1242@cindex x86-64 jump optimization
252b5132
RH
1243Jump instructions are always optimized to use the smallest possible
1244displacements. This is accomplished by using byte (8-bit) displacement
1245jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1246is insufficient a long displacement is used. We do not support
252b5132
RH
1247word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1248instruction with the @samp{data16} instruction prefix), since the 80386
1249insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1250is added. (See also @pxref{i386-Arch})
252b5132
RH
1251
1252Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1253@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1254displacements, so that if you use these instructions (@code{@value{GCC}} does
1255not use them) you may get an error message (and incorrect code). The AT&T
125680386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1257to
1258
1259@smallexample
1260 jcxz cx_zero
1261 jmp cx_nonzero
1262cx_zero: jmp foo
1263cx_nonzero:
1264@end smallexample
1265
1266@node i386-Float
1267@section Floating Point
1268
1269@cindex i386 floating point
1270@cindex floating point, i386
55b62671
AJ
1271@cindex x86-64 floating point
1272@cindex floating point, x86-64
252b5132
RH
1273All 80387 floating point types except packed BCD are supported.
1274(BCD support may be added without much difficulty). These data
1275types are 16-, 32-, and 64- bit integers, and single (32-bit),
1276double (64-bit), and extended (80-bit) precision floating point.
1277Each supported type has an instruction mnemonic suffix and a constructor
1278associated with it. Instruction mnemonic suffixes specify the operand's
1279data type. Constructors build these data types into memory.
1280
1281@cindex @code{float} directive, i386
1282@cindex @code{single} directive, i386
1283@cindex @code{double} directive, i386
1284@cindex @code{tfloat} directive, i386
55b62671
AJ
1285@cindex @code{float} directive, x86-64
1286@cindex @code{single} directive, x86-64
1287@cindex @code{double} directive, x86-64
1288@cindex @code{tfloat} directive, x86-64
252b5132
RH
1289@itemize @bullet
1290@item
1291Floating point constructors are @samp{.float} or @samp{.single},
1292@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1293These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1294and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1295only supports this format via the @samp{fldt} (load 80-bit real to stack
1296top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1297
1298@cindex @code{word} directive, i386
1299@cindex @code{long} directive, i386
1300@cindex @code{int} directive, i386
1301@cindex @code{quad} directive, i386
55b62671
AJ
1302@cindex @code{word} directive, x86-64
1303@cindex @code{long} directive, x86-64
1304@cindex @code{int} directive, x86-64
1305@cindex @code{quad} directive, x86-64
252b5132
RH
1306@item
1307Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1308@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1309corresponding instruction mnemonic suffixes are @samp{s} (single),
1310@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1311the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1312quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1313stack) instructions.
1314@end itemize
1315
1316Register to register operations should not use instruction mnemonic suffixes.
1317@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1318wrote @samp{fst %st, %st(1)}, since all register to register operations
1319use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1320which converts @samp{%st} from 80-bit to 64-bit floating point format,
1321then stores the result in the 4 byte location @samp{mem})
1322
1323@node i386-SIMD
1324@section Intel's MMX and AMD's 3DNow! SIMD Operations
1325
1326@cindex MMX, i386
1327@cindex 3DNow!, i386
1328@cindex SIMD, i386
55b62671
AJ
1329@cindex MMX, x86-64
1330@cindex 3DNow!, x86-64
1331@cindex SIMD, x86-64
252b5132
RH
1332
1333@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1334instructions for integer data), available on Intel's Pentium MMX
1335processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1336Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1337instruction set (SIMD instructions for 32-bit floating point data)
1338available on AMD's K6-2 processor and possibly others in the future.
1339
1340Currently, @code{@value{AS}} does not support Intel's floating point
1341SIMD, Katmai (KNI).
1342
1343The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1344@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
134516-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1346floating point values. The MMX registers cannot be used at the same time
1347as the floating point stack.
1348
1349See Intel and AMD documentation, keeping in mind that the operand order in
1350instructions is reversed from the Intel syntax.
1351
f88c9eb0
SP
1352@node i386-LWP
1353@section AMD's Lightweight Profiling Instructions
1354
1355@cindex LWP, i386
1356@cindex LWP, x86-64
1357
1358@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1359instruction set, available on AMD's Family 15h (Orochi) processors.
1360
1361LWP enables applications to collect and manage performance data, and
1362react to performance events. The collection of performance data
1363requires no context switches. LWP runs in the context of a thread and
1364so several counters can be used independently across multiple threads.
1365LWP can be used in both 64-bit and legacy 32-bit modes.
1366
1367For detailed information on the LWP instruction set, see the
1368@cite{AMD Lightweight Profiling Specification} available at
1369@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1370
87973e9f
QN
1371@node i386-BMI
1372@section Bit Manipulation Instructions
1373
1374@cindex BMI, i386
1375@cindex BMI, x86-64
1376
1377@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1378
1379BMI instructions provide several instructions implementing individual
1380bit manipulation operations such as isolation, masking, setting, or
34bca508 1381resetting.
87973e9f
QN
1382
1383@c Need to add a specification citation here when available.
1384
2a2a0f38
QN
1385@node i386-TBM
1386@section AMD's Trailing Bit Manipulation Instructions
1387
1388@cindex TBM, i386
1389@cindex TBM, x86-64
1390
1391@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1392instruction set, available on AMD's BDVER2 processors (Trinity and
1393Viperfish).
1394
1395TBM instructions provide instructions implementing individual bit
1396manipulation operations such as isolating, masking, setting, resetting,
1397complementing, and operations on trailing zeros and ones.
1398
1399@c Need to add a specification citation here when available.
87973e9f 1400
252b5132
RH
1401@node i386-16bit
1402@section Writing 16-bit Code
1403
1404@cindex i386 16-bit code
1405@cindex 16-bit code, i386
1406@cindex real-mode code, i386
eecb386c 1407@cindex @code{code16gcc} directive, i386
252b5132
RH
1408@cindex @code{code16} directive, i386
1409@cindex @code{code32} directive, i386
55b62671
AJ
1410@cindex @code{code64} directive, i386
1411@cindex @code{code64} directive, x86-64
1412While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1413or 64-bit x86-64 code depending on the default configuration,
252b5132 1414it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1415mode code segments. To do this, put a @samp{.code16} or
1416@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1417be run in 16-bit mode. You can switch @code{@value{AS}} to writing
141832-bit code with the @samp{.code32} directive or 64-bit code with the
1419@samp{.code64} directive.
eecb386c
AM
1420
1421@samp{.code16gcc} provides experimental support for generating 16-bit
1422code from gcc, and differs from @samp{.code16} in that @samp{call},
1423@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1424@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1425default to 32-bit size. This is so that the stack pointer is
1426manipulated in the same way over function calls, allowing access to
1427function parameters at the same stack offsets as in 32-bit mode.
1428@samp{.code16gcc} also automatically adds address size prefixes where
1429necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1430
1431The code which @code{@value{AS}} generates in 16-bit mode will not
1432necessarily run on a 16-bit pre-80386 processor. To write code that
1433runs on such a processor, you must refrain from using @emph{any} 32-bit
1434constructs which require @code{@value{AS}} to output address or operand
1435size prefixes.
1436
1437Note that writing 16-bit code instructions by explicitly specifying a
1438prefix or an instruction mnemonic suffix within a 32-bit code section
1439generates different machine instructions than those generated for a
144016-bit code segment. In a 32-bit code section, the following code
1441generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1442value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1443
1444@smallexample
1445 pushw $4
1446@end smallexample
1447
1448The same code in a 16-bit code section would generate the machine
b45619c0 1449opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1450is correct since the processor default operand size is assumed to be 16
1451bits in a 16-bit code section.
1452
e413e4e9
AM
1453@node i386-Arch
1454@section Specifying CPU Architecture
1455
1456@cindex arch directive, i386
1457@cindex i386 arch directive
55b62671
AJ
1458@cindex arch directive, x86-64
1459@cindex x86-64 arch directive
e413e4e9
AM
1460
1461@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1462(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1463directive enables a warning when gas detects an instruction that is not
1464supported on the CPU specified. The choices for @var{cpu_type} are:
1465
1466@multitable @columnfractions .20 .20 .20 .20
1467@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1468@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1469@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1470@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1471@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1472@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1473@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1474@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1475@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1476@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
272a84b1 1477@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
d76f7bc1 1478@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1479@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1480@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1481@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1482@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
272a84b1
L
1483@item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1484@item @samp{.hle}
e2e1fcde 1485@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1486@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1487@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1488@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1489@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1490@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1491@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1492@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1493@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1494@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1495@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
5d79adc4 1496@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1ceab344 1497@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
272a84b1 1498@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
60aa667e 1499@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df 1500@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
a847e322 1501@item @samp{.mcommit} @tab @samp{.sev_es}
e413e4e9
AM
1502@end multitable
1503
fddf5b5b
AM
1504Apart from the warning, there are only two other effects on
1505@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1506@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1507will automatically use a two byte opcode sequence. The larger three
1508byte opcode sequence is used on the 486 (and when no architecture is
1509specified) because it executes faster on the 486. Note that you can
1510explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1511Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1512@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1513conditional jumps will be promoted when necessary to a two instruction
1514sequence consisting of a conditional jump of the opposite sense around
1515an unconditional jump to the target.
1516
5c6af06e
JB
1517Following the CPU architecture (but not a sub-architecture, which are those
1518starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1519control automatic promotion of conditional jumps. @samp{jumps} is the
1520default, and enables jump promotion; All external jumps will be of the long
1521variety, and file-local jumps will be promoted as necessary.
1522(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1523byte offset jumps, and warns about file-local conditional jumps that
1524@code{@value{AS}} promotes.
fddf5b5b
AM
1525Unconditional jumps are treated as for @samp{jumps}.
1526
1527For example
1528
1529@smallexample
1530 .arch i8086,nojumps
1531@end smallexample
e413e4e9 1532
bc31405e
L
1533@node i386-ISA
1534@section AMD64 ISA vs. Intel64 ISA
1535
1536There are some discrepancies between AMD64 and Intel64 ISAs.
1537
1538@itemize @bullet
1539@item For @samp{movsxd} with 16-bit destination register, AMD64
1540supports 32-bit source operand and Intel64 supports 16-bit source
1541operand.
5990e377
JB
1542
1543@item For far branches (with explicit memory operand), both ISAs support
154432- and 16-bit operand size. Intel64 additionally supports 64-bit
1545operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1546and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1547syntax.
1548
1549@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1550and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1551while Intel64 additionally supports 64-bit operand sise (80-bit memory
1552operands).
1553
bc31405e
L
1554@end itemize
1555
5c9352f3
AM
1556@node i386-Bugs
1557@section AT&T Syntax bugs
1558
1559The UnixWare assembler, and probably other AT&T derived ix86 Unix
1560assemblers, generate floating point instructions with reversed source
1561and destination registers in certain cases. Unfortunately, gcc and
1562possibly many other programs use this reversed syntax, so we're stuck
1563with it.
1564
1565For example
1566
1567@smallexample
1568 fsub %st,%st(3)
1569@end smallexample
1570@noindent
1571results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1572than the expected @samp{%st(3) - %st}. This happens with all the
1573non-commutative arithmetic floating point operations with two register
1574operands where the source register is @samp{%st} and the destination
1575register is @samp{%st(i)}.
1576
252b5132
RH
1577@node i386-Notes
1578@section Notes
1579
1580@cindex i386 @code{mul}, @code{imul} instructions
1581@cindex @code{mul} instruction, i386
1582@cindex @code{imul} instruction, i386
55b62671
AJ
1583@cindex @code{mul} instruction, x86-64
1584@cindex @code{imul} instruction, x86-64
252b5132 1585There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1586instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1587multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1588for @samp{imul}) can be output only in the one operand form. Thus,
1589@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1590the expanding multiply would clobber the @samp{%edx} register, and this
1591would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
159264-bit product in @samp{%edx:%eax}.
1593
1594We have added a two operand form of @samp{imul} when the first operand
1595is an immediate mode expression and the second operand is a register.
1596This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1597example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1598$69, %eax, %eax}.
1599
This page took 1.054014 seconds and 4 git commands to generate.