x86: Extend assembler to generate GNU property notes
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
219d1afa 1@c Copyright (C) 1991-2018 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
a9660a6f 126@code{znver2},
7b458c12
L
127@code{btver1},
128@code{btver2},
9103f4f4
L
129@code{generic32} and
130@code{generic64}.
131
34bca508 132In addition to the basic instruction set, the assembler can be told to
6305a203
L
133accept various extension mnemonics. For example,
134@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135@var{vmx}. The following extensions are currently supported:
309d3373
JB
136@code{8087},
137@code{287},
138@code{387},
1848e567 139@code{687},
309d3373 140@code{no87},
1848e567
L
141@code{no287},
142@code{no387},
143@code{no687},
d871f3f4
L
144@code{cmov},
145@code{nocmov},
146@code{fxsr},
147@code{nofxsr},
6305a203 148@code{mmx},
309d3373 149@code{nommx},
6305a203
L
150@code{sse},
151@code{sse2},
152@code{sse3},
153@code{ssse3},
154@code{sse4.1},
155@code{sse4.2},
156@code{sse4},
309d3373 157@code{nosse},
1848e567
L
158@code{nosse2},
159@code{nosse3},
160@code{nossse3},
161@code{nosse4.1},
162@code{nosse4.2},
163@code{nosse4},
c0f3af97 164@code{avx},
6c30d220 165@code{avx2},
1848e567
L
166@code{noavx},
167@code{noavx2},
e2e1fcde
L
168@code{adx},
169@code{rdseed},
170@code{prfchw},
5c111e37 171@code{smap},
7e8b059b 172@code{mpx},
a0046408 173@code{sha},
8bc52696 174@code{rdpid},
6b40c462 175@code{ptwrite},
603555e5 176@code{cet},
48521003 177@code{gfni},
8dcf1fad 178@code{vaes},
ff1982d5 179@code{vpclmulqdq},
1dfc6506
L
180@code{prefetchwt1},
181@code{clflushopt},
182@code{se1},
c5e7287a 183@code{clwb},
c0a30a9f
L
184@code{movdiri},
185@code{movdir64b},
43234a1e
L
186@code{avx512f},
187@code{avx512cd},
188@code{avx512er},
189@code{avx512pf},
1dfc6506
L
190@code{avx512vl},
191@code{avx512bw},
192@code{avx512dq},
2cc1b5aa 193@code{avx512ifma},
14f195c9 194@code{avx512vbmi},
920d2ddc 195@code{avx512_4fmaps},
47acf0bd 196@code{avx512_4vnniw},
620214f7 197@code{avx512_vpopcntdq},
53467f57 198@code{avx512_vbmi2},
8cfcb765 199@code{avx512_vnni},
ee6872be 200@code{avx512_bitalg},
144b71e2
L
201@code{noavx512f},
202@code{noavx512cd},
203@code{noavx512er},
204@code{noavx512pf},
205@code{noavx512vl},
206@code{noavx512bw},
207@code{noavx512dq},
208@code{noavx512ifma},
209@code{noavx512vbmi},
920d2ddc 210@code{noavx512_4fmaps},
47acf0bd 211@code{noavx512_4vnniw},
620214f7 212@code{noavx512_vpopcntdq},
53467f57 213@code{noavx512_vbmi2},
8cfcb765 214@code{noavx512_vnni},
ee6872be 215@code{noavx512_bitalg},
6305a203 216@code{vmx},
8729a6f6 217@code{vmfunc},
6305a203 218@code{smx},
f03fe4c1 219@code{xsave},
c7b8aa3a 220@code{xsaveopt},
1dfc6506
L
221@code{xsavec},
222@code{xsaves},
c0f3af97 223@code{aes},
594ab6a3 224@code{pclmul},
c7b8aa3a
L
225@code{fsgsbase},
226@code{rdrnd},
227@code{f16c},
6c30d220 228@code{bmi2},
c0f3af97 229@code{fma},
f1f8f695
L
230@code{movbe},
231@code{ept},
6c30d220 232@code{lzcnt},
42164a71
L
233@code{hle},
234@code{rtm},
6c30d220 235@code{invpcid},
bd5295b2 236@code{clflush},
9916071f 237@code{mwaitx},
029f3522 238@code{clzero},
3233d7d0 239@code{wbnoinvd},
be3a8dca 240@code{pconfig},
de89d0a3 241@code{waitpkg},
c48935d7 242@code{cldemote},
f88c9eb0 243@code{lwp},
5dd85c99
SP
244@code{fma4},
245@code{xop},
60aa667e 246@code{cx16},
bd5295b2 247@code{syscall},
1b7f3fb0 248@code{rdtscp},
6305a203
L
249@code{3dnow},
250@code{3dnowa},
251@code{sse4a},
252@code{sse5},
253@code{svme},
254@code{abm} and
255@code{padlock}.
309d3373
JB
256Note that rather than extending a basic instruction set, the extension
257mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
258
259When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
260@code{.arch} directive will take precedent.
261
262@cindex @samp{-mtune=} option, i386
263@cindex @samp{-mtune=} option, x86-64
264@item -mtune=@var{CPU}
265This option specifies a processor to optimize for. When used in
266conjunction with the @option{-march} option, only instructions
267of the processor specified by the @option{-march} option will be
268generated.
269
6305a203
L
270Valid @var{CPU} values are identical to the processor list of
271@option{-march=@var{CPU}}.
9103f4f4 272
c0f3af97
L
273@cindex @samp{-msse2avx} option, i386
274@cindex @samp{-msse2avx} option, x86-64
275@item -msse2avx
276This option specifies that the assembler should encode SSE instructions
277with VEX prefix.
278
daf50ae7
L
279@cindex @samp{-msse-check=} option, i386
280@cindex @samp{-msse-check=} option, x86-64
281@item -msse-check=@var{none}
1f9bb1ca
AS
282@itemx -msse-check=@var{warning}
283@itemx -msse-check=@var{error}
9aff4b7a 284These options control if the assembler should check SSE instructions.
daf50ae7
L
285@option{-msse-check=@var{none}} will make the assembler not to check SSE
286instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 287will make the assembler issue a warning for any SSE instruction.
daf50ae7 288@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 289for any SSE instruction.
daf50ae7 290
539f890d
L
291@cindex @samp{-mavxscalar=} option, i386
292@cindex @samp{-mavxscalar=} option, x86-64
293@item -mavxscalar=@var{128}
1f9bb1ca 294@itemx -mavxscalar=@var{256}
2aab8acd 295These options control how the assembler should encode scalar AVX
539f890d
L
296instructions. @option{-mavxscalar=@var{128}} will encode scalar
297AVX instructions with 128bit vector length, which is the default.
298@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
299with 256bit vector length.
300
43234a1e
L
301@cindex @samp{-mevexlig=} option, i386
302@cindex @samp{-mevexlig=} option, x86-64
303@item -mevexlig=@var{128}
304@itemx -mevexlig=@var{256}
305@itemx -mevexlig=@var{512}
306These options control how the assembler should encode length-ignored
307(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
308EVEX instructions with 128bit vector length, which is the default.
309@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
310encode LIG EVEX instructions with 256bit and 512bit vector length,
311respectively.
312
313@cindex @samp{-mevexwig=} option, i386
314@cindex @samp{-mevexwig=} option, x86-64
315@item -mevexwig=@var{0}
316@itemx -mevexwig=@var{1}
317These options control how the assembler should encode w-ignored (WIG)
318EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
319EVEX instructions with evex.w = 0, which is the default.
320@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
321evex.w = 1.
322
1efbbeb4
L
323@cindex @samp{-mmnemonic=} option, i386
324@cindex @samp{-mmnemonic=} option, x86-64
325@item -mmnemonic=@var{att}
1f9bb1ca 326@itemx -mmnemonic=@var{intel}
34bca508 327This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
328The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
329take precedent.
330
331@cindex @samp{-msyntax=} option, i386
332@cindex @samp{-msyntax=} option, x86-64
333@item -msyntax=@var{att}
1f9bb1ca 334@itemx -msyntax=@var{intel}
34bca508 335This option specifies instruction syntax when processing instructions.
1efbbeb4
L
336The @code{.att_syntax} and @code{.intel_syntax} directives will
337take precedent.
338
339@cindex @samp{-mnaked-reg} option, i386
340@cindex @samp{-mnaked-reg} option, x86-64
341@item -mnaked-reg
33eaf5de 342This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 343The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 344
7e8b059b
L
345@cindex @samp{-madd-bnd-prefix} option, i386
346@cindex @samp{-madd-bnd-prefix} option, x86-64
347@item -madd-bnd-prefix
348This option forces the assembler to add BND prefix to all branches, even
349if such prefix was not explicitly specified in the source code.
350
8dcea932
L
351@cindex @samp{-mshared} option, i386
352@cindex @samp{-mshared} option, x86-64
353@item -mno-shared
354On ELF target, the assembler normally optimizes out non-PLT relocations
355against defined non-weak global branch targets with default visibility.
356The @samp{-mshared} option tells the assembler to generate code which
357may go into a shared library where all non-weak global branch targets
358with default visibility can be preempted. The resulting code is
359slightly bigger. This option only affects the handling of branch
360instructions.
361
167ad85b
TG
362@cindex @samp{-mbig-obj} option, x86-64
363@item -mbig-obj
364On x86-64 PE/COFF target this option forces the use of big object file
365format, which allows more than 32768 sections.
366
d022bddd
IT
367@cindex @samp{-momit-lock-prefix=} option, i386
368@cindex @samp{-momit-lock-prefix=} option, x86-64
369@item -momit-lock-prefix=@var{no}
370@itemx -momit-lock-prefix=@var{yes}
371These options control how the assembler should encode lock prefix.
372This option is intended as a workaround for processors, that fail on
373lock prefix. This option can only be safely used with single-core,
374single-thread computers
375@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
376@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
377which is the default.
378
e4e00185
AS
379@cindex @samp{-mfence-as-lock-add=} option, i386
380@cindex @samp{-mfence-as-lock-add=} option, x86-64
381@item -mfence-as-lock-add=@var{no}
382@itemx -mfence-as-lock-add=@var{yes}
383These options control how the assembler should encode lfence, mfence and
384sfence.
385@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
386sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
387@samp{lock addl $0x0, (%esp)} in 32-bit mode.
388@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
389sfence as usual, which is the default.
390
0cb4071e
L
391@cindex @samp{-mrelax-relocations=} option, i386
392@cindex @samp{-mrelax-relocations=} option, x86-64
393@item -mrelax-relocations=@var{no}
394@itemx -mrelax-relocations=@var{yes}
395These options control whether the assembler should generate relax
396relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
397R_X86_64_REX_GOTPCRELX, in 64-bit mode.
398@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
399@option{-mrelax-relocations=@var{no}} will not generate relax
400relocations. The default can be controlled by a configure option
401@option{--enable-x86-relax-relocations}.
402
b4a3a7b4
L
403@cindex @samp{-mx86-used-note=} option, i386
404@cindex @samp{-mx86-used-note=} option, x86-64
405@item -mx86-used-note=@var{no}
406@itemx -mx86-used-note=@var{yes}
407These options control whether the assembler should generate
408GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
409GNU property notes. The default can be controlled by the
410@option{--enable-x86-used-note} configure option.
411
d3d3c6db
IT
412@cindex @samp{-mevexrcig=} option, i386
413@cindex @samp{-mevexrcig=} option, x86-64
414@item -mevexrcig=@var{rne}
415@itemx -mevexrcig=@var{rd}
416@itemx -mevexrcig=@var{ru}
417@itemx -mevexrcig=@var{rz}
418These options control how the assembler should encode SAE-only
419EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
420of EVEX instruction with 00, which is the default.
421@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
422and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
423with 01, 10 and 11 RC bits, respectively.
424
5db04b09
L
425@cindex @samp{-mamd64} option, x86-64
426@cindex @samp{-mintel64} option, x86-64
427@item -mamd64
428@itemx -mintel64
429This option specifies that the assembler should accept only AMD64 or
430Intel64 ISA in 64-bit mode. The default is to accept both.
431
b6f8c7c4
L
432@cindex @samp{-O0} option, i386
433@cindex @samp{-O0} option, x86-64
434@cindex @samp{-O} option, i386
435@cindex @samp{-O} option, x86-64
436@cindex @samp{-O1} option, i386
437@cindex @samp{-O1} option, x86-64
438@cindex @samp{-O2} option, i386
439@cindex @samp{-O2} option, x86-64
440@cindex @samp{-Os} option, i386
441@cindex @samp{-Os} option, x86-64
442@item -O0 | -O | -O1 | -O2 | -Os
443Optimize instruction encoding with smaller instruction size. @samp{-O}
444and @samp{-O1} encode 64-bit register load instructions with 64-bit
445immediate as 32-bit register load instructions with 31-bit or 32-bits
446immediates and encode 64-bit register clearing instructions with 32-bit
447register clearing instructions. @samp{-O2} includes @samp{-O1}
448optimization plus encodes 256-bit and 512-bit vector register clearing
449instructions with 128-bit vector register clearing instructions.
450@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
451and 64-bit register tests with immediate as 8-bit register test with
452immediate. @samp{-O0} turns off this optimization.
453
55b62671 454@end table
731caf76 455@c man end
e413e4e9 456
a6c24e68
NC
457@node i386-Directives
458@section x86 specific Directives
459
460@cindex machine directives, x86
461@cindex x86 machine directives
462@table @code
463
464@cindex @code{lcomm} directive, COFF
465@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
466Reserve @var{length} (an absolute expression) bytes for a local common
467denoted by @var{symbol}. The section and value of @var{symbol} are
468those of the new local common. The addresses are allocated in the bss
704209c0
NC
469section, so that at run-time the bytes start off zeroed. Since
470@var{symbol} is not declared global, it is normally not visible to
471@code{@value{LD}}. The optional third parameter, @var{alignment},
472specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
473
474This directive is only available for COFF based x86 targets.
475
102e9361
NC
476@cindex @code{largecomm} directive, ELF
477@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
478This directive behaves in the same way as the @code{comm} directive
479except that the data is placed into the @var{.lbss} section instead of
480the @var{.bss} section @ref{Comm}.
481
482The directive is intended to be used for data which requires a large
483amount of space, and it is only available for ELF based x86_64
484targets.
485
a6c24e68 486@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
487
488@end table
489
252b5132 490@node i386-Syntax
7c31ae13
NC
491@section i386 Syntactical Considerations
492@menu
493* i386-Variations:: AT&T Syntax versus Intel Syntax
494* i386-Chars:: Special Characters
495@end menu
496
497@node i386-Variations
498@subsection AT&T Syntax versus Intel Syntax
252b5132 499
e413e4e9
AM
500@cindex i386 intel_syntax pseudo op
501@cindex intel_syntax pseudo op, i386
502@cindex i386 att_syntax pseudo op
503@cindex att_syntax pseudo op, i386
252b5132
RH
504@cindex i386 syntax compatibility
505@cindex syntax compatibility, i386
55b62671
AJ
506@cindex x86-64 intel_syntax pseudo op
507@cindex intel_syntax pseudo op, x86-64
508@cindex x86-64 att_syntax pseudo op
509@cindex att_syntax pseudo op, x86-64
510@cindex x86-64 syntax compatibility
511@cindex syntax compatibility, x86-64
e413e4e9
AM
512
513@code{@value{AS}} now supports assembly using Intel assembler syntax.
514@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
515back to the usual AT&T mode for compatibility with the output of
516@code{@value{GCC}}. Either of these directives may have an optional
517argument, @code{prefix}, or @code{noprefix} specifying whether registers
518require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
519different from Intel syntax. We mention these differences because
520almost all 80386 documents use Intel syntax. Notable differences
521between the two syntaxes are:
522
523@cindex immediate operands, i386
524@cindex i386 immediate operands
525@cindex register operands, i386
526@cindex i386 register operands
527@cindex jump/call operands, i386
528@cindex i386 jump/call operands
529@cindex operand delimiters, i386
55b62671
AJ
530
531@cindex immediate operands, x86-64
532@cindex x86-64 immediate operands
533@cindex register operands, x86-64
534@cindex x86-64 register operands
535@cindex jump/call operands, x86-64
536@cindex x86-64 jump/call operands
537@cindex operand delimiters, x86-64
252b5132
RH
538@itemize @bullet
539@item
540AT&T immediate operands are preceded by @samp{$}; Intel immediate
541operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
542AT&T register operands are preceded by @samp{%}; Intel register operands
543are undelimited. AT&T absolute (as opposed to PC relative) jump/call
544operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
545
546@cindex i386 source, destination operands
547@cindex source, destination operands; i386
55b62671
AJ
548@cindex x86-64 source, destination operands
549@cindex source, destination operands; x86-64
252b5132
RH
550@item
551AT&T and Intel syntax use the opposite order for source and destination
552operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
553@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
554previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
555instructions with 2 immediate operands, such as the @samp{enter}
556instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
557
558@cindex mnemonic suffixes, i386
559@cindex sizes operands, i386
560@cindex i386 size suffixes
55b62671
AJ
561@cindex mnemonic suffixes, x86-64
562@cindex sizes operands, x86-64
563@cindex x86-64 size suffixes
252b5132
RH
564@item
565In AT&T syntax the size of memory operands is determined from the last
566character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
567@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
568(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
569this by prefixing memory operands (@emph{not} the instruction mnemonics) with
570@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
571Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
572syntax.
252b5132 573
4b06377f
L
574In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
575instruction with the 64-bit displacement or immediate operand.
576
252b5132
RH
577@cindex return instructions, i386
578@cindex i386 jump, call, return
55b62671
AJ
579@cindex return instructions, x86-64
580@cindex x86-64 jump, call, return
252b5132
RH
581@item
582Immediate form long jumps and calls are
583@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
584Intel syntax is
585@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
586instruction
587is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
588@samp{ret far @var{stack-adjust}}.
589
590@cindex sections, i386
591@cindex i386 sections
55b62671
AJ
592@cindex sections, x86-64
593@cindex x86-64 sections
252b5132
RH
594@item
595The AT&T assembler does not provide support for multiple section
596programs. Unix style systems expect all programs to be single sections.
597@end itemize
598
7c31ae13
NC
599@node i386-Chars
600@subsection Special Characters
601
602@cindex line comment character, i386
603@cindex i386 line comment character
604The presence of a @samp{#} appearing anywhere on a line indicates the
605start of a comment that extends to the end of that line.
606
607If a @samp{#} appears as the first character of a line then the whole
608line is treated as a comment, but in this case the line can also be a
609logical line number directive (@pxref{Comments}) or a preprocessor
610control command (@pxref{Preprocessing}).
611
a05a5b64 612If the @option{--divide} command-line option has not been specified
7c31ae13
NC
613then the @samp{/} character appearing anywhere on a line also
614introduces a line comment.
615
616@cindex line separator, i386
617@cindex statement separator, i386
618@cindex i386 line separator
619The @samp{;} character can be used to separate statements on the same
620line.
621
252b5132 622@node i386-Mnemonics
d3b47e2b
L
623@section i386-Mnemonics
624@subsection Instruction Naming
252b5132
RH
625
626@cindex i386 instruction naming
627@cindex instruction naming, i386
55b62671
AJ
628@cindex x86-64 instruction naming
629@cindex instruction naming, x86-64
630
252b5132 631Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
632specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
633and @samp{q} specify byte, word, long and quadruple word operands. If
634no suffix is specified by an instruction then @code{@value{AS}} tries to
635fill in the missing suffix based on the destination register operand
636(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
637to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
638@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
639assembler which assumes that a missing mnemonic suffix implies long
640operand size. (This incompatibility does not affect compiler output
641since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
642
643Almost all instructions have the same names in AT&T and Intel format.
644There are a few exceptions. The sign extend and zero extend
645instructions need two sizes to specify them. They need a size to
646sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
647is accomplished by using two instruction mnemonic suffixes in AT&T
648syntax. Base names for sign extend and zero extend are
649@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
650and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
651are tacked on to this base name, the @emph{from} suffix before the
652@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
653``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
654thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
655@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
656@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
657quadruple word).
252b5132 658
b6169b20
L
659@cindex encoding options, i386
660@cindex encoding options, x86-64
661
86fa6981
L
662Different encoding options can be specified via pseudo prefixes:
663
664@itemize @bullet
665@item
666@samp{@{disp8@}} -- prefer 8-bit displacement.
667
668@item
669@samp{@{disp32@}} -- prefer 32-bit displacement.
670
671@item
672@samp{@{load@}} -- prefer load-form instruction.
673
674@item
675@samp{@{store@}} -- prefer store-form instruction.
676
677@item
678@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
679
680@item
681@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
682
683@item
684@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
685
686@item
687@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
688instructions (x86-64 only). Note that this differs from the @samp{rex}
689prefix which generates REX prefix unconditionally.
b6f8c7c4
L
690
691@item
692@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 693@end itemize
b6169b20 694
252b5132
RH
695@cindex conversion instructions, i386
696@cindex i386 conversion instructions
55b62671
AJ
697@cindex conversion instructions, x86-64
698@cindex x86-64 conversion instructions
252b5132
RH
699The Intel-syntax conversion instructions
700
701@itemize @bullet
702@item
703@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
704
705@item
706@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
707
708@item
709@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
710
711@item
712@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
713
714@item
715@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
716(x86-64 only),
717
718@item
d5f0cf92 719@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 720@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
721@end itemize
722
723@noindent
55b62671
AJ
724are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
725@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
726instructions.
252b5132
RH
727
728@cindex jump instructions, i386
729@cindex call instructions, i386
55b62671
AJ
730@cindex jump instructions, x86-64
731@cindex call instructions, x86-64
252b5132
RH
732Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
733AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
734convention.
735
d3b47e2b 736@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
737
738@cindex i386 mnemonic compatibility
739@cindex mnemonic compatibility, i386
740
741@code{@value{AS}} supports assembly using Intel mnemonic.
742@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
743@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
744syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
745Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
746@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
747@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
748assembler with different mnemonics from those in Intel IA32 specification.
749@code{@value{GCC}} generates those instructions with AT&T mnemonic.
750
252b5132
RH
751@node i386-Regs
752@section Register Naming
753
754@cindex i386 registers
755@cindex registers, i386
55b62671
AJ
756@cindex x86-64 registers
757@cindex registers, x86-64
252b5132
RH
758Register operands are always prefixed with @samp{%}. The 80386 registers
759consist of
760
761@itemize @bullet
762@item
763the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
764@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
765frame pointer), and @samp{%esp} (the stack pointer).
766
767@item
768the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
769@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
770
771@item
772the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
773@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
774are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
775@samp{%cx}, and @samp{%dx})
776
777@item
778the 6 section registers @samp{%cs} (code section), @samp{%ds}
779(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
780and @samp{%gs}.
781
782@item
4bde3cdd
UD
783the 5 processor control registers @samp{%cr0}, @samp{%cr2},
784@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
785
786@item
787the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
788@samp{%db3}, @samp{%db6}, and @samp{%db7}.
789
790@item
791the 2 test registers @samp{%tr6} and @samp{%tr7}.
792
793@item
794the 8 floating point register stack @samp{%st} or equivalently
795@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
796@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
797These registers are overloaded by 8 MMX registers @samp{%mm0},
798@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
799@samp{%mm6} and @samp{%mm7}.
800
801@item
4bde3cdd 802the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
803@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
804@end itemize
805
806The AMD x86-64 architecture extends the register set by:
807
808@itemize @bullet
809@item
810enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
811accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
812@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
813pointer)
814
815@item
816the 8 extended registers @samp{%r8}--@samp{%r15}.
817
818@item
4bde3cdd 819the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
820
821@item
4bde3cdd 822the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
823
824@item
4bde3cdd 825the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
826
827@item
828the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
829
830@item
831the 8 debug registers: @samp{%db8}--@samp{%db15}.
832
833@item
4bde3cdd
UD
834the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
835@end itemize
836
837With the AVX extensions more registers were made available:
838
839@itemize @bullet
840
841@item
842the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
843available in 32-bit mode). The bottom 128 bits are overlaid with the
844@samp{xmm0}--@samp{xmm15} registers.
845
846@end itemize
847
848The AVX2 extensions made in 64-bit mode more registers available:
849
850@itemize @bullet
851
852@item
853the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
854registers @samp{%ymm16}--@samp{%ymm31}.
855
856@end itemize
857
858The AVX512 extensions added the following registers:
859
860@itemize @bullet
861
862@item
863the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
864available in 32-bit mode). The bottom 128 bits are overlaid with the
865@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
866overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
867
868@item
869the 8 mask registers @samp{%k0}--@samp{%k7}.
870
252b5132
RH
871@end itemize
872
873@node i386-Prefixes
874@section Instruction Prefixes
875
876@cindex i386 instruction prefixes
877@cindex instruction prefixes, i386
878@cindex prefixes, i386
879Instruction prefixes are used to modify the following instruction. They
880are used to repeat string instructions, to provide section overrides, to
881perform bus lock operations, and to change operand and address sizes.
882(Most instructions that normally operate on 32-bit operands will use
88316-bit operands if the instruction has an ``operand size'' prefix.)
884Instruction prefixes are best written on the same line as the instruction
885they act upon. For example, the @samp{scas} (scan string) instruction is
886repeated with:
887
888@smallexample
889 repne scas %es:(%edi),%al
890@end smallexample
891
892You may also place prefixes on the lines immediately preceding the
893instruction, but this circumvents checks that @code{@value{AS}} does
894with prefixes, and will not work with all prefixes.
895
896Here is a list of instruction prefixes:
897
898@cindex section override prefixes, i386
899@itemize @bullet
900@item
901Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
902@samp{fs}, @samp{gs}. These are automatically added by specifying
903using the @var{section}:@var{memory-operand} form for memory references.
904
905@cindex size prefixes, i386
906@item
907Operand/Address size prefixes @samp{data16} and @samp{addr16}
908change 32-bit operands/addresses into 16-bit operands/addresses,
909while @samp{data32} and @samp{addr32} change 16-bit ones (in a
910@code{.code16} section) into 32-bit operands/addresses. These prefixes
911@emph{must} appear on the same line of code as the instruction they
912modify. For example, in a 16-bit @code{.code16} section, you might
913write:
914
915@smallexample
916 addr32 jmpl *(%ebx)
917@end smallexample
918
919@cindex bus lock prefixes, i386
920@cindex inhibiting interrupts, i386
921@item
922The bus lock prefix @samp{lock} inhibits interrupts during execution of
923the instruction it precedes. (This is only valid with certain
924instructions; see a 80386 manual for details).
925
926@cindex coprocessor wait, i386
927@item
928The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
929complete the current instruction. This should never be needed for the
93080386/80387 combination.
931
932@cindex repeat prefixes, i386
933@item
934The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
935to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
936times if the current address size is 16-bits).
55b62671
AJ
937@cindex REX prefixes, i386
938@item
939The @samp{rex} family of prefixes is used by x86-64 to encode
940extensions to i386 instruction set. The @samp{rex} prefix has four
941bits --- an operand size overwrite (@code{64}) used to change operand size
942from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
943register set.
944
945You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
946instruction emits @samp{rex} prefix with all the bits set. By omitting
947the @code{64}, @code{x}, @code{y} or @code{z} you may write other
948prefixes as well. Normally, there is no need to write the prefixes
949explicitly, since gas will automatically generate them based on the
950instruction operands.
252b5132
RH
951@end itemize
952
953@node i386-Memory
954@section Memory References
955
956@cindex i386 memory references
957@cindex memory references, i386
55b62671
AJ
958@cindex x86-64 memory references
959@cindex memory references, x86-64
252b5132
RH
960An Intel syntax indirect memory reference of the form
961
962@smallexample
963@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
964@end smallexample
965
966@noindent
967is translated into the AT&T syntax
968
969@smallexample
970@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
971@end smallexample
972
973@noindent
974where @var{base} and @var{index} are the optional 32-bit base and
975index registers, @var{disp} is the optional displacement, and
976@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
977to calculate the address of the operand. If no @var{scale} is
978specified, @var{scale} is taken to be 1. @var{section} specifies the
979optional section register for the memory operand, and may override the
980default section register (see a 80386 manual for section register
981defaults). Note that section overrides in AT&T syntax @emph{must}
982be preceded by a @samp{%}. If you specify a section override which
983coincides with the default section register, @code{@value{AS}} does @emph{not}
984output any section register override prefixes to assemble the given
985instruction. Thus, section overrides can be specified to emphasize which
986section register is used for a given memory operand.
987
988Here are some examples of Intel and AT&T style memory references:
989
990@table @asis
991@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
992@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
993missing, and the default section is used (@samp{%ss} for addressing with
994@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
995
996@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
997@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
998@samp{foo}. All other fields are missing. The section register here
999defaults to @samp{%ds}.
1000
1001@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1002This uses the value pointed to by @samp{foo} as a memory operand.
1003Note that @var{base} and @var{index} are both missing, but there is only
1004@emph{one} @samp{,}. This is a syntactic exception.
1005
1006@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1007This selects the contents of the variable @samp{foo} with section
1008register @var{section} being @samp{%gs}.
1009@end table
1010
1011Absolute (as opposed to PC relative) call and jump operands must be
1012prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1013always chooses PC relative addressing for jump/call labels.
1014
1015Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1016@emph{must} specify its size (byte, word, long, or quadruple) with an
1017instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1018respectively).
1019
1020The x86-64 architecture adds an RIP (instruction pointer relative)
1021addressing. This addressing mode is specified by using @samp{rip} as a
1022base register. Only constant offsets are valid. For example:
1023
1024@table @asis
1025@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1026Points to the address 1234 bytes past the end of the current
1027instruction.
1028
1029@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1030Points to the @code{symbol} in RIP relative way, this is shorter than
1031the default absolute addressing.
1032@end table
1033
1034Other addressing modes remain unchanged in x86-64 architecture, except
1035registers used are 64-bit instead of 32-bit.
252b5132 1036
fddf5b5b 1037@node i386-Jumps
252b5132
RH
1038@section Handling of Jump Instructions
1039
1040@cindex jump optimization, i386
1041@cindex i386 jump optimization
55b62671
AJ
1042@cindex jump optimization, x86-64
1043@cindex x86-64 jump optimization
252b5132
RH
1044Jump instructions are always optimized to use the smallest possible
1045displacements. This is accomplished by using byte (8-bit) displacement
1046jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1047is insufficient a long displacement is used. We do not support
252b5132
RH
1048word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1049instruction with the @samp{data16} instruction prefix), since the 80386
1050insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1051is added. (See also @pxref{i386-Arch})
252b5132
RH
1052
1053Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1054@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1055displacements, so that if you use these instructions (@code{@value{GCC}} does
1056not use them) you may get an error message (and incorrect code). The AT&T
105780386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1058to
1059
1060@smallexample
1061 jcxz cx_zero
1062 jmp cx_nonzero
1063cx_zero: jmp foo
1064cx_nonzero:
1065@end smallexample
1066
1067@node i386-Float
1068@section Floating Point
1069
1070@cindex i386 floating point
1071@cindex floating point, i386
55b62671
AJ
1072@cindex x86-64 floating point
1073@cindex floating point, x86-64
252b5132
RH
1074All 80387 floating point types except packed BCD are supported.
1075(BCD support may be added without much difficulty). These data
1076types are 16-, 32-, and 64- bit integers, and single (32-bit),
1077double (64-bit), and extended (80-bit) precision floating point.
1078Each supported type has an instruction mnemonic suffix and a constructor
1079associated with it. Instruction mnemonic suffixes specify the operand's
1080data type. Constructors build these data types into memory.
1081
1082@cindex @code{float} directive, i386
1083@cindex @code{single} directive, i386
1084@cindex @code{double} directive, i386
1085@cindex @code{tfloat} directive, i386
55b62671
AJ
1086@cindex @code{float} directive, x86-64
1087@cindex @code{single} directive, x86-64
1088@cindex @code{double} directive, x86-64
1089@cindex @code{tfloat} directive, x86-64
252b5132
RH
1090@itemize @bullet
1091@item
1092Floating point constructors are @samp{.float} or @samp{.single},
1093@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1094These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1095and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1096only supports this format via the @samp{fldt} (load 80-bit real to stack
1097top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1098
1099@cindex @code{word} directive, i386
1100@cindex @code{long} directive, i386
1101@cindex @code{int} directive, i386
1102@cindex @code{quad} directive, i386
55b62671
AJ
1103@cindex @code{word} directive, x86-64
1104@cindex @code{long} directive, x86-64
1105@cindex @code{int} directive, x86-64
1106@cindex @code{quad} directive, x86-64
252b5132
RH
1107@item
1108Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1109@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1110corresponding instruction mnemonic suffixes are @samp{s} (single),
1111@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1112the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1113quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1114stack) instructions.
1115@end itemize
1116
1117Register to register operations should not use instruction mnemonic suffixes.
1118@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1119wrote @samp{fst %st, %st(1)}, since all register to register operations
1120use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1121which converts @samp{%st} from 80-bit to 64-bit floating point format,
1122then stores the result in the 4 byte location @samp{mem})
1123
1124@node i386-SIMD
1125@section Intel's MMX and AMD's 3DNow! SIMD Operations
1126
1127@cindex MMX, i386
1128@cindex 3DNow!, i386
1129@cindex SIMD, i386
55b62671
AJ
1130@cindex MMX, x86-64
1131@cindex 3DNow!, x86-64
1132@cindex SIMD, x86-64
252b5132
RH
1133
1134@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1135instructions for integer data), available on Intel's Pentium MMX
1136processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1137Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1138instruction set (SIMD instructions for 32-bit floating point data)
1139available on AMD's K6-2 processor and possibly others in the future.
1140
1141Currently, @code{@value{AS}} does not support Intel's floating point
1142SIMD, Katmai (KNI).
1143
1144The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1145@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
114616-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1147floating point values. The MMX registers cannot be used at the same time
1148as the floating point stack.
1149
1150See Intel and AMD documentation, keeping in mind that the operand order in
1151instructions is reversed from the Intel syntax.
1152
f88c9eb0
SP
1153@node i386-LWP
1154@section AMD's Lightweight Profiling Instructions
1155
1156@cindex LWP, i386
1157@cindex LWP, x86-64
1158
1159@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1160instruction set, available on AMD's Family 15h (Orochi) processors.
1161
1162LWP enables applications to collect and manage performance data, and
1163react to performance events. The collection of performance data
1164requires no context switches. LWP runs in the context of a thread and
1165so several counters can be used independently across multiple threads.
1166LWP can be used in both 64-bit and legacy 32-bit modes.
1167
1168For detailed information on the LWP instruction set, see the
1169@cite{AMD Lightweight Profiling Specification} available at
1170@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1171
87973e9f
QN
1172@node i386-BMI
1173@section Bit Manipulation Instructions
1174
1175@cindex BMI, i386
1176@cindex BMI, x86-64
1177
1178@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1179
1180BMI instructions provide several instructions implementing individual
1181bit manipulation operations such as isolation, masking, setting, or
34bca508 1182resetting.
87973e9f
QN
1183
1184@c Need to add a specification citation here when available.
1185
2a2a0f38
QN
1186@node i386-TBM
1187@section AMD's Trailing Bit Manipulation Instructions
1188
1189@cindex TBM, i386
1190@cindex TBM, x86-64
1191
1192@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1193instruction set, available on AMD's BDVER2 processors (Trinity and
1194Viperfish).
1195
1196TBM instructions provide instructions implementing individual bit
1197manipulation operations such as isolating, masking, setting, resetting,
1198complementing, and operations on trailing zeros and ones.
1199
1200@c Need to add a specification citation here when available.
87973e9f 1201
252b5132
RH
1202@node i386-16bit
1203@section Writing 16-bit Code
1204
1205@cindex i386 16-bit code
1206@cindex 16-bit code, i386
1207@cindex real-mode code, i386
eecb386c 1208@cindex @code{code16gcc} directive, i386
252b5132
RH
1209@cindex @code{code16} directive, i386
1210@cindex @code{code32} directive, i386
55b62671
AJ
1211@cindex @code{code64} directive, i386
1212@cindex @code{code64} directive, x86-64
1213While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1214or 64-bit x86-64 code depending on the default configuration,
252b5132 1215it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1216mode code segments. To do this, put a @samp{.code16} or
1217@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1218be run in 16-bit mode. You can switch @code{@value{AS}} to writing
121932-bit code with the @samp{.code32} directive or 64-bit code with the
1220@samp{.code64} directive.
eecb386c
AM
1221
1222@samp{.code16gcc} provides experimental support for generating 16-bit
1223code from gcc, and differs from @samp{.code16} in that @samp{call},
1224@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1225@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1226default to 32-bit size. This is so that the stack pointer is
1227manipulated in the same way over function calls, allowing access to
1228function parameters at the same stack offsets as in 32-bit mode.
1229@samp{.code16gcc} also automatically adds address size prefixes where
1230necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1231
1232The code which @code{@value{AS}} generates in 16-bit mode will not
1233necessarily run on a 16-bit pre-80386 processor. To write code that
1234runs on such a processor, you must refrain from using @emph{any} 32-bit
1235constructs which require @code{@value{AS}} to output address or operand
1236size prefixes.
1237
1238Note that writing 16-bit code instructions by explicitly specifying a
1239prefix or an instruction mnemonic suffix within a 32-bit code section
1240generates different machine instructions than those generated for a
124116-bit code segment. In a 32-bit code section, the following code
1242generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1243value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1244
1245@smallexample
1246 pushw $4
1247@end smallexample
1248
1249The same code in a 16-bit code section would generate the machine
b45619c0 1250opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1251is correct since the processor default operand size is assumed to be 16
1252bits in a 16-bit code section.
1253
e413e4e9
AM
1254@node i386-Arch
1255@section Specifying CPU Architecture
1256
1257@cindex arch directive, i386
1258@cindex i386 arch directive
55b62671
AJ
1259@cindex arch directive, x86-64
1260@cindex x86-64 arch directive
e413e4e9
AM
1261
1262@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1263(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1264directive enables a warning when gas detects an instruction that is not
1265supported on the CPU specified. The choices for @var{cpu_type} are:
1266
1267@multitable @columnfractions .20 .20 .20 .20
1268@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1269@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1270@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1271@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1272@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1273@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1274@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1275@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1276@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1277@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1278@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1279@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1280@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1281@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1282@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1283@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1284@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1285@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1286@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1287@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1288@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1289@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1290@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1291@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
ee6872be 1292@item @samp{.avx512_bitalg}
d777820b 1293@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1294@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1295@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
c0a30a9f 1296@item @samp{.movdiri} @tab @samp{.movdir64b}
1ceab344 1297@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1298@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1299@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
d777820b 1300@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1301@end multitable
1302
fddf5b5b
AM
1303Apart from the warning, there are only two other effects on
1304@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1305@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1306will automatically use a two byte opcode sequence. The larger three
1307byte opcode sequence is used on the 486 (and when no architecture is
1308specified) because it executes faster on the 486. Note that you can
1309explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1310Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1311@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1312conditional jumps will be promoted when necessary to a two instruction
1313sequence consisting of a conditional jump of the opposite sense around
1314an unconditional jump to the target.
1315
5c6af06e
JB
1316Following the CPU architecture (but not a sub-architecture, which are those
1317starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1318control automatic promotion of conditional jumps. @samp{jumps} is the
1319default, and enables jump promotion; All external jumps will be of the long
1320variety, and file-local jumps will be promoted as necessary.
1321(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1322byte offset jumps, and warns about file-local conditional jumps that
1323@code{@value{AS}} promotes.
fddf5b5b
AM
1324Unconditional jumps are treated as for @samp{jumps}.
1325
1326For example
1327
1328@smallexample
1329 .arch i8086,nojumps
1330@end smallexample
e413e4e9 1331
5c9352f3
AM
1332@node i386-Bugs
1333@section AT&T Syntax bugs
1334
1335The UnixWare assembler, and probably other AT&T derived ix86 Unix
1336assemblers, generate floating point instructions with reversed source
1337and destination registers in certain cases. Unfortunately, gcc and
1338possibly many other programs use this reversed syntax, so we're stuck
1339with it.
1340
1341For example
1342
1343@smallexample
1344 fsub %st,%st(3)
1345@end smallexample
1346@noindent
1347results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1348than the expected @samp{%st(3) - %st}. This happens with all the
1349non-commutative arithmetic floating point operations with two register
1350operands where the source register is @samp{%st} and the destination
1351register is @samp{%st(i)}.
1352
252b5132
RH
1353@node i386-Notes
1354@section Notes
1355
1356@cindex i386 @code{mul}, @code{imul} instructions
1357@cindex @code{mul} instruction, i386
1358@cindex @code{imul} instruction, i386
55b62671
AJ
1359@cindex @code{mul} instruction, x86-64
1360@cindex @code{imul} instruction, x86-64
252b5132 1361There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1362instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1363multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1364for @samp{imul}) can be output only in the one operand form. Thus,
1365@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1366the expanding multiply would clobber the @samp{%edx} register, and this
1367would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
136864-bit product in @samp{%edx:%eax}.
1369
1370We have added a two operand form of @samp{imul} when the first operand
1371is an immediate mode expression and the second operand is a register.
1372This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1373example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1374$69, %eax, %eax}.
1375
This page took 0.904502 seconds and 4 git commands to generate.