gas/
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037
AM
1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2@c 2001, 2003, 2004
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
252b5132
RH
27* i386-Syntax:: AT&T Syntax versus Intel Syntax
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35* i386-16bit:: Writing 16-bit Code
e413e4e9 36* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
37* i386-Bugs:: AT&T Syntax bugs
38* i386-Notes:: Notes
39@end menu
40
41@node i386-Options
42@section Options
43
55b62671
AJ
44@cindex options for i386
45@cindex options for x86-64
46@cindex i386 options
47@cindex x86-64 options
48
49The i386 version of @code{@value{AS}} has a few machine
50dependent options:
51
52@table @code
53@cindex @samp{--32} option, i386
54@cindex @samp{--32} option, x86-64
55@cindex @samp{--64} option, i386
56@cindex @samp{--64} option, x86-64
57@item --32 | --64
58Select the word size, either 32 bits or 64 bits. Selecting 32-bit
59implies Intel i386 architecture, while 64-bit implies AMD x86-64
60architecture.
61
62These options are only available with the ELF object file format, and
63require that the necessary BFD support has been included (on a 32-bit
64platform you have to add --enable-64-bit-bfd to configure enable 64-bit
65usage and use x86-64 as target platform).
12b55ccc
L
66
67@item -n
68By default, x86 GAS replaces multiple nop instructions used for
69alignment within code sections with multi-byte nop instructions such
70as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
71
72@cindex @samp{--divide} option, i386
73@item --divide
74On SVR4-derived platforms, the character @samp{/} is treated as a comment
75character, which means that it cannot be used in expressions. The
76@samp{--divide} option turns @samp{/} into a normal character. This does
77not disable @samp{/} at the beginning of a line starting a comment, or
78affect using @samp{#} for starting a comment.
79
9103f4f4
L
80@cindex @samp{-march=} option, i386
81@cindex @samp{-march=} option, x86-64
6305a203
L
82@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
83This option specifies the target processor. The assembler will
84issue an error message if an attempt is made to assemble an instruction
85which will not execute on the target processor. The following
86processor names are recognized:
9103f4f4
L
87@code{i8086},
88@code{i186},
89@code{i286},
90@code{i386},
91@code{i486},
92@code{i586},
93@code{i686},
94@code{pentium},
95@code{pentiumpro},
96@code{pentiumii},
97@code{pentiumiii},
98@code{pentium4},
99@code{prescott},
100@code{nocona},
ef05d495
L
101@code{core},
102@code{core2},
9103f4f4
L
103@code{k6},
104@code{k6_2},
105@code{athlon},
9103f4f4
L
106@code{opteron},
107@code{k8},
1ceab344 108@code{amdfam10},
9103f4f4
L
109@code{generic32} and
110@code{generic64}.
111
6305a203
L
112In addition to the basic instruction set, the assembler can be told to
113accept various extension mnemonics. For example,
114@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
115@var{vmx}. The following extensions are currently supported:
116@code{mmx},
117@code{sse},
118@code{sse2},
119@code{sse3},
120@code{ssse3},
121@code{sse4.1},
122@code{sse4.2},
123@code{sse4},
c0f3af97 124@code{avx},
6305a203
L
125@code{vmx},
126@code{smx},
f03fe4c1 127@code{xsave},
c0f3af97 128@code{aes},
594ab6a3 129@code{pclmul},
c0f3af97 130@code{fma},
f1f8f695
L
131@code{movbe},
132@code{ept},
6305a203
L
133@code{3dnow},
134@code{3dnowa},
135@code{sse4a},
136@code{sse5},
137@code{svme},
138@code{abm} and
139@code{padlock}.
140
141When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
142@code{.arch} directive will take precedent.
143
144@cindex @samp{-mtune=} option, i386
145@cindex @samp{-mtune=} option, x86-64
146@item -mtune=@var{CPU}
147This option specifies a processor to optimize for. When used in
148conjunction with the @option{-march} option, only instructions
149of the processor specified by the @option{-march} option will be
150generated.
151
6305a203
L
152Valid @var{CPU} values are identical to the processor list of
153@option{-march=@var{CPU}}.
9103f4f4 154
c0f3af97
L
155@cindex @samp{-msse2avx} option, i386
156@cindex @samp{-msse2avx} option, x86-64
157@item -msse2avx
158This option specifies that the assembler should encode SSE instructions
159with VEX prefix.
160
daf50ae7
L
161@cindex @samp{-msse-check=} option, i386
162@cindex @samp{-msse-check=} option, x86-64
163@item -msse-check=@var{none}
164@item -msse-check=@var{warning}
165@item -msse-check=@var{error}
166These options control if the assembler should check SSE intructions.
167@option{-msse-check=@var{none}} will make the assembler not to check SSE
168instructions, which is the default. @option{-msse-check=@var{warning}}
169will make the assembler issue a warning for any SSE intruction.
170@option{-msse-check=@var{error}} will make the assembler issue an error
171for any SSE intruction.
172
1efbbeb4
L
173@cindex @samp{-mmnemonic=} option, i386
174@cindex @samp{-mmnemonic=} option, x86-64
175@item -mmnemonic=@var{att}
176@item -mmnemonic=@var{intel}
177This option specifies instruction mnemonic for matching instructions.
178The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
179take precedent.
180
181@cindex @samp{-msyntax=} option, i386
182@cindex @samp{-msyntax=} option, x86-64
183@item -msyntax=@var{att}
184@item -msyntax=@var{intel}
185This option specifies instruction syntax when processing instructions.
186The @code{.att_syntax} and @code{.intel_syntax} directives will
187take precedent.
188
189@cindex @samp{-mnaked-reg} option, i386
190@cindex @samp{-mnaked-reg} option, x86-64
191@item -mnaked-reg
192This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 193The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 194
55b62671 195@end table
e413e4e9 196
a6c24e68
NC
197@node i386-Directives
198@section x86 specific Directives
199
200@cindex machine directives, x86
201@cindex x86 machine directives
202@table @code
203
204@cindex @code{lcomm} directive, COFF
205@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
206Reserve @var{length} (an absolute expression) bytes for a local common
207denoted by @var{symbol}. The section and value of @var{symbol} are
208those of the new local common. The addresses are allocated in the bss
704209c0
NC
209section, so that at run-time the bytes start off zeroed. Since
210@var{symbol} is not declared global, it is normally not visible to
211@code{@value{LD}}. The optional third parameter, @var{alignment},
212specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
213
214This directive is only available for COFF based x86 targets.
215
216@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
217@c .largecomm
218
219@end table
220
252b5132
RH
221@node i386-Syntax
222@section AT&T Syntax versus Intel Syntax
223
e413e4e9
AM
224@cindex i386 intel_syntax pseudo op
225@cindex intel_syntax pseudo op, i386
226@cindex i386 att_syntax pseudo op
227@cindex att_syntax pseudo op, i386
252b5132
RH
228@cindex i386 syntax compatibility
229@cindex syntax compatibility, i386
55b62671
AJ
230@cindex x86-64 intel_syntax pseudo op
231@cindex intel_syntax pseudo op, x86-64
232@cindex x86-64 att_syntax pseudo op
233@cindex att_syntax pseudo op, x86-64
234@cindex x86-64 syntax compatibility
235@cindex syntax compatibility, x86-64
e413e4e9
AM
236
237@code{@value{AS}} now supports assembly using Intel assembler syntax.
238@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
239back to the usual AT&T mode for compatibility with the output of
240@code{@value{GCC}}. Either of these directives may have an optional
241argument, @code{prefix}, or @code{noprefix} specifying whether registers
242require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
243different from Intel syntax. We mention these differences because
244almost all 80386 documents use Intel syntax. Notable differences
245between the two syntaxes are:
246
247@cindex immediate operands, i386
248@cindex i386 immediate operands
249@cindex register operands, i386
250@cindex i386 register operands
251@cindex jump/call operands, i386
252@cindex i386 jump/call operands
253@cindex operand delimiters, i386
55b62671
AJ
254
255@cindex immediate operands, x86-64
256@cindex x86-64 immediate operands
257@cindex register operands, x86-64
258@cindex x86-64 register operands
259@cindex jump/call operands, x86-64
260@cindex x86-64 jump/call operands
261@cindex operand delimiters, x86-64
252b5132
RH
262@itemize @bullet
263@item
264AT&T immediate operands are preceded by @samp{$}; Intel immediate
265operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
266AT&T register operands are preceded by @samp{%}; Intel register operands
267are undelimited. AT&T absolute (as opposed to PC relative) jump/call
268operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
269
270@cindex i386 source, destination operands
271@cindex source, destination operands; i386
55b62671
AJ
272@cindex x86-64 source, destination operands
273@cindex source, destination operands; x86-64
252b5132
RH
274@item
275AT&T and Intel syntax use the opposite order for source and destination
276operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
277@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
278previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
279instructions with 2 immediate operands, such as the @samp{enter}
280instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
281
282@cindex mnemonic suffixes, i386
283@cindex sizes operands, i386
284@cindex i386 size suffixes
55b62671
AJ
285@cindex mnemonic suffixes, x86-64
286@cindex sizes operands, x86-64
287@cindex x86-64 size suffixes
252b5132
RH
288@item
289In AT&T syntax the size of memory operands is determined from the last
290character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
291@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
292(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
293this by prefixing memory operands (@emph{not} the instruction mnemonics) with
294@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
295Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
296syntax.
252b5132
RH
297
298@cindex return instructions, i386
299@cindex i386 jump, call, return
55b62671
AJ
300@cindex return instructions, x86-64
301@cindex x86-64 jump, call, return
252b5132
RH
302@item
303Immediate form long jumps and calls are
304@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
305Intel syntax is
306@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
307instruction
308is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
309@samp{ret far @var{stack-adjust}}.
310
311@cindex sections, i386
312@cindex i386 sections
55b62671
AJ
313@cindex sections, x86-64
314@cindex x86-64 sections
252b5132
RH
315@item
316The AT&T assembler does not provide support for multiple section
317programs. Unix style systems expect all programs to be single sections.
318@end itemize
319
320@node i386-Mnemonics
321@section Instruction Naming
322
323@cindex i386 instruction naming
324@cindex instruction naming, i386
55b62671
AJ
325@cindex x86-64 instruction naming
326@cindex instruction naming, x86-64
327
252b5132 328Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
329specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
330and @samp{q} specify byte, word, long and quadruple word operands. If
331no suffix is specified by an instruction then @code{@value{AS}} tries to
332fill in the missing suffix based on the destination register operand
333(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
334to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
335@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
336assembler which assumes that a missing mnemonic suffix implies long
337operand size. (This incompatibility does not affect compiler output
338since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
339
340Almost all instructions have the same names in AT&T and Intel format.
341There are a few exceptions. The sign extend and zero extend
342instructions need two sizes to specify them. They need a size to
343sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
344is accomplished by using two instruction mnemonic suffixes in AT&T
345syntax. Base names for sign extend and zero extend are
346@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
347and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
348are tacked on to this base name, the @emph{from} suffix before the
349@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
350``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
351thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
352@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
353@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
354quadruple word).
252b5132 355
b6169b20
L
356@cindex encoding options, i386
357@cindex encoding options, x86-64
358
359Different encoding options can be specified via optional mnemonic
360suffix. @samp{.s} suffix swaps 2 register operands in encoding when
361moving from one register to another.
362
252b5132
RH
363@cindex conversion instructions, i386
364@cindex i386 conversion instructions
55b62671
AJ
365@cindex conversion instructions, x86-64
366@cindex x86-64 conversion instructions
252b5132
RH
367The Intel-syntax conversion instructions
368
369@itemize @bullet
370@item
371@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
372
373@item
374@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
375
376@item
377@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
378
379@item
380@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
381
382@item
383@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
384(x86-64 only),
385
386@item
d5f0cf92 387@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 388@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
389@end itemize
390
391@noindent
55b62671
AJ
392are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
393@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
394instructions.
252b5132
RH
395
396@cindex jump instructions, i386
397@cindex call instructions, i386
55b62671
AJ
398@cindex jump instructions, x86-64
399@cindex call instructions, x86-64
252b5132
RH
400Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
401AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
402convention.
403
1efbbeb4
L
404@section AT&T Mnemonic versus Intel Mnemonic
405
406@cindex i386 mnemonic compatibility
407@cindex mnemonic compatibility, i386
408
409@code{@value{AS}} supports assembly using Intel mnemonic.
410@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
411@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
412syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
413Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
414@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
415@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
416assembler with different mnemonics from those in Intel IA32 specification.
417@code{@value{GCC}} generates those instructions with AT&T mnemonic.
418
252b5132
RH
419@node i386-Regs
420@section Register Naming
421
422@cindex i386 registers
423@cindex registers, i386
55b62671
AJ
424@cindex x86-64 registers
425@cindex registers, x86-64
252b5132
RH
426Register operands are always prefixed with @samp{%}. The 80386 registers
427consist of
428
429@itemize @bullet
430@item
431the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
432@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
433frame pointer), and @samp{%esp} (the stack pointer).
434
435@item
436the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
437@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
438
439@item
440the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
441@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
442are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
443@samp{%cx}, and @samp{%dx})
444
445@item
446the 6 section registers @samp{%cs} (code section), @samp{%ds}
447(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
448and @samp{%gs}.
449
450@item
451the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
452@samp{%cr3}.
453
454@item
455the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
456@samp{%db3}, @samp{%db6}, and @samp{%db7}.
457
458@item
459the 2 test registers @samp{%tr6} and @samp{%tr7}.
460
461@item
462the 8 floating point register stack @samp{%st} or equivalently
463@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
464@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
465These registers are overloaded by 8 MMX registers @samp{%mm0},
466@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
467@samp{%mm6} and @samp{%mm7}.
468
469@item
470the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
471@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
472@end itemize
473
474The AMD x86-64 architecture extends the register set by:
475
476@itemize @bullet
477@item
478enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
479accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
480@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
481pointer)
482
483@item
484the 8 extended registers @samp{%r8}--@samp{%r15}.
485
486@item
487the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
488
489@item
490the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
491
492@item
493the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
494
495@item
496the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
497
498@item
499the 8 debug registers: @samp{%db8}--@samp{%db15}.
500
501@item
502the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
503@end itemize
504
505@node i386-Prefixes
506@section Instruction Prefixes
507
508@cindex i386 instruction prefixes
509@cindex instruction prefixes, i386
510@cindex prefixes, i386
511Instruction prefixes are used to modify the following instruction. They
512are used to repeat string instructions, to provide section overrides, to
513perform bus lock operations, and to change operand and address sizes.
514(Most instructions that normally operate on 32-bit operands will use
51516-bit operands if the instruction has an ``operand size'' prefix.)
516Instruction prefixes are best written on the same line as the instruction
517they act upon. For example, the @samp{scas} (scan string) instruction is
518repeated with:
519
520@smallexample
521 repne scas %es:(%edi),%al
522@end smallexample
523
524You may also place prefixes on the lines immediately preceding the
525instruction, but this circumvents checks that @code{@value{AS}} does
526with prefixes, and will not work with all prefixes.
527
528Here is a list of instruction prefixes:
529
530@cindex section override prefixes, i386
531@itemize @bullet
532@item
533Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
534@samp{fs}, @samp{gs}. These are automatically added by specifying
535using the @var{section}:@var{memory-operand} form for memory references.
536
537@cindex size prefixes, i386
538@item
539Operand/Address size prefixes @samp{data16} and @samp{addr16}
540change 32-bit operands/addresses into 16-bit operands/addresses,
541while @samp{data32} and @samp{addr32} change 16-bit ones (in a
542@code{.code16} section) into 32-bit operands/addresses. These prefixes
543@emph{must} appear on the same line of code as the instruction they
544modify. For example, in a 16-bit @code{.code16} section, you might
545write:
546
547@smallexample
548 addr32 jmpl *(%ebx)
549@end smallexample
550
551@cindex bus lock prefixes, i386
552@cindex inhibiting interrupts, i386
553@item
554The bus lock prefix @samp{lock} inhibits interrupts during execution of
555the instruction it precedes. (This is only valid with certain
556instructions; see a 80386 manual for details).
557
558@cindex coprocessor wait, i386
559@item
560The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
561complete the current instruction. This should never be needed for the
56280386/80387 combination.
563
564@cindex repeat prefixes, i386
565@item
566The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
567to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
568times if the current address size is 16-bits).
55b62671
AJ
569@cindex REX prefixes, i386
570@item
571The @samp{rex} family of prefixes is used by x86-64 to encode
572extensions to i386 instruction set. The @samp{rex} prefix has four
573bits --- an operand size overwrite (@code{64}) used to change operand size
574from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
575register set.
576
577You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
578instruction emits @samp{rex} prefix with all the bits set. By omitting
579the @code{64}, @code{x}, @code{y} or @code{z} you may write other
580prefixes as well. Normally, there is no need to write the prefixes
581explicitly, since gas will automatically generate them based on the
582instruction operands.
252b5132
RH
583@end itemize
584
585@node i386-Memory
586@section Memory References
587
588@cindex i386 memory references
589@cindex memory references, i386
55b62671
AJ
590@cindex x86-64 memory references
591@cindex memory references, x86-64
252b5132
RH
592An Intel syntax indirect memory reference of the form
593
594@smallexample
595@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
596@end smallexample
597
598@noindent
599is translated into the AT&T syntax
600
601@smallexample
602@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
603@end smallexample
604
605@noindent
606where @var{base} and @var{index} are the optional 32-bit base and
607index registers, @var{disp} is the optional displacement, and
608@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
609to calculate the address of the operand. If no @var{scale} is
610specified, @var{scale} is taken to be 1. @var{section} specifies the
611optional section register for the memory operand, and may override the
612default section register (see a 80386 manual for section register
613defaults). Note that section overrides in AT&T syntax @emph{must}
614be preceded by a @samp{%}. If you specify a section override which
615coincides with the default section register, @code{@value{AS}} does @emph{not}
616output any section register override prefixes to assemble the given
617instruction. Thus, section overrides can be specified to emphasize which
618section register is used for a given memory operand.
619
620Here are some examples of Intel and AT&T style memory references:
621
622@table @asis
623@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
624@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
625missing, and the default section is used (@samp{%ss} for addressing with
626@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
627
628@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
629@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
630@samp{foo}. All other fields are missing. The section register here
631defaults to @samp{%ds}.
632
633@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
634This uses the value pointed to by @samp{foo} as a memory operand.
635Note that @var{base} and @var{index} are both missing, but there is only
636@emph{one} @samp{,}. This is a syntactic exception.
637
638@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
639This selects the contents of the variable @samp{foo} with section
640register @var{section} being @samp{%gs}.
641@end table
642
643Absolute (as opposed to PC relative) call and jump operands must be
644prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
645always chooses PC relative addressing for jump/call labels.
646
647Any instruction that has a memory operand, but no register operand,
55b62671
AJ
648@emph{must} specify its size (byte, word, long, or quadruple) with an
649instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
650respectively).
651
652The x86-64 architecture adds an RIP (instruction pointer relative)
653addressing. This addressing mode is specified by using @samp{rip} as a
654base register. Only constant offsets are valid. For example:
655
656@table @asis
657@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
658Points to the address 1234 bytes past the end of the current
659instruction.
660
661@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
662Points to the @code{symbol} in RIP relative way, this is shorter than
663the default absolute addressing.
664@end table
665
666Other addressing modes remain unchanged in x86-64 architecture, except
667registers used are 64-bit instead of 32-bit.
252b5132 668
fddf5b5b 669@node i386-Jumps
252b5132
RH
670@section Handling of Jump Instructions
671
672@cindex jump optimization, i386
673@cindex i386 jump optimization
55b62671
AJ
674@cindex jump optimization, x86-64
675@cindex x86-64 jump optimization
252b5132
RH
676Jump instructions are always optimized to use the smallest possible
677displacements. This is accomplished by using byte (8-bit) displacement
678jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 679is insufficient a long displacement is used. We do not support
252b5132
RH
680word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
681instruction with the @samp{data16} instruction prefix), since the 80386
682insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 683is added. (See also @pxref{i386-Arch})
252b5132
RH
684
685Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
686@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
687displacements, so that if you use these instructions (@code{@value{GCC}} does
688not use them) you may get an error message (and incorrect code). The AT&T
68980386 assembler tries to get around this problem by expanding @samp{jcxz foo}
690to
691
692@smallexample
693 jcxz cx_zero
694 jmp cx_nonzero
695cx_zero: jmp foo
696cx_nonzero:
697@end smallexample
698
699@node i386-Float
700@section Floating Point
701
702@cindex i386 floating point
703@cindex floating point, i386
55b62671
AJ
704@cindex x86-64 floating point
705@cindex floating point, x86-64
252b5132
RH
706All 80387 floating point types except packed BCD are supported.
707(BCD support may be added without much difficulty). These data
708types are 16-, 32-, and 64- bit integers, and single (32-bit),
709double (64-bit), and extended (80-bit) precision floating point.
710Each supported type has an instruction mnemonic suffix and a constructor
711associated with it. Instruction mnemonic suffixes specify the operand's
712data type. Constructors build these data types into memory.
713
714@cindex @code{float} directive, i386
715@cindex @code{single} directive, i386
716@cindex @code{double} directive, i386
717@cindex @code{tfloat} directive, i386
55b62671
AJ
718@cindex @code{float} directive, x86-64
719@cindex @code{single} directive, x86-64
720@cindex @code{double} directive, x86-64
721@cindex @code{tfloat} directive, x86-64
252b5132
RH
722@itemize @bullet
723@item
724Floating point constructors are @samp{.float} or @samp{.single},
725@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
726These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
727and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
728only supports this format via the @samp{fldt} (load 80-bit real to stack
729top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
730
731@cindex @code{word} directive, i386
732@cindex @code{long} directive, i386
733@cindex @code{int} directive, i386
734@cindex @code{quad} directive, i386
55b62671
AJ
735@cindex @code{word} directive, x86-64
736@cindex @code{long} directive, x86-64
737@cindex @code{int} directive, x86-64
738@cindex @code{quad} directive, x86-64
252b5132
RH
739@item
740Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
741@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
742corresponding instruction mnemonic suffixes are @samp{s} (single),
743@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
744the 64-bit @samp{q} format is only present in the @samp{fildq} (load
745quad integer to stack top) and @samp{fistpq} (store quad integer and pop
746stack) instructions.
747@end itemize
748
749Register to register operations should not use instruction mnemonic suffixes.
750@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
751wrote @samp{fst %st, %st(1)}, since all register to register operations
752use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
753which converts @samp{%st} from 80-bit to 64-bit floating point format,
754then stores the result in the 4 byte location @samp{mem})
755
756@node i386-SIMD
757@section Intel's MMX and AMD's 3DNow! SIMD Operations
758
759@cindex MMX, i386
760@cindex 3DNow!, i386
761@cindex SIMD, i386
55b62671
AJ
762@cindex MMX, x86-64
763@cindex 3DNow!, x86-64
764@cindex SIMD, x86-64
252b5132
RH
765
766@code{@value{AS}} supports Intel's MMX instruction set (SIMD
767instructions for integer data), available on Intel's Pentium MMX
768processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 769Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
770instruction set (SIMD instructions for 32-bit floating point data)
771available on AMD's K6-2 processor and possibly others in the future.
772
773Currently, @code{@value{AS}} does not support Intel's floating point
774SIMD, Katmai (KNI).
775
776The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
777@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
77816-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
779floating point values. The MMX registers cannot be used at the same time
780as the floating point stack.
781
782See Intel and AMD documentation, keeping in mind that the operand order in
783instructions is reversed from the Intel syntax.
784
785@node i386-16bit
786@section Writing 16-bit Code
787
788@cindex i386 16-bit code
789@cindex 16-bit code, i386
790@cindex real-mode code, i386
eecb386c 791@cindex @code{code16gcc} directive, i386
252b5132
RH
792@cindex @code{code16} directive, i386
793@cindex @code{code32} directive, i386
55b62671
AJ
794@cindex @code{code64} directive, i386
795@cindex @code{code64} directive, x86-64
796While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
797or 64-bit x86-64 code depending on the default configuration,
252b5132 798it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
799mode code segments. To do this, put a @samp{.code16} or
800@samp{.code16gcc} directive before the assembly language instructions to
801be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
802normal 32-bit code with the @samp{.code32} directive.
803
804@samp{.code16gcc} provides experimental support for generating 16-bit
805code from gcc, and differs from @samp{.code16} in that @samp{call},
806@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
807@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
808default to 32-bit size. This is so that the stack pointer is
809manipulated in the same way over function calls, allowing access to
810function parameters at the same stack offsets as in 32-bit mode.
811@samp{.code16gcc} also automatically adds address size prefixes where
812necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
813
814The code which @code{@value{AS}} generates in 16-bit mode will not
815necessarily run on a 16-bit pre-80386 processor. To write code that
816runs on such a processor, you must refrain from using @emph{any} 32-bit
817constructs which require @code{@value{AS}} to output address or operand
818size prefixes.
819
820Note that writing 16-bit code instructions by explicitly specifying a
821prefix or an instruction mnemonic suffix within a 32-bit code section
822generates different machine instructions than those generated for a
82316-bit code segment. In a 32-bit code section, the following code
824generates the machine opcode bytes @samp{66 6a 04}, which pushes the
825value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
826
827@smallexample
828 pushw $4
829@end smallexample
830
831The same code in a 16-bit code section would generate the machine
b45619c0 832opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
833is correct since the processor default operand size is assumed to be 16
834bits in a 16-bit code section.
835
836@node i386-Bugs
837@section AT&T Syntax bugs
838
839The UnixWare assembler, and probably other AT&T derived ix86 Unix
840assemblers, generate floating point instructions with reversed source
841and destination registers in certain cases. Unfortunately, gcc and
842possibly many other programs use this reversed syntax, so we're stuck
843with it.
844
845For example
846
847@smallexample
848 fsub %st,%st(3)
849@end smallexample
850@noindent
851results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
852than the expected @samp{%st(3) - %st}. This happens with all the
853non-commutative arithmetic floating point operations with two register
854operands where the source register is @samp{%st} and the destination
855register is @samp{%st(i)}.
856
e413e4e9
AM
857@node i386-Arch
858@section Specifying CPU Architecture
859
860@cindex arch directive, i386
861@cindex i386 arch directive
55b62671
AJ
862@cindex arch directive, x86-64
863@cindex x86-64 arch directive
e413e4e9
AM
864
865@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 866(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
867directive enables a warning when gas detects an instruction that is not
868supported on the CPU specified. The choices for @var{cpu_type} are:
869
870@multitable @columnfractions .20 .20 .20 .20
871@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
872@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 873@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 874@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1ceab344 875@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
7918206c 876@item @samp{amdfam10}
1ceab344 877@item @samp{generic32} @tab @samp{generic64}
9103f4f4 878@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 879@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c0f3af97 880@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
f1f8f695
L
881@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
882@item @samp{.ept}
1ceab344
L
883@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
884@item @samp{.svme} @tab @samp{.abm}
885@item @samp{.padlock}
e413e4e9
AM
886@end multitable
887
fddf5b5b
AM
888Apart from the warning, there are only two other effects on
889@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
890@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
891will automatically use a two byte opcode sequence. The larger three
892byte opcode sequence is used on the 486 (and when no architecture is
893specified) because it executes faster on the 486. Note that you can
894explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
895Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
896@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
897conditional jumps will be promoted when necessary to a two instruction
898sequence consisting of a conditional jump of the opposite sense around
899an unconditional jump to the target.
900
5c6af06e
JB
901Following the CPU architecture (but not a sub-architecture, which are those
902starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
903control automatic promotion of conditional jumps. @samp{jumps} is the
904default, and enables jump promotion; All external jumps will be of the long
905variety, and file-local jumps will be promoted as necessary.
906(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
907byte offset jumps, and warns about file-local conditional jumps that
908@code{@value{AS}} promotes.
fddf5b5b
AM
909Unconditional jumps are treated as for @samp{jumps}.
910
911For example
912
913@smallexample
914 .arch i8086,nojumps
915@end smallexample
e413e4e9 916
252b5132
RH
917@node i386-Notes
918@section Notes
919
920@cindex i386 @code{mul}, @code{imul} instructions
921@cindex @code{mul} instruction, i386
922@cindex @code{imul} instruction, i386
55b62671
AJ
923@cindex @code{mul} instruction, x86-64
924@cindex @code{imul} instruction, x86-64
252b5132 925There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 926instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
927multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
928for @samp{imul}) can be output only in the one operand form. Thus,
929@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
930the expanding multiply would clobber the @samp{%edx} register, and this
931would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
93264-bit product in @samp{%edx:%eax}.
933
934We have added a two operand form of @samp{imul} when the first operand
935is an immediate mode expression and the second operand is a register.
936This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
937example, can be done with @samp{imul $69, %eax} rather than @samp{imul
938$69, %eax, %eax}.
939
This page took 1.554032 seconds and 4 git commands to generate.