Enable Intel PCONFIG instruction.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
219d1afa 1@c Copyright (C) 1991-2018 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
7b458c12
L
126@code{btver1},
127@code{btver2},
9103f4f4
L
128@code{generic32} and
129@code{generic64}.
130
34bca508 131In addition to the basic instruction set, the assembler can be told to
6305a203
L
132accept various extension mnemonics. For example,
133@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
134@var{vmx}. The following extensions are currently supported:
309d3373
JB
135@code{8087},
136@code{287},
137@code{387},
1848e567 138@code{687},
309d3373 139@code{no87},
1848e567
L
140@code{no287},
141@code{no387},
142@code{no687},
6305a203 143@code{mmx},
309d3373 144@code{nommx},
6305a203
L
145@code{sse},
146@code{sse2},
147@code{sse3},
148@code{ssse3},
149@code{sse4.1},
150@code{sse4.2},
151@code{sse4},
309d3373 152@code{nosse},
1848e567
L
153@code{nosse2},
154@code{nosse3},
155@code{nossse3},
156@code{nosse4.1},
157@code{nosse4.2},
158@code{nosse4},
c0f3af97 159@code{avx},
6c30d220 160@code{avx2},
1848e567
L
161@code{noavx},
162@code{noavx2},
e2e1fcde
L
163@code{adx},
164@code{rdseed},
165@code{prfchw},
5c111e37 166@code{smap},
7e8b059b 167@code{mpx},
a0046408 168@code{sha},
8bc52696 169@code{rdpid},
6b40c462 170@code{ptwrite},
603555e5 171@code{cet},
48521003 172@code{gfni},
8dcf1fad 173@code{vaes},
ff1982d5 174@code{vpclmulqdq},
1dfc6506
L
175@code{prefetchwt1},
176@code{clflushopt},
177@code{se1},
c5e7287a 178@code{clwb},
43234a1e
L
179@code{avx512f},
180@code{avx512cd},
181@code{avx512er},
182@code{avx512pf},
1dfc6506
L
183@code{avx512vl},
184@code{avx512bw},
185@code{avx512dq},
2cc1b5aa 186@code{avx512ifma},
14f195c9 187@code{avx512vbmi},
920d2ddc 188@code{avx512_4fmaps},
47acf0bd 189@code{avx512_4vnniw},
620214f7 190@code{avx512_vpopcntdq},
53467f57 191@code{avx512_vbmi2},
8cfcb765 192@code{avx512_vnni},
ee6872be 193@code{avx512_bitalg},
144b71e2
L
194@code{noavx512f},
195@code{noavx512cd},
196@code{noavx512er},
197@code{noavx512pf},
198@code{noavx512vl},
199@code{noavx512bw},
200@code{noavx512dq},
201@code{noavx512ifma},
202@code{noavx512vbmi},
920d2ddc 203@code{noavx512_4fmaps},
47acf0bd 204@code{noavx512_4vnniw},
620214f7 205@code{noavx512_vpopcntdq},
53467f57 206@code{noavx512_vbmi2},
8cfcb765 207@code{noavx512_vnni},
ee6872be 208@code{noavx512_bitalg},
6305a203 209@code{vmx},
8729a6f6 210@code{vmfunc},
6305a203 211@code{smx},
f03fe4c1 212@code{xsave},
c7b8aa3a 213@code{xsaveopt},
1dfc6506
L
214@code{xsavec},
215@code{xsaves},
c0f3af97 216@code{aes},
594ab6a3 217@code{pclmul},
c7b8aa3a
L
218@code{fsgsbase},
219@code{rdrnd},
220@code{f16c},
6c30d220 221@code{bmi2},
c0f3af97 222@code{fma},
f1f8f695
L
223@code{movbe},
224@code{ept},
6c30d220 225@code{lzcnt},
42164a71
L
226@code{hle},
227@code{rtm},
6c30d220 228@code{invpcid},
bd5295b2 229@code{clflush},
9916071f 230@code{mwaitx},
029f3522 231@code{clzero},
3233d7d0 232@code{wbnoinvd},
be3a8dca 233@code{pconfig},
f88c9eb0 234@code{lwp},
5dd85c99
SP
235@code{fma4},
236@code{xop},
60aa667e 237@code{cx16},
bd5295b2 238@code{syscall},
1b7f3fb0 239@code{rdtscp},
6305a203
L
240@code{3dnow},
241@code{3dnowa},
242@code{sse4a},
243@code{sse5},
244@code{svme},
245@code{abm} and
246@code{padlock}.
309d3373
JB
247Note that rather than extending a basic instruction set, the extension
248mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
249
250When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
251@code{.arch} directive will take precedent.
252
253@cindex @samp{-mtune=} option, i386
254@cindex @samp{-mtune=} option, x86-64
255@item -mtune=@var{CPU}
256This option specifies a processor to optimize for. When used in
257conjunction with the @option{-march} option, only instructions
258of the processor specified by the @option{-march} option will be
259generated.
260
6305a203
L
261Valid @var{CPU} values are identical to the processor list of
262@option{-march=@var{CPU}}.
9103f4f4 263
c0f3af97
L
264@cindex @samp{-msse2avx} option, i386
265@cindex @samp{-msse2avx} option, x86-64
266@item -msse2avx
267This option specifies that the assembler should encode SSE instructions
268with VEX prefix.
269
daf50ae7
L
270@cindex @samp{-msse-check=} option, i386
271@cindex @samp{-msse-check=} option, x86-64
272@item -msse-check=@var{none}
1f9bb1ca
AS
273@itemx -msse-check=@var{warning}
274@itemx -msse-check=@var{error}
9aff4b7a 275These options control if the assembler should check SSE instructions.
daf50ae7
L
276@option{-msse-check=@var{none}} will make the assembler not to check SSE
277instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 278will make the assembler issue a warning for any SSE instruction.
daf50ae7 279@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 280for any SSE instruction.
daf50ae7 281
539f890d
L
282@cindex @samp{-mavxscalar=} option, i386
283@cindex @samp{-mavxscalar=} option, x86-64
284@item -mavxscalar=@var{128}
1f9bb1ca 285@itemx -mavxscalar=@var{256}
2aab8acd 286These options control how the assembler should encode scalar AVX
539f890d
L
287instructions. @option{-mavxscalar=@var{128}} will encode scalar
288AVX instructions with 128bit vector length, which is the default.
289@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
290with 256bit vector length.
291
43234a1e
L
292@cindex @samp{-mevexlig=} option, i386
293@cindex @samp{-mevexlig=} option, x86-64
294@item -mevexlig=@var{128}
295@itemx -mevexlig=@var{256}
296@itemx -mevexlig=@var{512}
297These options control how the assembler should encode length-ignored
298(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
299EVEX instructions with 128bit vector length, which is the default.
300@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
301encode LIG EVEX instructions with 256bit and 512bit vector length,
302respectively.
303
304@cindex @samp{-mevexwig=} option, i386
305@cindex @samp{-mevexwig=} option, x86-64
306@item -mevexwig=@var{0}
307@itemx -mevexwig=@var{1}
308These options control how the assembler should encode w-ignored (WIG)
309EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
310EVEX instructions with evex.w = 0, which is the default.
311@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
312evex.w = 1.
313
1efbbeb4
L
314@cindex @samp{-mmnemonic=} option, i386
315@cindex @samp{-mmnemonic=} option, x86-64
316@item -mmnemonic=@var{att}
1f9bb1ca 317@itemx -mmnemonic=@var{intel}
34bca508 318This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
319The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
320take precedent.
321
322@cindex @samp{-msyntax=} option, i386
323@cindex @samp{-msyntax=} option, x86-64
324@item -msyntax=@var{att}
1f9bb1ca 325@itemx -msyntax=@var{intel}
34bca508 326This option specifies instruction syntax when processing instructions.
1efbbeb4
L
327The @code{.att_syntax} and @code{.intel_syntax} directives will
328take precedent.
329
330@cindex @samp{-mnaked-reg} option, i386
331@cindex @samp{-mnaked-reg} option, x86-64
332@item -mnaked-reg
33eaf5de 333This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 334The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 335
7e8b059b
L
336@cindex @samp{-madd-bnd-prefix} option, i386
337@cindex @samp{-madd-bnd-prefix} option, x86-64
338@item -madd-bnd-prefix
339This option forces the assembler to add BND prefix to all branches, even
340if such prefix was not explicitly specified in the source code.
341
8dcea932
L
342@cindex @samp{-mshared} option, i386
343@cindex @samp{-mshared} option, x86-64
344@item -mno-shared
345On ELF target, the assembler normally optimizes out non-PLT relocations
346against defined non-weak global branch targets with default visibility.
347The @samp{-mshared} option tells the assembler to generate code which
348may go into a shared library where all non-weak global branch targets
349with default visibility can be preempted. The resulting code is
350slightly bigger. This option only affects the handling of branch
351instructions.
352
167ad85b
TG
353@cindex @samp{-mbig-obj} option, x86-64
354@item -mbig-obj
355On x86-64 PE/COFF target this option forces the use of big object file
356format, which allows more than 32768 sections.
357
d022bddd
IT
358@cindex @samp{-momit-lock-prefix=} option, i386
359@cindex @samp{-momit-lock-prefix=} option, x86-64
360@item -momit-lock-prefix=@var{no}
361@itemx -momit-lock-prefix=@var{yes}
362These options control how the assembler should encode lock prefix.
363This option is intended as a workaround for processors, that fail on
364lock prefix. This option can only be safely used with single-core,
365single-thread computers
366@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
367@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
368which is the default.
369
e4e00185
AS
370@cindex @samp{-mfence-as-lock-add=} option, i386
371@cindex @samp{-mfence-as-lock-add=} option, x86-64
372@item -mfence-as-lock-add=@var{no}
373@itemx -mfence-as-lock-add=@var{yes}
374These options control how the assembler should encode lfence, mfence and
375sfence.
376@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
377sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
378@samp{lock addl $0x0, (%esp)} in 32-bit mode.
379@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
380sfence as usual, which is the default.
381
0cb4071e
L
382@cindex @samp{-mrelax-relocations=} option, i386
383@cindex @samp{-mrelax-relocations=} option, x86-64
384@item -mrelax-relocations=@var{no}
385@itemx -mrelax-relocations=@var{yes}
386These options control whether the assembler should generate relax
387relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
388R_X86_64_REX_GOTPCRELX, in 64-bit mode.
389@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
390@option{-mrelax-relocations=@var{no}} will not generate relax
391relocations. The default can be controlled by a configure option
392@option{--enable-x86-relax-relocations}.
393
d3d3c6db
IT
394@cindex @samp{-mevexrcig=} option, i386
395@cindex @samp{-mevexrcig=} option, x86-64
396@item -mevexrcig=@var{rne}
397@itemx -mevexrcig=@var{rd}
398@itemx -mevexrcig=@var{ru}
399@itemx -mevexrcig=@var{rz}
400These options control how the assembler should encode SAE-only
401EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
402of EVEX instruction with 00, which is the default.
403@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
404and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
405with 01, 10 and 11 RC bits, respectively.
406
5db04b09
L
407@cindex @samp{-mamd64} option, x86-64
408@cindex @samp{-mintel64} option, x86-64
409@item -mamd64
410@itemx -mintel64
411This option specifies that the assembler should accept only AMD64 or
412Intel64 ISA in 64-bit mode. The default is to accept both.
413
55b62671 414@end table
731caf76 415@c man end
e413e4e9 416
a6c24e68
NC
417@node i386-Directives
418@section x86 specific Directives
419
420@cindex machine directives, x86
421@cindex x86 machine directives
422@table @code
423
424@cindex @code{lcomm} directive, COFF
425@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
426Reserve @var{length} (an absolute expression) bytes for a local common
427denoted by @var{symbol}. The section and value of @var{symbol} are
428those of the new local common. The addresses are allocated in the bss
704209c0
NC
429section, so that at run-time the bytes start off zeroed. Since
430@var{symbol} is not declared global, it is normally not visible to
431@code{@value{LD}}. The optional third parameter, @var{alignment},
432specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
433
434This directive is only available for COFF based x86 targets.
435
102e9361
NC
436@cindex @code{largecomm} directive, ELF
437@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
438This directive behaves in the same way as the @code{comm} directive
439except that the data is placed into the @var{.lbss} section instead of
440the @var{.bss} section @ref{Comm}.
441
442The directive is intended to be used for data which requires a large
443amount of space, and it is only available for ELF based x86_64
444targets.
445
a6c24e68 446@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
447
448@end table
449
252b5132 450@node i386-Syntax
7c31ae13
NC
451@section i386 Syntactical Considerations
452@menu
453* i386-Variations:: AT&T Syntax versus Intel Syntax
454* i386-Chars:: Special Characters
455@end menu
456
457@node i386-Variations
458@subsection AT&T Syntax versus Intel Syntax
252b5132 459
e413e4e9
AM
460@cindex i386 intel_syntax pseudo op
461@cindex intel_syntax pseudo op, i386
462@cindex i386 att_syntax pseudo op
463@cindex att_syntax pseudo op, i386
252b5132
RH
464@cindex i386 syntax compatibility
465@cindex syntax compatibility, i386
55b62671
AJ
466@cindex x86-64 intel_syntax pseudo op
467@cindex intel_syntax pseudo op, x86-64
468@cindex x86-64 att_syntax pseudo op
469@cindex att_syntax pseudo op, x86-64
470@cindex x86-64 syntax compatibility
471@cindex syntax compatibility, x86-64
e413e4e9
AM
472
473@code{@value{AS}} now supports assembly using Intel assembler syntax.
474@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
475back to the usual AT&T mode for compatibility with the output of
476@code{@value{GCC}}. Either of these directives may have an optional
477argument, @code{prefix}, or @code{noprefix} specifying whether registers
478require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
479different from Intel syntax. We mention these differences because
480almost all 80386 documents use Intel syntax. Notable differences
481between the two syntaxes are:
482
483@cindex immediate operands, i386
484@cindex i386 immediate operands
485@cindex register operands, i386
486@cindex i386 register operands
487@cindex jump/call operands, i386
488@cindex i386 jump/call operands
489@cindex operand delimiters, i386
55b62671
AJ
490
491@cindex immediate operands, x86-64
492@cindex x86-64 immediate operands
493@cindex register operands, x86-64
494@cindex x86-64 register operands
495@cindex jump/call operands, x86-64
496@cindex x86-64 jump/call operands
497@cindex operand delimiters, x86-64
252b5132
RH
498@itemize @bullet
499@item
500AT&T immediate operands are preceded by @samp{$}; Intel immediate
501operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
502AT&T register operands are preceded by @samp{%}; Intel register operands
503are undelimited. AT&T absolute (as opposed to PC relative) jump/call
504operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
505
506@cindex i386 source, destination operands
507@cindex source, destination operands; i386
55b62671
AJ
508@cindex x86-64 source, destination operands
509@cindex source, destination operands; x86-64
252b5132
RH
510@item
511AT&T and Intel syntax use the opposite order for source and destination
512operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
513@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
514previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
515instructions with 2 immediate operands, such as the @samp{enter}
516instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
517
518@cindex mnemonic suffixes, i386
519@cindex sizes operands, i386
520@cindex i386 size suffixes
55b62671
AJ
521@cindex mnemonic suffixes, x86-64
522@cindex sizes operands, x86-64
523@cindex x86-64 size suffixes
252b5132
RH
524@item
525In AT&T syntax the size of memory operands is determined from the last
526character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
527@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
528(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
529this by prefixing memory operands (@emph{not} the instruction mnemonics) with
530@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
531Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
532syntax.
252b5132 533
4b06377f
L
534In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
535instruction with the 64-bit displacement or immediate operand.
536
252b5132
RH
537@cindex return instructions, i386
538@cindex i386 jump, call, return
55b62671
AJ
539@cindex return instructions, x86-64
540@cindex x86-64 jump, call, return
252b5132
RH
541@item
542Immediate form long jumps and calls are
543@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
544Intel syntax is
545@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
546instruction
547is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
548@samp{ret far @var{stack-adjust}}.
549
550@cindex sections, i386
551@cindex i386 sections
55b62671
AJ
552@cindex sections, x86-64
553@cindex x86-64 sections
252b5132
RH
554@item
555The AT&T assembler does not provide support for multiple section
556programs. Unix style systems expect all programs to be single sections.
557@end itemize
558
7c31ae13
NC
559@node i386-Chars
560@subsection Special Characters
561
562@cindex line comment character, i386
563@cindex i386 line comment character
564The presence of a @samp{#} appearing anywhere on a line indicates the
565start of a comment that extends to the end of that line.
566
567If a @samp{#} appears as the first character of a line then the whole
568line is treated as a comment, but in this case the line can also be a
569logical line number directive (@pxref{Comments}) or a preprocessor
570control command (@pxref{Preprocessing}).
571
572If the @option{--divide} command line option has not been specified
573then the @samp{/} character appearing anywhere on a line also
574introduces a line comment.
575
576@cindex line separator, i386
577@cindex statement separator, i386
578@cindex i386 line separator
579The @samp{;} character can be used to separate statements on the same
580line.
581
252b5132 582@node i386-Mnemonics
d3b47e2b
L
583@section i386-Mnemonics
584@subsection Instruction Naming
252b5132
RH
585
586@cindex i386 instruction naming
587@cindex instruction naming, i386
55b62671
AJ
588@cindex x86-64 instruction naming
589@cindex instruction naming, x86-64
590
252b5132 591Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
592specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
593and @samp{q} specify byte, word, long and quadruple word operands. If
594no suffix is specified by an instruction then @code{@value{AS}} tries to
595fill in the missing suffix based on the destination register operand
596(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
597to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
598@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
599assembler which assumes that a missing mnemonic suffix implies long
600operand size. (This incompatibility does not affect compiler output
601since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
602
603Almost all instructions have the same names in AT&T and Intel format.
604There are a few exceptions. The sign extend and zero extend
605instructions need two sizes to specify them. They need a size to
606sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
607is accomplished by using two instruction mnemonic suffixes in AT&T
608syntax. Base names for sign extend and zero extend are
609@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
610and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
611are tacked on to this base name, the @emph{from} suffix before the
612@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
613``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
614thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
615@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
616@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
617quadruple word).
252b5132 618
b6169b20
L
619@cindex encoding options, i386
620@cindex encoding options, x86-64
621
86fa6981
L
622Different encoding options can be specified via pseudo prefixes:
623
624@itemize @bullet
625@item
626@samp{@{disp8@}} -- prefer 8-bit displacement.
627
628@item
629@samp{@{disp32@}} -- prefer 32-bit displacement.
630
631@item
632@samp{@{load@}} -- prefer load-form instruction.
633
634@item
635@samp{@{store@}} -- prefer store-form instruction.
636
637@item
638@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
639
640@item
641@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
642
643@item
644@samp{@{evex@}} -- encode with EVEX prefix.
645@end itemize
b6169b20 646
252b5132
RH
647@cindex conversion instructions, i386
648@cindex i386 conversion instructions
55b62671
AJ
649@cindex conversion instructions, x86-64
650@cindex x86-64 conversion instructions
252b5132
RH
651The Intel-syntax conversion instructions
652
653@itemize @bullet
654@item
655@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
656
657@item
658@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
659
660@item
661@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
662
663@item
664@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
665
666@item
667@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
668(x86-64 only),
669
670@item
d5f0cf92 671@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 672@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
673@end itemize
674
675@noindent
55b62671
AJ
676are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
677@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
678instructions.
252b5132
RH
679
680@cindex jump instructions, i386
681@cindex call instructions, i386
55b62671
AJ
682@cindex jump instructions, x86-64
683@cindex call instructions, x86-64
252b5132
RH
684Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
685AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
686convention.
687
d3b47e2b 688@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
689
690@cindex i386 mnemonic compatibility
691@cindex mnemonic compatibility, i386
692
693@code{@value{AS}} supports assembly using Intel mnemonic.
694@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
695@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
696syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
697Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
698@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
699@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
700assembler with different mnemonics from those in Intel IA32 specification.
701@code{@value{GCC}} generates those instructions with AT&T mnemonic.
702
252b5132
RH
703@node i386-Regs
704@section Register Naming
705
706@cindex i386 registers
707@cindex registers, i386
55b62671
AJ
708@cindex x86-64 registers
709@cindex registers, x86-64
252b5132
RH
710Register operands are always prefixed with @samp{%}. The 80386 registers
711consist of
712
713@itemize @bullet
714@item
715the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
716@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
717frame pointer), and @samp{%esp} (the stack pointer).
718
719@item
720the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
721@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
722
723@item
724the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
725@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
726are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
727@samp{%cx}, and @samp{%dx})
728
729@item
730the 6 section registers @samp{%cs} (code section), @samp{%ds}
731(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
732and @samp{%gs}.
733
734@item
4bde3cdd
UD
735the 5 processor control registers @samp{%cr0}, @samp{%cr2},
736@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
737
738@item
739the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
740@samp{%db3}, @samp{%db6}, and @samp{%db7}.
741
742@item
743the 2 test registers @samp{%tr6} and @samp{%tr7}.
744
745@item
746the 8 floating point register stack @samp{%st} or equivalently
747@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
748@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
749These registers are overloaded by 8 MMX registers @samp{%mm0},
750@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
751@samp{%mm6} and @samp{%mm7}.
752
753@item
4bde3cdd 754the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
755@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
756@end itemize
757
758The AMD x86-64 architecture extends the register set by:
759
760@itemize @bullet
761@item
762enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
763accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
764@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
765pointer)
766
767@item
768the 8 extended registers @samp{%r8}--@samp{%r15}.
769
770@item
4bde3cdd 771the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
772
773@item
4bde3cdd 774the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
775
776@item
4bde3cdd 777the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
778
779@item
780the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
781
782@item
783the 8 debug registers: @samp{%db8}--@samp{%db15}.
784
785@item
4bde3cdd
UD
786the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
787@end itemize
788
789With the AVX extensions more registers were made available:
790
791@itemize @bullet
792
793@item
794the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
795available in 32-bit mode). The bottom 128 bits are overlaid with the
796@samp{xmm0}--@samp{xmm15} registers.
797
798@end itemize
799
800The AVX2 extensions made in 64-bit mode more registers available:
801
802@itemize @bullet
803
804@item
805the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
806registers @samp{%ymm16}--@samp{%ymm31}.
807
808@end itemize
809
810The AVX512 extensions added the following registers:
811
812@itemize @bullet
813
814@item
815the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
816available in 32-bit mode). The bottom 128 bits are overlaid with the
817@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
818overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
819
820@item
821the 8 mask registers @samp{%k0}--@samp{%k7}.
822
252b5132
RH
823@end itemize
824
825@node i386-Prefixes
826@section Instruction Prefixes
827
828@cindex i386 instruction prefixes
829@cindex instruction prefixes, i386
830@cindex prefixes, i386
831Instruction prefixes are used to modify the following instruction. They
832are used to repeat string instructions, to provide section overrides, to
833perform bus lock operations, and to change operand and address sizes.
834(Most instructions that normally operate on 32-bit operands will use
83516-bit operands if the instruction has an ``operand size'' prefix.)
836Instruction prefixes are best written on the same line as the instruction
837they act upon. For example, the @samp{scas} (scan string) instruction is
838repeated with:
839
840@smallexample
841 repne scas %es:(%edi),%al
842@end smallexample
843
844You may also place prefixes on the lines immediately preceding the
845instruction, but this circumvents checks that @code{@value{AS}} does
846with prefixes, and will not work with all prefixes.
847
848Here is a list of instruction prefixes:
849
850@cindex section override prefixes, i386
851@itemize @bullet
852@item
853Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
854@samp{fs}, @samp{gs}. These are automatically added by specifying
855using the @var{section}:@var{memory-operand} form for memory references.
856
857@cindex size prefixes, i386
858@item
859Operand/Address size prefixes @samp{data16} and @samp{addr16}
860change 32-bit operands/addresses into 16-bit operands/addresses,
861while @samp{data32} and @samp{addr32} change 16-bit ones (in a
862@code{.code16} section) into 32-bit operands/addresses. These prefixes
863@emph{must} appear on the same line of code as the instruction they
864modify. For example, in a 16-bit @code{.code16} section, you might
865write:
866
867@smallexample
868 addr32 jmpl *(%ebx)
869@end smallexample
870
871@cindex bus lock prefixes, i386
872@cindex inhibiting interrupts, i386
873@item
874The bus lock prefix @samp{lock} inhibits interrupts during execution of
875the instruction it precedes. (This is only valid with certain
876instructions; see a 80386 manual for details).
877
878@cindex coprocessor wait, i386
879@item
880The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
881complete the current instruction. This should never be needed for the
88280386/80387 combination.
883
884@cindex repeat prefixes, i386
885@item
886The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
887to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
888times if the current address size is 16-bits).
55b62671
AJ
889@cindex REX prefixes, i386
890@item
891The @samp{rex} family of prefixes is used by x86-64 to encode
892extensions to i386 instruction set. The @samp{rex} prefix has four
893bits --- an operand size overwrite (@code{64}) used to change operand size
894from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
895register set.
896
897You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
898instruction emits @samp{rex} prefix with all the bits set. By omitting
899the @code{64}, @code{x}, @code{y} or @code{z} you may write other
900prefixes as well. Normally, there is no need to write the prefixes
901explicitly, since gas will automatically generate them based on the
902instruction operands.
252b5132
RH
903@end itemize
904
905@node i386-Memory
906@section Memory References
907
908@cindex i386 memory references
909@cindex memory references, i386
55b62671
AJ
910@cindex x86-64 memory references
911@cindex memory references, x86-64
252b5132
RH
912An Intel syntax indirect memory reference of the form
913
914@smallexample
915@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
916@end smallexample
917
918@noindent
919is translated into the AT&T syntax
920
921@smallexample
922@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
923@end smallexample
924
925@noindent
926where @var{base} and @var{index} are the optional 32-bit base and
927index registers, @var{disp} is the optional displacement, and
928@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
929to calculate the address of the operand. If no @var{scale} is
930specified, @var{scale} is taken to be 1. @var{section} specifies the
931optional section register for the memory operand, and may override the
932default section register (see a 80386 manual for section register
933defaults). Note that section overrides in AT&T syntax @emph{must}
934be preceded by a @samp{%}. If you specify a section override which
935coincides with the default section register, @code{@value{AS}} does @emph{not}
936output any section register override prefixes to assemble the given
937instruction. Thus, section overrides can be specified to emphasize which
938section register is used for a given memory operand.
939
940Here are some examples of Intel and AT&T style memory references:
941
942@table @asis
943@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
944@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
945missing, and the default section is used (@samp{%ss} for addressing with
946@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
947
948@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
949@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
950@samp{foo}. All other fields are missing. The section register here
951defaults to @samp{%ds}.
952
953@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
954This uses the value pointed to by @samp{foo} as a memory operand.
955Note that @var{base} and @var{index} are both missing, but there is only
956@emph{one} @samp{,}. This is a syntactic exception.
957
958@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
959This selects the contents of the variable @samp{foo} with section
960register @var{section} being @samp{%gs}.
961@end table
962
963Absolute (as opposed to PC relative) call and jump operands must be
964prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
965always chooses PC relative addressing for jump/call labels.
966
967Any instruction that has a memory operand, but no register operand,
55b62671
AJ
968@emph{must} specify its size (byte, word, long, or quadruple) with an
969instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
970respectively).
971
972The x86-64 architecture adds an RIP (instruction pointer relative)
973addressing. This addressing mode is specified by using @samp{rip} as a
974base register. Only constant offsets are valid. For example:
975
976@table @asis
977@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
978Points to the address 1234 bytes past the end of the current
979instruction.
980
981@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
982Points to the @code{symbol} in RIP relative way, this is shorter than
983the default absolute addressing.
984@end table
985
986Other addressing modes remain unchanged in x86-64 architecture, except
987registers used are 64-bit instead of 32-bit.
252b5132 988
fddf5b5b 989@node i386-Jumps
252b5132
RH
990@section Handling of Jump Instructions
991
992@cindex jump optimization, i386
993@cindex i386 jump optimization
55b62671
AJ
994@cindex jump optimization, x86-64
995@cindex x86-64 jump optimization
252b5132
RH
996Jump instructions are always optimized to use the smallest possible
997displacements. This is accomplished by using byte (8-bit) displacement
998jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 999is insufficient a long displacement is used. We do not support
252b5132
RH
1000word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1001instruction with the @samp{data16} instruction prefix), since the 80386
1002insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1003is added. (See also @pxref{i386-Arch})
252b5132
RH
1004
1005Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1006@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1007displacements, so that if you use these instructions (@code{@value{GCC}} does
1008not use them) you may get an error message (and incorrect code). The AT&T
100980386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1010to
1011
1012@smallexample
1013 jcxz cx_zero
1014 jmp cx_nonzero
1015cx_zero: jmp foo
1016cx_nonzero:
1017@end smallexample
1018
1019@node i386-Float
1020@section Floating Point
1021
1022@cindex i386 floating point
1023@cindex floating point, i386
55b62671
AJ
1024@cindex x86-64 floating point
1025@cindex floating point, x86-64
252b5132
RH
1026All 80387 floating point types except packed BCD are supported.
1027(BCD support may be added without much difficulty). These data
1028types are 16-, 32-, and 64- bit integers, and single (32-bit),
1029double (64-bit), and extended (80-bit) precision floating point.
1030Each supported type has an instruction mnemonic suffix and a constructor
1031associated with it. Instruction mnemonic suffixes specify the operand's
1032data type. Constructors build these data types into memory.
1033
1034@cindex @code{float} directive, i386
1035@cindex @code{single} directive, i386
1036@cindex @code{double} directive, i386
1037@cindex @code{tfloat} directive, i386
55b62671
AJ
1038@cindex @code{float} directive, x86-64
1039@cindex @code{single} directive, x86-64
1040@cindex @code{double} directive, x86-64
1041@cindex @code{tfloat} directive, x86-64
252b5132
RH
1042@itemize @bullet
1043@item
1044Floating point constructors are @samp{.float} or @samp{.single},
1045@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1046These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1047and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1048only supports this format via the @samp{fldt} (load 80-bit real to stack
1049top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1050
1051@cindex @code{word} directive, i386
1052@cindex @code{long} directive, i386
1053@cindex @code{int} directive, i386
1054@cindex @code{quad} directive, i386
55b62671
AJ
1055@cindex @code{word} directive, x86-64
1056@cindex @code{long} directive, x86-64
1057@cindex @code{int} directive, x86-64
1058@cindex @code{quad} directive, x86-64
252b5132
RH
1059@item
1060Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1061@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1062corresponding instruction mnemonic suffixes are @samp{s} (single),
1063@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1064the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1065quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1066stack) instructions.
1067@end itemize
1068
1069Register to register operations should not use instruction mnemonic suffixes.
1070@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1071wrote @samp{fst %st, %st(1)}, since all register to register operations
1072use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1073which converts @samp{%st} from 80-bit to 64-bit floating point format,
1074then stores the result in the 4 byte location @samp{mem})
1075
1076@node i386-SIMD
1077@section Intel's MMX and AMD's 3DNow! SIMD Operations
1078
1079@cindex MMX, i386
1080@cindex 3DNow!, i386
1081@cindex SIMD, i386
55b62671
AJ
1082@cindex MMX, x86-64
1083@cindex 3DNow!, x86-64
1084@cindex SIMD, x86-64
252b5132
RH
1085
1086@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1087instructions for integer data), available on Intel's Pentium MMX
1088processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1089Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1090instruction set (SIMD instructions for 32-bit floating point data)
1091available on AMD's K6-2 processor and possibly others in the future.
1092
1093Currently, @code{@value{AS}} does not support Intel's floating point
1094SIMD, Katmai (KNI).
1095
1096The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1097@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
109816-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1099floating point values. The MMX registers cannot be used at the same time
1100as the floating point stack.
1101
1102See Intel and AMD documentation, keeping in mind that the operand order in
1103instructions is reversed from the Intel syntax.
1104
f88c9eb0
SP
1105@node i386-LWP
1106@section AMD's Lightweight Profiling Instructions
1107
1108@cindex LWP, i386
1109@cindex LWP, x86-64
1110
1111@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1112instruction set, available on AMD's Family 15h (Orochi) processors.
1113
1114LWP enables applications to collect and manage performance data, and
1115react to performance events. The collection of performance data
1116requires no context switches. LWP runs in the context of a thread and
1117so several counters can be used independently across multiple threads.
1118LWP can be used in both 64-bit and legacy 32-bit modes.
1119
1120For detailed information on the LWP instruction set, see the
1121@cite{AMD Lightweight Profiling Specification} available at
1122@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1123
87973e9f
QN
1124@node i386-BMI
1125@section Bit Manipulation Instructions
1126
1127@cindex BMI, i386
1128@cindex BMI, x86-64
1129
1130@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1131
1132BMI instructions provide several instructions implementing individual
1133bit manipulation operations such as isolation, masking, setting, or
34bca508 1134resetting.
87973e9f
QN
1135
1136@c Need to add a specification citation here when available.
1137
2a2a0f38
QN
1138@node i386-TBM
1139@section AMD's Trailing Bit Manipulation Instructions
1140
1141@cindex TBM, i386
1142@cindex TBM, x86-64
1143
1144@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1145instruction set, available on AMD's BDVER2 processors (Trinity and
1146Viperfish).
1147
1148TBM instructions provide instructions implementing individual bit
1149manipulation operations such as isolating, masking, setting, resetting,
1150complementing, and operations on trailing zeros and ones.
1151
1152@c Need to add a specification citation here when available.
87973e9f 1153
252b5132
RH
1154@node i386-16bit
1155@section Writing 16-bit Code
1156
1157@cindex i386 16-bit code
1158@cindex 16-bit code, i386
1159@cindex real-mode code, i386
eecb386c 1160@cindex @code{code16gcc} directive, i386
252b5132
RH
1161@cindex @code{code16} directive, i386
1162@cindex @code{code32} directive, i386
55b62671
AJ
1163@cindex @code{code64} directive, i386
1164@cindex @code{code64} directive, x86-64
1165While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1166or 64-bit x86-64 code depending on the default configuration,
252b5132 1167it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1168mode code segments. To do this, put a @samp{.code16} or
1169@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1170be run in 16-bit mode. You can switch @code{@value{AS}} to writing
117132-bit code with the @samp{.code32} directive or 64-bit code with the
1172@samp{.code64} directive.
eecb386c
AM
1173
1174@samp{.code16gcc} provides experimental support for generating 16-bit
1175code from gcc, and differs from @samp{.code16} in that @samp{call},
1176@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1177@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1178default to 32-bit size. This is so that the stack pointer is
1179manipulated in the same way over function calls, allowing access to
1180function parameters at the same stack offsets as in 32-bit mode.
1181@samp{.code16gcc} also automatically adds address size prefixes where
1182necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1183
1184The code which @code{@value{AS}} generates in 16-bit mode will not
1185necessarily run on a 16-bit pre-80386 processor. To write code that
1186runs on such a processor, you must refrain from using @emph{any} 32-bit
1187constructs which require @code{@value{AS}} to output address or operand
1188size prefixes.
1189
1190Note that writing 16-bit code instructions by explicitly specifying a
1191prefix or an instruction mnemonic suffix within a 32-bit code section
1192generates different machine instructions than those generated for a
119316-bit code segment. In a 32-bit code section, the following code
1194generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1195value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1196
1197@smallexample
1198 pushw $4
1199@end smallexample
1200
1201The same code in a 16-bit code section would generate the machine
b45619c0 1202opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1203is correct since the processor default operand size is assumed to be 16
1204bits in a 16-bit code section.
1205
e413e4e9
AM
1206@node i386-Arch
1207@section Specifying CPU Architecture
1208
1209@cindex arch directive, i386
1210@cindex i386 arch directive
55b62671
AJ
1211@cindex arch directive, x86-64
1212@cindex x86-64 arch directive
e413e4e9
AM
1213
1214@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1215(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1216directive enables a warning when gas detects an instruction that is not
1217supported on the CPU specified. The choices for @var{cpu_type} are:
1218
1219@multitable @columnfractions .20 .20 .20 .20
1220@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1221@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1222@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1223@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1224@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1225@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1226@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1227@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1228@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1229@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1230@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1231@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1232@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1233@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1234@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1235@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1236@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1237@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1238@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1239@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1240@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1241@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1242@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
ee6872be 1243@item @samp{.avx512_bitalg}
d777820b 1244@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
be3a8dca 1245@item @samp{.wbnoinvd} @tab @samp{.pconfig}
d777820b 1246@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1ceab344 1247@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1248@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1249@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
d777820b 1250@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1251@end multitable
1252
fddf5b5b
AM
1253Apart from the warning, there are only two other effects on
1254@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1255@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1256will automatically use a two byte opcode sequence. The larger three
1257byte opcode sequence is used on the 486 (and when no architecture is
1258specified) because it executes faster on the 486. Note that you can
1259explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1260Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1261@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1262conditional jumps will be promoted when necessary to a two instruction
1263sequence consisting of a conditional jump of the opposite sense around
1264an unconditional jump to the target.
1265
5c6af06e
JB
1266Following the CPU architecture (but not a sub-architecture, which are those
1267starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1268control automatic promotion of conditional jumps. @samp{jumps} is the
1269default, and enables jump promotion; All external jumps will be of the long
1270variety, and file-local jumps will be promoted as necessary.
1271(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1272byte offset jumps, and warns about file-local conditional jumps that
1273@code{@value{AS}} promotes.
fddf5b5b
AM
1274Unconditional jumps are treated as for @samp{jumps}.
1275
1276For example
1277
1278@smallexample
1279 .arch i8086,nojumps
1280@end smallexample
e413e4e9 1281
5c9352f3
AM
1282@node i386-Bugs
1283@section AT&T Syntax bugs
1284
1285The UnixWare assembler, and probably other AT&T derived ix86 Unix
1286assemblers, generate floating point instructions with reversed source
1287and destination registers in certain cases. Unfortunately, gcc and
1288possibly many other programs use this reversed syntax, so we're stuck
1289with it.
1290
1291For example
1292
1293@smallexample
1294 fsub %st,%st(3)
1295@end smallexample
1296@noindent
1297results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1298than the expected @samp{%st(3) - %st}. This happens with all the
1299non-commutative arithmetic floating point operations with two register
1300operands where the source register is @samp{%st} and the destination
1301register is @samp{%st(i)}.
1302
252b5132
RH
1303@node i386-Notes
1304@section Notes
1305
1306@cindex i386 @code{mul}, @code{imul} instructions
1307@cindex @code{mul} instruction, i386
1308@cindex @code{imul} instruction, i386
55b62671
AJ
1309@cindex @code{mul} instruction, x86-64
1310@cindex @code{imul} instruction, x86-64
252b5132 1311There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1312instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1313multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1314for @samp{imul}) can be output only in the one operand form. Thus,
1315@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1316the expanding multiply would clobber the @samp{%edx} register, and this
1317would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
131864-bit product in @samp{%edx:%eax}.
1319
1320We have added a two operand form of @samp{imul} when the first operand
1321is an immediate mode expression and the second operand is a register.
1322This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1323example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1324$69, %eax, %eax}.
1325
This page took 0.857919 seconds and 4 git commands to generate.