Add AMD bdver4 support.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
9aff4b7a 1@c Copyright 1991-2013 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
9103f4f4
L
113@code{k6},
114@code{k6_2},
115@code{athlon},
9103f4f4
L
116@code{opteron},
117@code{k8},
1ceab344 118@code{amdfam10},
68339fdf 119@code{bdver1},
af2f724e 120@code{bdver2},
5e5c50d3 121@code{bdver3},
c7b0bd56 122@code{bdver4},
7b458c12
L
123@code{btver1},
124@code{btver2},
9103f4f4
L
125@code{generic32} and
126@code{generic64}.
127
34bca508 128In addition to the basic instruction set, the assembler can be told to
6305a203
L
129accept various extension mnemonics. For example,
130@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
131@var{vmx}. The following extensions are currently supported:
309d3373
JB
132@code{8087},
133@code{287},
134@code{387},
135@code{no87},
6305a203 136@code{mmx},
309d3373 137@code{nommx},
6305a203
L
138@code{sse},
139@code{sse2},
140@code{sse3},
141@code{ssse3},
142@code{sse4.1},
143@code{sse4.2},
144@code{sse4},
309d3373 145@code{nosse},
c0f3af97 146@code{avx},
6c30d220 147@code{avx2},
e2e1fcde
L
148@code{adx},
149@code{rdseed},
150@code{prfchw},
5c111e37 151@code{smap},
7e8b059b 152@code{mpx},
a0046408 153@code{sha},
43234a1e
L
154@code{avx512f},
155@code{avx512cd},
156@code{avx512er},
157@code{avx512pf},
309d3373 158@code{noavx},
6305a203 159@code{vmx},
8729a6f6 160@code{vmfunc},
6305a203 161@code{smx},
f03fe4c1 162@code{xsave},
c7b8aa3a 163@code{xsaveopt},
c0f3af97 164@code{aes},
594ab6a3 165@code{pclmul},
c7b8aa3a
L
166@code{fsgsbase},
167@code{rdrnd},
168@code{f16c},
6c30d220 169@code{bmi2},
c0f3af97 170@code{fma},
f1f8f695
L
171@code{movbe},
172@code{ept},
6c30d220 173@code{lzcnt},
42164a71
L
174@code{hle},
175@code{rtm},
6c30d220 176@code{invpcid},
bd5295b2 177@code{clflush},
f88c9eb0 178@code{lwp},
5dd85c99
SP
179@code{fma4},
180@code{xop},
60aa667e 181@code{cx16},
bd5295b2 182@code{syscall},
1b7f3fb0 183@code{rdtscp},
6305a203
L
184@code{3dnow},
185@code{3dnowa},
186@code{sse4a},
187@code{sse5},
188@code{svme},
189@code{abm} and
190@code{padlock}.
309d3373
JB
191Note that rather than extending a basic instruction set, the extension
192mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
193
194When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
195@code{.arch} directive will take precedent.
196
197@cindex @samp{-mtune=} option, i386
198@cindex @samp{-mtune=} option, x86-64
199@item -mtune=@var{CPU}
200This option specifies a processor to optimize for. When used in
201conjunction with the @option{-march} option, only instructions
202of the processor specified by the @option{-march} option will be
203generated.
204
6305a203
L
205Valid @var{CPU} values are identical to the processor list of
206@option{-march=@var{CPU}}.
9103f4f4 207
c0f3af97
L
208@cindex @samp{-msse2avx} option, i386
209@cindex @samp{-msse2avx} option, x86-64
210@item -msse2avx
211This option specifies that the assembler should encode SSE instructions
212with VEX prefix.
213
daf50ae7
L
214@cindex @samp{-msse-check=} option, i386
215@cindex @samp{-msse-check=} option, x86-64
216@item -msse-check=@var{none}
1f9bb1ca
AS
217@itemx -msse-check=@var{warning}
218@itemx -msse-check=@var{error}
9aff4b7a 219These options control if the assembler should check SSE instructions.
daf50ae7
L
220@option{-msse-check=@var{none}} will make the assembler not to check SSE
221instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 222will make the assembler issue a warning for any SSE instruction.
daf50ae7 223@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 224for any SSE instruction.
daf50ae7 225
539f890d
L
226@cindex @samp{-mavxscalar=} option, i386
227@cindex @samp{-mavxscalar=} option, x86-64
228@item -mavxscalar=@var{128}
1f9bb1ca 229@itemx -mavxscalar=@var{256}
2aab8acd 230These options control how the assembler should encode scalar AVX
539f890d
L
231instructions. @option{-mavxscalar=@var{128}} will encode scalar
232AVX instructions with 128bit vector length, which is the default.
233@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
234with 256bit vector length.
235
43234a1e
L
236@cindex @samp{-mevexlig=} option, i386
237@cindex @samp{-mevexlig=} option, x86-64
238@item -mevexlig=@var{128}
239@itemx -mevexlig=@var{256}
240@itemx -mevexlig=@var{512}
241These options control how the assembler should encode length-ignored
242(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
243EVEX instructions with 128bit vector length, which is the default.
244@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
245encode LIG EVEX instructions with 256bit and 512bit vector length,
246respectively.
247
248@cindex @samp{-mevexwig=} option, i386
249@cindex @samp{-mevexwig=} option, x86-64
250@item -mevexwig=@var{0}
251@itemx -mevexwig=@var{1}
252These options control how the assembler should encode w-ignored (WIG)
253EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
254EVEX instructions with evex.w = 0, which is the default.
255@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
256evex.w = 1.
257
1efbbeb4
L
258@cindex @samp{-mmnemonic=} option, i386
259@cindex @samp{-mmnemonic=} option, x86-64
260@item -mmnemonic=@var{att}
1f9bb1ca 261@itemx -mmnemonic=@var{intel}
34bca508 262This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
263The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
264take precedent.
265
266@cindex @samp{-msyntax=} option, i386
267@cindex @samp{-msyntax=} option, x86-64
268@item -msyntax=@var{att}
1f9bb1ca 269@itemx -msyntax=@var{intel}
34bca508 270This option specifies instruction syntax when processing instructions.
1efbbeb4
L
271The @code{.att_syntax} and @code{.intel_syntax} directives will
272take precedent.
273
274@cindex @samp{-mnaked-reg} option, i386
275@cindex @samp{-mnaked-reg} option, x86-64
276@item -mnaked-reg
277This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 278The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 279
7e8b059b
L
280@cindex @samp{-madd-bnd-prefix} option, i386
281@cindex @samp{-madd-bnd-prefix} option, x86-64
282@item -madd-bnd-prefix
283This option forces the assembler to add BND prefix to all branches, even
284if such prefix was not explicitly specified in the source code.
285
55b62671 286@end table
731caf76 287@c man end
e413e4e9 288
a6c24e68
NC
289@node i386-Directives
290@section x86 specific Directives
291
292@cindex machine directives, x86
293@cindex x86 machine directives
294@table @code
295
296@cindex @code{lcomm} directive, COFF
297@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
298Reserve @var{length} (an absolute expression) bytes for a local common
299denoted by @var{symbol}. The section and value of @var{symbol} are
300those of the new local common. The addresses are allocated in the bss
704209c0
NC
301section, so that at run-time the bytes start off zeroed. Since
302@var{symbol} is not declared global, it is normally not visible to
303@code{@value{LD}}. The optional third parameter, @var{alignment},
304specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
305
306This directive is only available for COFF based x86 targets.
307
308@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
309@c .largecomm
310
311@end table
312
252b5132 313@node i386-Syntax
7c31ae13
NC
314@section i386 Syntactical Considerations
315@menu
316* i386-Variations:: AT&T Syntax versus Intel Syntax
317* i386-Chars:: Special Characters
318@end menu
319
320@node i386-Variations
321@subsection AT&T Syntax versus Intel Syntax
252b5132 322
e413e4e9
AM
323@cindex i386 intel_syntax pseudo op
324@cindex intel_syntax pseudo op, i386
325@cindex i386 att_syntax pseudo op
326@cindex att_syntax pseudo op, i386
252b5132
RH
327@cindex i386 syntax compatibility
328@cindex syntax compatibility, i386
55b62671
AJ
329@cindex x86-64 intel_syntax pseudo op
330@cindex intel_syntax pseudo op, x86-64
331@cindex x86-64 att_syntax pseudo op
332@cindex att_syntax pseudo op, x86-64
333@cindex x86-64 syntax compatibility
334@cindex syntax compatibility, x86-64
e413e4e9
AM
335
336@code{@value{AS}} now supports assembly using Intel assembler syntax.
337@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
338back to the usual AT&T mode for compatibility with the output of
339@code{@value{GCC}}. Either of these directives may have an optional
340argument, @code{prefix}, or @code{noprefix} specifying whether registers
341require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
342different from Intel syntax. We mention these differences because
343almost all 80386 documents use Intel syntax. Notable differences
344between the two syntaxes are:
345
346@cindex immediate operands, i386
347@cindex i386 immediate operands
348@cindex register operands, i386
349@cindex i386 register operands
350@cindex jump/call operands, i386
351@cindex i386 jump/call operands
352@cindex operand delimiters, i386
55b62671
AJ
353
354@cindex immediate operands, x86-64
355@cindex x86-64 immediate operands
356@cindex register operands, x86-64
357@cindex x86-64 register operands
358@cindex jump/call operands, x86-64
359@cindex x86-64 jump/call operands
360@cindex operand delimiters, x86-64
252b5132
RH
361@itemize @bullet
362@item
363AT&T immediate operands are preceded by @samp{$}; Intel immediate
364operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
365AT&T register operands are preceded by @samp{%}; Intel register operands
366are undelimited. AT&T absolute (as opposed to PC relative) jump/call
367operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
368
369@cindex i386 source, destination operands
370@cindex source, destination operands; i386
55b62671
AJ
371@cindex x86-64 source, destination operands
372@cindex source, destination operands; x86-64
252b5132
RH
373@item
374AT&T and Intel syntax use the opposite order for source and destination
375operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
376@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
377previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
378instructions with 2 immediate operands, such as the @samp{enter}
379instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
380
381@cindex mnemonic suffixes, i386
382@cindex sizes operands, i386
383@cindex i386 size suffixes
55b62671
AJ
384@cindex mnemonic suffixes, x86-64
385@cindex sizes operands, x86-64
386@cindex x86-64 size suffixes
252b5132
RH
387@item
388In AT&T syntax the size of memory operands is determined from the last
389character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
390@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
391(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
392this by prefixing memory operands (@emph{not} the instruction mnemonics) with
393@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
394Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
395syntax.
252b5132 396
4b06377f
L
397In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
398instruction with the 64-bit displacement or immediate operand.
399
252b5132
RH
400@cindex return instructions, i386
401@cindex i386 jump, call, return
55b62671
AJ
402@cindex return instructions, x86-64
403@cindex x86-64 jump, call, return
252b5132
RH
404@item
405Immediate form long jumps and calls are
406@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
407Intel syntax is
408@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
409instruction
410is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
411@samp{ret far @var{stack-adjust}}.
412
413@cindex sections, i386
414@cindex i386 sections
55b62671
AJ
415@cindex sections, x86-64
416@cindex x86-64 sections
252b5132
RH
417@item
418The AT&T assembler does not provide support for multiple section
419programs. Unix style systems expect all programs to be single sections.
420@end itemize
421
7c31ae13
NC
422@node i386-Chars
423@subsection Special Characters
424
425@cindex line comment character, i386
426@cindex i386 line comment character
427The presence of a @samp{#} appearing anywhere on a line indicates the
428start of a comment that extends to the end of that line.
429
430If a @samp{#} appears as the first character of a line then the whole
431line is treated as a comment, but in this case the line can also be a
432logical line number directive (@pxref{Comments}) or a preprocessor
433control command (@pxref{Preprocessing}).
434
435If the @option{--divide} command line option has not been specified
436then the @samp{/} character appearing anywhere on a line also
437introduces a line comment.
438
439@cindex line separator, i386
440@cindex statement separator, i386
441@cindex i386 line separator
442The @samp{;} character can be used to separate statements on the same
443line.
444
252b5132
RH
445@node i386-Mnemonics
446@section Instruction Naming
447
448@cindex i386 instruction naming
449@cindex instruction naming, i386
55b62671
AJ
450@cindex x86-64 instruction naming
451@cindex instruction naming, x86-64
452
252b5132 453Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
454specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
455and @samp{q} specify byte, word, long and quadruple word operands. If
456no suffix is specified by an instruction then @code{@value{AS}} tries to
457fill in the missing suffix based on the destination register operand
458(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
459to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
460@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
461assembler which assumes that a missing mnemonic suffix implies long
462operand size. (This incompatibility does not affect compiler output
463since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
464
465Almost all instructions have the same names in AT&T and Intel format.
466There are a few exceptions. The sign extend and zero extend
467instructions need two sizes to specify them. They need a size to
468sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
469is accomplished by using two instruction mnemonic suffixes in AT&T
470syntax. Base names for sign extend and zero extend are
471@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
472and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
473are tacked on to this base name, the @emph{from} suffix before the
474@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
475``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
476thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
477@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
478@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
479quadruple word).
252b5132 480
b6169b20
L
481@cindex encoding options, i386
482@cindex encoding options, x86-64
483
484Different encoding options can be specified via optional mnemonic
485suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
486moving from one register to another. @samp{.d8} or @samp{.d32} suffix
487prefers 8bit or 32bit displacement in encoding.
b6169b20 488
252b5132
RH
489@cindex conversion instructions, i386
490@cindex i386 conversion instructions
55b62671
AJ
491@cindex conversion instructions, x86-64
492@cindex x86-64 conversion instructions
252b5132
RH
493The Intel-syntax conversion instructions
494
495@itemize @bullet
496@item
497@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
498
499@item
500@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
501
502@item
503@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
504
505@item
506@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
507
508@item
509@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
510(x86-64 only),
511
512@item
d5f0cf92 513@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 514@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
515@end itemize
516
517@noindent
55b62671
AJ
518are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
519@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
520instructions.
252b5132
RH
521
522@cindex jump instructions, i386
523@cindex call instructions, i386
55b62671
AJ
524@cindex jump instructions, x86-64
525@cindex call instructions, x86-64
252b5132
RH
526Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
527AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
528convention.
529
1efbbeb4
L
530@section AT&T Mnemonic versus Intel Mnemonic
531
532@cindex i386 mnemonic compatibility
533@cindex mnemonic compatibility, i386
534
535@code{@value{AS}} supports assembly using Intel mnemonic.
536@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
537@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
538syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
539Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
540@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
541@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
542assembler with different mnemonics from those in Intel IA32 specification.
543@code{@value{GCC}} generates those instructions with AT&T mnemonic.
544
252b5132
RH
545@node i386-Regs
546@section Register Naming
547
548@cindex i386 registers
549@cindex registers, i386
55b62671
AJ
550@cindex x86-64 registers
551@cindex registers, x86-64
252b5132
RH
552Register operands are always prefixed with @samp{%}. The 80386 registers
553consist of
554
555@itemize @bullet
556@item
557the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
558@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
559frame pointer), and @samp{%esp} (the stack pointer).
560
561@item
562the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
563@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
564
565@item
566the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
567@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
568are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
569@samp{%cx}, and @samp{%dx})
570
571@item
572the 6 section registers @samp{%cs} (code section), @samp{%ds}
573(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
574and @samp{%gs}.
575
576@item
577the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
578@samp{%cr3}.
579
580@item
581the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
582@samp{%db3}, @samp{%db6}, and @samp{%db7}.
583
584@item
585the 2 test registers @samp{%tr6} and @samp{%tr7}.
586
587@item
588the 8 floating point register stack @samp{%st} or equivalently
589@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
590@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
591These registers are overloaded by 8 MMX registers @samp{%mm0},
592@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
593@samp{%mm6} and @samp{%mm7}.
594
595@item
596the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
597@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
598@end itemize
599
600The AMD x86-64 architecture extends the register set by:
601
602@itemize @bullet
603@item
604enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
605accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
606@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
607pointer)
608
609@item
610the 8 extended registers @samp{%r8}--@samp{%r15}.
611
612@item
613the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
614
615@item
616the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
617
618@item
619the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
620
621@item
622the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
623
624@item
625the 8 debug registers: @samp{%db8}--@samp{%db15}.
626
627@item
628the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
629@end itemize
630
631@node i386-Prefixes
632@section Instruction Prefixes
633
634@cindex i386 instruction prefixes
635@cindex instruction prefixes, i386
636@cindex prefixes, i386
637Instruction prefixes are used to modify the following instruction. They
638are used to repeat string instructions, to provide section overrides, to
639perform bus lock operations, and to change operand and address sizes.
640(Most instructions that normally operate on 32-bit operands will use
64116-bit operands if the instruction has an ``operand size'' prefix.)
642Instruction prefixes are best written on the same line as the instruction
643they act upon. For example, the @samp{scas} (scan string) instruction is
644repeated with:
645
646@smallexample
647 repne scas %es:(%edi),%al
648@end smallexample
649
650You may also place prefixes on the lines immediately preceding the
651instruction, but this circumvents checks that @code{@value{AS}} does
652with prefixes, and will not work with all prefixes.
653
654Here is a list of instruction prefixes:
655
656@cindex section override prefixes, i386
657@itemize @bullet
658@item
659Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
660@samp{fs}, @samp{gs}. These are automatically added by specifying
661using the @var{section}:@var{memory-operand} form for memory references.
662
663@cindex size prefixes, i386
664@item
665Operand/Address size prefixes @samp{data16} and @samp{addr16}
666change 32-bit operands/addresses into 16-bit operands/addresses,
667while @samp{data32} and @samp{addr32} change 16-bit ones (in a
668@code{.code16} section) into 32-bit operands/addresses. These prefixes
669@emph{must} appear on the same line of code as the instruction they
670modify. For example, in a 16-bit @code{.code16} section, you might
671write:
672
673@smallexample
674 addr32 jmpl *(%ebx)
675@end smallexample
676
677@cindex bus lock prefixes, i386
678@cindex inhibiting interrupts, i386
679@item
680The bus lock prefix @samp{lock} inhibits interrupts during execution of
681the instruction it precedes. (This is only valid with certain
682instructions; see a 80386 manual for details).
683
684@cindex coprocessor wait, i386
685@item
686The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
687complete the current instruction. This should never be needed for the
68880386/80387 combination.
689
690@cindex repeat prefixes, i386
691@item
692The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
693to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
694times if the current address size is 16-bits).
55b62671
AJ
695@cindex REX prefixes, i386
696@item
697The @samp{rex} family of prefixes is used by x86-64 to encode
698extensions to i386 instruction set. The @samp{rex} prefix has four
699bits --- an operand size overwrite (@code{64}) used to change operand size
700from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
701register set.
702
703You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
704instruction emits @samp{rex} prefix with all the bits set. By omitting
705the @code{64}, @code{x}, @code{y} or @code{z} you may write other
706prefixes as well. Normally, there is no need to write the prefixes
707explicitly, since gas will automatically generate them based on the
708instruction operands.
252b5132
RH
709@end itemize
710
711@node i386-Memory
712@section Memory References
713
714@cindex i386 memory references
715@cindex memory references, i386
55b62671
AJ
716@cindex x86-64 memory references
717@cindex memory references, x86-64
252b5132
RH
718An Intel syntax indirect memory reference of the form
719
720@smallexample
721@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
722@end smallexample
723
724@noindent
725is translated into the AT&T syntax
726
727@smallexample
728@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
729@end smallexample
730
731@noindent
732where @var{base} and @var{index} are the optional 32-bit base and
733index registers, @var{disp} is the optional displacement, and
734@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
735to calculate the address of the operand. If no @var{scale} is
736specified, @var{scale} is taken to be 1. @var{section} specifies the
737optional section register for the memory operand, and may override the
738default section register (see a 80386 manual for section register
739defaults). Note that section overrides in AT&T syntax @emph{must}
740be preceded by a @samp{%}. If you specify a section override which
741coincides with the default section register, @code{@value{AS}} does @emph{not}
742output any section register override prefixes to assemble the given
743instruction. Thus, section overrides can be specified to emphasize which
744section register is used for a given memory operand.
745
746Here are some examples of Intel and AT&T style memory references:
747
748@table @asis
749@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
750@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
751missing, and the default section is used (@samp{%ss} for addressing with
752@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
753
754@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
755@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
756@samp{foo}. All other fields are missing. The section register here
757defaults to @samp{%ds}.
758
759@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
760This uses the value pointed to by @samp{foo} as a memory operand.
761Note that @var{base} and @var{index} are both missing, but there is only
762@emph{one} @samp{,}. This is a syntactic exception.
763
764@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
765This selects the contents of the variable @samp{foo} with section
766register @var{section} being @samp{%gs}.
767@end table
768
769Absolute (as opposed to PC relative) call and jump operands must be
770prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
771always chooses PC relative addressing for jump/call labels.
772
773Any instruction that has a memory operand, but no register operand,
55b62671
AJ
774@emph{must} specify its size (byte, word, long, or quadruple) with an
775instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
776respectively).
777
778The x86-64 architecture adds an RIP (instruction pointer relative)
779addressing. This addressing mode is specified by using @samp{rip} as a
780base register. Only constant offsets are valid. For example:
781
782@table @asis
783@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
784Points to the address 1234 bytes past the end of the current
785instruction.
786
787@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
788Points to the @code{symbol} in RIP relative way, this is shorter than
789the default absolute addressing.
790@end table
791
792Other addressing modes remain unchanged in x86-64 architecture, except
793registers used are 64-bit instead of 32-bit.
252b5132 794
fddf5b5b 795@node i386-Jumps
252b5132
RH
796@section Handling of Jump Instructions
797
798@cindex jump optimization, i386
799@cindex i386 jump optimization
55b62671
AJ
800@cindex jump optimization, x86-64
801@cindex x86-64 jump optimization
252b5132
RH
802Jump instructions are always optimized to use the smallest possible
803displacements. This is accomplished by using byte (8-bit) displacement
804jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 805is insufficient a long displacement is used. We do not support
252b5132
RH
806word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
807instruction with the @samp{data16} instruction prefix), since the 80386
808insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 809is added. (See also @pxref{i386-Arch})
252b5132
RH
810
811Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
812@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
813displacements, so that if you use these instructions (@code{@value{GCC}} does
814not use them) you may get an error message (and incorrect code). The AT&T
81580386 assembler tries to get around this problem by expanding @samp{jcxz foo}
816to
817
818@smallexample
819 jcxz cx_zero
820 jmp cx_nonzero
821cx_zero: jmp foo
822cx_nonzero:
823@end smallexample
824
825@node i386-Float
826@section Floating Point
827
828@cindex i386 floating point
829@cindex floating point, i386
55b62671
AJ
830@cindex x86-64 floating point
831@cindex floating point, x86-64
252b5132
RH
832All 80387 floating point types except packed BCD are supported.
833(BCD support may be added without much difficulty). These data
834types are 16-, 32-, and 64- bit integers, and single (32-bit),
835double (64-bit), and extended (80-bit) precision floating point.
836Each supported type has an instruction mnemonic suffix and a constructor
837associated with it. Instruction mnemonic suffixes specify the operand's
838data type. Constructors build these data types into memory.
839
840@cindex @code{float} directive, i386
841@cindex @code{single} directive, i386
842@cindex @code{double} directive, i386
843@cindex @code{tfloat} directive, i386
55b62671
AJ
844@cindex @code{float} directive, x86-64
845@cindex @code{single} directive, x86-64
846@cindex @code{double} directive, x86-64
847@cindex @code{tfloat} directive, x86-64
252b5132
RH
848@itemize @bullet
849@item
850Floating point constructors are @samp{.float} or @samp{.single},
851@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
852These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
853and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
854only supports this format via the @samp{fldt} (load 80-bit real to stack
855top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
856
857@cindex @code{word} directive, i386
858@cindex @code{long} directive, i386
859@cindex @code{int} directive, i386
860@cindex @code{quad} directive, i386
55b62671
AJ
861@cindex @code{word} directive, x86-64
862@cindex @code{long} directive, x86-64
863@cindex @code{int} directive, x86-64
864@cindex @code{quad} directive, x86-64
252b5132
RH
865@item
866Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
867@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
868corresponding instruction mnemonic suffixes are @samp{s} (single),
869@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
870the 64-bit @samp{q} format is only present in the @samp{fildq} (load
871quad integer to stack top) and @samp{fistpq} (store quad integer and pop
872stack) instructions.
873@end itemize
874
875Register to register operations should not use instruction mnemonic suffixes.
876@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
877wrote @samp{fst %st, %st(1)}, since all register to register operations
878use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
879which converts @samp{%st} from 80-bit to 64-bit floating point format,
880then stores the result in the 4 byte location @samp{mem})
881
882@node i386-SIMD
883@section Intel's MMX and AMD's 3DNow! SIMD Operations
884
885@cindex MMX, i386
886@cindex 3DNow!, i386
887@cindex SIMD, i386
55b62671
AJ
888@cindex MMX, x86-64
889@cindex 3DNow!, x86-64
890@cindex SIMD, x86-64
252b5132
RH
891
892@code{@value{AS}} supports Intel's MMX instruction set (SIMD
893instructions for integer data), available on Intel's Pentium MMX
894processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 895Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
896instruction set (SIMD instructions for 32-bit floating point data)
897available on AMD's K6-2 processor and possibly others in the future.
898
899Currently, @code{@value{AS}} does not support Intel's floating point
900SIMD, Katmai (KNI).
901
902The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
903@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
90416-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
905floating point values. The MMX registers cannot be used at the same time
906as the floating point stack.
907
908See Intel and AMD documentation, keeping in mind that the operand order in
909instructions is reversed from the Intel syntax.
910
f88c9eb0
SP
911@node i386-LWP
912@section AMD's Lightweight Profiling Instructions
913
914@cindex LWP, i386
915@cindex LWP, x86-64
916
917@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
918instruction set, available on AMD's Family 15h (Orochi) processors.
919
920LWP enables applications to collect and manage performance data, and
921react to performance events. The collection of performance data
922requires no context switches. LWP runs in the context of a thread and
923so several counters can be used independently across multiple threads.
924LWP can be used in both 64-bit and legacy 32-bit modes.
925
926For detailed information on the LWP instruction set, see the
927@cite{AMD Lightweight Profiling Specification} available at
928@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
929
87973e9f
QN
930@node i386-BMI
931@section Bit Manipulation Instructions
932
933@cindex BMI, i386
934@cindex BMI, x86-64
935
936@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
937
938BMI instructions provide several instructions implementing individual
939bit manipulation operations such as isolation, masking, setting, or
34bca508 940resetting.
87973e9f
QN
941
942@c Need to add a specification citation here when available.
943
2a2a0f38
QN
944@node i386-TBM
945@section AMD's Trailing Bit Manipulation Instructions
946
947@cindex TBM, i386
948@cindex TBM, x86-64
949
950@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
951instruction set, available on AMD's BDVER2 processors (Trinity and
952Viperfish).
953
954TBM instructions provide instructions implementing individual bit
955manipulation operations such as isolating, masking, setting, resetting,
956complementing, and operations on trailing zeros and ones.
957
958@c Need to add a specification citation here when available.
87973e9f 959
252b5132
RH
960@node i386-16bit
961@section Writing 16-bit Code
962
963@cindex i386 16-bit code
964@cindex 16-bit code, i386
965@cindex real-mode code, i386
eecb386c 966@cindex @code{code16gcc} directive, i386
252b5132
RH
967@cindex @code{code16} directive, i386
968@cindex @code{code32} directive, i386
55b62671
AJ
969@cindex @code{code64} directive, i386
970@cindex @code{code64} directive, x86-64
971While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
972or 64-bit x86-64 code depending on the default configuration,
252b5132 973it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
974mode code segments. To do this, put a @samp{.code16} or
975@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
976be run in 16-bit mode. You can switch @code{@value{AS}} to writing
97732-bit code with the @samp{.code32} directive or 64-bit code with the
978@samp{.code64} directive.
eecb386c
AM
979
980@samp{.code16gcc} provides experimental support for generating 16-bit
981code from gcc, and differs from @samp{.code16} in that @samp{call},
982@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
983@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
984default to 32-bit size. This is so that the stack pointer is
985manipulated in the same way over function calls, allowing access to
986function parameters at the same stack offsets as in 32-bit mode.
987@samp{.code16gcc} also automatically adds address size prefixes where
988necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
989
990The code which @code{@value{AS}} generates in 16-bit mode will not
991necessarily run on a 16-bit pre-80386 processor. To write code that
992runs on such a processor, you must refrain from using @emph{any} 32-bit
993constructs which require @code{@value{AS}} to output address or operand
994size prefixes.
995
996Note that writing 16-bit code instructions by explicitly specifying a
997prefix or an instruction mnemonic suffix within a 32-bit code section
998generates different machine instructions than those generated for a
99916-bit code segment. In a 32-bit code section, the following code
1000generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1001value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1002
1003@smallexample
1004 pushw $4
1005@end smallexample
1006
1007The same code in a 16-bit code section would generate the machine
b45619c0 1008opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1009is correct since the processor default operand size is assumed to be 16
1010bits in a 16-bit code section.
1011
1012@node i386-Bugs
1013@section AT&T Syntax bugs
1014
1015The UnixWare assembler, and probably other AT&T derived ix86 Unix
1016assemblers, generate floating point instructions with reversed source
1017and destination registers in certain cases. Unfortunately, gcc and
1018possibly many other programs use this reversed syntax, so we're stuck
1019with it.
1020
1021For example
1022
1023@smallexample
1024 fsub %st,%st(3)
1025@end smallexample
1026@noindent
1027results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1028than the expected @samp{%st(3) - %st}. This happens with all the
1029non-commutative arithmetic floating point operations with two register
1030operands where the source register is @samp{%st} and the destination
1031register is @samp{%st(i)}.
1032
e413e4e9
AM
1033@node i386-Arch
1034@section Specifying CPU Architecture
1035
1036@cindex arch directive, i386
1037@cindex i386 arch directive
55b62671
AJ
1038@cindex arch directive, x86-64
1039@cindex x86-64 arch directive
e413e4e9
AM
1040
1041@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1042(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1043directive enables a warning when gas detects an instruction that is not
1044supported on the CPU specified. The choices for @var{cpu_type} are:
1045
1046@multitable @columnfractions .20 .20 .20 .20
1047@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1048@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1049@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1050@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1051@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1052@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1053@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
c7b0bd56 1054@item @samp{bdver4} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1055@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1056@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1057@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1058@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1059@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1060@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1061@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1062@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1063@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
7e8b059b 1064@item @samp{.smap} @tab @samp{.mpx}
a0046408 1065@item @samp{.smap} @tab @samp{.sha}
1ceab344 1066@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1067@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1068@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1ceab344 1069@item @samp{.padlock}
43234a1e
L
1070@item @samp{.smap} @tab @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er}
1071@item @samp{.avx512pf} @tab @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a}
1072@item @samp{.sse5} @tab @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1073@item @samp{.abm} @tab @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1074@item @samp{.cx16} @tab @samp{.padlock}
e413e4e9
AM
1075@end multitable
1076
fddf5b5b
AM
1077Apart from the warning, there are only two other effects on
1078@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1079@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1080will automatically use a two byte opcode sequence. The larger three
1081byte opcode sequence is used on the 486 (and when no architecture is
1082specified) because it executes faster on the 486. Note that you can
1083explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1084Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1085@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1086conditional jumps will be promoted when necessary to a two instruction
1087sequence consisting of a conditional jump of the opposite sense around
1088an unconditional jump to the target.
1089
5c6af06e
JB
1090Following the CPU architecture (but not a sub-architecture, which are those
1091starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1092control automatic promotion of conditional jumps. @samp{jumps} is the
1093default, and enables jump promotion; All external jumps will be of the long
1094variety, and file-local jumps will be promoted as necessary.
1095(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1096byte offset jumps, and warns about file-local conditional jumps that
1097@code{@value{AS}} promotes.
fddf5b5b
AM
1098Unconditional jumps are treated as for @samp{jumps}.
1099
1100For example
1101
1102@smallexample
1103 .arch i8086,nojumps
1104@end smallexample
e413e4e9 1105
252b5132
RH
1106@node i386-Notes
1107@section Notes
1108
1109@cindex i386 @code{mul}, @code{imul} instructions
1110@cindex @code{mul} instruction, i386
1111@cindex @code{imul} instruction, i386
55b62671
AJ
1112@cindex @code{mul} instruction, x86-64
1113@cindex @code{imul} instruction, x86-64
252b5132 1114There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1115instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1116multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1117for @samp{imul}) can be output only in the one operand form. Thus,
1118@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1119the expanding multiply would clobber the @samp{%edx} register, and this
1120would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
112164-bit product in @samp{%edx:%eax}.
1122
1123We have added a two operand form of @samp{imul} when the first operand
1124is an immediate mode expression and the second operand is a register.
1125This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1126example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1127$69, %eax, %eax}.
1128
This page took 0.60515 seconds and 4 git commands to generate.