gas/
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037
AM
1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2@c 2001, 2003, 2004
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
17@cindex i80306 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
26* i386-Syntax:: AT&T Syntax versus Intel Syntax
27* i386-Mnemonics:: Instruction Naming
28* i386-Regs:: Register Naming
29* i386-Prefixes:: Instruction Prefixes
30* i386-Memory:: Memory References
fddf5b5b 31* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
32* i386-Float:: Floating Point
33* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
34* i386-16bit:: Writing 16-bit Code
e413e4e9 35* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
36* i386-Bugs:: AT&T Syntax bugs
37* i386-Notes:: Notes
38@end menu
39
40@node i386-Options
41@section Options
42
55b62671
AJ
43@cindex options for i386
44@cindex options for x86-64
45@cindex i386 options
46@cindex x86-64 options
47
48The i386 version of @code{@value{AS}} has a few machine
49dependent options:
50
51@table @code
52@cindex @samp{--32} option, i386
53@cindex @samp{--32} option, x86-64
54@cindex @samp{--64} option, i386
55@cindex @samp{--64} option, x86-64
56@item --32 | --64
57Select the word size, either 32 bits or 64 bits. Selecting 32-bit
58implies Intel i386 architecture, while 64-bit implies AMD x86-64
59architecture.
60
61These options are only available with the ELF object file format, and
62require that the necessary BFD support has been included (on a 32-bit
63platform you have to add --enable-64-bit-bfd to configure enable 64-bit
64usage and use x86-64 as target platform).
12b55ccc
L
65
66@item -n
67By default, x86 GAS replaces multiple nop instructions used for
68alignment within code sections with multi-byte nop instructions such
69as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
70
71@cindex @samp{--divide} option, i386
72@item --divide
73On SVR4-derived platforms, the character @samp{/} is treated as a comment
74character, which means that it cannot be used in expressions. The
75@samp{--divide} option turns @samp{/} into a normal character. This does
76not disable @samp{/} at the beginning of a line starting a comment, or
77affect using @samp{#} for starting a comment.
78
9103f4f4
L
79@cindex @samp{-march=} option, i386
80@cindex @samp{-march=} option, x86-64
6305a203
L
81@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
82This option specifies the target processor. The assembler will
83issue an error message if an attempt is made to assemble an instruction
84which will not execute on the target processor. The following
85processor names are recognized:
9103f4f4
L
86@code{i8086},
87@code{i186},
88@code{i286},
89@code{i386},
90@code{i486},
91@code{i586},
92@code{i686},
93@code{pentium},
94@code{pentiumpro},
95@code{pentiumii},
96@code{pentiumiii},
97@code{pentium4},
98@code{prescott},
99@code{nocona},
ef05d495
L
100@code{core},
101@code{core2},
9103f4f4
L
102@code{k6},
103@code{k6_2},
104@code{athlon},
9103f4f4
L
105@code{opteron},
106@code{k8},
1ceab344 107@code{amdfam10},
9103f4f4
L
108@code{generic32} and
109@code{generic64}.
110
6305a203
L
111In addition to the basic instruction set, the assembler can be told to
112accept various extension mnemonics. For example,
113@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
114@var{vmx}. The following extensions are currently supported:
115@code{mmx},
116@code{sse},
117@code{sse2},
118@code{sse3},
119@code{ssse3},
120@code{sse4.1},
121@code{sse4.2},
122@code{sse4},
c0f3af97 123@code{avx},
6305a203
L
124@code{vmx},
125@code{smx},
f03fe4c1 126@code{xsave},
c0f3af97 127@code{aes},
594ab6a3 128@code{pclmul},
c0f3af97 129@code{fma},
6305a203
L
130@code{3dnow},
131@code{3dnowa},
132@code{sse4a},
133@code{sse5},
134@code{svme},
135@code{abm} and
136@code{padlock}.
137
138When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
139@code{.arch} directive will take precedent.
140
141@cindex @samp{-mtune=} option, i386
142@cindex @samp{-mtune=} option, x86-64
143@item -mtune=@var{CPU}
144This option specifies a processor to optimize for. When used in
145conjunction with the @option{-march} option, only instructions
146of the processor specified by the @option{-march} option will be
147generated.
148
6305a203
L
149Valid @var{CPU} values are identical to the processor list of
150@option{-march=@var{CPU}}.
9103f4f4 151
c0f3af97
L
152@cindex @samp{-msse2avx} option, i386
153@cindex @samp{-msse2avx} option, x86-64
154@item -msse2avx
155This option specifies that the assembler should encode SSE instructions
156with VEX prefix.
157
daf50ae7
L
158@cindex @samp{-msse-check=} option, i386
159@cindex @samp{-msse-check=} option, x86-64
160@item -msse-check=@var{none}
161@item -msse-check=@var{warning}
162@item -msse-check=@var{error}
163These options control if the assembler should check SSE intructions.
164@option{-msse-check=@var{none}} will make the assembler not to check SSE
165instructions, which is the default. @option{-msse-check=@var{warning}}
166will make the assembler issue a warning for any SSE intruction.
167@option{-msse-check=@var{error}} will make the assembler issue an error
168for any SSE intruction.
169
1efbbeb4
L
170@cindex @samp{-mmnemonic=} option, i386
171@cindex @samp{-mmnemonic=} option, x86-64
172@item -mmnemonic=@var{att}
173@item -mmnemonic=@var{intel}
174This option specifies instruction mnemonic for matching instructions.
175The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
176take precedent.
177
178@cindex @samp{-msyntax=} option, i386
179@cindex @samp{-msyntax=} option, x86-64
180@item -msyntax=@var{att}
181@item -msyntax=@var{intel}
182This option specifies instruction syntax when processing instructions.
183The @code{.att_syntax} and @code{.intel_syntax} directives will
184take precedent.
185
186@cindex @samp{-mnaked-reg} option, i386
187@cindex @samp{-mnaked-reg} option, x86-64
188@item -mnaked-reg
189This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 190The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 191
55b62671 192@end table
e413e4e9 193
252b5132
RH
194@node i386-Syntax
195@section AT&T Syntax versus Intel Syntax
196
e413e4e9
AM
197@cindex i386 intel_syntax pseudo op
198@cindex intel_syntax pseudo op, i386
199@cindex i386 att_syntax pseudo op
200@cindex att_syntax pseudo op, i386
252b5132
RH
201@cindex i386 syntax compatibility
202@cindex syntax compatibility, i386
55b62671
AJ
203@cindex x86-64 intel_syntax pseudo op
204@cindex intel_syntax pseudo op, x86-64
205@cindex x86-64 att_syntax pseudo op
206@cindex att_syntax pseudo op, x86-64
207@cindex x86-64 syntax compatibility
208@cindex syntax compatibility, x86-64
e413e4e9
AM
209
210@code{@value{AS}} now supports assembly using Intel assembler syntax.
211@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
212back to the usual AT&T mode for compatibility with the output of
213@code{@value{GCC}}. Either of these directives may have an optional
214argument, @code{prefix}, or @code{noprefix} specifying whether registers
215require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
216different from Intel syntax. We mention these differences because
217almost all 80386 documents use Intel syntax. Notable differences
218between the two syntaxes are:
219
220@cindex immediate operands, i386
221@cindex i386 immediate operands
222@cindex register operands, i386
223@cindex i386 register operands
224@cindex jump/call operands, i386
225@cindex i386 jump/call operands
226@cindex operand delimiters, i386
55b62671
AJ
227
228@cindex immediate operands, x86-64
229@cindex x86-64 immediate operands
230@cindex register operands, x86-64
231@cindex x86-64 register operands
232@cindex jump/call operands, x86-64
233@cindex x86-64 jump/call operands
234@cindex operand delimiters, x86-64
252b5132
RH
235@itemize @bullet
236@item
237AT&T immediate operands are preceded by @samp{$}; Intel immediate
238operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
239AT&T register operands are preceded by @samp{%}; Intel register operands
240are undelimited. AT&T absolute (as opposed to PC relative) jump/call
241operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
242
243@cindex i386 source, destination operands
244@cindex source, destination operands; i386
55b62671
AJ
245@cindex x86-64 source, destination operands
246@cindex source, destination operands; x86-64
252b5132
RH
247@item
248AT&T and Intel syntax use the opposite order for source and destination
249operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
250@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
251previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
252instructions with 2 immediate operands, such as the @samp{enter}
253instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
254
255@cindex mnemonic suffixes, i386
256@cindex sizes operands, i386
257@cindex i386 size suffixes
55b62671
AJ
258@cindex mnemonic suffixes, x86-64
259@cindex sizes operands, x86-64
260@cindex x86-64 size suffixes
252b5132
RH
261@item
262In AT&T syntax the size of memory operands is determined from the last
263character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
264@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
265(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
266this by prefixing memory operands (@emph{not} the instruction mnemonics) with
267@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
268Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
269syntax.
252b5132
RH
270
271@cindex return instructions, i386
272@cindex i386 jump, call, return
55b62671
AJ
273@cindex return instructions, x86-64
274@cindex x86-64 jump, call, return
252b5132
RH
275@item
276Immediate form long jumps and calls are
277@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
278Intel syntax is
279@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
280instruction
281is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
282@samp{ret far @var{stack-adjust}}.
283
284@cindex sections, i386
285@cindex i386 sections
55b62671
AJ
286@cindex sections, x86-64
287@cindex x86-64 sections
252b5132
RH
288@item
289The AT&T assembler does not provide support for multiple section
290programs. Unix style systems expect all programs to be single sections.
291@end itemize
292
293@node i386-Mnemonics
294@section Instruction Naming
295
296@cindex i386 instruction naming
297@cindex instruction naming, i386
55b62671
AJ
298@cindex x86-64 instruction naming
299@cindex instruction naming, x86-64
300
252b5132 301Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
302specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
303and @samp{q} specify byte, word, long and quadruple word operands. If
304no suffix is specified by an instruction then @code{@value{AS}} tries to
305fill in the missing suffix based on the destination register operand
306(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
307to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
308@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
309assembler which assumes that a missing mnemonic suffix implies long
310operand size. (This incompatibility does not affect compiler output
311since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
312
313Almost all instructions have the same names in AT&T and Intel format.
314There are a few exceptions. The sign extend and zero extend
315instructions need two sizes to specify them. They need a size to
316sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
317is accomplished by using two instruction mnemonic suffixes in AT&T
318syntax. Base names for sign extend and zero extend are
319@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
320and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
321are tacked on to this base name, the @emph{from} suffix before the
322@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
323``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
324thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
325@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
326@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
327quadruple word).
252b5132
RH
328
329@cindex conversion instructions, i386
330@cindex i386 conversion instructions
55b62671
AJ
331@cindex conversion instructions, x86-64
332@cindex x86-64 conversion instructions
252b5132
RH
333The Intel-syntax conversion instructions
334
335@itemize @bullet
336@item
337@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
338
339@item
340@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
341
342@item
343@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
344
345@item
346@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
347
348@item
349@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
350(x86-64 only),
351
352@item
d5f0cf92 353@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 354@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
355@end itemize
356
357@noindent
55b62671
AJ
358are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
359@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
360instructions.
252b5132
RH
361
362@cindex jump instructions, i386
363@cindex call instructions, i386
55b62671
AJ
364@cindex jump instructions, x86-64
365@cindex call instructions, x86-64
252b5132
RH
366Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
367AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
368convention.
369
1efbbeb4
L
370@section AT&T Mnemonic versus Intel Mnemonic
371
372@cindex i386 mnemonic compatibility
373@cindex mnemonic compatibility, i386
374
375@code{@value{AS}} supports assembly using Intel mnemonic.
376@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
377@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
378syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
379Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
380@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
381@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
382assembler with different mnemonics from those in Intel IA32 specification.
383@code{@value{GCC}} generates those instructions with AT&T mnemonic.
384
252b5132
RH
385@node i386-Regs
386@section Register Naming
387
388@cindex i386 registers
389@cindex registers, i386
55b62671
AJ
390@cindex x86-64 registers
391@cindex registers, x86-64
252b5132
RH
392Register operands are always prefixed with @samp{%}. The 80386 registers
393consist of
394
395@itemize @bullet
396@item
397the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
398@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
399frame pointer), and @samp{%esp} (the stack pointer).
400
401@item
402the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
403@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
404
405@item
406the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
407@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
408are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
409@samp{%cx}, and @samp{%dx})
410
411@item
412the 6 section registers @samp{%cs} (code section), @samp{%ds}
413(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
414and @samp{%gs}.
415
416@item
417the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
418@samp{%cr3}.
419
420@item
421the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
422@samp{%db3}, @samp{%db6}, and @samp{%db7}.
423
424@item
425the 2 test registers @samp{%tr6} and @samp{%tr7}.
426
427@item
428the 8 floating point register stack @samp{%st} or equivalently
429@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
430@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
431These registers are overloaded by 8 MMX registers @samp{%mm0},
432@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
433@samp{%mm6} and @samp{%mm7}.
434
435@item
436the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
437@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
438@end itemize
439
440The AMD x86-64 architecture extends the register set by:
441
442@itemize @bullet
443@item
444enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
445accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
446@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
447pointer)
448
449@item
450the 8 extended registers @samp{%r8}--@samp{%r15}.
451
452@item
453the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
454
455@item
456the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
457
458@item
459the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
460
461@item
462the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
463
464@item
465the 8 debug registers: @samp{%db8}--@samp{%db15}.
466
467@item
468the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
469@end itemize
470
471@node i386-Prefixes
472@section Instruction Prefixes
473
474@cindex i386 instruction prefixes
475@cindex instruction prefixes, i386
476@cindex prefixes, i386
477Instruction prefixes are used to modify the following instruction. They
478are used to repeat string instructions, to provide section overrides, to
479perform bus lock operations, and to change operand and address sizes.
480(Most instructions that normally operate on 32-bit operands will use
48116-bit operands if the instruction has an ``operand size'' prefix.)
482Instruction prefixes are best written on the same line as the instruction
483they act upon. For example, the @samp{scas} (scan string) instruction is
484repeated with:
485
486@smallexample
487 repne scas %es:(%edi),%al
488@end smallexample
489
490You may also place prefixes on the lines immediately preceding the
491instruction, but this circumvents checks that @code{@value{AS}} does
492with prefixes, and will not work with all prefixes.
493
494Here is a list of instruction prefixes:
495
496@cindex section override prefixes, i386
497@itemize @bullet
498@item
499Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
500@samp{fs}, @samp{gs}. These are automatically added by specifying
501using the @var{section}:@var{memory-operand} form for memory references.
502
503@cindex size prefixes, i386
504@item
505Operand/Address size prefixes @samp{data16} and @samp{addr16}
506change 32-bit operands/addresses into 16-bit operands/addresses,
507while @samp{data32} and @samp{addr32} change 16-bit ones (in a
508@code{.code16} section) into 32-bit operands/addresses. These prefixes
509@emph{must} appear on the same line of code as the instruction they
510modify. For example, in a 16-bit @code{.code16} section, you might
511write:
512
513@smallexample
514 addr32 jmpl *(%ebx)
515@end smallexample
516
517@cindex bus lock prefixes, i386
518@cindex inhibiting interrupts, i386
519@item
520The bus lock prefix @samp{lock} inhibits interrupts during execution of
521the instruction it precedes. (This is only valid with certain
522instructions; see a 80386 manual for details).
523
524@cindex coprocessor wait, i386
525@item
526The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
527complete the current instruction. This should never be needed for the
52880386/80387 combination.
529
530@cindex repeat prefixes, i386
531@item
532The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
533to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
534times if the current address size is 16-bits).
55b62671
AJ
535@cindex REX prefixes, i386
536@item
537The @samp{rex} family of prefixes is used by x86-64 to encode
538extensions to i386 instruction set. The @samp{rex} prefix has four
539bits --- an operand size overwrite (@code{64}) used to change operand size
540from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
541register set.
542
543You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
544instruction emits @samp{rex} prefix with all the bits set. By omitting
545the @code{64}, @code{x}, @code{y} or @code{z} you may write other
546prefixes as well. Normally, there is no need to write the prefixes
547explicitly, since gas will automatically generate them based on the
548instruction operands.
252b5132
RH
549@end itemize
550
551@node i386-Memory
552@section Memory References
553
554@cindex i386 memory references
555@cindex memory references, i386
55b62671
AJ
556@cindex x86-64 memory references
557@cindex memory references, x86-64
252b5132
RH
558An Intel syntax indirect memory reference of the form
559
560@smallexample
561@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
562@end smallexample
563
564@noindent
565is translated into the AT&T syntax
566
567@smallexample
568@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
569@end smallexample
570
571@noindent
572where @var{base} and @var{index} are the optional 32-bit base and
573index registers, @var{disp} is the optional displacement, and
574@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
575to calculate the address of the operand. If no @var{scale} is
576specified, @var{scale} is taken to be 1. @var{section} specifies the
577optional section register for the memory operand, and may override the
578default section register (see a 80386 manual for section register
579defaults). Note that section overrides in AT&T syntax @emph{must}
580be preceded by a @samp{%}. If you specify a section override which
581coincides with the default section register, @code{@value{AS}} does @emph{not}
582output any section register override prefixes to assemble the given
583instruction. Thus, section overrides can be specified to emphasize which
584section register is used for a given memory operand.
585
586Here are some examples of Intel and AT&T style memory references:
587
588@table @asis
589@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
590@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
591missing, and the default section is used (@samp{%ss} for addressing with
592@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
593
594@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
595@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
596@samp{foo}. All other fields are missing. The section register here
597defaults to @samp{%ds}.
598
599@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
600This uses the value pointed to by @samp{foo} as a memory operand.
601Note that @var{base} and @var{index} are both missing, but there is only
602@emph{one} @samp{,}. This is a syntactic exception.
603
604@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
605This selects the contents of the variable @samp{foo} with section
606register @var{section} being @samp{%gs}.
607@end table
608
609Absolute (as opposed to PC relative) call and jump operands must be
610prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
611always chooses PC relative addressing for jump/call labels.
612
613Any instruction that has a memory operand, but no register operand,
55b62671
AJ
614@emph{must} specify its size (byte, word, long, or quadruple) with an
615instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
616respectively).
617
618The x86-64 architecture adds an RIP (instruction pointer relative)
619addressing. This addressing mode is specified by using @samp{rip} as a
620base register. Only constant offsets are valid. For example:
621
622@table @asis
623@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
624Points to the address 1234 bytes past the end of the current
625instruction.
626
627@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
628Points to the @code{symbol} in RIP relative way, this is shorter than
629the default absolute addressing.
630@end table
631
632Other addressing modes remain unchanged in x86-64 architecture, except
633registers used are 64-bit instead of 32-bit.
252b5132 634
fddf5b5b 635@node i386-Jumps
252b5132
RH
636@section Handling of Jump Instructions
637
638@cindex jump optimization, i386
639@cindex i386 jump optimization
55b62671
AJ
640@cindex jump optimization, x86-64
641@cindex x86-64 jump optimization
252b5132
RH
642Jump instructions are always optimized to use the smallest possible
643displacements. This is accomplished by using byte (8-bit) displacement
644jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 645is insufficient a long displacement is used. We do not support
252b5132
RH
646word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
647instruction with the @samp{data16} instruction prefix), since the 80386
648insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 649is added. (See also @pxref{i386-Arch})
252b5132
RH
650
651Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
652@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
653displacements, so that if you use these instructions (@code{@value{GCC}} does
654not use them) you may get an error message (and incorrect code). The AT&T
65580386 assembler tries to get around this problem by expanding @samp{jcxz foo}
656to
657
658@smallexample
659 jcxz cx_zero
660 jmp cx_nonzero
661cx_zero: jmp foo
662cx_nonzero:
663@end smallexample
664
665@node i386-Float
666@section Floating Point
667
668@cindex i386 floating point
669@cindex floating point, i386
55b62671
AJ
670@cindex x86-64 floating point
671@cindex floating point, x86-64
252b5132
RH
672All 80387 floating point types except packed BCD are supported.
673(BCD support may be added without much difficulty). These data
674types are 16-, 32-, and 64- bit integers, and single (32-bit),
675double (64-bit), and extended (80-bit) precision floating point.
676Each supported type has an instruction mnemonic suffix and a constructor
677associated with it. Instruction mnemonic suffixes specify the operand's
678data type. Constructors build these data types into memory.
679
680@cindex @code{float} directive, i386
681@cindex @code{single} directive, i386
682@cindex @code{double} directive, i386
683@cindex @code{tfloat} directive, i386
55b62671
AJ
684@cindex @code{float} directive, x86-64
685@cindex @code{single} directive, x86-64
686@cindex @code{double} directive, x86-64
687@cindex @code{tfloat} directive, x86-64
252b5132
RH
688@itemize @bullet
689@item
690Floating point constructors are @samp{.float} or @samp{.single},
691@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
692These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
693and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
694only supports this format via the @samp{fldt} (load 80-bit real to stack
695top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
696
697@cindex @code{word} directive, i386
698@cindex @code{long} directive, i386
699@cindex @code{int} directive, i386
700@cindex @code{quad} directive, i386
55b62671
AJ
701@cindex @code{word} directive, x86-64
702@cindex @code{long} directive, x86-64
703@cindex @code{int} directive, x86-64
704@cindex @code{quad} directive, x86-64
252b5132
RH
705@item
706Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
707@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
708corresponding instruction mnemonic suffixes are @samp{s} (single),
709@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
710the 64-bit @samp{q} format is only present in the @samp{fildq} (load
711quad integer to stack top) and @samp{fistpq} (store quad integer and pop
712stack) instructions.
713@end itemize
714
715Register to register operations should not use instruction mnemonic suffixes.
716@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
717wrote @samp{fst %st, %st(1)}, since all register to register operations
718use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
719which converts @samp{%st} from 80-bit to 64-bit floating point format,
720then stores the result in the 4 byte location @samp{mem})
721
722@node i386-SIMD
723@section Intel's MMX and AMD's 3DNow! SIMD Operations
724
725@cindex MMX, i386
726@cindex 3DNow!, i386
727@cindex SIMD, i386
55b62671
AJ
728@cindex MMX, x86-64
729@cindex 3DNow!, x86-64
730@cindex SIMD, x86-64
252b5132
RH
731
732@code{@value{AS}} supports Intel's MMX instruction set (SIMD
733instructions for integer data), available on Intel's Pentium MMX
734processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 735Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
736instruction set (SIMD instructions for 32-bit floating point data)
737available on AMD's K6-2 processor and possibly others in the future.
738
739Currently, @code{@value{AS}} does not support Intel's floating point
740SIMD, Katmai (KNI).
741
742The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
743@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
74416-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
745floating point values. The MMX registers cannot be used at the same time
746as the floating point stack.
747
748See Intel and AMD documentation, keeping in mind that the operand order in
749instructions is reversed from the Intel syntax.
750
751@node i386-16bit
752@section Writing 16-bit Code
753
754@cindex i386 16-bit code
755@cindex 16-bit code, i386
756@cindex real-mode code, i386
eecb386c 757@cindex @code{code16gcc} directive, i386
252b5132
RH
758@cindex @code{code16} directive, i386
759@cindex @code{code32} directive, i386
55b62671
AJ
760@cindex @code{code64} directive, i386
761@cindex @code{code64} directive, x86-64
762While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
763or 64-bit x86-64 code depending on the default configuration,
252b5132 764it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
765mode code segments. To do this, put a @samp{.code16} or
766@samp{.code16gcc} directive before the assembly language instructions to
767be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
768normal 32-bit code with the @samp{.code32} directive.
769
770@samp{.code16gcc} provides experimental support for generating 16-bit
771code from gcc, and differs from @samp{.code16} in that @samp{call},
772@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
773@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
774default to 32-bit size. This is so that the stack pointer is
775manipulated in the same way over function calls, allowing access to
776function parameters at the same stack offsets as in 32-bit mode.
777@samp{.code16gcc} also automatically adds address size prefixes where
778necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
779
780The code which @code{@value{AS}} generates in 16-bit mode will not
781necessarily run on a 16-bit pre-80386 processor. To write code that
782runs on such a processor, you must refrain from using @emph{any} 32-bit
783constructs which require @code{@value{AS}} to output address or operand
784size prefixes.
785
786Note that writing 16-bit code instructions by explicitly specifying a
787prefix or an instruction mnemonic suffix within a 32-bit code section
788generates different machine instructions than those generated for a
78916-bit code segment. In a 32-bit code section, the following code
790generates the machine opcode bytes @samp{66 6a 04}, which pushes the
791value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
792
793@smallexample
794 pushw $4
795@end smallexample
796
797The same code in a 16-bit code section would generate the machine
b45619c0 798opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
799is correct since the processor default operand size is assumed to be 16
800bits in a 16-bit code section.
801
802@node i386-Bugs
803@section AT&T Syntax bugs
804
805The UnixWare assembler, and probably other AT&T derived ix86 Unix
806assemblers, generate floating point instructions with reversed source
807and destination registers in certain cases. Unfortunately, gcc and
808possibly many other programs use this reversed syntax, so we're stuck
809with it.
810
811For example
812
813@smallexample
814 fsub %st,%st(3)
815@end smallexample
816@noindent
817results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
818than the expected @samp{%st(3) - %st}. This happens with all the
819non-commutative arithmetic floating point operations with two register
820operands where the source register is @samp{%st} and the destination
821register is @samp{%st(i)}.
822
e413e4e9
AM
823@node i386-Arch
824@section Specifying CPU Architecture
825
826@cindex arch directive, i386
827@cindex i386 arch directive
55b62671
AJ
828@cindex arch directive, x86-64
829@cindex x86-64 arch directive
e413e4e9
AM
830
831@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 832(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
833directive enables a warning when gas detects an instruction that is not
834supported on the CPU specified. The choices for @var{cpu_type} are:
835
836@multitable @columnfractions .20 .20 .20 .20
837@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
838@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 839@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 840@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1ceab344 841@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
7918206c 842@item @samp{amdfam10}
1ceab344 843@item @samp{generic32} @tab @samp{generic64}
9103f4f4 844@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 845@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c0f3af97 846@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
594ab6a3 847@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma}
1ceab344
L
848@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
849@item @samp{.svme} @tab @samp{.abm}
850@item @samp{.padlock}
e413e4e9
AM
851@end multitable
852
fddf5b5b
AM
853Apart from the warning, there are only two other effects on
854@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
855@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
856will automatically use a two byte opcode sequence. The larger three
857byte opcode sequence is used on the 486 (and when no architecture is
858specified) because it executes faster on the 486. Note that you can
859explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
860Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
861@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
862conditional jumps will be promoted when necessary to a two instruction
863sequence consisting of a conditional jump of the opposite sense around
864an unconditional jump to the target.
865
5c6af06e
JB
866Following the CPU architecture (but not a sub-architecture, which are those
867starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
868control automatic promotion of conditional jumps. @samp{jumps} is the
869default, and enables jump promotion; All external jumps will be of the long
870variety, and file-local jumps will be promoted as necessary.
871(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
872byte offset jumps, and warns about file-local conditional jumps that
873@code{@value{AS}} promotes.
fddf5b5b
AM
874Unconditional jumps are treated as for @samp{jumps}.
875
876For example
877
878@smallexample
879 .arch i8086,nojumps
880@end smallexample
e413e4e9 881
252b5132
RH
882@node i386-Notes
883@section Notes
884
885@cindex i386 @code{mul}, @code{imul} instructions
886@cindex @code{mul} instruction, i386
887@cindex @code{imul} instruction, i386
55b62671
AJ
888@cindex @code{mul} instruction, x86-64
889@cindex @code{imul} instruction, x86-64
252b5132 890There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 891instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
892multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
893for @samp{imul}) can be output only in the one operand form. Thus,
894@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
895the expanding multiply would clobber the @samp{%edx} register, and this
896would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
89764-bit product in @samp{%edx:%eax}.
898
899We have added a two operand form of @samp{imul} when the first operand
900is an immediate mode expression and the second operand is a register.
901This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
902example, can be done with @samp{imul $69, %eax} rather than @samp{imul
903$69, %eax, %eax}.
904
This page took 0.524 seconds and 4 git commands to generate.