Implement RDRSEED, ADX and PRFCHW instructions
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
7c31ae13 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
731caf76
L
6@c man end
7
252b5132
RH
8@ifset GENERIC
9@page
10@node i386-Dependent
11@chapter 80386 Dependent Features
12@end ifset
13@ifclear GENERIC
14@node Machine Dependencies
15@chapter 80386 Dependent Features
16@end ifclear
17
18@cindex i386 support
b6169b20 19@cindex i80386 support
55b62671
AJ
20@cindex x86-64 support
21
22The i386 version @code{@value{AS}} supports both the original Intel 386
23architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24extending the Intel architecture to 64-bits.
25
252b5132
RH
26@menu
27* i386-Options:: Options
a6c24e68 28* i386-Directives:: X86 specific directives
7c31ae13 29* i386-Syntax:: Syntactical considerations
252b5132
RH
30* i386-Mnemonics:: Instruction Naming
31* i386-Regs:: Register Naming
32* i386-Prefixes:: Instruction Prefixes
33* i386-Memory:: Memory References
fddf5b5b 34* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
35* i386-Float:: Floating Point
36* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 37* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 38* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 39* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 40* i386-16bit:: Writing 16-bit Code
e413e4e9 41* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
42* i386-Bugs:: AT&T Syntax bugs
43* i386-Notes:: Notes
44@end menu
45
46@node i386-Options
47@section Options
48
55b62671
AJ
49@cindex options for i386
50@cindex options for x86-64
51@cindex i386 options
52@cindex x86-64 options
53
54The i386 version of @code{@value{AS}} has a few machine
55dependent options:
56
731caf76
L
57@c man begin OPTIONS
58@table @gcctabopt
55b62671
AJ
59@cindex @samp{--32} option, i386
60@cindex @samp{--32} option, x86-64
570561f7
L
61@cindex @samp{--x32} option, i386
62@cindex @samp{--x32} option, x86-64
55b62671
AJ
63@cindex @samp{--64} option, i386
64@cindex @samp{--64} option, x86-64
570561f7 65@item --32 | --x32 | --64
35cc6a0b 66Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 67implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
68imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69respectively.
55b62671
AJ
70
71These options are only available with the ELF object file format, and
72require that the necessary BFD support has been included (on a 32-bit
73platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74usage and use x86-64 as target platform).
12b55ccc
L
75
76@item -n
77By default, x86 GAS replaces multiple nop instructions used for
78alignment within code sections with multi-byte nop instructions such
79as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions. The
85@samp{--divide} option turns @samp{/} into a normal character. This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
9103f4f4
L
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
6305a203
L
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor. The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor. The following
95processor names are recognized:
9103f4f4
L
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
ef05d495
L
110@code{core},
111@code{core2},
bd5295b2 112@code{corei7},
8a9036a4 113@code{l1om},
7a9068fe 114@code{k1om},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
9103f4f4
L
123@code{generic32} and
124@code{generic64}.
125
6305a203
L
126In addition to the basic instruction set, the assembler can be told to
127accept various extension mnemonics. For example,
128@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
129@var{vmx}. The following extensions are currently supported:
309d3373
JB
130@code{8087},
131@code{287},
132@code{387},
133@code{no87},
6305a203 134@code{mmx},
309d3373 135@code{nommx},
6305a203
L
136@code{sse},
137@code{sse2},
138@code{sse3},
139@code{ssse3},
140@code{sse4.1},
141@code{sse4.2},
142@code{sse4},
309d3373 143@code{nosse},
c0f3af97 144@code{avx},
6c30d220 145@code{avx2},
e2e1fcde
L
146@code{adx},
147@code{rdseed},
148@code{prfchw},
309d3373 149@code{noavx},
6305a203 150@code{vmx},
8729a6f6 151@code{vmfunc},
6305a203 152@code{smx},
f03fe4c1 153@code{xsave},
c7b8aa3a 154@code{xsaveopt},
c0f3af97 155@code{aes},
594ab6a3 156@code{pclmul},
c7b8aa3a
L
157@code{fsgsbase},
158@code{rdrnd},
159@code{f16c},
6c30d220 160@code{bmi2},
c0f3af97 161@code{fma},
f1f8f695
L
162@code{movbe},
163@code{ept},
6c30d220 164@code{lzcnt},
42164a71
L
165@code{hle},
166@code{rtm},
6c30d220 167@code{invpcid},
bd5295b2 168@code{clflush},
f88c9eb0 169@code{lwp},
5dd85c99
SP
170@code{fma4},
171@code{xop},
bd5295b2 172@code{syscall},
1b7f3fb0 173@code{rdtscp},
6305a203
L
174@code{3dnow},
175@code{3dnowa},
176@code{sse4a},
177@code{sse5},
178@code{svme},
179@code{abm} and
180@code{padlock}.
309d3373
JB
181Note that rather than extending a basic instruction set, the extension
182mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
183
184When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
185@code{.arch} directive will take precedent.
186
187@cindex @samp{-mtune=} option, i386
188@cindex @samp{-mtune=} option, x86-64
189@item -mtune=@var{CPU}
190This option specifies a processor to optimize for. When used in
191conjunction with the @option{-march} option, only instructions
192of the processor specified by the @option{-march} option will be
193generated.
194
6305a203
L
195Valid @var{CPU} values are identical to the processor list of
196@option{-march=@var{CPU}}.
9103f4f4 197
c0f3af97
L
198@cindex @samp{-msse2avx} option, i386
199@cindex @samp{-msse2avx} option, x86-64
200@item -msse2avx
201This option specifies that the assembler should encode SSE instructions
202with VEX prefix.
203
daf50ae7
L
204@cindex @samp{-msse-check=} option, i386
205@cindex @samp{-msse-check=} option, x86-64
206@item -msse-check=@var{none}
1f9bb1ca
AS
207@itemx -msse-check=@var{warning}
208@itemx -msse-check=@var{error}
daf50ae7
L
209These options control if the assembler should check SSE intructions.
210@option{-msse-check=@var{none}} will make the assembler not to check SSE
211instructions, which is the default. @option{-msse-check=@var{warning}}
212will make the assembler issue a warning for any SSE intruction.
213@option{-msse-check=@var{error}} will make the assembler issue an error
214for any SSE intruction.
215
539f890d
L
216@cindex @samp{-mavxscalar=} option, i386
217@cindex @samp{-mavxscalar=} option, x86-64
218@item -mavxscalar=@var{128}
1f9bb1ca 219@itemx -mavxscalar=@var{256}
2aab8acd 220These options control how the assembler should encode scalar AVX
539f890d
L
221instructions. @option{-mavxscalar=@var{128}} will encode scalar
222AVX instructions with 128bit vector length, which is the default.
223@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
224with 256bit vector length.
225
1efbbeb4
L
226@cindex @samp{-mmnemonic=} option, i386
227@cindex @samp{-mmnemonic=} option, x86-64
228@item -mmnemonic=@var{att}
1f9bb1ca 229@itemx -mmnemonic=@var{intel}
1efbbeb4
L
230This option specifies instruction mnemonic for matching instructions.
231The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
232take precedent.
233
234@cindex @samp{-msyntax=} option, i386
235@cindex @samp{-msyntax=} option, x86-64
236@item -msyntax=@var{att}
1f9bb1ca 237@itemx -msyntax=@var{intel}
1efbbeb4
L
238This option specifies instruction syntax when processing instructions.
239The @code{.att_syntax} and @code{.intel_syntax} directives will
240take precedent.
241
242@cindex @samp{-mnaked-reg} option, i386
243@cindex @samp{-mnaked-reg} option, x86-64
244@item -mnaked-reg
245This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 246The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 247
55b62671 248@end table
731caf76 249@c man end
e413e4e9 250
a6c24e68
NC
251@node i386-Directives
252@section x86 specific Directives
253
254@cindex machine directives, x86
255@cindex x86 machine directives
256@table @code
257
258@cindex @code{lcomm} directive, COFF
259@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
260Reserve @var{length} (an absolute expression) bytes for a local common
261denoted by @var{symbol}. The section and value of @var{symbol} are
262those of the new local common. The addresses are allocated in the bss
704209c0
NC
263section, so that at run-time the bytes start off zeroed. Since
264@var{symbol} is not declared global, it is normally not visible to
265@code{@value{LD}}. The optional third parameter, @var{alignment},
266specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
267
268This directive is only available for COFF based x86 targets.
269
270@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
271@c .largecomm
272
273@end table
274
252b5132 275@node i386-Syntax
7c31ae13
NC
276@section i386 Syntactical Considerations
277@menu
278* i386-Variations:: AT&T Syntax versus Intel Syntax
279* i386-Chars:: Special Characters
280@end menu
281
282@node i386-Variations
283@subsection AT&T Syntax versus Intel Syntax
252b5132 284
e413e4e9
AM
285@cindex i386 intel_syntax pseudo op
286@cindex intel_syntax pseudo op, i386
287@cindex i386 att_syntax pseudo op
288@cindex att_syntax pseudo op, i386
252b5132
RH
289@cindex i386 syntax compatibility
290@cindex syntax compatibility, i386
55b62671
AJ
291@cindex x86-64 intel_syntax pseudo op
292@cindex intel_syntax pseudo op, x86-64
293@cindex x86-64 att_syntax pseudo op
294@cindex att_syntax pseudo op, x86-64
295@cindex x86-64 syntax compatibility
296@cindex syntax compatibility, x86-64
e413e4e9
AM
297
298@code{@value{AS}} now supports assembly using Intel assembler syntax.
299@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
300back to the usual AT&T mode for compatibility with the output of
301@code{@value{GCC}}. Either of these directives may have an optional
302argument, @code{prefix}, or @code{noprefix} specifying whether registers
303require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
304different from Intel syntax. We mention these differences because
305almost all 80386 documents use Intel syntax. Notable differences
306between the two syntaxes are:
307
308@cindex immediate operands, i386
309@cindex i386 immediate operands
310@cindex register operands, i386
311@cindex i386 register operands
312@cindex jump/call operands, i386
313@cindex i386 jump/call operands
314@cindex operand delimiters, i386
55b62671
AJ
315
316@cindex immediate operands, x86-64
317@cindex x86-64 immediate operands
318@cindex register operands, x86-64
319@cindex x86-64 register operands
320@cindex jump/call operands, x86-64
321@cindex x86-64 jump/call operands
322@cindex operand delimiters, x86-64
252b5132
RH
323@itemize @bullet
324@item
325AT&T immediate operands are preceded by @samp{$}; Intel immediate
326operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
327AT&T register operands are preceded by @samp{%}; Intel register operands
328are undelimited. AT&T absolute (as opposed to PC relative) jump/call
329operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
330
331@cindex i386 source, destination operands
332@cindex source, destination operands; i386
55b62671
AJ
333@cindex x86-64 source, destination operands
334@cindex source, destination operands; x86-64
252b5132
RH
335@item
336AT&T and Intel syntax use the opposite order for source and destination
337operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
338@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
339previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
340instructions with 2 immediate operands, such as the @samp{enter}
341instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
342
343@cindex mnemonic suffixes, i386
344@cindex sizes operands, i386
345@cindex i386 size suffixes
55b62671
AJ
346@cindex mnemonic suffixes, x86-64
347@cindex sizes operands, x86-64
348@cindex x86-64 size suffixes
252b5132
RH
349@item
350In AT&T syntax the size of memory operands is determined from the last
351character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
352@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
353(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
354this by prefixing memory operands (@emph{not} the instruction mnemonics) with
355@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
356Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
357syntax.
252b5132 358
4b06377f
L
359In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
360instruction with the 64-bit displacement or immediate operand.
361
252b5132
RH
362@cindex return instructions, i386
363@cindex i386 jump, call, return
55b62671
AJ
364@cindex return instructions, x86-64
365@cindex x86-64 jump, call, return
252b5132
RH
366@item
367Immediate form long jumps and calls are
368@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
369Intel syntax is
370@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
371instruction
372is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
373@samp{ret far @var{stack-adjust}}.
374
375@cindex sections, i386
376@cindex i386 sections
55b62671
AJ
377@cindex sections, x86-64
378@cindex x86-64 sections
252b5132
RH
379@item
380The AT&T assembler does not provide support for multiple section
381programs. Unix style systems expect all programs to be single sections.
382@end itemize
383
7c31ae13
NC
384@node i386-Chars
385@subsection Special Characters
386
387@cindex line comment character, i386
388@cindex i386 line comment character
389The presence of a @samp{#} appearing anywhere on a line indicates the
390start of a comment that extends to the end of that line.
391
392If a @samp{#} appears as the first character of a line then the whole
393line is treated as a comment, but in this case the line can also be a
394logical line number directive (@pxref{Comments}) or a preprocessor
395control command (@pxref{Preprocessing}).
396
397If the @option{--divide} command line option has not been specified
398then the @samp{/} character appearing anywhere on a line also
399introduces a line comment.
400
401@cindex line separator, i386
402@cindex statement separator, i386
403@cindex i386 line separator
404The @samp{;} character can be used to separate statements on the same
405line.
406
252b5132
RH
407@node i386-Mnemonics
408@section Instruction Naming
409
410@cindex i386 instruction naming
411@cindex instruction naming, i386
55b62671
AJ
412@cindex x86-64 instruction naming
413@cindex instruction naming, x86-64
414
252b5132 415Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
416specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
417and @samp{q} specify byte, word, long and quadruple word operands. If
418no suffix is specified by an instruction then @code{@value{AS}} tries to
419fill in the missing suffix based on the destination register operand
420(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
421to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
422@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
423assembler which assumes that a missing mnemonic suffix implies long
424operand size. (This incompatibility does not affect compiler output
425since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
426
427Almost all instructions have the same names in AT&T and Intel format.
428There are a few exceptions. The sign extend and zero extend
429instructions need two sizes to specify them. They need a size to
430sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
431is accomplished by using two instruction mnemonic suffixes in AT&T
432syntax. Base names for sign extend and zero extend are
433@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
434and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
435are tacked on to this base name, the @emph{from} suffix before the
436@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
437``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
438thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
439@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
440@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
441quadruple word).
252b5132 442
b6169b20
L
443@cindex encoding options, i386
444@cindex encoding options, x86-64
445
446Different encoding options can be specified via optional mnemonic
447suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
448moving from one register to another. @samp{.d8} or @samp{.d32} suffix
449prefers 8bit or 32bit displacement in encoding.
b6169b20 450
252b5132
RH
451@cindex conversion instructions, i386
452@cindex i386 conversion instructions
55b62671
AJ
453@cindex conversion instructions, x86-64
454@cindex x86-64 conversion instructions
252b5132
RH
455The Intel-syntax conversion instructions
456
457@itemize @bullet
458@item
459@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
460
461@item
462@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
463
464@item
465@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
466
467@item
468@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
469
470@item
471@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
472(x86-64 only),
473
474@item
d5f0cf92 475@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 476@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
477@end itemize
478
479@noindent
55b62671
AJ
480are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
481@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
482instructions.
252b5132
RH
483
484@cindex jump instructions, i386
485@cindex call instructions, i386
55b62671
AJ
486@cindex jump instructions, x86-64
487@cindex call instructions, x86-64
252b5132
RH
488Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
489AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
490convention.
491
1efbbeb4
L
492@section AT&T Mnemonic versus Intel Mnemonic
493
494@cindex i386 mnemonic compatibility
495@cindex mnemonic compatibility, i386
496
497@code{@value{AS}} supports assembly using Intel mnemonic.
498@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
499@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
500syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
501Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
502@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
503@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
504assembler with different mnemonics from those in Intel IA32 specification.
505@code{@value{GCC}} generates those instructions with AT&T mnemonic.
506
252b5132
RH
507@node i386-Regs
508@section Register Naming
509
510@cindex i386 registers
511@cindex registers, i386
55b62671
AJ
512@cindex x86-64 registers
513@cindex registers, x86-64
252b5132
RH
514Register operands are always prefixed with @samp{%}. The 80386 registers
515consist of
516
517@itemize @bullet
518@item
519the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
520@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
521frame pointer), and @samp{%esp} (the stack pointer).
522
523@item
524the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
525@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
526
527@item
528the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
529@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
530are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
531@samp{%cx}, and @samp{%dx})
532
533@item
534the 6 section registers @samp{%cs} (code section), @samp{%ds}
535(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
536and @samp{%gs}.
537
538@item
539the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
540@samp{%cr3}.
541
542@item
543the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
544@samp{%db3}, @samp{%db6}, and @samp{%db7}.
545
546@item
547the 2 test registers @samp{%tr6} and @samp{%tr7}.
548
549@item
550the 8 floating point register stack @samp{%st} or equivalently
551@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
552@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
553These registers are overloaded by 8 MMX registers @samp{%mm0},
554@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
555@samp{%mm6} and @samp{%mm7}.
556
557@item
558the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
559@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
560@end itemize
561
562The AMD x86-64 architecture extends the register set by:
563
564@itemize @bullet
565@item
566enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
567accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
568@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
569pointer)
570
571@item
572the 8 extended registers @samp{%r8}--@samp{%r15}.
573
574@item
575the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
576
577@item
578the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
579
580@item
581the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
582
583@item
584the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
585
586@item
587the 8 debug registers: @samp{%db8}--@samp{%db15}.
588
589@item
590the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
591@end itemize
592
593@node i386-Prefixes
594@section Instruction Prefixes
595
596@cindex i386 instruction prefixes
597@cindex instruction prefixes, i386
598@cindex prefixes, i386
599Instruction prefixes are used to modify the following instruction. They
600are used to repeat string instructions, to provide section overrides, to
601perform bus lock operations, and to change operand and address sizes.
602(Most instructions that normally operate on 32-bit operands will use
60316-bit operands if the instruction has an ``operand size'' prefix.)
604Instruction prefixes are best written on the same line as the instruction
605they act upon. For example, the @samp{scas} (scan string) instruction is
606repeated with:
607
608@smallexample
609 repne scas %es:(%edi),%al
610@end smallexample
611
612You may also place prefixes on the lines immediately preceding the
613instruction, but this circumvents checks that @code{@value{AS}} does
614with prefixes, and will not work with all prefixes.
615
616Here is a list of instruction prefixes:
617
618@cindex section override prefixes, i386
619@itemize @bullet
620@item
621Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
622@samp{fs}, @samp{gs}. These are automatically added by specifying
623using the @var{section}:@var{memory-operand} form for memory references.
624
625@cindex size prefixes, i386
626@item
627Operand/Address size prefixes @samp{data16} and @samp{addr16}
628change 32-bit operands/addresses into 16-bit operands/addresses,
629while @samp{data32} and @samp{addr32} change 16-bit ones (in a
630@code{.code16} section) into 32-bit operands/addresses. These prefixes
631@emph{must} appear on the same line of code as the instruction they
632modify. For example, in a 16-bit @code{.code16} section, you might
633write:
634
635@smallexample
636 addr32 jmpl *(%ebx)
637@end smallexample
638
639@cindex bus lock prefixes, i386
640@cindex inhibiting interrupts, i386
641@item
642The bus lock prefix @samp{lock} inhibits interrupts during execution of
643the instruction it precedes. (This is only valid with certain
644instructions; see a 80386 manual for details).
645
646@cindex coprocessor wait, i386
647@item
648The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
649complete the current instruction. This should never be needed for the
65080386/80387 combination.
651
652@cindex repeat prefixes, i386
653@item
654The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
655to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
656times if the current address size is 16-bits).
55b62671
AJ
657@cindex REX prefixes, i386
658@item
659The @samp{rex} family of prefixes is used by x86-64 to encode
660extensions to i386 instruction set. The @samp{rex} prefix has four
661bits --- an operand size overwrite (@code{64}) used to change operand size
662from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
663register set.
664
665You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
666instruction emits @samp{rex} prefix with all the bits set. By omitting
667the @code{64}, @code{x}, @code{y} or @code{z} you may write other
668prefixes as well. Normally, there is no need to write the prefixes
669explicitly, since gas will automatically generate them based on the
670instruction operands.
252b5132
RH
671@end itemize
672
673@node i386-Memory
674@section Memory References
675
676@cindex i386 memory references
677@cindex memory references, i386
55b62671
AJ
678@cindex x86-64 memory references
679@cindex memory references, x86-64
252b5132
RH
680An Intel syntax indirect memory reference of the form
681
682@smallexample
683@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
684@end smallexample
685
686@noindent
687is translated into the AT&T syntax
688
689@smallexample
690@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
691@end smallexample
692
693@noindent
694where @var{base} and @var{index} are the optional 32-bit base and
695index registers, @var{disp} is the optional displacement, and
696@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
697to calculate the address of the operand. If no @var{scale} is
698specified, @var{scale} is taken to be 1. @var{section} specifies the
699optional section register for the memory operand, and may override the
700default section register (see a 80386 manual for section register
701defaults). Note that section overrides in AT&T syntax @emph{must}
702be preceded by a @samp{%}. If you specify a section override which
703coincides with the default section register, @code{@value{AS}} does @emph{not}
704output any section register override prefixes to assemble the given
705instruction. Thus, section overrides can be specified to emphasize which
706section register is used for a given memory operand.
707
708Here are some examples of Intel and AT&T style memory references:
709
710@table @asis
711@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
712@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
713missing, and the default section is used (@samp{%ss} for addressing with
714@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
715
716@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
717@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
718@samp{foo}. All other fields are missing. The section register here
719defaults to @samp{%ds}.
720
721@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
722This uses the value pointed to by @samp{foo} as a memory operand.
723Note that @var{base} and @var{index} are both missing, but there is only
724@emph{one} @samp{,}. This is a syntactic exception.
725
726@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
727This selects the contents of the variable @samp{foo} with section
728register @var{section} being @samp{%gs}.
729@end table
730
731Absolute (as opposed to PC relative) call and jump operands must be
732prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
733always chooses PC relative addressing for jump/call labels.
734
735Any instruction that has a memory operand, but no register operand,
55b62671
AJ
736@emph{must} specify its size (byte, word, long, or quadruple) with an
737instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
738respectively).
739
740The x86-64 architecture adds an RIP (instruction pointer relative)
741addressing. This addressing mode is specified by using @samp{rip} as a
742base register. Only constant offsets are valid. For example:
743
744@table @asis
745@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
746Points to the address 1234 bytes past the end of the current
747instruction.
748
749@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
750Points to the @code{symbol} in RIP relative way, this is shorter than
751the default absolute addressing.
752@end table
753
754Other addressing modes remain unchanged in x86-64 architecture, except
755registers used are 64-bit instead of 32-bit.
252b5132 756
fddf5b5b 757@node i386-Jumps
252b5132
RH
758@section Handling of Jump Instructions
759
760@cindex jump optimization, i386
761@cindex i386 jump optimization
55b62671
AJ
762@cindex jump optimization, x86-64
763@cindex x86-64 jump optimization
252b5132
RH
764Jump instructions are always optimized to use the smallest possible
765displacements. This is accomplished by using byte (8-bit) displacement
766jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 767is insufficient a long displacement is used. We do not support
252b5132
RH
768word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
769instruction with the @samp{data16} instruction prefix), since the 80386
770insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 771is added. (See also @pxref{i386-Arch})
252b5132
RH
772
773Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
774@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
775displacements, so that if you use these instructions (@code{@value{GCC}} does
776not use them) you may get an error message (and incorrect code). The AT&T
77780386 assembler tries to get around this problem by expanding @samp{jcxz foo}
778to
779
780@smallexample
781 jcxz cx_zero
782 jmp cx_nonzero
783cx_zero: jmp foo
784cx_nonzero:
785@end smallexample
786
787@node i386-Float
788@section Floating Point
789
790@cindex i386 floating point
791@cindex floating point, i386
55b62671
AJ
792@cindex x86-64 floating point
793@cindex floating point, x86-64
252b5132
RH
794All 80387 floating point types except packed BCD are supported.
795(BCD support may be added without much difficulty). These data
796types are 16-, 32-, and 64- bit integers, and single (32-bit),
797double (64-bit), and extended (80-bit) precision floating point.
798Each supported type has an instruction mnemonic suffix and a constructor
799associated with it. Instruction mnemonic suffixes specify the operand's
800data type. Constructors build these data types into memory.
801
802@cindex @code{float} directive, i386
803@cindex @code{single} directive, i386
804@cindex @code{double} directive, i386
805@cindex @code{tfloat} directive, i386
55b62671
AJ
806@cindex @code{float} directive, x86-64
807@cindex @code{single} directive, x86-64
808@cindex @code{double} directive, x86-64
809@cindex @code{tfloat} directive, x86-64
252b5132
RH
810@itemize @bullet
811@item
812Floating point constructors are @samp{.float} or @samp{.single},
813@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
814These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
815and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
816only supports this format via the @samp{fldt} (load 80-bit real to stack
817top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
818
819@cindex @code{word} directive, i386
820@cindex @code{long} directive, i386
821@cindex @code{int} directive, i386
822@cindex @code{quad} directive, i386
55b62671
AJ
823@cindex @code{word} directive, x86-64
824@cindex @code{long} directive, x86-64
825@cindex @code{int} directive, x86-64
826@cindex @code{quad} directive, x86-64
252b5132
RH
827@item
828Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
829@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
830corresponding instruction mnemonic suffixes are @samp{s} (single),
831@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
832the 64-bit @samp{q} format is only present in the @samp{fildq} (load
833quad integer to stack top) and @samp{fistpq} (store quad integer and pop
834stack) instructions.
835@end itemize
836
837Register to register operations should not use instruction mnemonic suffixes.
838@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
839wrote @samp{fst %st, %st(1)}, since all register to register operations
840use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
841which converts @samp{%st} from 80-bit to 64-bit floating point format,
842then stores the result in the 4 byte location @samp{mem})
843
844@node i386-SIMD
845@section Intel's MMX and AMD's 3DNow! SIMD Operations
846
847@cindex MMX, i386
848@cindex 3DNow!, i386
849@cindex SIMD, i386
55b62671
AJ
850@cindex MMX, x86-64
851@cindex 3DNow!, x86-64
852@cindex SIMD, x86-64
252b5132
RH
853
854@code{@value{AS}} supports Intel's MMX instruction set (SIMD
855instructions for integer data), available on Intel's Pentium MMX
856processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 857Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
858instruction set (SIMD instructions for 32-bit floating point data)
859available on AMD's K6-2 processor and possibly others in the future.
860
861Currently, @code{@value{AS}} does not support Intel's floating point
862SIMD, Katmai (KNI).
863
864The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
865@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
86616-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
867floating point values. The MMX registers cannot be used at the same time
868as the floating point stack.
869
870See Intel and AMD documentation, keeping in mind that the operand order in
871instructions is reversed from the Intel syntax.
872
f88c9eb0
SP
873@node i386-LWP
874@section AMD's Lightweight Profiling Instructions
875
876@cindex LWP, i386
877@cindex LWP, x86-64
878
879@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
880instruction set, available on AMD's Family 15h (Orochi) processors.
881
882LWP enables applications to collect and manage performance data, and
883react to performance events. The collection of performance data
884requires no context switches. LWP runs in the context of a thread and
885so several counters can be used independently across multiple threads.
886LWP can be used in both 64-bit and legacy 32-bit modes.
887
888For detailed information on the LWP instruction set, see the
889@cite{AMD Lightweight Profiling Specification} available at
890@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
891
87973e9f
QN
892@node i386-BMI
893@section Bit Manipulation Instructions
894
895@cindex BMI, i386
896@cindex BMI, x86-64
897
898@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
899
900BMI instructions provide several instructions implementing individual
901bit manipulation operations such as isolation, masking, setting, or
902resetting.
903
904@c Need to add a specification citation here when available.
905
2a2a0f38
QN
906@node i386-TBM
907@section AMD's Trailing Bit Manipulation Instructions
908
909@cindex TBM, i386
910@cindex TBM, x86-64
911
912@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
913instruction set, available on AMD's BDVER2 processors (Trinity and
914Viperfish).
915
916TBM instructions provide instructions implementing individual bit
917manipulation operations such as isolating, masking, setting, resetting,
918complementing, and operations on trailing zeros and ones.
919
920@c Need to add a specification citation here when available.
87973e9f 921
252b5132
RH
922@node i386-16bit
923@section Writing 16-bit Code
924
925@cindex i386 16-bit code
926@cindex 16-bit code, i386
927@cindex real-mode code, i386
eecb386c 928@cindex @code{code16gcc} directive, i386
252b5132
RH
929@cindex @code{code16} directive, i386
930@cindex @code{code32} directive, i386
55b62671
AJ
931@cindex @code{code64} directive, i386
932@cindex @code{code64} directive, x86-64
933While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
934or 64-bit x86-64 code depending on the default configuration,
252b5132 935it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
936mode code segments. To do this, put a @samp{.code16} or
937@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
938be run in 16-bit mode. You can switch @code{@value{AS}} to writing
93932-bit code with the @samp{.code32} directive or 64-bit code with the
940@samp{.code64} directive.
eecb386c
AM
941
942@samp{.code16gcc} provides experimental support for generating 16-bit
943code from gcc, and differs from @samp{.code16} in that @samp{call},
944@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
945@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
946default to 32-bit size. This is so that the stack pointer is
947manipulated in the same way over function calls, allowing access to
948function parameters at the same stack offsets as in 32-bit mode.
949@samp{.code16gcc} also automatically adds address size prefixes where
950necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
951
952The code which @code{@value{AS}} generates in 16-bit mode will not
953necessarily run on a 16-bit pre-80386 processor. To write code that
954runs on such a processor, you must refrain from using @emph{any} 32-bit
955constructs which require @code{@value{AS}} to output address or operand
956size prefixes.
957
958Note that writing 16-bit code instructions by explicitly specifying a
959prefix or an instruction mnemonic suffix within a 32-bit code section
960generates different machine instructions than those generated for a
96116-bit code segment. In a 32-bit code section, the following code
962generates the machine opcode bytes @samp{66 6a 04}, which pushes the
963value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
964
965@smallexample
966 pushw $4
967@end smallexample
968
969The same code in a 16-bit code section would generate the machine
b45619c0 970opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
971is correct since the processor default operand size is assumed to be 16
972bits in a 16-bit code section.
973
974@node i386-Bugs
975@section AT&T Syntax bugs
976
977The UnixWare assembler, and probably other AT&T derived ix86 Unix
978assemblers, generate floating point instructions with reversed source
979and destination registers in certain cases. Unfortunately, gcc and
980possibly many other programs use this reversed syntax, so we're stuck
981with it.
982
983For example
984
985@smallexample
986 fsub %st,%st(3)
987@end smallexample
988@noindent
989results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
990than the expected @samp{%st(3) - %st}. This happens with all the
991non-commutative arithmetic floating point operations with two register
992operands where the source register is @samp{%st} and the destination
993register is @samp{%st(i)}.
994
e413e4e9
AM
995@node i386-Arch
996@section Specifying CPU Architecture
997
998@cindex arch directive, i386
999@cindex i386 arch directive
55b62671
AJ
1000@cindex arch directive, x86-64
1001@cindex x86-64 arch directive
e413e4e9
AM
1002
1003@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1004(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1005directive enables a warning when gas detects an instruction that is not
1006supported on the CPU specified. The choices for @var{cpu_type} are:
1007
1008@multitable @columnfractions .20 .20 .20 .20
1009@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1010@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1011@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1012@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
7a9068fe 1013@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1543849b 1014@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
af2f724e 1015@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2}
1ceab344 1016@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1017@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1018@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1019@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1020@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1021@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1022@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1023@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1024@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1ceab344 1025@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1026@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
f0ae4a24 1027@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1ceab344 1028@item @samp{.padlock}
e413e4e9
AM
1029@end multitable
1030
fddf5b5b
AM
1031Apart from the warning, there are only two other effects on
1032@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1033@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1034will automatically use a two byte opcode sequence. The larger three
1035byte opcode sequence is used on the 486 (and when no architecture is
1036specified) because it executes faster on the 486. Note that you can
1037explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1038Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1039@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1040conditional jumps will be promoted when necessary to a two instruction
1041sequence consisting of a conditional jump of the opposite sense around
1042an unconditional jump to the target.
1043
5c6af06e
JB
1044Following the CPU architecture (but not a sub-architecture, which are those
1045starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1046control automatic promotion of conditional jumps. @samp{jumps} is the
1047default, and enables jump promotion; All external jumps will be of the long
1048variety, and file-local jumps will be promoted as necessary.
1049(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1050byte offset jumps, and warns about file-local conditional jumps that
1051@code{@value{AS}} promotes.
fddf5b5b
AM
1052Unconditional jumps are treated as for @samp{jumps}.
1053
1054For example
1055
1056@smallexample
1057 .arch i8086,nojumps
1058@end smallexample
e413e4e9 1059
252b5132
RH
1060@node i386-Notes
1061@section Notes
1062
1063@cindex i386 @code{mul}, @code{imul} instructions
1064@cindex @code{mul} instruction, i386
1065@cindex @code{imul} instruction, i386
55b62671
AJ
1066@cindex @code{mul} instruction, x86-64
1067@cindex @code{imul} instruction, x86-64
252b5132 1068There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1069instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1070multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1071for @samp{imul}) can be output only in the one operand form. Thus,
1072@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1073the expanding multiply would clobber the @samp{%edx} register, and this
1074would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
107564-bit product in @samp{%edx:%eax}.
1076
1077We have added a two operand form of @samp{imul} when the first operand
1078is an immediate mode expression and the second operand is a register.
1079This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1080example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1081$69, %eax, %eax}.
1082
This page took 0.562027 seconds and 4 git commands to generate.