ChangeLog rotatation and copyright year update
[deliverable/binutils-gdb.git] / gas / doc / c-s390.texi
CommitLineData
b90efa5b 1@c Copyright (C) 2009-2015 Free Software Foundation, Inc.
11c19e16
MS
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
4@ifset GENERIC
5@page
6@node S/390-Dependent
7@chapter IBM S/390 Dependent Features
8@end ifset
9@ifclear GENERIC
10@node Machine Dependencies
11@chapter IBM S/390 Dependent Features
12@end ifclear
13
14@cindex s390 support
15
16The s390 version of @code{@value{AS}} supports two architectures modes
17and seven chip levels. The architecture modes are the Enterprise System
18Architecture (ESA) and the newer z/Architecture mode. The chip levels
cfc72779 19are g5, g6, z900, z990, z9-109, z9-ec, z10, z196, and zEC12.
11c19e16
MS
20
21@menu
22* s390 Options:: Command-line Options.
23* s390 Characters:: Special Characters.
24* s390 Syntax:: Assembler Instruction syntax.
25* s390 Directives:: Assembler Directives.
26* s390 Floating Point:: Floating Point.
27@end menu
28
29@node s390 Options
30@section Options
31@cindex options for s390
32@cindex s390 options
33
34The following table lists all available s390 specific options:
34bca508 35
11c19e16
MS
36@table @code
37@cindex @samp{-m31} option, s390
38@cindex @samp{-m64} option, s390
39@item -m31 | -m64
40Select 31- or 64-bit ABI implying a word size of 32- or 64-bit.
41
42These options are only available with the ELF object file format, and
43require that the necessary BFD support has been included (on a 31-bit
44platform you must add --enable-64-bit-bfd on the call to the configure
45script to enable 64-bit usage and use s390x as target platform).
46
47@cindex @samp{-mesa} option, s390
48@cindex @samp{-mzarch} option, s390
49@item -mesa | -mzarch
50Select the architecture mode, either the Enterprise System Architecture
51(esa) mode or the z/Architecture mode (zarch).
52
53The 64-bit instructions are only available with the z/Architecture mode.
54The combination of @samp{-m64} and @samp{-mesa} results in a warning
55message.
56
57@cindex @samp{-march=} option, s390
58@item -march=@var{CPU}
59This option specifies the target processor. The following processor names
34bca508 60are recognized:
11c19e16
MS
61@code{g5},
62@code{g6},
63@code{z900},
64@code{z990},
65@code{z9-109},
d9aee5d7
AK
66@code{z9-ec},
67@code{z10} and
68@code{z196}.
11c19e16
MS
69Assembling an instruction that is not supported on the target processor
70results in an error message. Do not specify @code{g5} or @code{g6}
71with @samp{-mzarch}.
72
73@cindex @samp{-mregnames} option, s390
74@item -mregnames
75Allow symbolic names for registers.
76
77@cindex @samp{-mno-regnames} option, s390
78@item -mno-regnames
79Do not allow symbolic names for registers.
80
81@cindex @samp{-mwarn-areg-zero} option, s390
82@item -mwarn-areg-zero
83Warn whenever the operand for a base or index register has been specified
84but evaluates to zero. This can indicate the misuse of general purpose
85register 0 as an address register.
86
87@end table
88
89@node s390 Characters
90@section Special Characters
91@cindex line comment character, s390
92@cindex s390 line comment character
93
94@samp{#} is the line comment character.
95
7c31ae13
NC
96If a @samp{#} appears as the first character of a line then the whole
97line is treated as a comment, but in this case the line could also be
98a logical line number directive (@pxref{Comments}) or a preprocessor
99control command (@pxref{Preprocessing}).
100
101@cindex line separator, s390
102@cindex statement separator, s390
103@cindex s390 line separator
104The @samp{;} character can be used instead of a newline to separate
105statements.
106
11c19e16
MS
107@node s390 Syntax
108@section Instruction syntax
109@cindex instruction syntax, s390
110@cindex s390 instruction syntax
111
34bca508
L
112The assembler syntax closely follows the syntax outlined in
113Enterprise Systems Architecture/390 Principles of Operation (SA22-7201)
114and the z/Architecture Principles of Operation (SA22-7832).
11c19e16
MS
115
116Each instruction has two major parts, the instruction mnemonic
117and the instruction operands. The instruction format varies.
118
119@menu
120* s390 Register:: Register Naming
121* s390 Mnemonics:: Instruction Mnemonics
122* s390 Operands:: Instruction Operands
123* s390 Formats:: Instruction Formats
124* s390 Aliases:: Instruction Aliases
125* s390 Operand Modifier:: Instruction Operand Modifier
126* s390 Instruction Marker:: Instruction Marker
127* s390 Literal Pool Entries:: Literal Pool Entries
128@end menu
129
130@node s390 Register
131@subsection Register naming
132@cindex register naming, s390
133@cindex s390 register naming
134
135The @code{@value{AS}} recognizes a number of predefined symbols for the
136various processor registers. A register specification in one of the
137instruction formats is an unsigned integer between 0 and 15. The specific
138instruction and the position of the register in the instruction format
139denotes the type of the register. The register symbols are prefixed with
140@samp{%}:
141
142@display
143@multitable {%rN} {the 16 general purpose registers, 0 <= N <= 15}
144@item %rN @tab the 16 general purpose registers, 0 <= N <= 15
145@item %fN @tab the 16 floating point registers, 0 <= N <= 15
146@item %aN @tab the 16 access registers, 0 <= N <= 15
147@item %cN @tab the 16 control registers, 0 <= N <= 15
148@item %lit @tab an alias for the general purpose register %r13
149@item %sp @tab an alias for the general purpose register %r15
150@end multitable
151@end display
152
153@node s390 Mnemonics
154@subsection Instruction Mnemonics
155@cindex instruction mnemonics, s390
156@cindex s390 instruction mnemonics
157
158All instructions documented in the Principles of Operation are supported
159with the mnemonic and order of operands as described.
160The instruction mnemonic identifies the instruction format
161(@ref{s390 Formats}) and the specific operation code for the instruction.
162For example, the @samp{lr} mnemonic denotes the instruction format @samp{RR}
163with the operation code @samp{0x18}.
164
165The definition of the various mnemonics follows a scheme, where the first
166character usually hint at the type of the instruction:
167
168@display
169@multitable {sla, sll} {if r is the last character the instruction operates on registers}
170@item a @tab add instruction, for example @samp{al} for add logical 32-bit
171@item b @tab branch instruction, for example @samp{bc} for branch on condition
172@item c @tab compare or convert instruction, for example @samp{cr} for compare
173register 32-bit
174@item d @tab divide instruction, for example @samp{dlr} devide logical register
17564-bit to 32-bit
176@item i @tab insert instruction, for example @samp{ic} insert character
177@item l @tab load instruction, for example @samp{ltr} load and test register
178@item mv @tab move instruction, for example @samp{mvc} move character
179@item m @tab multiply instruction, for example @samp{mh} multiply halfword
180@item n @tab and instruction, for example @samp{ni} and immediate
181@item o @tab or instruction, for example @samp{oc} or character
182@item sla, sll @tab shift left single instruction
183@item sra, srl @tab shift right single instruction
184@item st @tab store instruction, for example @samp{stm} store multiple
185@item s @tab subtract instruction, for example @samp{slr} subtract
186logical 32-bit
187@item t @tab test or translate instruction, of example @samp{tm} test under mask
188@item x @tab exclusive or instruction, for example @samp{xc} exclusive or
189character
190@end multitable
191@end display
192
193Certain characters at the end of the mnemonic may describe a property
194of the instruction:
195
196@display
197@multitable {c} {if r is the last character the instruction operates on registers}
198@item c @tab the instruction uses a 8-bit character operand
199@item f @tab the instruction extends a 32-bit operand to 64 bit
200@item g @tab the operands are treated as 64-bit values
201@item h @tab the operand uses a 16-bit halfword operand
202@item i @tab the instruction uses an immediate operand
203@item l @tab the instruction uses unsigned, logical operands
204@item m @tab the instruction uses a mask or operates on multiple values
205@item r @tab if r is the last character, the instruction operates on registers
206@item y @tab the instruction uses 20-bit displacements
207@end multitable
208@end display
209
210There are many exceptions to the scheme outlined in the above lists, in
211particular for the priviledged instructions. For non-priviledged
212instruction it works quite well, for example the instruction @samp{clgfr}
213c: compare instruction, l: unsigned operands, g: 64-bit operands,
214f: 32- to 64-bit extension, r: register operands. The instruction compares
215an 64-bit value in a register with the zero extended 32-bit value from
216a second register.
217For a complete list of all mnemonics see appendix B in the Principles
218of Operation.
219
220@node s390 Operands
221@subsection Instruction Operands
222@cindex instruction operands, s390
223@cindex s390 instruction operands
224
225Instruction operands can be grouped into three classes, operands located
226in registers, immediate operands, and operands in storage.
227
228A register operand can be located in general, floating-point, access,
229or control register. The register is identified by a four-bit field.
230The field containing the register operand is called the R field.
231
232Immediate operands are contained within the instruction and can have
2338, 16 or 32 bits. The field containing the immediate operand is called
234the I field. Dependent on the instruction the I field is either signed
235or unsigned.
236
237A storage operand consists of an address and a length. The address of a
238storage operands can be specified in any of these ways:
239
240@itemize
241@item The content of a single general R
242@item The sum of the content of a general register called the base
243register B plus the content of a displacement field D
244@item The sum of the contents of two general registers called the
245index register X and the base register B plus the content of a
246displacement field
247@item The sum of the current instruction address and a 32-bit signed
248immediate field multiplied by two.
249@end itemize
250
251The length of a storage operand can be:
252
253@itemize
254@item Implied by the instruction
255@item Specified by a bitmask
256@item Specified by a four-bit or eight-bit length field L
257@item Specified by the content of a general register
258@end itemize
259
260The notation for storage operand addresses formed from multiple fields is
261as follows:
262
263@table @code
264@item Dn(Bn)
265the address for operand number n is formed from the content of general
266register Bn called the base register and the displacement field Dn.
267@item Dn(Xn,Bn)
268the address for operand number n is formed from the content of general
269register Xn called the index register, general register Bn called the
270base register and the displacement field Dn.
271@item Dn(Ln,Bn)
272the address for operand number n is formed from the content of general
273regiser Bn called the base register and the displacement field Dn.
274The length of the operand n is specified by the field Ln.
275@end table
276
277The base registers Bn and the index registers Xn of a storage operand can
278be skipped. If Bn and Xn are skipped, a zero will be stored to the operand
279field. The notation changes as follows:
280
281@display
282@multitable @columnfractions 0.30 0.30
283@headitem full notation @tab short notation
284@item Dn(0,Bn) @tab Dn(Bn)
285@item Dn(0,0) @tab Dn
286@item Dn(0) @tab Dn
287@item Dn(Ln,0) @tab Dn(Ln)
288@end multitable
289@end display
290
291
292@node s390 Formats
293@subsection Instruction Formats
294@cindex instruction formats, s390
295@cindex s390 instruction formats
296
297The Principles of Operation manuals lists 26 instruction formats where
298some of the formats have multiple variants. For the @samp{.insn}
34bca508 299pseudo directive the assembler recognizes some of the formats.
11c19e16
MS
300Typically, the most general variant of the instruction format is used
301by the @samp{.insn} directive.
302
303The following table lists the abbreviations used in the table of
304instruction formats:
305
306@display
307@multitable {OpCode / OpCd} {Displacement lower 12 bits for operand x.}
308@item OpCode / OpCd @tab Part of the op code.
309@item Bx @tab Base register number for operand x.
310@item Dx @tab Displacement for operand x.
311@item DLx @tab Displacement lower 12 bits for operand x.
312@item DHx @tab Displacement higher 8-bits for operand x.
313@item Rx @tab Register number for operand x.
314@item Xx @tab Index register number for operand x.
315@item Ix @tab Signed immediate for operand x.
316@item Ux @tab Unsigned immediate for operand x.
317@end multitable
318@end display
319
320An instruction is two, four, or six bytes in length and must be aligned
321on a 2 byte boundary. The first two bits of the instruction specify the
322length of the instruction, 00 indicates a two byte instruction, 01 and 10
323indicates a four byte instruction, and 11 indicates a six byte instruction.
324
325The following table lists the s390 instruction formats that are available
326with the @samp{.insn} pseudo directive:
327
328@table @code
329@item E format
330@verbatim
331+-------------+
332| OpCode |
333+-------------+
3340 15
335@end verbatim
336
337@item RI format: <insn> R1,I2
338@verbatim
339+--------+----+----+------------------+
340| OpCode | R1 |OpCd| I2 |
341+--------+----+----+------------------+
3420 8 12 16 31
343@end verbatim
344
345@item RIE format: <insn> R1,R3,I2
346@verbatim
347+--------+----+----+------------------+--------+--------+
348| OpCode | R1 | R3 | I2 |////////| OpCode |
349+--------+----+----+------------------+--------+--------+
3500 8 12 16 32 40 47
351@end verbatim
352
353@item RIL format: <insn> R1,I2
354@verbatim
355+--------+----+----+------------------------------------+
356| OpCode | R1 |OpCd| I2 |
357+--------+----+----+------------------------------------+
3580 8 12 16 47
359@end verbatim
360
361@item RILU format: <insn> R1,U2
362@verbatim
363+--------+----+----+------------------------------------+
364| OpCode | R1 |OpCd| U2 |
365+--------+----+----+------------------------------------+
3660 8 12 16 47
367@end verbatim
368
369@item RIS format: <insn> R1,I2,M3,D4(B4)
370@verbatim
371+--------+----+----+----+-------------+--------+--------+
372| OpCode | R1 | M3 | B4 | D4 | I2 | Opcode |
373+--------+----+----+----+-------------+--------+--------+
3740 8 12 16 20 32 36 47
375@end verbatim
376
377@item RR format: <insn> R1,R2
378@verbatim
379+--------+----+----+
380| OpCode | R1 | R2 |
381+--------+----+----+
34bca508 3820 8 12 15
11c19e16
MS
383@end verbatim
384
385@item RRE format: <insn> R1,R2
386@verbatim
387+------------------+--------+----+----+
388| OpCode |////////| R1 | R2 |
389+------------------+--------+----+----+
3900 16 24 28 31
391@end verbatim
392
393@item RRF format: <insn> R1,R2,R3,M4
394@verbatim
395+------------------+----+----+----+----+
396| OpCode | R3 | M4 | R1 | R2 |
397+------------------+----+----+----+----+
3980 16 20 24 28 31
399@end verbatim
400
401@item RRS format: <insn> R1,R2,M3,D4(B4)
402@verbatim
403+--------+----+----+----+-------------+----+----+--------+
404| OpCode | R1 | R3 | B4 | D4 | M3 |////| OpCode |
405+--------+----+----+----+-------------+----+----+--------+
4060 8 12 16 20 32 36 40 47
407@end verbatim
408
409@item RS format: <insn> R1,R3,D2(B2)
410@verbatim
411+--------+----+----+----+-------------+
412| OpCode | R1 | R3 | B2 | D2 |
413+--------+----+----+----+-------------+
4140 8 12 16 20 31
415@end verbatim
416
417@item RSE format: <insn> R1,R3,D2(B2)
418@verbatim
419+--------+----+----+----+-------------+--------+--------+
420| OpCode | R1 | R3 | B2 | D2 |////////| OpCode |
421+--------+----+----+----+-------------+--------+--------+
4220 8 12 16 20 32 40 47
423@end verbatim
424
425@item RSI format: <insn> R1,R3,I2
426@verbatim
427+--------+----+----+------------------------------------+
428| OpCode | R1 | R3 | I2 |
429+--------+----+----+------------------------------------+
4300 8 12 16 47
431@end verbatim
432
433@item RSY format: <insn> R1,R3,D2(B2)
434@verbatim
435+--------+----+----+----+-------------+--------+--------+
436| OpCode | R1 | R3 | B2 | DL2 | DH2 | OpCode |
437+--------+----+----+----+-------------+--------+--------+
4380 8 12 16 20 32 40 47
439@end verbatim
440
441@item RX format: <insn> R1,D2(X2,B2)
442@verbatim
443+--------+----+----+----+-------------+
444| OpCode | R1 | X2 | B2 | D2 |
445+--------+----+----+----+-------------+
4460 8 12 16 20 31
447@end verbatim
448
449@item RXE format: <insn> R1,D2(X2,B2)
450@verbatim
451+--------+----+----+----+-------------+--------+--------+
452| OpCode | R1 | X2 | B2 | D2 |////////| OpCode |
453+--------+----+----+----+-------------+--------+--------+
4540 8 12 16 20 32 40 47
455@end verbatim
456
457@item RXF format: <insn> R1,R3,D2(X2,B2)
458@verbatim
459+--------+----+----+----+-------------+----+---+--------+
460| OpCode | R3 | X2 | B2 | D2 | R1 |///| OpCode |
461+--------+----+----+----+-------------+----+---+--------+
4620 8 12 16 20 32 36 40 47
463@end verbatim
464
465@item RXY format: <insn> R1,D2(X2,B2)
466@verbatim
467+--------+----+----+----+-------------+--------+--------+
468| OpCode | R1 | X2 | B2 | DL2 | DH2 | OpCode |
469+--------+----+----+----+-------------+--------+--------+
4700 8 12 16 20 32 36 40 47
471@end verbatim
472
473@item S format: <insn> D2(B2)
474@verbatim
475+------------------+----+-------------+
476| OpCode | B2 | D2 |
477+------------------+----+-------------+
4780 16 20 31
479@end verbatim
480
481@item SI format: <insn> D1(B1),I2
482@verbatim
483+--------+---------+----+-------------+
484| OpCode | I2 | B1 | D1 |
485+--------+---------+----+-------------+
4860 8 16 20 31
487@end verbatim
488
489@item SIY format: <insn> D1(B1),U2
490@verbatim
491+--------+---------+----+-------------+--------+--------+
492| OpCode | I2 | B1 | DL1 | DH1 | OpCode |
493+--------+---------+----+-------------+--------+--------+
4940 8 16 20 32 36 40 47
495@end verbatim
496
497@item SIL format: <insn> D1(B1),I2
498@verbatim
499+------------------+----+-------------+-----------------+
500| OpCode | B1 | D1 | I2 |
501+------------------+----+-------------+-----------------+
5020 16 20 32 47
503@end verbatim
504
505@item SS format: <insn> D1(R1,B1),D2(B3),R3
506@verbatim
507+--------+----+----+----+-------------+----+------------+
508| OpCode | R1 | R3 | B1 | D1 | B2 | D2 |
509+--------+----+----+----+-------------+----+------------+
5100 8 12 16 20 32 36 47
511@end verbatim
512
513@item SSE format: <insn> D1(B1),D2(B2)
514@verbatim
515+------------------+----+-------------+----+------------+
516| OpCode | B1 | D1 | B2 | D2 |
517+------------------+----+-------------+----+------------+
5180 8 12 16 20 32 36 47
519@end verbatim
520
521@item SSF format: <insn> D1(B1),D2(B2),R3
522@verbatim
523+--------+----+----+----+-------------+----+------------+
524| OpCode | R3 |OpCd| B1 | D1 | B2 | D2 |
525+--------+----+----+----+-------------+----+------------+
5260 8 12 16 20 32 36 47
527@end verbatim
528
529@end table
530
531For the complete list of all instruction format variants see the
532Principles of Operation manuals.
533
534@node s390 Aliases
535@subsection Instruction Aliases
536@cindex instruction aliases, s390
537@cindex s390 instruction aliases
538
539A specific bit pattern can have multiple mnemonics, for example
540the bit pattern @samp{0xa7000000} has the mnemonics @samp{tmh} and
541@samp{tmlh}. In addition, there are a number of mnemonics recognized by
542@code{@value{AS}} that are not present in the Principles of Operation.
543These are the short forms of the branch instructions, where the condition
544code mask operand is encoded in the mnemonic. This is relevant for the
545branch instructions, the compare and branch instructions, and the
546compare and trap instructions.
547
548For the branch instructions there are 20 condition code strings that can
549be used as part of the mnemonic in place of a mask operand in the instruction
550format:
551
552@display
553@multitable @columnfractions .30 .30
554@headitem instruction @tab short form
555@item bcr M1,R2 @tab b<m>r R2
556@item bc M1,D2(X2,B2) @tab b<m> D2(X2,B2)
557@item brc M1,I2 @tab j<m> I2
558@item brcl M1,I2 @tab jg<m> I2
559@end multitable
560@end display
561
562In the mnemonic for a branch instruction the condition code string <m>
563can be any of the following:
564
565@display
566@multitable {nle} {jump on not zero / if not zeros}
567@item o @tab jump on overflow / if ones
568@item h @tab jump on A high
569@item p @tab jump on plus
570@item nle @tab jump on not low or equal
571@item l @tab jump on A low
572@item m @tab jump on minus
573@item nhe @tab jump on not high or equal
574@item lh @tab jump on low or high
575@item ne @tab jump on A not equal B
576@item nz @tab jump on not zero / if not zeros
577@item e @tab jump on A equal B
578@item z @tab jump on zero / if zeroes
579@item nlh @tab jump on not low or high
580@item he @tab jump on high or equal
581@item nl @tab jump on A not low
582@item nm @tab jump on not minus / if not mixed
583@item le @tab jump on low or equal
584@item nh @tab jump on A not high
585@item np @tab jump on not plus
586@item no @tab jump on not overflow / if not ones
587@end multitable
588@end display
589
590For the compare and branch, and compare and trap instructions there
591are 12 condition code strings that can be used as part of the mnemonic in
592place of a mask operand in the instruction format:
593
594@display
595@multitable @columnfractions .40 .40
596@headitem instruction @tab short form
597@item crb R1,R2,M3,D4(B4) @tab crb<m> R1,R2,D4(B4)
598@item cgrb R1,R2,M3,D4(B4) @tab cgrb<m> R1,R2,D4(B4)
599@item crj R1,R2,M3,I4 @tab crj<m> R1,R2,I4
600@item cgrj R1,R2,M3,I4 @tab cgrj<m> R1,R2,I4
601@item cib R1,I2,M3,D4(B4) @tab cib<m> R1,I2,D4(B4)
602@item cgib R1,I2,M3,D4(B4) @tab cgib<m> R1,I2,D4(B4)
603@item cij R1,I2,M3,I4 @tab cij<m> R1,I2,I4
604@item cgij R1,I2,M3,I4 @tab cgij<m> R1,I2,I4
605@item crt R1,R2,M3 @tab crt<m> R1,R2
606@item cgrt R1,R2,M3 @tab cgrt<m> R1,R2
607@item cit R1,I2,M3 @tab cit<m> R1,I2
608@item cgit R1,I2,M3 @tab cgit<m> R1,I2
609@item clrb R1,R2,M3,D4(B4) @tab clrb<m> R1,R2,D4(B4)
610@item clgrb R1,R2,M3,D4(B4) @tab clgrb<m> R1,R2,D4(B4)
611@item clrj R1,R2,M3,I4 @tab clrj<m> R1,R2,I4
612@item clgrj R1,R2,M3,I4 @tab clgrj<m> R1,R2,I4
613@item clib R1,I2,M3,D4(B4) @tab clib<m> R1,I2,D4(B4)
614@item clgib R1,I2,M3,D4(B4) @tab clgib<m> R1,I2,D4(B4)
615@item clij R1,I2,M3,I4 @tab clij<m> R1,I2,I4
616@item clgij R1,I2,M3,I4 @tab clgij<m> R1,I2,I4
617@item clrt R1,R2,M3 @tab clrt<m> R1,R2
618@item clgrt R1,R2,M3 @tab clgrt<m> R1,R2
619@item clfit R1,I2,M3 @tab clfit<m> R1,I2
620@item clgit R1,I2,M3 @tab clgit<m> R1,I2
621@end multitable
622@end display
623
624In the mnemonic for a compare and branch and compare and trap instruction
625the condition code string <m> can be any of the following:
626
627@display
628@multitable {nle} {jump on not zero / if not zeros}
629@item h @tab jump on A high
630@item nle @tab jump on not low or equal
631@item l @tab jump on A low
632@item nhe @tab jump on not high or equal
633@item ne @tab jump on A not equal B
634@item lh @tab jump on low or high
635@item e @tab jump on A equal B
636@item nlh @tab jump on not low or high
637@item nl @tab jump on A not low
638@item he @tab jump on high or equal
639@item nh @tab jump on A not high
640@item le @tab jump on low or equal
641@end multitable
642@end display
643
644@node s390 Operand Modifier
645@subsection Instruction Operand Modifier
646@cindex instruction operand modifier, s390
647@cindex s390 instruction operand modifier
648
649If a symbol modifier is attached to a symbol in an expression for an
650instruction operand field, the symbol term is replaced with a reference
651to an object in the global offset table (GOT) or the procedure linkage
652table (PLT). The following expressions are allowed:
653@samp{symbol@@modifier + constant},
654@samp{symbol@@modifier + label + constant}, and
655@samp{symbol@@modifier - label + constant}.
656The term @samp{symbol} is the symbol that will be entered into the GOT or
657PLT, @samp{label} is a local label, and @samp{constant} is an arbitrary
658expression that the assembler can evaluate to a constant value.
659
660The term @samp{(symbol + constant1)@@modifier +/- label + constant2}
661is also accepted but a warning message is printed and the term is
662converted to @samp{symbol@@modifier +/- label + constant1 + constant2}.
663
664@table @code
665@item @@got
666@itemx @@got12
667The @@got modifier can be used for displacement fields, 16-bit immediate
668fields and 32-bit pc-relative immediate fields. The @@got12 modifier is
669synonym to @@got. The symbol is added to the GOT. For displacement
670fields and 16-bit immediate fields the symbol term is replaced with
671the offset from the start of the GOT to the GOT slot for the symbol.
672For a 32-bit pc-relative field the pc-relative offset to the GOT
673slot from the current instruction address is used.
674@item @@gotent
675The @@gotent modifier can be used for 32-bit pc-relative immediate fields.
676The symbol is added to the GOT and the symbol term is replaced with
677the pc-relative offset from the current instruction to the GOT slot for the
678symbol.
679@item @@gotoff
680The @@gotoff modifier can be used for 16-bit immediate fields. The symbol
34bca508 681term is replaced with the offset from the start of the GOT to the
11c19e16
MS
682address of the symbol.
683@item @@gotplt
684The @@gotplt modifier can be used for displacement fields, 16-bit immediate
685fields, and 32-bit pc-relative immediate fields. A procedure linkage
686table entry is generated for the symbol and a jump slot for the symbol
687is added to the GOT. For displacement fields and 16-bit immediate
688fields the symbol term is replaced with the offset from the start of the
689GOT to the jump slot for the symbol. For a 32-bit pc-relative field
690the pc-relative offset to the jump slot from the current instruction
691address is used.
692@item @@plt
693The @@plt modifier can be used for 16-bit and 32-bit pc-relative immediate
694fields. A procedure linkage table entry is generated for the symbol.
695The symbol term is replaced with the relative offset from the current
696instruction to the PLT entry for the symbol.
697@item @@pltoff
698The @@pltoff modifier can be used for 16-bit immediate fields. The symbol
699term is replaced with the offset from the start of the PLT to the address
700of the symbol.
701@item @@gotntpoff
702The @@gotntpoff modifier can be used for displacement fields. The symbol
703is added to the static TLS block and the negated offset to the symbol
704in the static TLS block is added to the GOT. The symbol term is replaced
34bca508 705with the offset to the GOT slot from the start of the GOT.
11c19e16
MS
706@item @@indntpoff
707The @@indntpoff modifier can be used for 32-bit pc-relative immediate
708fields. The symbol is added to the static TLS block and the negated offset
709to the symbol in the static TLS block is added to the GOT. The symbol term
710is replaced with the pc-relative offset to the GOT slot from the current
711instruction address.
712@end table
713
714For more information about the thread local storage modifiers
715@samp{gotntpoff} and @samp{indntpoff} see the ELF extension documentation
716@samp{ELF Handling For Thread-Local Storage}.
717
718@node s390 Instruction Marker
719@subsection Instruction Marker
720@cindex instruction marker, s390
721@cindex s390 instruction marker
722
723The thread local storage instruction markers are used by the linker to
724perform code optimization.
725
726@table @code
727@item :tls_load
728The :tls_load marker is used to flag the load instruction in the initial
729exec TLS model that retrieves the offset from the thread pointer to a
34bca508 730thread local storage variable from the GOT.
11c19e16
MS
731@item :tls_gdcall
732The :tls_gdcall marker is used to flag the branch-and-save instruction to
733the __tls_get_offset function in the global dynamic TLS model.
734@item :tls_ldcall
735The :tls_ldcall marker is used to flag the branch-and-save instruction to
736the __tls_get_offset function in the local dynamic TLS model.
737@end table
738
739For more information about the thread local storage instruction marker
740and the linker optimizations see the ELF extension documentation
741@samp{ELF Handling For Thread-Local Storage}.
742
743@node s390 Literal Pool Entries
744@subsection Literal Pool Entries
745@cindex literal pool entries, s390
746@cindex s390 literal pool entries
747
748A literal pool is a collection of values. To access the values a pointer
749to the literal pool is loaded to a register, the literal pool register.
750Usually, register %r13 is used as the literal pool register
751(@ref{s390 Register}). Literal pool entries are created by adding the
752suffix :lit1, :lit2, :lit4, or :lit8 to the end of an expression for an
753instruction operand. The expression is added to the literal pool and the
754operand is replaced with the offset to the literal in the literal pool.
755
756@table @code
757@item :lit1
758The literal pool entry is created as an 8-bit value. An operand modifier
759must not be used for the original expression.
760@item :lit2
761The literal pool entry is created as a 16 bit value. The operand modifier
762@@got may be used in the original expression. The term @samp{x@@got:lit2}
763will put the got offset for the global symbol x to the literal pool as
76416 bit value.
765@item :lit4
766The literal pool entry is created as a 32-bit value. The operand modifier
767@@got and @@plt may be used in the original expression. The term
768@samp{x@@got:lit4} will put the got offset for the global symbol x to the
769literal pool as a 32-bit value. The term @samp{x@@plt:lit4} will put the
770plt offset for the global symbol x to the literal pool as a 32-bit value.
771@item :lit8
772The literal pool entry is created as a 64-bit value. The operand modifier
773@@got and @@plt may be used in the original expression. The term
774@samp{x@@got:lit8} will put the got offset for the global symbol x to the
775literal pool as a 64-bit value. The term @samp{x@@plt:lit8} will put the
776plt offset for the global symbol x to the literal pool as a 64-bit value.
777@end table
778
779The assembler directive @samp{.ltorg} is used to emit all literal pool
780entries to the current position.
781
782@node s390 Directives
783@section Assembler Directives
784
34bca508 785@code{@value{AS}} for s390 supports all of the standard ELF
11c19e16
MS
786assembler directives as outlined in the main part of this document.
787Some directives have been extended and there are some additional
788directives, which are only available for the s390 @code{@value{AS}}.
789
790@table @code
791@cindex @code{.insn} directive, s390
792@item .insn
793This directive permits the numeric representation of an instructions
794and makes the assembler insert the operands according to one of the
795instructions formats for @samp{.insn} (@ref{s390 Formats}).
796For example, the instruction @samp{l %r1,24(%r15)} could be written as
797@samp{.insn rx,0x58000000,%r1,24(%r15)}.
798@cindex @code{.short} directive, s390
799@cindex @code{.long} directive, s390
800@cindex @code{.quad} directive, s390
801@item .short
802@itemx .long
803@itemx .quad
804This directive places one or more 16-bit (.short), 32-bit (.long), or
80564-bit (.quad) values into the current section. If an ELF or TLS modifier
34bca508 806is used only the following expressions are allowed:
11c19e16
MS
807@samp{symbol@@modifier + constant},
808@samp{symbol@@modifier + label + constant}, and
809@samp{symbol@@modifier - label + constant}.
810The following modifiers are available:
811@table @code
812@item @@got
813@itemx @@got12
814The @@got modifier can be used for .short, .long and .quad. The @@got12
815modifier is synonym to @@got. The symbol is added to the GOT. The symbol
816term is replaced with offset from the start of the GOT to the GOT slot for
817the symbol.
818@item @@gotoff
819The @@gotoff modifier can be used for .short, .long and .quad. The symbol
820term is replaced with the offset from the start of the GOT to the address
821of the symbol.
822@item @@gotplt
823The @@gotplt modifier can be used for .long and .quad. A procedure linkage
824table entry is generated for the symbol and a jump slot for the symbol
825is added to the GOT. The symbol term is replaced with the offset from the
826start of the GOT to the jump slot for the symbol.
827@item @@plt
828The @@plt modifier can be used for .long and .quad. A procedure linkage
829table entry us generated for the symbol. The symbol term is replaced with
830the address of the PLT entry for the symbol.
831@item @@pltoff
832The @@pltoff modifier can be used for .short, .long and .quad. The symbol
833term is replaced with the offset from the start of the PLT to the address
834of the symbol.
835@item @@tlsgd
836@itemx @@tlsldm
837The @@tlsgd and @@tlsldm modifier can be used for .long and .quad. A
838tls_index structure for the symbol is added to the GOT. The symbol term is
839replaced with the offset from the start of the GOT to the tls_index structure.
840@item @@gotntpoff
841@itemx @@indntpoff
842The @@gotntpoff and @@indntpoff modifier can be used for .long and .quad.
843The symbol is added to the static TLS block and the negated offset to the
844symbol in the static TLS block is added to the GOT. For @@gotntpoff the
845symbol term is replaced with the offset from the start of the GOT to the
846GOT slot, for @@indntpoff the symbol term is replaced with the address
847of the GOT slot.
848@item @@dtpoff
849The @@dtpoff modifier can be used for .long and .quad. The symbol term
850is replaced with the offset of the symbol relative to the start of the
851TLS block it is contained in.
852@item @@ntpoff
853The @@ntpoff modifier can be used for .long and .quad. The symbol term
854is replaced with the offset of the symbol relative to the TCB pointer.
855@end table
856
857For more information about the thread local storage modifiers see the
858ELF extension documentation @samp{ELF Handling For Thread-Local Storage}.
859
860@cindex @code{.ltorg} directive, s390
861@item .ltorg
862This directive causes the current contents of the literal pool to be
863dumped to the current location (@ref{s390 Literal Pool Entries}).
902cc293
AK
864
865@cindex @code{.machine} directive, s390
866@item .machine string
867This directive allows you to change the machine for which code is
868generated. @code{string} may be any of the @code{-march=} selection
869options (without the -march=), @code{push}, or @code{pop}.
870@code{.machine push} saves the currently selected cpu, which may be
871restored with @code{.machine pop}. Be aware that the cpu string has
872to be put into double quotes in case it contains characters not
873appropriate for identifiers. So you have to write @code{"z9-109"}
874instead of just @code{z9-109}.
1dd53816
AK
875
876@cindex @code{.machinemode} directive, s390
877@item .machinemode string
878This directive allows to change the architecture mode for which code
879is being generated. @code{string} may be @code{esa}, @code{zarch},
880@code{zarch_nohighgprs}, @code{push}, or @code{pop}.
881@code{.machinemode zarch_nohighgprs} can be used to prevent the
882@code{highgprs} flag from being set in the ELF header of the output
883file. This is useful in situations where the code is gated with a
884runtime check which makes sure that the code is only executed on
885kernels providing the @code{highgprs} feature.
886@code{.machinemode push} saves the currently selected mode, which may
887be restored with @code{.machinemode pop}.
11c19e16
MS
888@end table
889
890@node s390 Floating Point
891@section Floating Point
892@cindex floating point, s390
893@cindex s390 floating point
894
895The assembler recognizes both the @sc{ieee} floating-point instruction and
896the hexadecimal floating-point instructions. The floating-point constructors
897@samp{.float}, @samp{.single}, and @samp{.double} always emit the
898@sc{ieee} format. To assemble hexadecimal floating-point constants the
899@samp{.long} and @samp{.quad} directives must be used.
This page took 0.34225 seconds and 4 git commands to generate.