Add support for MIPS R6.
[deliverable/binutils-gdb.git] / gas / doc / c-sparc.texi
CommitLineData
4b95cf5c 1@c Copyright (C) 1991-2014 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
4@ifset GENERIC
5@page
6@node Sparc-Dependent
7@chapter SPARC Dependent Features
8@end ifset
9@ifclear GENERIC
10@node Machine Dependencies
11@chapter SPARC Dependent Features
12@end ifclear
13
14@cindex SPARC support
15@menu
16* Sparc-Opts:: Options
17* Sparc-Aligned-Data:: Option to enforce aligned data
c15295d5 18* Sparc-Syntax:: Syntax
252b5132
RH
19* Sparc-Float:: Floating Point
20* Sparc-Directives:: Sparc Machine Directives
21@end menu
22
23@node Sparc-Opts
24@section Options
25
26@cindex options for SPARC
27@cindex SPARC options
28@cindex architectures, SPARC
29@cindex SPARC architectures
f04d18b7 30The SPARC chip family includes several successive versions, using the same
252b5132 31core instruction set, but including a few additional instructions at
f04d18b7 32each version. There are exceptions to this however. For details on what
252b5132
RH
33instructions each variant supports, please see the chip's architecture
34reference manual.
35
36By default, @code{@value{AS}} assumes the core instruction set (SPARC
37v6), but ``bumps'' the architecture level as needed: it switches to
38successively higher architectures as it encounters instructions that
39only exist in the higher levels.
40
41If not configured for SPARC v9 (@code{sparc64-*-*}) GAS will not bump
f04d18b7 42past sparclite by default, an option must be passed to enable the
252b5132
RH
43v9 instructions.
44
45GAS treats sparclite as being compatible with v8, unless an architecture
46is explicitly requested. SPARC v9 is always incompatible with sparclite.
47
48@c The order here is the same as the order of enum sparc_opcode_arch_val
49@c to give the user a sense of the order of the "bumping".
50
51@table @code
52@kindex -Av6
4bafe00e 53@kindex -Av7
252b5132 54@kindex -Av8
d6787ef9 55@kindex -Aleon
252b5132
RH
56@kindex -Asparclet
57@kindex -Asparclite
58@kindex -Av9
59@kindex -Av9a
4bafe00e
DM
60@kindex -Av9b
61@kindex -Av9c
62@kindex -Av9d
63@kindex -Av9v
64@kindex -Asparc
65@kindex -Asparcvis
66@kindex -Asparcvis2
67@kindex -Asparcfmaf
68@kindex -Asparcima
69@kindex -Asparcvis3
70@kindex -Asparcvis3r
d6787ef9 71@item -Av6 | -Av7 | -Av8 | -Aleon | -Asparclet | -Asparclite
4bafe00e
DM
72@itemx -Av8plus | -Av8plusa | -Av8plusb | -Av8plusc | -Av8plusd | -Av8plusv
73@itemx -Av9 | -Av9a | -Av9b | -Av9c | -Av9d | -Av9v
74@itemx -Asparc | -Asparcvis | -Asparcvis2 | -Asparcfmaf | -Asparcima
75@itemx -Asparcvis3 | -Asparcvis3r
252b5132
RH
76Use one of the @samp{-A} options to select one of the SPARC
77architectures explicitly. If you select an architecture explicitly,
78@code{@value{AS}} reports a fatal error if it encounters an instruction
79or feature requiring an incompatible or higher level.
80
4bafe00e
DM
81@samp{-Av8plus}, @samp{-Av8plusa}, @samp{-Av8plusb}, @samp{-Av8plusc},
82@samp{-Av8plusd}, and @samp{-Av8plusv} select a 32 bit environment.
252b5132 83
4bafe00e
DM
84@samp{-Av9}, @samp{-Av9a}, @samp{-Av9b}, @samp{-Av9c}, @samp{-Av9d}, and
85@samp{-Av9v} select a 64 bit environment and are not available unless GAS
86is explicitly configured with 64 bit environment support.
252b5132
RH
87
88@samp{-Av8plusa} and @samp{-Av9a} enable the SPARC V9 instruction set with
4bafe00e 89UltraSPARC VIS 1.0 extensions.
252b5132 90
4bafe00e
DM
91@samp{-Av8plusb} and @samp{-Av9b} enable the UltraSPARC VIS 2.0 instructions,
92as well as the instructions enabled by @samp{-Av8plusa} and @samp{-Av9a}.
93
94@samp{-Av8plusc} and @samp{-Av9c} enable the UltraSPARC Niagara instructions,
95as well as the instructions enabled by @samp{-Av8plusb} and @samp{-Av9b}.
96
97@samp{-Av8plusd} and @samp{-Av9d} enable the floating point fused
98multiply-add, VIS 3.0, and HPC extension instructions, as well as the
99instructions enabled by @samp{-Av8plusc} and @samp{-Av9c}.
100
101@samp{-Av8plusv} and @samp{-Av9v} enable the 'random', transactional
102memory, floating point unfused multiply-add, integer multiply-add, and
103cache sparing store instructions, as well as the instructions enabled
104by @samp{-Av8plusd} and @samp{-Av9d}.
105
106@samp{-Asparc} specifies a v9 environment. It is equivalent to
107@samp{-Av9} if the word size is 64-bit, and @samp{-Av8plus} otherwise.
108
109@samp{-Asparcvis} specifies a v9a environment. It is equivalent to
110@samp{-Av9a} if the word size is 64-bit, and @samp{-Av8plusa} otherwise.
111
112@samp{-Asparcvis2} specifies a v9b environment. It is equivalent to
113@samp{-Av9b} if the word size is 64-bit, and @samp{-Av8plusb} otherwise.
114
115@samp{-Asparcfmaf} specifies a v9b environment with the floating point
116fused multiply-add instructions enabled.
117
118@samp{-Asparcima} specifies a v9b environment with the integer
119multiply-add instructions enabled.
120
121@samp{-Asparcvis3} specifies a v9b environment with the VIS 3.0,
122HPC , and floating point fused multiply-add instructions enabled.
123
124@samp{-Asparcvis3r} specifies a v9b environment with the VIS 3.0,
125HPC, transactional memory, random, and floating point unfused multiply-add
126instructions enabled.
127
128@item -xarch=v8plus | -xarch=v8plusa | -xarch=v8plusb | -xarch=v8plusc
129@itemx -xarch=v8plusd | -xarch=v8plusv | -xarch=v9 | -xarch=v9a
130@itemx -xarch=v9b | -xarch=v9c | -xarch=v9d | -xarch=v9v
131@itemx -xarch=sparc | -xarch=sparcvis | -xarch=sparcvis2
132@itemx -xarch=sparcfmaf | -xarch=sparcima | -xarch=sparcvis3
133@itemx -xarch=sparcvis3r
f04d18b7 134For compatibility with the SunOS v9 assembler. These options are
4bafe00e
DM
135equivalent to -Av8plus, -Av8plusa, -Av8plusb, -Av8plusc, -Av8plusd,
136-Av8plusv, -Av9, -Av9a, -Av9b, -Av9c, -Av9d, -Av9v, -Asparc, -Asparcvis,
137-Asparcvis2, -Asparcfmaf, -Asparcima, -Asparcvis3, and -Asparcvis3r,
138respectively.
252b5132
RH
139
140@item -bump
141Warn whenever it is necessary to switch to another level.
142If an architecture level is explicitly requested, GAS will not issue
143warnings until that level is reached, and will then bump the level
144as required (except between incompatible levels).
145
146@item -32 | -64
147Select the word size, either 32 bits or 64 bits.
148These options are only available with the ELF object file format,
149and require that the necessary BFD support has been included.
150@end table
151
152@node Sparc-Aligned-Data
153@section Enforcing aligned data
154
155@cindex data alignment on SPARC
156@cindex SPARC data alignment
157SPARC GAS normally permits data to be misaligned. For example, it
158permits the @code{.long} pseudo-op to be used on a byte boundary.
f04d18b7
DM
159However, the native SunOS assemblers issue an error when they see
160misaligned data.
252b5132
RH
161
162@kindex --enforce-aligned-data
163You can use the @code{--enforce-aligned-data} option to make SPARC GAS
f04d18b7 164also issue an error about misaligned data, just as the SunOS
252b5132
RH
165assemblers do.
166
167The @code{--enforce-aligned-data} option is not the default because gcc
168issues misaligned data pseudo-ops when it initializes certain packed
169data structures (structures defined using the @code{packed} attribute).
170You may have to assemble with GAS in order to initialize packed data
171structures in your own code.
172
c15295d5
DM
173@cindex SPARC syntax
174@cindex syntax, SPARC
175@node Sparc-Syntax
176@section Sparc Syntax
177The assembler syntax closely follows The Sparc Architecture Manual,
178versions 8 and 9, as well as most extensions defined by Sun
179for their UltraSPARC and Niagara line of processors.
180
181@menu
182* Sparc-Chars:: Special Characters
183* Sparc-Regs:: Register Names
1a6b486f 184* Sparc-Constants:: Constant Names
c15295d5 185* Sparc-Relocs:: Relocations
f04d18b7 186* Sparc-Size-Translations:: Size Translations
c15295d5
DM
187@end menu
188
189@node Sparc-Chars
190@subsection Special Characters
191
192@cindex line comment character, Sparc
193@cindex Sparc line comment character
7c31ae13
NC
194A @samp{!} character appearing anywhere on a line indicates the start
195of a comment that extends to the end of that line.
196
197If a @samp{#} appears as the first character of a line then the whole
198line is treated as a comment, but in this case the line could also be
199a logical line number directive (@pxref{Comments}) or a preprocessor
200control command (@pxref{Preprocessing}).
c15295d5
DM
201
202@cindex line separator, Sparc
203@cindex statement separator, Sparc
204@cindex Sparc line separator
205@samp{;} can be used instead of a newline to separate statements.
206
207@node Sparc-Regs
208@subsection Register Names
209@cindex Sparc registers
210@cindex register names, Sparc
211
212The Sparc integer register file is broken down into global,
213outgoing, local, and incoming.
214
215@itemize @bullet
216@item
217The 8 global registers are referred to as @samp{%g@var{n}}.
218
219@item
220The 8 outgoing registers are referred to as @samp{%o@var{n}}.
221
222@item
223The 8 local registers are referred to as @samp{%l@var{n}}.
224
225@item
226The 8 incoming registers are referred to as @samp{%i@var{n}}.
227
228@item
229The frame pointer register @samp{%i6} can be referenced using
230the alias @samp{%fp}.
231
232@item
233The stack pointer register @samp{%o6} can be referenced using
234the alias @samp{%sp}.
235@end itemize
236
237Floating point registers are simply referred to as @samp{%f@var{n}}.
238When assembling for pre-V9, only 32 floating point registers
239are available. For V9 and later there are 64, but there are
240restrictions when referencing the upper 32 registers. They
241can only be accessed as double or quad, and thus only even
242or quad numbered accesses are allowed. For example, @samp{%f34}
243is a legal floating point register, but @samp{%f35} is not.
244
245Certain V9 instructions allow access to ancillary state registers.
246Most simply they can be referred to as @samp{%asr@var{n}} where
f04d18b7 247@var{n} can be from 16 to 31. However, there are some aliases
c15295d5
DM
248defined to reference ASR registers defined for various UltraSPARC
249processors:
250
251@itemize @bullet
252@item
253The tick compare register is referred to as @samp{%tick_cmpr}.
254
255@item
1a6b486f
DM
256The system tick register is referred to as @samp{%stick}. An alias,
257@samp{%sys_tick}, exists but is deprecated and should not be used
258by new software.
c15295d5
DM
259
260@item
1a6b486f
DM
261The system tick compare register is referred to as @samp{%stick_cmpr}.
262An alias, @samp{%sys_tick_cmpr}, exists but is deprecated and should
263not be used by new software.
c15295d5
DM
264
265@item
266The software interrupt register is referred to as @samp{%softint}.
267
268@item
269The set software interrupt register is referred to as @samp{%set_softint}.
f04d18b7 270The mnemonic @samp{%softint_set} is provided as an alias.
c15295d5
DM
271
272@item
273The clear software interrupt register is referred to as
f04d18b7
DM
274@samp{%clear_softint}. The mnemonic @samp{%softint_clear} is provided
275as an alias.
c15295d5
DM
276
277@item
278The performance instrumentation counters register is referred to as
279@samp{%pic}.
280
281@item
282The performance control register is referred to as @samp{%pcr}.
283
284@item
285The graphics status register is referred to as @samp{%gsr}.
286
287@item
f04d18b7 288The V9 dispatch control register is referred to as @samp{%dcr}.
c15295d5
DM
289@end itemize
290
291Various V9 branch and conditional move instructions allow
292specification of which set of integer condition codes to
293test. These are referred to as @samp{%xcc} and @samp{%icc}.
294
295In V9, there are 4 sets of floating point condition codes
296which are referred to as @samp{%fcc@var{n}}.
297
298Several special privileged and non-privileged registers
299exist:
300
301@itemize @bullet
302@item
303The V9 address space identifier register is referred to as @samp{%asi}.
304
305@item
306The V9 restorable windows register is referred to as @samp{%canrestore}.
307
308@item
309The V9 savable windows register is referred to as @samp{%cansave}.
310
311@item
312The V9 clean windows register is referred to as @samp{%cleanwin}.
313
314@item
315The V9 current window pointer register is referred to as @samp{%cwp}.
316
317@item
318The floating-point queue register is referred to as @samp{%fq}.
319
320@item
f04d18b7 321The V8 co-processor queue register is referred to as @samp{%cq}.
c15295d5
DM
322
323@item
324The floating point status register is referred to as @samp{%fsr}.
325
326@item
327The other windows register is referred to as @samp{%otherwin}.
328
329@item
330The V9 program counter register is referred to as @samp{%pc}.
331
332@item
333The V9 next program counter register is referred to as @samp{%npc}.
334
335@item
336The V9 processor interrupt level register is referred to as @samp{%pil}.
337
338@item
339The V9 processor state register is referred to as @samp{%pstate}.
340
341@item
342The trap base address register is referred to as @samp{%tba}.
343
344@item
345The V9 tick register is referred to as @samp{%tick}.
346
347@item
348The V9 trap level is referred to as @samp{%tl}.
349
350@item
351The V9 trap program counter is referred to as @samp{%tpc}.
352
353@item
354The V9 trap next program counter is referred to as @samp{%tnpc}.
355
356@item
357The V9 trap state is referred to as @samp{%tstate}.
358
359@item
360The V9 trap type is referred to as @samp{%tt}.
361
362@item
363The V9 condition codes is referred to as @samp{%ccr}.
364
365@item
366The V9 floating-point registers state is referred to as @samp{%fprs}.
367
368@item
369The V9 version register is referred to as @samp{%ver}.
370
371@item
372The V9 window state register is referred to as @samp{%wstate}.
373
374@item
375The Y register is referred to as @samp{%y}.
376
377@item
378The V8 window invalid mask register is referred to as @samp{%wim}.
379
380@item
381The V8 processor state register is referred to as @samp{%psr}.
382
383@item
f04d18b7 384The V9 global register level register is referred to as @samp{%gl}.
c15295d5
DM
385@end itemize
386
387Several special register names exist for hypervisor mode code:
388
389@itemize @bullet
390@item
391The hyperprivileged processor state register is referred to as
392@samp{%hpstate}.
393
394@item
395The hyperprivileged trap state register is referred to as @samp{%htstate}.
396
397@item
398The hyperprivileged interrupt pending register is referred to as
399@samp{%hintp}.
400
401@item
402The hyperprivileged trap base address register is referred to as
403@samp{%htba}.
404
405@item
406The hyperprivileged implementation version register is referred
407to as @samp{%hver}.
408
ec92c392
JM
409@item
410The hyperprivileged system tick offset register is referred to as
411@samp{%hstick_offset}. Note that there is no @samp{%hstick} register,
412the normal @samp{%stick} is used.
413
414@item
415The hyperprivileged system tick enable register is referred to as
416@samp{%hstick_enable}.
417
c15295d5
DM
418@item
419The hyperprivileged system tick compare register is referred
ec92c392 420to as @samp{%hstick_cmpr}.
1a6b486f
DM
421@end itemize
422
423@node Sparc-Constants
424@subsection Constants
425@cindex Sparc constants
426@cindex constants, Sparc
427
428Several Sparc instructions take an immediate operand field for
429which mnemonic names exist. Two such examples are @samp{membar}
430and @samp{prefetch}. Another example are the set of V9
431memory access instruction that allow specification of an
432address space identifier.
433
434The @samp{membar} instruction specifies a memory barrier that is
435the defined by the operand which is a bitmask. The supported
436mask mnemonics are:
437
438@itemize @bullet
439@item
440@samp{#Sync} requests that all operations (including nonmemory
441reference operations) appearing prior to the @code{membar} must have
442been performed and the effects of any exceptions become visible before
443any instructions after the @code{membar} may be initiated. This
444corresponds to @code{membar} cmask field bit 2.
445
446@item
447@samp{#MemIssue} requests that all memory reference operations
448appearing prior to the @code{membar} must have been performed before
449any memory operation after the @code{membar} may be initiated. This
450corresponds to @code{membar} cmask field bit 1.
451
452@item
453@samp{#Lookaside} requests that a store appearing prior to the
454@code{membar} must complete before any load following the
455@code{membar} referencing the same address can be initiated. This
456corresponds to @code{membar} cmask field bit 0.
457
458@item
459@samp{#StoreStore} defines that the effects of all stores appearing
460prior to the @code{membar} instruction must be visible to all
461processors before the effect of any stores following the
462@code{membar}. Equivalent to the deprecated @code{stbar} instruction.
463This corresponds to @code{membar} mmask field bit 3.
464
465@item
466@samp{#LoadStore} defines all loads appearing prior to the
467@code{membar} instruction must have been performed before the effect
468of any stores following the @code{membar} is visible to any other
469processor. This corresponds to @code{membar} mmask field bit 2.
470
471@item
472@samp{#StoreLoad} defines that the effects of all stores appearing
473prior to the @code{membar} instruction must be visible to all
474processors before loads following the @code{membar} may be performed.
475This corresponds to @code{membar} mmask field bit 1.
476
477@item
478@samp{#LoadLoad} defines that all loads appearing prior to the
479@code{membar} instruction must have been performed before any loads
480following the @code{membar} may be performed. This corresponds to
481@code{membar} mmask field bit 0.
482
483@end itemize
484
485These values can be ored together, for example:
486
487@example
488membar #Sync
489membar #StoreLoad | #LoadLoad
490membar #StoreLoad | #StoreStore
491@end example
492
493The @code{prefetch} and @code{prefetcha} instructions take a prefetch
494function code. The following prefetch function code constant
495mnemonics are available:
496
497@itemize @bullet
498@item
499@samp{#n_reads} requests a prefetch for several reads, and corresponds
500to a prefetch function code of 0.
501
502@samp{#one_read} requests a prefetch for one read, and corresponds
503to a prefetch function code of 1.
504
505@samp{#n_writes} requests a prefetch for several writes (and possibly
506reads), and corresponds to a prefetch function code of 2.
507
508@samp{#one_write} requests a prefetch for one write, and corresponds
509to a prefetch function code of 3.
510
511@samp{#page} requests a prefetch page, and corresponds to a prefetch
512function code of 4.
513
514@samp{#invalidate} requests a prefetch invalidate, and corresponds to
515a prefetch function code of 16.
516
517@samp{#unified} requests a prefetch to the nearest unified cache, and
518corresponds to a prefetch function code of 17.
519
520@samp{#n_reads_strong} requests a strong prefetch for several reads,
521and corresponds to a prefetch function code of 20.
522
523@samp{#one_read_strong} requests a strong prefetch for one read,
524and corresponds to a prefetch function code of 21.
525
526@samp{#n_writes_strong} requests a strong prefetch for several writes,
527and corresponds to a prefetch function code of 22.
528
529@samp{#one_write_strong} requests a strong prefetch for one write,
530and corresponds to a prefetch function code of 23.
531
532Onle one prefetch code may be specified. Here are some examples:
533
534@example
535prefetch [%l0 + %l2], #one_read
536prefetch [%g2 + 8], #n_writes
537prefetcha [%g1] 0x8, #unified
538prefetcha [%o0 + 0x10] %asi, #n_reads
539@end example
540
541The actual behavior of a given prefetch function code is processor
542specific. If a processor does not implement a given prefetch
543function code, it will treat the prefetch instruction as a nop.
544
545For instructions that accept an immediate address space identifier,
546@code{@value{AS}} provides many mnemonics corresponding to
547V9 defined as well as UltraSPARC and Niagara extended values.
548For example, @samp{#ASI_P} and @samp{#ASI_BLK_INIT_QUAD_LDD_AIUS}.
549See the V9 and processor specific manuals for details.
550
c15295d5
DM
551@end itemize
552
553@node Sparc-Relocs
554@subsection Relocations
555@cindex Sparc relocations
556@cindex relocations, Sparc
557
558ELF relocations are available as defined in the 32-bit and 64-bit
559Sparc ELF specifications.
560
561@code{R_SPARC_HI22} is obtained using @samp{%hi} and @code{R_SPARC_LO10}
562is obtained using @samp{%lo}. Likewise @code{R_SPARC_HIX22} is
563obtained from @samp{%hix} and @code{R_SPARC_LOX10} is obtained
564using @samp{%lox}. For example:
565
566@example
567sethi %hi(symbol), %g1
568or %g1, %lo(symbol), %g1
569
570sethi %hix(symbol), %g1
571xor %g1, %lox(symbol), %g1
572@end example
573
574These ``high'' mnemonics extract bits 31:10 of their operand,
575and the ``low'' mnemonics extract bits 9:0 of their operand.
576
577V9 code model relocations can be requested as follows:
578
579@itemize @bullet
580@item
581@code{R_SPARC_HH22} is requested using @samp{%hh}. It can
582also be generated using @samp{%uhi}.
583@item
584@code{R_SPARC_HM10} is requested using @samp{%hm}. It can
585also be generated using @samp{%ulo}.
586@item
587@code{R_SPARC_LM22} is requested using @samp{%lm}.
588
589@item
590@code{R_SPARC_H44} is requested using @samp{%h44}.
591@item
592@code{R_SPARC_M44} is requested using @samp{%m44}.
593@item
2755f698
DM
594@code{R_SPARC_L44} is requested using @samp{%l44} or @samp{%l34}.
595@item
596@code{R_SPARC_H34} is requested using @samp{%h34}.
c15295d5
DM
597@end itemize
598
2755f698
DM
599The @samp{%l34} generates a @code{R_SPARC_L44} relocation because it
600calculates the necessary value, and therefore no explicit
601@code{R_SPARC_L34} relocation needed to be created for this purpose.
602
603The @samp{%h34} and @samp{%l34} relocations are used for the abs34 code
604model. Here is an example abs34 address generation sequence:
605
606@example
607sethi %h34(symbol), %g1
608sllx %g1, 2, %g1
609or %g1, %l34(symbol), %g1
610@end example
611
c15295d5
DM
612The PC relative relocation @code{R_SPARC_PC22} can be obtained by
613enclosing an operand inside of @samp{%pc22}. Likewise, the
614@code{R_SPARC_PC10} relocation can be obtained using @samp{%pc10}.
615These are mostly used when assembling PIC code. For example, the
616standard PIC sequence on Sparc to get the base of the global offset
617table, PC relative, into a register, can be performed as:
618
619@example
620sethi %pc22(_GLOBAL_OFFSET_TABLE_-4), %l7
621add %l7, %pc10(_GLOBAL_OFFSET_TABLE_+4), %l7
622@end example
623
624Several relocations exist to allow the link editor to potentially
625optimize GOT data references. The @code{R_SPARC_GOTDATA_OP_HIX22}
626relocation can obtained by enclosing an operand inside of
627@samp{%gdop_hix22}. The @code{R_SPARC_GOTDATA_OP_LOX10}
628relocation can obtained by enclosing an operand inside of
629@samp{%gdop_lox10}. Likewise, @code{R_SPARC_GOTDATA_OP} can be
630obtained by enclosing an operand inside of @samp{%gdop}.
631For example, assuming the GOT base is in register @code{%l7}:
632
633@example
634sethi %gdop_hix22(symbol), %l1
635xor %l1, %gdop_lox10(symbol), %l1
636ld [%l7 + %l1], %l2, %gdop(symbol)
637@end example
638
639There are many relocations that can be requested for access to
640thread local storage variables. All of the Sparc TLS mnemonics
641are supported:
642
643@itemize @bullet
644@item
645@code{R_SPARC_TLS_GD_HI22} is requested using @samp{%tgd_hi22}.
646@item
647@code{R_SPARC_TLS_GD_LO10} is requested using @samp{%tgd_lo10}.
648@item
649@code{R_SPARC_TLS_GD_ADD} is requested using @samp{%tgd_add}.
650@item
651@code{R_SPARC_TLS_GD_CALL} is requested using @samp{%tgd_call}.
652
653@item
654@code{R_SPARC_TLS_LDM_HI22} is requested using @samp{%tldm_hi22}.
655@item
656@code{R_SPARC_TLS_LDM_LO10} is requested using @samp{%tldm_lo10}.
657@item
658@code{R_SPARC_TLS_LDM_ADD} is requested using @samp{%tldm_add}.
659@item
660@code{R_SPARC_TLS_LDM_CALL} is requested using @samp{%tldm_call}.
661
662@item
663@code{R_SPARC_TLS_LDO_HIX22} is requested using @samp{%tldo_hix22}.
664@item
665@code{R_SPARC_TLS_LDO_LOX10} is requested using @samp{%tldo_lox10}.
666@item
667@code{R_SPARC_TLS_LDO_ADD} is requested using @samp{%tldo_add}.
668
669@item
670@code{R_SPARC_TLS_IE_HI22} is requested using @samp{%tie_hi22}.
671@item
672@code{R_SPARC_TLS_IE_LO10} is requested using @samp{%tie_lo10}.
673@item
674@code{R_SPARC_TLS_IE_LD} is requested using @samp{%tie_ld}.
675@item
676@code{R_SPARC_TLS_IE_LDX} is requested using @samp{%tie_ldx}.
677@item
678@code{R_SPARC_TLS_IE_ADD} is requested using @samp{%tie_add}.
679
680@item
681@code{R_SPARC_TLS_LE_HIX22} is requested using @samp{%tle_hix22}.
682@item
683@code{R_SPARC_TLS_LE_LOX10} is requested using @samp{%tle_lox10}.
684@end itemize
685
686Here are some example TLS model sequences.
687
688First, General Dynamic:
689
690@example
691sethi %tgd_hi22(symbol), %l1
692add %l1, %tgd_lo10(symbol), %l1
693add %l7, %l1, %o0, %tgd_add(symbol)
694call __tls_get_addr, %tgd_call(symbol)
695nop
696@end example
697
698Local Dynamic:
699
700@example
701sethi %tldm_hi22(symbol), %l1
702add %l1, %tldm_lo10(symbol), %l1
703add %l7, %l1, %o0, %tldm_add(symbol)
704call __tls_get_addr, %tldm_call(symbol)
705nop
706
707sethi %tldo_hix22(symbol), %l1
708xor %l1, %tldo_lox10(symbol), %l1
709add %o0, %l1, %l1, %tldo_add(symbol)
710@end example
711
712Initial Exec:
713
714@example
715sethi %tie_hi22(symbol), %l1
716add %l1, %tie_lo10(symbol), %l1
717ld [%l7 + %l1], %o0, %tie_ld(symbol)
718add %g7, %o0, %o0, %tie_add(symbol)
719
720sethi %tie_hi22(symbol), %l1
721add %l1, %tie_lo10(symbol), %l1
722ldx [%l7 + %l1], %o0, %tie_ldx(symbol)
723add %g7, %o0, %o0, %tie_add(symbol)
724@end example
725
726And finally, Local Exec:
727
728@example
729sethi %tle_hix22(symbol), %l1
730add %l1, %tle_lox10(symbol), %l1
731add %g7, %l1, %l1
732@end example
733
734When assembling for 64-bit, and a secondary constant addend is
735specified in an address expression that would normally generate
736an @code{R_SPARC_LO10} relocation, the assembler will emit an
737@code{R_SPARC_OLO10} instead.
252b5132 738
f04d18b7
DM
739@node Sparc-Size-Translations
740@subsection Size Translations
741@cindex Sparc size translations
742@cindex size, translations, Sparc
743
744Often it is desirable to write code in an operand size agnostic
745manner. @code{@value{AS}} provides support for this via
746operand size opcode translations. Translations are supported
747for loads, stores, shifts, compare-and-swap atomics, and the
748@samp{clr} synthetic instruction.
749
750If generating 32-bit code, @code{@value{AS}} will generate the
75132-bit opcode. Whereas if 64-bit code is being generated,
752the 64-bit opcode will be emitted. For example @code{ldn}
753will be transformed into @code{ld} for 32-bit code and
754@code{ldx} for 64-bit code.
755
756Here is an example meant to demonstrate all the supported
757opcode translations:
758
759@example
760ldn [%o0], %o1
761ldna [%o0] %asi, %o2
762stn %o1, [%o0]
763stna %o2, [%o0] %asi
764slln %o3, 3, %o3
765srln %o4, 8, %o4
766sran %o5, 12, %o5
767casn [%o0], %o1, %o2
768casna [%o0] %asi, %o1, %o2
769clrn %g1
770@end example
771
772In 32-bit mode @code{@value{AS}} will emit:
773
774@example
775ld [%o0], %o1
776lda [%o0] %asi, %o2
777st %o1, [%o0]
778sta %o2, [%o0] %asi
779sll %o3, 3, %o3
780srl %o4, 8, %o4
781sra %o5, 12, %o5
782cas [%o0], %o1, %o2
783casa [%o0] %asi, %o1, %o2
784clr %g1
785@end example
786
787And in 64-bit mode @code{@value{AS}} will emit:
788
789@example
790ldx [%o0], %o1
791ldxa [%o0] %asi, %o2
792stx %o1, [%o0]
793stxa %o2, [%o0] %asi
794sllx %o3, 3, %o3
795srlx %o4, 8, %o4
796srax %o5, 12, %o5
797casx [%o0], %o1, %o2
798casxa [%o0] %asi, %o1, %o2
799clrx %g1
800@end example
801
802Finally, the @samp{.nword} translating directive is supported
803as well. It is documented in the section on Sparc machine
804directives.
805
252b5132
RH
806@node Sparc-Float
807@section Floating Point
808
809@cindex floating point, SPARC (@sc{ieee})
810@cindex SPARC floating point (@sc{ieee})
811The Sparc uses @sc{ieee} floating-point numbers.
812
813@node Sparc-Directives
814@section Sparc Machine Directives
815
816@cindex SPARC machine directives
817@cindex machine directives, SPARC
818The Sparc version of @code{@value{AS}} supports the following additional
819machine directives:
820
821@table @code
822@cindex @code{align} directive, SPARC
823@item .align
824This must be followed by the desired alignment in bytes.
825
826@cindex @code{common} directive, SPARC
827@item .common
828This must be followed by a symbol name, a positive number, and
829@code{"bss"}. This behaves somewhat like @code{.comm}, but the
830syntax is different.
831
832@cindex @code{half} directive, SPARC
833@item .half
834This is functionally identical to @code{.short}.
835
e06510e6
RH
836@cindex @code{nword} directive, SPARC
837@item .nword
838On the Sparc, the @code{.nword} directive produces native word sized value,
839ie. if assembling with -32 it is equivalent to @code{.word}, if assembling
840with -64 it is equivalent to @code{.xword}.
841
252b5132
RH
842@cindex @code{proc} directive, SPARC
843@item .proc
844This directive is ignored. Any text following it on the same
845line is also ignored.
846
e06510e6
RH
847@cindex @code{register} directive, SPARC
848@item .register
849This directive declares use of a global application or system register.
850It must be followed by a register name %g2, %g3, %g6 or %g7, comma and
6d8809aa 851the symbol name for that register. If symbol name is @code{#scratch},
062b7c0c 852it is a scratch register, if it is @code{#ignore}, it just suppresses any
6d8809aa
RH
853errors about using undeclared global register, but does not emit any
854information about it into the object file. This can be useful e.g. if you
855save the register before use and restore it after.
e06510e6 856
252b5132
RH
857@cindex @code{reserve} directive, SPARC
858@item .reserve
859This must be followed by a symbol name, a positive number, and
860@code{"bss"}. This behaves somewhat like @code{.lcomm}, but the
861syntax is different.
862
863@cindex @code{seg} directive, SPARC
864@item .seg
865This must be followed by @code{"text"}, @code{"data"}, or
866@code{"data1"}. It behaves like @code{.text}, @code{.data}, or
867@code{.data 1}.
868
869@cindex @code{skip} directive, SPARC
870@item .skip
871This is functionally identical to the @code{.space} directive.
872
873@cindex @code{word} directive, SPARC
874@item .word
875On the Sparc, the @code{.word} directive produces 32 bit values,
876instead of the 16 bit values it produces on many other machines.
877
878@cindex @code{xword} directive, SPARC
879@item .xword
880On the Sparc V9 processor, the @code{.xword} directive produces
88164 bit values.
882@end table
This page took 0.656488 seconds and 4 git commands to generate.