* Makefile.in (DISTSTUFF): Remove itbl-parse.y, itbl-lex.l, and
[deliverable/binutils-gdb.git] / gas / itbl-ops.c
CommitLineData
efec4a28 1/* itbl-ops.c
efec4a28
DP
2 Copyright (C) 1997 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
8e5c905e
DP
21/*======================================================================*/
22/*
efec4a28 23 * Herein lies the support for dynamic specification of processor
8e5c905e 24 * instructions and registers. Mnemonics, values, and formats for each
efec4a28 25 * instruction and register are specified in an ascii file consisting of
8e5c905e
DP
26 * table entries. The grammar for the table is defined in the document
27 * "Processor instruction table specification".
28 *
efec4a28 29 * Instructions use the gnu assembler syntax, with the addition of
8e5c905e
DP
30 * allowing mnemonics for register.
31 * Eg. "func $2,reg3,0x100,symbol ; comment"
32 * func - opcode name
33 * $n - register n
34 * reg3 - mnemonic for processor's register defined in table
35 * 0xddd..d - immediate value
36 * symbol - address of label or external symbol
efec4a28
DP
37 *
38 * First, itbl_parse reads in the table of register and instruction
8e5c905e
DP
39 * names and formats, and builds a list of entries for each
40 * processor/type combination. lex and yacc are used to parse
41 * the entries in the table and call functions defined here to
42 * add each entry to our list.
efec4a28
DP
43 *
44 * Then, when assembling or disassembling, these functions are called to
45 * 1) get information on a processor's registers and
8e5c905e 46 * 2) assemble/disassemble an instruction.
efec4a28
DP
47 * To assemble(disassemble) an instruction, the function
48 * itbl_assemble(itbl_disassemble) is called to search the list of
49 * instruction entries, and if a match is found, uses the format
50 * described in the instruction entry structure to complete the action.
51 *
8e5c905e
DP
52 * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2"
53 * and we want to define function "pig" which takes two operands.
efec4a28 54 *
8e5c905e
DP
55 * Given the table entries:
56 * "p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0"
57 * "p3 dreg d2 0x2"
58 * and that the instruction encoding for coprocessor pz has encoding:
59 * #define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25)
60 * #define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum)
efec4a28 61 *
8e5c905e
DP
62 * a structure to describe the instruction might look something like:
63 * struct itbl_entry = {
64 * e_processor processor = e_p3
65 * e_type type = e_insn
66 * char *name = "pig"
67 * uint value = 0x1
68 * uint flags = 0
69 * struct itbl_range range = 24-21
70 * struct itbl_field *field = {
efec4a28 71 * e_type type = e_dreg
8e5c905e
DP
72 * struct itbl_range range = 20-16
73 * struct itbl_field *next = {
74 * e_type type = e_immed
75 * struct itbl_range range = 15-0
76 * struct itbl_field *next = 0
efec4a28
DP
77 * };
78 * };
8e5c905e
DP
79 * struct itbl_entry *next = 0
80 * };
81 *
82 * And the assembler instructions:
83 * "pig d2,0x100"
84 * "pig $2,0x100"
efec4a28 85 *
8e5c905e
DP
86 * would both assemble to the hex value:
87 * "0x4e220100"
efec4a28
DP
88 *
89 */
8e5c905e
DP
90
91#include <stdio.h>
92#include <stdlib.h>
93#include <string.h>
94#include "itbl-ops.h"
95#include "itbl-parse.h"
96
97#define DEBUG
98
99#ifdef DEBUG
100#include <assert.h>
101#define ASSERT(x) assert(x)
102#define DBG(x) printf x
103#else
efec4a28 104#define ASSERT(x)
8e5c905e
DP
105#define DBG(x)
106#endif
107
108#ifndef min
109#define min(a,b) (a<b?a:b)
110#endif
111
efec4a28
DP
112int itbl_have_entries = 0;
113
8e5c905e
DP
114/*======================================================================*/
115/* structures for keeping itbl format entries */
116
efec4a28
DP
117struct itbl_range
118 {
119 int sbit; /* mask starting bit position */
120 int ebit; /* mask ending bit position */
121 };
122
123struct itbl_field
124 {
125 e_type type; /* dreg/creg/greg/immed/symb */
126 struct itbl_range range; /* field's bitfield range within instruction */
127 unsigned long flags; /* field flags */
128 struct itbl_field *next; /* next field in list */
129 };
130
131
8e5c905e 132/* These structures define the instructions and registers for a processor.
efec4a28
DP
133 * If the type is an instruction, the structure defines the format of an
134 * instruction where the fields are the list of operands.
135 * The flags field below uses the same values as those defined in the
8e5c905e 136 * gnu assembler and are machine specific. */
efec4a28
DP
137struct itbl_entry
138 {
139 e_processor processor; /* processor number */
140 e_type type; /* dreg/creg/greg/insn */
141 char *name; /* mnemionic name for insn/register */
142 unsigned long value; /* opcode/instruction mask/register number */
143 unsigned long flags; /* effects of the instruction */
144 struct itbl_range range; /* bit range within instruction for value */
145 struct itbl_field *fields; /* list of operand definitions (if any) */
146 struct itbl_entry *next; /* next entry */
147 };
8e5c905e
DP
148
149
150/* local data and structures */
151
152static int itbl_num_opcodes = 0;
153/* Array of entries for each processor and entry type */
154static struct itbl_entry *entries[e_nprocs][e_ntypes] =
155{
efec4a28
DP
156 {0, 0, 0, 0, 0, 0},
157 {0, 0, 0, 0, 0, 0},
158 {0, 0, 0, 0, 0, 0},
159 {0, 0, 0, 0, 0, 0}
8e5c905e
DP
160};
161
162/* local prototypes */
efec4a28
DP
163static unsigned long build_opcode PARAMS ((struct itbl_entry *e));
164static e_type get_type PARAMS ((int yytype));
165static e_processor get_processor PARAMS ((int yyproc));
166static struct itbl_entry **get_entries PARAMS ((e_processor processor,
167 e_type type));
168static struct itbl_entry *find_entry_byname PARAMS ((e_processor processor,
169 e_type type, char *name));
170static struct itbl_entry *find_entry_byval PARAMS ((e_processor processor,
171 e_type type, unsigned long val, struct itbl_range *r));
172static struct itbl_entry *alloc_entry PARAMS ((e_processor processor,
173 e_type type, char *name, unsigned long value));
174static unsigned long apply_range PARAMS ((unsigned long value,
175 struct itbl_range r));
176static unsigned long extract_range PARAMS ((unsigned long value,
177 struct itbl_range r));
178static struct itbl_field *alloc_field PARAMS ((e_type type, int sbit,
179 int ebit, unsigned long flags));
8e5c905e
DP
180
181
182/*======================================================================*/
183/* Interfaces to the parser */
184
185
186/* Open the table and use lex and yacc to parse the entries.
187 * Return 1 for failure; 0 for success. */
188
efec4a28
DP
189int
190itbl_parse (char *insntbl)
8e5c905e 191{
efec4a28
DP
192 extern FILE *yyin;
193 extern int yyparse (void);
194 yyin = fopen (insntbl, "r");
195 if (yyin == 0)
196 {
197 printf ("Can't open processor instruction specification file \"%s\"\n",
198 insntbl);
199 return 1;
200 }
201 else
202 {
203 while (yyparse ());
204 }
205 fclose (yyin);
206 itbl_have_entries = 1;
207 return 0;
8e5c905e
DP
208}
209
210/* Add a register entry */
211
efec4a28
DP
212struct itbl_entry *
213itbl_add_reg (int yyprocessor, int yytype, char *regname,
214 int regnum)
8e5c905e 215{
efec4a28 216#if 0
8e5c905e
DP
217#include "as.h"
218#include "symbols.h"
219 /* Since register names don't have a prefix, we put them in the symbol table so
220 they can't be used as symbols. This also simplifies argument parsing as
221 we can let gas parse registers for us. The recorded register number is
222 regnum. */
efec4a28 223 /* Use symbol_create here instead of symbol_new so we don't try to
8e5c905e 224 output registers into the object file's symbol table. */
efec4a28
DP
225 symbol_table_insert (symbol_create (regname, reg_section,
226 regnum, &zero_address_frag));
8e5c905e 227#endif
efec4a28
DP
228 return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname,
229 (unsigned long) regnum);
8e5c905e
DP
230}
231
232/* Add an instruction entry */
233
efec4a28
DP
234struct itbl_entry *
235itbl_add_insn (int yyprocessor, char *name, unsigned long value,
236 int sbit, int ebit, unsigned long flags)
8e5c905e 237{
efec4a28
DP
238 struct itbl_entry *e;
239 e = alloc_entry (get_processor (yyprocessor), e_insn, name, value);
240 if (e)
241 {
242 e->range.sbit = sbit;
243 e->range.ebit = ebit;
244 e->flags = flags;
245 itbl_num_opcodes++;
246 }
247 return e;
8e5c905e
DP
248}
249
250/* Add an operand to an instruction entry */
251
efec4a28
DP
252struct itbl_field *
253itbl_add_operand (struct itbl_entry *e, int yytype, int sbit,
254 int ebit, unsigned long flags)
8e5c905e 255{
efec4a28
DP
256 struct itbl_field *f, **last_f;
257 if (!e)
258 return 0;
259 /* Add to end of fields' list. */
260 f = alloc_field (get_type (yytype), sbit, ebit, flags);
261 if (f)
262 {
263 last_f = &e->fields;
264 while (*last_f)
265 last_f = &(*last_f)->next;
266 *last_f = f;
267 f->next = 0;
268 }
269 return f;
8e5c905e
DP
270}
271
272
273/*======================================================================*/
274/* Interfaces for assembler and disassembler */
275
276#ifndef STAND_ALONE
277#include "as.h"
278#include "symbols.h"
efec4a28 279static void append_insns_as_macros (void);
8e5c905e
DP
280
281/* initialize for gas */
efec4a28
DP
282void
283itbl_init (void)
8e5c905e 284{
efec4a28
DP
285 struct itbl_entry *e, **es;
286 e_processor procn;
287 e_type type;
8e5c905e
DP
288
289 /* Since register names don't have a prefix, put them in the symbol table so
290 they can't be used as symbols. This simplifies argument parsing as
291 we can let gas parse registers for us. */
efec4a28 292 /* Use symbol_create instead of symbol_new so we don't try to
8e5c905e
DP
293 output registers into the object file's symbol table. */
294
efec4a28
DP
295 for (type = e_regtype0; type < e_nregtypes; type++)
296 for (procn = e_p0; procn < e_nprocs; procn++)
297 {
298 es = get_entries (procn, type);
299 for (e = *es; e; e = e->next)
300 {
301 symbol_table_insert (symbol_create (e->name, reg_section,
302 e->value, &zero_address_frag));
303 }
304 }
305 append_insns_as_macros ();
8e5c905e
DP
306}
307
308
efec4a28
DP
309/* Append insns to opcodes table and increase number of opcodes
310 * Structure of opcodes table:
311 * struct itbl_opcode
312 * {
313 * const char *name;
314 * const char *args; - string describing the arguments.
315 * unsigned long match; - opcode, or ISA level if pinfo=INSN_MACRO
316 * unsigned long mask; - opcode mask, or macro id if pinfo=INSN_MACRO
317 * unsigned long pinfo; - insn flags, or INSN_MACRO
318 * };
319 * examples:
320 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
321 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
8e5c905e 322 */
efec4a28
DP
323
324static char *form_args (struct itbl_entry *e);
325static void
326append_insns_as_macros (void)
8e5c905e 327{
efec4a28
DP
328 struct ITBL_OPCODE_STRUCT *new_opcodes, *o;
329 struct itbl_entry *e, **es;
330 int n, id, size, new_size, new_num_opcodes;
8e5c905e 331
efec4a28
DP
332 if (!itbl_num_opcodes) /* no new instructions to add! */
333 {
334 return;
335 }
336 DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES));
8e5c905e 337
efec4a28
DP
338 new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes;
339 ASSERT (new_num_opcodes >= itbl_num_opcodes);
8e5c905e 340
efec4a28
DP
341 size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES;
342 ASSERT (size >= 0);
343 DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0])));
8e5c905e 344
efec4a28
DP
345 new_size = sizeof (struct ITBL_OPCODE_STRUCT) * new_num_opcodes;
346 ASSERT (new_size > size);
8e5c905e 347
efec4a28 348 /* FIXME since ITBL_OPCODES culd be a static table,
8e5c905e 349 we can't realloc or delete the old memory. */
efec4a28
DP
350 new_opcodes = (struct ITBL_OPCODE_STRUCT *) malloc (new_size);
351 if (!new_opcodes)
352 {
353 printf ("Unable to allocate memory for new instructions\n");
354 return;
355 }
356 if (size) /* copy prexisting opcodes table */
357 memcpy (new_opcodes, ITBL_OPCODES, size);
8e5c905e 358
efec4a28 359 /* FIXME! some NUMOPCODES are calculated expressions.
8e5c905e
DP
360 These need to be changed before itbls can be supported. */
361
efec4a28
DP
362 id = ITBL_NUM_MACROS; /* begin the next macro id after the last */
363 o = &new_opcodes[ITBL_NUM_OPCODES]; /* append macro to opcodes list */
364 for (n = e_p0; n < e_nprocs; n++)
365 {
366 es = get_entries (n, e_insn);
367 for (e = *es; e; e = e->next)
8e5c905e 368 {
efec4a28
DP
369 /* name, args, mask, match, pinfo
370 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
8e5c905e
DP
371 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
372 * Construct args from itbl_fields.
373 */
efec4a28
DP
374 o->name = e->name;
375 o->args = strdup (form_args (e));
376 o->mask = apply_range (e->value, e->range);
377 /* FIXME how to catch durring assembly? */
378 /* mask to identify this insn */
379 o->match = apply_range (e->value, e->range);
380 o->pinfo = 0;
8e5c905e
DP
381
382#ifdef USE_MACROS
efec4a28
DP
383 o->mask = id++; /* FIXME how to catch durring assembly? */
384 o->match = 0; /* for macros, the insn_isa number */
385 o->pinfo = INSN_MACRO;
8e5c905e
DP
386#endif
387
efec4a28
DP
388 /* Don't add instructions which caused an error */
389 if (o->args)
390 o++;
391 else
392 new_num_opcodes--;
8e5c905e 393 }
efec4a28
DP
394 }
395 ITBL_OPCODES = new_opcodes;
396 ITBL_NUM_OPCODES = new_num_opcodes;
8e5c905e 397
efec4a28
DP
398 /* FIXME
399 At this point, we can free the entries, as they should have
8e5c905e
DP
400 been added to the assembler's tables.
401 Don't free name though, since name is being used by the new
402 opcodes table.
403
efec4a28
DP
404 Eventually, we should also free the new opcodes table itself
405 on exit.
8e5c905e
DP
406 */
407}
408
efec4a28
DP
409static char *
410form_args (struct itbl_entry *e)
8e5c905e 411{
efec4a28
DP
412 static char s[31];
413 char c = 0, *p = s;
414 struct itbl_field *f;
8e5c905e 415
efec4a28
DP
416 ASSERT (e);
417 for (f = e->fields; f; f = f->next)
418 {
419 switch (f->type)
420 {
421 case e_dreg:
422 c = 'd';
423 break;
424 case e_creg:
425 c = 't';
426 break;
427 case e_greg:
428 c = 's';
429 break;
430 case e_immed:
431 c = 'i';
432 break;
433 case e_addr:
434 c = 'a';
435 break;
436 default:
437 c = 0; /* ignore; unknown field type */
438 }
439 if (c)
8e5c905e 440 {
efec4a28
DP
441 if (p != s)
442 *p++ = ',';
443 *p++ = c;
8e5c905e 444 }
efec4a28
DP
445 }
446 *p = 0;
447 return s;
8e5c905e
DP
448}
449#endif /* !STAND_ALONE */
450
451
452/* Get processor's register name from val */
453
efec4a28
DP
454unsigned long
455itbl_get_reg_val (char *name)
8e5c905e 456{
efec4a28
DP
457 e_type t;
458 e_processor p;
459 int r = 0;
460 for (p = e_p0; p < e_nprocs; p++)
461 for (t = e_regtype0; t < e_nregtypes; t++)
462 {
463 if (r = itbl_get_val (p, t, name), r)
464 return r;
465 }
466 return 0;
8e5c905e
DP
467}
468
efec4a28
DP
469char *
470itbl_get_name (e_processor processor, e_type type, unsigned long val)
8e5c905e 471{
efec4a28
DP
472 struct itbl_entry *r;
473 /* type depends on instruction passed */
474 r = find_entry_byval (processor, type, val, 0);
475 if (r)
476 return r->name;
477 else
478 return 0; /* error; invalid operand */
8e5c905e
DP
479}
480
481/* Get processor's register value from name */
482
efec4a28
DP
483unsigned long
484itbl_get_val (e_processor processor, e_type type, char *name)
8e5c905e 485{
efec4a28
DP
486 struct itbl_entry *r;
487 /* type depends on instruction passed */
488 r = find_entry_byname (processor, type, name);
489 if (r)
490 return r->value;
491 else
492 return 0; /* error; invalid operand */
8e5c905e
DP
493}
494
495
496/* Assemble instruction "name" with operands "s".
497 * name - name of instruction
498 * s - operands
499 * returns - long word for assembled instruction */
500
efec4a28
DP
501unsigned long
502itbl_assemble (char *name, char *s)
8e5c905e 503{
efec4a28
DP
504 unsigned long opcode;
505 struct itbl_entry *e;
506 struct itbl_field *f;
507 char *n;
508 int processor;
8e5c905e 509
efec4a28
DP
510 if (!name || !*name)
511 return 0; /* error! must have a opcode name/expr */
8e5c905e 512
efec4a28
DP
513 /* find entry in list of instructions for all processors */
514 for (processor = 0; processor < e_nprocs; processor++)
515 {
516 e = find_entry_byname (processor, e_insn, name);
517 if (e)
518 break;
519 }
520 if (!e)
521 return 0; /* opcode not in table; invalid instrustion */
522 opcode = build_opcode (e);
8e5c905e 523
efec4a28
DP
524 /* parse opcode's args (if any) */
525 for (f = e->fields; f; f = f->next) /* for each arg, ... */
526 {
527 struct itbl_entry *r;
528 unsigned long value;
529 if (!s || !*s)
530 return 0; /* error - not enough operands */
531 n = itbl_get_field (&s);
532 /* n should be in form $n or 0xhhh (are symbol names valid?? */
533 switch (f->type)
8e5c905e 534 {
efec4a28
DP
535 case e_dreg:
536 case e_creg:
537 case e_greg:
538 /* Accept either a string name
8e5c905e 539 * or '$' followed by the register number */
efec4a28
DP
540 if (*n == '$')
541 {
542 n++;
543 value = strtol (n, 0, 10);
544 /* FIXME! could have "0l"... then what?? */
545 if (value == 0 && *n != '0')
546 return 0; /* error; invalid operand */
547 }
548 else
549 {
550 r = find_entry_byname (e->processor, f->type, n);
551 if (r)
552 value = r->value;
553 else
554 return 0; /* error; invalid operand */
555 }
556 break;
557 case e_addr:
558 /* use assembler's symbol table to find symbol */
559 /* FIXME!! Do we need this?
8e5c905e
DP
560 if so, what about relocs??
561 my_getExpression (&imm_expr, s);
562 return 0; /-* error; invalid operand *-/
563 break;
564 */
efec4a28
DP
565 /* If not a symbol, fall thru to IMMED */
566 case e_immed:
567 if (*n == '0' && *(n + 1) == 'x') /* hex begins 0x... */
568 {
569 n += 2;
570 value = strtol (n, 0, 16);
571 /* FIXME! could have "0xl"... then what?? */
572 }
573 else
574 {
575 value = strtol (n, 0, 10);
576 /* FIXME! could have "0l"... then what?? */
577 if (value == 0 && *n != '0')
578 return 0; /* error; invalid operand */
579 }
580 break;
581 default:
582 return 0; /* error; invalid field spec */
8e5c905e 583 }
efec4a28
DP
584 opcode |= apply_range (value, f->range);
585 }
586 if (s && *s)
587 return 0; /* error - too many operands */
588 return opcode; /* done! */
8e5c905e
DP
589}
590
591/* Disassemble instruction "insn".
592 * insn - instruction
593 * s - buffer to hold disassembled instruction
594 * returns - 1 if succeeded; 0 if failed
595 */
596
efec4a28
DP
597int
598itbl_disassemble (char *s, unsigned long insn)
8e5c905e 599{
efec4a28
DP
600 e_processor processor;
601 struct itbl_entry *e;
602 struct itbl_field *f;
603
604 if (!ITBL_IS_INSN (insn))
605 return 0; /* error*/
606 processor = get_processor (ITBL_DECODE_PNUM (insn));
607
608 /* find entry in list */
609 e = find_entry_byval (processor, e_insn, insn, 0);
610 if (!e)
611 return 0; /* opcode not in table; invalid instrustion */
612 strcpy (s, e->name);
613
614 /* parse insn's args (if any) */
615 for (f = e->fields; f; f = f->next) /* for each arg, ... */
616 {
617 struct itbl_entry *r;
618 unsigned long value;
619
620 if (f == e->fields) /* first operand is preceeded by tab */
621 strcat (s, "\t");
622 else /* ','s separate following operands */
623 strcat (s, ",");
624 value = extract_range (insn, f->range);
625 /* n should be in form $n or 0xhhh (are symbol names valid?? */
626 switch (f->type)
8e5c905e 627 {
efec4a28
DP
628 case e_dreg:
629 case e_creg:
630 case e_greg:
631 /* Accept either a string name
8e5c905e 632 * or '$' followed by the register number */
efec4a28
DP
633 r = find_entry_byval (e->processor, f->type, value, &f->range);
634 if (r)
635 strcat (s, r->name);
636 else
637 sprintf (s, "%s$%d", s, value);
638 break;
639 case e_addr:
640 /* use assembler's symbol table to find symbol */
641 /* FIXME!! Do we need this?
8e5c905e
DP
642 * if so, what about relocs??
643 */
efec4a28
DP
644 /* If not a symbol, fall thru to IMMED */
645 case e_immed:
646 sprintf (s, "%s0x%x", s, value);
647 break;
648 default:
649 return 0; /* error; invalid field spec */
8e5c905e 650 }
efec4a28
DP
651 }
652 return 1; /* done! */
8e5c905e
DP
653}
654
655/*======================================================================*/
656/*
657 * Local functions for manipulating private structures containing
658 * the names and format for the new instructions and registers
659 * for each processor.
660 */
661
662/* Calculate instruction's opcode and function values from entry */
663
efec4a28
DP
664static unsigned long
665build_opcode (struct itbl_entry *e)
8e5c905e 666{
efec4a28 667 unsigned long opcode;
8e5c905e 668
efec4a28
DP
669 opcode = apply_range (e->value, e->range);
670 opcode |= ITBL_ENCODE_PNUM (e->processor);
671 return opcode;
8e5c905e
DP
672}
673
efec4a28
DP
674/* Calculate absolute value given the relative value and bit position range
675 * within the instruction.
8e5c905e
DP
676 * The range is inclusive where 0 is least significant bit.
677 * A range of { 24, 20 } will have a mask of
678 * bit 3 2 1
679 * pos: 1098 7654 3210 9876 5432 1098 7654 3210
680 * bin: 0000 0001 1111 0000 0000 0000 0000 0000
681 * hex: 0 1 f 0 0 0 0 0
682 * mask: 0x01f00000.
683 */
684
efec4a28
DP
685static unsigned long
686apply_range (unsigned long rval, struct itbl_range r)
8e5c905e 687{
efec4a28
DP
688 unsigned long mask;
689 unsigned long aval;
690 int len = MAX_BITPOS - r.sbit;
691
692 ASSERT (r.sbit >= r.ebit);
693 ASSERT (MAX_BITPOS >= r.sbit);
694 ASSERT (r.ebit >= 0);
695
696 /* create mask by truncating 1s by shifting */
697 mask = 0xffffffff << len;
698 mask = mask >> len;
699 mask = mask >> r.ebit;
700 mask = mask << r.ebit;
701
702 aval = (rval << r.ebit) & mask;
703 return aval;
8e5c905e
DP
704}
705
efec4a28 706/* Calculate relative value given the absolute value and bit position range
8e5c905e
DP
707 * within the instruction. */
708
efec4a28
DP
709static unsigned long
710extract_range (unsigned long aval, struct itbl_range r)
8e5c905e 711{
efec4a28
DP
712 unsigned long mask;
713 unsigned long rval;
714 int len = MAX_BITPOS - r.sbit;
715
716 /* create mask by truncating 1s by shifting */
717 mask = 0xffffffff << len;
718 mask = mask >> len;
719 mask = mask >> r.ebit;
720 mask = mask << r.ebit;
721
722 rval = (aval & mask) >> r.ebit;
723 return rval;
8e5c905e
DP
724}
725
efec4a28 726/* Extract processor's assembly instruction field name from s;
8e5c905e 727 * forms are "n args" "n,args" or "n" */
efec4a28 728/* Return next argument from string pointer "s" and advance s.
8e5c905e
DP
729 * delimiters are " ,\0" */
730
efec4a28
DP
731char *
732itbl_get_field (char **S)
8e5c905e 733{
efec4a28
DP
734 static char n[128];
735 char *p, *ps, *s;
736 int len;
737
738 s = *S;
739 if (!s || !*s)
740 return 0;
741 p = s + strlen (s);
742 if (ps = strchr (s, ','), ps)
743 p = ps;
744 if (ps = strchr (s, ' '), ps)
745 p = min (p, ps);
746 if (ps = strchr (s, '\0'), ps)
747 p = min (p, ps);
748 if (p == 0)
749 return 0; /* error! */
750 len = p - s;
751 ASSERT (128 > len + 1);
752 strncpy (n, s, len);
753 n[len] = 0;
754 if (s[len] == '\0')
755 s = 0; /* no more args */
756 else
757 s += len + 1; /* advance to next arg */
758
759 *S = s;
760 return n;
8e5c905e
DP
761}
762
763/* Search entries for a given processor and type
764 * to find one matching the name "n".
765 * Return a pointer to the entry */
766
efec4a28
DP
767static struct itbl_entry *
768find_entry_byname (e_processor processor,
769 e_type type, char *n)
8e5c905e 770{
efec4a28 771 struct itbl_entry *e, **es;
8e5c905e 772
efec4a28
DP
773 es = get_entries (processor, type);
774 for (e = *es; e; e = e->next) /* for each entry, ... */
775 {
776 if (!strcmp (e->name, n))
777 return e;
778 }
779 return 0;
8e5c905e
DP
780}
781
782/* Search entries for a given processor and type
783 * to find one matching the value "val" for the range "r".
784 * Return a pointer to the entry.
785 * This function is used for disassembling fields of an instruction.
786 */
787
efec4a28
DP
788static struct itbl_entry *
789find_entry_byval (e_processor processor, e_type type,
790 unsigned long val, struct itbl_range *r)
8e5c905e 791{
efec4a28
DP
792 struct itbl_entry *e, **es;
793 unsigned long eval;
8e5c905e 794
efec4a28
DP
795 es = get_entries (processor, type);
796 for (e = *es; e; e = e->next) /* for each entry, ... */
797 {
798 if (processor != e->processor)
799 continue;
800 /* For insns, we might not know the range of the opcode,
801 * so a range of 0 will allow this routine to match against
8e5c905e
DP
802 * the range of the entry to be compared with.
803 * This could cause ambiguities.
804 * For operands, we get an extracted value and a range.
805 */
efec4a28
DP
806 /* if range is 0, mask val against the range of the compared entry. */
807 if (r == 0) /* if no range passed, must be whole 32-bits
8e5c905e
DP
808 * so create 32-bit value from entry's range */
809 {
efec4a28
DP
810 eval = apply_range (e->value, e->range);
811 val &= apply_range (0xffffffff, e->range);
8e5c905e 812 }
efec4a28
DP
813 else if (r->sbit == e->range.sbit && r->ebit == e->range.ebit
814 || e->range.sbit == 0 && e->range.ebit == 0)
8e5c905e 815 {
efec4a28
DP
816 eval = apply_range (e->value, *r);
817 val = apply_range (val, *r);
8e5c905e 818 }
efec4a28
DP
819 else
820 continue;
821 if (val == eval)
822 return e;
823 }
824 return 0;
8e5c905e
DP
825}
826
827/* Return a pointer to the list of entries for a given processor and type. */
828
efec4a28
DP
829static struct itbl_entry **
830get_entries (e_processor processor, e_type type)
8e5c905e 831{
efec4a28 832 return &entries[processor][type];
8e5c905e
DP
833}
834
835/* Return an integral value for the processor passed from yyparse. */
836
efec4a28
DP
837static e_processor
838get_processor (int yyproc)
8e5c905e 839{
efec4a28
DP
840 /* translate from yacc's processor to enum */
841 if (yyproc >= e_p0 && yyproc < e_nprocs)
842 return (e_processor) yyproc;
843 return e_invproc; /* error; invalid processor */
8e5c905e
DP
844}
845
846/* Return an integral value for the entry type passed from yyparse. */
847
efec4a28
DP
848static e_type
849get_type (int yytype)
8e5c905e 850{
efec4a28 851 switch (yytype)
8e5c905e 852 {
efec4a28
DP
853 /* translate from yacc's type to enum */
854 case INSN:
855 return e_insn;
856 case DREG:
857 return e_dreg;
858 case CREG:
859 return e_creg;
860 case GREG:
861 return e_greg;
862 case ADDR:
863 return e_addr;
864 case IMMED:
865 return e_immed;
866 default:
867 return e_invtype; /* error; invalid type */
8e5c905e
DP
868 }
869}
870
871
872/* Allocate and initialize an entry */
873
efec4a28
DP
874static struct itbl_entry *
875alloc_entry (e_processor processor, e_type type,
876 char *name, unsigned long value)
8e5c905e 877{
efec4a28
DP
878 struct itbl_entry *e, **es;
879 if (!name)
880 return 0;
881 e = (struct itbl_entry *) malloc (sizeof (struct itbl_entry));
882 if (e)
883 {
884 memset (e, 0, sizeof (struct itbl_entry));
885 e->name = (char *) malloc (sizeof (strlen (name)) + 1);
886 if (e->name)
887 strcpy (e->name, name);
888 e->processor = processor;
889 e->type = type;
890 e->value = value;
891 es = get_entries (e->processor, e->type);
892 e->next = *es;
893 *es = e;
894 }
895 return e;
8e5c905e
DP
896}
897
898/* Allocate and initialize an entry's field */
899
efec4a28
DP
900static struct itbl_field *
901alloc_field (e_type type, int sbit, int ebit,
902 unsigned long flags)
8e5c905e 903{
efec4a28
DP
904 struct itbl_field *f;
905 f = (struct itbl_field *) malloc (sizeof (struct itbl_field));
906 if (f)
907 {
908 memset (f, 0, sizeof (struct itbl_field));
909 f->type = type;
910 f->range.sbit = sbit;
911 f->range.ebit = ebit;
912 f->flags = flags;
913 }
914 return f;
8e5c905e 915}
This page took 0.061926 seconds and 4 git commands to generate.