* app.c (do_scrub_next_char): Another attempt to fix bugs
[deliverable/binutils-gdb.git] / gdb / a29k-tdep.c
CommitLineData
dd3b648e 1/* Target-machine dependent code for the AMD 29000
7b2bcbf5 2 Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
dd3b648e
RP
3 Contributed by Cygnus Support. Written by Jim Kingdon.
4
5This file is part of GDB.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
99a7de40
JG
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
dd3b648e
RP
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
99a7de40
JG
18along with this program; if not, write to the Free Software
19Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
dd3b648e
RP
20
21#include "defs.h"
22#include "gdbcore.h"
dd3b648e
RP
23#include "frame.h"
24#include "value.h"
dd3b648e
RP
25#include "symtab.h"
26#include "inferior.h"
8f86a4e4 27#include "gdbcmd.h"
dd3b648e 28
946f014b
JG
29/* If all these bits in an instruction word are zero, it is a "tag word"
30 which precedes a function entry point and gives stack traceback info.
31 This used to be defined as 0xff000000, but that treated 0x00000deb as
32 a tag word, while it is really used as a breakpoint. */
33#define TAGWORD_ZERO_MASK 0xff00f800
34
7730bd5a
JG
35extern CORE_ADDR text_start; /* FIXME, kludge... */
36
8f86a4e4
JG
37/* The user-settable top of the register stack in virtual memory. We
38 won't attempt to access any stored registers above this address, if set
39 nonzero. */
40
41static CORE_ADDR rstack_high_address = UINT_MAX;
42
dd3b648e
RP
43/* Structure to hold cached info about function prologues. */
44struct prologue_info
45{
46 CORE_ADDR pc; /* First addr after fn prologue */
47 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
48 unsigned mfp_used : 1; /* memory frame pointer used */
49 unsigned rsize_valid : 1; /* Validity bits for the above */
50 unsigned msize_valid : 1;
51 unsigned mfp_valid : 1;
52};
53
54/* Examine the prologue of a function which starts at PC. Return
55 the first addess past the prologue. If MSIZE is non-NULL, then
56 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
57 then set *RSIZE to the register stack frame size (not including
58 incoming arguments and the return address & frame pointer stored
59 with them). If no prologue is found, *RSIZE is set to zero.
60 If no prologue is found, or a prologue which doesn't involve
61 allocating a memory stack frame, then set *MSIZE to zero.
62
63 Note that both msize and rsize are in bytes. This is not consistent
64 with the _User's Manual_ with respect to rsize, but it is much more
65 convenient.
66
67 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
68 frame pointer is being used. */
69CORE_ADDR
70examine_prologue (pc, rsize, msize, mfp_used)
71 CORE_ADDR pc;
72 unsigned *msize;
73 unsigned *rsize;
74 int *mfp_used;
75{
76 long insn;
77 CORE_ADDR p = pc;
1ab3bf1b 78 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
dd3b648e
RP
79 struct prologue_info *mi = 0;
80
1ab3bf1b 81 if (msymbol != NULL)
07df4831 82 mi = (struct prologue_info *) msymbol -> info;
dd3b648e
RP
83
84 if (mi != 0)
85 {
86 int valid = 1;
87 if (rsize != NULL)
88 {
89 *rsize = mi->rsize;
90 valid &= mi->rsize_valid;
91 }
92 if (msize != NULL)
93 {
94 *msize = mi->msize;
95 valid &= mi->msize_valid;
96 }
97 if (mfp_used != NULL)
98 {
99 *mfp_used = mi->mfp_used;
100 valid &= mi->mfp_valid;
101 }
102 if (valid)
103 return mi->pc;
104 }
105
106 if (rsize != NULL)
107 *rsize = 0;
108 if (msize != NULL)
109 *msize = 0;
110 if (mfp_used != NULL)
111 *mfp_used = 0;
112
113 /* Prologue must start with subtracting a constant from gr1.
114 Normally this is sub gr1,gr1,<rsize * 4>. */
115 insn = read_memory_integer (p, 4);
116 if ((insn & 0xffffff00) != 0x25010100)
117 {
118 /* If the frame is large, instead of a single instruction it
119 might be a pair of instructions:
120 const <reg>, <rsize * 4>
121 sub gr1,gr1,<reg>
122 */
123 int reg;
124 /* Possible value for rsize. */
125 unsigned int rsize0;
126
127 if ((insn & 0xff000000) != 0x03000000)
128 {
129 p = pc;
130 goto done;
131 }
132 reg = (insn >> 8) & 0xff;
133 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
134 p += 4;
135 insn = read_memory_integer (p, 4);
136 if ((insn & 0xffffff00) != 0x24010100
137 || (insn & 0xff) != reg)
138 {
139 p = pc;
140 goto done;
141 }
142 if (rsize != NULL)
143 *rsize = rsize0;
144 }
145 else
146 {
147 if (rsize != NULL)
148 *rsize = (insn & 0xff);
149 }
150 p += 4;
151
7b2bcbf5 152 /* Next instruction ought to be asgeu V_SPILL,gr1,rab.
d0b04c6a
SG
153 * We don't check the vector number to allow for kernel debugging. The
154 * kernel will use a different trap number.
7b2bcbf5
JG
155 * If this insn is missing, we just keep going; Metaware R2.3u compiler
156 * generates prologue that intermixes initializations and puts the asgeu
157 * way down.
d0b04c6a 158 */
dd3b648e 159 insn = read_memory_integer (p, 4);
7b2bcbf5 160 if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
dd3b648e 161 {
7b2bcbf5 162 p += 4;
dd3b648e 163 }
dd3b648e
RP
164
165 /* Next instruction usually sets the frame pointer (lr1) by adding
166 <size * 4> from gr1. However, this can (and high C does) be
167 deferred until anytime before the first function call. So it is
d0b04c6a
SG
168 OK if we don't see anything which sets lr1.
169 To allow for alternate register sets (gcc -mkernel-registers) the msp
170 register number is a compile time constant. */
171
dd3b648e
RP
172 /* Normally this is just add lr1,gr1,<size * 4>. */
173 insn = read_memory_integer (p, 4);
174 if ((insn & 0xffffff00) == 0x15810100)
175 p += 4;
176 else
177 {
178 /* However, for large frames it can be
179 const <reg>, <size *4>
180 add lr1,gr1,<reg>
181 */
182 int reg;
183 CORE_ADDR q;
184
185 if ((insn & 0xff000000) == 0x03000000)
186 {
187 reg = (insn >> 8) & 0xff;
188 q = p + 4;
189 insn = read_memory_integer (q, 4);
190 if ((insn & 0xffffff00) == 0x14810100
191 && (insn & 0xff) == reg)
192 p = q;
193 }
194 }
195
196 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
197 frame pointer is in use. We just check for add lr<anything>,msp,0;
198 we don't check this rsize against the first instruction, and
199 we don't check that the trace-back tag indicates a memory frame pointer
200 is in use.
d0b04c6a
SG
201 To allow for alternate register sets (gcc -mkernel-registers) the msp
202 register number is a compile time constant.
dd3b648e
RP
203
204 The recommended instruction is actually "sll lr<whatever>,msp,0".
205 We check for that, too. Originally Jim Kingdon's code seemed
206 to be looking for a "sub" instruction here, but the mask was set
207 up to lose all the time. */
208 insn = read_memory_integer (p, 4);
d0b04c6a
SG
209 if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */
210 || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */
dd3b648e
RP
211 {
212 p += 4;
213 if (mfp_used != NULL)
214 *mfp_used = 1;
215 }
216
217 /* Next comes a subtraction from msp to allocate a memory frame,
218 but only if a memory frame is
219 being used. We don't check msize against the trace-back tag.
220
d0b04c6a
SG
221 To allow for alternate register sets (gcc -mkernel-registers) the msp
222 register number is a compile time constant.
223
dd3b648e
RP
224 Normally this is just
225 sub msp,msp,<msize>
226 */
227 insn = read_memory_integer (p, 4);
d0b04c6a
SG
228 if ((insn & 0xffffff00) ==
229 (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)))
dd3b648e
RP
230 {
231 p += 4;
d0b04c6a 232 if (msize != NULL)
dd3b648e
RP
233 *msize = insn & 0xff;
234 }
235 else
236 {
237 /* For large frames, instead of a single instruction it might
238 be
239
240 const <reg>, <msize>
241 consth <reg>, <msize> ; optional
242 sub msp,msp,<reg>
243 */
244 int reg;
245 unsigned msize0;
246 CORE_ADDR q = p;
247
248 if ((insn & 0xff000000) == 0x03000000)
249 {
250 reg = (insn >> 8) & 0xff;
251 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
252 q += 4;
253 insn = read_memory_integer (q, 4);
254 /* Check for consth. */
255 if ((insn & 0xff000000) == 0x02000000
256 && (insn & 0x0000ff00) == reg)
257 {
258 msize0 |= (insn << 8) & 0xff000000;
259 msize0 |= (insn << 16) & 0x00ff0000;
260 q += 4;
261 insn = read_memory_integer (q, 4);
262 }
263 /* Check for sub msp,msp,<reg>. */
d0b04c6a
SG
264 if ((insn & 0xffffff00) ==
265 (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))
dd3b648e
RP
266 && (insn & 0xff) == reg)
267 {
268 p = q + 4;
269 if (msize != NULL)
270 *msize = msize0;
271 }
272 }
273 }
274
7b2bcbf5
JG
275 /* Next instruction might be asgeu V_SPILL,gr1,rab.
276 * We don't check the vector number to allow for kernel debugging. The
277 * kernel will use a different trap number.
278 * Metaware R2.3u compiler
279 * generates prologue that intermixes initializations and puts the asgeu
280 * way down after everything else.
281 */
282 insn = read_memory_integer (p, 4);
283 if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
284 {
285 p += 4;
286 }
287
dd3b648e 288 done:
1ab3bf1b 289 if (msymbol != NULL)
dd3b648e
RP
290 {
291 if (mi == 0)
292 {
293 /* Add a new cache entry. */
294 mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
07df4831 295 msymbol -> info = (char *)mi;
dd3b648e
RP
296 mi->rsize_valid = 0;
297 mi->msize_valid = 0;
298 mi->mfp_valid = 0;
299 }
300 /* else, cache entry exists, but info is incomplete. */
301 mi->pc = p;
302 if (rsize != NULL)
303 {
304 mi->rsize = *rsize;
305 mi->rsize_valid = 1;
306 }
307 if (msize != NULL)
308 {
309 mi->msize = *msize;
310 mi->msize_valid = 1;
311 }
312 if (mfp_used != NULL)
313 {
314 mi->mfp_used = *mfp_used;
315 mi->mfp_valid = 1;
316 }
317 }
318 return p;
319}
320
321/* Advance PC across any function entry prologue instructions
322 to reach some "real" code. */
323
324CORE_ADDR
325skip_prologue (pc)
326 CORE_ADDR pc;
327{
328 return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL,
329 (int *)NULL);
330}
d0b04c6a
SG
331/*
332 * Examine the one or two word tag at the beginning of a function.
333 * The tag word is expect to be at 'p', if it is not there, we fail
334 * by returning 0. The documentation for the tag word was taken from
335 * page 7-15 of the 29050 User's Manual. We are assuming that the
336 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
337 * convention today (1/15/92).
338 * msize is return in bytes.
339 */
340static int /* 0/1 - failure/success of finding the tag word */
341examine_tag(p, is_trans, argcount, msize, mfp_used)
342 CORE_ADDR p;
343 int *is_trans;
344 int *argcount;
345 unsigned *msize;
346 int *mfp_used;
347{
348 unsigned int tag1, tag2;
349
350 tag1 = read_memory_integer (p, 4);
946f014b 351 if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
d0b04c6a
SG
352 return 0;
353 if (tag1 & (1<<23)) /* A two word tag */
354 {
355 tag2 = read_memory_integer (p+4, 4);
356 if (msize)
357 *msize = tag2;
358 }
359 else /* A one word tag */
360 {
361 if (msize)
362 *msize = tag1 & 0x7ff;
363 }
364 if (is_trans)
365 *is_trans = ((tag1 & (1<<21)) ? 1 : 0);
366 if (argcount)
367 *argcount = (tag1 >> 16) & 0x1f;
368 if (mfp_used)
369 *mfp_used = ((tag1 & (1<<22)) ? 1 : 0);
370 return(1);
371}
dd3b648e
RP
372
373/* Initialize the frame. In addition to setting "extra" frame info,
374 we also set ->frame because we use it in a nonstandard way, and ->pc
375 because we need to know it to get the other stuff. See the diagram
d7d35f00 376 of stacks and the frame cache in tm-a29k.h for more detail. */
dd3b648e
RP
377static void
378init_frame_info (innermost_frame, fci)
379 int innermost_frame;
380 struct frame_info *fci;
381{
382 CORE_ADDR p;
383 long insn;
384 unsigned rsize;
385 unsigned msize;
d0b04c6a 386 int mfp_used, trans;
dd3b648e
RP
387 struct symbol *func;
388
389 p = fci->pc;
390
391 if (innermost_frame)
392 fci->frame = read_register (GR1_REGNUM);
393 else
23a8e291 394 fci->frame = fci->next->frame + fci->next->rsize;
dd3b648e
RP
395
396#if CALL_DUMMY_LOCATION == ON_STACK
397 This wont work;
398#else
399 if (PC_IN_CALL_DUMMY (p, 0, 0))
400#endif
401 {
402 fci->rsize = DUMMY_FRAME_RSIZE;
403 /* This doesn't matter since we never try to get locals or args
404 from a dummy frame. */
405 fci->msize = 0;
406 /* Dummy frames always use a memory frame pointer. */
407 fci->saved_msp =
408 read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4);
d0b04c6a 409 fci->flags |= (TRANSPARENT|MFP_USED);
dd3b648e
RP
410 return;
411 }
412
413 func = find_pc_function (p);
414 if (func != NULL)
415 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
416 else
417 {
418 /* Search backward to find the trace-back tag. However,
419 do not trace back beyond the start of the text segment
420 (just as a sanity check to avoid going into never-never land). */
421 while (p >= text_start
946f014b 422 && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
dd3b648e
RP
423 p -= 4;
424
425 if (p < text_start)
426 {
427 /* Couldn't find the trace-back tag.
428 Something strange is going on. */
429 fci->saved_msp = 0;
430 fci->rsize = 0;
431 fci->msize = 0;
d0b04c6a 432 fci->flags = TRANSPARENT;
dd3b648e
RP
433 return;
434 }
435 else
436 /* Advance to the first word of the function, i.e. the word
437 after the trace-back tag. */
438 p += 4;
439 }
d0b04c6a
SG
440 /* We've found the start of the function.
441 * Try looking for a tag word that indicates whether there is a
442 * memory frame pointer and what the memory stack allocation is.
443 * If one doesn't exist, try using a more exhaustive search of
444 * the prologue. For now we don't care about the argcount or
445 * whether or not the routine is transparent.
446 */
447 if (examine_tag(p-4,&trans,NULL,&msize,&mfp_used)) /* Found a good tag */
448 examine_prologue (p, &rsize, 0, 0);
449 else /* No tag try prologue */
450 examine_prologue (p, &rsize, &msize, &mfp_used);
451
dd3b648e
RP
452 fci->rsize = rsize;
453 fci->msize = msize;
d0b04c6a
SG
454 fci->flags = 0;
455 if (mfp_used)
456 fci->flags |= MFP_USED;
457 if (trans)
458 fci->flags |= TRANSPARENT;
dd3b648e
RP
459 if (innermost_frame)
460 {
461 fci->saved_msp = read_register (MSP_REGNUM) + msize;
462 }
463 else
464 {
465 if (mfp_used)
d0b04c6a
SG
466 fci->saved_msp =
467 read_register_stack_integer (fci->frame + rsize - 4, 4);
dd3b648e 468 else
d0b04c6a 469 fci->saved_msp = fci->next->saved_msp + msize;
dd3b648e
RP
470 }
471}
472
473void
474init_extra_frame_info (fci)
475 struct frame_info *fci;
476{
477 if (fci->next == 0)
478 /* Assume innermost frame. May produce strange results for "info frame"
479 but there isn't any way to tell the difference. */
480 init_frame_info (1, fci);
17f7e032
JG
481 else {
482 /* We're in get_prev_frame_info.
483 Take care of everything in init_frame_pc. */
484 ;
485 }
dd3b648e
RP
486}
487
488void
489init_frame_pc (fromleaf, fci)
490 int fromleaf;
491 struct frame_info *fci;
492{
493 fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) :
494 fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ());
d0b04c6a 495 init_frame_info (fromleaf, fci);
dd3b648e
RP
496}
497\f
498/* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
499 offsets being relative to the memory stack pointer (high C) or
500 saved_msp (gcc). */
501
502CORE_ADDR
503frame_locals_address (fi)
504 struct frame_info *fi;
505{
d0b04c6a 506 if (fi->flags & MFP_USED)
dd3b648e
RP
507 return fi->saved_msp;
508 else
509 return fi->saved_msp - fi->msize;
510}
511\f
512/* Routines for reading the register stack. The caller gets to treat
513 the register stack as a uniform stack in memory, from address $gr1
514 straight through $rfb and beyond. */
515
516/* Analogous to read_memory except the length is understood to be 4.
517 Also, myaddr can be NULL (meaning don't bother to read), and
518 if actual_mem_addr is non-NULL, store there the address that it
519 was fetched from (or if from a register the offset within
520 registers). Set *LVAL to lval_memory or lval_register, depending
4d50f90a
JK
521 on where it came from. The contents written into MYADDR are in
522 target format. */
dd3b648e
RP
523void
524read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
525 CORE_ADDR memaddr;
526 char *myaddr;
527 CORE_ADDR *actual_mem_addr;
528 enum lval_type *lval;
529{
530 long rfb = read_register (RFB_REGNUM);
531 long rsp = read_register (RSP_REGNUM);
d0b04c6a 532
d0b04c6a 533 /* If we don't do this 'info register' stops in the middle. */
8f86a4e4 534 if (memaddr >= rstack_high_address)
d0b04c6a 535 {
4d50f90a 536 /* a bogus value */
85494909 537 static char val[] = {~0, ~0, ~0, ~0};
d0b04c6a
SG
538 /* It's in a local register, but off the end of the stack. */
539 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
540 if (myaddr != NULL)
4d50f90a
JK
541 {
542 /* Provide bogusness */
543 memcpy (myaddr, val, 4);
544 }
545 supply_register(regnum, val); /* More bogusness */
d0b04c6a
SG
546 if (lval != NULL)
547 *lval = lval_register;
548 if (actual_mem_addr != NULL)
549 *actual_mem_addr = REGISTER_BYTE (regnum);
550 }
946f014b
JG
551 /* If it's in the part of the register stack that's in real registers,
552 get the value from the registers. If it's anywhere else in memory
553 (e.g. in another thread's saved stack), skip this part and get
554 it from real live memory. */
555 else if (memaddr < rfb && memaddr >= rsp)
dd3b648e
RP
556 {
557 /* It's in a register. */
558 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
946f014b 559 if (regnum > LR0_REGNUM + 127)
dd3b648e
RP
560 error ("Attempt to read register stack out of range.");
561 if (myaddr != NULL)
562 read_register_gen (regnum, myaddr);
563 if (lval != NULL)
564 *lval = lval_register;
565 if (actual_mem_addr != NULL)
566 *actual_mem_addr = REGISTER_BYTE (regnum);
567 }
568 else
569 {
570 /* It's in the memory portion of the register stack. */
d0b04c6a 571 if (myaddr != NULL)
4d50f90a 572 read_memory (memaddr, myaddr, 4);
dd3b648e
RP
573 if (lval != NULL)
574 *lval = lval_memory;
575 if (actual_mem_addr != NULL)
17f7e032 576 *actual_mem_addr = memaddr;
dd3b648e
RP
577 }
578}
579
580/* Analogous to read_memory_integer
581 except the length is understood to be 4. */
582long
583read_register_stack_integer (memaddr, len)
584 CORE_ADDR memaddr;
585 int len;
586{
34df79fc
JK
587 char buf[4];
588 read_register_stack (memaddr, buf, NULL, NULL);
589 return extract_signed_integer (buf, 4);
dd3b648e
RP
590}
591
592/* Copy 4 bytes from GDB memory at MYADDR into inferior memory
593 at MEMADDR and put the actual address written into in
594 *ACTUAL_MEM_ADDR. */
595static void
596write_register_stack (memaddr, myaddr, actual_mem_addr)
597 CORE_ADDR memaddr;
598 char *myaddr;
599 CORE_ADDR *actual_mem_addr;
600{
601 long rfb = read_register (RFB_REGNUM);
602 long rsp = read_register (RSP_REGNUM);
d0b04c6a 603 /* If we don't do this 'info register' stops in the middle. */
8f86a4e4 604 if (memaddr >= rstack_high_address)
d0b04c6a
SG
605 {
606 /* It's in a register, but off the end of the stack. */
607 if (actual_mem_addr != NULL)
b9163d1a 608 *actual_mem_addr = 0;
d0b04c6a 609 }
8f86a4e4 610 else if (memaddr < rfb)
dd3b648e
RP
611 {
612 /* It's in a register. */
613 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
614 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
615 error ("Attempt to read register stack out of range.");
616 if (myaddr != NULL)
617 write_register (regnum, *(long *)myaddr);
618 if (actual_mem_addr != NULL)
b9163d1a 619 *actual_mem_addr = 0;
dd3b648e
RP
620 }
621 else
622 {
623 /* It's in the memory portion of the register stack. */
624 if (myaddr != NULL)
625 write_memory (memaddr, myaddr, 4);
626 if (actual_mem_addr != NULL)
17f7e032 627 *actual_mem_addr = memaddr;
dd3b648e
RP
628 }
629}
630\f
631/* Find register number REGNUM relative to FRAME and put its
632 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
633 was optimized out (and thus can't be fetched). If the variable
634 was fetched from memory, set *ADDRP to where it was fetched from,
635 otherwise it was fetched from a register.
636
637 The argument RAW_BUFFER must point to aligned memory. */
638void
639get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
640 char *raw_buffer;
641 int *optimized;
642 CORE_ADDR *addrp;
643 FRAME frame;
644 int regnum;
645 enum lval_type *lvalp;
646{
d0b04c6a 647 struct frame_info *fi;
dd3b648e
RP
648 CORE_ADDR addr;
649 enum lval_type lval;
650
d0b04c6a
SG
651 if (frame == 0)
652 return;
653
654 fi = get_frame_info (frame);
655
dd3b648e
RP
656 /* Once something has a register number, it doesn't get optimized out. */
657 if (optimized != NULL)
658 *optimized = 0;
659 if (regnum == RSP_REGNUM)
660 {
661 if (raw_buffer != NULL)
4d50f90a 662 {
968dca8d 663 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), fi->frame);
4d50f90a 664 }
dd3b648e
RP
665 if (lvalp != NULL)
666 *lvalp = not_lval;
667 return;
668 }
669 else if (regnum == PC_REGNUM)
670 {
671 if (raw_buffer != NULL)
4d50f90a 672 {
968dca8d 673 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), fi->pc);
4d50f90a 674 }
dd3b648e
RP
675
676 /* Not sure we have to do this. */
677 if (lvalp != NULL)
678 *lvalp = not_lval;
679
680 return;
681 }
682 else if (regnum == MSP_REGNUM)
683 {
684 if (raw_buffer != NULL)
685 {
686 if (fi->next != NULL)
4d50f90a 687 {
968dca8d 688 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
34df79fc 689 fi->next->saved_msp);
4d50f90a 690 }
dd3b648e 691 else
4d50f90a 692 read_register_gen (MSP_REGNUM, raw_buffer);
dd3b648e
RP
693 }
694 /* The value may have been computed, not fetched. */
695 if (lvalp != NULL)
696 *lvalp = not_lval;
697 return;
698 }
699 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
700 {
701 /* These registers are not saved over procedure calls,
702 so just print out the current values. */
703 if (raw_buffer != NULL)
4d50f90a 704 read_register_gen (regnum, raw_buffer);
dd3b648e
RP
705 if (lvalp != NULL)
706 *lvalp = lval_register;
707 if (addrp != NULL)
708 *addrp = REGISTER_BYTE (regnum);
709 return;
710 }
711
712 addr = fi->frame + (regnum - LR0_REGNUM) * 4;
713 if (raw_buffer != NULL)
714 read_register_stack (addr, raw_buffer, &addr, &lval);
715 if (lvalp != NULL)
716 *lvalp = lval;
717 if (addrp != NULL)
718 *addrp = addr;
719}
720\f
d0b04c6a 721
dd3b648e
RP
722/* Discard from the stack the innermost frame,
723 restoring all saved registers. */
724
725void
726pop_frame ()
727{
728 FRAME frame = get_current_frame ();
729 struct frame_info *fi = get_frame_info (frame);
730 CORE_ADDR rfb = read_register (RFB_REGNUM);
731 CORE_ADDR gr1 = fi->frame + fi->rsize;
732 CORE_ADDR lr1;
dd3b648e
RP
733 int i;
734
735 /* If popping a dummy frame, need to restore registers. */
736 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
737 read_register (SP_REGNUM),
738 FRAME_FP (fi)))
739 {
d0b04c6a 740 int lrnum = LR0_REGNUM + DUMMY_ARG/4;
dd3b648e 741 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
d0b04c6a
SG
742 write_register (SR_REGNUM (i + 128),read_register (lrnum++));
743 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
744 write_register (SR_REGNUM(i+160), read_register (lrnum++));
6093e5b0 745 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
d0b04c6a
SG
746 write_register (RETURN_REGNUM + i, read_register (lrnum++));
747 /* Restore the PCs. */
748 write_register(PC_REGNUM, read_register (lrnum++));
749 write_register(NPC_REGNUM, read_register (lrnum));
dd3b648e
RP
750 }
751
752 /* Restore the memory stack pointer. */
753 write_register (MSP_REGNUM, fi->saved_msp);
754 /* Restore the register stack pointer. */
755 write_register (GR1_REGNUM, gr1);
756 /* Check whether we need to fill registers. */
757 lr1 = read_register (LR0_REGNUM + 1);
758 if (lr1 > rfb)
759 {
760 /* Fill. */
761 int num_bytes = lr1 - rfb;
762 int i;
763 long word;
764 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
765 write_register (RFB_REGNUM, lr1);
766 for (i = 0; i < num_bytes; i += 4)
767 {
768 /* Note: word is in host byte order. */
769 word = read_memory_integer (rfb + i, 4);
946f014b 770 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
dd3b648e
RP
771 }
772 }
dd3b648e
RP
773 flush_cached_frames ();
774 set_current_frame (create_new_frame (0, read_pc()));
775}
776
777/* Push an empty stack frame, to record the current PC, etc. */
778
779void
780push_dummy_frame ()
781{
782 long w;
783 CORE_ADDR rab, gr1;
784 CORE_ADDR msp = read_register (MSP_REGNUM);
d0b04c6a 785 int lrnum, i, saved_lr0;
dd3b648e 786
dd3b648e 787
d0b04c6a 788 /* Allocate the new frame. */
dd3b648e
RP
789 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
790 write_register (GR1_REGNUM, gr1);
791
792 rab = read_register (RAB_REGNUM);
793 if (gr1 < rab)
794 {
795 /* We need to spill registers. */
796 int num_bytes = rab - gr1;
797 CORE_ADDR rfb = read_register (RFB_REGNUM);
798 int i;
799 long word;
800
801 write_register (RFB_REGNUM, rfb - num_bytes);
802 write_register (RAB_REGNUM, gr1);
803 for (i = 0; i < num_bytes; i += 4)
804 {
805 /* Note: word is in target byte order. */
b9163d1a
SG
806 read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
807 write_memory (rfb - num_bytes + i, (char *) &word, 4);
dd3b648e
RP
808 }
809 }
810
811 /* There are no arguments in to the dummy frame, so we don't need
812 more than rsize plus the return address and lr1. */
813 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
814
815 /* Set the memory frame pointer. */
816 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
817
818 /* Allocate arg_slop. */
819 write_register (MSP_REGNUM, msp - 16 * 4);
820
821 /* Save registers. */
d0b04c6a 822 lrnum = LR0_REGNUM + DUMMY_ARG/4;
dd3b648e 823 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
d0b04c6a
SG
824 write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
825 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
826 write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
6093e5b0 827 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
d0b04c6a
SG
828 write_register (lrnum++, read_register (RETURN_REGNUM + i));
829 /* Save the PCs. */
830 write_register (lrnum++, read_register (PC_REGNUM));
831 write_register (lrnum, read_register (NPC_REGNUM));
832}
833
ca0622e7
JK
834enum a29k_processor_types processor_type = a29k_unknown;
835
836void
837a29k_get_processor_type ()
838{
839 unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
840
841 /* Most of these don't have freeze mode. */
842 processor_type = a29k_no_freeze_mode;
843
844 switch ((cfg_reg >> 28) & 0xf)
845 {
846 case 0:
199b2450 847 fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
ca0622e7
JK
848 break;
849 case 1:
199b2450 850 fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
ca0622e7
JK
851 break;
852 case 2:
199b2450 853 fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
ca0622e7
JK
854 processor_type = a29k_freeze_mode;
855 break;
856 case 3:
199b2450 857 fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
ca0622e7
JK
858 break;
859 case 4:
199b2450 860 fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
ca0622e7
JK
861 break;
862 case 5:
199b2450 863 fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
ca0622e7
JK
864 break;
865 case 6:
199b2450 866 fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
ca0622e7
JK
867 break;
868 case 7:
199b2450 869 fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
ca0622e7
JK
870 break;
871 default:
199b2450 872 fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
ca0622e7
JK
873 /* Don't bother to print the revision. */
874 return;
875 }
199b2450 876 fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
ca0622e7 877}
946f014b 878
d0b04c6a
SG
879void
880_initialize_29k()
881{
34517ebc
JG
882 extern CORE_ADDR text_end;
883
8f86a4e4
JG
884 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
885 add_show_from_set
886 (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
887 (char *)&rstack_high_address,
888 "Set top address in memory of the register stack.\n\
889Attempts to access registers saved above this address will be ignored\n\
890or will produce the value -1.", &setlist),
891 &showlist);
34517ebc
JG
892
893 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
894 add_show_from_set
895 (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
896 (char *)&text_end,
19327ea5
JG
897"Set address in memory where small amounts of RAM can be used\n\
898when making function calls into the inferior.", &setlist),
34517ebc 899 &showlist);
8f86a4e4 900}
This page took 0.1589 seconds and 4 git commands to generate.