doc/as.texinfo
[deliverable/binutils-gdb.git] / gdb / a29k-tdep.c
CommitLineData
dd3b648e 1/* Target-machine dependent code for the AMD 29000
19327ea5 2 Copyright 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
dd3b648e
RP
3 Contributed by Cygnus Support. Written by Jim Kingdon.
4
5This file is part of GDB.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
99a7de40
JG
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
dd3b648e
RP
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
99a7de40
JG
18along with this program; if not, write to the Free Software
19Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
dd3b648e
RP
20
21#include "defs.h"
22#include "gdbcore.h"
dd3b648e
RP
23#include "frame.h"
24#include "value.h"
dd3b648e
RP
25#include "symtab.h"
26#include "inferior.h"
8f86a4e4 27#include "gdbcmd.h"
dd3b648e 28
946f014b
JG
29/* If all these bits in an instruction word are zero, it is a "tag word"
30 which precedes a function entry point and gives stack traceback info.
31 This used to be defined as 0xff000000, but that treated 0x00000deb as
32 a tag word, while it is really used as a breakpoint. */
33#define TAGWORD_ZERO_MASK 0xff00f800
34
7730bd5a
JG
35extern CORE_ADDR text_start; /* FIXME, kludge... */
36
8f86a4e4
JG
37/* The user-settable top of the register stack in virtual memory. We
38 won't attempt to access any stored registers above this address, if set
39 nonzero. */
40
41static CORE_ADDR rstack_high_address = UINT_MAX;
42
dd3b648e
RP
43/* Structure to hold cached info about function prologues. */
44struct prologue_info
45{
46 CORE_ADDR pc; /* First addr after fn prologue */
47 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
48 unsigned mfp_used : 1; /* memory frame pointer used */
49 unsigned rsize_valid : 1; /* Validity bits for the above */
50 unsigned msize_valid : 1;
51 unsigned mfp_valid : 1;
52};
53
54/* Examine the prologue of a function which starts at PC. Return
55 the first addess past the prologue. If MSIZE is non-NULL, then
56 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
57 then set *RSIZE to the register stack frame size (not including
58 incoming arguments and the return address & frame pointer stored
59 with them). If no prologue is found, *RSIZE is set to zero.
60 If no prologue is found, or a prologue which doesn't involve
61 allocating a memory stack frame, then set *MSIZE to zero.
62
63 Note that both msize and rsize are in bytes. This is not consistent
64 with the _User's Manual_ with respect to rsize, but it is much more
65 convenient.
66
67 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
68 frame pointer is being used. */
69CORE_ADDR
70examine_prologue (pc, rsize, msize, mfp_used)
71 CORE_ADDR pc;
72 unsigned *msize;
73 unsigned *rsize;
74 int *mfp_used;
75{
76 long insn;
77 CORE_ADDR p = pc;
1ab3bf1b 78 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
dd3b648e
RP
79 struct prologue_info *mi = 0;
80
1ab3bf1b 81 if (msymbol != NULL)
07df4831 82 mi = (struct prologue_info *) msymbol -> info;
dd3b648e
RP
83
84 if (mi != 0)
85 {
86 int valid = 1;
87 if (rsize != NULL)
88 {
89 *rsize = mi->rsize;
90 valid &= mi->rsize_valid;
91 }
92 if (msize != NULL)
93 {
94 *msize = mi->msize;
95 valid &= mi->msize_valid;
96 }
97 if (mfp_used != NULL)
98 {
99 *mfp_used = mi->mfp_used;
100 valid &= mi->mfp_valid;
101 }
102 if (valid)
103 return mi->pc;
104 }
105
106 if (rsize != NULL)
107 *rsize = 0;
108 if (msize != NULL)
109 *msize = 0;
110 if (mfp_used != NULL)
111 *mfp_used = 0;
112
113 /* Prologue must start with subtracting a constant from gr1.
114 Normally this is sub gr1,gr1,<rsize * 4>. */
115 insn = read_memory_integer (p, 4);
116 if ((insn & 0xffffff00) != 0x25010100)
117 {
118 /* If the frame is large, instead of a single instruction it
119 might be a pair of instructions:
120 const <reg>, <rsize * 4>
121 sub gr1,gr1,<reg>
122 */
123 int reg;
124 /* Possible value for rsize. */
125 unsigned int rsize0;
126
127 if ((insn & 0xff000000) != 0x03000000)
128 {
129 p = pc;
130 goto done;
131 }
132 reg = (insn >> 8) & 0xff;
133 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
134 p += 4;
135 insn = read_memory_integer (p, 4);
136 if ((insn & 0xffffff00) != 0x24010100
137 || (insn & 0xff) != reg)
138 {
139 p = pc;
140 goto done;
141 }
142 if (rsize != NULL)
143 *rsize = rsize0;
144 }
145 else
146 {
147 if (rsize != NULL)
148 *rsize = (insn & 0xff);
149 }
150 p += 4;
151
d0b04c6a
SG
152 /* Next instruction must be asgeu V_SPILL,gr1,rab.
153 * We don't check the vector number to allow for kernel debugging. The
154 * kernel will use a different trap number.
155 */
dd3b648e 156 insn = read_memory_integer (p, 4);
d0b04c6a 157 if ((insn & 0xff00ffff) != (0x5e000100|RAB_HW_REGNUM))
dd3b648e
RP
158 {
159 p = pc;
160 goto done;
161 }
162 p += 4;
163
164 /* Next instruction usually sets the frame pointer (lr1) by adding
165 <size * 4> from gr1. However, this can (and high C does) be
166 deferred until anytime before the first function call. So it is
d0b04c6a
SG
167 OK if we don't see anything which sets lr1.
168 To allow for alternate register sets (gcc -mkernel-registers) the msp
169 register number is a compile time constant. */
170
dd3b648e
RP
171 /* Normally this is just add lr1,gr1,<size * 4>. */
172 insn = read_memory_integer (p, 4);
173 if ((insn & 0xffffff00) == 0x15810100)
174 p += 4;
175 else
176 {
177 /* However, for large frames it can be
178 const <reg>, <size *4>
179 add lr1,gr1,<reg>
180 */
181 int reg;
182 CORE_ADDR q;
183
184 if ((insn & 0xff000000) == 0x03000000)
185 {
186 reg = (insn >> 8) & 0xff;
187 q = p + 4;
188 insn = read_memory_integer (q, 4);
189 if ((insn & 0xffffff00) == 0x14810100
190 && (insn & 0xff) == reg)
191 p = q;
192 }
193 }
194
195 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
196 frame pointer is in use. We just check for add lr<anything>,msp,0;
197 we don't check this rsize against the first instruction, and
198 we don't check that the trace-back tag indicates a memory frame pointer
199 is in use.
d0b04c6a
SG
200 To allow for alternate register sets (gcc -mkernel-registers) the msp
201 register number is a compile time constant.
dd3b648e
RP
202
203 The recommended instruction is actually "sll lr<whatever>,msp,0".
204 We check for that, too. Originally Jim Kingdon's code seemed
205 to be looking for a "sub" instruction here, but the mask was set
206 up to lose all the time. */
207 insn = read_memory_integer (p, 4);
d0b04c6a
SG
208 if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */
209 || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */
dd3b648e
RP
210 {
211 p += 4;
212 if (mfp_used != NULL)
213 *mfp_used = 1;
214 }
215
216 /* Next comes a subtraction from msp to allocate a memory frame,
217 but only if a memory frame is
218 being used. We don't check msize against the trace-back tag.
219
d0b04c6a
SG
220 To allow for alternate register sets (gcc -mkernel-registers) the msp
221 register number is a compile time constant.
222
dd3b648e
RP
223 Normally this is just
224 sub msp,msp,<msize>
225 */
226 insn = read_memory_integer (p, 4);
d0b04c6a
SG
227 if ((insn & 0xffffff00) ==
228 (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)))
dd3b648e
RP
229 {
230 p += 4;
d0b04c6a 231 if (msize != NULL)
dd3b648e
RP
232 *msize = insn & 0xff;
233 }
234 else
235 {
236 /* For large frames, instead of a single instruction it might
237 be
238
239 const <reg>, <msize>
240 consth <reg>, <msize> ; optional
241 sub msp,msp,<reg>
242 */
243 int reg;
244 unsigned msize0;
245 CORE_ADDR q = p;
246
247 if ((insn & 0xff000000) == 0x03000000)
248 {
249 reg = (insn >> 8) & 0xff;
250 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
251 q += 4;
252 insn = read_memory_integer (q, 4);
253 /* Check for consth. */
254 if ((insn & 0xff000000) == 0x02000000
255 && (insn & 0x0000ff00) == reg)
256 {
257 msize0 |= (insn << 8) & 0xff000000;
258 msize0 |= (insn << 16) & 0x00ff0000;
259 q += 4;
260 insn = read_memory_integer (q, 4);
261 }
262 /* Check for sub msp,msp,<reg>. */
d0b04c6a
SG
263 if ((insn & 0xffffff00) ==
264 (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))
dd3b648e
RP
265 && (insn & 0xff) == reg)
266 {
267 p = q + 4;
268 if (msize != NULL)
269 *msize = msize0;
270 }
271 }
272 }
273
274 done:
1ab3bf1b 275 if (msymbol != NULL)
dd3b648e
RP
276 {
277 if (mi == 0)
278 {
279 /* Add a new cache entry. */
280 mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
07df4831 281 msymbol -> info = (char *)mi;
dd3b648e
RP
282 mi->rsize_valid = 0;
283 mi->msize_valid = 0;
284 mi->mfp_valid = 0;
285 }
286 /* else, cache entry exists, but info is incomplete. */
287 mi->pc = p;
288 if (rsize != NULL)
289 {
290 mi->rsize = *rsize;
291 mi->rsize_valid = 1;
292 }
293 if (msize != NULL)
294 {
295 mi->msize = *msize;
296 mi->msize_valid = 1;
297 }
298 if (mfp_used != NULL)
299 {
300 mi->mfp_used = *mfp_used;
301 mi->mfp_valid = 1;
302 }
303 }
304 return p;
305}
306
307/* Advance PC across any function entry prologue instructions
308 to reach some "real" code. */
309
310CORE_ADDR
311skip_prologue (pc)
312 CORE_ADDR pc;
313{
314 return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL,
315 (int *)NULL);
316}
d0b04c6a
SG
317/*
318 * Examine the one or two word tag at the beginning of a function.
319 * The tag word is expect to be at 'p', if it is not there, we fail
320 * by returning 0. The documentation for the tag word was taken from
321 * page 7-15 of the 29050 User's Manual. We are assuming that the
322 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
323 * convention today (1/15/92).
324 * msize is return in bytes.
325 */
326static int /* 0/1 - failure/success of finding the tag word */
327examine_tag(p, is_trans, argcount, msize, mfp_used)
328 CORE_ADDR p;
329 int *is_trans;
330 int *argcount;
331 unsigned *msize;
332 int *mfp_used;
333{
334 unsigned int tag1, tag2;
335
336 tag1 = read_memory_integer (p, 4);
946f014b 337 if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
d0b04c6a
SG
338 return 0;
339 if (tag1 & (1<<23)) /* A two word tag */
340 {
341 tag2 = read_memory_integer (p+4, 4);
342 if (msize)
343 *msize = tag2;
344 }
345 else /* A one word tag */
346 {
347 if (msize)
348 *msize = tag1 & 0x7ff;
349 }
350 if (is_trans)
351 *is_trans = ((tag1 & (1<<21)) ? 1 : 0);
352 if (argcount)
353 *argcount = (tag1 >> 16) & 0x1f;
354 if (mfp_used)
355 *mfp_used = ((tag1 & (1<<22)) ? 1 : 0);
356 return(1);
357}
dd3b648e
RP
358
359/* Initialize the frame. In addition to setting "extra" frame info,
360 we also set ->frame because we use it in a nonstandard way, and ->pc
361 because we need to know it to get the other stuff. See the diagram
d7d35f00 362 of stacks and the frame cache in tm-a29k.h for more detail. */
dd3b648e
RP
363static void
364init_frame_info (innermost_frame, fci)
365 int innermost_frame;
366 struct frame_info *fci;
367{
368 CORE_ADDR p;
369 long insn;
370 unsigned rsize;
371 unsigned msize;
d0b04c6a 372 int mfp_used, trans;
dd3b648e
RP
373 struct symbol *func;
374
375 p = fci->pc;
376
377 if (innermost_frame)
378 fci->frame = read_register (GR1_REGNUM);
379 else
23a8e291 380 fci->frame = fci->next->frame + fci->next->rsize;
dd3b648e
RP
381
382#if CALL_DUMMY_LOCATION == ON_STACK
383 This wont work;
384#else
385 if (PC_IN_CALL_DUMMY (p, 0, 0))
386#endif
387 {
388 fci->rsize = DUMMY_FRAME_RSIZE;
389 /* This doesn't matter since we never try to get locals or args
390 from a dummy frame. */
391 fci->msize = 0;
392 /* Dummy frames always use a memory frame pointer. */
393 fci->saved_msp =
394 read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4);
d0b04c6a 395 fci->flags |= (TRANSPARENT|MFP_USED);
dd3b648e
RP
396 return;
397 }
398
399 func = find_pc_function (p);
400 if (func != NULL)
401 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
402 else
403 {
404 /* Search backward to find the trace-back tag. However,
405 do not trace back beyond the start of the text segment
406 (just as a sanity check to avoid going into never-never land). */
407 while (p >= text_start
946f014b 408 && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
dd3b648e
RP
409 p -= 4;
410
411 if (p < text_start)
412 {
413 /* Couldn't find the trace-back tag.
414 Something strange is going on. */
415 fci->saved_msp = 0;
416 fci->rsize = 0;
417 fci->msize = 0;
d0b04c6a 418 fci->flags = TRANSPARENT;
dd3b648e
RP
419 return;
420 }
421 else
422 /* Advance to the first word of the function, i.e. the word
423 after the trace-back tag. */
424 p += 4;
425 }
d0b04c6a
SG
426 /* We've found the start of the function.
427 * Try looking for a tag word that indicates whether there is a
428 * memory frame pointer and what the memory stack allocation is.
429 * If one doesn't exist, try using a more exhaustive search of
430 * the prologue. For now we don't care about the argcount or
431 * whether or not the routine is transparent.
432 */
433 if (examine_tag(p-4,&trans,NULL,&msize,&mfp_used)) /* Found a good tag */
434 examine_prologue (p, &rsize, 0, 0);
435 else /* No tag try prologue */
436 examine_prologue (p, &rsize, &msize, &mfp_used);
437
dd3b648e
RP
438 fci->rsize = rsize;
439 fci->msize = msize;
d0b04c6a
SG
440 fci->flags = 0;
441 if (mfp_used)
442 fci->flags |= MFP_USED;
443 if (trans)
444 fci->flags |= TRANSPARENT;
dd3b648e
RP
445 if (innermost_frame)
446 {
447 fci->saved_msp = read_register (MSP_REGNUM) + msize;
448 }
449 else
450 {
451 if (mfp_used)
d0b04c6a
SG
452 fci->saved_msp =
453 read_register_stack_integer (fci->frame + rsize - 4, 4);
dd3b648e 454 else
d0b04c6a 455 fci->saved_msp = fci->next->saved_msp + msize;
dd3b648e
RP
456 }
457}
458
459void
460init_extra_frame_info (fci)
461 struct frame_info *fci;
462{
463 if (fci->next == 0)
464 /* Assume innermost frame. May produce strange results for "info frame"
465 but there isn't any way to tell the difference. */
466 init_frame_info (1, fci);
17f7e032
JG
467 else {
468 /* We're in get_prev_frame_info.
469 Take care of everything in init_frame_pc. */
470 ;
471 }
dd3b648e
RP
472}
473
474void
475init_frame_pc (fromleaf, fci)
476 int fromleaf;
477 struct frame_info *fci;
478{
479 fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) :
480 fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ());
d0b04c6a 481 init_frame_info (fromleaf, fci);
dd3b648e
RP
482}
483\f
484/* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
485 offsets being relative to the memory stack pointer (high C) or
486 saved_msp (gcc). */
487
488CORE_ADDR
489frame_locals_address (fi)
490 struct frame_info *fi;
491{
d0b04c6a 492 if (fi->flags & MFP_USED)
dd3b648e
RP
493 return fi->saved_msp;
494 else
495 return fi->saved_msp - fi->msize;
496}
497\f
498/* Routines for reading the register stack. The caller gets to treat
499 the register stack as a uniform stack in memory, from address $gr1
500 straight through $rfb and beyond. */
501
502/* Analogous to read_memory except the length is understood to be 4.
503 Also, myaddr can be NULL (meaning don't bother to read), and
504 if actual_mem_addr is non-NULL, store there the address that it
505 was fetched from (or if from a register the offset within
506 registers). Set *LVAL to lval_memory or lval_register, depending
4d50f90a
JK
507 on where it came from. The contents written into MYADDR are in
508 target format. */
dd3b648e
RP
509void
510read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
511 CORE_ADDR memaddr;
512 char *myaddr;
513 CORE_ADDR *actual_mem_addr;
514 enum lval_type *lval;
515{
516 long rfb = read_register (RFB_REGNUM);
517 long rsp = read_register (RSP_REGNUM);
d0b04c6a 518
d0b04c6a 519 /* If we don't do this 'info register' stops in the middle. */
8f86a4e4 520 if (memaddr >= rstack_high_address)
d0b04c6a 521 {
4d50f90a
JK
522 /* a bogus value */
523 char val[] = {~0, ~0, ~0, ~0};
d0b04c6a
SG
524 /* It's in a local register, but off the end of the stack. */
525 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
526 if (myaddr != NULL)
4d50f90a
JK
527 {
528 /* Provide bogusness */
529 memcpy (myaddr, val, 4);
530 }
531 supply_register(regnum, val); /* More bogusness */
d0b04c6a
SG
532 if (lval != NULL)
533 *lval = lval_register;
534 if (actual_mem_addr != NULL)
535 *actual_mem_addr = REGISTER_BYTE (regnum);
536 }
946f014b
JG
537 /* If it's in the part of the register stack that's in real registers,
538 get the value from the registers. If it's anywhere else in memory
539 (e.g. in another thread's saved stack), skip this part and get
540 it from real live memory. */
541 else if (memaddr < rfb && memaddr >= rsp)
dd3b648e
RP
542 {
543 /* It's in a register. */
544 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
946f014b 545 if (regnum > LR0_REGNUM + 127)
dd3b648e
RP
546 error ("Attempt to read register stack out of range.");
547 if (myaddr != NULL)
548 read_register_gen (regnum, myaddr);
549 if (lval != NULL)
550 *lval = lval_register;
551 if (actual_mem_addr != NULL)
552 *actual_mem_addr = REGISTER_BYTE (regnum);
553 }
554 else
555 {
556 /* It's in the memory portion of the register stack. */
d0b04c6a 557 if (myaddr != NULL)
4d50f90a 558 read_memory (memaddr, myaddr, 4);
dd3b648e
RP
559 if (lval != NULL)
560 *lval = lval_memory;
561 if (actual_mem_addr != NULL)
17f7e032 562 *actual_mem_addr = memaddr;
dd3b648e
RP
563 }
564}
565
566/* Analogous to read_memory_integer
567 except the length is understood to be 4. */
568long
569read_register_stack_integer (memaddr, len)
570 CORE_ADDR memaddr;
571 int len;
572{
573 long buf;
574 read_register_stack (memaddr, &buf, NULL, NULL);
575 SWAP_TARGET_AND_HOST (&buf, 4);
576 return buf;
577}
578
579/* Copy 4 bytes from GDB memory at MYADDR into inferior memory
580 at MEMADDR and put the actual address written into in
581 *ACTUAL_MEM_ADDR. */
582static void
583write_register_stack (memaddr, myaddr, actual_mem_addr)
584 CORE_ADDR memaddr;
585 char *myaddr;
586 CORE_ADDR *actual_mem_addr;
587{
588 long rfb = read_register (RFB_REGNUM);
589 long rsp = read_register (RSP_REGNUM);
d0b04c6a 590 /* If we don't do this 'info register' stops in the middle. */
8f86a4e4 591 if (memaddr >= rstack_high_address)
d0b04c6a
SG
592 {
593 /* It's in a register, but off the end of the stack. */
594 if (actual_mem_addr != NULL)
b9163d1a 595 *actual_mem_addr = 0;
d0b04c6a 596 }
8f86a4e4 597 else if (memaddr < rfb)
dd3b648e
RP
598 {
599 /* It's in a register. */
600 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
601 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
602 error ("Attempt to read register stack out of range.");
603 if (myaddr != NULL)
604 write_register (regnum, *(long *)myaddr);
605 if (actual_mem_addr != NULL)
b9163d1a 606 *actual_mem_addr = 0;
dd3b648e
RP
607 }
608 else
609 {
610 /* It's in the memory portion of the register stack. */
611 if (myaddr != NULL)
612 write_memory (memaddr, myaddr, 4);
613 if (actual_mem_addr != NULL)
17f7e032 614 *actual_mem_addr = memaddr;
dd3b648e
RP
615 }
616}
617\f
618/* Find register number REGNUM relative to FRAME and put its
619 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
620 was optimized out (and thus can't be fetched). If the variable
621 was fetched from memory, set *ADDRP to where it was fetched from,
622 otherwise it was fetched from a register.
623
624 The argument RAW_BUFFER must point to aligned memory. */
625void
626get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
627 char *raw_buffer;
628 int *optimized;
629 CORE_ADDR *addrp;
630 FRAME frame;
631 int regnum;
632 enum lval_type *lvalp;
633{
d0b04c6a 634 struct frame_info *fi;
dd3b648e
RP
635 CORE_ADDR addr;
636 enum lval_type lval;
637
d0b04c6a
SG
638 if (frame == 0)
639 return;
640
641 fi = get_frame_info (frame);
642
dd3b648e
RP
643 /* Once something has a register number, it doesn't get optimized out. */
644 if (optimized != NULL)
645 *optimized = 0;
646 if (regnum == RSP_REGNUM)
647 {
648 if (raw_buffer != NULL)
4d50f90a
JK
649 {
650 *(CORE_ADDR *)raw_buffer = fi->frame;
651 /* Put it back in target byte order. */
652 SWAP_TARGET_AND_HOST (raw_buffer, sizeof (CORE_ADDR));
653 }
dd3b648e
RP
654 if (lvalp != NULL)
655 *lvalp = not_lval;
656 return;
657 }
658 else if (regnum == PC_REGNUM)
659 {
660 if (raw_buffer != NULL)
4d50f90a
JK
661 {
662 *(CORE_ADDR *)raw_buffer = fi->pc;
663 /* Put it back in target byte order. */
664 SWAP_TARGET_AND_HOST (raw_buffer, sizeof (CORE_ADDR));
665 }
dd3b648e
RP
666
667 /* Not sure we have to do this. */
668 if (lvalp != NULL)
669 *lvalp = not_lval;
670
671 return;
672 }
673 else if (regnum == MSP_REGNUM)
674 {
675 if (raw_buffer != NULL)
676 {
677 if (fi->next != NULL)
4d50f90a
JK
678 {
679 *(CORE_ADDR *)raw_buffer = fi->next->saved_msp;
680 /* Put it back in target byte order. */
681 SWAP_TARGET_AND_HOST (raw_buffer, sizeof (CORE_ADDR));
682 }
dd3b648e 683 else
4d50f90a 684 read_register_gen (MSP_REGNUM, raw_buffer);
dd3b648e
RP
685 }
686 /* The value may have been computed, not fetched. */
687 if (lvalp != NULL)
688 *lvalp = not_lval;
689 return;
690 }
691 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
692 {
693 /* These registers are not saved over procedure calls,
694 so just print out the current values. */
695 if (raw_buffer != NULL)
4d50f90a 696 read_register_gen (regnum, raw_buffer);
dd3b648e
RP
697 if (lvalp != NULL)
698 *lvalp = lval_register;
699 if (addrp != NULL)
700 *addrp = REGISTER_BYTE (regnum);
701 return;
702 }
703
704 addr = fi->frame + (regnum - LR0_REGNUM) * 4;
705 if (raw_buffer != NULL)
706 read_register_stack (addr, raw_buffer, &addr, &lval);
707 if (lvalp != NULL)
708 *lvalp = lval;
709 if (addrp != NULL)
710 *addrp = addr;
711}
712\f
d0b04c6a 713
dd3b648e
RP
714/* Discard from the stack the innermost frame,
715 restoring all saved registers. */
716
717void
718pop_frame ()
719{
720 FRAME frame = get_current_frame ();
721 struct frame_info *fi = get_frame_info (frame);
722 CORE_ADDR rfb = read_register (RFB_REGNUM);
723 CORE_ADDR gr1 = fi->frame + fi->rsize;
724 CORE_ADDR lr1;
dd3b648e
RP
725 int i;
726
727 /* If popping a dummy frame, need to restore registers. */
728 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
729 read_register (SP_REGNUM),
730 FRAME_FP (fi)))
731 {
d0b04c6a 732 int lrnum = LR0_REGNUM + DUMMY_ARG/4;
dd3b648e 733 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
d0b04c6a
SG
734 write_register (SR_REGNUM (i + 128),read_register (lrnum++));
735 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
736 write_register (SR_REGNUM(i+160), read_register (lrnum++));
6093e5b0 737 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
d0b04c6a
SG
738 write_register (RETURN_REGNUM + i, read_register (lrnum++));
739 /* Restore the PCs. */
740 write_register(PC_REGNUM, read_register (lrnum++));
741 write_register(NPC_REGNUM, read_register (lrnum));
dd3b648e
RP
742 }
743
744 /* Restore the memory stack pointer. */
745 write_register (MSP_REGNUM, fi->saved_msp);
746 /* Restore the register stack pointer. */
747 write_register (GR1_REGNUM, gr1);
748 /* Check whether we need to fill registers. */
749 lr1 = read_register (LR0_REGNUM + 1);
750 if (lr1 > rfb)
751 {
752 /* Fill. */
753 int num_bytes = lr1 - rfb;
754 int i;
755 long word;
756 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
757 write_register (RFB_REGNUM, lr1);
758 for (i = 0; i < num_bytes; i += 4)
759 {
760 /* Note: word is in host byte order. */
761 word = read_memory_integer (rfb + i, 4);
946f014b 762 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
dd3b648e
RP
763 }
764 }
dd3b648e
RP
765 flush_cached_frames ();
766 set_current_frame (create_new_frame (0, read_pc()));
767}
768
769/* Push an empty stack frame, to record the current PC, etc. */
770
771void
772push_dummy_frame ()
773{
774 long w;
775 CORE_ADDR rab, gr1;
776 CORE_ADDR msp = read_register (MSP_REGNUM);
d0b04c6a 777 int lrnum, i, saved_lr0;
dd3b648e 778
dd3b648e 779
d0b04c6a 780 /* Allocate the new frame. */
dd3b648e
RP
781 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
782 write_register (GR1_REGNUM, gr1);
783
784 rab = read_register (RAB_REGNUM);
785 if (gr1 < rab)
786 {
787 /* We need to spill registers. */
788 int num_bytes = rab - gr1;
789 CORE_ADDR rfb = read_register (RFB_REGNUM);
790 int i;
791 long word;
792
793 write_register (RFB_REGNUM, rfb - num_bytes);
794 write_register (RAB_REGNUM, gr1);
795 for (i = 0; i < num_bytes; i += 4)
796 {
797 /* Note: word is in target byte order. */
b9163d1a
SG
798 read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
799 write_memory (rfb - num_bytes + i, (char *) &word, 4);
dd3b648e
RP
800 }
801 }
802
803 /* There are no arguments in to the dummy frame, so we don't need
804 more than rsize plus the return address and lr1. */
805 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
806
807 /* Set the memory frame pointer. */
808 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
809
810 /* Allocate arg_slop. */
811 write_register (MSP_REGNUM, msp - 16 * 4);
812
813 /* Save registers. */
d0b04c6a 814 lrnum = LR0_REGNUM + DUMMY_ARG/4;
dd3b648e 815 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
d0b04c6a
SG
816 write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
817 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
818 write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
6093e5b0 819 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
d0b04c6a
SG
820 write_register (lrnum++, read_register (RETURN_REGNUM + i));
821 /* Save the PCs. */
822 write_register (lrnum++, read_register (PC_REGNUM));
823 write_register (lrnum, read_register (NPC_REGNUM));
824}
825
946f014b 826
d0b04c6a
SG
827void
828_initialize_29k()
829{
34517ebc
JG
830 extern CORE_ADDR text_end;
831
8f86a4e4
JG
832 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
833 add_show_from_set
834 (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
835 (char *)&rstack_high_address,
836 "Set top address in memory of the register stack.\n\
837Attempts to access registers saved above this address will be ignored\n\
838or will produce the value -1.", &setlist),
839 &showlist);
34517ebc
JG
840
841 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
842 add_show_from_set
843 (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
844 (char *)&text_end,
19327ea5
JG
845"Set address in memory where small amounts of RAM can be used\n\
846when making function calls into the inferior.", &setlist),
34517ebc 847 &showlist);
8f86a4e4 848}
This page took 0.12822 seconds and 4 git commands to generate.