gdb/
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
14f9c5c9 60
ccefe4c4 61#include "psymtab.h"
40bc484c 62#include "value.h"
956a9fb9 63#include "mi/mi-common.h"
ccefe4c4 64
4c4b4cd2 65/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 66 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
67 Copied from valarith.c. */
68
69#ifndef TRUNCATION_TOWARDS_ZERO
70#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71#endif
72
d2e4a39e 73static struct type *desc_base_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct type *desc_bounds_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct value *desc_bounds (struct value *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 82
556bdfd4 83static struct type *desc_data_target_type (struct type *);
14f9c5c9 84
d2e4a39e 85static struct value *desc_data (struct value *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 90
d2e4a39e 91static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static struct type *desc_index_type (struct type *, int);
14f9c5c9 98
d2e4a39e 99static int desc_arity (struct type *);
14f9c5c9 100
d2e4a39e 101static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 102
d2e4a39e 103static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 104
40658b94
PH
105static int full_match (const char *, const char *);
106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
76a01679 110 struct block *, const char *,
2570f2b7 111 domain_enum, struct objfile *, int);
14f9c5c9 112
4c4b4cd2 113static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 114
76a01679 115static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 116 struct block *);
14f9c5c9 117
4c4b4cd2
PH
118static int num_defns_collected (struct obstack *);
119
120static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 121
4c4b4cd2 122static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 123 struct type *);
14f9c5c9 124
d2e4a39e 125static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 126 struct symbol *, struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
4c4b4cd2
PH
130static char *ada_op_name (enum exp_opcode);
131
132static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 133
d2e4a39e 134static int numeric_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int integer_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int scalar_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int discrete_type_p (struct type *);
14f9c5c9 141
aeb5907d
JB
142static enum ada_renaming_category parse_old_style_renaming (struct type *,
143 const char **,
144 int *,
145 const char **);
146
147static struct symbol *find_old_style_renaming_symbol (const char *,
148 struct block *);
149
4c4b4cd2 150static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 151 int, int, int *);
4c4b4cd2 152
d2e4a39e 153static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 154
b4ba55a1
JB
155static struct type *ada_find_parallel_type_with_name (struct type *,
156 const char *);
157
d2e4a39e 158static int is_dynamic_field (struct type *, int);
14f9c5c9 159
10a2c479 160static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 161 const gdb_byte *,
4c4b4cd2
PH
162 CORE_ADDR, struct value *);
163
164static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 165
28c85d6c 166static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 167
d2e4a39e 168static struct type *to_static_fixed_type (struct type *);
f192137b 169static struct type *static_unwrap_type (struct type *type);
14f9c5c9 170
d2e4a39e 171static struct value *unwrap_value (struct value *);
14f9c5c9 172
ad82864c 173static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 174
ad82864c 175static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 176
ad82864c
JB
177static long decode_packed_array_bitsize (struct type *);
178
179static struct value *decode_constrained_packed_array (struct value *);
180
181static int ada_is_packed_array_type (struct type *);
182
183static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 184
d2e4a39e 185static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 186 struct value **);
14f9c5c9 187
50810684 188static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 189
4c4b4cd2
PH
190static struct value *coerce_unspec_val_to_type (struct value *,
191 struct type *);
14f9c5c9 192
d2e4a39e 193static struct value *get_var_value (char *, char *);
14f9c5c9 194
d2e4a39e 195static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 196
d2e4a39e 197static int equiv_types (struct type *, struct type *);
14f9c5c9 198
d2e4a39e 199static int is_name_suffix (const char *);
14f9c5c9 200
73589123
PH
201static int advance_wild_match (const char **, const char *, int);
202
203static int wild_match (const char *, const char *);
14f9c5c9 204
d2e4a39e 205static struct value *ada_coerce_ref (struct value *);
14f9c5c9 206
4c4b4cd2
PH
207static LONGEST pos_atr (struct value *);
208
3cb382c9 209static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 210
d2e4a39e 211static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 212
4c4b4cd2
PH
213static struct symbol *standard_lookup (const char *, const struct block *,
214 domain_enum);
14f9c5c9 215
4c4b4cd2
PH
216static struct value *ada_search_struct_field (char *, struct value *, int,
217 struct type *);
218
219static struct value *ada_value_primitive_field (struct value *, int, int,
220 struct type *);
221
76a01679 222static int find_struct_field (char *, struct type *, int,
52ce6436 223 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
224
225static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226 struct value *);
227
4c4b4cd2
PH
228static int ada_resolve_function (struct ada_symbol_info *, int,
229 struct value **, int, const char *,
230 struct type *);
231
4c4b4cd2
PH
232static int ada_is_direct_array_type (struct type *);
233
72d5681a
PH
234static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
714e53ab
PH
236
237static void check_size (const struct type *);
52ce6436
PH
238
239static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
243 struct expression *,
244 int *, enum noside);
52ce6436
PH
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
4c4b4cd2
PH
270\f
271
76a01679 272
4c4b4cd2 273/* Maximum-sized dynamic type. */
14f9c5c9
AS
274static unsigned int varsize_limit;
275
4c4b4cd2
PH
276/* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278static char *ada_completer_word_break_characters =
279#ifdef VMS
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281#else
14f9c5c9 282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 283#endif
14f9c5c9 284
4c4b4cd2 285/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 286static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 287 = "__gnat_ada_main_program_name";
14f9c5c9 288
4c4b4cd2
PH
289/* Limit on the number of warnings to raise per expression evaluation. */
290static int warning_limit = 2;
291
292/* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294static int warnings_issued = 0;
295
296static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298};
299
300static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302};
303
304/* Space for allocating results of ada_lookup_symbol_list. */
305static struct obstack symbol_list_obstack;
306
e802dbe0
JB
307 /* Inferior-specific data. */
308
309/* Per-inferior data for this module. */
310
311struct ada_inferior_data
312{
313 /* The ada__tags__type_specific_data type, which is used when decoding
314 tagged types. With older versions of GNAT, this type was directly
315 accessible through a component ("tsd") in the object tag. But this
316 is no longer the case, so we cache it for each inferior. */
317 struct type *tsd_type;
318};
319
320/* Our key to this module's inferior data. */
321static const struct inferior_data *ada_inferior_data;
322
323/* A cleanup routine for our inferior data. */
324static void
325ada_inferior_data_cleanup (struct inferior *inf, void *arg)
326{
327 struct ada_inferior_data *data;
328
329 data = inferior_data (inf, ada_inferior_data);
330 if (data != NULL)
331 xfree (data);
332}
333
334/* Return our inferior data for the given inferior (INF).
335
336 This function always returns a valid pointer to an allocated
337 ada_inferior_data structure. If INF's inferior data has not
338 been previously set, this functions creates a new one with all
339 fields set to zero, sets INF's inferior to it, and then returns
340 a pointer to that newly allocated ada_inferior_data. */
341
342static struct ada_inferior_data *
343get_ada_inferior_data (struct inferior *inf)
344{
345 struct ada_inferior_data *data;
346
347 data = inferior_data (inf, ada_inferior_data);
348 if (data == NULL)
349 {
350 data = XZALLOC (struct ada_inferior_data);
351 set_inferior_data (inf, ada_inferior_data, data);
352 }
353
354 return data;
355}
356
357/* Perform all necessary cleanups regarding our module's inferior data
358 that is required after the inferior INF just exited. */
359
360static void
361ada_inferior_exit (struct inferior *inf)
362{
363 ada_inferior_data_cleanup (inf, NULL);
364 set_inferior_data (inf, ada_inferior_data, NULL);
365}
366
4c4b4cd2
PH
367 /* Utilities */
368
720d1a40 369/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 370 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
371
372 Normally, we really expect a typedef type to only have 1 typedef layer.
373 In other words, we really expect the target type of a typedef type to be
374 a non-typedef type. This is particularly true for Ada units, because
375 the language does not have a typedef vs not-typedef distinction.
376 In that respect, the Ada compiler has been trying to eliminate as many
377 typedef definitions in the debugging information, since they generally
378 do not bring any extra information (we still use typedef under certain
379 circumstances related mostly to the GNAT encoding).
380
381 Unfortunately, we have seen situations where the debugging information
382 generated by the compiler leads to such multiple typedef layers. For
383 instance, consider the following example with stabs:
384
385 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
386 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
387
388 This is an error in the debugging information which causes type
389 pck__float_array___XUP to be defined twice, and the second time,
390 it is defined as a typedef of a typedef.
391
392 This is on the fringe of legality as far as debugging information is
393 concerned, and certainly unexpected. But it is easy to handle these
394 situations correctly, so we can afford to be lenient in this case. */
395
396static struct type *
397ada_typedef_target_type (struct type *type)
398{
399 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
400 type = TYPE_TARGET_TYPE (type);
401 return type;
402}
403
41d27058
JB
404/* Given DECODED_NAME a string holding a symbol name in its
405 decoded form (ie using the Ada dotted notation), returns
406 its unqualified name. */
407
408static const char *
409ada_unqualified_name (const char *decoded_name)
410{
411 const char *result = strrchr (decoded_name, '.');
412
413 if (result != NULL)
414 result++; /* Skip the dot... */
415 else
416 result = decoded_name;
417
418 return result;
419}
420
421/* Return a string starting with '<', followed by STR, and '>'.
422 The result is good until the next call. */
423
424static char *
425add_angle_brackets (const char *str)
426{
427 static char *result = NULL;
428
429 xfree (result);
88c15c34 430 result = xstrprintf ("<%s>", str);
41d27058
JB
431 return result;
432}
96d887e8 433
4c4b4cd2
PH
434static char *
435ada_get_gdb_completer_word_break_characters (void)
436{
437 return ada_completer_word_break_characters;
438}
439
e79af960
JB
440/* Print an array element index using the Ada syntax. */
441
442static void
443ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 444 const struct value_print_options *options)
e79af960 445{
79a45b7d 446 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
447 fprintf_filtered (stream, " => ");
448}
449
f27cf670 450/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 451 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 452 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 453
f27cf670
AS
454void *
455grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 456{
d2e4a39e
AS
457 if (*size < min_size)
458 {
459 *size *= 2;
460 if (*size < min_size)
4c4b4cd2 461 *size = min_size;
f27cf670 462 vect = xrealloc (vect, *size * element_size);
d2e4a39e 463 }
f27cf670 464 return vect;
14f9c5c9
AS
465}
466
467/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 468 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
469
470static int
ebf56fd3 471field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
472{
473 int len = strlen (target);
5b4ee69b 474
d2e4a39e 475 return
4c4b4cd2
PH
476 (strncmp (field_name, target, len) == 0
477 && (field_name[len] == '\0'
478 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
479 && strcmp (field_name + strlen (field_name) - 6,
480 "___XVN") != 0)));
14f9c5c9
AS
481}
482
483
872c8b51
JB
484/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
485 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
486 and return its index. This function also handles fields whose name
487 have ___ suffixes because the compiler sometimes alters their name
488 by adding such a suffix to represent fields with certain constraints.
489 If the field could not be found, return a negative number if
490 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
491
492int
493ada_get_field_index (const struct type *type, const char *field_name,
494 int maybe_missing)
495{
496 int fieldno;
872c8b51
JB
497 struct type *struct_type = check_typedef ((struct type *) type);
498
499 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
500 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
501 return fieldno;
502
503 if (!maybe_missing)
323e0a4a 504 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 505 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
506
507 return -1;
508}
509
510/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
511
512int
d2e4a39e 513ada_name_prefix_len (const char *name)
14f9c5c9
AS
514{
515 if (name == NULL)
516 return 0;
d2e4a39e 517 else
14f9c5c9 518 {
d2e4a39e 519 const char *p = strstr (name, "___");
5b4ee69b 520
14f9c5c9 521 if (p == NULL)
4c4b4cd2 522 return strlen (name);
14f9c5c9 523 else
4c4b4cd2 524 return p - name;
14f9c5c9
AS
525 }
526}
527
4c4b4cd2
PH
528/* Return non-zero if SUFFIX is a suffix of STR.
529 Return zero if STR is null. */
530
14f9c5c9 531static int
d2e4a39e 532is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
533{
534 int len1, len2;
5b4ee69b 535
14f9c5c9
AS
536 if (str == NULL)
537 return 0;
538 len1 = strlen (str);
539 len2 = strlen (suffix);
4c4b4cd2 540 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
541}
542
4c4b4cd2
PH
543/* The contents of value VAL, treated as a value of type TYPE. The
544 result is an lval in memory if VAL is. */
14f9c5c9 545
d2e4a39e 546static struct value *
4c4b4cd2 547coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 548{
61ee279c 549 type = ada_check_typedef (type);
df407dfe 550 if (value_type (val) == type)
4c4b4cd2 551 return val;
d2e4a39e 552 else
14f9c5c9 553 {
4c4b4cd2
PH
554 struct value *result;
555
556 /* Make sure that the object size is not unreasonable before
557 trying to allocate some memory for it. */
714e53ab 558 check_size (type);
4c4b4cd2 559
41e8491f
JK
560 if (value_lazy (val)
561 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
562 result = allocate_value_lazy (type);
563 else
564 {
565 result = allocate_value (type);
566 memcpy (value_contents_raw (result), value_contents (val),
567 TYPE_LENGTH (type));
568 }
74bcbdf3 569 set_value_component_location (result, val);
9bbda503
AC
570 set_value_bitsize (result, value_bitsize (val));
571 set_value_bitpos (result, value_bitpos (val));
42ae5230 572 set_value_address (result, value_address (val));
14f9c5c9
AS
573 return result;
574 }
575}
576
fc1a4b47
AC
577static const gdb_byte *
578cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
579{
580 if (valaddr == NULL)
581 return NULL;
582 else
583 return valaddr + offset;
584}
585
586static CORE_ADDR
ebf56fd3 587cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
588{
589 if (address == 0)
590 return 0;
d2e4a39e 591 else
14f9c5c9
AS
592 return address + offset;
593}
594
4c4b4cd2
PH
595/* Issue a warning (as for the definition of warning in utils.c, but
596 with exactly one argument rather than ...), unless the limit on the
597 number of warnings has passed during the evaluation of the current
598 expression. */
a2249542 599
77109804
AC
600/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
601 provided by "complaint". */
a0b31db1 602static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 603
14f9c5c9 604static void
a2249542 605lim_warning (const char *format, ...)
14f9c5c9 606{
a2249542 607 va_list args;
a2249542 608
5b4ee69b 609 va_start (args, format);
4c4b4cd2
PH
610 warnings_issued += 1;
611 if (warnings_issued <= warning_limit)
a2249542
MK
612 vwarning (format, args);
613
614 va_end (args);
4c4b4cd2
PH
615}
616
714e53ab
PH
617/* Issue an error if the size of an object of type T is unreasonable,
618 i.e. if it would be a bad idea to allocate a value of this type in
619 GDB. */
620
621static void
622check_size (const struct type *type)
623{
624 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 625 error (_("object size is larger than varsize-limit"));
714e53ab
PH
626}
627
0963b4bd 628/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 629static LONGEST
c3e5cd34 630max_of_size (int size)
4c4b4cd2 631{
76a01679 632 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 633
76a01679 634 return top_bit | (top_bit - 1);
4c4b4cd2
PH
635}
636
0963b4bd 637/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 638static LONGEST
c3e5cd34 639min_of_size (int size)
4c4b4cd2 640{
c3e5cd34 641 return -max_of_size (size) - 1;
4c4b4cd2
PH
642}
643
0963b4bd 644/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 645static ULONGEST
c3e5cd34 646umax_of_size (int size)
4c4b4cd2 647{
76a01679 648 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 649
76a01679 650 return top_bit | (top_bit - 1);
4c4b4cd2
PH
651}
652
0963b4bd 653/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
654static LONGEST
655max_of_type (struct type *t)
4c4b4cd2 656{
c3e5cd34
PH
657 if (TYPE_UNSIGNED (t))
658 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
659 else
660 return max_of_size (TYPE_LENGTH (t));
661}
662
0963b4bd 663/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
664static LONGEST
665min_of_type (struct type *t)
666{
667 if (TYPE_UNSIGNED (t))
668 return 0;
669 else
670 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
671}
672
673/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
674LONGEST
675ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 676{
76a01679 677 switch (TYPE_CODE (type))
4c4b4cd2
PH
678 {
679 case TYPE_CODE_RANGE:
690cc4eb 680 return TYPE_HIGH_BOUND (type);
4c4b4cd2 681 case TYPE_CODE_ENUM:
690cc4eb
PH
682 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
683 case TYPE_CODE_BOOL:
684 return 1;
685 case TYPE_CODE_CHAR:
76a01679 686 case TYPE_CODE_INT:
690cc4eb 687 return max_of_type (type);
4c4b4cd2 688 default:
43bbcdc2 689 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
690 }
691}
692
693/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
694LONGEST
695ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 696{
76a01679 697 switch (TYPE_CODE (type))
4c4b4cd2
PH
698 {
699 case TYPE_CODE_RANGE:
690cc4eb 700 return TYPE_LOW_BOUND (type);
4c4b4cd2 701 case TYPE_CODE_ENUM:
690cc4eb
PH
702 return TYPE_FIELD_BITPOS (type, 0);
703 case TYPE_CODE_BOOL:
704 return 0;
705 case TYPE_CODE_CHAR:
76a01679 706 case TYPE_CODE_INT:
690cc4eb 707 return min_of_type (type);
4c4b4cd2 708 default:
43bbcdc2 709 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
710 }
711}
712
713/* The identity on non-range types. For range types, the underlying
76a01679 714 non-range scalar type. */
4c4b4cd2
PH
715
716static struct type *
717base_type (struct type *type)
718{
719 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
720 {
76a01679
JB
721 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
722 return type;
4c4b4cd2
PH
723 type = TYPE_TARGET_TYPE (type);
724 }
725 return type;
14f9c5c9 726}
4c4b4cd2 727\f
76a01679 728
4c4b4cd2 729 /* Language Selection */
14f9c5c9
AS
730
731/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 732 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 733
14f9c5c9 734enum language
ccefe4c4 735ada_update_initial_language (enum language lang)
14f9c5c9 736{
d2e4a39e 737 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
738 (struct objfile *) NULL) != NULL)
739 return language_ada;
14f9c5c9
AS
740
741 return lang;
742}
96d887e8
PH
743
744/* If the main procedure is written in Ada, then return its name.
745 The result is good until the next call. Return NULL if the main
746 procedure doesn't appear to be in Ada. */
747
748char *
749ada_main_name (void)
750{
751 struct minimal_symbol *msym;
f9bc20b9 752 static char *main_program_name = NULL;
6c038f32 753
96d887e8
PH
754 /* For Ada, the name of the main procedure is stored in a specific
755 string constant, generated by the binder. Look for that symbol,
756 extract its address, and then read that string. If we didn't find
757 that string, then most probably the main procedure is not written
758 in Ada. */
759 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
760
761 if (msym != NULL)
762 {
f9bc20b9
JB
763 CORE_ADDR main_program_name_addr;
764 int err_code;
765
96d887e8
PH
766 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
767 if (main_program_name_addr == 0)
323e0a4a 768 error (_("Invalid address for Ada main program name."));
96d887e8 769
f9bc20b9
JB
770 xfree (main_program_name);
771 target_read_string (main_program_name_addr, &main_program_name,
772 1024, &err_code);
773
774 if (err_code != 0)
775 return NULL;
96d887e8
PH
776 return main_program_name;
777 }
778
779 /* The main procedure doesn't seem to be in Ada. */
780 return NULL;
781}
14f9c5c9 782\f
4c4b4cd2 783 /* Symbols */
d2e4a39e 784
4c4b4cd2
PH
785/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
786 of NULLs. */
14f9c5c9 787
d2e4a39e
AS
788const struct ada_opname_map ada_opname_table[] = {
789 {"Oadd", "\"+\"", BINOP_ADD},
790 {"Osubtract", "\"-\"", BINOP_SUB},
791 {"Omultiply", "\"*\"", BINOP_MUL},
792 {"Odivide", "\"/\"", BINOP_DIV},
793 {"Omod", "\"mod\"", BINOP_MOD},
794 {"Orem", "\"rem\"", BINOP_REM},
795 {"Oexpon", "\"**\"", BINOP_EXP},
796 {"Olt", "\"<\"", BINOP_LESS},
797 {"Ole", "\"<=\"", BINOP_LEQ},
798 {"Ogt", "\">\"", BINOP_GTR},
799 {"Oge", "\">=\"", BINOP_GEQ},
800 {"Oeq", "\"=\"", BINOP_EQUAL},
801 {"One", "\"/=\"", BINOP_NOTEQUAL},
802 {"Oand", "\"and\"", BINOP_BITWISE_AND},
803 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
804 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
805 {"Oconcat", "\"&\"", BINOP_CONCAT},
806 {"Oabs", "\"abs\"", UNOP_ABS},
807 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
808 {"Oadd", "\"+\"", UNOP_PLUS},
809 {"Osubtract", "\"-\"", UNOP_NEG},
810 {NULL, NULL}
14f9c5c9
AS
811};
812
4c4b4cd2
PH
813/* The "encoded" form of DECODED, according to GNAT conventions.
814 The result is valid until the next call to ada_encode. */
815
14f9c5c9 816char *
4c4b4cd2 817ada_encode (const char *decoded)
14f9c5c9 818{
4c4b4cd2
PH
819 static char *encoding_buffer = NULL;
820 static size_t encoding_buffer_size = 0;
d2e4a39e 821 const char *p;
14f9c5c9 822 int k;
d2e4a39e 823
4c4b4cd2 824 if (decoded == NULL)
14f9c5c9
AS
825 return NULL;
826
4c4b4cd2
PH
827 GROW_VECT (encoding_buffer, encoding_buffer_size,
828 2 * strlen (decoded) + 10);
14f9c5c9
AS
829
830 k = 0;
4c4b4cd2 831 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 832 {
cdc7bb92 833 if (*p == '.')
4c4b4cd2
PH
834 {
835 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
836 k += 2;
837 }
14f9c5c9 838 else if (*p == '"')
4c4b4cd2
PH
839 {
840 const struct ada_opname_map *mapping;
841
842 for (mapping = ada_opname_table;
1265e4aa
JB
843 mapping->encoded != NULL
844 && strncmp (mapping->decoded, p,
845 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
846 ;
847 if (mapping->encoded == NULL)
323e0a4a 848 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
849 strcpy (encoding_buffer + k, mapping->encoded);
850 k += strlen (mapping->encoded);
851 break;
852 }
d2e4a39e 853 else
4c4b4cd2
PH
854 {
855 encoding_buffer[k] = *p;
856 k += 1;
857 }
14f9c5c9
AS
858 }
859
4c4b4cd2
PH
860 encoding_buffer[k] = '\0';
861 return encoding_buffer;
14f9c5c9
AS
862}
863
864/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
865 quotes, unfolded, but with the quotes stripped away. Result good
866 to next call. */
867
d2e4a39e
AS
868char *
869ada_fold_name (const char *name)
14f9c5c9 870{
d2e4a39e 871 static char *fold_buffer = NULL;
14f9c5c9
AS
872 static size_t fold_buffer_size = 0;
873
874 int len = strlen (name);
d2e4a39e 875 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
876
877 if (name[0] == '\'')
878 {
d2e4a39e
AS
879 strncpy (fold_buffer, name + 1, len - 2);
880 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
881 }
882 else
883 {
884 int i;
5b4ee69b 885
14f9c5c9 886 for (i = 0; i <= len; i += 1)
4c4b4cd2 887 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
888 }
889
890 return fold_buffer;
891}
892
529cad9c
PH
893/* Return nonzero if C is either a digit or a lowercase alphabet character. */
894
895static int
896is_lower_alphanum (const char c)
897{
898 return (isdigit (c) || (isalpha (c) && islower (c)));
899}
900
29480c32
JB
901/* Remove either of these suffixes:
902 . .{DIGIT}+
903 . ${DIGIT}+
904 . ___{DIGIT}+
905 . __{DIGIT}+.
906 These are suffixes introduced by the compiler for entities such as
907 nested subprogram for instance, in order to avoid name clashes.
908 They do not serve any purpose for the debugger. */
909
910static void
911ada_remove_trailing_digits (const char *encoded, int *len)
912{
913 if (*len > 1 && isdigit (encoded[*len - 1]))
914 {
915 int i = *len - 2;
5b4ee69b 916
29480c32
JB
917 while (i > 0 && isdigit (encoded[i]))
918 i--;
919 if (i >= 0 && encoded[i] == '.')
920 *len = i;
921 else if (i >= 0 && encoded[i] == '$')
922 *len = i;
923 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
924 *len = i - 2;
925 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
926 *len = i - 1;
927 }
928}
929
930/* Remove the suffix introduced by the compiler for protected object
931 subprograms. */
932
933static void
934ada_remove_po_subprogram_suffix (const char *encoded, int *len)
935{
936 /* Remove trailing N. */
937
938 /* Protected entry subprograms are broken into two
939 separate subprograms: The first one is unprotected, and has
940 a 'N' suffix; the second is the protected version, and has
0963b4bd 941 the 'P' suffix. The second calls the first one after handling
29480c32
JB
942 the protection. Since the P subprograms are internally generated,
943 we leave these names undecoded, giving the user a clue that this
944 entity is internal. */
945
946 if (*len > 1
947 && encoded[*len - 1] == 'N'
948 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
949 *len = *len - 1;
950}
951
69fadcdf
JB
952/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
953
954static void
955ada_remove_Xbn_suffix (const char *encoded, int *len)
956{
957 int i = *len - 1;
958
959 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
960 i--;
961
962 if (encoded[i] != 'X')
963 return;
964
965 if (i == 0)
966 return;
967
968 if (isalnum (encoded[i-1]))
969 *len = i;
970}
971
29480c32
JB
972/* If ENCODED follows the GNAT entity encoding conventions, then return
973 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
974 replaced by ENCODED.
14f9c5c9 975
4c4b4cd2 976 The resulting string is valid until the next call of ada_decode.
29480c32 977 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
978 is returned. */
979
980const char *
981ada_decode (const char *encoded)
14f9c5c9
AS
982{
983 int i, j;
984 int len0;
d2e4a39e 985 const char *p;
4c4b4cd2 986 char *decoded;
14f9c5c9 987 int at_start_name;
4c4b4cd2
PH
988 static char *decoding_buffer = NULL;
989 static size_t decoding_buffer_size = 0;
d2e4a39e 990
29480c32
JB
991 /* The name of the Ada main procedure starts with "_ada_".
992 This prefix is not part of the decoded name, so skip this part
993 if we see this prefix. */
4c4b4cd2
PH
994 if (strncmp (encoded, "_ada_", 5) == 0)
995 encoded += 5;
14f9c5c9 996
29480c32
JB
997 /* If the name starts with '_', then it is not a properly encoded
998 name, so do not attempt to decode it. Similarly, if the name
999 starts with '<', the name should not be decoded. */
4c4b4cd2 1000 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1001 goto Suppress;
1002
4c4b4cd2 1003 len0 = strlen (encoded);
4c4b4cd2 1004
29480c32
JB
1005 ada_remove_trailing_digits (encoded, &len0);
1006 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1007
4c4b4cd2
PH
1008 /* Remove the ___X.* suffix if present. Do not forget to verify that
1009 the suffix is located before the current "end" of ENCODED. We want
1010 to avoid re-matching parts of ENCODED that have previously been
1011 marked as discarded (by decrementing LEN0). */
1012 p = strstr (encoded, "___");
1013 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1014 {
1015 if (p[3] == 'X')
4c4b4cd2 1016 len0 = p - encoded;
14f9c5c9 1017 else
4c4b4cd2 1018 goto Suppress;
14f9c5c9 1019 }
4c4b4cd2 1020
29480c32
JB
1021 /* Remove any trailing TKB suffix. It tells us that this symbol
1022 is for the body of a task, but that information does not actually
1023 appear in the decoded name. */
1024
4c4b4cd2 1025 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1026 len0 -= 3;
76a01679 1027
a10967fa
JB
1028 /* Remove any trailing TB suffix. The TB suffix is slightly different
1029 from the TKB suffix because it is used for non-anonymous task
1030 bodies. */
1031
1032 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1033 len0 -= 2;
1034
29480c32
JB
1035 /* Remove trailing "B" suffixes. */
1036 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1037
4c4b4cd2 1038 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1039 len0 -= 1;
1040
4c4b4cd2 1041 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1042
4c4b4cd2
PH
1043 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1044 decoded = decoding_buffer;
14f9c5c9 1045
29480c32
JB
1046 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1047
4c4b4cd2 1048 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1049 {
4c4b4cd2
PH
1050 i = len0 - 2;
1051 while ((i >= 0 && isdigit (encoded[i]))
1052 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1053 i -= 1;
1054 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1055 len0 = i - 1;
1056 else if (encoded[i] == '$')
1057 len0 = i;
d2e4a39e 1058 }
14f9c5c9 1059
29480c32
JB
1060 /* The first few characters that are not alphabetic are not part
1061 of any encoding we use, so we can copy them over verbatim. */
1062
4c4b4cd2
PH
1063 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1064 decoded[j] = encoded[i];
14f9c5c9
AS
1065
1066 at_start_name = 1;
1067 while (i < len0)
1068 {
29480c32 1069 /* Is this a symbol function? */
4c4b4cd2
PH
1070 if (at_start_name && encoded[i] == 'O')
1071 {
1072 int k;
5b4ee69b 1073
4c4b4cd2
PH
1074 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1075 {
1076 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1077 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1078 op_len - 1) == 0)
1079 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1080 {
1081 strcpy (decoded + j, ada_opname_table[k].decoded);
1082 at_start_name = 0;
1083 i += op_len;
1084 j += strlen (ada_opname_table[k].decoded);
1085 break;
1086 }
1087 }
1088 if (ada_opname_table[k].encoded != NULL)
1089 continue;
1090 }
14f9c5c9
AS
1091 at_start_name = 0;
1092
529cad9c
PH
1093 /* Replace "TK__" with "__", which will eventually be translated
1094 into "." (just below). */
1095
4c4b4cd2
PH
1096 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1097 i += 2;
529cad9c 1098
29480c32
JB
1099 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1100 be translated into "." (just below). These are internal names
1101 generated for anonymous blocks inside which our symbol is nested. */
1102
1103 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1104 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1105 && isdigit (encoded [i+4]))
1106 {
1107 int k = i + 5;
1108
1109 while (k < len0 && isdigit (encoded[k]))
1110 k++; /* Skip any extra digit. */
1111
1112 /* Double-check that the "__B_{DIGITS}+" sequence we found
1113 is indeed followed by "__". */
1114 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1115 i = k;
1116 }
1117
529cad9c
PH
1118 /* Remove _E{DIGITS}+[sb] */
1119
1120 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1121 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1122 one implements the actual entry code, and has a suffix following
1123 the convention above; the second one implements the barrier and
1124 uses the same convention as above, except that the 'E' is replaced
1125 by a 'B'.
1126
1127 Just as above, we do not decode the name of barrier functions
1128 to give the user a clue that the code he is debugging has been
1129 internally generated. */
1130
1131 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1132 && isdigit (encoded[i+2]))
1133 {
1134 int k = i + 3;
1135
1136 while (k < len0 && isdigit (encoded[k]))
1137 k++;
1138
1139 if (k < len0
1140 && (encoded[k] == 'b' || encoded[k] == 's'))
1141 {
1142 k++;
1143 /* Just as an extra precaution, make sure that if this
1144 suffix is followed by anything else, it is a '_'.
1145 Otherwise, we matched this sequence by accident. */
1146 if (k == len0
1147 || (k < len0 && encoded[k] == '_'))
1148 i = k;
1149 }
1150 }
1151
1152 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1153 the GNAT front-end in protected object subprograms. */
1154
1155 if (i < len0 + 3
1156 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1157 {
1158 /* Backtrack a bit up until we reach either the begining of
1159 the encoded name, or "__". Make sure that we only find
1160 digits or lowercase characters. */
1161 const char *ptr = encoded + i - 1;
1162
1163 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1164 ptr--;
1165 if (ptr < encoded
1166 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1167 i++;
1168 }
1169
4c4b4cd2
PH
1170 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1171 {
29480c32
JB
1172 /* This is a X[bn]* sequence not separated from the previous
1173 part of the name with a non-alpha-numeric character (in other
1174 words, immediately following an alpha-numeric character), then
1175 verify that it is placed at the end of the encoded name. If
1176 not, then the encoding is not valid and we should abort the
1177 decoding. Otherwise, just skip it, it is used in body-nested
1178 package names. */
4c4b4cd2
PH
1179 do
1180 i += 1;
1181 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1182 if (i < len0)
1183 goto Suppress;
1184 }
cdc7bb92 1185 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1186 {
29480c32 1187 /* Replace '__' by '.'. */
4c4b4cd2
PH
1188 decoded[j] = '.';
1189 at_start_name = 1;
1190 i += 2;
1191 j += 1;
1192 }
14f9c5c9 1193 else
4c4b4cd2 1194 {
29480c32
JB
1195 /* It's a character part of the decoded name, so just copy it
1196 over. */
4c4b4cd2
PH
1197 decoded[j] = encoded[i];
1198 i += 1;
1199 j += 1;
1200 }
14f9c5c9 1201 }
4c4b4cd2 1202 decoded[j] = '\000';
14f9c5c9 1203
29480c32
JB
1204 /* Decoded names should never contain any uppercase character.
1205 Double-check this, and abort the decoding if we find one. */
1206
4c4b4cd2
PH
1207 for (i = 0; decoded[i] != '\0'; i += 1)
1208 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1209 goto Suppress;
1210
4c4b4cd2
PH
1211 if (strcmp (decoded, encoded) == 0)
1212 return encoded;
1213 else
1214 return decoded;
14f9c5c9
AS
1215
1216Suppress:
4c4b4cd2
PH
1217 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1218 decoded = decoding_buffer;
1219 if (encoded[0] == '<')
1220 strcpy (decoded, encoded);
14f9c5c9 1221 else
88c15c34 1222 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1223 return decoded;
1224
1225}
1226
1227/* Table for keeping permanent unique copies of decoded names. Once
1228 allocated, names in this table are never released. While this is a
1229 storage leak, it should not be significant unless there are massive
1230 changes in the set of decoded names in successive versions of a
1231 symbol table loaded during a single session. */
1232static struct htab *decoded_names_store;
1233
1234/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1235 in the language-specific part of GSYMBOL, if it has not been
1236 previously computed. Tries to save the decoded name in the same
1237 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1238 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1239 GSYMBOL).
4c4b4cd2
PH
1240 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1241 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1242 when a decoded name is cached in it. */
4c4b4cd2 1243
76a01679
JB
1244char *
1245ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1246{
76a01679 1247 char **resultp =
afa16725 1248 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1249
4c4b4cd2
PH
1250 if (*resultp == NULL)
1251 {
1252 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1253
714835d5 1254 if (gsymbol->obj_section != NULL)
76a01679 1255 {
714835d5 1256 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1257
714835d5
UW
1258 *resultp = obsavestring (decoded, strlen (decoded),
1259 &objf->objfile_obstack);
76a01679 1260 }
4c4b4cd2 1261 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1262 case, we put the result on the heap. Since we only decode
1263 when needed, we hope this usually does not cause a
1264 significant memory leak (FIXME). */
4c4b4cd2 1265 if (*resultp == NULL)
76a01679
JB
1266 {
1267 char **slot = (char **) htab_find_slot (decoded_names_store,
1268 decoded, INSERT);
5b4ee69b 1269
76a01679
JB
1270 if (*slot == NULL)
1271 *slot = xstrdup (decoded);
1272 *resultp = *slot;
1273 }
4c4b4cd2 1274 }
14f9c5c9 1275
4c4b4cd2
PH
1276 return *resultp;
1277}
76a01679 1278
2c0b251b 1279static char *
76a01679 1280ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1281{
1282 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1283}
1284
1285/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1286 suffixes that encode debugging information or leading _ada_ on
1287 SYM_NAME (see is_name_suffix commentary for the debugging
1288 information that is ignored). If WILD, then NAME need only match a
1289 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1290 either argument is NULL. */
14f9c5c9 1291
2c0b251b 1292static int
40658b94 1293match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1294{
1295 if (sym_name == NULL || name == NULL)
1296 return 0;
1297 else if (wild)
73589123 1298 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1299 else
1300 {
1301 int len_name = strlen (name);
5b4ee69b 1302
4c4b4cd2
PH
1303 return (strncmp (sym_name, name, len_name) == 0
1304 && is_name_suffix (sym_name + len_name))
1305 || (strncmp (sym_name, "_ada_", 5) == 0
1306 && strncmp (sym_name + 5, name, len_name) == 0
1307 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1308 }
14f9c5c9 1309}
14f9c5c9 1310\f
d2e4a39e 1311
4c4b4cd2 1312 /* Arrays */
14f9c5c9 1313
28c85d6c
JB
1314/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1315 generated by the GNAT compiler to describe the index type used
1316 for each dimension of an array, check whether it follows the latest
1317 known encoding. If not, fix it up to conform to the latest encoding.
1318 Otherwise, do nothing. This function also does nothing if
1319 INDEX_DESC_TYPE is NULL.
1320
1321 The GNAT encoding used to describle the array index type evolved a bit.
1322 Initially, the information would be provided through the name of each
1323 field of the structure type only, while the type of these fields was
1324 described as unspecified and irrelevant. The debugger was then expected
1325 to perform a global type lookup using the name of that field in order
1326 to get access to the full index type description. Because these global
1327 lookups can be very expensive, the encoding was later enhanced to make
1328 the global lookup unnecessary by defining the field type as being
1329 the full index type description.
1330
1331 The purpose of this routine is to allow us to support older versions
1332 of the compiler by detecting the use of the older encoding, and by
1333 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1334 we essentially replace each field's meaningless type by the associated
1335 index subtype). */
1336
1337void
1338ada_fixup_array_indexes_type (struct type *index_desc_type)
1339{
1340 int i;
1341
1342 if (index_desc_type == NULL)
1343 return;
1344 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1345
1346 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1347 to check one field only, no need to check them all). If not, return
1348 now.
1349
1350 If our INDEX_DESC_TYPE was generated using the older encoding,
1351 the field type should be a meaningless integer type whose name
1352 is not equal to the field name. */
1353 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1354 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1355 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1356 return;
1357
1358 /* Fixup each field of INDEX_DESC_TYPE. */
1359 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1360 {
1361 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1362 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1363
1364 if (raw_type)
1365 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1366 }
1367}
1368
4c4b4cd2 1369/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1370
d2e4a39e
AS
1371static char *bound_name[] = {
1372 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1373 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1374};
1375
1376/* Maximum number of array dimensions we are prepared to handle. */
1377
4c4b4cd2 1378#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1379
14f9c5c9 1380
4c4b4cd2
PH
1381/* The desc_* routines return primitive portions of array descriptors
1382 (fat pointers). */
14f9c5c9
AS
1383
1384/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1385 level of indirection, if needed. */
1386
d2e4a39e
AS
1387static struct type *
1388desc_base_type (struct type *type)
14f9c5c9
AS
1389{
1390 if (type == NULL)
1391 return NULL;
61ee279c 1392 type = ada_check_typedef (type);
720d1a40
JB
1393 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1394 type = ada_typedef_target_type (type);
1395
1265e4aa
JB
1396 if (type != NULL
1397 && (TYPE_CODE (type) == TYPE_CODE_PTR
1398 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1399 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1400 else
1401 return type;
1402}
1403
4c4b4cd2
PH
1404/* True iff TYPE indicates a "thin" array pointer type. */
1405
14f9c5c9 1406static int
d2e4a39e 1407is_thin_pntr (struct type *type)
14f9c5c9 1408{
d2e4a39e 1409 return
14f9c5c9
AS
1410 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1411 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1412}
1413
4c4b4cd2
PH
1414/* The descriptor type for thin pointer type TYPE. */
1415
d2e4a39e
AS
1416static struct type *
1417thin_descriptor_type (struct type *type)
14f9c5c9 1418{
d2e4a39e 1419 struct type *base_type = desc_base_type (type);
5b4ee69b 1420
14f9c5c9
AS
1421 if (base_type == NULL)
1422 return NULL;
1423 if (is_suffix (ada_type_name (base_type), "___XVE"))
1424 return base_type;
d2e4a39e 1425 else
14f9c5c9 1426 {
d2e4a39e 1427 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1428
14f9c5c9 1429 if (alt_type == NULL)
4c4b4cd2 1430 return base_type;
14f9c5c9 1431 else
4c4b4cd2 1432 return alt_type;
14f9c5c9
AS
1433 }
1434}
1435
4c4b4cd2
PH
1436/* A pointer to the array data for thin-pointer value VAL. */
1437
d2e4a39e
AS
1438static struct value *
1439thin_data_pntr (struct value *val)
14f9c5c9 1440{
df407dfe 1441 struct type *type = value_type (val);
556bdfd4 1442 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1443
556bdfd4
UW
1444 data_type = lookup_pointer_type (data_type);
1445
14f9c5c9 1446 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1447 return value_cast (data_type, value_copy (val));
d2e4a39e 1448 else
42ae5230 1449 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1450}
1451
4c4b4cd2
PH
1452/* True iff TYPE indicates a "thick" array pointer type. */
1453
14f9c5c9 1454static int
d2e4a39e 1455is_thick_pntr (struct type *type)
14f9c5c9
AS
1456{
1457 type = desc_base_type (type);
1458 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1459 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1460}
1461
4c4b4cd2
PH
1462/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1463 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1464
d2e4a39e
AS
1465static struct type *
1466desc_bounds_type (struct type *type)
14f9c5c9 1467{
d2e4a39e 1468 struct type *r;
14f9c5c9
AS
1469
1470 type = desc_base_type (type);
1471
1472 if (type == NULL)
1473 return NULL;
1474 else if (is_thin_pntr (type))
1475 {
1476 type = thin_descriptor_type (type);
1477 if (type == NULL)
4c4b4cd2 1478 return NULL;
14f9c5c9
AS
1479 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1480 if (r != NULL)
61ee279c 1481 return ada_check_typedef (r);
14f9c5c9
AS
1482 }
1483 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1484 {
1485 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1486 if (r != NULL)
61ee279c 1487 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1488 }
1489 return NULL;
1490}
1491
1492/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1493 one, a pointer to its bounds data. Otherwise NULL. */
1494
d2e4a39e
AS
1495static struct value *
1496desc_bounds (struct value *arr)
14f9c5c9 1497{
df407dfe 1498 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1499
d2e4a39e 1500 if (is_thin_pntr (type))
14f9c5c9 1501 {
d2e4a39e 1502 struct type *bounds_type =
4c4b4cd2 1503 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1504 LONGEST addr;
1505
4cdfadb1 1506 if (bounds_type == NULL)
323e0a4a 1507 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1508
1509 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1510 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1511 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1512 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1513 addr = value_as_long (arr);
d2e4a39e 1514 else
42ae5230 1515 addr = value_address (arr);
14f9c5c9 1516
d2e4a39e 1517 return
4c4b4cd2
PH
1518 value_from_longest (lookup_pointer_type (bounds_type),
1519 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1520 }
1521
1522 else if (is_thick_pntr (type))
05e522ef
JB
1523 {
1524 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1525 _("Bad GNAT array descriptor"));
1526 struct type *p_bounds_type = value_type (p_bounds);
1527
1528 if (p_bounds_type
1529 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1530 {
1531 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1532
1533 if (TYPE_STUB (target_type))
1534 p_bounds = value_cast (lookup_pointer_type
1535 (ada_check_typedef (target_type)),
1536 p_bounds);
1537 }
1538 else
1539 error (_("Bad GNAT array descriptor"));
1540
1541 return p_bounds;
1542 }
14f9c5c9
AS
1543 else
1544 return NULL;
1545}
1546
4c4b4cd2
PH
1547/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1548 position of the field containing the address of the bounds data. */
1549
14f9c5c9 1550static int
d2e4a39e 1551fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1552{
1553 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1554}
1555
1556/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1557 size of the field containing the address of the bounds data. */
1558
14f9c5c9 1559static int
d2e4a39e 1560fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1561{
1562 type = desc_base_type (type);
1563
d2e4a39e 1564 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1565 return TYPE_FIELD_BITSIZE (type, 1);
1566 else
61ee279c 1567 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1568}
1569
4c4b4cd2 1570/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1571 pointer to one, the type of its array data (a array-with-no-bounds type);
1572 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1573 data. */
4c4b4cd2 1574
d2e4a39e 1575static struct type *
556bdfd4 1576desc_data_target_type (struct type *type)
14f9c5c9
AS
1577{
1578 type = desc_base_type (type);
1579
4c4b4cd2 1580 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1581 if (is_thin_pntr (type))
556bdfd4 1582 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1583 else if (is_thick_pntr (type))
556bdfd4
UW
1584 {
1585 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1586
1587 if (data_type
1588 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1589 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1590 }
1591
1592 return NULL;
14f9c5c9
AS
1593}
1594
1595/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1596 its array data. */
4c4b4cd2 1597
d2e4a39e
AS
1598static struct value *
1599desc_data (struct value *arr)
14f9c5c9 1600{
df407dfe 1601 struct type *type = value_type (arr);
5b4ee69b 1602
14f9c5c9
AS
1603 if (is_thin_pntr (type))
1604 return thin_data_pntr (arr);
1605 else if (is_thick_pntr (type))
d2e4a39e 1606 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1607 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1608 else
1609 return NULL;
1610}
1611
1612
1613/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1614 position of the field containing the address of the data. */
1615
14f9c5c9 1616static int
d2e4a39e 1617fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1618{
1619 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1620}
1621
1622/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1623 size of the field containing the address of the data. */
1624
14f9c5c9 1625static int
d2e4a39e 1626fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1627{
1628 type = desc_base_type (type);
1629
1630 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1631 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1632 else
14f9c5c9
AS
1633 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1634}
1635
4c4b4cd2 1636/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1637 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1638 bound, if WHICH is 1. The first bound is I=1. */
1639
d2e4a39e
AS
1640static struct value *
1641desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1642{
d2e4a39e 1643 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1644 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1645}
1646
1647/* If BOUNDS is an array-bounds structure type, return the bit position
1648 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1649 bound, if WHICH is 1. The first bound is I=1. */
1650
14f9c5c9 1651static int
d2e4a39e 1652desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1653{
d2e4a39e 1654 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1655}
1656
1657/* If BOUNDS is an array-bounds structure type, return the bit field size
1658 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1659 bound, if WHICH is 1. The first bound is I=1. */
1660
76a01679 1661static int
d2e4a39e 1662desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1663{
1664 type = desc_base_type (type);
1665
d2e4a39e
AS
1666 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1667 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1668 else
1669 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1670}
1671
1672/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1673 Ith bound (numbering from 1). Otherwise, NULL. */
1674
d2e4a39e
AS
1675static struct type *
1676desc_index_type (struct type *type, int i)
14f9c5c9
AS
1677{
1678 type = desc_base_type (type);
1679
1680 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1681 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1682 else
14f9c5c9
AS
1683 return NULL;
1684}
1685
4c4b4cd2
PH
1686/* The number of index positions in the array-bounds type TYPE.
1687 Return 0 if TYPE is NULL. */
1688
14f9c5c9 1689static int
d2e4a39e 1690desc_arity (struct type *type)
14f9c5c9
AS
1691{
1692 type = desc_base_type (type);
1693
1694 if (type != NULL)
1695 return TYPE_NFIELDS (type) / 2;
1696 return 0;
1697}
1698
4c4b4cd2
PH
1699/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1700 an array descriptor type (representing an unconstrained array
1701 type). */
1702
76a01679
JB
1703static int
1704ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1705{
1706 if (type == NULL)
1707 return 0;
61ee279c 1708 type = ada_check_typedef (type);
4c4b4cd2 1709 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1710 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1711}
1712
52ce6436 1713/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1714 * to one. */
52ce6436 1715
2c0b251b 1716static int
52ce6436
PH
1717ada_is_array_type (struct type *type)
1718{
1719 while (type != NULL
1720 && (TYPE_CODE (type) == TYPE_CODE_PTR
1721 || TYPE_CODE (type) == TYPE_CODE_REF))
1722 type = TYPE_TARGET_TYPE (type);
1723 return ada_is_direct_array_type (type);
1724}
1725
4c4b4cd2 1726/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1727
14f9c5c9 1728int
4c4b4cd2 1729ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1730{
1731 if (type == NULL)
1732 return 0;
61ee279c 1733 type = ada_check_typedef (type);
14f9c5c9 1734 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1735 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1736 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1737 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1738}
1739
4c4b4cd2
PH
1740/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1741
14f9c5c9 1742int
4c4b4cd2 1743ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1744{
556bdfd4 1745 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1746
1747 if (type == NULL)
1748 return 0;
61ee279c 1749 type = ada_check_typedef (type);
556bdfd4
UW
1750 return (data_type != NULL
1751 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1752 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1753}
1754
1755/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1756 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1757 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1758 is still needed. */
1759
14f9c5c9 1760int
ebf56fd3 1761ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1762{
d2e4a39e 1763 return
14f9c5c9
AS
1764 type != NULL
1765 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1766 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1767 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1768 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1769}
1770
1771
4c4b4cd2 1772/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1773 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1774 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1775 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1776 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1777 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1778 a descriptor. */
d2e4a39e
AS
1779struct type *
1780ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1781{
ad82864c
JB
1782 if (ada_is_constrained_packed_array_type (value_type (arr)))
1783 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1784
df407dfe
AC
1785 if (!ada_is_array_descriptor_type (value_type (arr)))
1786 return value_type (arr);
d2e4a39e
AS
1787
1788 if (!bounds)
ad82864c
JB
1789 {
1790 struct type *array_type =
1791 ada_check_typedef (desc_data_target_type (value_type (arr)));
1792
1793 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1794 TYPE_FIELD_BITSIZE (array_type, 0) =
1795 decode_packed_array_bitsize (value_type (arr));
1796
1797 return array_type;
1798 }
14f9c5c9
AS
1799 else
1800 {
d2e4a39e 1801 struct type *elt_type;
14f9c5c9 1802 int arity;
d2e4a39e 1803 struct value *descriptor;
14f9c5c9 1804
df407dfe
AC
1805 elt_type = ada_array_element_type (value_type (arr), -1);
1806 arity = ada_array_arity (value_type (arr));
14f9c5c9 1807
d2e4a39e 1808 if (elt_type == NULL || arity == 0)
df407dfe 1809 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1810
1811 descriptor = desc_bounds (arr);
d2e4a39e 1812 if (value_as_long (descriptor) == 0)
4c4b4cd2 1813 return NULL;
d2e4a39e 1814 while (arity > 0)
4c4b4cd2 1815 {
e9bb382b
UW
1816 struct type *range_type = alloc_type_copy (value_type (arr));
1817 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1818 struct value *low = desc_one_bound (descriptor, arity, 0);
1819 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1820
5b4ee69b 1821 arity -= 1;
df407dfe 1822 create_range_type (range_type, value_type (low),
529cad9c
PH
1823 longest_to_int (value_as_long (low)),
1824 longest_to_int (value_as_long (high)));
4c4b4cd2 1825 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1826
1827 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1828 {
1829 /* We need to store the element packed bitsize, as well as
1830 recompute the array size, because it was previously
1831 computed based on the unpacked element size. */
1832 LONGEST lo = value_as_long (low);
1833 LONGEST hi = value_as_long (high);
1834
1835 TYPE_FIELD_BITSIZE (elt_type, 0) =
1836 decode_packed_array_bitsize (value_type (arr));
1837 /* If the array has no element, then the size is already
1838 zero, and does not need to be recomputed. */
1839 if (lo < hi)
1840 {
1841 int array_bitsize =
1842 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1843
1844 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1845 }
1846 }
4c4b4cd2 1847 }
14f9c5c9
AS
1848
1849 return lookup_pointer_type (elt_type);
1850 }
1851}
1852
1853/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1854 Otherwise, returns either a standard GDB array with bounds set
1855 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1856 GDB array. Returns NULL if ARR is a null fat pointer. */
1857
d2e4a39e
AS
1858struct value *
1859ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1860{
df407dfe 1861 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1862 {
d2e4a39e 1863 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1864
14f9c5c9 1865 if (arrType == NULL)
4c4b4cd2 1866 return NULL;
14f9c5c9
AS
1867 return value_cast (arrType, value_copy (desc_data (arr)));
1868 }
ad82864c
JB
1869 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1870 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1871 else
1872 return arr;
1873}
1874
1875/* If ARR does not represent an array, returns ARR unchanged.
1876 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1877 be ARR itself if it already is in the proper form). */
1878
720d1a40 1879struct value *
d2e4a39e 1880ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1881{
df407dfe 1882 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1883 {
d2e4a39e 1884 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1885
14f9c5c9 1886 if (arrVal == NULL)
323e0a4a 1887 error (_("Bounds unavailable for null array pointer."));
529cad9c 1888 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1889 return value_ind (arrVal);
1890 }
ad82864c
JB
1891 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1892 return decode_constrained_packed_array (arr);
d2e4a39e 1893 else
14f9c5c9
AS
1894 return arr;
1895}
1896
1897/* If TYPE represents a GNAT array type, return it translated to an
1898 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1899 packing). For other types, is the identity. */
1900
d2e4a39e
AS
1901struct type *
1902ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1903{
ad82864c
JB
1904 if (ada_is_constrained_packed_array_type (type))
1905 return decode_constrained_packed_array_type (type);
17280b9f
UW
1906
1907 if (ada_is_array_descriptor_type (type))
556bdfd4 1908 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1909
1910 return type;
14f9c5c9
AS
1911}
1912
4c4b4cd2
PH
1913/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1914
ad82864c
JB
1915static int
1916ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1917{
1918 if (type == NULL)
1919 return 0;
4c4b4cd2 1920 type = desc_base_type (type);
61ee279c 1921 type = ada_check_typedef (type);
d2e4a39e 1922 return
14f9c5c9
AS
1923 ada_type_name (type) != NULL
1924 && strstr (ada_type_name (type), "___XP") != NULL;
1925}
1926
ad82864c
JB
1927/* Non-zero iff TYPE represents a standard GNAT constrained
1928 packed-array type. */
1929
1930int
1931ada_is_constrained_packed_array_type (struct type *type)
1932{
1933 return ada_is_packed_array_type (type)
1934 && !ada_is_array_descriptor_type (type);
1935}
1936
1937/* Non-zero iff TYPE represents an array descriptor for a
1938 unconstrained packed-array type. */
1939
1940static int
1941ada_is_unconstrained_packed_array_type (struct type *type)
1942{
1943 return ada_is_packed_array_type (type)
1944 && ada_is_array_descriptor_type (type);
1945}
1946
1947/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1948 return the size of its elements in bits. */
1949
1950static long
1951decode_packed_array_bitsize (struct type *type)
1952{
720d1a40 1953 char *raw_name;
ad82864c
JB
1954 char *tail;
1955 long bits;
1956
720d1a40
JB
1957 /* Access to arrays implemented as fat pointers are encoded as a typedef
1958 of the fat pointer type. We need the name of the fat pointer type
1959 to do the decoding, so strip the typedef layer. */
1960 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1961 type = ada_typedef_target_type (type);
1962
1963 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
1964 if (!raw_name)
1965 raw_name = ada_type_name (desc_base_type (type));
1966
1967 if (!raw_name)
1968 return 0;
1969
1970 tail = strstr (raw_name, "___XP");
720d1a40 1971 gdb_assert (tail != NULL);
ad82864c
JB
1972
1973 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1974 {
1975 lim_warning
1976 (_("could not understand bit size information on packed array"));
1977 return 0;
1978 }
1979
1980 return bits;
1981}
1982
14f9c5c9
AS
1983/* Given that TYPE is a standard GDB array type with all bounds filled
1984 in, and that the element size of its ultimate scalar constituents
1985 (that is, either its elements, or, if it is an array of arrays, its
1986 elements' elements, etc.) is *ELT_BITS, return an identical type,
1987 but with the bit sizes of its elements (and those of any
1988 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1989 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1990 in bits. */
1991
d2e4a39e 1992static struct type *
ad82864c 1993constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1994{
d2e4a39e
AS
1995 struct type *new_elt_type;
1996 struct type *new_type;
14f9c5c9
AS
1997 LONGEST low_bound, high_bound;
1998
61ee279c 1999 type = ada_check_typedef (type);
14f9c5c9
AS
2000 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2001 return type;
2002
e9bb382b 2003 new_type = alloc_type_copy (type);
ad82864c
JB
2004 new_elt_type =
2005 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2006 elt_bits);
262452ec 2007 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
2008 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2009 TYPE_NAME (new_type) = ada_type_name (type);
2010
262452ec 2011 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 2012 &low_bound, &high_bound) < 0)
14f9c5c9
AS
2013 low_bound = high_bound = 0;
2014 if (high_bound < low_bound)
2015 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2016 else
14f9c5c9
AS
2017 {
2018 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2019 TYPE_LENGTH (new_type) =
4c4b4cd2 2020 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2021 }
2022
876cecd0 2023 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2024 return new_type;
2025}
2026
ad82864c
JB
2027/* The array type encoded by TYPE, where
2028 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2029
d2e4a39e 2030static struct type *
ad82864c 2031decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2032{
727e3d2e
JB
2033 char *raw_name = ada_type_name (ada_check_typedef (type));
2034 char *name;
2035 char *tail;
d2e4a39e 2036 struct type *shadow_type;
14f9c5c9 2037 long bits;
14f9c5c9 2038
727e3d2e
JB
2039 if (!raw_name)
2040 raw_name = ada_type_name (desc_base_type (type));
2041
2042 if (!raw_name)
2043 return NULL;
2044
2045 name = (char *) alloca (strlen (raw_name) + 1);
2046 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2047 type = desc_base_type (type);
2048
14f9c5c9
AS
2049 memcpy (name, raw_name, tail - raw_name);
2050 name[tail - raw_name] = '\000';
2051
b4ba55a1
JB
2052 shadow_type = ada_find_parallel_type_with_name (type, name);
2053
2054 if (shadow_type == NULL)
14f9c5c9 2055 {
323e0a4a 2056 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2057 return NULL;
2058 }
cb249c71 2059 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2060
2061 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2062 {
0963b4bd
MS
2063 lim_warning (_("could not understand bounds "
2064 "information on packed array"));
14f9c5c9
AS
2065 return NULL;
2066 }
d2e4a39e 2067
ad82864c
JB
2068 bits = decode_packed_array_bitsize (type);
2069 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2070}
2071
ad82864c
JB
2072/* Given that ARR is a struct value *indicating a GNAT constrained packed
2073 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2074 standard GDB array type except that the BITSIZEs of the array
2075 target types are set to the number of bits in each element, and the
4c4b4cd2 2076 type length is set appropriately. */
14f9c5c9 2077
d2e4a39e 2078static struct value *
ad82864c 2079decode_constrained_packed_array (struct value *arr)
14f9c5c9 2080{
4c4b4cd2 2081 struct type *type;
14f9c5c9 2082
4c4b4cd2 2083 arr = ada_coerce_ref (arr);
284614f0
JB
2084
2085 /* If our value is a pointer, then dererence it. Make sure that
2086 this operation does not cause the target type to be fixed, as
2087 this would indirectly cause this array to be decoded. The rest
2088 of the routine assumes that the array hasn't been decoded yet,
2089 so we use the basic "value_ind" routine to perform the dereferencing,
2090 as opposed to using "ada_value_ind". */
df407dfe 2091 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 2092 arr = value_ind (arr);
4c4b4cd2 2093
ad82864c 2094 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2095 if (type == NULL)
2096 {
323e0a4a 2097 error (_("can't unpack array"));
14f9c5c9
AS
2098 return NULL;
2099 }
61ee279c 2100
50810684 2101 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2102 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2103 {
2104 /* This is a (right-justified) modular type representing a packed
2105 array with no wrapper. In order to interpret the value through
2106 the (left-justified) packed array type we just built, we must
2107 first left-justify it. */
2108 int bit_size, bit_pos;
2109 ULONGEST mod;
2110
df407dfe 2111 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2112 bit_size = 0;
2113 while (mod > 0)
2114 {
2115 bit_size += 1;
2116 mod >>= 1;
2117 }
df407dfe 2118 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2119 arr = ada_value_primitive_packed_val (arr, NULL,
2120 bit_pos / HOST_CHAR_BIT,
2121 bit_pos % HOST_CHAR_BIT,
2122 bit_size,
2123 type);
2124 }
2125
4c4b4cd2 2126 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2127}
2128
2129
2130/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2131 given in IND. ARR must be a simple array. */
14f9c5c9 2132
d2e4a39e
AS
2133static struct value *
2134value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2135{
2136 int i;
2137 int bits, elt_off, bit_off;
2138 long elt_total_bit_offset;
d2e4a39e
AS
2139 struct type *elt_type;
2140 struct value *v;
14f9c5c9
AS
2141
2142 bits = 0;
2143 elt_total_bit_offset = 0;
df407dfe 2144 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2145 for (i = 0; i < arity; i += 1)
14f9c5c9 2146 {
d2e4a39e 2147 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2148 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2149 error
0963b4bd
MS
2150 (_("attempt to do packed indexing of "
2151 "something other than a packed array"));
14f9c5c9 2152 else
4c4b4cd2
PH
2153 {
2154 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2155 LONGEST lowerbound, upperbound;
2156 LONGEST idx;
2157
2158 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2159 {
323e0a4a 2160 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2161 lowerbound = upperbound = 0;
2162 }
2163
3cb382c9 2164 idx = pos_atr (ind[i]);
4c4b4cd2 2165 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2166 lim_warning (_("packed array index %ld out of bounds"),
2167 (long) idx);
4c4b4cd2
PH
2168 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2169 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2170 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2171 }
14f9c5c9
AS
2172 }
2173 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2174 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2175
2176 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2177 bits, elt_type);
14f9c5c9
AS
2178 return v;
2179}
2180
4c4b4cd2 2181/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2182
2183static int
d2e4a39e 2184has_negatives (struct type *type)
14f9c5c9 2185{
d2e4a39e
AS
2186 switch (TYPE_CODE (type))
2187 {
2188 default:
2189 return 0;
2190 case TYPE_CODE_INT:
2191 return !TYPE_UNSIGNED (type);
2192 case TYPE_CODE_RANGE:
2193 return TYPE_LOW_BOUND (type) < 0;
2194 }
14f9c5c9 2195}
d2e4a39e 2196
14f9c5c9
AS
2197
2198/* Create a new value of type TYPE from the contents of OBJ starting
2199 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2200 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2201 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2202 VALADDR is ignored unless OBJ is NULL, in which case,
2203 VALADDR+OFFSET must address the start of storage containing the
2204 packed value. The value returned in this case is never an lval.
2205 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2206
d2e4a39e 2207struct value *
fc1a4b47 2208ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2209 long offset, int bit_offset, int bit_size,
4c4b4cd2 2210 struct type *type)
14f9c5c9 2211{
d2e4a39e 2212 struct value *v;
4c4b4cd2
PH
2213 int src, /* Index into the source area */
2214 targ, /* Index into the target area */
2215 srcBitsLeft, /* Number of source bits left to move */
2216 nsrc, ntarg, /* Number of source and target bytes */
2217 unusedLS, /* Number of bits in next significant
2218 byte of source that are unused */
2219 accumSize; /* Number of meaningful bits in accum */
2220 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2221 unsigned char *unpacked;
4c4b4cd2 2222 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2223 unsigned char sign;
2224 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2225 /* Transmit bytes from least to most significant; delta is the direction
2226 the indices move. */
50810684 2227 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2228
61ee279c 2229 type = ada_check_typedef (type);
14f9c5c9
AS
2230
2231 if (obj == NULL)
2232 {
2233 v = allocate_value (type);
d2e4a39e 2234 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2235 }
9214ee5f 2236 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2237 {
2238 v = value_at (type,
42ae5230 2239 value_address (obj) + offset);
d2e4a39e 2240 bytes = (unsigned char *) alloca (len);
42ae5230 2241 read_memory (value_address (v), bytes, len);
14f9c5c9 2242 }
d2e4a39e 2243 else
14f9c5c9
AS
2244 {
2245 v = allocate_value (type);
0fd88904 2246 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2247 }
d2e4a39e
AS
2248
2249 if (obj != NULL)
14f9c5c9 2250 {
42ae5230 2251 CORE_ADDR new_addr;
5b4ee69b 2252
74bcbdf3 2253 set_value_component_location (v, obj);
42ae5230 2254 new_addr = value_address (obj) + offset;
9bbda503
AC
2255 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2256 set_value_bitsize (v, bit_size);
df407dfe 2257 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2258 {
42ae5230 2259 ++new_addr;
9bbda503 2260 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2261 }
42ae5230 2262 set_value_address (v, new_addr);
14f9c5c9
AS
2263 }
2264 else
9bbda503 2265 set_value_bitsize (v, bit_size);
0fd88904 2266 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2267
2268 srcBitsLeft = bit_size;
2269 nsrc = len;
2270 ntarg = TYPE_LENGTH (type);
2271 sign = 0;
2272 if (bit_size == 0)
2273 {
2274 memset (unpacked, 0, TYPE_LENGTH (type));
2275 return v;
2276 }
50810684 2277 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2278 {
d2e4a39e 2279 src = len - 1;
1265e4aa
JB
2280 if (has_negatives (type)
2281 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2282 sign = ~0;
d2e4a39e
AS
2283
2284 unusedLS =
4c4b4cd2
PH
2285 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2286 % HOST_CHAR_BIT;
14f9c5c9
AS
2287
2288 switch (TYPE_CODE (type))
4c4b4cd2
PH
2289 {
2290 case TYPE_CODE_ARRAY:
2291 case TYPE_CODE_UNION:
2292 case TYPE_CODE_STRUCT:
2293 /* Non-scalar values must be aligned at a byte boundary... */
2294 accumSize =
2295 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2296 /* ... And are placed at the beginning (most-significant) bytes
2297 of the target. */
529cad9c 2298 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2299 ntarg = targ + 1;
4c4b4cd2
PH
2300 break;
2301 default:
2302 accumSize = 0;
2303 targ = TYPE_LENGTH (type) - 1;
2304 break;
2305 }
14f9c5c9 2306 }
d2e4a39e 2307 else
14f9c5c9
AS
2308 {
2309 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2310
2311 src = targ = 0;
2312 unusedLS = bit_offset;
2313 accumSize = 0;
2314
d2e4a39e 2315 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2316 sign = ~0;
14f9c5c9 2317 }
d2e4a39e 2318
14f9c5c9
AS
2319 accum = 0;
2320 while (nsrc > 0)
2321 {
2322 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2323 part of the value. */
d2e4a39e 2324 unsigned int unusedMSMask =
4c4b4cd2
PH
2325 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2326 1;
2327 /* Sign-extend bits for this byte. */
14f9c5c9 2328 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2329
d2e4a39e 2330 accum |=
4c4b4cd2 2331 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2332 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2333 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2334 {
2335 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2336 accumSize -= HOST_CHAR_BIT;
2337 accum >>= HOST_CHAR_BIT;
2338 ntarg -= 1;
2339 targ += delta;
2340 }
14f9c5c9
AS
2341 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2342 unusedLS = 0;
2343 nsrc -= 1;
2344 src += delta;
2345 }
2346 while (ntarg > 0)
2347 {
2348 accum |= sign << accumSize;
2349 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2350 accumSize -= HOST_CHAR_BIT;
2351 accum >>= HOST_CHAR_BIT;
2352 ntarg -= 1;
2353 targ += delta;
2354 }
2355
2356 return v;
2357}
d2e4a39e 2358
14f9c5c9
AS
2359/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2360 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2361 not overlap. */
14f9c5c9 2362static void
fc1a4b47 2363move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2364 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2365{
2366 unsigned int accum, mask;
2367 int accum_bits, chunk_size;
2368
2369 target += targ_offset / HOST_CHAR_BIT;
2370 targ_offset %= HOST_CHAR_BIT;
2371 source += src_offset / HOST_CHAR_BIT;
2372 src_offset %= HOST_CHAR_BIT;
50810684 2373 if (bits_big_endian_p)
14f9c5c9
AS
2374 {
2375 accum = (unsigned char) *source;
2376 source += 1;
2377 accum_bits = HOST_CHAR_BIT - src_offset;
2378
d2e4a39e 2379 while (n > 0)
4c4b4cd2
PH
2380 {
2381 int unused_right;
5b4ee69b 2382
4c4b4cd2
PH
2383 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2384 accum_bits += HOST_CHAR_BIT;
2385 source += 1;
2386 chunk_size = HOST_CHAR_BIT - targ_offset;
2387 if (chunk_size > n)
2388 chunk_size = n;
2389 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2390 mask = ((1 << chunk_size) - 1) << unused_right;
2391 *target =
2392 (*target & ~mask)
2393 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2394 n -= chunk_size;
2395 accum_bits -= chunk_size;
2396 target += 1;
2397 targ_offset = 0;
2398 }
14f9c5c9
AS
2399 }
2400 else
2401 {
2402 accum = (unsigned char) *source >> src_offset;
2403 source += 1;
2404 accum_bits = HOST_CHAR_BIT - src_offset;
2405
d2e4a39e 2406 while (n > 0)
4c4b4cd2
PH
2407 {
2408 accum = accum + ((unsigned char) *source << accum_bits);
2409 accum_bits += HOST_CHAR_BIT;
2410 source += 1;
2411 chunk_size = HOST_CHAR_BIT - targ_offset;
2412 if (chunk_size > n)
2413 chunk_size = n;
2414 mask = ((1 << chunk_size) - 1) << targ_offset;
2415 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2416 n -= chunk_size;
2417 accum_bits -= chunk_size;
2418 accum >>= chunk_size;
2419 target += 1;
2420 targ_offset = 0;
2421 }
14f9c5c9
AS
2422 }
2423}
2424
14f9c5c9
AS
2425/* Store the contents of FROMVAL into the location of TOVAL.
2426 Return a new value with the location of TOVAL and contents of
2427 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2428 floating-point or non-scalar types. */
14f9c5c9 2429
d2e4a39e
AS
2430static struct value *
2431ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2432{
df407dfe
AC
2433 struct type *type = value_type (toval);
2434 int bits = value_bitsize (toval);
14f9c5c9 2435
52ce6436
PH
2436 toval = ada_coerce_ref (toval);
2437 fromval = ada_coerce_ref (fromval);
2438
2439 if (ada_is_direct_array_type (value_type (toval)))
2440 toval = ada_coerce_to_simple_array (toval);
2441 if (ada_is_direct_array_type (value_type (fromval)))
2442 fromval = ada_coerce_to_simple_array (fromval);
2443
88e3b34b 2444 if (!deprecated_value_modifiable (toval))
323e0a4a 2445 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2446
d2e4a39e 2447 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2448 && bits > 0
d2e4a39e 2449 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2450 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2451 {
df407dfe
AC
2452 int len = (value_bitpos (toval)
2453 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2454 int from_size;
d2e4a39e
AS
2455 char *buffer = (char *) alloca (len);
2456 struct value *val;
42ae5230 2457 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2458
2459 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2460 fromval = value_cast (type, fromval);
14f9c5c9 2461
52ce6436 2462 read_memory (to_addr, buffer, len);
aced2898
PH
2463 from_size = value_bitsize (fromval);
2464 if (from_size == 0)
2465 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2466 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2467 move_bits (buffer, value_bitpos (toval),
50810684 2468 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2469 else
50810684
UW
2470 move_bits (buffer, value_bitpos (toval),
2471 value_contents (fromval), 0, bits, 0);
52ce6436 2472 write_memory (to_addr, buffer, len);
8cebebb9
PP
2473 observer_notify_memory_changed (to_addr, len, buffer);
2474
14f9c5c9 2475 val = value_copy (toval);
0fd88904 2476 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2477 TYPE_LENGTH (type));
04624583 2478 deprecated_set_value_type (val, type);
d2e4a39e 2479
14f9c5c9
AS
2480 return val;
2481 }
2482
2483 return value_assign (toval, fromval);
2484}
2485
2486
52ce6436
PH
2487/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2488 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2489 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2490 * COMPONENT, and not the inferior's memory. The current contents
2491 * of COMPONENT are ignored. */
2492static void
2493value_assign_to_component (struct value *container, struct value *component,
2494 struct value *val)
2495{
2496 LONGEST offset_in_container =
42ae5230 2497 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2498 int bit_offset_in_container =
2499 value_bitpos (component) - value_bitpos (container);
2500 int bits;
2501
2502 val = value_cast (value_type (component), val);
2503
2504 if (value_bitsize (component) == 0)
2505 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2506 else
2507 bits = value_bitsize (component);
2508
50810684 2509 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2510 move_bits (value_contents_writeable (container) + offset_in_container,
2511 value_bitpos (container) + bit_offset_in_container,
2512 value_contents (val),
2513 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2514 bits, 1);
52ce6436
PH
2515 else
2516 move_bits (value_contents_writeable (container) + offset_in_container,
2517 value_bitpos (container) + bit_offset_in_container,
50810684 2518 value_contents (val), 0, bits, 0);
52ce6436
PH
2519}
2520
4c4b4cd2
PH
2521/* The value of the element of array ARR at the ARITY indices given in IND.
2522 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2523 thereto. */
2524
d2e4a39e
AS
2525struct value *
2526ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2527{
2528 int k;
d2e4a39e
AS
2529 struct value *elt;
2530 struct type *elt_type;
14f9c5c9
AS
2531
2532 elt = ada_coerce_to_simple_array (arr);
2533
df407dfe 2534 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2535 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2536 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2537 return value_subscript_packed (elt, arity, ind);
2538
2539 for (k = 0; k < arity; k += 1)
2540 {
2541 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2542 error (_("too many subscripts (%d expected)"), k);
2497b498 2543 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2544 }
2545 return elt;
2546}
2547
2548/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2549 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2550 IND. Does not read the entire array into memory. */
14f9c5c9 2551
2c0b251b 2552static struct value *
d2e4a39e 2553ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2554 struct value **ind)
14f9c5c9
AS
2555{
2556 int k;
2557
2558 for (k = 0; k < arity; k += 1)
2559 {
2560 LONGEST lwb, upb;
14f9c5c9
AS
2561
2562 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2563 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2564 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2565 value_copy (arr));
14f9c5c9 2566 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2567 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2568 type = TYPE_TARGET_TYPE (type);
2569 }
2570
2571 return value_ind (arr);
2572}
2573
0b5d8877 2574/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2575 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2576 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2577 per Ada rules. */
0b5d8877 2578static struct value *
f5938064
JG
2579ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2580 int low, int high)
0b5d8877 2581{
b0dd7688 2582 struct type *type0 = ada_check_typedef (type);
6c038f32 2583 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2584 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2585 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2586 struct type *index_type =
b0dd7688 2587 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2588 low, high);
6c038f32 2589 struct type *slice_type =
b0dd7688 2590 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2591
f5938064 2592 return value_at_lazy (slice_type, base);
0b5d8877
PH
2593}
2594
2595
2596static struct value *
2597ada_value_slice (struct value *array, int low, int high)
2598{
b0dd7688 2599 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2600 struct type *index_type =
0b5d8877 2601 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2602 struct type *slice_type =
0b5d8877 2603 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2604
6c038f32 2605 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2606}
2607
14f9c5c9
AS
2608/* If type is a record type in the form of a standard GNAT array
2609 descriptor, returns the number of dimensions for type. If arr is a
2610 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2611 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2612
2613int
d2e4a39e 2614ada_array_arity (struct type *type)
14f9c5c9
AS
2615{
2616 int arity;
2617
2618 if (type == NULL)
2619 return 0;
2620
2621 type = desc_base_type (type);
2622
2623 arity = 0;
d2e4a39e 2624 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2625 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2626 else
2627 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2628 {
4c4b4cd2 2629 arity += 1;
61ee279c 2630 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2631 }
d2e4a39e 2632
14f9c5c9
AS
2633 return arity;
2634}
2635
2636/* If TYPE is a record type in the form of a standard GNAT array
2637 descriptor or a simple array type, returns the element type for
2638 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2639 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2640
d2e4a39e
AS
2641struct type *
2642ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2643{
2644 type = desc_base_type (type);
2645
d2e4a39e 2646 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2647 {
2648 int k;
d2e4a39e 2649 struct type *p_array_type;
14f9c5c9 2650
556bdfd4 2651 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2652
2653 k = ada_array_arity (type);
2654 if (k == 0)
4c4b4cd2 2655 return NULL;
d2e4a39e 2656
4c4b4cd2 2657 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2658 if (nindices >= 0 && k > nindices)
4c4b4cd2 2659 k = nindices;
d2e4a39e 2660 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2661 {
61ee279c 2662 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2663 k -= 1;
2664 }
14f9c5c9
AS
2665 return p_array_type;
2666 }
2667 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2668 {
2669 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2670 {
2671 type = TYPE_TARGET_TYPE (type);
2672 nindices -= 1;
2673 }
14f9c5c9
AS
2674 return type;
2675 }
2676
2677 return NULL;
2678}
2679
4c4b4cd2 2680/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2681 Does not examine memory. Throws an error if N is invalid or TYPE
2682 is not an array type. NAME is the name of the Ada attribute being
2683 evaluated ('range, 'first, 'last, or 'length); it is used in building
2684 the error message. */
14f9c5c9 2685
1eea4ebd
UW
2686static struct type *
2687ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2688{
4c4b4cd2
PH
2689 struct type *result_type;
2690
14f9c5c9
AS
2691 type = desc_base_type (type);
2692
1eea4ebd
UW
2693 if (n < 0 || n > ada_array_arity (type))
2694 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2695
4c4b4cd2 2696 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2697 {
2698 int i;
2699
2700 for (i = 1; i < n; i += 1)
4c4b4cd2 2701 type = TYPE_TARGET_TYPE (type);
262452ec 2702 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2703 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2704 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2705 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2706 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2707 result_type = NULL;
14f9c5c9 2708 }
d2e4a39e 2709 else
1eea4ebd
UW
2710 {
2711 result_type = desc_index_type (desc_bounds_type (type), n);
2712 if (result_type == NULL)
2713 error (_("attempt to take bound of something that is not an array"));
2714 }
2715
2716 return result_type;
14f9c5c9
AS
2717}
2718
2719/* Given that arr is an array type, returns the lower bound of the
2720 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2721 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2722 array-descriptor type. It works for other arrays with bounds supplied
2723 by run-time quantities other than discriminants. */
14f9c5c9 2724
abb68b3e 2725static LONGEST
1eea4ebd 2726ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2727{
1ce677a4 2728 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2729 int i;
262452ec
JK
2730
2731 gdb_assert (which == 0 || which == 1);
14f9c5c9 2732
ad82864c
JB
2733 if (ada_is_constrained_packed_array_type (arr_type))
2734 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2735
4c4b4cd2 2736 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2737 return (LONGEST) - which;
14f9c5c9
AS
2738
2739 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2740 type = TYPE_TARGET_TYPE (arr_type);
2741 else
2742 type = arr_type;
2743
1ce677a4
UW
2744 elt_type = type;
2745 for (i = n; i > 1; i--)
2746 elt_type = TYPE_TARGET_TYPE (type);
2747
14f9c5c9 2748 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2749 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2750 if (index_type_desc != NULL)
28c85d6c
JB
2751 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2752 NULL);
262452ec 2753 else
1ce677a4 2754 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2755
43bbcdc2
PH
2756 return
2757 (LONGEST) (which == 0
2758 ? ada_discrete_type_low_bound (index_type)
2759 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2760}
2761
2762/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2763 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2764 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2765 supplied by run-time quantities other than discriminants. */
14f9c5c9 2766
1eea4ebd 2767static LONGEST
4dc81987 2768ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2769{
df407dfe 2770 struct type *arr_type = value_type (arr);
14f9c5c9 2771
ad82864c
JB
2772 if (ada_is_constrained_packed_array_type (arr_type))
2773 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2774 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2775 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2776 else
1eea4ebd 2777 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2778}
2779
2780/* Given that arr is an array value, returns the length of the
2781 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2782 supplied by run-time quantities other than discriminants.
2783 Does not work for arrays indexed by enumeration types with representation
2784 clauses at the moment. */
14f9c5c9 2785
1eea4ebd 2786static LONGEST
d2e4a39e 2787ada_array_length (struct value *arr, int n)
14f9c5c9 2788{
df407dfe 2789 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2790
ad82864c
JB
2791 if (ada_is_constrained_packed_array_type (arr_type))
2792 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2793
4c4b4cd2 2794 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2795 return (ada_array_bound_from_type (arr_type, n, 1)
2796 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2797 else
1eea4ebd
UW
2798 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2799 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2800}
2801
2802/* An empty array whose type is that of ARR_TYPE (an array type),
2803 with bounds LOW to LOW-1. */
2804
2805static struct value *
2806empty_array (struct type *arr_type, int low)
2807{
b0dd7688 2808 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2809 struct type *index_type =
b0dd7688 2810 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2811 low, low - 1);
b0dd7688 2812 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2813
0b5d8877 2814 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2815}
14f9c5c9 2816\f
d2e4a39e 2817
4c4b4cd2 2818 /* Name resolution */
14f9c5c9 2819
4c4b4cd2
PH
2820/* The "decoded" name for the user-definable Ada operator corresponding
2821 to OP. */
14f9c5c9 2822
d2e4a39e 2823static const char *
4c4b4cd2 2824ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2825{
2826 int i;
2827
4c4b4cd2 2828 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2829 {
2830 if (ada_opname_table[i].op == op)
4c4b4cd2 2831 return ada_opname_table[i].decoded;
14f9c5c9 2832 }
323e0a4a 2833 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2834}
2835
2836
4c4b4cd2
PH
2837/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2838 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2839 undefined namespace) and converts operators that are
2840 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2841 non-null, it provides a preferred result type [at the moment, only
2842 type void has any effect---causing procedures to be preferred over
2843 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2844 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2845
4c4b4cd2
PH
2846static void
2847resolve (struct expression **expp, int void_context_p)
14f9c5c9 2848{
30b15541
UW
2849 struct type *context_type = NULL;
2850 int pc = 0;
2851
2852 if (void_context_p)
2853 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2854
2855 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2856}
2857
4c4b4cd2
PH
2858/* Resolve the operator of the subexpression beginning at
2859 position *POS of *EXPP. "Resolving" consists of replacing
2860 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2861 with their resolutions, replacing built-in operators with
2862 function calls to user-defined operators, where appropriate, and,
2863 when DEPROCEDURE_P is non-zero, converting function-valued variables
2864 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2865 are as in ada_resolve, above. */
14f9c5c9 2866
d2e4a39e 2867static struct value *
4c4b4cd2 2868resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2869 struct type *context_type)
14f9c5c9
AS
2870{
2871 int pc = *pos;
2872 int i;
4c4b4cd2 2873 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2874 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2875 struct value **argvec; /* Vector of operand types (alloca'ed). */
2876 int nargs; /* Number of operands. */
52ce6436 2877 int oplen;
14f9c5c9
AS
2878
2879 argvec = NULL;
2880 nargs = 0;
2881 exp = *expp;
2882
52ce6436
PH
2883 /* Pass one: resolve operands, saving their types and updating *pos,
2884 if needed. */
14f9c5c9
AS
2885 switch (op)
2886 {
4c4b4cd2
PH
2887 case OP_FUNCALL:
2888 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2889 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2890 *pos += 7;
4c4b4cd2
PH
2891 else
2892 {
2893 *pos += 3;
2894 resolve_subexp (expp, pos, 0, NULL);
2895 }
2896 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2897 break;
2898
14f9c5c9 2899 case UNOP_ADDR:
4c4b4cd2
PH
2900 *pos += 1;
2901 resolve_subexp (expp, pos, 0, NULL);
2902 break;
2903
52ce6436
PH
2904 case UNOP_QUAL:
2905 *pos += 3;
17466c1a 2906 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2907 break;
2908
52ce6436 2909 case OP_ATR_MODULUS:
4c4b4cd2
PH
2910 case OP_ATR_SIZE:
2911 case OP_ATR_TAG:
4c4b4cd2
PH
2912 case OP_ATR_FIRST:
2913 case OP_ATR_LAST:
2914 case OP_ATR_LENGTH:
2915 case OP_ATR_POS:
2916 case OP_ATR_VAL:
4c4b4cd2
PH
2917 case OP_ATR_MIN:
2918 case OP_ATR_MAX:
52ce6436
PH
2919 case TERNOP_IN_RANGE:
2920 case BINOP_IN_BOUNDS:
2921 case UNOP_IN_RANGE:
2922 case OP_AGGREGATE:
2923 case OP_OTHERS:
2924 case OP_CHOICES:
2925 case OP_POSITIONAL:
2926 case OP_DISCRETE_RANGE:
2927 case OP_NAME:
2928 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2929 *pos += oplen;
14f9c5c9
AS
2930 break;
2931
2932 case BINOP_ASSIGN:
2933 {
4c4b4cd2
PH
2934 struct value *arg1;
2935
2936 *pos += 1;
2937 arg1 = resolve_subexp (expp, pos, 0, NULL);
2938 if (arg1 == NULL)
2939 resolve_subexp (expp, pos, 1, NULL);
2940 else
df407dfe 2941 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2942 break;
14f9c5c9
AS
2943 }
2944
4c4b4cd2 2945 case UNOP_CAST:
4c4b4cd2
PH
2946 *pos += 3;
2947 nargs = 1;
2948 break;
14f9c5c9 2949
4c4b4cd2
PH
2950 case BINOP_ADD:
2951 case BINOP_SUB:
2952 case BINOP_MUL:
2953 case BINOP_DIV:
2954 case BINOP_REM:
2955 case BINOP_MOD:
2956 case BINOP_EXP:
2957 case BINOP_CONCAT:
2958 case BINOP_LOGICAL_AND:
2959 case BINOP_LOGICAL_OR:
2960 case BINOP_BITWISE_AND:
2961 case BINOP_BITWISE_IOR:
2962 case BINOP_BITWISE_XOR:
14f9c5c9 2963
4c4b4cd2
PH
2964 case BINOP_EQUAL:
2965 case BINOP_NOTEQUAL:
2966 case BINOP_LESS:
2967 case BINOP_GTR:
2968 case BINOP_LEQ:
2969 case BINOP_GEQ:
14f9c5c9 2970
4c4b4cd2
PH
2971 case BINOP_REPEAT:
2972 case BINOP_SUBSCRIPT:
2973 case BINOP_COMMA:
40c8aaa9
JB
2974 *pos += 1;
2975 nargs = 2;
2976 break;
14f9c5c9 2977
4c4b4cd2
PH
2978 case UNOP_NEG:
2979 case UNOP_PLUS:
2980 case UNOP_LOGICAL_NOT:
2981 case UNOP_ABS:
2982 case UNOP_IND:
2983 *pos += 1;
2984 nargs = 1;
2985 break;
14f9c5c9 2986
4c4b4cd2
PH
2987 case OP_LONG:
2988 case OP_DOUBLE:
2989 case OP_VAR_VALUE:
2990 *pos += 4;
2991 break;
14f9c5c9 2992
4c4b4cd2
PH
2993 case OP_TYPE:
2994 case OP_BOOL:
2995 case OP_LAST:
4c4b4cd2
PH
2996 case OP_INTERNALVAR:
2997 *pos += 3;
2998 break;
14f9c5c9 2999
4c4b4cd2
PH
3000 case UNOP_MEMVAL:
3001 *pos += 3;
3002 nargs = 1;
3003 break;
3004
67f3407f
DJ
3005 case OP_REGISTER:
3006 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3007 break;
3008
4c4b4cd2
PH
3009 case STRUCTOP_STRUCT:
3010 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3011 nargs = 1;
3012 break;
3013
4c4b4cd2 3014 case TERNOP_SLICE:
4c4b4cd2
PH
3015 *pos += 1;
3016 nargs = 3;
3017 break;
3018
52ce6436 3019 case OP_STRING:
14f9c5c9 3020 break;
4c4b4cd2
PH
3021
3022 default:
323e0a4a 3023 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3024 }
3025
76a01679 3026 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3027 for (i = 0; i < nargs; i += 1)
3028 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3029 argvec[i] = NULL;
3030 exp = *expp;
3031
3032 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3033 switch (op)
3034 {
3035 default:
3036 break;
3037
14f9c5c9 3038 case OP_VAR_VALUE:
4c4b4cd2 3039 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3040 {
3041 struct ada_symbol_info *candidates;
3042 int n_candidates;
3043
3044 n_candidates =
3045 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3046 (exp->elts[pc + 2].symbol),
3047 exp->elts[pc + 1].block, VAR_DOMAIN,
3048 &candidates);
3049
3050 if (n_candidates > 1)
3051 {
3052 /* Types tend to get re-introduced locally, so if there
3053 are any local symbols that are not types, first filter
3054 out all types. */
3055 int j;
3056 for (j = 0; j < n_candidates; j += 1)
3057 switch (SYMBOL_CLASS (candidates[j].sym))
3058 {
3059 case LOC_REGISTER:
3060 case LOC_ARG:
3061 case LOC_REF_ARG:
76a01679
JB
3062 case LOC_REGPARM_ADDR:
3063 case LOC_LOCAL:
76a01679 3064 case LOC_COMPUTED:
76a01679
JB
3065 goto FoundNonType;
3066 default:
3067 break;
3068 }
3069 FoundNonType:
3070 if (j < n_candidates)
3071 {
3072 j = 0;
3073 while (j < n_candidates)
3074 {
3075 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3076 {
3077 candidates[j] = candidates[n_candidates - 1];
3078 n_candidates -= 1;
3079 }
3080 else
3081 j += 1;
3082 }
3083 }
3084 }
3085
3086 if (n_candidates == 0)
323e0a4a 3087 error (_("No definition found for %s"),
76a01679
JB
3088 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3089 else if (n_candidates == 1)
3090 i = 0;
3091 else if (deprocedure_p
3092 && !is_nonfunction (candidates, n_candidates))
3093 {
06d5cf63
JB
3094 i = ada_resolve_function
3095 (candidates, n_candidates, NULL, 0,
3096 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3097 context_type);
76a01679 3098 if (i < 0)
323e0a4a 3099 error (_("Could not find a match for %s"),
76a01679
JB
3100 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3101 }
3102 else
3103 {
323e0a4a 3104 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3105 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3106 user_select_syms (candidates, n_candidates, 1);
3107 i = 0;
3108 }
3109
3110 exp->elts[pc + 1].block = candidates[i].block;
3111 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3112 if (innermost_block == NULL
3113 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3114 innermost_block = candidates[i].block;
3115 }
3116
3117 if (deprocedure_p
3118 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3119 == TYPE_CODE_FUNC))
3120 {
3121 replace_operator_with_call (expp, pc, 0, 0,
3122 exp->elts[pc + 2].symbol,
3123 exp->elts[pc + 1].block);
3124 exp = *expp;
3125 }
14f9c5c9
AS
3126 break;
3127
3128 case OP_FUNCALL:
3129 {
4c4b4cd2 3130 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3131 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3132 {
3133 struct ada_symbol_info *candidates;
3134 int n_candidates;
3135
3136 n_candidates =
76a01679
JB
3137 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3138 (exp->elts[pc + 5].symbol),
3139 exp->elts[pc + 4].block, VAR_DOMAIN,
3140 &candidates);
4c4b4cd2
PH
3141 if (n_candidates == 1)
3142 i = 0;
3143 else
3144 {
06d5cf63
JB
3145 i = ada_resolve_function
3146 (candidates, n_candidates,
3147 argvec, nargs,
3148 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3149 context_type);
4c4b4cd2 3150 if (i < 0)
323e0a4a 3151 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3152 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3153 }
3154
3155 exp->elts[pc + 4].block = candidates[i].block;
3156 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3157 if (innermost_block == NULL
3158 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3159 innermost_block = candidates[i].block;
3160 }
14f9c5c9
AS
3161 }
3162 break;
3163 case BINOP_ADD:
3164 case BINOP_SUB:
3165 case BINOP_MUL:
3166 case BINOP_DIV:
3167 case BINOP_REM:
3168 case BINOP_MOD:
3169 case BINOP_CONCAT:
3170 case BINOP_BITWISE_AND:
3171 case BINOP_BITWISE_IOR:
3172 case BINOP_BITWISE_XOR:
3173 case BINOP_EQUAL:
3174 case BINOP_NOTEQUAL:
3175 case BINOP_LESS:
3176 case BINOP_GTR:
3177 case BINOP_LEQ:
3178 case BINOP_GEQ:
3179 case BINOP_EXP:
3180 case UNOP_NEG:
3181 case UNOP_PLUS:
3182 case UNOP_LOGICAL_NOT:
3183 case UNOP_ABS:
3184 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3185 {
3186 struct ada_symbol_info *candidates;
3187 int n_candidates;
3188
3189 n_candidates =
3190 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3191 (struct block *) NULL, VAR_DOMAIN,
3192 &candidates);
3193 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3194 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3195 if (i < 0)
3196 break;
3197
76a01679
JB
3198 replace_operator_with_call (expp, pc, nargs, 1,
3199 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3200 exp = *expp;
3201 }
14f9c5c9 3202 break;
4c4b4cd2
PH
3203
3204 case OP_TYPE:
b3dbf008 3205 case OP_REGISTER:
4c4b4cd2 3206 return NULL;
14f9c5c9
AS
3207 }
3208
3209 *pos = pc;
3210 return evaluate_subexp_type (exp, pos);
3211}
3212
3213/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3214 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3215 a non-pointer. */
14f9c5c9 3216/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3217 liberal. */
14f9c5c9
AS
3218
3219static int
4dc81987 3220ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3221{
61ee279c
PH
3222 ftype = ada_check_typedef (ftype);
3223 atype = ada_check_typedef (atype);
14f9c5c9
AS
3224
3225 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3226 ftype = TYPE_TARGET_TYPE (ftype);
3227 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3228 atype = TYPE_TARGET_TYPE (atype);
3229
d2e4a39e 3230 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3231 {
3232 default:
5b3d5b7d 3233 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3234 case TYPE_CODE_PTR:
3235 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3236 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3237 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3238 else
1265e4aa
JB
3239 return (may_deref
3240 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3241 case TYPE_CODE_INT:
3242 case TYPE_CODE_ENUM:
3243 case TYPE_CODE_RANGE:
3244 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3245 {
3246 case TYPE_CODE_INT:
3247 case TYPE_CODE_ENUM:
3248 case TYPE_CODE_RANGE:
3249 return 1;
3250 default:
3251 return 0;
3252 }
14f9c5c9
AS
3253
3254 case TYPE_CODE_ARRAY:
d2e4a39e 3255 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3256 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3257
3258 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3259 if (ada_is_array_descriptor_type (ftype))
3260 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3261 || ada_is_array_descriptor_type (atype));
14f9c5c9 3262 else
4c4b4cd2
PH
3263 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3264 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3265
3266 case TYPE_CODE_UNION:
3267 case TYPE_CODE_FLT:
3268 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3269 }
3270}
3271
3272/* Return non-zero if the formals of FUNC "sufficiently match" the
3273 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3274 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3275 argument function. */
14f9c5c9
AS
3276
3277static int
d2e4a39e 3278ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3279{
3280 int i;
d2e4a39e 3281 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3282
1265e4aa
JB
3283 if (SYMBOL_CLASS (func) == LOC_CONST
3284 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3285 return (n_actuals == 0);
3286 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3287 return 0;
3288
3289 if (TYPE_NFIELDS (func_type) != n_actuals)
3290 return 0;
3291
3292 for (i = 0; i < n_actuals; i += 1)
3293 {
4c4b4cd2 3294 if (actuals[i] == NULL)
76a01679
JB
3295 return 0;
3296 else
3297 {
5b4ee69b
MS
3298 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3299 i));
df407dfe 3300 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3301
76a01679
JB
3302 if (!ada_type_match (ftype, atype, 1))
3303 return 0;
3304 }
14f9c5c9
AS
3305 }
3306 return 1;
3307}
3308
3309/* False iff function type FUNC_TYPE definitely does not produce a value
3310 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3311 FUNC_TYPE is not a valid function type with a non-null return type
3312 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3313
3314static int
d2e4a39e 3315return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3316{
d2e4a39e 3317 struct type *return_type;
14f9c5c9
AS
3318
3319 if (func_type == NULL)
3320 return 1;
3321
4c4b4cd2
PH
3322 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3323 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3324 else
3325 return_type = base_type (func_type);
14f9c5c9
AS
3326 if (return_type == NULL)
3327 return 1;
3328
4c4b4cd2 3329 context_type = base_type (context_type);
14f9c5c9
AS
3330
3331 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3332 return context_type == NULL || return_type == context_type;
3333 else if (context_type == NULL)
3334 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3335 else
3336 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3337}
3338
3339
4c4b4cd2 3340/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3341 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3342 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3343 that returns that type, then eliminate matches that don't. If
3344 CONTEXT_TYPE is void and there is at least one match that does not
3345 return void, eliminate all matches that do.
3346
14f9c5c9
AS
3347 Asks the user if there is more than one match remaining. Returns -1
3348 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3349 solely for messages. May re-arrange and modify SYMS in
3350 the process; the index returned is for the modified vector. */
14f9c5c9 3351
4c4b4cd2
PH
3352static int
3353ada_resolve_function (struct ada_symbol_info syms[],
3354 int nsyms, struct value **args, int nargs,
3355 const char *name, struct type *context_type)
14f9c5c9 3356{
30b15541 3357 int fallback;
14f9c5c9 3358 int k;
4c4b4cd2 3359 int m; /* Number of hits */
14f9c5c9 3360
d2e4a39e 3361 m = 0;
30b15541
UW
3362 /* In the first pass of the loop, we only accept functions matching
3363 context_type. If none are found, we add a second pass of the loop
3364 where every function is accepted. */
3365 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3366 {
3367 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3368 {
61ee279c 3369 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3370
3371 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3372 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3373 {
3374 syms[m] = syms[k];
3375 m += 1;
3376 }
3377 }
14f9c5c9
AS
3378 }
3379
3380 if (m == 0)
3381 return -1;
3382 else if (m > 1)
3383 {
323e0a4a 3384 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3385 user_select_syms (syms, m, 1);
14f9c5c9
AS
3386 return 0;
3387 }
3388 return 0;
3389}
3390
4c4b4cd2
PH
3391/* Returns true (non-zero) iff decoded name N0 should appear before N1
3392 in a listing of choices during disambiguation (see sort_choices, below).
3393 The idea is that overloadings of a subprogram name from the
3394 same package should sort in their source order. We settle for ordering
3395 such symbols by their trailing number (__N or $N). */
3396
14f9c5c9 3397static int
4c4b4cd2 3398encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3399{
3400 if (N1 == NULL)
3401 return 0;
3402 else if (N0 == NULL)
3403 return 1;
3404 else
3405 {
3406 int k0, k1;
5b4ee69b 3407
d2e4a39e 3408 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3409 ;
d2e4a39e 3410 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3411 ;
d2e4a39e 3412 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3413 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3414 {
3415 int n0, n1;
5b4ee69b 3416
4c4b4cd2
PH
3417 n0 = k0;
3418 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3419 n0 -= 1;
3420 n1 = k1;
3421 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3422 n1 -= 1;
3423 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3424 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3425 }
14f9c5c9
AS
3426 return (strcmp (N0, N1) < 0);
3427 }
3428}
d2e4a39e 3429
4c4b4cd2
PH
3430/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3431 encoded names. */
3432
d2e4a39e 3433static void
4c4b4cd2 3434sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3435{
4c4b4cd2 3436 int i;
5b4ee69b 3437
d2e4a39e 3438 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3439 {
4c4b4cd2 3440 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3441 int j;
3442
d2e4a39e 3443 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3444 {
3445 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3446 SYMBOL_LINKAGE_NAME (sym.sym)))
3447 break;
3448 syms[j + 1] = syms[j];
3449 }
d2e4a39e 3450 syms[j + 1] = sym;
14f9c5c9
AS
3451 }
3452}
3453
4c4b4cd2
PH
3454/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3455 by asking the user (if necessary), returning the number selected,
3456 and setting the first elements of SYMS items. Error if no symbols
3457 selected. */
14f9c5c9
AS
3458
3459/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3460 to be re-integrated one of these days. */
14f9c5c9
AS
3461
3462int
4c4b4cd2 3463user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3464{
3465 int i;
d2e4a39e 3466 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3467 int n_chosen;
3468 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3469 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3470
3471 if (max_results < 1)
323e0a4a 3472 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3473 if (nsyms <= 1)
3474 return nsyms;
3475
717d2f5a
JB
3476 if (select_mode == multiple_symbols_cancel)
3477 error (_("\
3478canceled because the command is ambiguous\n\
3479See set/show multiple-symbol."));
3480
3481 /* If select_mode is "all", then return all possible symbols.
3482 Only do that if more than one symbol can be selected, of course.
3483 Otherwise, display the menu as usual. */
3484 if (select_mode == multiple_symbols_all && max_results > 1)
3485 return nsyms;
3486
323e0a4a 3487 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3488 if (max_results > 1)
323e0a4a 3489 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3490
4c4b4cd2 3491 sort_choices (syms, nsyms);
14f9c5c9
AS
3492
3493 for (i = 0; i < nsyms; i += 1)
3494 {
4c4b4cd2
PH
3495 if (syms[i].sym == NULL)
3496 continue;
3497
3498 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3499 {
76a01679
JB
3500 struct symtab_and_line sal =
3501 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3502
323e0a4a
AC
3503 if (sal.symtab == NULL)
3504 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3505 i + first_choice,
3506 SYMBOL_PRINT_NAME (syms[i].sym),
3507 sal.line);
3508 else
3509 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3510 SYMBOL_PRINT_NAME (syms[i].sym),
3511 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3512 continue;
3513 }
d2e4a39e 3514 else
4c4b4cd2
PH
3515 {
3516 int is_enumeral =
3517 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3518 && SYMBOL_TYPE (syms[i].sym) != NULL
3519 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3520 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3521
3522 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3523 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3524 i + first_choice,
3525 SYMBOL_PRINT_NAME (syms[i].sym),
3526 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3527 else if (is_enumeral
3528 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3529 {
a3f17187 3530 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3531 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3532 gdb_stdout, -1, 0);
323e0a4a 3533 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3534 SYMBOL_PRINT_NAME (syms[i].sym));
3535 }
3536 else if (symtab != NULL)
3537 printf_unfiltered (is_enumeral
323e0a4a
AC
3538 ? _("[%d] %s in %s (enumeral)\n")
3539 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3540 i + first_choice,
3541 SYMBOL_PRINT_NAME (syms[i].sym),
3542 symtab->filename);
3543 else
3544 printf_unfiltered (is_enumeral
323e0a4a
AC
3545 ? _("[%d] %s (enumeral)\n")
3546 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3547 i + first_choice,
3548 SYMBOL_PRINT_NAME (syms[i].sym));
3549 }
14f9c5c9 3550 }
d2e4a39e 3551
14f9c5c9 3552 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3553 "overload-choice");
14f9c5c9
AS
3554
3555 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3556 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3557
3558 return n_chosen;
3559}
3560
3561/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3562 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3563 order in CHOICES[0 .. N-1], and return N.
3564
3565 The user types choices as a sequence of numbers on one line
3566 separated by blanks, encoding them as follows:
3567
4c4b4cd2 3568 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3569 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3570 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3571
4c4b4cd2 3572 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3573
3574 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3575 prompts (for use with the -f switch). */
14f9c5c9
AS
3576
3577int
d2e4a39e 3578get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3579 int is_all_choice, char *annotation_suffix)
14f9c5c9 3580{
d2e4a39e 3581 char *args;
0bcd0149 3582 char *prompt;
14f9c5c9
AS
3583 int n_chosen;
3584 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3585
14f9c5c9
AS
3586 prompt = getenv ("PS2");
3587 if (prompt == NULL)
0bcd0149 3588 prompt = "> ";
14f9c5c9 3589
0bcd0149 3590 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3591
14f9c5c9 3592 if (args == NULL)
323e0a4a 3593 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3594
3595 n_chosen = 0;
76a01679 3596
4c4b4cd2
PH
3597 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3598 order, as given in args. Choices are validated. */
14f9c5c9
AS
3599 while (1)
3600 {
d2e4a39e 3601 char *args2;
14f9c5c9
AS
3602 int choice, j;
3603
3604 while (isspace (*args))
4c4b4cd2 3605 args += 1;
14f9c5c9 3606 if (*args == '\0' && n_chosen == 0)
323e0a4a 3607 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3608 else if (*args == '\0')
4c4b4cd2 3609 break;
14f9c5c9
AS
3610
3611 choice = strtol (args, &args2, 10);
d2e4a39e 3612 if (args == args2 || choice < 0
4c4b4cd2 3613 || choice > n_choices + first_choice - 1)
323e0a4a 3614 error (_("Argument must be choice number"));
14f9c5c9
AS
3615 args = args2;
3616
d2e4a39e 3617 if (choice == 0)
323e0a4a 3618 error (_("cancelled"));
14f9c5c9
AS
3619
3620 if (choice < first_choice)
4c4b4cd2
PH
3621 {
3622 n_chosen = n_choices;
3623 for (j = 0; j < n_choices; j += 1)
3624 choices[j] = j;
3625 break;
3626 }
14f9c5c9
AS
3627 choice -= first_choice;
3628
d2e4a39e 3629 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3630 {
3631 }
14f9c5c9
AS
3632
3633 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3634 {
3635 int k;
5b4ee69b 3636
4c4b4cd2
PH
3637 for (k = n_chosen - 1; k > j; k -= 1)
3638 choices[k + 1] = choices[k];
3639 choices[j + 1] = choice;
3640 n_chosen += 1;
3641 }
14f9c5c9
AS
3642 }
3643
3644 if (n_chosen > max_results)
323e0a4a 3645 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3646
14f9c5c9
AS
3647 return n_chosen;
3648}
3649
4c4b4cd2
PH
3650/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3651 on the function identified by SYM and BLOCK, and taking NARGS
3652 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3653
3654static void
d2e4a39e 3655replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3656 int oplen, struct symbol *sym,
3657 struct block *block)
14f9c5c9
AS
3658{
3659 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3660 symbol, -oplen for operator being replaced). */
d2e4a39e 3661 struct expression *newexp = (struct expression *)
8c1a34e7 3662 xzalloc (sizeof (struct expression)
4c4b4cd2 3663 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3664 struct expression *exp = *expp;
14f9c5c9
AS
3665
3666 newexp->nelts = exp->nelts + 7 - oplen;
3667 newexp->language_defn = exp->language_defn;
3489610d 3668 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3669 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3670 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3671 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3672
3673 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3674 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3675
3676 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3677 newexp->elts[pc + 4].block = block;
3678 newexp->elts[pc + 5].symbol = sym;
3679
3680 *expp = newexp;
aacb1f0a 3681 xfree (exp);
d2e4a39e 3682}
14f9c5c9
AS
3683
3684/* Type-class predicates */
3685
4c4b4cd2
PH
3686/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3687 or FLOAT). */
14f9c5c9
AS
3688
3689static int
d2e4a39e 3690numeric_type_p (struct type *type)
14f9c5c9
AS
3691{
3692 if (type == NULL)
3693 return 0;
d2e4a39e
AS
3694 else
3695 {
3696 switch (TYPE_CODE (type))
4c4b4cd2
PH
3697 {
3698 case TYPE_CODE_INT:
3699 case TYPE_CODE_FLT:
3700 return 1;
3701 case TYPE_CODE_RANGE:
3702 return (type == TYPE_TARGET_TYPE (type)
3703 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3704 default:
3705 return 0;
3706 }
d2e4a39e 3707 }
14f9c5c9
AS
3708}
3709
4c4b4cd2 3710/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3711
3712static int
d2e4a39e 3713integer_type_p (struct type *type)
14f9c5c9
AS
3714{
3715 if (type == NULL)
3716 return 0;
d2e4a39e
AS
3717 else
3718 {
3719 switch (TYPE_CODE (type))
4c4b4cd2
PH
3720 {
3721 case TYPE_CODE_INT:
3722 return 1;
3723 case TYPE_CODE_RANGE:
3724 return (type == TYPE_TARGET_TYPE (type)
3725 || integer_type_p (TYPE_TARGET_TYPE (type)));
3726 default:
3727 return 0;
3728 }
d2e4a39e 3729 }
14f9c5c9
AS
3730}
3731
4c4b4cd2 3732/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3733
3734static int
d2e4a39e 3735scalar_type_p (struct type *type)
14f9c5c9
AS
3736{
3737 if (type == NULL)
3738 return 0;
d2e4a39e
AS
3739 else
3740 {
3741 switch (TYPE_CODE (type))
4c4b4cd2
PH
3742 {
3743 case TYPE_CODE_INT:
3744 case TYPE_CODE_RANGE:
3745 case TYPE_CODE_ENUM:
3746 case TYPE_CODE_FLT:
3747 return 1;
3748 default:
3749 return 0;
3750 }
d2e4a39e 3751 }
14f9c5c9
AS
3752}
3753
4c4b4cd2 3754/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3755
3756static int
d2e4a39e 3757discrete_type_p (struct type *type)
14f9c5c9
AS
3758{
3759 if (type == NULL)
3760 return 0;
d2e4a39e
AS
3761 else
3762 {
3763 switch (TYPE_CODE (type))
4c4b4cd2
PH
3764 {
3765 case TYPE_CODE_INT:
3766 case TYPE_CODE_RANGE:
3767 case TYPE_CODE_ENUM:
872f0337 3768 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3769 return 1;
3770 default:
3771 return 0;
3772 }
d2e4a39e 3773 }
14f9c5c9
AS
3774}
3775
4c4b4cd2
PH
3776/* Returns non-zero if OP with operands in the vector ARGS could be
3777 a user-defined function. Errs on the side of pre-defined operators
3778 (i.e., result 0). */
14f9c5c9
AS
3779
3780static int
d2e4a39e 3781possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3782{
76a01679 3783 struct type *type0 =
df407dfe 3784 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3785 struct type *type1 =
df407dfe 3786 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3787
4c4b4cd2
PH
3788 if (type0 == NULL)
3789 return 0;
3790
14f9c5c9
AS
3791 switch (op)
3792 {
3793 default:
3794 return 0;
3795
3796 case BINOP_ADD:
3797 case BINOP_SUB:
3798 case BINOP_MUL:
3799 case BINOP_DIV:
d2e4a39e 3800 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3801
3802 case BINOP_REM:
3803 case BINOP_MOD:
3804 case BINOP_BITWISE_AND:
3805 case BINOP_BITWISE_IOR:
3806 case BINOP_BITWISE_XOR:
d2e4a39e 3807 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3808
3809 case BINOP_EQUAL:
3810 case BINOP_NOTEQUAL:
3811 case BINOP_LESS:
3812 case BINOP_GTR:
3813 case BINOP_LEQ:
3814 case BINOP_GEQ:
d2e4a39e 3815 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3816
3817 case BINOP_CONCAT:
ee90b9ab 3818 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3819
3820 case BINOP_EXP:
d2e4a39e 3821 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3822
3823 case UNOP_NEG:
3824 case UNOP_PLUS:
3825 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3826 case UNOP_ABS:
3827 return (!numeric_type_p (type0));
14f9c5c9
AS
3828
3829 }
3830}
3831\f
4c4b4cd2 3832 /* Renaming */
14f9c5c9 3833
aeb5907d
JB
3834/* NOTES:
3835
3836 1. In the following, we assume that a renaming type's name may
3837 have an ___XD suffix. It would be nice if this went away at some
3838 point.
3839 2. We handle both the (old) purely type-based representation of
3840 renamings and the (new) variable-based encoding. At some point,
3841 it is devoutly to be hoped that the former goes away
3842 (FIXME: hilfinger-2007-07-09).
3843 3. Subprogram renamings are not implemented, although the XRS
3844 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3845
3846/* If SYM encodes a renaming,
3847
3848 <renaming> renames <renamed entity>,
3849
3850 sets *LEN to the length of the renamed entity's name,
3851 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3852 the string describing the subcomponent selected from the renamed
0963b4bd 3853 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3854 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3855 are undefined). Otherwise, returns a value indicating the category
3856 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3857 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3858 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3859 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3860 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3861 may be NULL, in which case they are not assigned.
3862
3863 [Currently, however, GCC does not generate subprogram renamings.] */
3864
3865enum ada_renaming_category
3866ada_parse_renaming (struct symbol *sym,
3867 const char **renamed_entity, int *len,
3868 const char **renaming_expr)
3869{
3870 enum ada_renaming_category kind;
3871 const char *info;
3872 const char *suffix;
3873
3874 if (sym == NULL)
3875 return ADA_NOT_RENAMING;
3876 switch (SYMBOL_CLASS (sym))
14f9c5c9 3877 {
aeb5907d
JB
3878 default:
3879 return ADA_NOT_RENAMING;
3880 case LOC_TYPEDEF:
3881 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3882 renamed_entity, len, renaming_expr);
3883 case LOC_LOCAL:
3884 case LOC_STATIC:
3885 case LOC_COMPUTED:
3886 case LOC_OPTIMIZED_OUT:
3887 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3888 if (info == NULL)
3889 return ADA_NOT_RENAMING;
3890 switch (info[5])
3891 {
3892 case '_':
3893 kind = ADA_OBJECT_RENAMING;
3894 info += 6;
3895 break;
3896 case 'E':
3897 kind = ADA_EXCEPTION_RENAMING;
3898 info += 7;
3899 break;
3900 case 'P':
3901 kind = ADA_PACKAGE_RENAMING;
3902 info += 7;
3903 break;
3904 case 'S':
3905 kind = ADA_SUBPROGRAM_RENAMING;
3906 info += 7;
3907 break;
3908 default:
3909 return ADA_NOT_RENAMING;
3910 }
14f9c5c9 3911 }
4c4b4cd2 3912
aeb5907d
JB
3913 if (renamed_entity != NULL)
3914 *renamed_entity = info;
3915 suffix = strstr (info, "___XE");
3916 if (suffix == NULL || suffix == info)
3917 return ADA_NOT_RENAMING;
3918 if (len != NULL)
3919 *len = strlen (info) - strlen (suffix);
3920 suffix += 5;
3921 if (renaming_expr != NULL)
3922 *renaming_expr = suffix;
3923 return kind;
3924}
3925
3926/* Assuming TYPE encodes a renaming according to the old encoding in
3927 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3928 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3929 ADA_NOT_RENAMING otherwise. */
3930static enum ada_renaming_category
3931parse_old_style_renaming (struct type *type,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934{
3935 enum ada_renaming_category kind;
3936 const char *name;
3937 const char *info;
3938 const char *suffix;
14f9c5c9 3939
aeb5907d
JB
3940 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3941 || TYPE_NFIELDS (type) != 1)
3942 return ADA_NOT_RENAMING;
14f9c5c9 3943
aeb5907d
JB
3944 name = type_name_no_tag (type);
3945 if (name == NULL)
3946 return ADA_NOT_RENAMING;
3947
3948 name = strstr (name, "___XR");
3949 if (name == NULL)
3950 return ADA_NOT_RENAMING;
3951 switch (name[5])
3952 {
3953 case '\0':
3954 case '_':
3955 kind = ADA_OBJECT_RENAMING;
3956 break;
3957 case 'E':
3958 kind = ADA_EXCEPTION_RENAMING;
3959 break;
3960 case 'P':
3961 kind = ADA_PACKAGE_RENAMING;
3962 break;
3963 case 'S':
3964 kind = ADA_SUBPROGRAM_RENAMING;
3965 break;
3966 default:
3967 return ADA_NOT_RENAMING;
3968 }
14f9c5c9 3969
aeb5907d
JB
3970 info = TYPE_FIELD_NAME (type, 0);
3971 if (info == NULL)
3972 return ADA_NOT_RENAMING;
3973 if (renamed_entity != NULL)
3974 *renamed_entity = info;
3975 suffix = strstr (info, "___XE");
3976 if (renaming_expr != NULL)
3977 *renaming_expr = suffix + 5;
3978 if (suffix == NULL || suffix == info)
3979 return ADA_NOT_RENAMING;
3980 if (len != NULL)
3981 *len = suffix - info;
3982 return kind;
3983}
52ce6436 3984
14f9c5c9 3985\f
d2e4a39e 3986
4c4b4cd2 3987 /* Evaluation: Function Calls */
14f9c5c9 3988
4c4b4cd2 3989/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
3990 lvalues, and otherwise has the side-effect of allocating memory
3991 in the inferior where a copy of the value contents is copied. */
14f9c5c9 3992
d2e4a39e 3993static struct value *
40bc484c 3994ensure_lval (struct value *val)
14f9c5c9 3995{
40bc484c
JB
3996 if (VALUE_LVAL (val) == not_lval
3997 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 3998 {
df407dfe 3999 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4000 const CORE_ADDR addr =
4001 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4002
40bc484c 4003 set_value_address (val, addr);
a84a8a0d 4004 VALUE_LVAL (val) = lval_memory;
40bc484c 4005 write_memory (addr, value_contents (val), len);
c3e5cd34 4006 }
14f9c5c9
AS
4007
4008 return val;
4009}
4010
4011/* Return the value ACTUAL, converted to be an appropriate value for a
4012 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4013 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4014 values not residing in memory, updating it as needed. */
14f9c5c9 4015
a93c0eb6 4016struct value *
40bc484c 4017ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4018{
df407dfe 4019 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4020 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4021 struct type *formal_target =
4022 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4023 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4024 struct type *actual_target =
4025 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4026 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4027
4c4b4cd2 4028 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4029 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4030 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4031 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4032 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4033 {
a84a8a0d 4034 struct value *result;
5b4ee69b 4035
14f9c5c9 4036 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4037 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4038 result = desc_data (actual);
14f9c5c9 4039 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4040 {
4041 if (VALUE_LVAL (actual) != lval_memory)
4042 {
4043 struct value *val;
5b4ee69b 4044
df407dfe 4045 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4046 val = allocate_value (actual_type);
990a07ab 4047 memcpy ((char *) value_contents_raw (val),
0fd88904 4048 (char *) value_contents (actual),
4c4b4cd2 4049 TYPE_LENGTH (actual_type));
40bc484c 4050 actual = ensure_lval (val);
4c4b4cd2 4051 }
a84a8a0d 4052 result = value_addr (actual);
4c4b4cd2 4053 }
a84a8a0d
JB
4054 else
4055 return actual;
4056 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
4057 }
4058 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4059 return ada_value_ind (actual);
4060
4061 return actual;
4062}
4063
438c98a1
JB
4064/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4065 type TYPE. This is usually an inefficient no-op except on some targets
4066 (such as AVR) where the representation of a pointer and an address
4067 differs. */
4068
4069static CORE_ADDR
4070value_pointer (struct value *value, struct type *type)
4071{
4072 struct gdbarch *gdbarch = get_type_arch (type);
4073 unsigned len = TYPE_LENGTH (type);
4074 gdb_byte *buf = alloca (len);
4075 CORE_ADDR addr;
4076
4077 addr = value_address (value);
4078 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4079 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4080 return addr;
4081}
4082
14f9c5c9 4083
4c4b4cd2
PH
4084/* Push a descriptor of type TYPE for array value ARR on the stack at
4085 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4086 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4087 to-descriptor type rather than a descriptor type), a struct value *
4088 representing a pointer to this descriptor. */
14f9c5c9 4089
d2e4a39e 4090static struct value *
40bc484c 4091make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4092{
d2e4a39e
AS
4093 struct type *bounds_type = desc_bounds_type (type);
4094 struct type *desc_type = desc_base_type (type);
4095 struct value *descriptor = allocate_value (desc_type);
4096 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4097 int i;
d2e4a39e 4098
0963b4bd
MS
4099 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4100 i > 0; i -= 1)
14f9c5c9 4101 {
19f220c3
JK
4102 modify_field (value_type (bounds), value_contents_writeable (bounds),
4103 ada_array_bound (arr, i, 0),
4104 desc_bound_bitpos (bounds_type, i, 0),
4105 desc_bound_bitsize (bounds_type, i, 0));
4106 modify_field (value_type (bounds), value_contents_writeable (bounds),
4107 ada_array_bound (arr, i, 1),
4108 desc_bound_bitpos (bounds_type, i, 1),
4109 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4110 }
d2e4a39e 4111
40bc484c 4112 bounds = ensure_lval (bounds);
d2e4a39e 4113
19f220c3
JK
4114 modify_field (value_type (descriptor),
4115 value_contents_writeable (descriptor),
4116 value_pointer (ensure_lval (arr),
4117 TYPE_FIELD_TYPE (desc_type, 0)),
4118 fat_pntr_data_bitpos (desc_type),
4119 fat_pntr_data_bitsize (desc_type));
4120
4121 modify_field (value_type (descriptor),
4122 value_contents_writeable (descriptor),
4123 value_pointer (bounds,
4124 TYPE_FIELD_TYPE (desc_type, 1)),
4125 fat_pntr_bounds_bitpos (desc_type),
4126 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4127
40bc484c 4128 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4129
4130 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4131 return value_addr (descriptor);
4132 else
4133 return descriptor;
4134}
14f9c5c9 4135\f
963a6417 4136/* Dummy definitions for an experimental caching module that is not
0963b4bd 4137 * used in the public sources. */
96d887e8 4138
96d887e8
PH
4139static int
4140lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4141 struct symbol **sym, struct block **block)
96d887e8
PH
4142{
4143 return 0;
4144}
4145
4146static void
4147cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4148 struct block *block)
96d887e8
PH
4149{
4150}
4c4b4cd2
PH
4151\f
4152 /* Symbol Lookup */
4153
4154/* Return the result of a standard (literal, C-like) lookup of NAME in
4155 given DOMAIN, visible from lexical block BLOCK. */
4156
4157static struct symbol *
4158standard_lookup (const char *name, const struct block *block,
4159 domain_enum domain)
4160{
4161 struct symbol *sym;
4c4b4cd2 4162
2570f2b7 4163 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4164 return sym;
2570f2b7
UW
4165 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4166 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4167 return sym;
4168}
4169
4170
4171/* Non-zero iff there is at least one non-function/non-enumeral symbol
4172 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4173 since they contend in overloading in the same way. */
4174static int
4175is_nonfunction (struct ada_symbol_info syms[], int n)
4176{
4177 int i;
4178
4179 for (i = 0; i < n; i += 1)
4180 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4181 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4182 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4183 return 1;
4184
4185 return 0;
4186}
4187
4188/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4189 struct types. Otherwise, they may not. */
14f9c5c9
AS
4190
4191static int
d2e4a39e 4192equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4193{
d2e4a39e 4194 if (type0 == type1)
14f9c5c9 4195 return 1;
d2e4a39e 4196 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4197 || TYPE_CODE (type0) != TYPE_CODE (type1))
4198 return 0;
d2e4a39e 4199 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4200 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4201 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4202 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4203 return 1;
d2e4a39e 4204
14f9c5c9
AS
4205 return 0;
4206}
4207
4208/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4209 no more defined than that of SYM1. */
14f9c5c9
AS
4210
4211static int
d2e4a39e 4212lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4213{
4214 if (sym0 == sym1)
4215 return 1;
176620f1 4216 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4217 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4218 return 0;
4219
d2e4a39e 4220 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4221 {
4222 case LOC_UNDEF:
4223 return 1;
4224 case LOC_TYPEDEF:
4225 {
4c4b4cd2
PH
4226 struct type *type0 = SYMBOL_TYPE (sym0);
4227 struct type *type1 = SYMBOL_TYPE (sym1);
4228 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4229 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4230 int len0 = strlen (name0);
5b4ee69b 4231
4c4b4cd2
PH
4232 return
4233 TYPE_CODE (type0) == TYPE_CODE (type1)
4234 && (equiv_types (type0, type1)
4235 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4236 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4237 }
4238 case LOC_CONST:
4239 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4240 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4241 default:
4242 return 0;
14f9c5c9
AS
4243 }
4244}
4245
4c4b4cd2
PH
4246/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4247 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4248
4249static void
76a01679
JB
4250add_defn_to_vec (struct obstack *obstackp,
4251 struct symbol *sym,
2570f2b7 4252 struct block *block)
14f9c5c9
AS
4253{
4254 int i;
4c4b4cd2 4255 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4256
529cad9c
PH
4257 /* Do not try to complete stub types, as the debugger is probably
4258 already scanning all symbols matching a certain name at the
4259 time when this function is called. Trying to replace the stub
4260 type by its associated full type will cause us to restart a scan
4261 which may lead to an infinite recursion. Instead, the client
4262 collecting the matching symbols will end up collecting several
4263 matches, with at least one of them complete. It can then filter
4264 out the stub ones if needed. */
4265
4c4b4cd2
PH
4266 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4267 {
4268 if (lesseq_defined_than (sym, prevDefns[i].sym))
4269 return;
4270 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4271 {
4272 prevDefns[i].sym = sym;
4273 prevDefns[i].block = block;
4c4b4cd2 4274 return;
76a01679 4275 }
4c4b4cd2
PH
4276 }
4277
4278 {
4279 struct ada_symbol_info info;
4280
4281 info.sym = sym;
4282 info.block = block;
4c4b4cd2
PH
4283 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4284 }
4285}
4286
4287/* Number of ada_symbol_info structures currently collected in
4288 current vector in *OBSTACKP. */
4289
76a01679
JB
4290static int
4291num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4292{
4293 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4294}
4295
4296/* Vector of ada_symbol_info structures currently collected in current
4297 vector in *OBSTACKP. If FINISH, close off the vector and return
4298 its final address. */
4299
76a01679 4300static struct ada_symbol_info *
4c4b4cd2
PH
4301defns_collected (struct obstack *obstackp, int finish)
4302{
4303 if (finish)
4304 return obstack_finish (obstackp);
4305 else
4306 return (struct ada_symbol_info *) obstack_base (obstackp);
4307}
4308
96d887e8
PH
4309/* Return a minimal symbol matching NAME according to Ada decoding
4310 rules. Returns NULL if there is no such minimal symbol. Names
4311 prefixed with "standard__" are handled specially: "standard__" is
4312 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4313
96d887e8
PH
4314struct minimal_symbol *
4315ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4316{
4c4b4cd2 4317 struct objfile *objfile;
96d887e8
PH
4318 struct minimal_symbol *msymbol;
4319 int wild_match;
4c4b4cd2 4320
96d887e8 4321 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4322 {
96d887e8 4323 name += sizeof ("standard__") - 1;
4c4b4cd2 4324 wild_match = 0;
4c4b4cd2
PH
4325 }
4326 else
96d887e8 4327 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4328
96d887e8
PH
4329 ALL_MSYMBOLS (objfile, msymbol)
4330 {
40658b94 4331 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
96d887e8
PH
4332 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4333 return msymbol;
4334 }
4c4b4cd2 4335
96d887e8
PH
4336 return NULL;
4337}
4c4b4cd2 4338
96d887e8
PH
4339/* For all subprograms that statically enclose the subprogram of the
4340 selected frame, add symbols matching identifier NAME in DOMAIN
4341 and their blocks to the list of data in OBSTACKP, as for
4342 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4343 wildcard prefix. */
4c4b4cd2 4344
96d887e8
PH
4345static void
4346add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4347 const char *name, domain_enum namespace,
96d887e8
PH
4348 int wild_match)
4349{
96d887e8 4350}
14f9c5c9 4351
96d887e8
PH
4352/* True if TYPE is definitely an artificial type supplied to a symbol
4353 for which no debugging information was given in the symbol file. */
14f9c5c9 4354
96d887e8
PH
4355static int
4356is_nondebugging_type (struct type *type)
4357{
4358 char *name = ada_type_name (type);
5b4ee69b 4359
96d887e8
PH
4360 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4361}
4c4b4cd2 4362
96d887e8
PH
4363/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4364 duplicate other symbols in the list (The only case I know of where
4365 this happens is when object files containing stabs-in-ecoff are
4366 linked with files containing ordinary ecoff debugging symbols (or no
4367 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4368 Returns the number of items in the modified list. */
4c4b4cd2 4369
96d887e8
PH
4370static int
4371remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4372{
4373 int i, j;
4c4b4cd2 4374
96d887e8
PH
4375 i = 0;
4376 while (i < nsyms)
4377 {
339c13b6
JB
4378 int remove = 0;
4379
4380 /* If two symbols have the same name and one of them is a stub type,
4381 the get rid of the stub. */
4382
4383 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4384 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4385 {
4386 for (j = 0; j < nsyms; j++)
4387 {
4388 if (j != i
4389 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4390 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4391 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4392 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4393 remove = 1;
4394 }
4395 }
4396
4397 /* Two symbols with the same name, same class and same address
4398 should be identical. */
4399
4400 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4401 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4402 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4403 {
4404 for (j = 0; j < nsyms; j += 1)
4405 {
4406 if (i != j
4407 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4408 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4409 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4410 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4411 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4412 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4413 remove = 1;
4c4b4cd2 4414 }
4c4b4cd2 4415 }
339c13b6
JB
4416
4417 if (remove)
4418 {
4419 for (j = i + 1; j < nsyms; j += 1)
4420 syms[j - 1] = syms[j];
4421 nsyms -= 1;
4422 }
4423
96d887e8 4424 i += 1;
14f9c5c9 4425 }
96d887e8 4426 return nsyms;
14f9c5c9
AS
4427}
4428
96d887e8
PH
4429/* Given a type that corresponds to a renaming entity, use the type name
4430 to extract the scope (package name or function name, fully qualified,
4431 and following the GNAT encoding convention) where this renaming has been
4432 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4433
96d887e8
PH
4434static char *
4435xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4436{
96d887e8 4437 /* The renaming types adhere to the following convention:
0963b4bd 4438 <scope>__<rename>___<XR extension>.
96d887e8
PH
4439 So, to extract the scope, we search for the "___XR" extension,
4440 and then backtrack until we find the first "__". */
76a01679 4441
96d887e8
PH
4442 const char *name = type_name_no_tag (renaming_type);
4443 char *suffix = strstr (name, "___XR");
4444 char *last;
4445 int scope_len;
4446 char *scope;
14f9c5c9 4447
96d887e8
PH
4448 /* Now, backtrack a bit until we find the first "__". Start looking
4449 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4450
96d887e8
PH
4451 for (last = suffix - 3; last > name; last--)
4452 if (last[0] == '_' && last[1] == '_')
4453 break;
76a01679 4454
96d887e8 4455 /* Make a copy of scope and return it. */
14f9c5c9 4456
96d887e8
PH
4457 scope_len = last - name;
4458 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4459
96d887e8
PH
4460 strncpy (scope, name, scope_len);
4461 scope[scope_len] = '\0';
4c4b4cd2 4462
96d887e8 4463 return scope;
4c4b4cd2
PH
4464}
4465
96d887e8 4466/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4467
96d887e8
PH
4468static int
4469is_package_name (const char *name)
4c4b4cd2 4470{
96d887e8
PH
4471 /* Here, We take advantage of the fact that no symbols are generated
4472 for packages, while symbols are generated for each function.
4473 So the condition for NAME represent a package becomes equivalent
4474 to NAME not existing in our list of symbols. There is only one
4475 small complication with library-level functions (see below). */
4c4b4cd2 4476
96d887e8 4477 char *fun_name;
76a01679 4478
96d887e8
PH
4479 /* If it is a function that has not been defined at library level,
4480 then we should be able to look it up in the symbols. */
4481 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4482 return 0;
14f9c5c9 4483
96d887e8
PH
4484 /* Library-level function names start with "_ada_". See if function
4485 "_ada_" followed by NAME can be found. */
14f9c5c9 4486
96d887e8 4487 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4488 functions names cannot contain "__" in them. */
96d887e8
PH
4489 if (strstr (name, "__") != NULL)
4490 return 0;
4c4b4cd2 4491
b435e160 4492 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4493
96d887e8
PH
4494 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4495}
14f9c5c9 4496
96d887e8 4497/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4498 not visible from FUNCTION_NAME. */
14f9c5c9 4499
96d887e8 4500static int
aeb5907d 4501old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4502{
aeb5907d
JB
4503 char *scope;
4504
4505 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4506 return 0;
4507
4508 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4509
96d887e8 4510 make_cleanup (xfree, scope);
14f9c5c9 4511
96d887e8
PH
4512 /* If the rename has been defined in a package, then it is visible. */
4513 if (is_package_name (scope))
aeb5907d 4514 return 0;
14f9c5c9 4515
96d887e8
PH
4516 /* Check that the rename is in the current function scope by checking
4517 that its name starts with SCOPE. */
76a01679 4518
96d887e8
PH
4519 /* If the function name starts with "_ada_", it means that it is
4520 a library-level function. Strip this prefix before doing the
4521 comparison, as the encoding for the renaming does not contain
4522 this prefix. */
4523 if (strncmp (function_name, "_ada_", 5) == 0)
4524 function_name += 5;
f26caa11 4525
aeb5907d 4526 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4527}
4528
aeb5907d
JB
4529/* Remove entries from SYMS that corresponds to a renaming entity that
4530 is not visible from the function associated with CURRENT_BLOCK or
4531 that is superfluous due to the presence of more specific renaming
4532 information. Places surviving symbols in the initial entries of
4533 SYMS and returns the number of surviving symbols.
96d887e8
PH
4534
4535 Rationale:
aeb5907d
JB
4536 First, in cases where an object renaming is implemented as a
4537 reference variable, GNAT may produce both the actual reference
4538 variable and the renaming encoding. In this case, we discard the
4539 latter.
4540
4541 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4542 entity. Unfortunately, STABS currently does not support the definition
4543 of types that are local to a given lexical block, so all renamings types
4544 are emitted at library level. As a consequence, if an application
4545 contains two renaming entities using the same name, and a user tries to
4546 print the value of one of these entities, the result of the ada symbol
4547 lookup will also contain the wrong renaming type.
f26caa11 4548
96d887e8
PH
4549 This function partially covers for this limitation by attempting to
4550 remove from the SYMS list renaming symbols that should be visible
4551 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4552 method with the current information available. The implementation
4553 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4554
4555 - When the user tries to print a rename in a function while there
4556 is another rename entity defined in a package: Normally, the
4557 rename in the function has precedence over the rename in the
4558 package, so the latter should be removed from the list. This is
4559 currently not the case.
4560
4561 - This function will incorrectly remove valid renames if
4562 the CURRENT_BLOCK corresponds to a function which symbol name
4563 has been changed by an "Export" pragma. As a consequence,
4564 the user will be unable to print such rename entities. */
4c4b4cd2 4565
14f9c5c9 4566static int
aeb5907d
JB
4567remove_irrelevant_renamings (struct ada_symbol_info *syms,
4568 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4569{
4570 struct symbol *current_function;
4571 char *current_function_name;
4572 int i;
aeb5907d
JB
4573 int is_new_style_renaming;
4574
4575 /* If there is both a renaming foo___XR... encoded as a variable and
4576 a simple variable foo in the same block, discard the latter.
0963b4bd 4577 First, zero out such symbols, then compress. */
aeb5907d
JB
4578 is_new_style_renaming = 0;
4579 for (i = 0; i < nsyms; i += 1)
4580 {
4581 struct symbol *sym = syms[i].sym;
4582 struct block *block = syms[i].block;
4583 const char *name;
4584 const char *suffix;
4585
4586 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4587 continue;
4588 name = SYMBOL_LINKAGE_NAME (sym);
4589 suffix = strstr (name, "___XR");
4590
4591 if (suffix != NULL)
4592 {
4593 int name_len = suffix - name;
4594 int j;
5b4ee69b 4595
aeb5907d
JB
4596 is_new_style_renaming = 1;
4597 for (j = 0; j < nsyms; j += 1)
4598 if (i != j && syms[j].sym != NULL
4599 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4600 name_len) == 0
4601 && block == syms[j].block)
4602 syms[j].sym = NULL;
4603 }
4604 }
4605 if (is_new_style_renaming)
4606 {
4607 int j, k;
4608
4609 for (j = k = 0; j < nsyms; j += 1)
4610 if (syms[j].sym != NULL)
4611 {
4612 syms[k] = syms[j];
4613 k += 1;
4614 }
4615 return k;
4616 }
4c4b4cd2
PH
4617
4618 /* Extract the function name associated to CURRENT_BLOCK.
4619 Abort if unable to do so. */
76a01679 4620
4c4b4cd2
PH
4621 if (current_block == NULL)
4622 return nsyms;
76a01679 4623
7f0df278 4624 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4625 if (current_function == NULL)
4626 return nsyms;
4627
4628 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4629 if (current_function_name == NULL)
4630 return nsyms;
4631
4632 /* Check each of the symbols, and remove it from the list if it is
4633 a type corresponding to a renaming that is out of the scope of
4634 the current block. */
4635
4636 i = 0;
4637 while (i < nsyms)
4638 {
aeb5907d
JB
4639 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4640 == ADA_OBJECT_RENAMING
4641 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4642 {
4643 int j;
5b4ee69b 4644
aeb5907d 4645 for (j = i + 1; j < nsyms; j += 1)
76a01679 4646 syms[j - 1] = syms[j];
4c4b4cd2
PH
4647 nsyms -= 1;
4648 }
4649 else
4650 i += 1;
4651 }
4652
4653 return nsyms;
4654}
4655
339c13b6
JB
4656/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4657 whose name and domain match NAME and DOMAIN respectively.
4658 If no match was found, then extend the search to "enclosing"
4659 routines (in other words, if we're inside a nested function,
4660 search the symbols defined inside the enclosing functions).
4661
4662 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4663
4664static void
4665ada_add_local_symbols (struct obstack *obstackp, const char *name,
4666 struct block *block, domain_enum domain,
4667 int wild_match)
4668{
4669 int block_depth = 0;
4670
4671 while (block != NULL)
4672 {
4673 block_depth += 1;
4674 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4675
4676 /* If we found a non-function match, assume that's the one. */
4677 if (is_nonfunction (defns_collected (obstackp, 0),
4678 num_defns_collected (obstackp)))
4679 return;
4680
4681 block = BLOCK_SUPERBLOCK (block);
4682 }
4683
4684 /* If no luck so far, try to find NAME as a local symbol in some lexically
4685 enclosing subprogram. */
4686 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4687 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4688}
4689
ccefe4c4 4690/* An object of this type is used as the user_data argument when
40658b94 4691 calling the map_matching_symbols method. */
ccefe4c4 4692
40658b94 4693struct match_data
ccefe4c4 4694{
40658b94 4695 struct objfile *objfile;
ccefe4c4 4696 struct obstack *obstackp;
40658b94
PH
4697 struct symbol *arg_sym;
4698 int found_sym;
ccefe4c4
TT
4699};
4700
40658b94
PH
4701/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4702 to a list of symbols. DATA0 is a pointer to a struct match_data *
4703 containing the obstack that collects the symbol list, the file that SYM
4704 must come from, a flag indicating whether a non-argument symbol has
4705 been found in the current block, and the last argument symbol
4706 passed in SYM within the current block (if any). When SYM is null,
4707 marking the end of a block, the argument symbol is added if no
4708 other has been found. */
ccefe4c4 4709
40658b94
PH
4710static int
4711aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4712{
40658b94
PH
4713 struct match_data *data = (struct match_data *) data0;
4714
4715 if (sym == NULL)
4716 {
4717 if (!data->found_sym && data->arg_sym != NULL)
4718 add_defn_to_vec (data->obstackp,
4719 fixup_symbol_section (data->arg_sym, data->objfile),
4720 block);
4721 data->found_sym = 0;
4722 data->arg_sym = NULL;
4723 }
4724 else
4725 {
4726 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4727 return 0;
4728 else if (SYMBOL_IS_ARGUMENT (sym))
4729 data->arg_sym = sym;
4730 else
4731 {
4732 data->found_sym = 1;
4733 add_defn_to_vec (data->obstackp,
4734 fixup_symbol_section (sym, data->objfile),
4735 block);
4736 }
4737 }
4738 return 0;
4739}
4740
4741/* Compare STRING1 to STRING2, with results as for strcmp.
4742 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4743 implies compare_names (STRING1, STRING2) (they may differ as to
4744 what symbols compare equal). */
5b4ee69b 4745
40658b94
PH
4746static int
4747compare_names (const char *string1, const char *string2)
4748{
4749 while (*string1 != '\0' && *string2 != '\0')
4750 {
4751 if (isspace (*string1) || isspace (*string2))
4752 return strcmp_iw_ordered (string1, string2);
4753 if (*string1 != *string2)
4754 break;
4755 string1 += 1;
4756 string2 += 1;
4757 }
4758 switch (*string1)
4759 {
4760 case '(':
4761 return strcmp_iw_ordered (string1, string2);
4762 case '_':
4763 if (*string2 == '\0')
4764 {
052874e8 4765 if (is_name_suffix (string1))
40658b94
PH
4766 return 0;
4767 else
4768 return -1;
4769 }
dbb8534f 4770 /* FALLTHROUGH */
40658b94
PH
4771 default:
4772 if (*string2 == '(')
4773 return strcmp_iw_ordered (string1, string2);
4774 else
4775 return *string1 - *string2;
4776 }
ccefe4c4
TT
4777}
4778
339c13b6
JB
4779/* Add to OBSTACKP all non-local symbols whose name and domain match
4780 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4781 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4782
4783static void
40658b94
PH
4784add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4785 domain_enum domain, int global,
4786 int is_wild_match)
339c13b6
JB
4787{
4788 struct objfile *objfile;
40658b94 4789 struct match_data data;
339c13b6 4790
ccefe4c4 4791 data.obstackp = obstackp;
40658b94 4792 data.arg_sym = NULL;
339c13b6 4793
ccefe4c4 4794 ALL_OBJFILES (objfile)
40658b94
PH
4795 {
4796 data.objfile = objfile;
4797
4798 if (is_wild_match)
4799 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4800 aux_add_nonlocal_symbols, &data,
4801 wild_match, NULL);
4802 else
4803 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4804 aux_add_nonlocal_symbols, &data,
4805 full_match, compare_names);
4806 }
4807
4808 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4809 {
4810 ALL_OBJFILES (objfile)
4811 {
4812 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4813 strcpy (name1, "_ada_");
4814 strcpy (name1 + sizeof ("_ada_") - 1, name);
4815 data.objfile = objfile;
0963b4bd
MS
4816 objfile->sf->qf->map_matching_symbols (name1, domain,
4817 objfile, global,
4818 aux_add_nonlocal_symbols,
4819 &data,
40658b94
PH
4820 full_match, compare_names);
4821 }
4822 }
339c13b6
JB
4823}
4824
4c4b4cd2
PH
4825/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4826 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4827 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4828 indicating the symbols found and the blocks and symbol tables (if
4829 any) in which they were found. This vector are transient---good only to
4830 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4831 symbol match within the nest of blocks whose innermost member is BLOCK0,
4832 is the one match returned (no other matches in that or
4833 enclosing blocks is returned). If there are any matches in or
4834 surrounding BLOCK0, then these alone are returned. Otherwise, the
4835 search extends to global and file-scope (static) symbol tables.
4836 Names prefixed with "standard__" are handled specially: "standard__"
4837 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4838
4839int
4c4b4cd2 4840ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4841 domain_enum namespace,
4842 struct ada_symbol_info **results)
14f9c5c9
AS
4843{
4844 struct symbol *sym;
14f9c5c9 4845 struct block *block;
4c4b4cd2 4846 const char *name;
4c4b4cd2 4847 int wild_match;
14f9c5c9 4848 int cacheIfUnique;
4c4b4cd2 4849 int ndefns;
14f9c5c9 4850
4c4b4cd2
PH
4851 obstack_free (&symbol_list_obstack, NULL);
4852 obstack_init (&symbol_list_obstack);
14f9c5c9 4853
14f9c5c9
AS
4854 cacheIfUnique = 0;
4855
4856 /* Search specified block and its superiors. */
4857
4c4b4cd2
PH
4858 wild_match = (strstr (name0, "__") == NULL);
4859 name = name0;
76a01679
JB
4860 block = (struct block *) block0; /* FIXME: No cast ought to be
4861 needed, but adding const will
4862 have a cascade effect. */
339c13b6
JB
4863
4864 /* Special case: If the user specifies a symbol name inside package
4865 Standard, do a non-wild matching of the symbol name without
4866 the "standard__" prefix. This was primarily introduced in order
4867 to allow the user to specifically access the standard exceptions
4868 using, for instance, Standard.Constraint_Error when Constraint_Error
4869 is ambiguous (due to the user defining its own Constraint_Error
4870 entity inside its program). */
4c4b4cd2
PH
4871 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4872 {
4873 wild_match = 0;
4874 block = NULL;
4875 name = name0 + sizeof ("standard__") - 1;
4876 }
4877
339c13b6 4878 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4879
339c13b6
JB
4880 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4881 wild_match);
4c4b4cd2 4882 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4883 goto done;
d2e4a39e 4884
339c13b6
JB
4885 /* No non-global symbols found. Check our cache to see if we have
4886 already performed this search before. If we have, then return
4887 the same result. */
4888
14f9c5c9 4889 cacheIfUnique = 1;
2570f2b7 4890 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4891 {
4892 if (sym != NULL)
2570f2b7 4893 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4894 goto done;
4895 }
14f9c5c9 4896
339c13b6
JB
4897 /* Search symbols from all global blocks. */
4898
40658b94
PH
4899 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4900 wild_match);
d2e4a39e 4901
4c4b4cd2 4902 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4903 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4904
4c4b4cd2 4905 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94
PH
4906 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4907 wild_match);
14f9c5c9 4908
4c4b4cd2
PH
4909done:
4910 ndefns = num_defns_collected (&symbol_list_obstack);
4911 *results = defns_collected (&symbol_list_obstack, 1);
4912
4913 ndefns = remove_extra_symbols (*results, ndefns);
4914
d2e4a39e 4915 if (ndefns == 0)
2570f2b7 4916 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4917
4c4b4cd2 4918 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4919 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4920
aeb5907d 4921 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4922
14f9c5c9
AS
4923 return ndefns;
4924}
4925
d2e4a39e 4926struct symbol *
aeb5907d 4927ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4928 domain_enum namespace, struct block **block_found)
14f9c5c9 4929{
4c4b4cd2 4930 struct ada_symbol_info *candidates;
14f9c5c9
AS
4931 int n_candidates;
4932
aeb5907d 4933 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4934
4935 if (n_candidates == 0)
4936 return NULL;
4c4b4cd2 4937
aeb5907d
JB
4938 if (block_found != NULL)
4939 *block_found = candidates[0].block;
4c4b4cd2 4940
21b556f4 4941 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4942}
4943
4944/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4945 scope and in global scopes, or NULL if none. NAME is folded and
4946 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 4947 choosing the first symbol if there are multiple choices.
aeb5907d
JB
4948 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4949 table in which the symbol was found (in both cases, these
4950 assignments occur only if the pointers are non-null). */
4951struct symbol *
4952ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4953 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4954{
4955 if (is_a_field_of_this != NULL)
4956 *is_a_field_of_this = 0;
4957
4958 return
4959 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4960 block0, namespace, NULL);
4c4b4cd2 4961}
14f9c5c9 4962
4c4b4cd2
PH
4963static struct symbol *
4964ada_lookup_symbol_nonlocal (const char *name,
76a01679 4965 const struct block *block,
21b556f4 4966 const domain_enum domain)
4c4b4cd2 4967{
94af9270 4968 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
4969}
4970
4971
4c4b4cd2
PH
4972/* True iff STR is a possible encoded suffix of a normal Ada name
4973 that is to be ignored for matching purposes. Suffixes of parallel
4974 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4975 are given by any of the regular expressions:
4c4b4cd2 4976
babe1480
JB
4977 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4978 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4979 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4980 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4981
4982 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4983 match is performed. This sequence is used to differentiate homonyms,
4984 is an optional part of a valid name suffix. */
4c4b4cd2 4985
14f9c5c9 4986static int
d2e4a39e 4987is_name_suffix (const char *str)
14f9c5c9
AS
4988{
4989 int k;
4c4b4cd2
PH
4990 const char *matching;
4991 const int len = strlen (str);
4992
babe1480
JB
4993 /* Skip optional leading __[0-9]+. */
4994
4c4b4cd2
PH
4995 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4996 {
babe1480
JB
4997 str += 3;
4998 while (isdigit (str[0]))
4999 str += 1;
4c4b4cd2 5000 }
babe1480
JB
5001
5002 /* [.$][0-9]+ */
4c4b4cd2 5003
babe1480 5004 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5005 {
babe1480 5006 matching = str + 1;
4c4b4cd2
PH
5007 while (isdigit (matching[0]))
5008 matching += 1;
5009 if (matching[0] == '\0')
5010 return 1;
5011 }
5012
5013 /* ___[0-9]+ */
babe1480 5014
4c4b4cd2
PH
5015 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5016 {
5017 matching = str + 3;
5018 while (isdigit (matching[0]))
5019 matching += 1;
5020 if (matching[0] == '\0')
5021 return 1;
5022 }
5023
529cad9c
PH
5024#if 0
5025 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5026 with a N at the end. Unfortunately, the compiler uses the same
5027 convention for other internal types it creates. So treating
529cad9c 5028 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5029 some regressions. For instance, consider the case of an enumerated
5030 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5031 name ends with N.
5032 Having a single character like this as a suffix carrying some
0963b4bd 5033 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5034 to be something like "_N" instead. In the meantime, do not do
5035 the following check. */
5036 /* Protected Object Subprograms */
5037 if (len == 1 && str [0] == 'N')
5038 return 1;
5039#endif
5040
5041 /* _E[0-9]+[bs]$ */
5042 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5043 {
5044 matching = str + 3;
5045 while (isdigit (matching[0]))
5046 matching += 1;
5047 if ((matching[0] == 'b' || matching[0] == 's')
5048 && matching [1] == '\0')
5049 return 1;
5050 }
5051
4c4b4cd2
PH
5052 /* ??? We should not modify STR directly, as we are doing below. This
5053 is fine in this case, but may become problematic later if we find
5054 that this alternative did not work, and want to try matching
5055 another one from the begining of STR. Since we modified it, we
5056 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5057 if (str[0] == 'X')
5058 {
5059 str += 1;
d2e4a39e 5060 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5061 {
5062 if (str[0] != 'n' && str[0] != 'b')
5063 return 0;
5064 str += 1;
5065 }
14f9c5c9 5066 }
babe1480 5067
14f9c5c9
AS
5068 if (str[0] == '\000')
5069 return 1;
babe1480 5070
d2e4a39e 5071 if (str[0] == '_')
14f9c5c9
AS
5072 {
5073 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5074 return 0;
d2e4a39e 5075 if (str[2] == '_')
4c4b4cd2 5076 {
61ee279c
PH
5077 if (strcmp (str + 3, "JM") == 0)
5078 return 1;
5079 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5080 the LJM suffix in favor of the JM one. But we will
5081 still accept LJM as a valid suffix for a reasonable
5082 amount of time, just to allow ourselves to debug programs
5083 compiled using an older version of GNAT. */
4c4b4cd2
PH
5084 if (strcmp (str + 3, "LJM") == 0)
5085 return 1;
5086 if (str[3] != 'X')
5087 return 0;
1265e4aa
JB
5088 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5089 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5090 return 1;
5091 if (str[4] == 'R' && str[5] != 'T')
5092 return 1;
5093 return 0;
5094 }
5095 if (!isdigit (str[2]))
5096 return 0;
5097 for (k = 3; str[k] != '\0'; k += 1)
5098 if (!isdigit (str[k]) && str[k] != '_')
5099 return 0;
14f9c5c9
AS
5100 return 1;
5101 }
4c4b4cd2 5102 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5103 {
4c4b4cd2
PH
5104 for (k = 2; str[k] != '\0'; k += 1)
5105 if (!isdigit (str[k]) && str[k] != '_')
5106 return 0;
14f9c5c9
AS
5107 return 1;
5108 }
5109 return 0;
5110}
d2e4a39e 5111
aeb5907d
JB
5112/* Return non-zero if the string starting at NAME and ending before
5113 NAME_END contains no capital letters. */
529cad9c
PH
5114
5115static int
5116is_valid_name_for_wild_match (const char *name0)
5117{
5118 const char *decoded_name = ada_decode (name0);
5119 int i;
5120
5823c3ef
JB
5121 /* If the decoded name starts with an angle bracket, it means that
5122 NAME0 does not follow the GNAT encoding format. It should then
5123 not be allowed as a possible wild match. */
5124 if (decoded_name[0] == '<')
5125 return 0;
5126
529cad9c
PH
5127 for (i=0; decoded_name[i] != '\0'; i++)
5128 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5129 return 0;
5130
5131 return 1;
5132}
5133
73589123
PH
5134/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5135 that could start a simple name. Assumes that *NAMEP points into
5136 the string beginning at NAME0. */
4c4b4cd2 5137
14f9c5c9 5138static int
73589123 5139advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5140{
73589123 5141 const char *name = *namep;
5b4ee69b 5142
5823c3ef 5143 while (1)
14f9c5c9 5144 {
aa27d0b3 5145 int t0, t1;
73589123
PH
5146
5147 t0 = *name;
5148 if (t0 == '_')
5149 {
5150 t1 = name[1];
5151 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5152 {
5153 name += 1;
5154 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5155 break;
5156 else
5157 name += 1;
5158 }
aa27d0b3
JB
5159 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5160 || name[2] == target0))
73589123
PH
5161 {
5162 name += 2;
5163 break;
5164 }
5165 else
5166 return 0;
5167 }
5168 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5169 name += 1;
5170 else
5823c3ef 5171 return 0;
73589123
PH
5172 }
5173
5174 *namep = name;
5175 return 1;
5176}
5177
5178/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5179 informational suffixes of NAME (i.e., for which is_name_suffix is
5180 true). Assumes that PATN is a lower-cased Ada simple name. */
5181
5182static int
5183wild_match (const char *name, const char *patn)
5184{
5185 const char *p, *n;
5186 const char *name0 = name;
5187
5188 while (1)
5189 {
5190 const char *match = name;
5191
5192 if (*name == *patn)
5193 {
5194 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5195 if (*p != *name)
5196 break;
5197 if (*p == '\0' && is_name_suffix (name))
5198 return match != name0 && !is_valid_name_for_wild_match (name0);
5199
5200 if (name[-1] == '_')
5201 name -= 1;
5202 }
5203 if (!advance_wild_match (&name, name0, *patn))
5204 return 1;
96d887e8 5205 }
96d887e8
PH
5206}
5207
40658b94
PH
5208/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5209 informational suffix. */
5210
c4d840bd
PH
5211static int
5212full_match (const char *sym_name, const char *search_name)
5213{
40658b94 5214 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5215}
5216
5217
96d887e8
PH
5218/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5219 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5220 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5221 OBJFILE is the section containing BLOCK.
5222 SYMTAB is recorded with each symbol added. */
5223
5224static void
5225ada_add_block_symbols (struct obstack *obstackp,
76a01679 5226 struct block *block, const char *name,
96d887e8 5227 domain_enum domain, struct objfile *objfile,
2570f2b7 5228 int wild)
96d887e8
PH
5229{
5230 struct dict_iterator iter;
5231 int name_len = strlen (name);
5232 /* A matching argument symbol, if any. */
5233 struct symbol *arg_sym;
5234 /* Set true when we find a matching non-argument symbol. */
5235 int found_sym;
5236 struct symbol *sym;
5237
5238 arg_sym = NULL;
5239 found_sym = 0;
5240 if (wild)
5241 {
c4d840bd
PH
5242 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5243 wild_match, &iter);
5244 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
76a01679 5245 {
5eeb2539
AR
5246 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5247 SYMBOL_DOMAIN (sym), domain)
73589123 5248 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5249 {
2a2d4dc3
AS
5250 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5251 continue;
5252 else if (SYMBOL_IS_ARGUMENT (sym))
5253 arg_sym = sym;
5254 else
5255 {
76a01679
JB
5256 found_sym = 1;
5257 add_defn_to_vec (obstackp,
5258 fixup_symbol_section (sym, objfile),
2570f2b7 5259 block);
76a01679
JB
5260 }
5261 }
5262 }
96d887e8
PH
5263 }
5264 else
5265 {
c4d840bd 5266 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
40658b94 5267 full_match, &iter);
c4d840bd 5268 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
76a01679 5269 {
5eeb2539
AR
5270 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5271 SYMBOL_DOMAIN (sym), domain))
76a01679 5272 {
c4d840bd
PH
5273 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5274 {
5275 if (SYMBOL_IS_ARGUMENT (sym))
5276 arg_sym = sym;
5277 else
2a2d4dc3 5278 {
c4d840bd
PH
5279 found_sym = 1;
5280 add_defn_to_vec (obstackp,
5281 fixup_symbol_section (sym, objfile),
5282 block);
2a2d4dc3 5283 }
c4d840bd 5284 }
76a01679
JB
5285 }
5286 }
96d887e8
PH
5287 }
5288
5289 if (!found_sym && arg_sym != NULL)
5290 {
76a01679
JB
5291 add_defn_to_vec (obstackp,
5292 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5293 block);
96d887e8
PH
5294 }
5295
5296 if (!wild)
5297 {
5298 arg_sym = NULL;
5299 found_sym = 0;
5300
5301 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5302 {
5eeb2539
AR
5303 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5304 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5305 {
5306 int cmp;
5307
5308 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5309 if (cmp == 0)
5310 {
5311 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5312 if (cmp == 0)
5313 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5314 name_len);
5315 }
5316
5317 if (cmp == 0
5318 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5319 {
2a2d4dc3
AS
5320 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5321 {
5322 if (SYMBOL_IS_ARGUMENT (sym))
5323 arg_sym = sym;
5324 else
5325 {
5326 found_sym = 1;
5327 add_defn_to_vec (obstackp,
5328 fixup_symbol_section (sym, objfile),
5329 block);
5330 }
5331 }
76a01679
JB
5332 }
5333 }
76a01679 5334 }
96d887e8
PH
5335
5336 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5337 They aren't parameters, right? */
5338 if (!found_sym && arg_sym != NULL)
5339 {
5340 add_defn_to_vec (obstackp,
76a01679 5341 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5342 block);
96d887e8
PH
5343 }
5344 }
5345}
5346\f
41d27058
JB
5347
5348 /* Symbol Completion */
5349
5350/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5351 name in a form that's appropriate for the completion. The result
5352 does not need to be deallocated, but is only good until the next call.
5353
5354 TEXT_LEN is equal to the length of TEXT.
5355 Perform a wild match if WILD_MATCH is set.
5356 ENCODED should be set if TEXT represents the start of a symbol name
5357 in its encoded form. */
5358
5359static const char *
5360symbol_completion_match (const char *sym_name,
5361 const char *text, int text_len,
5362 int wild_match, int encoded)
5363{
41d27058
JB
5364 const int verbatim_match = (text[0] == '<');
5365 int match = 0;
5366
5367 if (verbatim_match)
5368 {
5369 /* Strip the leading angle bracket. */
5370 text = text + 1;
5371 text_len--;
5372 }
5373
5374 /* First, test against the fully qualified name of the symbol. */
5375
5376 if (strncmp (sym_name, text, text_len) == 0)
5377 match = 1;
5378
5379 if (match && !encoded)
5380 {
5381 /* One needed check before declaring a positive match is to verify
5382 that iff we are doing a verbatim match, the decoded version
5383 of the symbol name starts with '<'. Otherwise, this symbol name
5384 is not a suitable completion. */
5385 const char *sym_name_copy = sym_name;
5386 int has_angle_bracket;
5387
5388 sym_name = ada_decode (sym_name);
5389 has_angle_bracket = (sym_name[0] == '<');
5390 match = (has_angle_bracket == verbatim_match);
5391 sym_name = sym_name_copy;
5392 }
5393
5394 if (match && !verbatim_match)
5395 {
5396 /* When doing non-verbatim match, another check that needs to
5397 be done is to verify that the potentially matching symbol name
5398 does not include capital letters, because the ada-mode would
5399 not be able to understand these symbol names without the
5400 angle bracket notation. */
5401 const char *tmp;
5402
5403 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5404 if (*tmp != '\0')
5405 match = 0;
5406 }
5407
5408 /* Second: Try wild matching... */
5409
5410 if (!match && wild_match)
5411 {
5412 /* Since we are doing wild matching, this means that TEXT
5413 may represent an unqualified symbol name. We therefore must
5414 also compare TEXT against the unqualified name of the symbol. */
5415 sym_name = ada_unqualified_name (ada_decode (sym_name));
5416
5417 if (strncmp (sym_name, text, text_len) == 0)
5418 match = 1;
5419 }
5420
5421 /* Finally: If we found a mach, prepare the result to return. */
5422
5423 if (!match)
5424 return NULL;
5425
5426 if (verbatim_match)
5427 sym_name = add_angle_brackets (sym_name);
5428
5429 if (!encoded)
5430 sym_name = ada_decode (sym_name);
5431
5432 return sym_name;
5433}
5434
2ba95b9b
JB
5435DEF_VEC_P (char_ptr);
5436
41d27058
JB
5437/* A companion function to ada_make_symbol_completion_list().
5438 Check if SYM_NAME represents a symbol which name would be suitable
5439 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5440 it is appended at the end of the given string vector SV.
5441
5442 ORIG_TEXT is the string original string from the user command
5443 that needs to be completed. WORD is the entire command on which
5444 completion should be performed. These two parameters are used to
5445 determine which part of the symbol name should be added to the
5446 completion vector.
5447 if WILD_MATCH is set, then wild matching is performed.
5448 ENCODED should be set if TEXT represents a symbol name in its
5449 encoded formed (in which case the completion should also be
5450 encoded). */
5451
5452static void
d6565258 5453symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5454 const char *sym_name,
5455 const char *text, int text_len,
5456 const char *orig_text, const char *word,
5457 int wild_match, int encoded)
5458{
5459 const char *match = symbol_completion_match (sym_name, text, text_len,
5460 wild_match, encoded);
5461 char *completion;
5462
5463 if (match == NULL)
5464 return;
5465
5466 /* We found a match, so add the appropriate completion to the given
5467 string vector. */
5468
5469 if (word == orig_text)
5470 {
5471 completion = xmalloc (strlen (match) + 5);
5472 strcpy (completion, match);
5473 }
5474 else if (word > orig_text)
5475 {
5476 /* Return some portion of sym_name. */
5477 completion = xmalloc (strlen (match) + 5);
5478 strcpy (completion, match + (word - orig_text));
5479 }
5480 else
5481 {
5482 /* Return some of ORIG_TEXT plus sym_name. */
5483 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5484 strncpy (completion, word, orig_text - word);
5485 completion[orig_text - word] = '\0';
5486 strcat (completion, match);
5487 }
5488
d6565258 5489 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5490}
5491
ccefe4c4
TT
5492/* An object of this type is passed as the user_data argument to the
5493 map_partial_symbol_names method. */
5494struct add_partial_datum
5495{
5496 VEC(char_ptr) **completions;
5497 char *text;
5498 int text_len;
5499 char *text0;
5500 char *word;
5501 int wild_match;
5502 int encoded;
5503};
5504
5505/* A callback for map_partial_symbol_names. */
5506static void
5507ada_add_partial_symbol_completions (const char *name, void *user_data)
5508{
5509 struct add_partial_datum *data = user_data;
5b4ee69b 5510
ccefe4c4
TT
5511 symbol_completion_add (data->completions, name,
5512 data->text, data->text_len, data->text0, data->word,
5513 data->wild_match, data->encoded);
5514}
5515
41d27058
JB
5516/* Return a list of possible symbol names completing TEXT0. The list
5517 is NULL terminated. WORD is the entire command on which completion
5518 is made. */
5519
5520static char **
5521ada_make_symbol_completion_list (char *text0, char *word)
5522{
5523 char *text;
5524 int text_len;
5525 int wild_match;
5526 int encoded;
2ba95b9b 5527 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5528 struct symbol *sym;
5529 struct symtab *s;
41d27058
JB
5530 struct minimal_symbol *msymbol;
5531 struct objfile *objfile;
5532 struct block *b, *surrounding_static_block = 0;
5533 int i;
5534 struct dict_iterator iter;
5535
5536 if (text0[0] == '<')
5537 {
5538 text = xstrdup (text0);
5539 make_cleanup (xfree, text);
5540 text_len = strlen (text);
5541 wild_match = 0;
5542 encoded = 1;
5543 }
5544 else
5545 {
5546 text = xstrdup (ada_encode (text0));
5547 make_cleanup (xfree, text);
5548 text_len = strlen (text);
5549 for (i = 0; i < text_len; i++)
5550 text[i] = tolower (text[i]);
5551
5552 encoded = (strstr (text0, "__") != NULL);
5553 /* If the name contains a ".", then the user is entering a fully
5554 qualified entity name, and the match must not be done in wild
5555 mode. Similarly, if the user wants to complete what looks like
5556 an encoded name, the match must not be done in wild mode. */
5557 wild_match = (strchr (text0, '.') == NULL && !encoded);
5558 }
5559
5560 /* First, look at the partial symtab symbols. */
41d27058 5561 {
ccefe4c4
TT
5562 struct add_partial_datum data;
5563
5564 data.completions = &completions;
5565 data.text = text;
5566 data.text_len = text_len;
5567 data.text0 = text0;
5568 data.word = word;
5569 data.wild_match = wild_match;
5570 data.encoded = encoded;
5571 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
41d27058
JB
5572 }
5573
5574 /* At this point scan through the misc symbol vectors and add each
5575 symbol you find to the list. Eventually we want to ignore
5576 anything that isn't a text symbol (everything else will be
5577 handled by the psymtab code above). */
5578
5579 ALL_MSYMBOLS (objfile, msymbol)
5580 {
5581 QUIT;
d6565258 5582 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5583 text, text_len, text0, word, wild_match, encoded);
5584 }
5585
5586 /* Search upwards from currently selected frame (so that we can
5587 complete on local vars. */
5588
5589 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5590 {
5591 if (!BLOCK_SUPERBLOCK (b))
5592 surrounding_static_block = b; /* For elmin of dups */
5593
5594 ALL_BLOCK_SYMBOLS (b, iter, sym)
5595 {
d6565258 5596 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5597 text, text_len, text0, word,
5598 wild_match, encoded);
5599 }
5600 }
5601
5602 /* Go through the symtabs and check the externs and statics for
5603 symbols which match. */
5604
5605 ALL_SYMTABS (objfile, s)
5606 {
5607 QUIT;
5608 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5609 ALL_BLOCK_SYMBOLS (b, iter, sym)
5610 {
d6565258 5611 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5612 text, text_len, text0, word,
5613 wild_match, encoded);
5614 }
5615 }
5616
5617 ALL_SYMTABS (objfile, s)
5618 {
5619 QUIT;
5620 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5621 /* Don't do this block twice. */
5622 if (b == surrounding_static_block)
5623 continue;
5624 ALL_BLOCK_SYMBOLS (b, iter, sym)
5625 {
d6565258 5626 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5627 text, text_len, text0, word,
5628 wild_match, encoded);
5629 }
5630 }
5631
5632 /* Append the closing NULL entry. */
2ba95b9b 5633 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5634
2ba95b9b
JB
5635 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5636 return the copy. It's unfortunate that we have to make a copy
5637 of an array that we're about to destroy, but there is nothing much
5638 we can do about it. Fortunately, it's typically not a very large
5639 array. */
5640 {
5641 const size_t completions_size =
5642 VEC_length (char_ptr, completions) * sizeof (char *);
dc19db01 5643 char **result = xmalloc (completions_size);
2ba95b9b
JB
5644
5645 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5646
5647 VEC_free (char_ptr, completions);
5648 return result;
5649 }
41d27058
JB
5650}
5651
963a6417 5652 /* Field Access */
96d887e8 5653
73fb9985
JB
5654/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5655 for tagged types. */
5656
5657static int
5658ada_is_dispatch_table_ptr_type (struct type *type)
5659{
5660 char *name;
5661
5662 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5663 return 0;
5664
5665 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5666 if (name == NULL)
5667 return 0;
5668
5669 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5670}
5671
963a6417
PH
5672/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5673 to be invisible to users. */
96d887e8 5674
963a6417
PH
5675int
5676ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5677{
963a6417
PH
5678 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5679 return 1;
73fb9985
JB
5680
5681 /* Check the name of that field. */
5682 {
5683 const char *name = TYPE_FIELD_NAME (type, field_num);
5684
5685 /* Anonymous field names should not be printed.
5686 brobecker/2007-02-20: I don't think this can actually happen
5687 but we don't want to print the value of annonymous fields anyway. */
5688 if (name == NULL)
5689 return 1;
5690
5691 /* A field named "_parent" is internally generated by GNAT for
5692 tagged types, and should not be printed either. */
5693 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5694 return 1;
5695 }
5696
5697 /* If this is the dispatch table of a tagged type, then ignore. */
5698 if (ada_is_tagged_type (type, 1)
5699 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5700 return 1;
5701
5702 /* Not a special field, so it should not be ignored. */
5703 return 0;
963a6417 5704}
96d887e8 5705
963a6417 5706/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5707 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5708
963a6417
PH
5709int
5710ada_is_tagged_type (struct type *type, int refok)
5711{
5712 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5713}
96d887e8 5714
963a6417 5715/* True iff TYPE represents the type of X'Tag */
96d887e8 5716
963a6417
PH
5717int
5718ada_is_tag_type (struct type *type)
5719{
5720 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5721 return 0;
5722 else
96d887e8 5723 {
963a6417 5724 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5725
963a6417
PH
5726 return (name != NULL
5727 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5728 }
96d887e8
PH
5729}
5730
963a6417 5731/* The type of the tag on VAL. */
76a01679 5732
963a6417
PH
5733struct type *
5734ada_tag_type (struct value *val)
96d887e8 5735{
df407dfe 5736 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5737}
96d887e8 5738
963a6417 5739/* The value of the tag on VAL. */
96d887e8 5740
963a6417
PH
5741struct value *
5742ada_value_tag (struct value *val)
5743{
03ee6b2e 5744 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5745}
5746
963a6417
PH
5747/* The value of the tag on the object of type TYPE whose contents are
5748 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 5749 ADDRESS. */
96d887e8 5750
963a6417 5751static struct value *
10a2c479 5752value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5753 const gdb_byte *valaddr,
963a6417 5754 CORE_ADDR address)
96d887e8 5755{
b5385fc0 5756 int tag_byte_offset;
963a6417 5757 struct type *tag_type;
5b4ee69b 5758
963a6417 5759 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5760 NULL, NULL, NULL))
96d887e8 5761 {
fc1a4b47 5762 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5763 ? NULL
5764 : valaddr + tag_byte_offset);
963a6417 5765 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5766
963a6417 5767 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5768 }
963a6417
PH
5769 return NULL;
5770}
96d887e8 5771
963a6417
PH
5772static struct type *
5773type_from_tag (struct value *tag)
5774{
5775 const char *type_name = ada_tag_name (tag);
5b4ee69b 5776
963a6417
PH
5777 if (type_name != NULL)
5778 return ada_find_any_type (ada_encode (type_name));
5779 return NULL;
5780}
96d887e8 5781
963a6417
PH
5782struct tag_args
5783{
5784 struct value *tag;
5785 char *name;
5786};
4c4b4cd2 5787
529cad9c
PH
5788
5789static int ada_tag_name_1 (void *);
5790static int ada_tag_name_2 (struct tag_args *);
5791
4c4b4cd2 5792/* Wrapper function used by ada_tag_name. Given a struct tag_args*
0963b4bd 5793 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
4c4b4cd2
PH
5794 The value stored in ARGS->name is valid until the next call to
5795 ada_tag_name_1. */
5796
5797static int
5798ada_tag_name_1 (void *args0)
5799{
5800 struct tag_args *args = (struct tag_args *) args0;
5801 static char name[1024];
76a01679 5802 char *p;
4c4b4cd2 5803 struct value *val;
5b4ee69b 5804
4c4b4cd2 5805 args->name = NULL;
03ee6b2e 5806 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5807 if (val == NULL)
5808 return ada_tag_name_2 (args);
03ee6b2e 5809 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5810 if (val == NULL)
5811 return 0;
5812 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5813 for (p = name; *p != '\0'; p += 1)
5814 if (isalpha (*p))
5815 *p = tolower (*p);
5816 args->name = name;
5817 return 0;
5818}
5819
e802dbe0
JB
5820/* Return the "ada__tags__type_specific_data" type. */
5821
5822static struct type *
5823ada_get_tsd_type (struct inferior *inf)
5824{
5825 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5826
5827 if (data->tsd_type == 0)
5828 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5829 return data->tsd_type;
5830}
5831
529cad9c
PH
5832/* Utility function for ada_tag_name_1 that tries the second
5833 representation for the dispatch table (in which there is no
5834 explicit 'tsd' field in the referent of the tag pointer, and instead
0963b4bd 5835 the tsd pointer is stored just before the dispatch table. */
529cad9c
PH
5836
5837static int
5838ada_tag_name_2 (struct tag_args *args)
5839{
5840 struct type *info_type;
5841 static char name[1024];
5842 char *p;
5843 struct value *val, *valp;
5844
5845 args->name = NULL;
e802dbe0 5846 info_type = ada_get_tsd_type (current_inferior());
529cad9c
PH
5847 if (info_type == NULL)
5848 return 0;
5849 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5850 valp = value_cast (info_type, args->tag);
5851 if (valp == NULL)
5852 return 0;
2497b498 5853 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5854 if (val == NULL)
5855 return 0;
03ee6b2e 5856 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5857 if (val == NULL)
5858 return 0;
5859 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5860 for (p = name; *p != '\0'; p += 1)
5861 if (isalpha (*p))
5862 *p = tolower (*p);
5863 args->name = name;
5864 return 0;
5865}
5866
5867/* The type name of the dynamic type denoted by the 'tag value TAG, as
e802dbe0 5868 a C string. */
4c4b4cd2
PH
5869
5870const char *
5871ada_tag_name (struct value *tag)
5872{
5873 struct tag_args args;
5b4ee69b 5874
df407dfe 5875 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5876 return NULL;
76a01679 5877 args.tag = tag;
4c4b4cd2
PH
5878 args.name = NULL;
5879 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5880 return args.name;
5881}
5882
5883/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5884
d2e4a39e 5885struct type *
ebf56fd3 5886ada_parent_type (struct type *type)
14f9c5c9
AS
5887{
5888 int i;
5889
61ee279c 5890 type = ada_check_typedef (type);
14f9c5c9
AS
5891
5892 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5893 return NULL;
5894
5895 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5896 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5897 {
5898 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5899
5900 /* If the _parent field is a pointer, then dereference it. */
5901 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5902 parent_type = TYPE_TARGET_TYPE (parent_type);
5903 /* If there is a parallel XVS type, get the actual base type. */
5904 parent_type = ada_get_base_type (parent_type);
5905
5906 return ada_check_typedef (parent_type);
5907 }
14f9c5c9
AS
5908
5909 return NULL;
5910}
5911
4c4b4cd2
PH
5912/* True iff field number FIELD_NUM of structure type TYPE contains the
5913 parent-type (inherited) fields of a derived type. Assumes TYPE is
5914 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5915
5916int
ebf56fd3 5917ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5918{
61ee279c 5919 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 5920
4c4b4cd2
PH
5921 return (name != NULL
5922 && (strncmp (name, "PARENT", 6) == 0
5923 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5924}
5925
4c4b4cd2 5926/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5927 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5928 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5929 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5930 structures. */
14f9c5c9
AS
5931
5932int
ebf56fd3 5933ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5934{
d2e4a39e 5935 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 5936
d2e4a39e 5937 return (name != NULL
4c4b4cd2
PH
5938 && (strncmp (name, "PARENT", 6) == 0
5939 || strcmp (name, "REP") == 0
5940 || strncmp (name, "_parent", 7) == 0
5941 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5942}
5943
4c4b4cd2
PH
5944/* True iff field number FIELD_NUM of structure or union type TYPE
5945 is a variant wrapper. Assumes TYPE is a structure type with at least
5946 FIELD_NUM+1 fields. */
14f9c5c9
AS
5947
5948int
ebf56fd3 5949ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5950{
d2e4a39e 5951 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 5952
14f9c5c9 5953 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5954 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5955 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5956 == TYPE_CODE_UNION)));
14f9c5c9
AS
5957}
5958
5959/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5960 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
5961 returns the type of the controlling discriminant for the variant.
5962 May return NULL if the type could not be found. */
14f9c5c9 5963
d2e4a39e 5964struct type *
ebf56fd3 5965ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5966{
d2e4a39e 5967 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 5968
7c964f07 5969 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5970}
5971
4c4b4cd2 5972/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5973 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5974 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5975
5976int
ebf56fd3 5977ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5978{
d2e4a39e 5979 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 5980
14f9c5c9
AS
5981 return (name != NULL && name[0] == 'O');
5982}
5983
5984/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5985 returns the name of the discriminant controlling the variant.
5986 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5987
d2e4a39e 5988char *
ebf56fd3 5989ada_variant_discrim_name (struct type *type0)
14f9c5c9 5990{
d2e4a39e 5991 static char *result = NULL;
14f9c5c9 5992 static size_t result_len = 0;
d2e4a39e
AS
5993 struct type *type;
5994 const char *name;
5995 const char *discrim_end;
5996 const char *discrim_start;
14f9c5c9
AS
5997
5998 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5999 type = TYPE_TARGET_TYPE (type0);
6000 else
6001 type = type0;
6002
6003 name = ada_type_name (type);
6004
6005 if (name == NULL || name[0] == '\000')
6006 return "";
6007
6008 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6009 discrim_end -= 1)
6010 {
4c4b4cd2
PH
6011 if (strncmp (discrim_end, "___XVN", 6) == 0)
6012 break;
14f9c5c9
AS
6013 }
6014 if (discrim_end == name)
6015 return "";
6016
d2e4a39e 6017 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6018 discrim_start -= 1)
6019 {
d2e4a39e 6020 if (discrim_start == name + 1)
4c4b4cd2 6021 return "";
76a01679 6022 if ((discrim_start > name + 3
4c4b4cd2
PH
6023 && strncmp (discrim_start - 3, "___", 3) == 0)
6024 || discrim_start[-1] == '.')
6025 break;
14f9c5c9
AS
6026 }
6027
6028 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6029 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6030 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6031 return result;
6032}
6033
4c4b4cd2
PH
6034/* Scan STR for a subtype-encoded number, beginning at position K.
6035 Put the position of the character just past the number scanned in
6036 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6037 Return 1 if there was a valid number at the given position, and 0
6038 otherwise. A "subtype-encoded" number consists of the absolute value
6039 in decimal, followed by the letter 'm' to indicate a negative number.
6040 Assumes 0m does not occur. */
14f9c5c9
AS
6041
6042int
d2e4a39e 6043ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6044{
6045 ULONGEST RU;
6046
d2e4a39e 6047 if (!isdigit (str[k]))
14f9c5c9
AS
6048 return 0;
6049
4c4b4cd2 6050 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6051 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6052 LONGEST. */
14f9c5c9
AS
6053 RU = 0;
6054 while (isdigit (str[k]))
6055 {
d2e4a39e 6056 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6057 k += 1;
6058 }
6059
d2e4a39e 6060 if (str[k] == 'm')
14f9c5c9
AS
6061 {
6062 if (R != NULL)
4c4b4cd2 6063 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6064 k += 1;
6065 }
6066 else if (R != NULL)
6067 *R = (LONGEST) RU;
6068
4c4b4cd2 6069 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6070 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6071 number representable as a LONGEST (although either would probably work
6072 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6073 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6074
6075 if (new_k != NULL)
6076 *new_k = k;
6077 return 1;
6078}
6079
4c4b4cd2
PH
6080/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6081 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6082 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6083
d2e4a39e 6084int
ebf56fd3 6085ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6086{
d2e4a39e 6087 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6088 int p;
6089
6090 p = 0;
6091 while (1)
6092 {
d2e4a39e 6093 switch (name[p])
4c4b4cd2
PH
6094 {
6095 case '\0':
6096 return 0;
6097 case 'S':
6098 {
6099 LONGEST W;
5b4ee69b 6100
4c4b4cd2
PH
6101 if (!ada_scan_number (name, p + 1, &W, &p))
6102 return 0;
6103 if (val == W)
6104 return 1;
6105 break;
6106 }
6107 case 'R':
6108 {
6109 LONGEST L, U;
5b4ee69b 6110
4c4b4cd2
PH
6111 if (!ada_scan_number (name, p + 1, &L, &p)
6112 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6113 return 0;
6114 if (val >= L && val <= U)
6115 return 1;
6116 break;
6117 }
6118 case 'O':
6119 return 1;
6120 default:
6121 return 0;
6122 }
6123 }
6124}
6125
0963b4bd 6126/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6127
6128/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6129 ARG_TYPE, extract and return the value of one of its (non-static)
6130 fields. FIELDNO says which field. Differs from value_primitive_field
6131 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6132
4c4b4cd2 6133static struct value *
d2e4a39e 6134ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6135 struct type *arg_type)
14f9c5c9 6136{
14f9c5c9
AS
6137 struct type *type;
6138
61ee279c 6139 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6140 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6141
4c4b4cd2 6142 /* Handle packed fields. */
14f9c5c9
AS
6143
6144 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6145 {
6146 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6147 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6148
0fd88904 6149 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6150 offset + bit_pos / 8,
6151 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6152 }
6153 else
6154 return value_primitive_field (arg1, offset, fieldno, arg_type);
6155}
6156
52ce6436
PH
6157/* Find field with name NAME in object of type TYPE. If found,
6158 set the following for each argument that is non-null:
6159 - *FIELD_TYPE_P to the field's type;
6160 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6161 an object of that type;
6162 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6163 - *BIT_SIZE_P to its size in bits if the field is packed, and
6164 0 otherwise;
6165 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6166 fields up to but not including the desired field, or by the total
6167 number of fields if not found. A NULL value of NAME never
6168 matches; the function just counts visible fields in this case.
6169
0963b4bd 6170 Returns 1 if found, 0 otherwise. */
52ce6436 6171
4c4b4cd2 6172static int
76a01679
JB
6173find_struct_field (char *name, struct type *type, int offset,
6174 struct type **field_type_p,
52ce6436
PH
6175 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6176 int *index_p)
4c4b4cd2
PH
6177{
6178 int i;
6179
61ee279c 6180 type = ada_check_typedef (type);
76a01679 6181
52ce6436
PH
6182 if (field_type_p != NULL)
6183 *field_type_p = NULL;
6184 if (byte_offset_p != NULL)
d5d6fca5 6185 *byte_offset_p = 0;
52ce6436
PH
6186 if (bit_offset_p != NULL)
6187 *bit_offset_p = 0;
6188 if (bit_size_p != NULL)
6189 *bit_size_p = 0;
6190
6191 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6192 {
6193 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6194 int fld_offset = offset + bit_pos / 8;
6195 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6196
4c4b4cd2
PH
6197 if (t_field_name == NULL)
6198 continue;
6199
52ce6436 6200 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6201 {
6202 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6203
52ce6436
PH
6204 if (field_type_p != NULL)
6205 *field_type_p = TYPE_FIELD_TYPE (type, i);
6206 if (byte_offset_p != NULL)
6207 *byte_offset_p = fld_offset;
6208 if (bit_offset_p != NULL)
6209 *bit_offset_p = bit_pos % 8;
6210 if (bit_size_p != NULL)
6211 *bit_size_p = bit_size;
76a01679
JB
6212 return 1;
6213 }
4c4b4cd2
PH
6214 else if (ada_is_wrapper_field (type, i))
6215 {
52ce6436
PH
6216 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6217 field_type_p, byte_offset_p, bit_offset_p,
6218 bit_size_p, index_p))
76a01679
JB
6219 return 1;
6220 }
4c4b4cd2
PH
6221 else if (ada_is_variant_part (type, i))
6222 {
52ce6436
PH
6223 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6224 fixed type?? */
4c4b4cd2 6225 int j;
52ce6436
PH
6226 struct type *field_type
6227 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6228
52ce6436 6229 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6230 {
76a01679
JB
6231 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6232 fld_offset
6233 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6234 field_type_p, byte_offset_p,
52ce6436 6235 bit_offset_p, bit_size_p, index_p))
76a01679 6236 return 1;
4c4b4cd2
PH
6237 }
6238 }
52ce6436
PH
6239 else if (index_p != NULL)
6240 *index_p += 1;
4c4b4cd2
PH
6241 }
6242 return 0;
6243}
6244
0963b4bd 6245/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6246
52ce6436
PH
6247static int
6248num_visible_fields (struct type *type)
6249{
6250 int n;
5b4ee69b 6251
52ce6436
PH
6252 n = 0;
6253 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6254 return n;
6255}
14f9c5c9 6256
4c4b4cd2 6257/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6258 and search in it assuming it has (class) type TYPE.
6259 If found, return value, else return NULL.
6260
4c4b4cd2 6261 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6262
4c4b4cd2 6263static struct value *
d2e4a39e 6264ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6265 struct type *type)
14f9c5c9
AS
6266{
6267 int i;
14f9c5c9 6268
5b4ee69b 6269 type = ada_check_typedef (type);
52ce6436 6270 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6271 {
6272 char *t_field_name = TYPE_FIELD_NAME (type, i);
6273
6274 if (t_field_name == NULL)
4c4b4cd2 6275 continue;
14f9c5c9
AS
6276
6277 else if (field_name_match (t_field_name, name))
4c4b4cd2 6278 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6279
6280 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6281 {
0963b4bd 6282 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6283 ada_search_struct_field (name, arg,
6284 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6285 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6286
4c4b4cd2
PH
6287 if (v != NULL)
6288 return v;
6289 }
14f9c5c9
AS
6290
6291 else if (ada_is_variant_part (type, i))
4c4b4cd2 6292 {
0963b4bd 6293 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6294 int j;
5b4ee69b
MS
6295 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6296 i));
4c4b4cd2
PH
6297 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6298
52ce6436 6299 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6300 {
0963b4bd
MS
6301 struct value *v = ada_search_struct_field /* Force line
6302 break. */
06d5cf63
JB
6303 (name, arg,
6304 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6305 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6306
4c4b4cd2
PH
6307 if (v != NULL)
6308 return v;
6309 }
6310 }
14f9c5c9
AS
6311 }
6312 return NULL;
6313}
d2e4a39e 6314
52ce6436
PH
6315static struct value *ada_index_struct_field_1 (int *, struct value *,
6316 int, struct type *);
6317
6318
6319/* Return field #INDEX in ARG, where the index is that returned by
6320 * find_struct_field through its INDEX_P argument. Adjust the address
6321 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6322 * If found, return value, else return NULL. */
52ce6436
PH
6323
6324static struct value *
6325ada_index_struct_field (int index, struct value *arg, int offset,
6326 struct type *type)
6327{
6328 return ada_index_struct_field_1 (&index, arg, offset, type);
6329}
6330
6331
6332/* Auxiliary function for ada_index_struct_field. Like
6333 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6334 * *INDEX_P. */
52ce6436
PH
6335
6336static struct value *
6337ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6338 struct type *type)
6339{
6340 int i;
6341 type = ada_check_typedef (type);
6342
6343 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6344 {
6345 if (TYPE_FIELD_NAME (type, i) == NULL)
6346 continue;
6347 else if (ada_is_wrapper_field (type, i))
6348 {
0963b4bd 6349 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6350 ada_index_struct_field_1 (index_p, arg,
6351 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6352 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6353
52ce6436
PH
6354 if (v != NULL)
6355 return v;
6356 }
6357
6358 else if (ada_is_variant_part (type, i))
6359 {
6360 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6361 find_struct_field. */
52ce6436
PH
6362 error (_("Cannot assign this kind of variant record"));
6363 }
6364 else if (*index_p == 0)
6365 return ada_value_primitive_field (arg, offset, i, type);
6366 else
6367 *index_p -= 1;
6368 }
6369 return NULL;
6370}
6371
4c4b4cd2
PH
6372/* Given ARG, a value of type (pointer or reference to a)*
6373 structure/union, extract the component named NAME from the ultimate
6374 target structure/union and return it as a value with its
f5938064 6375 appropriate type.
14f9c5c9 6376
4c4b4cd2
PH
6377 The routine searches for NAME among all members of the structure itself
6378 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6379 (e.g., '_parent').
6380
03ee6b2e
PH
6381 If NO_ERR, then simply return NULL in case of error, rather than
6382 calling error. */
14f9c5c9 6383
d2e4a39e 6384struct value *
03ee6b2e 6385ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6386{
4c4b4cd2 6387 struct type *t, *t1;
d2e4a39e 6388 struct value *v;
14f9c5c9 6389
4c4b4cd2 6390 v = NULL;
df407dfe 6391 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6392 if (TYPE_CODE (t) == TYPE_CODE_REF)
6393 {
6394 t1 = TYPE_TARGET_TYPE (t);
6395 if (t1 == NULL)
03ee6b2e 6396 goto BadValue;
61ee279c 6397 t1 = ada_check_typedef (t1);
4c4b4cd2 6398 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6399 {
994b9211 6400 arg = coerce_ref (arg);
76a01679
JB
6401 t = t1;
6402 }
4c4b4cd2 6403 }
14f9c5c9 6404
4c4b4cd2
PH
6405 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6406 {
6407 t1 = TYPE_TARGET_TYPE (t);
6408 if (t1 == NULL)
03ee6b2e 6409 goto BadValue;
61ee279c 6410 t1 = ada_check_typedef (t1);
4c4b4cd2 6411 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6412 {
6413 arg = value_ind (arg);
6414 t = t1;
6415 }
4c4b4cd2 6416 else
76a01679 6417 break;
4c4b4cd2 6418 }
14f9c5c9 6419
4c4b4cd2 6420 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6421 goto BadValue;
14f9c5c9 6422
4c4b4cd2
PH
6423 if (t1 == t)
6424 v = ada_search_struct_field (name, arg, 0, t);
6425 else
6426 {
6427 int bit_offset, bit_size, byte_offset;
6428 struct type *field_type;
6429 CORE_ADDR address;
6430
76a01679
JB
6431 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6432 address = value_as_address (arg);
4c4b4cd2 6433 else
0fd88904 6434 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6435
1ed6ede0 6436 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6437 if (find_struct_field (name, t1, 0,
6438 &field_type, &byte_offset, &bit_offset,
52ce6436 6439 &bit_size, NULL))
76a01679
JB
6440 {
6441 if (bit_size != 0)
6442 {
714e53ab
PH
6443 if (TYPE_CODE (t) == TYPE_CODE_REF)
6444 arg = ada_coerce_ref (arg);
6445 else
6446 arg = ada_value_ind (arg);
76a01679
JB
6447 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6448 bit_offset, bit_size,
6449 field_type);
6450 }
6451 else
f5938064 6452 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6453 }
6454 }
6455
03ee6b2e
PH
6456 if (v != NULL || no_err)
6457 return v;
6458 else
323e0a4a 6459 error (_("There is no member named %s."), name);
14f9c5c9 6460
03ee6b2e
PH
6461 BadValue:
6462 if (no_err)
6463 return NULL;
6464 else
0963b4bd
MS
6465 error (_("Attempt to extract a component of "
6466 "a value that is not a record."));
14f9c5c9
AS
6467}
6468
6469/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6470 If DISPP is non-null, add its byte displacement from the beginning of a
6471 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6472 work for packed fields).
6473
6474 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6475 followed by "___".
14f9c5c9 6476
0963b4bd 6477 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6478 be a (pointer or reference)+ to a struct or union, and the
6479 ultimate target type will be searched.
14f9c5c9
AS
6480
6481 Looks recursively into variant clauses and parent types.
6482
4c4b4cd2
PH
6483 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6484 TYPE is not a type of the right kind. */
14f9c5c9 6485
4c4b4cd2 6486static struct type *
76a01679
JB
6487ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6488 int noerr, int *dispp)
14f9c5c9
AS
6489{
6490 int i;
6491
6492 if (name == NULL)
6493 goto BadName;
6494
76a01679 6495 if (refok && type != NULL)
4c4b4cd2
PH
6496 while (1)
6497 {
61ee279c 6498 type = ada_check_typedef (type);
76a01679
JB
6499 if (TYPE_CODE (type) != TYPE_CODE_PTR
6500 && TYPE_CODE (type) != TYPE_CODE_REF)
6501 break;
6502 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6503 }
14f9c5c9 6504
76a01679 6505 if (type == NULL
1265e4aa
JB
6506 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6507 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6508 {
4c4b4cd2 6509 if (noerr)
76a01679 6510 return NULL;
4c4b4cd2 6511 else
76a01679
JB
6512 {
6513 target_terminal_ours ();
6514 gdb_flush (gdb_stdout);
323e0a4a
AC
6515 if (type == NULL)
6516 error (_("Type (null) is not a structure or union type"));
6517 else
6518 {
6519 /* XXX: type_sprint */
6520 fprintf_unfiltered (gdb_stderr, _("Type "));
6521 type_print (type, "", gdb_stderr, -1);
6522 error (_(" is not a structure or union type"));
6523 }
76a01679 6524 }
14f9c5c9
AS
6525 }
6526
6527 type = to_static_fixed_type (type);
6528
6529 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6530 {
6531 char *t_field_name = TYPE_FIELD_NAME (type, i);
6532 struct type *t;
6533 int disp;
d2e4a39e 6534
14f9c5c9 6535 if (t_field_name == NULL)
4c4b4cd2 6536 continue;
14f9c5c9
AS
6537
6538 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6539 {
6540 if (dispp != NULL)
6541 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6542 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6543 }
14f9c5c9
AS
6544
6545 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6546 {
6547 disp = 0;
6548 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6549 0, 1, &disp);
6550 if (t != NULL)
6551 {
6552 if (dispp != NULL)
6553 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6554 return t;
6555 }
6556 }
14f9c5c9
AS
6557
6558 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6559 {
6560 int j;
5b4ee69b
MS
6561 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6562 i));
4c4b4cd2
PH
6563
6564 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6565 {
b1f33ddd
JB
6566 /* FIXME pnh 2008/01/26: We check for a field that is
6567 NOT wrapped in a struct, since the compiler sometimes
6568 generates these for unchecked variant types. Revisit
0963b4bd 6569 if the compiler changes this practice. */
b1f33ddd 6570 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6571 disp = 0;
b1f33ddd
JB
6572 if (v_field_name != NULL
6573 && field_name_match (v_field_name, name))
6574 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6575 else
0963b4bd
MS
6576 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6577 j),
b1f33ddd
JB
6578 name, 0, 1, &disp);
6579
4c4b4cd2
PH
6580 if (t != NULL)
6581 {
6582 if (dispp != NULL)
6583 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6584 return t;
6585 }
6586 }
6587 }
14f9c5c9
AS
6588
6589 }
6590
6591BadName:
d2e4a39e 6592 if (!noerr)
14f9c5c9
AS
6593 {
6594 target_terminal_ours ();
6595 gdb_flush (gdb_stdout);
323e0a4a
AC
6596 if (name == NULL)
6597 {
6598 /* XXX: type_sprint */
6599 fprintf_unfiltered (gdb_stderr, _("Type "));
6600 type_print (type, "", gdb_stderr, -1);
6601 error (_(" has no component named <null>"));
6602 }
6603 else
6604 {
6605 /* XXX: type_sprint */
6606 fprintf_unfiltered (gdb_stderr, _("Type "));
6607 type_print (type, "", gdb_stderr, -1);
6608 error (_(" has no component named %s"), name);
6609 }
14f9c5c9
AS
6610 }
6611
6612 return NULL;
6613}
6614
b1f33ddd
JB
6615/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6616 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6617 represents an unchecked union (that is, the variant part of a
0963b4bd 6618 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6619
6620static int
6621is_unchecked_variant (struct type *var_type, struct type *outer_type)
6622{
6623 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6624
b1f33ddd
JB
6625 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6626 == NULL);
6627}
6628
6629
14f9c5c9
AS
6630/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6631 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6632 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6633 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6634
d2e4a39e 6635int
ebf56fd3 6636ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6637 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6638{
6639 int others_clause;
6640 int i;
d2e4a39e 6641 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6642 struct value *outer;
6643 struct value *discrim;
14f9c5c9
AS
6644 LONGEST discrim_val;
6645
0c281816
JB
6646 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6647 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6648 if (discrim == NULL)
14f9c5c9 6649 return -1;
0c281816 6650 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6651
6652 others_clause = -1;
6653 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6654 {
6655 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6656 others_clause = i;
14f9c5c9 6657 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6658 return i;
14f9c5c9
AS
6659 }
6660
6661 return others_clause;
6662}
d2e4a39e 6663\f
14f9c5c9
AS
6664
6665
4c4b4cd2 6666 /* Dynamic-Sized Records */
14f9c5c9
AS
6667
6668/* Strategy: The type ostensibly attached to a value with dynamic size
6669 (i.e., a size that is not statically recorded in the debugging
6670 data) does not accurately reflect the size or layout of the value.
6671 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6672 conventional types that are constructed on the fly. */
14f9c5c9
AS
6673
6674/* There is a subtle and tricky problem here. In general, we cannot
6675 determine the size of dynamic records without its data. However,
6676 the 'struct value' data structure, which GDB uses to represent
6677 quantities in the inferior process (the target), requires the size
6678 of the type at the time of its allocation in order to reserve space
6679 for GDB's internal copy of the data. That's why the
6680 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6681 rather than struct value*s.
14f9c5c9
AS
6682
6683 However, GDB's internal history variables ($1, $2, etc.) are
6684 struct value*s containing internal copies of the data that are not, in
6685 general, the same as the data at their corresponding addresses in
6686 the target. Fortunately, the types we give to these values are all
6687 conventional, fixed-size types (as per the strategy described
6688 above), so that we don't usually have to perform the
6689 'to_fixed_xxx_type' conversions to look at their values.
6690 Unfortunately, there is one exception: if one of the internal
6691 history variables is an array whose elements are unconstrained
6692 records, then we will need to create distinct fixed types for each
6693 element selected. */
6694
6695/* The upshot of all of this is that many routines take a (type, host
6696 address, target address) triple as arguments to represent a value.
6697 The host address, if non-null, is supposed to contain an internal
6698 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6699 target at the target address. */
14f9c5c9
AS
6700
6701/* Assuming that VAL0 represents a pointer value, the result of
6702 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6703 dynamic-sized types. */
14f9c5c9 6704
d2e4a39e
AS
6705struct value *
6706ada_value_ind (struct value *val0)
14f9c5c9 6707{
d2e4a39e 6708 struct value *val = unwrap_value (value_ind (val0));
5b4ee69b 6709
4c4b4cd2 6710 return ada_to_fixed_value (val);
14f9c5c9
AS
6711}
6712
6713/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6714 qualifiers on VAL0. */
6715
d2e4a39e
AS
6716static struct value *
6717ada_coerce_ref (struct value *val0)
6718{
df407dfe 6719 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6720 {
6721 struct value *val = val0;
5b4ee69b 6722
994b9211 6723 val = coerce_ref (val);
d2e4a39e 6724 val = unwrap_value (val);
4c4b4cd2 6725 return ada_to_fixed_value (val);
d2e4a39e
AS
6726 }
6727 else
14f9c5c9
AS
6728 return val0;
6729}
6730
6731/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6732 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6733
6734static unsigned int
ebf56fd3 6735align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6736{
6737 return (off + alignment - 1) & ~(alignment - 1);
6738}
6739
4c4b4cd2 6740/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6741
6742static unsigned int
ebf56fd3 6743field_alignment (struct type *type, int f)
14f9c5c9 6744{
d2e4a39e 6745 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6746 int len;
14f9c5c9
AS
6747 int align_offset;
6748
64a1bf19
JB
6749 /* The field name should never be null, unless the debugging information
6750 is somehow malformed. In this case, we assume the field does not
6751 require any alignment. */
6752 if (name == NULL)
6753 return 1;
6754
6755 len = strlen (name);
6756
4c4b4cd2
PH
6757 if (!isdigit (name[len - 1]))
6758 return 1;
14f9c5c9 6759
d2e4a39e 6760 if (isdigit (name[len - 2]))
14f9c5c9
AS
6761 align_offset = len - 2;
6762 else
6763 align_offset = len - 1;
6764
4c4b4cd2 6765 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6766 return TARGET_CHAR_BIT;
6767
4c4b4cd2
PH
6768 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6769}
6770
6771/* Find a symbol named NAME. Ignores ambiguity. */
6772
6773struct symbol *
6774ada_find_any_symbol (const char *name)
6775{
6776 struct symbol *sym;
6777
6778 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6779 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6780 return sym;
6781
6782 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6783 return sym;
14f9c5c9
AS
6784}
6785
dddfab26
UW
6786/* Find a type named NAME. Ignores ambiguity. This routine will look
6787 solely for types defined by debug info, it will not search the GDB
6788 primitive types. */
4c4b4cd2 6789
d2e4a39e 6790struct type *
ebf56fd3 6791ada_find_any_type (const char *name)
14f9c5c9 6792{
4c4b4cd2 6793 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6794
14f9c5c9 6795 if (sym != NULL)
dddfab26 6796 return SYMBOL_TYPE (sym);
14f9c5c9 6797
dddfab26 6798 return NULL;
14f9c5c9
AS
6799}
6800
aeb5907d
JB
6801/* Given NAME and an associated BLOCK, search all symbols for
6802 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6803 associated to NAME. Return this symbol if found, return
6804 NULL otherwise. */
6805
6806struct symbol *
6807ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6808{
6809 struct symbol *sym;
6810
6811 sym = find_old_style_renaming_symbol (name, block);
6812
6813 if (sym != NULL)
6814 return sym;
6815
0963b4bd 6816 /* Not right yet. FIXME pnh 7/20/2007. */
aeb5907d
JB
6817 sym = ada_find_any_symbol (name);
6818 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6819 return sym;
6820 else
6821 return NULL;
6822}
6823
6824static struct symbol *
6825find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6826{
7f0df278 6827 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6828 char *rename;
6829
6830 if (function_sym != NULL)
6831 {
6832 /* If the symbol is defined inside a function, NAME is not fully
6833 qualified. This means we need to prepend the function name
6834 as well as adding the ``___XR'' suffix to build the name of
6835 the associated renaming symbol. */
6836 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6837 /* Function names sometimes contain suffixes used
6838 for instance to qualify nested subprograms. When building
6839 the XR type name, we need to make sure that this suffix is
6840 not included. So do not include any suffix in the function
6841 name length below. */
69fadcdf 6842 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6843 const int rename_len = function_name_len + 2 /* "__" */
6844 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6845
529cad9c 6846 /* Strip the suffix if necessary. */
69fadcdf
JB
6847 ada_remove_trailing_digits (function_name, &function_name_len);
6848 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6849 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 6850
4c4b4cd2
PH
6851 /* Library-level functions are a special case, as GNAT adds
6852 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6853 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6854 have this prefix, so we need to skip this prefix if present. */
6855 if (function_name_len > 5 /* "_ada_" */
6856 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
6857 {
6858 function_name += 5;
6859 function_name_len -= 5;
6860 }
4c4b4cd2
PH
6861
6862 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
6863 strncpy (rename, function_name, function_name_len);
6864 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6865 "__%s___XR", name);
4c4b4cd2
PH
6866 }
6867 else
6868 {
6869 const int rename_len = strlen (name) + 6;
5b4ee69b 6870
4c4b4cd2 6871 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6872 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6873 }
6874
6875 return ada_find_any_symbol (rename);
6876}
6877
14f9c5c9 6878/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6879 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6880 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6881 otherwise return 0. */
6882
14f9c5c9 6883int
d2e4a39e 6884ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6885{
6886 if (type1 == NULL)
6887 return 1;
6888 else if (type0 == NULL)
6889 return 0;
6890 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6891 return 1;
6892 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6893 return 0;
4c4b4cd2
PH
6894 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6895 return 1;
ad82864c 6896 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 6897 return 1;
4c4b4cd2
PH
6898 else if (ada_is_array_descriptor_type (type0)
6899 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6900 return 1;
aeb5907d
JB
6901 else
6902 {
6903 const char *type0_name = type_name_no_tag (type0);
6904 const char *type1_name = type_name_no_tag (type1);
6905
6906 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6907 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6908 return 1;
6909 }
14f9c5c9
AS
6910 return 0;
6911}
6912
6913/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6914 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6915
d2e4a39e
AS
6916char *
6917ada_type_name (struct type *type)
14f9c5c9 6918{
d2e4a39e 6919 if (type == NULL)
14f9c5c9
AS
6920 return NULL;
6921 else if (TYPE_NAME (type) != NULL)
6922 return TYPE_NAME (type);
6923 else
6924 return TYPE_TAG_NAME (type);
6925}
6926
b4ba55a1
JB
6927/* Search the list of "descriptive" types associated to TYPE for a type
6928 whose name is NAME. */
6929
6930static struct type *
6931find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6932{
6933 struct type *result;
6934
6935 /* If there no descriptive-type info, then there is no parallel type
6936 to be found. */
6937 if (!HAVE_GNAT_AUX_INFO (type))
6938 return NULL;
6939
6940 result = TYPE_DESCRIPTIVE_TYPE (type);
6941 while (result != NULL)
6942 {
6943 char *result_name = ada_type_name (result);
6944
6945 if (result_name == NULL)
6946 {
6947 warning (_("unexpected null name on descriptive type"));
6948 return NULL;
6949 }
6950
6951 /* If the names match, stop. */
6952 if (strcmp (result_name, name) == 0)
6953 break;
6954
6955 /* Otherwise, look at the next item on the list, if any. */
6956 if (HAVE_GNAT_AUX_INFO (result))
6957 result = TYPE_DESCRIPTIVE_TYPE (result);
6958 else
6959 result = NULL;
6960 }
6961
6962 /* If we didn't find a match, see whether this is a packed array. With
6963 older compilers, the descriptive type information is either absent or
6964 irrelevant when it comes to packed arrays so the above lookup fails.
6965 Fall back to using a parallel lookup by name in this case. */
12ab9e09 6966 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
6967 return ada_find_any_type (name);
6968
6969 return result;
6970}
6971
6972/* Find a parallel type to TYPE with the specified NAME, using the
6973 descriptive type taken from the debugging information, if available,
6974 and otherwise using the (slower) name-based method. */
6975
6976static struct type *
6977ada_find_parallel_type_with_name (struct type *type, const char *name)
6978{
6979 struct type *result = NULL;
6980
6981 if (HAVE_GNAT_AUX_INFO (type))
6982 result = find_parallel_type_by_descriptive_type (type, name);
6983 else
6984 result = ada_find_any_type (name);
6985
6986 return result;
6987}
6988
6989/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 6990 SUFFIX to the name of TYPE. */
14f9c5c9 6991
d2e4a39e 6992struct type *
ebf56fd3 6993ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6994{
b4ba55a1 6995 char *name, *typename = ada_type_name (type);
14f9c5c9 6996 int len;
d2e4a39e 6997
14f9c5c9
AS
6998 if (typename == NULL)
6999 return NULL;
7000
7001 len = strlen (typename);
7002
b4ba55a1 7003 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7004
7005 strcpy (name, typename);
7006 strcpy (name + len, suffix);
7007
b4ba55a1 7008 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7009}
7010
14f9c5c9 7011/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7012 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7013
d2e4a39e
AS
7014static struct type *
7015dynamic_template_type (struct type *type)
14f9c5c9 7016{
61ee279c 7017 type = ada_check_typedef (type);
14f9c5c9
AS
7018
7019 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7020 || ada_type_name (type) == NULL)
14f9c5c9 7021 return NULL;
d2e4a39e 7022 else
14f9c5c9
AS
7023 {
7024 int len = strlen (ada_type_name (type));
5b4ee69b 7025
4c4b4cd2
PH
7026 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7027 return type;
14f9c5c9 7028 else
4c4b4cd2 7029 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7030 }
7031}
7032
7033/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7034 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7035
d2e4a39e
AS
7036static int
7037is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7038{
7039 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7040
d2e4a39e 7041 return name != NULL
14f9c5c9
AS
7042 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7043 && strstr (name, "___XVL") != NULL;
7044}
7045
4c4b4cd2
PH
7046/* The index of the variant field of TYPE, or -1 if TYPE does not
7047 represent a variant record type. */
14f9c5c9 7048
d2e4a39e 7049static int
4c4b4cd2 7050variant_field_index (struct type *type)
14f9c5c9
AS
7051{
7052 int f;
7053
4c4b4cd2
PH
7054 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7055 return -1;
7056
7057 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7058 {
7059 if (ada_is_variant_part (type, f))
7060 return f;
7061 }
7062 return -1;
14f9c5c9
AS
7063}
7064
4c4b4cd2
PH
7065/* A record type with no fields. */
7066
d2e4a39e 7067static struct type *
e9bb382b 7068empty_record (struct type *template)
14f9c5c9 7069{
e9bb382b 7070 struct type *type = alloc_type_copy (template);
5b4ee69b 7071
14f9c5c9
AS
7072 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7073 TYPE_NFIELDS (type) = 0;
7074 TYPE_FIELDS (type) = NULL;
b1f33ddd 7075 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7076 TYPE_NAME (type) = "<empty>";
7077 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7078 TYPE_LENGTH (type) = 0;
7079 return type;
7080}
7081
7082/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7083 the value of type TYPE at VALADDR or ADDRESS (see comments at
7084 the beginning of this section) VAL according to GNAT conventions.
7085 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7086 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7087 an outer-level type (i.e., as opposed to a branch of a variant.) A
7088 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7089 of the variant.
14f9c5c9 7090
4c4b4cd2
PH
7091 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7092 length are not statically known are discarded. As a consequence,
7093 VALADDR, ADDRESS and DVAL0 are ignored.
7094
7095 NOTE: Limitations: For now, we assume that dynamic fields and
7096 variants occupy whole numbers of bytes. However, they need not be
7097 byte-aligned. */
7098
7099struct type *
10a2c479 7100ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7101 const gdb_byte *valaddr,
4c4b4cd2
PH
7102 CORE_ADDR address, struct value *dval0,
7103 int keep_dynamic_fields)
14f9c5c9 7104{
d2e4a39e
AS
7105 struct value *mark = value_mark ();
7106 struct value *dval;
7107 struct type *rtype;
14f9c5c9 7108 int nfields, bit_len;
4c4b4cd2 7109 int variant_field;
14f9c5c9 7110 long off;
d94e4f4f 7111 int fld_bit_len;
14f9c5c9
AS
7112 int f;
7113
4c4b4cd2
PH
7114 /* Compute the number of fields in this record type that are going
7115 to be processed: unless keep_dynamic_fields, this includes only
7116 fields whose position and length are static will be processed. */
7117 if (keep_dynamic_fields)
7118 nfields = TYPE_NFIELDS (type);
7119 else
7120 {
7121 nfields = 0;
76a01679 7122 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7123 && !ada_is_variant_part (type, nfields)
7124 && !is_dynamic_field (type, nfields))
7125 nfields++;
7126 }
7127
e9bb382b 7128 rtype = alloc_type_copy (type);
14f9c5c9
AS
7129 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7130 INIT_CPLUS_SPECIFIC (rtype);
7131 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7132 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7133 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7134 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7135 TYPE_NAME (rtype) = ada_type_name (type);
7136 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7137 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7138
d2e4a39e
AS
7139 off = 0;
7140 bit_len = 0;
4c4b4cd2
PH
7141 variant_field = -1;
7142
14f9c5c9
AS
7143 for (f = 0; f < nfields; f += 1)
7144 {
6c038f32
PH
7145 off = align_value (off, field_alignment (type, f))
7146 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7147 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7148 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7149
d2e4a39e 7150 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7151 {
7152 variant_field = f;
d94e4f4f 7153 fld_bit_len = 0;
4c4b4cd2 7154 }
14f9c5c9 7155 else if (is_dynamic_field (type, f))
4c4b4cd2 7156 {
284614f0
JB
7157 const gdb_byte *field_valaddr = valaddr;
7158 CORE_ADDR field_address = address;
7159 struct type *field_type =
7160 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7161
4c4b4cd2 7162 if (dval0 == NULL)
b5304971
JG
7163 {
7164 /* rtype's length is computed based on the run-time
7165 value of discriminants. If the discriminants are not
7166 initialized, the type size may be completely bogus and
0963b4bd 7167 GDB may fail to allocate a value for it. So check the
b5304971
JG
7168 size first before creating the value. */
7169 check_size (rtype);
7170 dval = value_from_contents_and_address (rtype, valaddr, address);
7171 }
4c4b4cd2
PH
7172 else
7173 dval = dval0;
7174
284614f0
JB
7175 /* If the type referenced by this field is an aligner type, we need
7176 to unwrap that aligner type, because its size might not be set.
7177 Keeping the aligner type would cause us to compute the wrong
7178 size for this field, impacting the offset of the all the fields
7179 that follow this one. */
7180 if (ada_is_aligner_type (field_type))
7181 {
7182 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7183
7184 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7185 field_address = cond_offset_target (field_address, field_offset);
7186 field_type = ada_aligned_type (field_type);
7187 }
7188
7189 field_valaddr = cond_offset_host (field_valaddr,
7190 off / TARGET_CHAR_BIT);
7191 field_address = cond_offset_target (field_address,
7192 off / TARGET_CHAR_BIT);
7193
7194 /* Get the fixed type of the field. Note that, in this case,
7195 we do not want to get the real type out of the tag: if
7196 the current field is the parent part of a tagged record,
7197 we will get the tag of the object. Clearly wrong: the real
7198 type of the parent is not the real type of the child. We
7199 would end up in an infinite loop. */
7200 field_type = ada_get_base_type (field_type);
7201 field_type = ada_to_fixed_type (field_type, field_valaddr,
7202 field_address, dval, 0);
27f2a97b
JB
7203 /* If the field size is already larger than the maximum
7204 object size, then the record itself will necessarily
7205 be larger than the maximum object size. We need to make
7206 this check now, because the size might be so ridiculously
7207 large (due to an uninitialized variable in the inferior)
7208 that it would cause an overflow when adding it to the
7209 record size. */
7210 check_size (field_type);
284614f0
JB
7211
7212 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7213 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7214 /* The multiplication can potentially overflow. But because
7215 the field length has been size-checked just above, and
7216 assuming that the maximum size is a reasonable value,
7217 an overflow should not happen in practice. So rather than
7218 adding overflow recovery code to this already complex code,
7219 we just assume that it's not going to happen. */
d94e4f4f 7220 fld_bit_len =
4c4b4cd2
PH
7221 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7222 }
14f9c5c9 7223 else
4c4b4cd2 7224 {
9f0dec2d
JB
7225 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7226
720d1a40
JB
7227 /* If our field is a typedef type (most likely a typedef of
7228 a fat pointer, encoding an array access), then we need to
7229 look at its target type to determine its characteristics.
7230 In particular, we would miscompute the field size if we took
7231 the size of the typedef (zero), instead of the size of
7232 the target type. */
7233 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7234 field_type = ada_typedef_target_type (field_type);
7235
9f0dec2d 7236 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7237 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7238 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7239 fld_bit_len =
4c4b4cd2
PH
7240 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7241 else
d94e4f4f 7242 fld_bit_len =
9f0dec2d 7243 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7244 }
14f9c5c9 7245 if (off + fld_bit_len > bit_len)
4c4b4cd2 7246 bit_len = off + fld_bit_len;
d94e4f4f 7247 off += fld_bit_len;
4c4b4cd2
PH
7248 TYPE_LENGTH (rtype) =
7249 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7250 }
4c4b4cd2
PH
7251
7252 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7253 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7254 the record. This can happen in the presence of representation
7255 clauses. */
7256 if (variant_field >= 0)
7257 {
7258 struct type *branch_type;
7259
7260 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7261
7262 if (dval0 == NULL)
7263 dval = value_from_contents_and_address (rtype, valaddr, address);
7264 else
7265 dval = dval0;
7266
7267 branch_type =
7268 to_fixed_variant_branch_type
7269 (TYPE_FIELD_TYPE (type, variant_field),
7270 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7271 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7272 if (branch_type == NULL)
7273 {
7274 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7275 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7276 TYPE_NFIELDS (rtype) -= 1;
7277 }
7278 else
7279 {
7280 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7281 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7282 fld_bit_len =
7283 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7284 TARGET_CHAR_BIT;
7285 if (off + fld_bit_len > bit_len)
7286 bit_len = off + fld_bit_len;
7287 TYPE_LENGTH (rtype) =
7288 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7289 }
7290 }
7291
714e53ab
PH
7292 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7293 should contain the alignment of that record, which should be a strictly
7294 positive value. If null or negative, then something is wrong, most
7295 probably in the debug info. In that case, we don't round up the size
0963b4bd 7296 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7297 the current RTYPE length might be good enough for our purposes. */
7298 if (TYPE_LENGTH (type) <= 0)
7299 {
323e0a4a
AC
7300 if (TYPE_NAME (rtype))
7301 warning (_("Invalid type size for `%s' detected: %d."),
7302 TYPE_NAME (rtype), TYPE_LENGTH (type));
7303 else
7304 warning (_("Invalid type size for <unnamed> detected: %d."),
7305 TYPE_LENGTH (type));
714e53ab
PH
7306 }
7307 else
7308 {
7309 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7310 TYPE_LENGTH (type));
7311 }
14f9c5c9
AS
7312
7313 value_free_to_mark (mark);
d2e4a39e 7314 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7315 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7316 return rtype;
7317}
7318
4c4b4cd2
PH
7319/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7320 of 1. */
14f9c5c9 7321
d2e4a39e 7322static struct type *
fc1a4b47 7323template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7324 CORE_ADDR address, struct value *dval0)
7325{
7326 return ada_template_to_fixed_record_type_1 (type, valaddr,
7327 address, dval0, 1);
7328}
7329
7330/* An ordinary record type in which ___XVL-convention fields and
7331 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7332 static approximations, containing all possible fields. Uses
7333 no runtime values. Useless for use in values, but that's OK,
7334 since the results are used only for type determinations. Works on both
7335 structs and unions. Representation note: to save space, we memorize
7336 the result of this function in the TYPE_TARGET_TYPE of the
7337 template type. */
7338
7339static struct type *
7340template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7341{
7342 struct type *type;
7343 int nfields;
7344 int f;
7345
4c4b4cd2
PH
7346 if (TYPE_TARGET_TYPE (type0) != NULL)
7347 return TYPE_TARGET_TYPE (type0);
7348
7349 nfields = TYPE_NFIELDS (type0);
7350 type = type0;
14f9c5c9
AS
7351
7352 for (f = 0; f < nfields; f += 1)
7353 {
61ee279c 7354 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7355 struct type *new_type;
14f9c5c9 7356
4c4b4cd2
PH
7357 if (is_dynamic_field (type0, f))
7358 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7359 else
f192137b 7360 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7361 if (type == type0 && new_type != field_type)
7362 {
e9bb382b 7363 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7364 TYPE_CODE (type) = TYPE_CODE (type0);
7365 INIT_CPLUS_SPECIFIC (type);
7366 TYPE_NFIELDS (type) = nfields;
7367 TYPE_FIELDS (type) = (struct field *)
7368 TYPE_ALLOC (type, nfields * sizeof (struct field));
7369 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7370 sizeof (struct field) * nfields);
7371 TYPE_NAME (type) = ada_type_name (type0);
7372 TYPE_TAG_NAME (type) = NULL;
876cecd0 7373 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7374 TYPE_LENGTH (type) = 0;
7375 }
7376 TYPE_FIELD_TYPE (type, f) = new_type;
7377 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7378 }
14f9c5c9
AS
7379 return type;
7380}
7381
4c4b4cd2 7382/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7383 whose address in memory is ADDRESS, returns a revision of TYPE,
7384 which should be a non-dynamic-sized record, in which the variant
7385 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7386 for discriminant values in DVAL0, which can be NULL if the record
7387 contains the necessary discriminant values. */
7388
d2e4a39e 7389static struct type *
fc1a4b47 7390to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7391 CORE_ADDR address, struct value *dval0)
14f9c5c9 7392{
d2e4a39e 7393 struct value *mark = value_mark ();
4c4b4cd2 7394 struct value *dval;
d2e4a39e 7395 struct type *rtype;
14f9c5c9
AS
7396 struct type *branch_type;
7397 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7398 int variant_field = variant_field_index (type);
14f9c5c9 7399
4c4b4cd2 7400 if (variant_field == -1)
14f9c5c9
AS
7401 return type;
7402
4c4b4cd2
PH
7403 if (dval0 == NULL)
7404 dval = value_from_contents_and_address (type, valaddr, address);
7405 else
7406 dval = dval0;
7407
e9bb382b 7408 rtype = alloc_type_copy (type);
14f9c5c9 7409 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7410 INIT_CPLUS_SPECIFIC (rtype);
7411 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7412 TYPE_FIELDS (rtype) =
7413 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7414 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7415 sizeof (struct field) * nfields);
14f9c5c9
AS
7416 TYPE_NAME (rtype) = ada_type_name (type);
7417 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7418 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7419 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7420
4c4b4cd2
PH
7421 branch_type = to_fixed_variant_branch_type
7422 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7423 cond_offset_host (valaddr,
4c4b4cd2
PH
7424 TYPE_FIELD_BITPOS (type, variant_field)
7425 / TARGET_CHAR_BIT),
d2e4a39e 7426 cond_offset_target (address,
4c4b4cd2
PH
7427 TYPE_FIELD_BITPOS (type, variant_field)
7428 / TARGET_CHAR_BIT), dval);
d2e4a39e 7429 if (branch_type == NULL)
14f9c5c9 7430 {
4c4b4cd2 7431 int f;
5b4ee69b 7432
4c4b4cd2
PH
7433 for (f = variant_field + 1; f < nfields; f += 1)
7434 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7435 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7436 }
7437 else
7438 {
4c4b4cd2
PH
7439 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7440 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7441 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7442 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7443 }
4c4b4cd2 7444 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7445
4c4b4cd2 7446 value_free_to_mark (mark);
14f9c5c9
AS
7447 return rtype;
7448}
7449
7450/* An ordinary record type (with fixed-length fields) that describes
7451 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7452 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7453 should be in DVAL, a record value; it may be NULL if the object
7454 at ADDR itself contains any necessary discriminant values.
7455 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7456 values from the record are needed. Except in the case that DVAL,
7457 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7458 unchecked) is replaced by a particular branch of the variant.
7459
7460 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7461 is questionable and may be removed. It can arise during the
7462 processing of an unconstrained-array-of-record type where all the
7463 variant branches have exactly the same size. This is because in
7464 such cases, the compiler does not bother to use the XVS convention
7465 when encoding the record. I am currently dubious of this
7466 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7467
d2e4a39e 7468static struct type *
fc1a4b47 7469to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7470 CORE_ADDR address, struct value *dval)
14f9c5c9 7471{
d2e4a39e 7472 struct type *templ_type;
14f9c5c9 7473
876cecd0 7474 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7475 return type0;
7476
d2e4a39e 7477 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7478
7479 if (templ_type != NULL)
7480 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7481 else if (variant_field_index (type0) >= 0)
7482 {
7483 if (dval == NULL && valaddr == NULL && address == 0)
7484 return type0;
7485 return to_record_with_fixed_variant_part (type0, valaddr, address,
7486 dval);
7487 }
14f9c5c9
AS
7488 else
7489 {
876cecd0 7490 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7491 return type0;
7492 }
7493
7494}
7495
7496/* An ordinary record type (with fixed-length fields) that describes
7497 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7498 union type. Any necessary discriminants' values should be in DVAL,
7499 a record value. That is, this routine selects the appropriate
7500 branch of the union at ADDR according to the discriminant value
b1f33ddd 7501 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7502 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7503
d2e4a39e 7504static struct type *
fc1a4b47 7505to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7506 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7507{
7508 int which;
d2e4a39e
AS
7509 struct type *templ_type;
7510 struct type *var_type;
14f9c5c9
AS
7511
7512 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7513 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7514 else
14f9c5c9
AS
7515 var_type = var_type0;
7516
7517 templ_type = ada_find_parallel_type (var_type, "___XVU");
7518
7519 if (templ_type != NULL)
7520 var_type = templ_type;
7521
b1f33ddd
JB
7522 if (is_unchecked_variant (var_type, value_type (dval)))
7523 return var_type0;
d2e4a39e
AS
7524 which =
7525 ada_which_variant_applies (var_type,
0fd88904 7526 value_type (dval), value_contents (dval));
14f9c5c9
AS
7527
7528 if (which < 0)
e9bb382b 7529 return empty_record (var_type);
14f9c5c9 7530 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7531 return to_fixed_record_type
d2e4a39e
AS
7532 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7533 valaddr, address, dval);
4c4b4cd2 7534 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7535 return
7536 to_fixed_record_type
7537 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7538 else
7539 return TYPE_FIELD_TYPE (var_type, which);
7540}
7541
7542/* Assuming that TYPE0 is an array type describing the type of a value
7543 at ADDR, and that DVAL describes a record containing any
7544 discriminants used in TYPE0, returns a type for the value that
7545 contains no dynamic components (that is, no components whose sizes
7546 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7547 true, gives an error message if the resulting type's size is over
4c4b4cd2 7548 varsize_limit. */
14f9c5c9 7549
d2e4a39e
AS
7550static struct type *
7551to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7552 int ignore_too_big)
14f9c5c9 7553{
d2e4a39e
AS
7554 struct type *index_type_desc;
7555 struct type *result;
ad82864c 7556 int constrained_packed_array_p;
14f9c5c9 7557
b0dd7688 7558 type0 = ada_check_typedef (type0);
284614f0 7559 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7560 return type0;
14f9c5c9 7561
ad82864c
JB
7562 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7563 if (constrained_packed_array_p)
7564 type0 = decode_constrained_packed_array_type (type0);
284614f0 7565
14f9c5c9 7566 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7567 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7568 if (index_type_desc == NULL)
7569 {
61ee279c 7570 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7571
14f9c5c9 7572 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7573 depend on the contents of the array in properly constructed
7574 debugging data. */
529cad9c
PH
7575 /* Create a fixed version of the array element type.
7576 We're not providing the address of an element here,
e1d5a0d2 7577 and thus the actual object value cannot be inspected to do
529cad9c
PH
7578 the conversion. This should not be a problem, since arrays of
7579 unconstrained objects are not allowed. In particular, all
7580 the elements of an array of a tagged type should all be of
7581 the same type specified in the debugging info. No need to
7582 consult the object tag. */
1ed6ede0 7583 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7584
284614f0
JB
7585 /* Make sure we always create a new array type when dealing with
7586 packed array types, since we're going to fix-up the array
7587 type length and element bitsize a little further down. */
ad82864c 7588 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7589 result = type0;
14f9c5c9 7590 else
e9bb382b 7591 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7592 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7593 }
7594 else
7595 {
7596 int i;
7597 struct type *elt_type0;
7598
7599 elt_type0 = type0;
7600 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7601 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7602
7603 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7604 depend on the contents of the array in properly constructed
7605 debugging data. */
529cad9c
PH
7606 /* Create a fixed version of the array element type.
7607 We're not providing the address of an element here,
e1d5a0d2 7608 and thus the actual object value cannot be inspected to do
529cad9c
PH
7609 the conversion. This should not be a problem, since arrays of
7610 unconstrained objects are not allowed. In particular, all
7611 the elements of an array of a tagged type should all be of
7612 the same type specified in the debugging info. No need to
7613 consult the object tag. */
1ed6ede0
JB
7614 result =
7615 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7616
7617 elt_type0 = type0;
14f9c5c9 7618 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7619 {
7620 struct type *range_type =
28c85d6c 7621 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7622
e9bb382b 7623 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7624 result, range_type);
1ce677a4 7625 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7626 }
d2e4a39e 7627 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7628 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7629 }
7630
ad82864c 7631 if (constrained_packed_array_p)
284614f0
JB
7632 {
7633 /* So far, the resulting type has been created as if the original
7634 type was a regular (non-packed) array type. As a result, the
7635 bitsize of the array elements needs to be set again, and the array
7636 length needs to be recomputed based on that bitsize. */
7637 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7638 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7639
7640 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7641 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7642 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7643 TYPE_LENGTH (result)++;
7644 }
7645
876cecd0 7646 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7647 return result;
d2e4a39e 7648}
14f9c5c9
AS
7649
7650
7651/* A standard type (containing no dynamically sized components)
7652 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7653 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7654 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7655 ADDRESS or in VALADDR contains these discriminants.
7656
1ed6ede0
JB
7657 If CHECK_TAG is not null, in the case of tagged types, this function
7658 attempts to locate the object's tag and use it to compute the actual
7659 type. However, when ADDRESS is null, we cannot use it to determine the
7660 location of the tag, and therefore compute the tagged type's actual type.
7661 So we return the tagged type without consulting the tag. */
529cad9c 7662
f192137b
JB
7663static struct type *
7664ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7665 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7666{
61ee279c 7667 type = ada_check_typedef (type);
d2e4a39e
AS
7668 switch (TYPE_CODE (type))
7669 {
7670 default:
14f9c5c9 7671 return type;
d2e4a39e 7672 case TYPE_CODE_STRUCT:
4c4b4cd2 7673 {
76a01679 7674 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7675 struct type *fixed_record_type =
7676 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7677
529cad9c
PH
7678 /* If STATIC_TYPE is a tagged type and we know the object's address,
7679 then we can determine its tag, and compute the object's actual
0963b4bd 7680 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7681 type (the parent part of the record may have dynamic fields
7682 and the way the location of _tag is expressed may depend on
7683 them). */
529cad9c 7684
1ed6ede0 7685 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7686 {
7687 struct type *real_type =
1ed6ede0
JB
7688 type_from_tag (value_tag_from_contents_and_address
7689 (fixed_record_type,
7690 valaddr,
7691 address));
5b4ee69b 7692
76a01679 7693 if (real_type != NULL)
1ed6ede0 7694 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7695 }
4af88198
JB
7696
7697 /* Check to see if there is a parallel ___XVZ variable.
7698 If there is, then it provides the actual size of our type. */
7699 else if (ada_type_name (fixed_record_type) != NULL)
7700 {
7701 char *name = ada_type_name (fixed_record_type);
7702 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7703 int xvz_found = 0;
7704 LONGEST size;
7705
88c15c34 7706 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7707 size = get_int_var_value (xvz_name, &xvz_found);
7708 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7709 {
7710 fixed_record_type = copy_type (fixed_record_type);
7711 TYPE_LENGTH (fixed_record_type) = size;
7712
7713 /* The FIXED_RECORD_TYPE may have be a stub. We have
7714 observed this when the debugging info is STABS, and
7715 apparently it is something that is hard to fix.
7716
7717 In practice, we don't need the actual type definition
7718 at all, because the presence of the XVZ variable allows us
7719 to assume that there must be a XVS type as well, which we
7720 should be able to use later, when we need the actual type
7721 definition.
7722
7723 In the meantime, pretend that the "fixed" type we are
7724 returning is NOT a stub, because this can cause trouble
7725 when using this type to create new types targeting it.
7726 Indeed, the associated creation routines often check
7727 whether the target type is a stub and will try to replace
0963b4bd 7728 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
7729 might cause the new type to have the wrong size too.
7730 Consider the case of an array, for instance, where the size
7731 of the array is computed from the number of elements in
7732 our array multiplied by the size of its element. */
7733 TYPE_STUB (fixed_record_type) = 0;
7734 }
7735 }
1ed6ede0 7736 return fixed_record_type;
4c4b4cd2 7737 }
d2e4a39e 7738 case TYPE_CODE_ARRAY:
4c4b4cd2 7739 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7740 case TYPE_CODE_UNION:
7741 if (dval == NULL)
4c4b4cd2 7742 return type;
d2e4a39e 7743 else
4c4b4cd2 7744 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7745 }
14f9c5c9
AS
7746}
7747
f192137b
JB
7748/* The same as ada_to_fixed_type_1, except that it preserves the type
7749 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
7750
7751 The typedef layer needs be preserved in order to differentiate between
7752 arrays and array pointers when both types are implemented using the same
7753 fat pointer. In the array pointer case, the pointer is encoded as
7754 a typedef of the pointer type. For instance, considering:
7755
7756 type String_Access is access String;
7757 S1 : String_Access := null;
7758
7759 To the debugger, S1 is defined as a typedef of type String. But
7760 to the user, it is a pointer. So if the user tries to print S1,
7761 we should not dereference the array, but print the array address
7762 instead.
7763
7764 If we didn't preserve the typedef layer, we would lose the fact that
7765 the type is to be presented as a pointer (needs de-reference before
7766 being printed). And we would also use the source-level type name. */
f192137b
JB
7767
7768struct type *
7769ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7770 CORE_ADDR address, struct value *dval, int check_tag)
7771
7772{
7773 struct type *fixed_type =
7774 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7775
96dbd2c1
JB
7776 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7777 then preserve the typedef layer.
7778
7779 Implementation note: We can only check the main-type portion of
7780 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7781 from TYPE now returns a type that has the same instance flags
7782 as TYPE. For instance, if TYPE is a "typedef const", and its
7783 target type is a "struct", then the typedef elimination will return
7784 a "const" version of the target type. See check_typedef for more
7785 details about how the typedef layer elimination is done.
7786
7787 brobecker/2010-11-19: It seems to me that the only case where it is
7788 useful to preserve the typedef layer is when dealing with fat pointers.
7789 Perhaps, we could add a check for that and preserve the typedef layer
7790 only in that situation. But this seems unecessary so far, probably
7791 because we call check_typedef/ada_check_typedef pretty much everywhere.
7792 */
f192137b 7793 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 7794 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 7795 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
7796 return type;
7797
7798 return fixed_type;
7799}
7800
14f9c5c9 7801/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7802 TYPE0, but based on no runtime data. */
14f9c5c9 7803
d2e4a39e
AS
7804static struct type *
7805to_static_fixed_type (struct type *type0)
14f9c5c9 7806{
d2e4a39e 7807 struct type *type;
14f9c5c9
AS
7808
7809 if (type0 == NULL)
7810 return NULL;
7811
876cecd0 7812 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7813 return type0;
7814
61ee279c 7815 type0 = ada_check_typedef (type0);
d2e4a39e 7816
14f9c5c9
AS
7817 switch (TYPE_CODE (type0))
7818 {
7819 default:
7820 return type0;
7821 case TYPE_CODE_STRUCT:
7822 type = dynamic_template_type (type0);
d2e4a39e 7823 if (type != NULL)
4c4b4cd2
PH
7824 return template_to_static_fixed_type (type);
7825 else
7826 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7827 case TYPE_CODE_UNION:
7828 type = ada_find_parallel_type (type0, "___XVU");
7829 if (type != NULL)
4c4b4cd2
PH
7830 return template_to_static_fixed_type (type);
7831 else
7832 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7833 }
7834}
7835
4c4b4cd2
PH
7836/* A static approximation of TYPE with all type wrappers removed. */
7837
d2e4a39e
AS
7838static struct type *
7839static_unwrap_type (struct type *type)
14f9c5c9
AS
7840{
7841 if (ada_is_aligner_type (type))
7842 {
61ee279c 7843 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7844 if (ada_type_name (type1) == NULL)
4c4b4cd2 7845 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7846
7847 return static_unwrap_type (type1);
7848 }
d2e4a39e 7849 else
14f9c5c9 7850 {
d2e4a39e 7851 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 7852
d2e4a39e 7853 if (raw_real_type == type)
4c4b4cd2 7854 return type;
14f9c5c9 7855 else
4c4b4cd2 7856 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7857 }
7858}
7859
7860/* In some cases, incomplete and private types require
4c4b4cd2 7861 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7862 type Foo;
7863 type FooP is access Foo;
7864 V: FooP;
7865 type Foo is array ...;
4c4b4cd2 7866 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7867 cross-references to such types, we instead substitute for FooP a
7868 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7869 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7870
7871/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7872 exists, otherwise TYPE. */
7873
d2e4a39e 7874struct type *
61ee279c 7875ada_check_typedef (struct type *type)
14f9c5c9 7876{
727e3d2e
JB
7877 if (type == NULL)
7878 return NULL;
7879
720d1a40
JB
7880 /* If our type is a typedef type of a fat pointer, then we're done.
7881 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7882 what allows us to distinguish between fat pointers that represent
7883 array types, and fat pointers that represent array access types
7884 (in both cases, the compiler implements them as fat pointers). */
7885 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7886 && is_thick_pntr (ada_typedef_target_type (type)))
7887 return type;
7888
14f9c5c9
AS
7889 CHECK_TYPEDEF (type);
7890 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7891 || !TYPE_STUB (type)
14f9c5c9
AS
7892 || TYPE_TAG_NAME (type) == NULL)
7893 return type;
d2e4a39e 7894 else
14f9c5c9 7895 {
d2e4a39e
AS
7896 char *name = TYPE_TAG_NAME (type);
7897 struct type *type1 = ada_find_any_type (name);
5b4ee69b 7898
05e522ef
JB
7899 if (type1 == NULL)
7900 return type;
7901
7902 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7903 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
7904 types, only for the typedef-to-array types). If that's the case,
7905 strip the typedef layer. */
7906 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7907 type1 = ada_check_typedef (type1);
7908
7909 return type1;
14f9c5c9
AS
7910 }
7911}
7912
7913/* A value representing the data at VALADDR/ADDRESS as described by
7914 type TYPE0, but with a standard (static-sized) type that correctly
7915 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7916 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7917 creation of struct values]. */
14f9c5c9 7918
4c4b4cd2
PH
7919static struct value *
7920ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7921 struct value *val0)
14f9c5c9 7922{
1ed6ede0 7923 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 7924
14f9c5c9
AS
7925 if (type == type0 && val0 != NULL)
7926 return val0;
d2e4a39e 7927 else
4c4b4cd2
PH
7928 return value_from_contents_and_address (type, 0, address);
7929}
7930
7931/* A value representing VAL, but with a standard (static-sized) type
7932 that correctly describes it. Does not necessarily create a new
7933 value. */
7934
0c3acc09 7935struct value *
4c4b4cd2
PH
7936ada_to_fixed_value (struct value *val)
7937{
df407dfe 7938 return ada_to_fixed_value_create (value_type (val),
42ae5230 7939 value_address (val),
4c4b4cd2 7940 val);
14f9c5c9 7941}
d2e4a39e 7942\f
14f9c5c9 7943
14f9c5c9
AS
7944/* Attributes */
7945
4c4b4cd2
PH
7946/* Table mapping attribute numbers to names.
7947 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7948
d2e4a39e 7949static const char *attribute_names[] = {
14f9c5c9
AS
7950 "<?>",
7951
d2e4a39e 7952 "first",
14f9c5c9
AS
7953 "last",
7954 "length",
7955 "image",
14f9c5c9
AS
7956 "max",
7957 "min",
4c4b4cd2
PH
7958 "modulus",
7959 "pos",
7960 "size",
7961 "tag",
14f9c5c9 7962 "val",
14f9c5c9
AS
7963 0
7964};
7965
d2e4a39e 7966const char *
4c4b4cd2 7967ada_attribute_name (enum exp_opcode n)
14f9c5c9 7968{
4c4b4cd2
PH
7969 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7970 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7971 else
7972 return attribute_names[0];
7973}
7974
4c4b4cd2 7975/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7976
4c4b4cd2
PH
7977static LONGEST
7978pos_atr (struct value *arg)
14f9c5c9 7979{
24209737
PH
7980 struct value *val = coerce_ref (arg);
7981 struct type *type = value_type (val);
14f9c5c9 7982
d2e4a39e 7983 if (!discrete_type_p (type))
323e0a4a 7984 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7985
7986 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7987 {
7988 int i;
24209737 7989 LONGEST v = value_as_long (val);
14f9c5c9 7990
d2e4a39e 7991 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7992 {
7993 if (v == TYPE_FIELD_BITPOS (type, i))
7994 return i;
7995 }
323e0a4a 7996 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7997 }
7998 else
24209737 7999 return value_as_long (val);
4c4b4cd2
PH
8000}
8001
8002static struct value *
3cb382c9 8003value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8004{
3cb382c9 8005 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8006}
8007
4c4b4cd2 8008/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8009
d2e4a39e
AS
8010static struct value *
8011value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8012{
d2e4a39e 8013 if (!discrete_type_p (type))
323e0a4a 8014 error (_("'VAL only defined on discrete types"));
df407dfe 8015 if (!integer_type_p (value_type (arg)))
323e0a4a 8016 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8017
8018 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8019 {
8020 long pos = value_as_long (arg);
5b4ee69b 8021
14f9c5c9 8022 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8023 error (_("argument to 'VAL out of range"));
d2e4a39e 8024 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
8025 }
8026 else
8027 return value_from_longest (type, value_as_long (arg));
8028}
14f9c5c9 8029\f
d2e4a39e 8030
4c4b4cd2 8031 /* Evaluation */
14f9c5c9 8032
4c4b4cd2
PH
8033/* True if TYPE appears to be an Ada character type.
8034 [At the moment, this is true only for Character and Wide_Character;
8035 It is a heuristic test that could stand improvement]. */
14f9c5c9 8036
d2e4a39e
AS
8037int
8038ada_is_character_type (struct type *type)
14f9c5c9 8039{
7b9f71f2
JB
8040 const char *name;
8041
8042 /* If the type code says it's a character, then assume it really is,
8043 and don't check any further. */
8044 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8045 return 1;
8046
8047 /* Otherwise, assume it's a character type iff it is a discrete type
8048 with a known character type name. */
8049 name = ada_type_name (type);
8050 return (name != NULL
8051 && (TYPE_CODE (type) == TYPE_CODE_INT
8052 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8053 && (strcmp (name, "character") == 0
8054 || strcmp (name, "wide_character") == 0
5a517ebd 8055 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8056 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8057}
8058
4c4b4cd2 8059/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8060
8061int
ebf56fd3 8062ada_is_string_type (struct type *type)
14f9c5c9 8063{
61ee279c 8064 type = ada_check_typedef (type);
d2e4a39e 8065 if (type != NULL
14f9c5c9 8066 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8067 && (ada_is_simple_array_type (type)
8068 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8069 && ada_array_arity (type) == 1)
8070 {
8071 struct type *elttype = ada_array_element_type (type, 1);
8072
8073 return ada_is_character_type (elttype);
8074 }
d2e4a39e 8075 else
14f9c5c9
AS
8076 return 0;
8077}
8078
5bf03f13
JB
8079/* The compiler sometimes provides a parallel XVS type for a given
8080 PAD type. Normally, it is safe to follow the PAD type directly,
8081 but older versions of the compiler have a bug that causes the offset
8082 of its "F" field to be wrong. Following that field in that case
8083 would lead to incorrect results, but this can be worked around
8084 by ignoring the PAD type and using the associated XVS type instead.
8085
8086 Set to True if the debugger should trust the contents of PAD types.
8087 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8088static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8089
8090/* True if TYPE is a struct type introduced by the compiler to force the
8091 alignment of a value. Such types have a single field with a
4c4b4cd2 8092 distinctive name. */
14f9c5c9
AS
8093
8094int
ebf56fd3 8095ada_is_aligner_type (struct type *type)
14f9c5c9 8096{
61ee279c 8097 type = ada_check_typedef (type);
714e53ab 8098
5bf03f13 8099 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8100 return 0;
8101
14f9c5c9 8102 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8103 && TYPE_NFIELDS (type) == 1
8104 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8105}
8106
8107/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8108 the parallel type. */
14f9c5c9 8109
d2e4a39e
AS
8110struct type *
8111ada_get_base_type (struct type *raw_type)
14f9c5c9 8112{
d2e4a39e
AS
8113 struct type *real_type_namer;
8114 struct type *raw_real_type;
14f9c5c9
AS
8115
8116 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8117 return raw_type;
8118
284614f0
JB
8119 if (ada_is_aligner_type (raw_type))
8120 /* The encoding specifies that we should always use the aligner type.
8121 So, even if this aligner type has an associated XVS type, we should
8122 simply ignore it.
8123
8124 According to the compiler gurus, an XVS type parallel to an aligner
8125 type may exist because of a stabs limitation. In stabs, aligner
8126 types are empty because the field has a variable-sized type, and
8127 thus cannot actually be used as an aligner type. As a result,
8128 we need the associated parallel XVS type to decode the type.
8129 Since the policy in the compiler is to not change the internal
8130 representation based on the debugging info format, we sometimes
8131 end up having a redundant XVS type parallel to the aligner type. */
8132 return raw_type;
8133
14f9c5c9 8134 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8135 if (real_type_namer == NULL
14f9c5c9
AS
8136 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8137 || TYPE_NFIELDS (real_type_namer) != 1)
8138 return raw_type;
8139
f80d3ff2
JB
8140 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8141 {
8142 /* This is an older encoding form where the base type needs to be
8143 looked up by name. We prefer the newer enconding because it is
8144 more efficient. */
8145 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8146 if (raw_real_type == NULL)
8147 return raw_type;
8148 else
8149 return raw_real_type;
8150 }
8151
8152 /* The field in our XVS type is a reference to the base type. */
8153 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8154}
14f9c5c9 8155
4c4b4cd2 8156/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8157
d2e4a39e
AS
8158struct type *
8159ada_aligned_type (struct type *type)
14f9c5c9
AS
8160{
8161 if (ada_is_aligner_type (type))
8162 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8163 else
8164 return ada_get_base_type (type);
8165}
8166
8167
8168/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8169 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8170
fc1a4b47
AC
8171const gdb_byte *
8172ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8173{
d2e4a39e 8174 if (ada_is_aligner_type (type))
14f9c5c9 8175 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8176 valaddr +
8177 TYPE_FIELD_BITPOS (type,
8178 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8179 else
8180 return valaddr;
8181}
8182
4c4b4cd2
PH
8183
8184
14f9c5c9 8185/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8186 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8187const char *
8188ada_enum_name (const char *name)
14f9c5c9 8189{
4c4b4cd2
PH
8190 static char *result;
8191 static size_t result_len = 0;
d2e4a39e 8192 char *tmp;
14f9c5c9 8193
4c4b4cd2
PH
8194 /* First, unqualify the enumeration name:
8195 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
8196 all the preceeding characters, the unqualified name starts
8197 right after that dot.
4c4b4cd2 8198 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8199 translates dots into "__". Search forward for double underscores,
8200 but stop searching when we hit an overloading suffix, which is
8201 of the form "__" followed by digits. */
4c4b4cd2 8202
c3e5cd34
PH
8203 tmp = strrchr (name, '.');
8204 if (tmp != NULL)
4c4b4cd2
PH
8205 name = tmp + 1;
8206 else
14f9c5c9 8207 {
4c4b4cd2
PH
8208 while ((tmp = strstr (name, "__")) != NULL)
8209 {
8210 if (isdigit (tmp[2]))
8211 break;
8212 else
8213 name = tmp + 2;
8214 }
14f9c5c9
AS
8215 }
8216
8217 if (name[0] == 'Q')
8218 {
14f9c5c9 8219 int v;
5b4ee69b 8220
14f9c5c9 8221 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8222 {
8223 if (sscanf (name + 2, "%x", &v) != 1)
8224 return name;
8225 }
14f9c5c9 8226 else
4c4b4cd2 8227 return name;
14f9c5c9 8228
4c4b4cd2 8229 GROW_VECT (result, result_len, 16);
14f9c5c9 8230 if (isascii (v) && isprint (v))
88c15c34 8231 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8232 else if (name[1] == 'U')
88c15c34 8233 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8234 else
88c15c34 8235 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8236
8237 return result;
8238 }
d2e4a39e 8239 else
4c4b4cd2 8240 {
c3e5cd34
PH
8241 tmp = strstr (name, "__");
8242 if (tmp == NULL)
8243 tmp = strstr (name, "$");
8244 if (tmp != NULL)
4c4b4cd2
PH
8245 {
8246 GROW_VECT (result, result_len, tmp - name + 1);
8247 strncpy (result, name, tmp - name);
8248 result[tmp - name] = '\0';
8249 return result;
8250 }
8251
8252 return name;
8253 }
14f9c5c9
AS
8254}
8255
14f9c5c9
AS
8256/* Evaluate the subexpression of EXP starting at *POS as for
8257 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8258 expression. */
14f9c5c9 8259
d2e4a39e
AS
8260static struct value *
8261evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8262{
4b27a620 8263 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8264}
8265
8266/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8267 value it wraps. */
14f9c5c9 8268
d2e4a39e
AS
8269static struct value *
8270unwrap_value (struct value *val)
14f9c5c9 8271{
df407dfe 8272 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8273
14f9c5c9
AS
8274 if (ada_is_aligner_type (type))
8275 {
de4d072f 8276 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8277 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8278
14f9c5c9 8279 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8280 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8281
8282 return unwrap_value (v);
8283 }
d2e4a39e 8284 else
14f9c5c9 8285 {
d2e4a39e 8286 struct type *raw_real_type =
61ee279c 8287 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8288
5bf03f13
JB
8289 /* If there is no parallel XVS or XVE type, then the value is
8290 already unwrapped. Return it without further modification. */
8291 if ((type == raw_real_type)
8292 && ada_find_parallel_type (type, "___XVE") == NULL)
8293 return val;
14f9c5c9 8294
d2e4a39e 8295 return
4c4b4cd2
PH
8296 coerce_unspec_val_to_type
8297 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8298 value_address (val),
1ed6ede0 8299 NULL, 1));
14f9c5c9
AS
8300 }
8301}
d2e4a39e
AS
8302
8303static struct value *
8304cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8305{
8306 LONGEST val;
8307
df407dfe 8308 if (type == value_type (arg))
14f9c5c9 8309 return arg;
df407dfe 8310 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8311 val = ada_float_to_fixed (type,
df407dfe 8312 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8313 value_as_long (arg)));
d2e4a39e 8314 else
14f9c5c9 8315 {
a53b7a21 8316 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8317
14f9c5c9
AS
8318 val = ada_float_to_fixed (type, argd);
8319 }
8320
8321 return value_from_longest (type, val);
8322}
8323
d2e4a39e 8324static struct value *
a53b7a21 8325cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8326{
df407dfe 8327 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8328 value_as_long (arg));
5b4ee69b 8329
a53b7a21 8330 return value_from_double (type, val);
14f9c5c9
AS
8331}
8332
4c4b4cd2
PH
8333/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8334 return the converted value. */
8335
d2e4a39e
AS
8336static struct value *
8337coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8338{
df407dfe 8339 struct type *type2 = value_type (val);
5b4ee69b 8340
14f9c5c9
AS
8341 if (type == type2)
8342 return val;
8343
61ee279c
PH
8344 type2 = ada_check_typedef (type2);
8345 type = ada_check_typedef (type);
14f9c5c9 8346
d2e4a39e
AS
8347 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8348 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8349 {
8350 val = ada_value_ind (val);
df407dfe 8351 type2 = value_type (val);
14f9c5c9
AS
8352 }
8353
d2e4a39e 8354 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8355 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8356 {
8357 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8358 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8359 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8360 error (_("Incompatible types in assignment"));
04624583 8361 deprecated_set_value_type (val, type);
14f9c5c9 8362 }
d2e4a39e 8363 return val;
14f9c5c9
AS
8364}
8365
4c4b4cd2
PH
8366static struct value *
8367ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8368{
8369 struct value *val;
8370 struct type *type1, *type2;
8371 LONGEST v, v1, v2;
8372
994b9211
AC
8373 arg1 = coerce_ref (arg1);
8374 arg2 = coerce_ref (arg2);
df407dfe
AC
8375 type1 = base_type (ada_check_typedef (value_type (arg1)));
8376 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8377
76a01679
JB
8378 if (TYPE_CODE (type1) != TYPE_CODE_INT
8379 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8380 return value_binop (arg1, arg2, op);
8381
76a01679 8382 switch (op)
4c4b4cd2
PH
8383 {
8384 case BINOP_MOD:
8385 case BINOP_DIV:
8386 case BINOP_REM:
8387 break;
8388 default:
8389 return value_binop (arg1, arg2, op);
8390 }
8391
8392 v2 = value_as_long (arg2);
8393 if (v2 == 0)
323e0a4a 8394 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8395
8396 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8397 return value_binop (arg1, arg2, op);
8398
8399 v1 = value_as_long (arg1);
8400 switch (op)
8401 {
8402 case BINOP_DIV:
8403 v = v1 / v2;
76a01679
JB
8404 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8405 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8406 break;
8407 case BINOP_REM:
8408 v = v1 % v2;
76a01679
JB
8409 if (v * v1 < 0)
8410 v -= v2;
4c4b4cd2
PH
8411 break;
8412 default:
8413 /* Should not reach this point. */
8414 v = 0;
8415 }
8416
8417 val = allocate_value (type1);
990a07ab 8418 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8419 TYPE_LENGTH (value_type (val)),
8420 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8421 return val;
8422}
8423
8424static int
8425ada_value_equal (struct value *arg1, struct value *arg2)
8426{
df407dfe
AC
8427 if (ada_is_direct_array_type (value_type (arg1))
8428 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8429 {
f58b38bf
JB
8430 /* Automatically dereference any array reference before
8431 we attempt to perform the comparison. */
8432 arg1 = ada_coerce_ref (arg1);
8433 arg2 = ada_coerce_ref (arg2);
8434
4c4b4cd2
PH
8435 arg1 = ada_coerce_to_simple_array (arg1);
8436 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8437 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8438 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8439 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8440 /* FIXME: The following works only for types whose
76a01679
JB
8441 representations use all bits (no padding or undefined bits)
8442 and do not have user-defined equality. */
8443 return
df407dfe 8444 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8445 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8446 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8447 }
8448 return value_equal (arg1, arg2);
8449}
8450
52ce6436
PH
8451/* Total number of component associations in the aggregate starting at
8452 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8453 OP_AGGREGATE. */
52ce6436
PH
8454
8455static int
8456num_component_specs (struct expression *exp, int pc)
8457{
8458 int n, m, i;
5b4ee69b 8459
52ce6436
PH
8460 m = exp->elts[pc + 1].longconst;
8461 pc += 3;
8462 n = 0;
8463 for (i = 0; i < m; i += 1)
8464 {
8465 switch (exp->elts[pc].opcode)
8466 {
8467 default:
8468 n += 1;
8469 break;
8470 case OP_CHOICES:
8471 n += exp->elts[pc + 1].longconst;
8472 break;
8473 }
8474 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8475 }
8476 return n;
8477}
8478
8479/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8480 component of LHS (a simple array or a record), updating *POS past
8481 the expression, assuming that LHS is contained in CONTAINER. Does
8482 not modify the inferior's memory, nor does it modify LHS (unless
8483 LHS == CONTAINER). */
8484
8485static void
8486assign_component (struct value *container, struct value *lhs, LONGEST index,
8487 struct expression *exp, int *pos)
8488{
8489 struct value *mark = value_mark ();
8490 struct value *elt;
5b4ee69b 8491
52ce6436
PH
8492 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8493 {
22601c15
UW
8494 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8495 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8496
52ce6436
PH
8497 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8498 }
8499 else
8500 {
8501 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8502 elt = ada_to_fixed_value (unwrap_value (elt));
8503 }
8504
8505 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8506 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8507 else
8508 value_assign_to_component (container, elt,
8509 ada_evaluate_subexp (NULL, exp, pos,
8510 EVAL_NORMAL));
8511
8512 value_free_to_mark (mark);
8513}
8514
8515/* Assuming that LHS represents an lvalue having a record or array
8516 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8517 of that aggregate's value to LHS, advancing *POS past the
8518 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8519 lvalue containing LHS (possibly LHS itself). Does not modify
8520 the inferior's memory, nor does it modify the contents of
0963b4bd 8521 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8522
8523static struct value *
8524assign_aggregate (struct value *container,
8525 struct value *lhs, struct expression *exp,
8526 int *pos, enum noside noside)
8527{
8528 struct type *lhs_type;
8529 int n = exp->elts[*pos+1].longconst;
8530 LONGEST low_index, high_index;
8531 int num_specs;
8532 LONGEST *indices;
8533 int max_indices, num_indices;
8534 int is_array_aggregate;
8535 int i;
52ce6436
PH
8536
8537 *pos += 3;
8538 if (noside != EVAL_NORMAL)
8539 {
8540 int i;
5b4ee69b 8541
52ce6436
PH
8542 for (i = 0; i < n; i += 1)
8543 ada_evaluate_subexp (NULL, exp, pos, noside);
8544 return container;
8545 }
8546
8547 container = ada_coerce_ref (container);
8548 if (ada_is_direct_array_type (value_type (container)))
8549 container = ada_coerce_to_simple_array (container);
8550 lhs = ada_coerce_ref (lhs);
8551 if (!deprecated_value_modifiable (lhs))
8552 error (_("Left operand of assignment is not a modifiable lvalue."));
8553
8554 lhs_type = value_type (lhs);
8555 if (ada_is_direct_array_type (lhs_type))
8556 {
8557 lhs = ada_coerce_to_simple_array (lhs);
8558 lhs_type = value_type (lhs);
8559 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8560 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8561 is_array_aggregate = 1;
8562 }
8563 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8564 {
8565 low_index = 0;
8566 high_index = num_visible_fields (lhs_type) - 1;
8567 is_array_aggregate = 0;
8568 }
8569 else
8570 error (_("Left-hand side must be array or record."));
8571
8572 num_specs = num_component_specs (exp, *pos - 3);
8573 max_indices = 4 * num_specs + 4;
8574 indices = alloca (max_indices * sizeof (indices[0]));
8575 indices[0] = indices[1] = low_index - 1;
8576 indices[2] = indices[3] = high_index + 1;
8577 num_indices = 4;
8578
8579 for (i = 0; i < n; i += 1)
8580 {
8581 switch (exp->elts[*pos].opcode)
8582 {
8583 case OP_CHOICES:
8584 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8585 &num_indices, max_indices,
8586 low_index, high_index);
8587 break;
8588 case OP_POSITIONAL:
8589 aggregate_assign_positional (container, lhs, exp, pos, indices,
8590 &num_indices, max_indices,
8591 low_index, high_index);
8592 break;
8593 case OP_OTHERS:
8594 if (i != n-1)
8595 error (_("Misplaced 'others' clause"));
8596 aggregate_assign_others (container, lhs, exp, pos, indices,
8597 num_indices, low_index, high_index);
8598 break;
8599 default:
8600 error (_("Internal error: bad aggregate clause"));
8601 }
8602 }
8603
8604 return container;
8605}
8606
8607/* Assign into the component of LHS indexed by the OP_POSITIONAL
8608 construct at *POS, updating *POS past the construct, given that
8609 the positions are relative to lower bound LOW, where HIGH is the
8610 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8611 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8612 assign_aggregate. */
52ce6436
PH
8613static void
8614aggregate_assign_positional (struct value *container,
8615 struct value *lhs, struct expression *exp,
8616 int *pos, LONGEST *indices, int *num_indices,
8617 int max_indices, LONGEST low, LONGEST high)
8618{
8619 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8620
8621 if (ind - 1 == high)
e1d5a0d2 8622 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8623 if (ind <= high)
8624 {
8625 add_component_interval (ind, ind, indices, num_indices, max_indices);
8626 *pos += 3;
8627 assign_component (container, lhs, ind, exp, pos);
8628 }
8629 else
8630 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8631}
8632
8633/* Assign into the components of LHS indexed by the OP_CHOICES
8634 construct at *POS, updating *POS past the construct, given that
8635 the allowable indices are LOW..HIGH. Record the indices assigned
8636 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 8637 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8638static void
8639aggregate_assign_from_choices (struct value *container,
8640 struct value *lhs, struct expression *exp,
8641 int *pos, LONGEST *indices, int *num_indices,
8642 int max_indices, LONGEST low, LONGEST high)
8643{
8644 int j;
8645 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8646 int choice_pos, expr_pc;
8647 int is_array = ada_is_direct_array_type (value_type (lhs));
8648
8649 choice_pos = *pos += 3;
8650
8651 for (j = 0; j < n_choices; j += 1)
8652 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8653 expr_pc = *pos;
8654 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8655
8656 for (j = 0; j < n_choices; j += 1)
8657 {
8658 LONGEST lower, upper;
8659 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8660
52ce6436
PH
8661 if (op == OP_DISCRETE_RANGE)
8662 {
8663 choice_pos += 1;
8664 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8665 EVAL_NORMAL));
8666 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8667 EVAL_NORMAL));
8668 }
8669 else if (is_array)
8670 {
8671 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8672 EVAL_NORMAL));
8673 upper = lower;
8674 }
8675 else
8676 {
8677 int ind;
8678 char *name;
5b4ee69b 8679
52ce6436
PH
8680 switch (op)
8681 {
8682 case OP_NAME:
8683 name = &exp->elts[choice_pos + 2].string;
8684 break;
8685 case OP_VAR_VALUE:
8686 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8687 break;
8688 default:
8689 error (_("Invalid record component association."));
8690 }
8691 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8692 ind = 0;
8693 if (! find_struct_field (name, value_type (lhs), 0,
8694 NULL, NULL, NULL, NULL, &ind))
8695 error (_("Unknown component name: %s."), name);
8696 lower = upper = ind;
8697 }
8698
8699 if (lower <= upper && (lower < low || upper > high))
8700 error (_("Index in component association out of bounds."));
8701
8702 add_component_interval (lower, upper, indices, num_indices,
8703 max_indices);
8704 while (lower <= upper)
8705 {
8706 int pos1;
5b4ee69b 8707
52ce6436
PH
8708 pos1 = expr_pc;
8709 assign_component (container, lhs, lower, exp, &pos1);
8710 lower += 1;
8711 }
8712 }
8713}
8714
8715/* Assign the value of the expression in the OP_OTHERS construct in
8716 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8717 have not been previously assigned. The index intervals already assigned
8718 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 8719 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8720static void
8721aggregate_assign_others (struct value *container,
8722 struct value *lhs, struct expression *exp,
8723 int *pos, LONGEST *indices, int num_indices,
8724 LONGEST low, LONGEST high)
8725{
8726 int i;
5ce64950 8727 int expr_pc = *pos + 1;
52ce6436
PH
8728
8729 for (i = 0; i < num_indices - 2; i += 2)
8730 {
8731 LONGEST ind;
5b4ee69b 8732
52ce6436
PH
8733 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8734 {
5ce64950 8735 int localpos;
5b4ee69b 8736
5ce64950
MS
8737 localpos = expr_pc;
8738 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
8739 }
8740 }
8741 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8742}
8743
8744/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8745 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8746 modifying *SIZE as needed. It is an error if *SIZE exceeds
8747 MAX_SIZE. The resulting intervals do not overlap. */
8748static void
8749add_component_interval (LONGEST low, LONGEST high,
8750 LONGEST* indices, int *size, int max_size)
8751{
8752 int i, j;
5b4ee69b 8753
52ce6436
PH
8754 for (i = 0; i < *size; i += 2) {
8755 if (high >= indices[i] && low <= indices[i + 1])
8756 {
8757 int kh;
5b4ee69b 8758
52ce6436
PH
8759 for (kh = i + 2; kh < *size; kh += 2)
8760 if (high < indices[kh])
8761 break;
8762 if (low < indices[i])
8763 indices[i] = low;
8764 indices[i + 1] = indices[kh - 1];
8765 if (high > indices[i + 1])
8766 indices[i + 1] = high;
8767 memcpy (indices + i + 2, indices + kh, *size - kh);
8768 *size -= kh - i - 2;
8769 return;
8770 }
8771 else if (high < indices[i])
8772 break;
8773 }
8774
8775 if (*size == max_size)
8776 error (_("Internal error: miscounted aggregate components."));
8777 *size += 2;
8778 for (j = *size-1; j >= i+2; j -= 1)
8779 indices[j] = indices[j - 2];
8780 indices[i] = low;
8781 indices[i + 1] = high;
8782}
8783
6e48bd2c
JB
8784/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8785 is different. */
8786
8787static struct value *
8788ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8789{
8790 if (type == ada_check_typedef (value_type (arg2)))
8791 return arg2;
8792
8793 if (ada_is_fixed_point_type (type))
8794 return (cast_to_fixed (type, arg2));
8795
8796 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8797 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8798
8799 return value_cast (type, arg2);
8800}
8801
284614f0
JB
8802/* Evaluating Ada expressions, and printing their result.
8803 ------------------------------------------------------
8804
21649b50
JB
8805 1. Introduction:
8806 ----------------
8807
284614f0
JB
8808 We usually evaluate an Ada expression in order to print its value.
8809 We also evaluate an expression in order to print its type, which
8810 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8811 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8812 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8813 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8814 similar.
8815
8816 Evaluating expressions is a little more complicated for Ada entities
8817 than it is for entities in languages such as C. The main reason for
8818 this is that Ada provides types whose definition might be dynamic.
8819 One example of such types is variant records. Or another example
8820 would be an array whose bounds can only be known at run time.
8821
8822 The following description is a general guide as to what should be
8823 done (and what should NOT be done) in order to evaluate an expression
8824 involving such types, and when. This does not cover how the semantic
8825 information is encoded by GNAT as this is covered separatly. For the
8826 document used as the reference for the GNAT encoding, see exp_dbug.ads
8827 in the GNAT sources.
8828
8829 Ideally, we should embed each part of this description next to its
8830 associated code. Unfortunately, the amount of code is so vast right
8831 now that it's hard to see whether the code handling a particular
8832 situation might be duplicated or not. One day, when the code is
8833 cleaned up, this guide might become redundant with the comments
8834 inserted in the code, and we might want to remove it.
8835
21649b50
JB
8836 2. ``Fixing'' an Entity, the Simple Case:
8837 -----------------------------------------
8838
284614f0
JB
8839 When evaluating Ada expressions, the tricky issue is that they may
8840 reference entities whose type contents and size are not statically
8841 known. Consider for instance a variant record:
8842
8843 type Rec (Empty : Boolean := True) is record
8844 case Empty is
8845 when True => null;
8846 when False => Value : Integer;
8847 end case;
8848 end record;
8849 Yes : Rec := (Empty => False, Value => 1);
8850 No : Rec := (empty => True);
8851
8852 The size and contents of that record depends on the value of the
8853 descriminant (Rec.Empty). At this point, neither the debugging
8854 information nor the associated type structure in GDB are able to
8855 express such dynamic types. So what the debugger does is to create
8856 "fixed" versions of the type that applies to the specific object.
8857 We also informally refer to this opperation as "fixing" an object,
8858 which means creating its associated fixed type.
8859
8860 Example: when printing the value of variable "Yes" above, its fixed
8861 type would look like this:
8862
8863 type Rec is record
8864 Empty : Boolean;
8865 Value : Integer;
8866 end record;
8867
8868 On the other hand, if we printed the value of "No", its fixed type
8869 would become:
8870
8871 type Rec is record
8872 Empty : Boolean;
8873 end record;
8874
8875 Things become a little more complicated when trying to fix an entity
8876 with a dynamic type that directly contains another dynamic type,
8877 such as an array of variant records, for instance. There are
8878 two possible cases: Arrays, and records.
8879
21649b50
JB
8880 3. ``Fixing'' Arrays:
8881 ---------------------
8882
8883 The type structure in GDB describes an array in terms of its bounds,
8884 and the type of its elements. By design, all elements in the array
8885 have the same type and we cannot represent an array of variant elements
8886 using the current type structure in GDB. When fixing an array,
8887 we cannot fix the array element, as we would potentially need one
8888 fixed type per element of the array. As a result, the best we can do
8889 when fixing an array is to produce an array whose bounds and size
8890 are correct (allowing us to read it from memory), but without having
8891 touched its element type. Fixing each element will be done later,
8892 when (if) necessary.
8893
8894 Arrays are a little simpler to handle than records, because the same
8895 amount of memory is allocated for each element of the array, even if
1b536f04 8896 the amount of space actually used by each element differs from element
21649b50 8897 to element. Consider for instance the following array of type Rec:
284614f0
JB
8898
8899 type Rec_Array is array (1 .. 2) of Rec;
8900
1b536f04
JB
8901 The actual amount of memory occupied by each element might be different
8902 from element to element, depending on the value of their discriminant.
21649b50 8903 But the amount of space reserved for each element in the array remains
1b536f04 8904 fixed regardless. So we simply need to compute that size using
21649b50
JB
8905 the debugging information available, from which we can then determine
8906 the array size (we multiply the number of elements of the array by
8907 the size of each element).
8908
8909 The simplest case is when we have an array of a constrained element
8910 type. For instance, consider the following type declarations:
8911
8912 type Bounded_String (Max_Size : Integer) is
8913 Length : Integer;
8914 Buffer : String (1 .. Max_Size);
8915 end record;
8916 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8917
8918 In this case, the compiler describes the array as an array of
8919 variable-size elements (identified by its XVS suffix) for which
8920 the size can be read in the parallel XVZ variable.
8921
8922 In the case of an array of an unconstrained element type, the compiler
8923 wraps the array element inside a private PAD type. This type should not
8924 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
8925 that we also use the adjective "aligner" in our code to designate
8926 these wrapper types.
8927
1b536f04 8928 In some cases, the size allocated for each element is statically
21649b50
JB
8929 known. In that case, the PAD type already has the correct size,
8930 and the array element should remain unfixed.
8931
8932 But there are cases when this size is not statically known.
8933 For instance, assuming that "Five" is an integer variable:
284614f0
JB
8934
8935 type Dynamic is array (1 .. Five) of Integer;
8936 type Wrapper (Has_Length : Boolean := False) is record
8937 Data : Dynamic;
8938 case Has_Length is
8939 when True => Length : Integer;
8940 when False => null;
8941 end case;
8942 end record;
8943 type Wrapper_Array is array (1 .. 2) of Wrapper;
8944
8945 Hello : Wrapper_Array := (others => (Has_Length => True,
8946 Data => (others => 17),
8947 Length => 1));
8948
8949
8950 The debugging info would describe variable Hello as being an
8951 array of a PAD type. The size of that PAD type is not statically
8952 known, but can be determined using a parallel XVZ variable.
8953 In that case, a copy of the PAD type with the correct size should
8954 be used for the fixed array.
8955
21649b50
JB
8956 3. ``Fixing'' record type objects:
8957 ----------------------------------
8958
8959 Things are slightly different from arrays in the case of dynamic
284614f0
JB
8960 record types. In this case, in order to compute the associated
8961 fixed type, we need to determine the size and offset of each of
8962 its components. This, in turn, requires us to compute the fixed
8963 type of each of these components.
8964
8965 Consider for instance the example:
8966
8967 type Bounded_String (Max_Size : Natural) is record
8968 Str : String (1 .. Max_Size);
8969 Length : Natural;
8970 end record;
8971 My_String : Bounded_String (Max_Size => 10);
8972
8973 In that case, the position of field "Length" depends on the size
8974 of field Str, which itself depends on the value of the Max_Size
21649b50 8975 discriminant. In order to fix the type of variable My_String,
284614f0
JB
8976 we need to fix the type of field Str. Therefore, fixing a variant
8977 record requires us to fix each of its components.
8978
8979 However, if a component does not have a dynamic size, the component
8980 should not be fixed. In particular, fields that use a PAD type
8981 should not fixed. Here is an example where this might happen
8982 (assuming type Rec above):
8983
8984 type Container (Big : Boolean) is record
8985 First : Rec;
8986 After : Integer;
8987 case Big is
8988 when True => Another : Integer;
8989 when False => null;
8990 end case;
8991 end record;
8992 My_Container : Container := (Big => False,
8993 First => (Empty => True),
8994 After => 42);
8995
8996 In that example, the compiler creates a PAD type for component First,
8997 whose size is constant, and then positions the component After just
8998 right after it. The offset of component After is therefore constant
8999 in this case.
9000
9001 The debugger computes the position of each field based on an algorithm
9002 that uses, among other things, the actual position and size of the field
21649b50
JB
9003 preceding it. Let's now imagine that the user is trying to print
9004 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9005 end up computing the offset of field After based on the size of the
9006 fixed version of field First. And since in our example First has
9007 only one actual field, the size of the fixed type is actually smaller
9008 than the amount of space allocated to that field, and thus we would
9009 compute the wrong offset of field After.
9010
21649b50
JB
9011 To make things more complicated, we need to watch out for dynamic
9012 components of variant records (identified by the ___XVL suffix in
9013 the component name). Even if the target type is a PAD type, the size
9014 of that type might not be statically known. So the PAD type needs
9015 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9016 we might end up with the wrong size for our component. This can be
9017 observed with the following type declarations:
284614f0
JB
9018
9019 type Octal is new Integer range 0 .. 7;
9020 type Octal_Array is array (Positive range <>) of Octal;
9021 pragma Pack (Octal_Array);
9022
9023 type Octal_Buffer (Size : Positive) is record
9024 Buffer : Octal_Array (1 .. Size);
9025 Length : Integer;
9026 end record;
9027
9028 In that case, Buffer is a PAD type whose size is unset and needs
9029 to be computed by fixing the unwrapped type.
9030
21649b50
JB
9031 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9032 ----------------------------------------------------------
9033
9034 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9035 thus far, be actually fixed?
9036
9037 The answer is: Only when referencing that element. For instance
9038 when selecting one component of a record, this specific component
9039 should be fixed at that point in time. Or when printing the value
9040 of a record, each component should be fixed before its value gets
9041 printed. Similarly for arrays, the element of the array should be
9042 fixed when printing each element of the array, or when extracting
9043 one element out of that array. On the other hand, fixing should
9044 not be performed on the elements when taking a slice of an array!
9045
9046 Note that one of the side-effects of miscomputing the offset and
9047 size of each field is that we end up also miscomputing the size
9048 of the containing type. This can have adverse results when computing
9049 the value of an entity. GDB fetches the value of an entity based
9050 on the size of its type, and thus a wrong size causes GDB to fetch
9051 the wrong amount of memory. In the case where the computed size is
9052 too small, GDB fetches too little data to print the value of our
9053 entiry. Results in this case as unpredicatble, as we usually read
9054 past the buffer containing the data =:-o. */
9055
9056/* Implement the evaluate_exp routine in the exp_descriptor structure
9057 for the Ada language. */
9058
52ce6436 9059static struct value *
ebf56fd3 9060ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9061 int *pos, enum noside noside)
14f9c5c9
AS
9062{
9063 enum exp_opcode op;
b5385fc0 9064 int tem;
14f9c5c9
AS
9065 int pc;
9066 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9067 struct type *type;
52ce6436 9068 int nargs, oplen;
d2e4a39e 9069 struct value **argvec;
14f9c5c9 9070
d2e4a39e
AS
9071 pc = *pos;
9072 *pos += 1;
14f9c5c9
AS
9073 op = exp->elts[pc].opcode;
9074
d2e4a39e 9075 switch (op)
14f9c5c9
AS
9076 {
9077 default:
9078 *pos -= 1;
6e48bd2c
JB
9079 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9080 arg1 = unwrap_value (arg1);
9081
9082 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9083 then we need to perform the conversion manually, because
9084 evaluate_subexp_standard doesn't do it. This conversion is
9085 necessary in Ada because the different kinds of float/fixed
9086 types in Ada have different representations.
9087
9088 Similarly, we need to perform the conversion from OP_LONG
9089 ourselves. */
9090 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9091 arg1 = ada_value_cast (expect_type, arg1, noside);
9092
9093 return arg1;
4c4b4cd2
PH
9094
9095 case OP_STRING:
9096 {
76a01679 9097 struct value *result;
5b4ee69b 9098
76a01679
JB
9099 *pos -= 1;
9100 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9101 /* The result type will have code OP_STRING, bashed there from
9102 OP_ARRAY. Bash it back. */
df407dfe
AC
9103 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9104 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9105 return result;
4c4b4cd2 9106 }
14f9c5c9
AS
9107
9108 case UNOP_CAST:
9109 (*pos) += 2;
9110 type = exp->elts[pc + 1].type;
9111 arg1 = evaluate_subexp (type, exp, pos, noside);
9112 if (noside == EVAL_SKIP)
4c4b4cd2 9113 goto nosideret;
6e48bd2c 9114 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9115 return arg1;
9116
4c4b4cd2
PH
9117 case UNOP_QUAL:
9118 (*pos) += 2;
9119 type = exp->elts[pc + 1].type;
9120 return ada_evaluate_subexp (type, exp, pos, noside);
9121
14f9c5c9
AS
9122 case BINOP_ASSIGN:
9123 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9124 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9125 {
9126 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9127 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9128 return arg1;
9129 return ada_value_assign (arg1, arg1);
9130 }
003f3813
JB
9131 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9132 except if the lhs of our assignment is a convenience variable.
9133 In the case of assigning to a convenience variable, the lhs
9134 should be exactly the result of the evaluation of the rhs. */
9135 type = value_type (arg1);
9136 if (VALUE_LVAL (arg1) == lval_internalvar)
9137 type = NULL;
9138 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9139 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9140 return arg1;
df407dfe
AC
9141 if (ada_is_fixed_point_type (value_type (arg1)))
9142 arg2 = cast_to_fixed (value_type (arg1), arg2);
9143 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9144 error
323e0a4a 9145 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9146 else
df407dfe 9147 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9148 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9149
9150 case BINOP_ADD:
9151 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9152 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9153 if (noside == EVAL_SKIP)
4c4b4cd2 9154 goto nosideret;
2ac8a782
JB
9155 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9156 return (value_from_longest
9157 (value_type (arg1),
9158 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9159 if ((ada_is_fixed_point_type (value_type (arg1))
9160 || ada_is_fixed_point_type (value_type (arg2)))
9161 && value_type (arg1) != value_type (arg2))
323e0a4a 9162 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9163 /* Do the addition, and cast the result to the type of the first
9164 argument. We cannot cast the result to a reference type, so if
9165 ARG1 is a reference type, find its underlying type. */
9166 type = value_type (arg1);
9167 while (TYPE_CODE (type) == TYPE_CODE_REF)
9168 type = TYPE_TARGET_TYPE (type);
f44316fa 9169 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9170 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9171
9172 case BINOP_SUB:
9173 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9174 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9175 if (noside == EVAL_SKIP)
4c4b4cd2 9176 goto nosideret;
2ac8a782
JB
9177 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9178 return (value_from_longest
9179 (value_type (arg1),
9180 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9181 if ((ada_is_fixed_point_type (value_type (arg1))
9182 || ada_is_fixed_point_type (value_type (arg2)))
9183 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9184 error (_("Operands of fixed-point subtraction "
9185 "must have the same type"));
b7789565
JB
9186 /* Do the substraction, and cast the result to the type of the first
9187 argument. We cannot cast the result to a reference type, so if
9188 ARG1 is a reference type, find its underlying type. */
9189 type = value_type (arg1);
9190 while (TYPE_CODE (type) == TYPE_CODE_REF)
9191 type = TYPE_TARGET_TYPE (type);
f44316fa 9192 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9193 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9194
9195 case BINOP_MUL:
9196 case BINOP_DIV:
e1578042
JB
9197 case BINOP_REM:
9198 case BINOP_MOD:
14f9c5c9
AS
9199 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9200 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9201 if (noside == EVAL_SKIP)
4c4b4cd2 9202 goto nosideret;
e1578042 9203 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9204 {
9205 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9206 return value_zero (value_type (arg1), not_lval);
9207 }
14f9c5c9 9208 else
4c4b4cd2 9209 {
a53b7a21 9210 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9211 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9212 arg1 = cast_from_fixed (type, arg1);
df407dfe 9213 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9214 arg2 = cast_from_fixed (type, arg2);
f44316fa 9215 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9216 return ada_value_binop (arg1, arg2, op);
9217 }
9218
4c4b4cd2
PH
9219 case BINOP_EQUAL:
9220 case BINOP_NOTEQUAL:
14f9c5c9 9221 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9222 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9223 if (noside == EVAL_SKIP)
76a01679 9224 goto nosideret;
4c4b4cd2 9225 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9226 tem = 0;
4c4b4cd2 9227 else
f44316fa
UW
9228 {
9229 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9230 tem = ada_value_equal (arg1, arg2);
9231 }
4c4b4cd2 9232 if (op == BINOP_NOTEQUAL)
76a01679 9233 tem = !tem;
fbb06eb1
UW
9234 type = language_bool_type (exp->language_defn, exp->gdbarch);
9235 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9236
9237 case UNOP_NEG:
9238 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9239 if (noside == EVAL_SKIP)
9240 goto nosideret;
df407dfe
AC
9241 else if (ada_is_fixed_point_type (value_type (arg1)))
9242 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9243 else
f44316fa
UW
9244 {
9245 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9246 return value_neg (arg1);
9247 }
4c4b4cd2 9248
2330c6c6
JB
9249 case BINOP_LOGICAL_AND:
9250 case BINOP_LOGICAL_OR:
9251 case UNOP_LOGICAL_NOT:
000d5124
JB
9252 {
9253 struct value *val;
9254
9255 *pos -= 1;
9256 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9257 type = language_bool_type (exp->language_defn, exp->gdbarch);
9258 return value_cast (type, val);
000d5124 9259 }
2330c6c6
JB
9260
9261 case BINOP_BITWISE_AND:
9262 case BINOP_BITWISE_IOR:
9263 case BINOP_BITWISE_XOR:
000d5124
JB
9264 {
9265 struct value *val;
9266
9267 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9268 *pos = pc;
9269 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9270
9271 return value_cast (value_type (arg1), val);
9272 }
2330c6c6 9273
14f9c5c9
AS
9274 case OP_VAR_VALUE:
9275 *pos -= 1;
6799def4 9276
14f9c5c9 9277 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9278 {
9279 *pos += 4;
9280 goto nosideret;
9281 }
9282 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9283 /* Only encountered when an unresolved symbol occurs in a
9284 context other than a function call, in which case, it is
52ce6436 9285 invalid. */
323e0a4a 9286 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9287 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9288 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9289 {
0c1f74cf 9290 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9291 /* Check to see if this is a tagged type. We also need to handle
9292 the case where the type is a reference to a tagged type, but
9293 we have to be careful to exclude pointers to tagged types.
9294 The latter should be shown as usual (as a pointer), whereas
9295 a reference should mostly be transparent to the user. */
9296 if (ada_is_tagged_type (type, 0)
9297 || (TYPE_CODE(type) == TYPE_CODE_REF
9298 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9299 {
9300 /* Tagged types are a little special in the fact that the real
9301 type is dynamic and can only be determined by inspecting the
9302 object's tag. This means that we need to get the object's
9303 value first (EVAL_NORMAL) and then extract the actual object
9304 type from its tag.
9305
9306 Note that we cannot skip the final step where we extract
9307 the object type from its tag, because the EVAL_NORMAL phase
9308 results in dynamic components being resolved into fixed ones.
9309 This can cause problems when trying to print the type
9310 description of tagged types whose parent has a dynamic size:
9311 We use the type name of the "_parent" component in order
9312 to print the name of the ancestor type in the type description.
9313 If that component had a dynamic size, the resolution into
9314 a fixed type would result in the loss of that type name,
9315 thus preventing us from printing the name of the ancestor
9316 type in the type description. */
b79819ba
JB
9317 struct type *actual_type;
9318
0c1f74cf 9319 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9320 actual_type = type_from_tag (ada_value_tag (arg1));
9321 if (actual_type == NULL)
9322 /* If, for some reason, we were unable to determine
9323 the actual type from the tag, then use the static
9324 approximation that we just computed as a fallback.
9325 This can happen if the debugging information is
9326 incomplete, for instance. */
9327 actual_type = type;
9328
9329 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9330 }
9331
4c4b4cd2
PH
9332 *pos += 4;
9333 return value_zero
9334 (to_static_fixed_type
9335 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9336 not_lval);
9337 }
d2e4a39e 9338 else
4c4b4cd2 9339 {
284614f0
JB
9340 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9341 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
9342 return ada_to_fixed_value (arg1);
9343 }
9344
9345 case OP_FUNCALL:
9346 (*pos) += 2;
9347
9348 /* Allocate arg vector, including space for the function to be
9349 called in argvec[0] and a terminating NULL. */
9350 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9351 argvec =
9352 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9353
9354 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9355 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9356 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9357 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9358 else
9359 {
9360 for (tem = 0; tem <= nargs; tem += 1)
9361 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9362 argvec[tem] = 0;
9363
9364 if (noside == EVAL_SKIP)
9365 goto nosideret;
9366 }
9367
ad82864c
JB
9368 if (ada_is_constrained_packed_array_type
9369 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9370 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9371 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9372 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9373 /* This is a packed array that has already been fixed, and
9374 therefore already coerced to a simple array. Nothing further
9375 to do. */
9376 ;
df407dfe
AC
9377 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9378 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9379 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9380 argvec[0] = value_addr (argvec[0]);
9381
df407dfe 9382 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9383
9384 /* Ada allows us to implicitly dereference arrays when subscripting
9385 them. So, if this is an typedef (encoding use for array access
9386 types encoded as fat pointers), strip it now. */
9387 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9388 type = ada_typedef_target_type (type);
9389
4c4b4cd2
PH
9390 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9391 {
61ee279c 9392 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9393 {
9394 case TYPE_CODE_FUNC:
61ee279c 9395 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9396 break;
9397 case TYPE_CODE_ARRAY:
9398 break;
9399 case TYPE_CODE_STRUCT:
9400 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9401 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9402 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9403 break;
9404 default:
323e0a4a 9405 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9406 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9407 break;
9408 }
9409 }
9410
9411 switch (TYPE_CODE (type))
9412 {
9413 case TYPE_CODE_FUNC:
9414 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9415 return allocate_value (TYPE_TARGET_TYPE (type));
9416 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9417 case TYPE_CODE_STRUCT:
9418 {
9419 int arity;
9420
4c4b4cd2
PH
9421 arity = ada_array_arity (type);
9422 type = ada_array_element_type (type, nargs);
9423 if (type == NULL)
323e0a4a 9424 error (_("cannot subscript or call a record"));
4c4b4cd2 9425 if (arity != nargs)
323e0a4a 9426 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9427 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9428 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9429 return
9430 unwrap_value (ada_value_subscript
9431 (argvec[0], nargs, argvec + 1));
9432 }
9433 case TYPE_CODE_ARRAY:
9434 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9435 {
9436 type = ada_array_element_type (type, nargs);
9437 if (type == NULL)
323e0a4a 9438 error (_("element type of array unknown"));
4c4b4cd2 9439 else
0a07e705 9440 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9441 }
9442 return
9443 unwrap_value (ada_value_subscript
9444 (ada_coerce_to_simple_array (argvec[0]),
9445 nargs, argvec + 1));
9446 case TYPE_CODE_PTR: /* Pointer to array */
9447 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9448 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9449 {
9450 type = ada_array_element_type (type, nargs);
9451 if (type == NULL)
323e0a4a 9452 error (_("element type of array unknown"));
4c4b4cd2 9453 else
0a07e705 9454 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9455 }
9456 return
9457 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9458 nargs, argvec + 1));
9459
9460 default:
e1d5a0d2
PH
9461 error (_("Attempt to index or call something other than an "
9462 "array or function"));
4c4b4cd2
PH
9463 }
9464
9465 case TERNOP_SLICE:
9466 {
9467 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9468 struct value *low_bound_val =
9469 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9470 struct value *high_bound_val =
9471 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9472 LONGEST low_bound;
9473 LONGEST high_bound;
5b4ee69b 9474
994b9211
AC
9475 low_bound_val = coerce_ref (low_bound_val);
9476 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9477 low_bound = pos_atr (low_bound_val);
9478 high_bound = pos_atr (high_bound_val);
963a6417 9479
4c4b4cd2
PH
9480 if (noside == EVAL_SKIP)
9481 goto nosideret;
9482
4c4b4cd2
PH
9483 /* If this is a reference to an aligner type, then remove all
9484 the aligners. */
df407dfe
AC
9485 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9486 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9487 TYPE_TARGET_TYPE (value_type (array)) =
9488 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9489
ad82864c 9490 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9491 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9492
9493 /* If this is a reference to an array or an array lvalue,
9494 convert to a pointer. */
df407dfe
AC
9495 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9496 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9497 && VALUE_LVAL (array) == lval_memory))
9498 array = value_addr (array);
9499
1265e4aa 9500 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9501 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9502 (value_type (array))))
0b5d8877 9503 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9504
9505 array = ada_coerce_to_simple_array_ptr (array);
9506
714e53ab
PH
9507 /* If we have more than one level of pointer indirection,
9508 dereference the value until we get only one level. */
df407dfe
AC
9509 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9510 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9511 == TYPE_CODE_PTR))
9512 array = value_ind (array);
9513
9514 /* Make sure we really do have an array type before going further,
9515 to avoid a SEGV when trying to get the index type or the target
9516 type later down the road if the debug info generated by
9517 the compiler is incorrect or incomplete. */
df407dfe 9518 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9519 error (_("cannot take slice of non-array"));
714e53ab 9520
df407dfe 9521 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 9522 {
0b5d8877 9523 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9524 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
9525 low_bound);
9526 else
9527 {
9528 struct type *arr_type0 =
df407dfe 9529 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 9530 NULL, 1);
5b4ee69b 9531
f5938064
JG
9532 return ada_value_slice_from_ptr (array, arr_type0,
9533 longest_to_int (low_bound),
9534 longest_to_int (high_bound));
4c4b4cd2
PH
9535 }
9536 }
9537 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9538 return array;
9539 else if (high_bound < low_bound)
df407dfe 9540 return empty_array (value_type (array), low_bound);
4c4b4cd2 9541 else
529cad9c
PH
9542 return ada_value_slice (array, longest_to_int (low_bound),
9543 longest_to_int (high_bound));
4c4b4cd2 9544 }
14f9c5c9 9545
4c4b4cd2
PH
9546 case UNOP_IN_RANGE:
9547 (*pos) += 2;
9548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9549 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9550
14f9c5c9 9551 if (noside == EVAL_SKIP)
4c4b4cd2 9552 goto nosideret;
14f9c5c9 9553
4c4b4cd2
PH
9554 switch (TYPE_CODE (type))
9555 {
9556 default:
e1d5a0d2
PH
9557 lim_warning (_("Membership test incompletely implemented; "
9558 "always returns true"));
fbb06eb1
UW
9559 type = language_bool_type (exp->language_defn, exp->gdbarch);
9560 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9561
9562 case TYPE_CODE_RANGE:
030b4912
UW
9563 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9564 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9565 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9566 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9567 type = language_bool_type (exp->language_defn, exp->gdbarch);
9568 return
9569 value_from_longest (type,
4c4b4cd2
PH
9570 (value_less (arg1, arg3)
9571 || value_equal (arg1, arg3))
9572 && (value_less (arg2, arg1)
9573 || value_equal (arg2, arg1)));
9574 }
9575
9576 case BINOP_IN_BOUNDS:
14f9c5c9 9577 (*pos) += 2;
4c4b4cd2
PH
9578 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9579 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9580
4c4b4cd2
PH
9581 if (noside == EVAL_SKIP)
9582 goto nosideret;
14f9c5c9 9583
4c4b4cd2 9584 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9585 {
9586 type = language_bool_type (exp->language_defn, exp->gdbarch);
9587 return value_zero (type, not_lval);
9588 }
14f9c5c9 9589
4c4b4cd2 9590 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9591
1eea4ebd
UW
9592 type = ada_index_type (value_type (arg2), tem, "range");
9593 if (!type)
9594 type = value_type (arg1);
14f9c5c9 9595
1eea4ebd
UW
9596 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9597 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9598
f44316fa
UW
9599 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9600 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9601 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9602 return
fbb06eb1 9603 value_from_longest (type,
4c4b4cd2
PH
9604 (value_less (arg1, arg3)
9605 || value_equal (arg1, arg3))
9606 && (value_less (arg2, arg1)
9607 || value_equal (arg2, arg1)));
9608
9609 case TERNOP_IN_RANGE:
9610 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9611 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9612 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9613
9614 if (noside == EVAL_SKIP)
9615 goto nosideret;
9616
f44316fa
UW
9617 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9618 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9619 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9620 return
fbb06eb1 9621 value_from_longest (type,
4c4b4cd2
PH
9622 (value_less (arg1, arg3)
9623 || value_equal (arg1, arg3))
9624 && (value_less (arg2, arg1)
9625 || value_equal (arg2, arg1)));
9626
9627 case OP_ATR_FIRST:
9628 case OP_ATR_LAST:
9629 case OP_ATR_LENGTH:
9630 {
76a01679 9631 struct type *type_arg;
5b4ee69b 9632
76a01679
JB
9633 if (exp->elts[*pos].opcode == OP_TYPE)
9634 {
9635 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9636 arg1 = NULL;
5bc23cb3 9637 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9638 }
9639 else
9640 {
9641 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9642 type_arg = NULL;
9643 }
9644
9645 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9646 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9647 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9648 *pos += 4;
9649
9650 if (noside == EVAL_SKIP)
9651 goto nosideret;
9652
9653 if (type_arg == NULL)
9654 {
9655 arg1 = ada_coerce_ref (arg1);
9656
ad82864c 9657 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9658 arg1 = ada_coerce_to_simple_array (arg1);
9659
1eea4ebd
UW
9660 type = ada_index_type (value_type (arg1), tem,
9661 ada_attribute_name (op));
9662 if (type == NULL)
9663 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9664
9665 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9666 return allocate_value (type);
76a01679
JB
9667
9668 switch (op)
9669 {
9670 default: /* Should never happen. */
323e0a4a 9671 error (_("unexpected attribute encountered"));
76a01679 9672 case OP_ATR_FIRST:
1eea4ebd
UW
9673 return value_from_longest
9674 (type, ada_array_bound (arg1, tem, 0));
76a01679 9675 case OP_ATR_LAST:
1eea4ebd
UW
9676 return value_from_longest
9677 (type, ada_array_bound (arg1, tem, 1));
76a01679 9678 case OP_ATR_LENGTH:
1eea4ebd
UW
9679 return value_from_longest
9680 (type, ada_array_length (arg1, tem));
76a01679
JB
9681 }
9682 }
9683 else if (discrete_type_p (type_arg))
9684 {
9685 struct type *range_type;
9686 char *name = ada_type_name (type_arg);
5b4ee69b 9687
76a01679
JB
9688 range_type = NULL;
9689 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9690 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9691 if (range_type == NULL)
9692 range_type = type_arg;
9693 switch (op)
9694 {
9695 default:
323e0a4a 9696 error (_("unexpected attribute encountered"));
76a01679 9697 case OP_ATR_FIRST:
690cc4eb 9698 return value_from_longest
43bbcdc2 9699 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9700 case OP_ATR_LAST:
690cc4eb 9701 return value_from_longest
43bbcdc2 9702 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9703 case OP_ATR_LENGTH:
323e0a4a 9704 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9705 }
9706 }
9707 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9708 error (_("unimplemented type attribute"));
76a01679
JB
9709 else
9710 {
9711 LONGEST low, high;
9712
ad82864c
JB
9713 if (ada_is_constrained_packed_array_type (type_arg))
9714 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9715
1eea4ebd 9716 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9717 if (type == NULL)
1eea4ebd
UW
9718 type = builtin_type (exp->gdbarch)->builtin_int;
9719
76a01679
JB
9720 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9721 return allocate_value (type);
9722
9723 switch (op)
9724 {
9725 default:
323e0a4a 9726 error (_("unexpected attribute encountered"));
76a01679 9727 case OP_ATR_FIRST:
1eea4ebd 9728 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9729 return value_from_longest (type, low);
9730 case OP_ATR_LAST:
1eea4ebd 9731 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9732 return value_from_longest (type, high);
9733 case OP_ATR_LENGTH:
1eea4ebd
UW
9734 low = ada_array_bound_from_type (type_arg, tem, 0);
9735 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9736 return value_from_longest (type, high - low + 1);
9737 }
9738 }
14f9c5c9
AS
9739 }
9740
4c4b4cd2
PH
9741 case OP_ATR_TAG:
9742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9743 if (noside == EVAL_SKIP)
76a01679 9744 goto nosideret;
4c4b4cd2
PH
9745
9746 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9747 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9748
9749 return ada_value_tag (arg1);
9750
9751 case OP_ATR_MIN:
9752 case OP_ATR_MAX:
9753 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9754 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9755 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9756 if (noside == EVAL_SKIP)
76a01679 9757 goto nosideret;
d2e4a39e 9758 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9759 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9760 else
f44316fa
UW
9761 {
9762 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9763 return value_binop (arg1, arg2,
9764 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9765 }
14f9c5c9 9766
4c4b4cd2
PH
9767 case OP_ATR_MODULUS:
9768 {
31dedfee 9769 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 9770
5b4ee69b 9771 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
9772 if (noside == EVAL_SKIP)
9773 goto nosideret;
4c4b4cd2 9774
76a01679 9775 if (!ada_is_modular_type (type_arg))
323e0a4a 9776 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9777
76a01679
JB
9778 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9779 ada_modulus (type_arg));
4c4b4cd2
PH
9780 }
9781
9782
9783 case OP_ATR_POS:
9784 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9785 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9786 if (noside == EVAL_SKIP)
76a01679 9787 goto nosideret;
3cb382c9
UW
9788 type = builtin_type (exp->gdbarch)->builtin_int;
9789 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9790 return value_zero (type, not_lval);
14f9c5c9 9791 else
3cb382c9 9792 return value_pos_atr (type, arg1);
14f9c5c9 9793
4c4b4cd2
PH
9794 case OP_ATR_SIZE:
9795 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9796 type = value_type (arg1);
9797
9798 /* If the argument is a reference, then dereference its type, since
9799 the user is really asking for the size of the actual object,
9800 not the size of the pointer. */
9801 if (TYPE_CODE (type) == TYPE_CODE_REF)
9802 type = TYPE_TARGET_TYPE (type);
9803
4c4b4cd2 9804 if (noside == EVAL_SKIP)
76a01679 9805 goto nosideret;
4c4b4cd2 9806 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9807 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9808 else
22601c15 9809 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9810 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9811
9812 case OP_ATR_VAL:
9813 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9814 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9815 type = exp->elts[pc + 2].type;
14f9c5c9 9816 if (noside == EVAL_SKIP)
76a01679 9817 goto nosideret;
4c4b4cd2 9818 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9819 return value_zero (type, not_lval);
4c4b4cd2 9820 else
76a01679 9821 return value_val_atr (type, arg1);
4c4b4cd2
PH
9822
9823 case BINOP_EXP:
9824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9825 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9826 if (noside == EVAL_SKIP)
9827 goto nosideret;
9828 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9829 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9830 else
f44316fa
UW
9831 {
9832 /* For integer exponentiation operations,
9833 only promote the first argument. */
9834 if (is_integral_type (value_type (arg2)))
9835 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9836 else
9837 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9838
9839 return value_binop (arg1, arg2, op);
9840 }
4c4b4cd2
PH
9841
9842 case UNOP_PLUS:
9843 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9844 if (noside == EVAL_SKIP)
9845 goto nosideret;
9846 else
9847 return arg1;
9848
9849 case UNOP_ABS:
9850 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9851 if (noside == EVAL_SKIP)
9852 goto nosideret;
f44316fa 9853 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9854 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9855 return value_neg (arg1);
14f9c5c9 9856 else
4c4b4cd2 9857 return arg1;
14f9c5c9
AS
9858
9859 case UNOP_IND:
6b0d7253 9860 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9861 if (noside == EVAL_SKIP)
4c4b4cd2 9862 goto nosideret;
df407dfe 9863 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9864 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9865 {
9866 if (ada_is_array_descriptor_type (type))
9867 /* GDB allows dereferencing GNAT array descriptors. */
9868 {
9869 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 9870
4c4b4cd2 9871 if (arrType == NULL)
323e0a4a 9872 error (_("Attempt to dereference null array pointer."));
00a4c844 9873 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9874 }
9875 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9876 || TYPE_CODE (type) == TYPE_CODE_REF
9877 /* In C you can dereference an array to get the 1st elt. */
9878 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9879 {
9880 type = to_static_fixed_type
9881 (ada_aligned_type
9882 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9883 check_size (type);
9884 return value_zero (type, lval_memory);
9885 }
4c4b4cd2 9886 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9887 {
9888 /* GDB allows dereferencing an int. */
9889 if (expect_type == NULL)
9890 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9891 lval_memory);
9892 else
9893 {
9894 expect_type =
9895 to_static_fixed_type (ada_aligned_type (expect_type));
9896 return value_zero (expect_type, lval_memory);
9897 }
9898 }
4c4b4cd2 9899 else
323e0a4a 9900 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9901 }
0963b4bd 9902 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9903 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9904
96967637
JB
9905 if (TYPE_CODE (type) == TYPE_CODE_INT)
9906 /* GDB allows dereferencing an int. If we were given
9907 the expect_type, then use that as the target type.
9908 Otherwise, assume that the target type is an int. */
9909 {
9910 if (expect_type != NULL)
9911 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9912 arg1));
9913 else
9914 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9915 (CORE_ADDR) value_as_address (arg1));
9916 }
6b0d7253 9917
4c4b4cd2
PH
9918 if (ada_is_array_descriptor_type (type))
9919 /* GDB allows dereferencing GNAT array descriptors. */
9920 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9921 else
4c4b4cd2 9922 return ada_value_ind (arg1);
14f9c5c9
AS
9923
9924 case STRUCTOP_STRUCT:
9925 tem = longest_to_int (exp->elts[pc + 1].longconst);
9926 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9927 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9928 if (noside == EVAL_SKIP)
4c4b4cd2 9929 goto nosideret;
14f9c5c9 9930 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9931 {
df407dfe 9932 struct type *type1 = value_type (arg1);
5b4ee69b 9933
76a01679
JB
9934 if (ada_is_tagged_type (type1, 1))
9935 {
9936 type = ada_lookup_struct_elt_type (type1,
9937 &exp->elts[pc + 2].string,
9938 1, 1, NULL);
9939 if (type == NULL)
9940 /* In this case, we assume that the field COULD exist
9941 in some extension of the type. Return an object of
9942 "type" void, which will match any formal
0963b4bd 9943 (see ada_type_match). */
30b15541
UW
9944 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9945 lval_memory);
76a01679
JB
9946 }
9947 else
9948 type =
9949 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9950 0, NULL);
9951
9952 return value_zero (ada_aligned_type (type), lval_memory);
9953 }
14f9c5c9 9954 else
284614f0
JB
9955 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9956 arg1 = unwrap_value (arg1);
9957 return ada_to_fixed_value (arg1);
9958
14f9c5c9 9959 case OP_TYPE:
4c4b4cd2
PH
9960 /* The value is not supposed to be used. This is here to make it
9961 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9962 (*pos) += 2;
9963 if (noside == EVAL_SKIP)
4c4b4cd2 9964 goto nosideret;
14f9c5c9 9965 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9966 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9967 else
323e0a4a 9968 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9969
9970 case OP_AGGREGATE:
9971 case OP_CHOICES:
9972 case OP_OTHERS:
9973 case OP_DISCRETE_RANGE:
9974 case OP_POSITIONAL:
9975 case OP_NAME:
9976 if (noside == EVAL_NORMAL)
9977 switch (op)
9978 {
9979 case OP_NAME:
9980 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9981 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9982 case OP_AGGREGATE:
9983 error (_("Aggregates only allowed on the right of an assignment"));
9984 default:
0963b4bd
MS
9985 internal_error (__FILE__, __LINE__,
9986 _("aggregate apparently mangled"));
52ce6436
PH
9987 }
9988
9989 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9990 *pos += oplen - 1;
9991 for (tem = 0; tem < nargs; tem += 1)
9992 ada_evaluate_subexp (NULL, exp, pos, noside);
9993 goto nosideret;
14f9c5c9
AS
9994 }
9995
9996nosideret:
22601c15 9997 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 9998}
14f9c5c9 9999\f
d2e4a39e 10000
4c4b4cd2 10001 /* Fixed point */
14f9c5c9
AS
10002
10003/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10004 type name that encodes the 'small and 'delta information.
4c4b4cd2 10005 Otherwise, return NULL. */
14f9c5c9 10006
d2e4a39e 10007static const char *
ebf56fd3 10008fixed_type_info (struct type *type)
14f9c5c9 10009{
d2e4a39e 10010 const char *name = ada_type_name (type);
14f9c5c9
AS
10011 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10012
d2e4a39e
AS
10013 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10014 {
14f9c5c9 10015 const char *tail = strstr (name, "___XF_");
5b4ee69b 10016
14f9c5c9 10017 if (tail == NULL)
4c4b4cd2 10018 return NULL;
d2e4a39e 10019 else
4c4b4cd2 10020 return tail + 5;
14f9c5c9
AS
10021 }
10022 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10023 return fixed_type_info (TYPE_TARGET_TYPE (type));
10024 else
10025 return NULL;
10026}
10027
4c4b4cd2 10028/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10029
10030int
ebf56fd3 10031ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10032{
10033 return fixed_type_info (type) != NULL;
10034}
10035
4c4b4cd2
PH
10036/* Return non-zero iff TYPE represents a System.Address type. */
10037
10038int
10039ada_is_system_address_type (struct type *type)
10040{
10041 return (TYPE_NAME (type)
10042 && strcmp (TYPE_NAME (type), "system__address") == 0);
10043}
10044
14f9c5c9
AS
10045/* Assuming that TYPE is the representation of an Ada fixed-point
10046 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10047 delta cannot be determined. */
14f9c5c9
AS
10048
10049DOUBLEST
ebf56fd3 10050ada_delta (struct type *type)
14f9c5c9
AS
10051{
10052 const char *encoding = fixed_type_info (type);
facc390f 10053 DOUBLEST num, den;
14f9c5c9 10054
facc390f
JB
10055 /* Strictly speaking, num and den are encoded as integer. However,
10056 they may not fit into a long, and they will have to be converted
10057 to DOUBLEST anyway. So scan them as DOUBLEST. */
10058 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10059 &num, &den) < 2)
14f9c5c9 10060 return -1.0;
d2e4a39e 10061 else
facc390f 10062 return num / den;
14f9c5c9
AS
10063}
10064
10065/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10066 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10067
10068static DOUBLEST
ebf56fd3 10069scaling_factor (struct type *type)
14f9c5c9
AS
10070{
10071 const char *encoding = fixed_type_info (type);
facc390f 10072 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10073 int n;
d2e4a39e 10074
facc390f
JB
10075 /* Strictly speaking, num's and den's are encoded as integer. However,
10076 they may not fit into a long, and they will have to be converted
10077 to DOUBLEST anyway. So scan them as DOUBLEST. */
10078 n = sscanf (encoding,
10079 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10080 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10081 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10082
10083 if (n < 2)
10084 return 1.0;
10085 else if (n == 4)
facc390f 10086 return num1 / den1;
d2e4a39e 10087 else
facc390f 10088 return num0 / den0;
14f9c5c9
AS
10089}
10090
10091
10092/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10093 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10094
10095DOUBLEST
ebf56fd3 10096ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10097{
d2e4a39e 10098 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10099}
10100
4c4b4cd2
PH
10101/* The representation of a fixed-point value of type TYPE
10102 corresponding to the value X. */
14f9c5c9
AS
10103
10104LONGEST
ebf56fd3 10105ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10106{
10107 return (LONGEST) (x / scaling_factor (type) + 0.5);
10108}
10109
14f9c5c9 10110\f
d2e4a39e 10111
4c4b4cd2 10112 /* Range types */
14f9c5c9
AS
10113
10114/* Scan STR beginning at position K for a discriminant name, and
10115 return the value of that discriminant field of DVAL in *PX. If
10116 PNEW_K is not null, put the position of the character beyond the
10117 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10118 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10119
10120static int
07d8f827 10121scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10122 int *pnew_k)
14f9c5c9
AS
10123{
10124 static char *bound_buffer = NULL;
10125 static size_t bound_buffer_len = 0;
10126 char *bound;
10127 char *pend;
d2e4a39e 10128 struct value *bound_val;
14f9c5c9
AS
10129
10130 if (dval == NULL || str == NULL || str[k] == '\0')
10131 return 0;
10132
d2e4a39e 10133 pend = strstr (str + k, "__");
14f9c5c9
AS
10134 if (pend == NULL)
10135 {
d2e4a39e 10136 bound = str + k;
14f9c5c9
AS
10137 k += strlen (bound);
10138 }
d2e4a39e 10139 else
14f9c5c9 10140 {
d2e4a39e 10141 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10142 bound = bound_buffer;
d2e4a39e
AS
10143 strncpy (bound_buffer, str + k, pend - (str + k));
10144 bound[pend - (str + k)] = '\0';
10145 k = pend - str;
14f9c5c9 10146 }
d2e4a39e 10147
df407dfe 10148 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10149 if (bound_val == NULL)
10150 return 0;
10151
10152 *px = value_as_long (bound_val);
10153 if (pnew_k != NULL)
10154 *pnew_k = k;
10155 return 1;
10156}
10157
10158/* Value of variable named NAME in the current environment. If
10159 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10160 otherwise causes an error with message ERR_MSG. */
10161
d2e4a39e
AS
10162static struct value *
10163get_var_value (char *name, char *err_msg)
14f9c5c9 10164{
4c4b4cd2 10165 struct ada_symbol_info *syms;
14f9c5c9
AS
10166 int nsyms;
10167
4c4b4cd2
PH
10168 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10169 &syms);
14f9c5c9
AS
10170
10171 if (nsyms != 1)
10172 {
10173 if (err_msg == NULL)
4c4b4cd2 10174 return 0;
14f9c5c9 10175 else
8a3fe4f8 10176 error (("%s"), err_msg);
14f9c5c9
AS
10177 }
10178
4c4b4cd2 10179 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10180}
d2e4a39e 10181
14f9c5c9 10182/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10183 no such variable found, returns 0, and sets *FLAG to 0. If
10184 successful, sets *FLAG to 1. */
10185
14f9c5c9 10186LONGEST
4c4b4cd2 10187get_int_var_value (char *name, int *flag)
14f9c5c9 10188{
4c4b4cd2 10189 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10190
14f9c5c9
AS
10191 if (var_val == 0)
10192 {
10193 if (flag != NULL)
4c4b4cd2 10194 *flag = 0;
14f9c5c9
AS
10195 return 0;
10196 }
10197 else
10198 {
10199 if (flag != NULL)
4c4b4cd2 10200 *flag = 1;
14f9c5c9
AS
10201 return value_as_long (var_val);
10202 }
10203}
d2e4a39e 10204
14f9c5c9
AS
10205
10206/* Return a range type whose base type is that of the range type named
10207 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10208 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10209 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10210 corresponding range type from debug information; fall back to using it
10211 if symbol lookup fails. If a new type must be created, allocate it
10212 like ORIG_TYPE was. The bounds information, in general, is encoded
10213 in NAME, the base type given in the named range type. */
14f9c5c9 10214
d2e4a39e 10215static struct type *
28c85d6c 10216to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10217{
28c85d6c 10218 char *name;
14f9c5c9 10219 struct type *base_type;
d2e4a39e 10220 char *subtype_info;
14f9c5c9 10221
28c85d6c
JB
10222 gdb_assert (raw_type != NULL);
10223 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10224
1ce677a4 10225 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10226 base_type = TYPE_TARGET_TYPE (raw_type);
10227 else
10228 base_type = raw_type;
10229
28c85d6c 10230 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10231 subtype_info = strstr (name, "___XD");
10232 if (subtype_info == NULL)
690cc4eb 10233 {
43bbcdc2
PH
10234 LONGEST L = ada_discrete_type_low_bound (raw_type);
10235 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10236
690cc4eb
PH
10237 if (L < INT_MIN || U > INT_MAX)
10238 return raw_type;
10239 else
28c85d6c 10240 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10241 ada_discrete_type_low_bound (raw_type),
10242 ada_discrete_type_high_bound (raw_type));
690cc4eb 10243 }
14f9c5c9
AS
10244 else
10245 {
10246 static char *name_buf = NULL;
10247 static size_t name_len = 0;
10248 int prefix_len = subtype_info - name;
10249 LONGEST L, U;
10250 struct type *type;
10251 char *bounds_str;
10252 int n;
10253
10254 GROW_VECT (name_buf, name_len, prefix_len + 5);
10255 strncpy (name_buf, name, prefix_len);
10256 name_buf[prefix_len] = '\0';
10257
10258 subtype_info += 5;
10259 bounds_str = strchr (subtype_info, '_');
10260 n = 1;
10261
d2e4a39e 10262 if (*subtype_info == 'L')
4c4b4cd2
PH
10263 {
10264 if (!ada_scan_number (bounds_str, n, &L, &n)
10265 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10266 return raw_type;
10267 if (bounds_str[n] == '_')
10268 n += 2;
0963b4bd 10269 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10270 n += 1;
10271 subtype_info += 1;
10272 }
d2e4a39e 10273 else
4c4b4cd2
PH
10274 {
10275 int ok;
5b4ee69b 10276
4c4b4cd2
PH
10277 strcpy (name_buf + prefix_len, "___L");
10278 L = get_int_var_value (name_buf, &ok);
10279 if (!ok)
10280 {
323e0a4a 10281 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10282 L = 1;
10283 }
10284 }
14f9c5c9 10285
d2e4a39e 10286 if (*subtype_info == 'U')
4c4b4cd2
PH
10287 {
10288 if (!ada_scan_number (bounds_str, n, &U, &n)
10289 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10290 return raw_type;
10291 }
d2e4a39e 10292 else
4c4b4cd2
PH
10293 {
10294 int ok;
5b4ee69b 10295
4c4b4cd2
PH
10296 strcpy (name_buf + prefix_len, "___U");
10297 U = get_int_var_value (name_buf, &ok);
10298 if (!ok)
10299 {
323e0a4a 10300 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10301 U = L;
10302 }
10303 }
14f9c5c9 10304
28c85d6c 10305 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10306 TYPE_NAME (type) = name;
14f9c5c9
AS
10307 return type;
10308 }
10309}
10310
4c4b4cd2
PH
10311/* True iff NAME is the name of a range type. */
10312
14f9c5c9 10313int
d2e4a39e 10314ada_is_range_type_name (const char *name)
14f9c5c9
AS
10315{
10316 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10317}
14f9c5c9 10318\f
d2e4a39e 10319
4c4b4cd2
PH
10320 /* Modular types */
10321
10322/* True iff TYPE is an Ada modular type. */
14f9c5c9 10323
14f9c5c9 10324int
d2e4a39e 10325ada_is_modular_type (struct type *type)
14f9c5c9 10326{
4c4b4cd2 10327 struct type *subranged_type = base_type (type);
14f9c5c9
AS
10328
10329 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10330 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10331 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10332}
10333
0056e4d5
JB
10334/* Try to determine the lower and upper bounds of the given modular type
10335 using the type name only. Return non-zero and set L and U as the lower
10336 and upper bounds (respectively) if successful. */
10337
10338int
10339ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10340{
10341 char *name = ada_type_name (type);
10342 char *suffix;
10343 int k;
10344 LONGEST U;
10345
10346 if (name == NULL)
10347 return 0;
10348
10349 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10350 we are looking for static bounds, which means an __XDLU suffix.
10351 Moreover, we know that the lower bound of modular types is always
10352 zero, so the actual suffix should start with "__XDLU_0__", and
10353 then be followed by the upper bound value. */
10354 suffix = strstr (name, "__XDLU_0__");
10355 if (suffix == NULL)
10356 return 0;
10357 k = 10;
10358 if (!ada_scan_number (suffix, k, &U, NULL))
10359 return 0;
10360
10361 *modulus = (ULONGEST) U + 1;
10362 return 1;
10363}
10364
4c4b4cd2
PH
10365/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10366
61ee279c 10367ULONGEST
0056e4d5 10368ada_modulus (struct type *type)
14f9c5c9 10369{
43bbcdc2 10370 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10371}
d2e4a39e 10372\f
f7f9143b
JB
10373
10374/* Ada exception catchpoint support:
10375 ---------------------------------
10376
10377 We support 3 kinds of exception catchpoints:
10378 . catchpoints on Ada exceptions
10379 . catchpoints on unhandled Ada exceptions
10380 . catchpoints on failed assertions
10381
10382 Exceptions raised during failed assertions, or unhandled exceptions
10383 could perfectly be caught with the general catchpoint on Ada exceptions.
10384 However, we can easily differentiate these two special cases, and having
10385 the option to distinguish these two cases from the rest can be useful
10386 to zero-in on certain situations.
10387
10388 Exception catchpoints are a specialized form of breakpoint,
10389 since they rely on inserting breakpoints inside known routines
10390 of the GNAT runtime. The implementation therefore uses a standard
10391 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10392 of breakpoint_ops.
10393
0259addd
JB
10394 Support in the runtime for exception catchpoints have been changed
10395 a few times already, and these changes affect the implementation
10396 of these catchpoints. In order to be able to support several
10397 variants of the runtime, we use a sniffer that will determine
10398 the runtime variant used by the program being debugged.
10399
f7f9143b
JB
10400 At this time, we do not support the use of conditions on Ada exception
10401 catchpoints. The COND and COND_STRING fields are therefore set
10402 to NULL (most of the time, see below).
10403
10404 Conditions where EXP_STRING, COND, and COND_STRING are used:
10405
10406 When a user specifies the name of a specific exception in the case
10407 of catchpoints on Ada exceptions, we store the name of that exception
10408 in the EXP_STRING. We then translate this request into an actual
10409 condition stored in COND_STRING, and then parse it into an expression
10410 stored in COND. */
10411
10412/* The different types of catchpoints that we introduced for catching
10413 Ada exceptions. */
10414
10415enum exception_catchpoint_kind
10416{
10417 ex_catch_exception,
10418 ex_catch_exception_unhandled,
10419 ex_catch_assert
10420};
10421
3d0b0fa3
JB
10422/* Ada's standard exceptions. */
10423
10424static char *standard_exc[] = {
10425 "constraint_error",
10426 "program_error",
10427 "storage_error",
10428 "tasking_error"
10429};
10430
0259addd
JB
10431typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10432
10433/* A structure that describes how to support exception catchpoints
10434 for a given executable. */
10435
10436struct exception_support_info
10437{
10438 /* The name of the symbol to break on in order to insert
10439 a catchpoint on exceptions. */
10440 const char *catch_exception_sym;
10441
10442 /* The name of the symbol to break on in order to insert
10443 a catchpoint on unhandled exceptions. */
10444 const char *catch_exception_unhandled_sym;
10445
10446 /* The name of the symbol to break on in order to insert
10447 a catchpoint on failed assertions. */
10448 const char *catch_assert_sym;
10449
10450 /* Assuming that the inferior just triggered an unhandled exception
10451 catchpoint, this function is responsible for returning the address
10452 in inferior memory where the name of that exception is stored.
10453 Return zero if the address could not be computed. */
10454 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10455};
10456
10457static CORE_ADDR ada_unhandled_exception_name_addr (void);
10458static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10459
10460/* The following exception support info structure describes how to
10461 implement exception catchpoints with the latest version of the
10462 Ada runtime (as of 2007-03-06). */
10463
10464static const struct exception_support_info default_exception_support_info =
10465{
10466 "__gnat_debug_raise_exception", /* catch_exception_sym */
10467 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10468 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10469 ada_unhandled_exception_name_addr
10470};
10471
10472/* The following exception support info structure describes how to
10473 implement exception catchpoints with a slightly older version
10474 of the Ada runtime. */
10475
10476static const struct exception_support_info exception_support_info_fallback =
10477{
10478 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10479 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10480 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10481 ada_unhandled_exception_name_addr_from_raise
10482};
10483
10484/* For each executable, we sniff which exception info structure to use
10485 and cache it in the following global variable. */
10486
10487static const struct exception_support_info *exception_info = NULL;
10488
10489/* Inspect the Ada runtime and determine which exception info structure
10490 should be used to provide support for exception catchpoints.
10491
10492 This function will always set exception_info, or raise an error. */
10493
10494static void
10495ada_exception_support_info_sniffer (void)
10496{
10497 struct symbol *sym;
10498
10499 /* If the exception info is already known, then no need to recompute it. */
10500 if (exception_info != NULL)
10501 return;
10502
10503 /* Check the latest (default) exception support info. */
10504 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10505 NULL, VAR_DOMAIN);
10506 if (sym != NULL)
10507 {
10508 exception_info = &default_exception_support_info;
10509 return;
10510 }
10511
10512 /* Try our fallback exception suport info. */
10513 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10514 NULL, VAR_DOMAIN);
10515 if (sym != NULL)
10516 {
10517 exception_info = &exception_support_info_fallback;
10518 return;
10519 }
10520
10521 /* Sometimes, it is normal for us to not be able to find the routine
10522 we are looking for. This happens when the program is linked with
10523 the shared version of the GNAT runtime, and the program has not been
10524 started yet. Inform the user of these two possible causes if
10525 applicable. */
10526
ccefe4c4 10527 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10528 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10529
10530 /* If the symbol does not exist, then check that the program is
10531 already started, to make sure that shared libraries have been
10532 loaded. If it is not started, this may mean that the symbol is
10533 in a shared library. */
10534
10535 if (ptid_get_pid (inferior_ptid) == 0)
10536 error (_("Unable to insert catchpoint. Try to start the program first."));
10537
10538 /* At this point, we know that we are debugging an Ada program and
10539 that the inferior has been started, but we still are not able to
0963b4bd 10540 find the run-time symbols. That can mean that we are in
0259addd
JB
10541 configurable run time mode, or that a-except as been optimized
10542 out by the linker... In any case, at this point it is not worth
10543 supporting this feature. */
10544
10545 error (_("Cannot insert catchpoints in this configuration."));
10546}
10547
10548/* An observer of "executable_changed" events.
10549 Its role is to clear certain cached values that need to be recomputed
10550 each time a new executable is loaded by GDB. */
10551
10552static void
781b42b0 10553ada_executable_changed_observer (void)
0259addd
JB
10554{
10555 /* If the executable changed, then it is possible that the Ada runtime
10556 is different. So we need to invalidate the exception support info
10557 cache. */
10558 exception_info = NULL;
10559}
10560
f7f9143b
JB
10561/* True iff FRAME is very likely to be that of a function that is
10562 part of the runtime system. This is all very heuristic, but is
10563 intended to be used as advice as to what frames are uninteresting
10564 to most users. */
10565
10566static int
10567is_known_support_routine (struct frame_info *frame)
10568{
4ed6b5be 10569 struct symtab_and_line sal;
f7f9143b 10570 char *func_name;
692465f1 10571 enum language func_lang;
f7f9143b 10572 int i;
f7f9143b 10573
4ed6b5be
JB
10574 /* If this code does not have any debugging information (no symtab),
10575 This cannot be any user code. */
f7f9143b 10576
4ed6b5be 10577 find_frame_sal (frame, &sal);
f7f9143b
JB
10578 if (sal.symtab == NULL)
10579 return 1;
10580
4ed6b5be
JB
10581 /* If there is a symtab, but the associated source file cannot be
10582 located, then assume this is not user code: Selecting a frame
10583 for which we cannot display the code would not be very helpful
10584 for the user. This should also take care of case such as VxWorks
10585 where the kernel has some debugging info provided for a few units. */
f7f9143b 10586
9bbc9174 10587 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10588 return 1;
10589
4ed6b5be
JB
10590 /* Check the unit filename againt the Ada runtime file naming.
10591 We also check the name of the objfile against the name of some
10592 known system libraries that sometimes come with debugging info
10593 too. */
10594
f7f9143b
JB
10595 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10596 {
10597 re_comp (known_runtime_file_name_patterns[i]);
10598 if (re_exec (sal.symtab->filename))
10599 return 1;
4ed6b5be
JB
10600 if (sal.symtab->objfile != NULL
10601 && re_exec (sal.symtab->objfile->name))
10602 return 1;
f7f9143b
JB
10603 }
10604
4ed6b5be 10605 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10606
e9e07ba6 10607 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10608 if (func_name == NULL)
10609 return 1;
10610
10611 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10612 {
10613 re_comp (known_auxiliary_function_name_patterns[i]);
10614 if (re_exec (func_name))
10615 return 1;
10616 }
10617
10618 return 0;
10619}
10620
10621/* Find the first frame that contains debugging information and that is not
10622 part of the Ada run-time, starting from FI and moving upward. */
10623
0ef643c8 10624void
f7f9143b
JB
10625ada_find_printable_frame (struct frame_info *fi)
10626{
10627 for (; fi != NULL; fi = get_prev_frame (fi))
10628 {
10629 if (!is_known_support_routine (fi))
10630 {
10631 select_frame (fi);
10632 break;
10633 }
10634 }
10635
10636}
10637
10638/* Assuming that the inferior just triggered an unhandled exception
10639 catchpoint, return the address in inferior memory where the name
10640 of the exception is stored.
10641
10642 Return zero if the address could not be computed. */
10643
10644static CORE_ADDR
10645ada_unhandled_exception_name_addr (void)
0259addd
JB
10646{
10647 return parse_and_eval_address ("e.full_name");
10648}
10649
10650/* Same as ada_unhandled_exception_name_addr, except that this function
10651 should be used when the inferior uses an older version of the runtime,
10652 where the exception name needs to be extracted from a specific frame
10653 several frames up in the callstack. */
10654
10655static CORE_ADDR
10656ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10657{
10658 int frame_level;
10659 struct frame_info *fi;
10660
10661 /* To determine the name of this exception, we need to select
10662 the frame corresponding to RAISE_SYM_NAME. This frame is
10663 at least 3 levels up, so we simply skip the first 3 frames
10664 without checking the name of their associated function. */
10665 fi = get_current_frame ();
10666 for (frame_level = 0; frame_level < 3; frame_level += 1)
10667 if (fi != NULL)
10668 fi = get_prev_frame (fi);
10669
10670 while (fi != NULL)
10671 {
692465f1
JB
10672 char *func_name;
10673 enum language func_lang;
10674
e9e07ba6 10675 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10676 if (func_name != NULL
0259addd 10677 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10678 break; /* We found the frame we were looking for... */
10679 fi = get_prev_frame (fi);
10680 }
10681
10682 if (fi == NULL)
10683 return 0;
10684
10685 select_frame (fi);
10686 return parse_and_eval_address ("id.full_name");
10687}
10688
10689/* Assuming the inferior just triggered an Ada exception catchpoint
10690 (of any type), return the address in inferior memory where the name
10691 of the exception is stored, if applicable.
10692
10693 Return zero if the address could not be computed, or if not relevant. */
10694
10695static CORE_ADDR
10696ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10697 struct breakpoint *b)
10698{
10699 switch (ex)
10700 {
10701 case ex_catch_exception:
10702 return (parse_and_eval_address ("e.full_name"));
10703 break;
10704
10705 case ex_catch_exception_unhandled:
0259addd 10706 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10707 break;
10708
10709 case ex_catch_assert:
10710 return 0; /* Exception name is not relevant in this case. */
10711 break;
10712
10713 default:
10714 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10715 break;
10716 }
10717
10718 return 0; /* Should never be reached. */
10719}
10720
10721/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10722 any error that ada_exception_name_addr_1 might cause to be thrown.
10723 When an error is intercepted, a warning with the error message is printed,
10724 and zero is returned. */
10725
10726static CORE_ADDR
10727ada_exception_name_addr (enum exception_catchpoint_kind ex,
10728 struct breakpoint *b)
10729{
10730 struct gdb_exception e;
10731 CORE_ADDR result = 0;
10732
10733 TRY_CATCH (e, RETURN_MASK_ERROR)
10734 {
10735 result = ada_exception_name_addr_1 (ex, b);
10736 }
10737
10738 if (e.reason < 0)
10739 {
10740 warning (_("failed to get exception name: %s"), e.message);
10741 return 0;
10742 }
10743
10744 return result;
10745}
10746
10747/* Implement the PRINT_IT method in the breakpoint_ops structure
10748 for all exception catchpoint kinds. */
10749
10750static enum print_stop_action
10751print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10752{
956a9fb9 10753 annotate_catchpoint (b->number);
f7f9143b 10754
956a9fb9 10755 if (ui_out_is_mi_like_p (uiout))
f7f9143b 10756 {
956a9fb9
JB
10757 ui_out_field_string (uiout, "reason",
10758 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10759 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
10760 }
10761
956a9fb9
JB
10762 ui_out_text (uiout, "\nCatchpoint ");
10763 ui_out_field_int (uiout, "bkptno", b->number);
10764 ui_out_text (uiout, ", ");
f7f9143b 10765
f7f9143b
JB
10766 switch (ex)
10767 {
10768 case ex_catch_exception:
f7f9143b 10769 case ex_catch_exception_unhandled:
956a9fb9
JB
10770 {
10771 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10772 char exception_name[256];
10773
10774 if (addr != 0)
10775 {
10776 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10777 exception_name [sizeof (exception_name) - 1] = '\0';
10778 }
10779 else
10780 {
10781 /* For some reason, we were unable to read the exception
10782 name. This could happen if the Runtime was compiled
10783 without debugging info, for instance. In that case,
10784 just replace the exception name by the generic string
10785 "exception" - it will read as "an exception" in the
10786 notification we are about to print. */
10787 sprintf (exception_name, "exception");
10788 }
10789 /* In the case of unhandled exception breakpoints, we print
10790 the exception name as "unhandled EXCEPTION_NAME", to make
10791 it clearer to the user which kind of catchpoint just got
10792 hit. We used ui_out_text to make sure that this extra
10793 info does not pollute the exception name in the MI case. */
10794 if (ex == ex_catch_exception_unhandled)
10795 ui_out_text (uiout, "unhandled ");
10796 ui_out_field_string (uiout, "exception-name", exception_name);
10797 }
10798 break;
f7f9143b 10799 case ex_catch_assert:
956a9fb9
JB
10800 /* In this case, the name of the exception is not really
10801 important. Just print "failed assertion" to make it clearer
10802 that his program just hit an assertion-failure catchpoint.
10803 We used ui_out_text because this info does not belong in
10804 the MI output. */
10805 ui_out_text (uiout, "failed assertion");
10806 break;
f7f9143b 10807 }
956a9fb9
JB
10808 ui_out_text (uiout, " at ");
10809 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
10810
10811 return PRINT_SRC_AND_LOC;
10812}
10813
10814/* Implement the PRINT_ONE method in the breakpoint_ops structure
10815 for all exception catchpoint kinds. */
10816
10817static void
10818print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 10819 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10820{
79a45b7d
TT
10821 struct value_print_options opts;
10822
10823 get_user_print_options (&opts);
10824 if (opts.addressprint)
f7f9143b
JB
10825 {
10826 annotate_field (4);
5af949e3 10827 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
10828 }
10829
10830 annotate_field (5);
a6d9a66e 10831 *last_loc = b->loc;
f7f9143b
JB
10832 switch (ex)
10833 {
10834 case ex_catch_exception:
10835 if (b->exp_string != NULL)
10836 {
10837 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10838
10839 ui_out_field_string (uiout, "what", msg);
10840 xfree (msg);
10841 }
10842 else
10843 ui_out_field_string (uiout, "what", "all Ada exceptions");
10844
10845 break;
10846
10847 case ex_catch_exception_unhandled:
10848 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10849 break;
10850
10851 case ex_catch_assert:
10852 ui_out_field_string (uiout, "what", "failed Ada assertions");
10853 break;
10854
10855 default:
10856 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10857 break;
10858 }
10859}
10860
10861/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10862 for all exception catchpoint kinds. */
10863
10864static void
10865print_mention_exception (enum exception_catchpoint_kind ex,
10866 struct breakpoint *b)
10867{
10868 switch (ex)
10869 {
10870 case ex_catch_exception:
10871 if (b->exp_string != NULL)
10872 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10873 b->number, b->exp_string);
10874 else
10875 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10876
10877 break;
10878
10879 case ex_catch_exception_unhandled:
10880 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10881 b->number);
10882 break;
10883
10884 case ex_catch_assert:
10885 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10886 break;
10887
10888 default:
10889 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10890 break;
10891 }
10892}
10893
6149aea9
PA
10894/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10895 for all exception catchpoint kinds. */
10896
10897static void
10898print_recreate_exception (enum exception_catchpoint_kind ex,
10899 struct breakpoint *b, struct ui_file *fp)
10900{
10901 switch (ex)
10902 {
10903 case ex_catch_exception:
10904 fprintf_filtered (fp, "catch exception");
10905 if (b->exp_string != NULL)
10906 fprintf_filtered (fp, " %s", b->exp_string);
10907 break;
10908
10909 case ex_catch_exception_unhandled:
78076abc 10910 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
10911 break;
10912
10913 case ex_catch_assert:
10914 fprintf_filtered (fp, "catch assert");
10915 break;
10916
10917 default:
10918 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10919 }
10920}
10921
f7f9143b
JB
10922/* Virtual table for "catch exception" breakpoints. */
10923
10924static enum print_stop_action
10925print_it_catch_exception (struct breakpoint *b)
10926{
10927 return print_it_exception (ex_catch_exception, b);
10928}
10929
10930static void
a6d9a66e 10931print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10932{
a6d9a66e 10933 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
10934}
10935
10936static void
10937print_mention_catch_exception (struct breakpoint *b)
10938{
10939 print_mention_exception (ex_catch_exception, b);
10940}
10941
6149aea9
PA
10942static void
10943print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10944{
10945 print_recreate_exception (ex_catch_exception, b, fp);
10946}
10947
f7f9143b
JB
10948static struct breakpoint_ops catch_exception_breakpoint_ops =
10949{
ce78b96d
JB
10950 NULL, /* insert */
10951 NULL, /* remove */
10952 NULL, /* breakpoint_hit */
e09342b5 10953 NULL, /* resources_needed */
f7f9143b
JB
10954 print_it_catch_exception,
10955 print_one_catch_exception,
f1310107 10956 NULL, /* print_one_detail */
6149aea9
PA
10957 print_mention_catch_exception,
10958 print_recreate_catch_exception
f7f9143b
JB
10959};
10960
10961/* Virtual table for "catch exception unhandled" breakpoints. */
10962
10963static enum print_stop_action
10964print_it_catch_exception_unhandled (struct breakpoint *b)
10965{
10966 return print_it_exception (ex_catch_exception_unhandled, b);
10967}
10968
10969static void
a6d9a66e
UW
10970print_one_catch_exception_unhandled (struct breakpoint *b,
10971 struct bp_location **last_loc)
f7f9143b 10972{
a6d9a66e 10973 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
10974}
10975
10976static void
10977print_mention_catch_exception_unhandled (struct breakpoint *b)
10978{
10979 print_mention_exception (ex_catch_exception_unhandled, b);
10980}
10981
6149aea9
PA
10982static void
10983print_recreate_catch_exception_unhandled (struct breakpoint *b,
10984 struct ui_file *fp)
10985{
10986 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10987}
10988
f7f9143b 10989static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10990 NULL, /* insert */
10991 NULL, /* remove */
10992 NULL, /* breakpoint_hit */
e09342b5 10993 NULL, /* resources_needed */
f7f9143b
JB
10994 print_it_catch_exception_unhandled,
10995 print_one_catch_exception_unhandled,
f1310107 10996 NULL, /* print_one_detail */
6149aea9
PA
10997 print_mention_catch_exception_unhandled,
10998 print_recreate_catch_exception_unhandled
f7f9143b
JB
10999};
11000
11001/* Virtual table for "catch assert" breakpoints. */
11002
11003static enum print_stop_action
11004print_it_catch_assert (struct breakpoint *b)
11005{
11006 return print_it_exception (ex_catch_assert, b);
11007}
11008
11009static void
a6d9a66e 11010print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11011{
a6d9a66e 11012 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11013}
11014
11015static void
11016print_mention_catch_assert (struct breakpoint *b)
11017{
11018 print_mention_exception (ex_catch_assert, b);
11019}
11020
6149aea9
PA
11021static void
11022print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11023{
11024 print_recreate_exception (ex_catch_assert, b, fp);
11025}
11026
f7f9143b 11027static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
11028 NULL, /* insert */
11029 NULL, /* remove */
11030 NULL, /* breakpoint_hit */
e09342b5 11031 NULL, /* resources_needed */
f7f9143b
JB
11032 print_it_catch_assert,
11033 print_one_catch_assert,
f1310107 11034 NULL, /* print_one_detail */
6149aea9
PA
11035 print_mention_catch_assert,
11036 print_recreate_catch_assert
f7f9143b
JB
11037};
11038
11039/* Return non-zero if B is an Ada exception catchpoint. */
11040
11041int
11042ada_exception_catchpoint_p (struct breakpoint *b)
11043{
11044 return (b->ops == &catch_exception_breakpoint_ops
11045 || b->ops == &catch_exception_unhandled_breakpoint_ops
11046 || b->ops == &catch_assert_breakpoint_ops);
11047}
11048
f7f9143b
JB
11049/* Return a newly allocated copy of the first space-separated token
11050 in ARGSP, and then adjust ARGSP to point immediately after that
11051 token.
11052
11053 Return NULL if ARGPS does not contain any more tokens. */
11054
11055static char *
11056ada_get_next_arg (char **argsp)
11057{
11058 char *args = *argsp;
11059 char *end;
11060 char *result;
11061
11062 /* Skip any leading white space. */
11063
11064 while (isspace (*args))
11065 args++;
11066
11067 if (args[0] == '\0')
11068 return NULL; /* No more arguments. */
11069
11070 /* Find the end of the current argument. */
11071
11072 end = args;
11073 while (*end != '\0' && !isspace (*end))
11074 end++;
11075
11076 /* Adjust ARGSP to point to the start of the next argument. */
11077
11078 *argsp = end;
11079
11080 /* Make a copy of the current argument and return it. */
11081
11082 result = xmalloc (end - args + 1);
11083 strncpy (result, args, end - args);
11084 result[end - args] = '\0';
11085
11086 return result;
11087}
11088
11089/* Split the arguments specified in a "catch exception" command.
11090 Set EX to the appropriate catchpoint type.
11091 Set EXP_STRING to the name of the specific exception if
11092 specified by the user. */
11093
11094static void
11095catch_ada_exception_command_split (char *args,
11096 enum exception_catchpoint_kind *ex,
11097 char **exp_string)
11098{
11099 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11100 char *exception_name;
11101
11102 exception_name = ada_get_next_arg (&args);
11103 make_cleanup (xfree, exception_name);
11104
11105 /* Check that we do not have any more arguments. Anything else
11106 is unexpected. */
11107
11108 while (isspace (*args))
11109 args++;
11110
11111 if (args[0] != '\0')
11112 error (_("Junk at end of expression"));
11113
11114 discard_cleanups (old_chain);
11115
11116 if (exception_name == NULL)
11117 {
11118 /* Catch all exceptions. */
11119 *ex = ex_catch_exception;
11120 *exp_string = NULL;
11121 }
11122 else if (strcmp (exception_name, "unhandled") == 0)
11123 {
11124 /* Catch unhandled exceptions. */
11125 *ex = ex_catch_exception_unhandled;
11126 *exp_string = NULL;
11127 }
11128 else
11129 {
11130 /* Catch a specific exception. */
11131 *ex = ex_catch_exception;
11132 *exp_string = exception_name;
11133 }
11134}
11135
11136/* Return the name of the symbol on which we should break in order to
11137 implement a catchpoint of the EX kind. */
11138
11139static const char *
11140ada_exception_sym_name (enum exception_catchpoint_kind ex)
11141{
0259addd
JB
11142 gdb_assert (exception_info != NULL);
11143
f7f9143b
JB
11144 switch (ex)
11145 {
11146 case ex_catch_exception:
0259addd 11147 return (exception_info->catch_exception_sym);
f7f9143b
JB
11148 break;
11149 case ex_catch_exception_unhandled:
0259addd 11150 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11151 break;
11152 case ex_catch_assert:
0259addd 11153 return (exception_info->catch_assert_sym);
f7f9143b
JB
11154 break;
11155 default:
11156 internal_error (__FILE__, __LINE__,
11157 _("unexpected catchpoint kind (%d)"), ex);
11158 }
11159}
11160
11161/* Return the breakpoint ops "virtual table" used for catchpoints
11162 of the EX kind. */
11163
11164static struct breakpoint_ops *
4b9eee8c 11165ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11166{
11167 switch (ex)
11168 {
11169 case ex_catch_exception:
11170 return (&catch_exception_breakpoint_ops);
11171 break;
11172 case ex_catch_exception_unhandled:
11173 return (&catch_exception_unhandled_breakpoint_ops);
11174 break;
11175 case ex_catch_assert:
11176 return (&catch_assert_breakpoint_ops);
11177 break;
11178 default:
11179 internal_error (__FILE__, __LINE__,
11180 _("unexpected catchpoint kind (%d)"), ex);
11181 }
11182}
11183
11184/* Return the condition that will be used to match the current exception
11185 being raised with the exception that the user wants to catch. This
11186 assumes that this condition is used when the inferior just triggered
11187 an exception catchpoint.
11188
11189 The string returned is a newly allocated string that needs to be
11190 deallocated later. */
11191
11192static char *
11193ada_exception_catchpoint_cond_string (const char *exp_string)
11194{
3d0b0fa3
JB
11195 int i;
11196
0963b4bd 11197 /* The standard exceptions are a special case. They are defined in
3d0b0fa3
JB
11198 runtime units that have been compiled without debugging info; if
11199 EXP_STRING is the not-fully-qualified name of a standard
11200 exception (e.g. "constraint_error") then, during the evaluation
11201 of the condition expression, the symbol lookup on this name would
0963b4bd 11202 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11203 may then be set only on user-defined exceptions which have the
11204 same not-fully-qualified name (e.g. my_package.constraint_error).
11205
11206 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11207 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11208 exception constraint_error" is rewritten into "catch exception
11209 standard.constraint_error".
11210
11211 If an exception named contraint_error is defined in another package of
11212 the inferior program, then the only way to specify this exception as a
11213 breakpoint condition is to use its fully-qualified named:
11214 e.g. my_package.constraint_error. */
11215
11216 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11217 {
11218 if (strcmp (standard_exc [i], exp_string) == 0)
11219 {
11220 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11221 exp_string);
11222 }
11223 }
f7f9143b
JB
11224 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11225}
11226
11227/* Return the expression corresponding to COND_STRING evaluated at SAL. */
11228
11229static struct expression *
11230ada_parse_catchpoint_condition (char *cond_string,
11231 struct symtab_and_line sal)
11232{
11233 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11234}
11235
11236/* Return the symtab_and_line that should be used to insert an exception
11237 catchpoint of the TYPE kind.
11238
11239 EX_STRING should contain the name of a specific exception
11240 that the catchpoint should catch, or NULL otherwise.
11241
11242 The idea behind all the remaining parameters is that their names match
11243 the name of certain fields in the breakpoint structure that are used to
11244 handle exception catchpoints. This function returns the value to which
11245 these fields should be set, depending on the type of catchpoint we need
11246 to create.
11247
11248 If COND and COND_STRING are both non-NULL, any value they might
11249 hold will be free'ed, and then replaced by newly allocated ones.
11250 These parameters are left untouched otherwise. */
11251
11252static struct symtab_and_line
11253ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11254 char **addr_string, char **cond_string,
11255 struct expression **cond, struct breakpoint_ops **ops)
11256{
11257 const char *sym_name;
11258 struct symbol *sym;
11259 struct symtab_and_line sal;
11260
0259addd
JB
11261 /* First, find out which exception support info to use. */
11262 ada_exception_support_info_sniffer ();
11263
11264 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
11265 the Ada exceptions requested by the user. */
11266
11267 sym_name = ada_exception_sym_name (ex);
11268 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11269
11270 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11271 that should be compiled with debugging information. As a result, we
11272 expect to find that symbol in the symtabs. If we don't find it, then
11273 the target most likely does not support Ada exceptions, or we cannot
11274 insert exception breakpoints yet, because the GNAT runtime hasn't been
11275 loaded yet. */
11276
11277 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11278 in such a way that no debugging information is produced for the symbol
11279 we are looking for. In this case, we could search the minimal symbols
11280 as a fall-back mechanism. This would still be operating in degraded
11281 mode, however, as we would still be missing the debugging information
11282 that is needed in order to extract the name of the exception being
11283 raised (this name is printed in the catchpoint message, and is also
11284 used when trying to catch a specific exception). We do not handle
11285 this case for now. */
11286
11287 if (sym == NULL)
0259addd 11288 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
11289
11290 /* Make sure that the symbol we found corresponds to a function. */
11291 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11292 error (_("Symbol \"%s\" is not a function (class = %d)"),
11293 sym_name, SYMBOL_CLASS (sym));
11294
11295 sal = find_function_start_sal (sym, 1);
11296
11297 /* Set ADDR_STRING. */
11298
11299 *addr_string = xstrdup (sym_name);
11300
11301 /* Set the COND and COND_STRING (if not NULL). */
11302
11303 if (cond_string != NULL && cond != NULL)
11304 {
11305 if (*cond_string != NULL)
11306 {
11307 xfree (*cond_string);
11308 *cond_string = NULL;
11309 }
11310 if (*cond != NULL)
11311 {
11312 xfree (*cond);
11313 *cond = NULL;
11314 }
11315 if (exp_string != NULL)
11316 {
11317 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11318 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11319 }
11320 }
11321
11322 /* Set OPS. */
4b9eee8c 11323 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
11324
11325 return sal;
11326}
11327
11328/* Parse the arguments (ARGS) of the "catch exception" command.
11329
11330 Set TYPE to the appropriate exception catchpoint type.
11331 If the user asked the catchpoint to catch only a specific
11332 exception, then save the exception name in ADDR_STRING.
11333
11334 See ada_exception_sal for a description of all the remaining
11335 function arguments of this function. */
11336
11337struct symtab_and_line
11338ada_decode_exception_location (char *args, char **addr_string,
11339 char **exp_string, char **cond_string,
11340 struct expression **cond,
11341 struct breakpoint_ops **ops)
11342{
11343 enum exception_catchpoint_kind ex;
11344
11345 catch_ada_exception_command_split (args, &ex, exp_string);
11346 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11347 cond, ops);
11348}
11349
11350struct symtab_and_line
11351ada_decode_assert_location (char *args, char **addr_string,
11352 struct breakpoint_ops **ops)
11353{
11354 /* Check that no argument where provided at the end of the command. */
11355
11356 if (args != NULL)
11357 {
11358 while (isspace (*args))
11359 args++;
11360 if (*args != '\0')
11361 error (_("Junk at end of arguments."));
11362 }
11363
11364 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11365 ops);
11366}
11367
4c4b4cd2
PH
11368 /* Operators */
11369/* Information about operators given special treatment in functions
11370 below. */
11371/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11372
11373#define ADA_OPERATORS \
11374 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11375 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11376 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11377 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11378 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11379 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11380 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11381 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11382 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11383 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11384 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11385 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11386 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11387 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11388 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
11389 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11390 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11391 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11392 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
11393
11394static void
554794dc
SDJ
11395ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11396 int *argsp)
4c4b4cd2
PH
11397{
11398 switch (exp->elts[pc - 1].opcode)
11399 {
76a01679 11400 default:
4c4b4cd2
PH
11401 operator_length_standard (exp, pc, oplenp, argsp);
11402 break;
11403
11404#define OP_DEFN(op, len, args, binop) \
11405 case op: *oplenp = len; *argsp = args; break;
11406 ADA_OPERATORS;
11407#undef OP_DEFN
52ce6436
PH
11408
11409 case OP_AGGREGATE:
11410 *oplenp = 3;
11411 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11412 break;
11413
11414 case OP_CHOICES:
11415 *oplenp = 3;
11416 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11417 break;
4c4b4cd2
PH
11418 }
11419}
11420
c0201579
JK
11421/* Implementation of the exp_descriptor method operator_check. */
11422
11423static int
11424ada_operator_check (struct expression *exp, int pos,
11425 int (*objfile_func) (struct objfile *objfile, void *data),
11426 void *data)
11427{
11428 const union exp_element *const elts = exp->elts;
11429 struct type *type = NULL;
11430
11431 switch (elts[pos].opcode)
11432 {
11433 case UNOP_IN_RANGE:
11434 case UNOP_QUAL:
11435 type = elts[pos + 1].type;
11436 break;
11437
11438 default:
11439 return operator_check_standard (exp, pos, objfile_func, data);
11440 }
11441
11442 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11443
11444 if (type && TYPE_OBJFILE (type)
11445 && (*objfile_func) (TYPE_OBJFILE (type), data))
11446 return 1;
11447
11448 return 0;
11449}
11450
4c4b4cd2
PH
11451static char *
11452ada_op_name (enum exp_opcode opcode)
11453{
11454 switch (opcode)
11455 {
76a01679 11456 default:
4c4b4cd2 11457 return op_name_standard (opcode);
52ce6436 11458
4c4b4cd2
PH
11459#define OP_DEFN(op, len, args, binop) case op: return #op;
11460 ADA_OPERATORS;
11461#undef OP_DEFN
52ce6436
PH
11462
11463 case OP_AGGREGATE:
11464 return "OP_AGGREGATE";
11465 case OP_CHOICES:
11466 return "OP_CHOICES";
11467 case OP_NAME:
11468 return "OP_NAME";
4c4b4cd2
PH
11469 }
11470}
11471
11472/* As for operator_length, but assumes PC is pointing at the first
11473 element of the operator, and gives meaningful results only for the
52ce6436 11474 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
11475
11476static void
76a01679
JB
11477ada_forward_operator_length (struct expression *exp, int pc,
11478 int *oplenp, int *argsp)
4c4b4cd2 11479{
76a01679 11480 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
11481 {
11482 default:
11483 *oplenp = *argsp = 0;
11484 break;
52ce6436 11485
4c4b4cd2
PH
11486#define OP_DEFN(op, len, args, binop) \
11487 case op: *oplenp = len; *argsp = args; break;
11488 ADA_OPERATORS;
11489#undef OP_DEFN
52ce6436
PH
11490
11491 case OP_AGGREGATE:
11492 *oplenp = 3;
11493 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11494 break;
11495
11496 case OP_CHOICES:
11497 *oplenp = 3;
11498 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11499 break;
11500
11501 case OP_STRING:
11502 case OP_NAME:
11503 {
11504 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 11505
52ce6436
PH
11506 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11507 *argsp = 0;
11508 break;
11509 }
4c4b4cd2
PH
11510 }
11511}
11512
11513static int
11514ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11515{
11516 enum exp_opcode op = exp->elts[elt].opcode;
11517 int oplen, nargs;
11518 int pc = elt;
11519 int i;
76a01679 11520
4c4b4cd2
PH
11521 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11522
76a01679 11523 switch (op)
4c4b4cd2 11524 {
76a01679 11525 /* Ada attributes ('Foo). */
4c4b4cd2
PH
11526 case OP_ATR_FIRST:
11527 case OP_ATR_LAST:
11528 case OP_ATR_LENGTH:
11529 case OP_ATR_IMAGE:
11530 case OP_ATR_MAX:
11531 case OP_ATR_MIN:
11532 case OP_ATR_MODULUS:
11533 case OP_ATR_POS:
11534 case OP_ATR_SIZE:
11535 case OP_ATR_TAG:
11536 case OP_ATR_VAL:
11537 break;
11538
11539 case UNOP_IN_RANGE:
11540 case UNOP_QUAL:
323e0a4a
AC
11541 /* XXX: gdb_sprint_host_address, type_sprint */
11542 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
11543 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11544 fprintf_filtered (stream, " (");
11545 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11546 fprintf_filtered (stream, ")");
11547 break;
11548 case BINOP_IN_BOUNDS:
52ce6436
PH
11549 fprintf_filtered (stream, " (%d)",
11550 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
11551 break;
11552 case TERNOP_IN_RANGE:
11553 break;
11554
52ce6436
PH
11555 case OP_AGGREGATE:
11556 case OP_OTHERS:
11557 case OP_DISCRETE_RANGE:
11558 case OP_POSITIONAL:
11559 case OP_CHOICES:
11560 break;
11561
11562 case OP_NAME:
11563 case OP_STRING:
11564 {
11565 char *name = &exp->elts[elt + 2].string;
11566 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 11567
52ce6436
PH
11568 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11569 break;
11570 }
11571
4c4b4cd2
PH
11572 default:
11573 return dump_subexp_body_standard (exp, stream, elt);
11574 }
11575
11576 elt += oplen;
11577 for (i = 0; i < nargs; i += 1)
11578 elt = dump_subexp (exp, stream, elt);
11579
11580 return elt;
11581}
11582
11583/* The Ada extension of print_subexp (q.v.). */
11584
76a01679
JB
11585static void
11586ada_print_subexp (struct expression *exp, int *pos,
11587 struct ui_file *stream, enum precedence prec)
4c4b4cd2 11588{
52ce6436 11589 int oplen, nargs, i;
4c4b4cd2
PH
11590 int pc = *pos;
11591 enum exp_opcode op = exp->elts[pc].opcode;
11592
11593 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11594
52ce6436 11595 *pos += oplen;
4c4b4cd2
PH
11596 switch (op)
11597 {
11598 default:
52ce6436 11599 *pos -= oplen;
4c4b4cd2
PH
11600 print_subexp_standard (exp, pos, stream, prec);
11601 return;
11602
11603 case OP_VAR_VALUE:
4c4b4cd2
PH
11604 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11605 return;
11606
11607 case BINOP_IN_BOUNDS:
323e0a4a 11608 /* XXX: sprint_subexp */
4c4b4cd2 11609 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11610 fputs_filtered (" in ", stream);
4c4b4cd2 11611 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11612 fputs_filtered ("'range", stream);
4c4b4cd2 11613 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
11614 fprintf_filtered (stream, "(%ld)",
11615 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
11616 return;
11617
11618 case TERNOP_IN_RANGE:
4c4b4cd2 11619 if (prec >= PREC_EQUAL)
76a01679 11620 fputs_filtered ("(", stream);
323e0a4a 11621 /* XXX: sprint_subexp */
4c4b4cd2 11622 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11623 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11624 print_subexp (exp, pos, stream, PREC_EQUAL);
11625 fputs_filtered (" .. ", stream);
11626 print_subexp (exp, pos, stream, PREC_EQUAL);
11627 if (prec >= PREC_EQUAL)
76a01679
JB
11628 fputs_filtered (")", stream);
11629 return;
4c4b4cd2
PH
11630
11631 case OP_ATR_FIRST:
11632 case OP_ATR_LAST:
11633 case OP_ATR_LENGTH:
11634 case OP_ATR_IMAGE:
11635 case OP_ATR_MAX:
11636 case OP_ATR_MIN:
11637 case OP_ATR_MODULUS:
11638 case OP_ATR_POS:
11639 case OP_ATR_SIZE:
11640 case OP_ATR_TAG:
11641 case OP_ATR_VAL:
4c4b4cd2 11642 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11643 {
11644 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11645 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11646 *pos += 3;
11647 }
4c4b4cd2 11648 else
76a01679 11649 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11650 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11651 if (nargs > 1)
76a01679
JB
11652 {
11653 int tem;
5b4ee69b 11654
76a01679
JB
11655 for (tem = 1; tem < nargs; tem += 1)
11656 {
11657 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11658 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11659 }
11660 fputs_filtered (")", stream);
11661 }
4c4b4cd2 11662 return;
14f9c5c9 11663
4c4b4cd2 11664 case UNOP_QUAL:
4c4b4cd2
PH
11665 type_print (exp->elts[pc + 1].type, "", stream, 0);
11666 fputs_filtered ("'(", stream);
11667 print_subexp (exp, pos, stream, PREC_PREFIX);
11668 fputs_filtered (")", stream);
11669 return;
14f9c5c9 11670
4c4b4cd2 11671 case UNOP_IN_RANGE:
323e0a4a 11672 /* XXX: sprint_subexp */
4c4b4cd2 11673 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11674 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11675 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11676 return;
52ce6436
PH
11677
11678 case OP_DISCRETE_RANGE:
11679 print_subexp (exp, pos, stream, PREC_SUFFIX);
11680 fputs_filtered ("..", stream);
11681 print_subexp (exp, pos, stream, PREC_SUFFIX);
11682 return;
11683
11684 case OP_OTHERS:
11685 fputs_filtered ("others => ", stream);
11686 print_subexp (exp, pos, stream, PREC_SUFFIX);
11687 return;
11688
11689 case OP_CHOICES:
11690 for (i = 0; i < nargs-1; i += 1)
11691 {
11692 if (i > 0)
11693 fputs_filtered ("|", stream);
11694 print_subexp (exp, pos, stream, PREC_SUFFIX);
11695 }
11696 fputs_filtered (" => ", stream);
11697 print_subexp (exp, pos, stream, PREC_SUFFIX);
11698 return;
11699
11700 case OP_POSITIONAL:
11701 print_subexp (exp, pos, stream, PREC_SUFFIX);
11702 return;
11703
11704 case OP_AGGREGATE:
11705 fputs_filtered ("(", stream);
11706 for (i = 0; i < nargs; i += 1)
11707 {
11708 if (i > 0)
11709 fputs_filtered (", ", stream);
11710 print_subexp (exp, pos, stream, PREC_SUFFIX);
11711 }
11712 fputs_filtered (")", stream);
11713 return;
4c4b4cd2
PH
11714 }
11715}
14f9c5c9
AS
11716
11717/* Table mapping opcodes into strings for printing operators
11718 and precedences of the operators. */
11719
d2e4a39e
AS
11720static const struct op_print ada_op_print_tab[] = {
11721 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11722 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11723 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11724 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11725 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11726 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11727 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11728 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11729 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11730 {">=", BINOP_GEQ, PREC_ORDER, 0},
11731 {">", BINOP_GTR, PREC_ORDER, 0},
11732 {"<", BINOP_LESS, PREC_ORDER, 0},
11733 {">>", BINOP_RSH, PREC_SHIFT, 0},
11734 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11735 {"+", BINOP_ADD, PREC_ADD, 0},
11736 {"-", BINOP_SUB, PREC_ADD, 0},
11737 {"&", BINOP_CONCAT, PREC_ADD, 0},
11738 {"*", BINOP_MUL, PREC_MUL, 0},
11739 {"/", BINOP_DIV, PREC_MUL, 0},
11740 {"rem", BINOP_REM, PREC_MUL, 0},
11741 {"mod", BINOP_MOD, PREC_MUL, 0},
11742 {"**", BINOP_EXP, PREC_REPEAT, 0},
11743 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11744 {"-", UNOP_NEG, PREC_PREFIX, 0},
11745 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11746 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11747 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11748 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11749 {".all", UNOP_IND, PREC_SUFFIX, 1},
11750 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11751 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11752 {NULL, 0, 0, 0}
14f9c5c9
AS
11753};
11754\f
72d5681a
PH
11755enum ada_primitive_types {
11756 ada_primitive_type_int,
11757 ada_primitive_type_long,
11758 ada_primitive_type_short,
11759 ada_primitive_type_char,
11760 ada_primitive_type_float,
11761 ada_primitive_type_double,
11762 ada_primitive_type_void,
11763 ada_primitive_type_long_long,
11764 ada_primitive_type_long_double,
11765 ada_primitive_type_natural,
11766 ada_primitive_type_positive,
11767 ada_primitive_type_system_address,
11768 nr_ada_primitive_types
11769};
6c038f32
PH
11770
11771static void
d4a9a881 11772ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11773 struct language_arch_info *lai)
11774{
d4a9a881 11775 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 11776
72d5681a 11777 lai->primitive_type_vector
d4a9a881 11778 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 11779 struct type *);
e9bb382b
UW
11780
11781 lai->primitive_type_vector [ada_primitive_type_int]
11782 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11783 0, "integer");
11784 lai->primitive_type_vector [ada_primitive_type_long]
11785 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11786 0, "long_integer");
11787 lai->primitive_type_vector [ada_primitive_type_short]
11788 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11789 0, "short_integer");
11790 lai->string_char_type
11791 = lai->primitive_type_vector [ada_primitive_type_char]
11792 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11793 lai->primitive_type_vector [ada_primitive_type_float]
11794 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11795 "float", NULL);
11796 lai->primitive_type_vector [ada_primitive_type_double]
11797 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11798 "long_float", NULL);
11799 lai->primitive_type_vector [ada_primitive_type_long_long]
11800 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11801 0, "long_long_integer");
11802 lai->primitive_type_vector [ada_primitive_type_long_double]
11803 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11804 "long_long_float", NULL);
11805 lai->primitive_type_vector [ada_primitive_type_natural]
11806 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11807 0, "natural");
11808 lai->primitive_type_vector [ada_primitive_type_positive]
11809 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11810 0, "positive");
11811 lai->primitive_type_vector [ada_primitive_type_void]
11812 = builtin->builtin_void;
11813
11814 lai->primitive_type_vector [ada_primitive_type_system_address]
11815 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
11816 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11817 = "system__address";
fbb06eb1 11818
47e729a8 11819 lai->bool_type_symbol = NULL;
fbb06eb1 11820 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11821}
6c038f32
PH
11822\f
11823 /* Language vector */
11824
11825/* Not really used, but needed in the ada_language_defn. */
11826
11827static void
6c7a06a3 11828emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11829{
6c7a06a3 11830 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11831}
11832
11833static int
11834parse (void)
11835{
11836 warnings_issued = 0;
11837 return ada_parse ();
11838}
11839
11840static const struct exp_descriptor ada_exp_descriptor = {
11841 ada_print_subexp,
11842 ada_operator_length,
c0201579 11843 ada_operator_check,
6c038f32
PH
11844 ada_op_name,
11845 ada_dump_subexp_body,
11846 ada_evaluate_subexp
11847};
11848
11849const struct language_defn ada_language_defn = {
11850 "ada", /* Language name */
11851 language_ada,
6c038f32
PH
11852 range_check_off,
11853 type_check_off,
11854 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11855 that's not quite what this means. */
6c038f32 11856 array_row_major,
9a044a89 11857 macro_expansion_no,
6c038f32
PH
11858 &ada_exp_descriptor,
11859 parse,
11860 ada_error,
11861 resolve,
11862 ada_printchar, /* Print a character constant */
11863 ada_printstr, /* Function to print string constant */
11864 emit_char, /* Function to print single char (not used) */
6c038f32 11865 ada_print_type, /* Print a type using appropriate syntax */
be942545 11866 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11867 ada_val_print, /* Print a value using appropriate syntax */
11868 ada_value_print, /* Print a top-level value */
11869 NULL, /* Language specific skip_trampoline */
2b2d9e11 11870 NULL, /* name_of_this */
6c038f32
PH
11871 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11872 basic_lookup_transparent_type, /* lookup_transparent_type */
11873 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
11874 NULL, /* Language specific
11875 class_name_from_physname */
6c038f32
PH
11876 ada_op_print_tab, /* expression operators for printing */
11877 0, /* c-style arrays */
11878 1, /* String lower bound */
6c038f32 11879 ada_get_gdb_completer_word_break_characters,
41d27058 11880 ada_make_symbol_completion_list,
72d5681a 11881 ada_language_arch_info,
e79af960 11882 ada_print_array_index,
41f1b697 11883 default_pass_by_reference,
ae6a3a4c 11884 c_get_string,
6c038f32
PH
11885 LANG_MAGIC
11886};
11887
2c0b251b
PA
11888/* Provide a prototype to silence -Wmissing-prototypes. */
11889extern initialize_file_ftype _initialize_ada_language;
11890
5bf03f13
JB
11891/* Command-list for the "set/show ada" prefix command. */
11892static struct cmd_list_element *set_ada_list;
11893static struct cmd_list_element *show_ada_list;
11894
11895/* Implement the "set ada" prefix command. */
11896
11897static void
11898set_ada_command (char *arg, int from_tty)
11899{
11900 printf_unfiltered (_(\
11901"\"set ada\" must be followed by the name of a setting.\n"));
11902 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11903}
11904
11905/* Implement the "show ada" prefix command. */
11906
11907static void
11908show_ada_command (char *args, int from_tty)
11909{
11910 cmd_show_list (show_ada_list, from_tty, "");
11911}
11912
d2e4a39e 11913void
6c038f32 11914_initialize_ada_language (void)
14f9c5c9 11915{
6c038f32
PH
11916 add_language (&ada_language_defn);
11917
5bf03f13
JB
11918 add_prefix_cmd ("ada", no_class, set_ada_command,
11919 _("Prefix command for changing Ada-specfic settings"),
11920 &set_ada_list, "set ada ", 0, &setlist);
11921
11922 add_prefix_cmd ("ada", no_class, show_ada_command,
11923 _("Generic command for showing Ada-specific settings."),
11924 &show_ada_list, "show ada ", 0, &showlist);
11925
11926 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11927 &trust_pad_over_xvs, _("\
11928Enable or disable an optimization trusting PAD types over XVS types"), _("\
11929Show whether an optimization trusting PAD types over XVS types is activated"),
11930 _("\
11931This is related to the encoding used by the GNAT compiler. The debugger\n\
11932should normally trust the contents of PAD types, but certain older versions\n\
11933of GNAT have a bug that sometimes causes the information in the PAD type\n\
11934to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11935work around this bug. It is always safe to turn this option \"off\", but\n\
11936this incurs a slight performance penalty, so it is recommended to NOT change\n\
11937this option to \"off\" unless necessary."),
11938 NULL, NULL, &set_ada_list, &show_ada_list);
11939
6c038f32 11940 varsize_limit = 65536;
6c038f32
PH
11941
11942 obstack_init (&symbol_list_obstack);
11943
11944 decoded_names_store = htab_create_alloc
11945 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11946 NULL, xcalloc, xfree);
6b69afc4
JB
11947
11948 observer_attach_executable_changed (ada_executable_changed_observer);
e802dbe0
JB
11949
11950 /* Setup per-inferior data. */
11951 observer_attach_inferior_exit (ada_inferior_exit);
11952 ada_inferior_data
11953 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 11954}
This page took 1.611591 seconds and 4 git commands to generate.