m32c padding with nops
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
d55e5aa6 24#include "gdb_regex.h"
4de283e4
TT
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
14f9c5c9 28#include "gdbcmd.h"
4de283e4
TT
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
14f9c5c9 38#include "gdbcore.h"
4c4b4cd2 39#include "hashtab.h"
4de283e4
TT
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
04714b91 46#include "infcall.h"
4de283e4
TT
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
d55e5aa6 50#include "source.h"
4de283e4
TT
51#include "observable.h"
52#include "common/vec.h"
692465f1 53#include "stack.h"
4de283e4 54#include "common/gdb_vecs.h"
79d43c61 55#include "typeprint.h"
4de283e4
TT
56#include "namespace.h"
57
58#include "psymtab.h"
40bc484c 59#include "value.h"
4de283e4
TT
60#include "mi/mi-common.h"
61#include "arch-utils.h"
62#include "cli/cli-utils.h"
63#include "common/function-view.h"
64#include "common/byte-vector.h"
65#include <algorithm>
2ff0a947 66#include <map>
ccefe4c4 67
4c4b4cd2 68/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 69 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
70 Copied from valarith.c. */
71
72#ifndef TRUNCATION_TOWARDS_ZERO
73#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74#endif
75
d2e4a39e 76static struct type *desc_base_type (struct type *);
14f9c5c9 77
d2e4a39e 78static struct type *desc_bounds_type (struct type *);
14f9c5c9 79
d2e4a39e 80static struct value *desc_bounds (struct value *);
14f9c5c9 81
d2e4a39e 82static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 85
556bdfd4 86static struct type *desc_data_target_type (struct type *);
14f9c5c9 87
d2e4a39e 88static struct value *desc_data (struct value *);
14f9c5c9 89
d2e4a39e 90static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 91
d2e4a39e 92static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 93
d2e4a39e 94static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 95
d2e4a39e 96static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 97
d2e4a39e 98static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 99
d2e4a39e 100static struct type *desc_index_type (struct type *, int);
14f9c5c9 101
d2e4a39e 102static int desc_arity (struct type *);
14f9c5c9 103
d2e4a39e 104static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 105
d2e4a39e 106static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 107
40bc484c 108static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 109
4c4b4cd2 110static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
14f9c5c9 114
22cee43f 115static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
22cee43f 118
d12307c1 119static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 120
76a01679 121static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 122 const struct block *);
14f9c5c9 123
4c4b4cd2
PH
124static int num_defns_collected (struct obstack *);
125
d12307c1 126static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 127
e9d9f57e 128static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
129 struct type *, int,
130 innermost_block_tracker *);
14f9c5c9 131
e9d9f57e 132static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 133 struct symbol *, const struct block *);
14f9c5c9 134
d2e4a39e 135static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 136
a121b7c1 137static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
138
139static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 140
d2e4a39e 141static int numeric_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int integer_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int scalar_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int discrete_type_p (struct type *);
14f9c5c9 148
aeb5907d
JB
149static enum ada_renaming_category parse_old_style_renaming (struct type *,
150 const char **,
151 int *,
152 const char **);
153
154static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 155 const struct block *);
aeb5907d 156
a121b7c1 157static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 158 int, int);
4c4b4cd2 159
d2e4a39e 160static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 161
b4ba55a1
JB
162static struct type *ada_find_parallel_type_with_name (struct type *,
163 const char *);
164
d2e4a39e 165static int is_dynamic_field (struct type *, int);
14f9c5c9 166
10a2c479 167static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 168 const gdb_byte *,
4c4b4cd2
PH
169 CORE_ADDR, struct value *);
170
171static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 172
28c85d6c 173static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 174
d2e4a39e 175static struct type *to_static_fixed_type (struct type *);
f192137b 176static struct type *static_unwrap_type (struct type *type);
14f9c5c9 177
d2e4a39e 178static struct value *unwrap_value (struct value *);
14f9c5c9 179
ad82864c 180static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 181
ad82864c 182static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 183
ad82864c
JB
184static long decode_packed_array_bitsize (struct type *);
185
186static struct value *decode_constrained_packed_array (struct value *);
187
188static int ada_is_packed_array_type (struct type *);
189
190static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 191
d2e4a39e 192static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 193 struct value **);
14f9c5c9 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2 227
d12307c1 228static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 229 struct value **, int, const char *,
2a612529 230 struct type *, int);
4c4b4cd2 231
4c4b4cd2
PH
232static int ada_is_direct_array_type (struct type *);
233
72d5681a
PH
234static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
714e53ab 236
52ce6436
PH
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
241 struct expression *,
242 int *, enum noside);
52ce6436
PH
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
852dff6c
JB
268
269static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
270
271static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
4c4b4cd2
PH
274\f
275
ee01b665
JB
276/* The result of a symbol lookup to be stored in our symbol cache. */
277
278struct cache_entry
279{
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
fe978cb0 283 domain_enum domain;
ee01b665
JB
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292};
293
294/* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303#define HASH_SIZE 1009
304
305struct ada_symbol_cache
306{
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312};
313
314static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 315
4c4b4cd2 316/* Maximum-sized dynamic type. */
14f9c5c9
AS
317static unsigned int varsize_limit;
318
67cb5b2d 319static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
c6044dd1
JB
345/* Maintenance-related settings for this module. */
346
347static struct cmd_list_element *maint_set_ada_cmdlist;
348static struct cmd_list_element *maint_show_ada_cmdlist;
349
350/* Implement the "maintenance set ada" (prefix) command. */
351
352static void
981a3fb3 353maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 354{
635c7e8a
TT
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
c6044dd1
JB
357}
358
359/* Implement the "maintenance show ada" (prefix) command. */
360
361static void
981a3fb3 362maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
363{
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365}
366
367/* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369static int ada_ignore_descriptive_types_p = 0;
370
e802dbe0
JB
371 /* Inferior-specific data. */
372
373/* Per-inferior data for this module. */
374
375struct ada_inferior_data
376{
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
3eecfa55
JB
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
e802dbe0
JB
387};
388
389/* Our key to this module's inferior data. */
390static const struct inferior_data *ada_inferior_data;
391
392/* A cleanup routine for our inferior data. */
393static void
394ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395{
396 struct ada_inferior_data *data;
397
9a3c8263 398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
399 if (data != NULL)
400 xfree (data);
401}
402
403/* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411static struct ada_inferior_data *
412get_ada_inferior_data (struct inferior *inf)
413{
414 struct ada_inferior_data *data;
415
9a3c8263 416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
417 if (data == NULL)
418 {
41bf6aca 419 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424}
425
426/* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429static void
430ada_inferior_exit (struct inferior *inf)
431{
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434}
435
ee01b665
JB
436
437 /* program-space-specific data. */
438
439/* This module's per-program-space data. */
440struct ada_pspace_data
441{
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444};
445
446/* Key to our per-program-space data. */
447static const struct program_space_data *ada_pspace_data_handle;
448
449/* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454static struct ada_pspace_data *
455get_ada_pspace_data (struct program_space *pspace)
456{
457 struct ada_pspace_data *data;
458
9a3c8263
SM
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468}
469
470/* The cleanup callback for this module's per-program-space data. */
471
472static void
473ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474{
9a3c8263 475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480}
481
4c4b4cd2
PH
482 /* Utilities */
483
720d1a40 484/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 485 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511static struct type *
512ada_typedef_target_type (struct type *type)
513{
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517}
518
41d27058
JB
519/* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523static const char *
524ada_unqualified_name (const char *decoded_name)
525{
2b0f535a
JB
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
41d27058
JB
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542}
543
39e7af3e 544/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 545
39e7af3e 546static std::string
41d27058
JB
547add_angle_brackets (const char *str)
548{
39e7af3e 549 return string_printf ("<%s>", str);
41d27058 550}
96d887e8 551
67cb5b2d 552static const char *
4c4b4cd2
PH
553ada_get_gdb_completer_word_break_characters (void)
554{
555 return ada_completer_word_break_characters;
556}
557
e79af960
JB
558/* Print an array element index using the Ada syntax. */
559
560static void
561ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 562 const struct value_print_options *options)
e79af960 563{
79a45b7d 564 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
565 fprintf_filtered (stream, " => ");
566}
567
e2b7af72
JB
568/* la_watch_location_expression for Ada. */
569
570gdb::unique_xmalloc_ptr<char>
571ada_watch_location_expression (struct type *type, CORE_ADDR addr)
572{
573 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
574 std::string name = type_to_string (type);
575 return gdb::unique_xmalloc_ptr<char>
576 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
577}
578
f27cf670 579/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 580 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 581 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 582
f27cf670
AS
583void *
584grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 585{
d2e4a39e
AS
586 if (*size < min_size)
587 {
588 *size *= 2;
589 if (*size < min_size)
4c4b4cd2 590 *size = min_size;
f27cf670 591 vect = xrealloc (vect, *size * element_size);
d2e4a39e 592 }
f27cf670 593 return vect;
14f9c5c9
AS
594}
595
596/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 597 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
598
599static int
ebf56fd3 600field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
601{
602 int len = strlen (target);
5b4ee69b 603
d2e4a39e 604 return
4c4b4cd2
PH
605 (strncmp (field_name, target, len) == 0
606 && (field_name[len] == '\0'
61012eef 607 || (startswith (field_name + len, "___")
76a01679
JB
608 && strcmp (field_name + strlen (field_name) - 6,
609 "___XVN") != 0)));
14f9c5c9
AS
610}
611
612
872c8b51
JB
613/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
614 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
615 and return its index. This function also handles fields whose name
616 have ___ suffixes because the compiler sometimes alters their name
617 by adding such a suffix to represent fields with certain constraints.
618 If the field could not be found, return a negative number if
619 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
620
621int
622ada_get_field_index (const struct type *type, const char *field_name,
623 int maybe_missing)
624{
625 int fieldno;
872c8b51
JB
626 struct type *struct_type = check_typedef ((struct type *) type);
627
628 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
629 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
630 return fieldno;
631
632 if (!maybe_missing)
323e0a4a 633 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 634 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
635
636 return -1;
637}
638
639/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
640
641int
d2e4a39e 642ada_name_prefix_len (const char *name)
14f9c5c9
AS
643{
644 if (name == NULL)
645 return 0;
d2e4a39e 646 else
14f9c5c9 647 {
d2e4a39e 648 const char *p = strstr (name, "___");
5b4ee69b 649
14f9c5c9 650 if (p == NULL)
4c4b4cd2 651 return strlen (name);
14f9c5c9 652 else
4c4b4cd2 653 return p - name;
14f9c5c9
AS
654 }
655}
656
4c4b4cd2
PH
657/* Return non-zero if SUFFIX is a suffix of STR.
658 Return zero if STR is null. */
659
14f9c5c9 660static int
d2e4a39e 661is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
662{
663 int len1, len2;
5b4ee69b 664
14f9c5c9
AS
665 if (str == NULL)
666 return 0;
667 len1 = strlen (str);
668 len2 = strlen (suffix);
4c4b4cd2 669 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
670}
671
4c4b4cd2
PH
672/* The contents of value VAL, treated as a value of type TYPE. The
673 result is an lval in memory if VAL is. */
14f9c5c9 674
d2e4a39e 675static struct value *
4c4b4cd2 676coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 677{
61ee279c 678 type = ada_check_typedef (type);
df407dfe 679 if (value_type (val) == type)
4c4b4cd2 680 return val;
d2e4a39e 681 else
14f9c5c9 682 {
4c4b4cd2
PH
683 struct value *result;
684
685 /* Make sure that the object size is not unreasonable before
686 trying to allocate some memory for it. */
c1b5a1a6 687 ada_ensure_varsize_limit (type);
4c4b4cd2 688
41e8491f
JK
689 if (value_lazy (val)
690 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
691 result = allocate_value_lazy (type);
692 else
693 {
694 result = allocate_value (type);
9a0dc9e3 695 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 696 }
74bcbdf3 697 set_value_component_location (result, val);
9bbda503
AC
698 set_value_bitsize (result, value_bitsize (val));
699 set_value_bitpos (result, value_bitpos (val));
42ae5230 700 set_value_address (result, value_address (val));
14f9c5c9
AS
701 return result;
702 }
703}
704
fc1a4b47
AC
705static const gdb_byte *
706cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
707{
708 if (valaddr == NULL)
709 return NULL;
710 else
711 return valaddr + offset;
712}
713
714static CORE_ADDR
ebf56fd3 715cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
716{
717 if (address == 0)
718 return 0;
d2e4a39e 719 else
14f9c5c9
AS
720 return address + offset;
721}
722
4c4b4cd2
PH
723/* Issue a warning (as for the definition of warning in utils.c, but
724 with exactly one argument rather than ...), unless the limit on the
725 number of warnings has passed during the evaluation of the current
726 expression. */
a2249542 727
77109804
AC
728/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
729 provided by "complaint". */
a0b31db1 730static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 731
14f9c5c9 732static void
a2249542 733lim_warning (const char *format, ...)
14f9c5c9 734{
a2249542 735 va_list args;
a2249542 736
5b4ee69b 737 va_start (args, format);
4c4b4cd2
PH
738 warnings_issued += 1;
739 if (warnings_issued <= warning_limit)
a2249542
MK
740 vwarning (format, args);
741
742 va_end (args);
4c4b4cd2
PH
743}
744
714e53ab
PH
745/* Issue an error if the size of an object of type T is unreasonable,
746 i.e. if it would be a bad idea to allocate a value of this type in
747 GDB. */
748
c1b5a1a6
JB
749void
750ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
751{
752 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 753 error (_("object size is larger than varsize-limit"));
714e53ab
PH
754}
755
0963b4bd 756/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 757static LONGEST
c3e5cd34 758max_of_size (int size)
4c4b4cd2 759{
76a01679 760 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 761
76a01679 762 return top_bit | (top_bit - 1);
4c4b4cd2
PH
763}
764
0963b4bd 765/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 766static LONGEST
c3e5cd34 767min_of_size (int size)
4c4b4cd2 768{
c3e5cd34 769 return -max_of_size (size) - 1;
4c4b4cd2
PH
770}
771
0963b4bd 772/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 773static ULONGEST
c3e5cd34 774umax_of_size (int size)
4c4b4cd2 775{
76a01679 776 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 777
76a01679 778 return top_bit | (top_bit - 1);
4c4b4cd2
PH
779}
780
0963b4bd 781/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
782static LONGEST
783max_of_type (struct type *t)
4c4b4cd2 784{
c3e5cd34
PH
785 if (TYPE_UNSIGNED (t))
786 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
787 else
788 return max_of_size (TYPE_LENGTH (t));
789}
790
0963b4bd 791/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
792static LONGEST
793min_of_type (struct type *t)
794{
795 if (TYPE_UNSIGNED (t))
796 return 0;
797 else
798 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
799}
800
801/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
802LONGEST
803ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 804{
c3345124 805 type = resolve_dynamic_type (type, NULL, 0);
76a01679 806 switch (TYPE_CODE (type))
4c4b4cd2
PH
807 {
808 case TYPE_CODE_RANGE:
690cc4eb 809 return TYPE_HIGH_BOUND (type);
4c4b4cd2 810 case TYPE_CODE_ENUM:
14e75d8e 811 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
812 case TYPE_CODE_BOOL:
813 return 1;
814 case TYPE_CODE_CHAR:
76a01679 815 case TYPE_CODE_INT:
690cc4eb 816 return max_of_type (type);
4c4b4cd2 817 default:
43bbcdc2 818 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
819 }
820}
821
14e75d8e 822/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
823LONGEST
824ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 825{
c3345124 826 type = resolve_dynamic_type (type, NULL, 0);
76a01679 827 switch (TYPE_CODE (type))
4c4b4cd2
PH
828 {
829 case TYPE_CODE_RANGE:
690cc4eb 830 return TYPE_LOW_BOUND (type);
4c4b4cd2 831 case TYPE_CODE_ENUM:
14e75d8e 832 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
833 case TYPE_CODE_BOOL:
834 return 0;
835 case TYPE_CODE_CHAR:
76a01679 836 case TYPE_CODE_INT:
690cc4eb 837 return min_of_type (type);
4c4b4cd2 838 default:
43bbcdc2 839 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
840 }
841}
842
843/* The identity on non-range types. For range types, the underlying
76a01679 844 non-range scalar type. */
4c4b4cd2
PH
845
846static struct type *
18af8284 847get_base_type (struct type *type)
4c4b4cd2
PH
848{
849 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
850 {
76a01679
JB
851 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
852 return type;
4c4b4cd2
PH
853 type = TYPE_TARGET_TYPE (type);
854 }
855 return type;
14f9c5c9 856}
41246937
JB
857
858/* Return a decoded version of the given VALUE. This means returning
859 a value whose type is obtained by applying all the GNAT-specific
860 encondings, making the resulting type a static but standard description
861 of the initial type. */
862
863struct value *
864ada_get_decoded_value (struct value *value)
865{
866 struct type *type = ada_check_typedef (value_type (value));
867
868 if (ada_is_array_descriptor_type (type)
869 || (ada_is_constrained_packed_array_type (type)
870 && TYPE_CODE (type) != TYPE_CODE_PTR))
871 {
872 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
873 value = ada_coerce_to_simple_array_ptr (value);
874 else
875 value = ada_coerce_to_simple_array (value);
876 }
877 else
878 value = ada_to_fixed_value (value);
879
880 return value;
881}
882
883/* Same as ada_get_decoded_value, but with the given TYPE.
884 Because there is no associated actual value for this type,
885 the resulting type might be a best-effort approximation in
886 the case of dynamic types. */
887
888struct type *
889ada_get_decoded_type (struct type *type)
890{
891 type = to_static_fixed_type (type);
892 if (ada_is_constrained_packed_array_type (type))
893 type = ada_coerce_to_simple_array_type (type);
894 return type;
895}
896
4c4b4cd2 897\f
76a01679 898
4c4b4cd2 899 /* Language Selection */
14f9c5c9
AS
900
901/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 902 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 903
14f9c5c9 904enum language
ccefe4c4 905ada_update_initial_language (enum language lang)
14f9c5c9 906{
d2e4a39e 907 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 908 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 909 return language_ada;
14f9c5c9
AS
910
911 return lang;
912}
96d887e8
PH
913
914/* If the main procedure is written in Ada, then return its name.
915 The result is good until the next call. Return NULL if the main
916 procedure doesn't appear to be in Ada. */
917
918char *
919ada_main_name (void)
920{
3b7344d5 921 struct bound_minimal_symbol msym;
e83e4e24 922 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 923
96d887e8
PH
924 /* For Ada, the name of the main procedure is stored in a specific
925 string constant, generated by the binder. Look for that symbol,
926 extract its address, and then read that string. If we didn't find
927 that string, then most probably the main procedure is not written
928 in Ada. */
929 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
930
3b7344d5 931 if (msym.minsym != NULL)
96d887e8 932 {
f9bc20b9
JB
933 CORE_ADDR main_program_name_addr;
934 int err_code;
935
77e371c0 936 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 937 if (main_program_name_addr == 0)
323e0a4a 938 error (_("Invalid address for Ada main program name."));
96d887e8 939
f9bc20b9
JB
940 target_read_string (main_program_name_addr, &main_program_name,
941 1024, &err_code);
942
943 if (err_code != 0)
944 return NULL;
e83e4e24 945 return main_program_name.get ();
96d887e8
PH
946 }
947
948 /* The main procedure doesn't seem to be in Ada. */
949 return NULL;
950}
14f9c5c9 951\f
4c4b4cd2 952 /* Symbols */
d2e4a39e 953
4c4b4cd2
PH
954/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
955 of NULLs. */
14f9c5c9 956
d2e4a39e
AS
957const struct ada_opname_map ada_opname_table[] = {
958 {"Oadd", "\"+\"", BINOP_ADD},
959 {"Osubtract", "\"-\"", BINOP_SUB},
960 {"Omultiply", "\"*\"", BINOP_MUL},
961 {"Odivide", "\"/\"", BINOP_DIV},
962 {"Omod", "\"mod\"", BINOP_MOD},
963 {"Orem", "\"rem\"", BINOP_REM},
964 {"Oexpon", "\"**\"", BINOP_EXP},
965 {"Olt", "\"<\"", BINOP_LESS},
966 {"Ole", "\"<=\"", BINOP_LEQ},
967 {"Ogt", "\">\"", BINOP_GTR},
968 {"Oge", "\">=\"", BINOP_GEQ},
969 {"Oeq", "\"=\"", BINOP_EQUAL},
970 {"One", "\"/=\"", BINOP_NOTEQUAL},
971 {"Oand", "\"and\"", BINOP_BITWISE_AND},
972 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
973 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
974 {"Oconcat", "\"&\"", BINOP_CONCAT},
975 {"Oabs", "\"abs\"", UNOP_ABS},
976 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
977 {"Oadd", "\"+\"", UNOP_PLUS},
978 {"Osubtract", "\"-\"", UNOP_NEG},
979 {NULL, NULL}
14f9c5c9
AS
980};
981
b5ec771e
PA
982/* The "encoded" form of DECODED, according to GNAT conventions. The
983 result is valid until the next call to ada_encode. If
984 THROW_ERRORS, throw an error if invalid operator name is found.
985 Otherwise, return NULL in that case. */
4c4b4cd2 986
b5ec771e
PA
987static char *
988ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 989{
4c4b4cd2
PH
990 static char *encoding_buffer = NULL;
991 static size_t encoding_buffer_size = 0;
d2e4a39e 992 const char *p;
14f9c5c9 993 int k;
d2e4a39e 994
4c4b4cd2 995 if (decoded == NULL)
14f9c5c9
AS
996 return NULL;
997
4c4b4cd2
PH
998 GROW_VECT (encoding_buffer, encoding_buffer_size,
999 2 * strlen (decoded) + 10);
14f9c5c9
AS
1000
1001 k = 0;
4c4b4cd2 1002 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1003 {
cdc7bb92 1004 if (*p == '.')
4c4b4cd2
PH
1005 {
1006 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1007 k += 2;
1008 }
14f9c5c9 1009 else if (*p == '"')
4c4b4cd2
PH
1010 {
1011 const struct ada_opname_map *mapping;
1012
1013 for (mapping = ada_opname_table;
1265e4aa 1014 mapping->encoded != NULL
61012eef 1015 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1016 ;
1017 if (mapping->encoded == NULL)
b5ec771e
PA
1018 {
1019 if (throw_errors)
1020 error (_("invalid Ada operator name: %s"), p);
1021 else
1022 return NULL;
1023 }
4c4b4cd2
PH
1024 strcpy (encoding_buffer + k, mapping->encoded);
1025 k += strlen (mapping->encoded);
1026 break;
1027 }
d2e4a39e 1028 else
4c4b4cd2
PH
1029 {
1030 encoding_buffer[k] = *p;
1031 k += 1;
1032 }
14f9c5c9
AS
1033 }
1034
4c4b4cd2
PH
1035 encoding_buffer[k] = '\0';
1036 return encoding_buffer;
14f9c5c9
AS
1037}
1038
b5ec771e
PA
1039/* The "encoded" form of DECODED, according to GNAT conventions.
1040 The result is valid until the next call to ada_encode. */
1041
1042char *
1043ada_encode (const char *decoded)
1044{
1045 return ada_encode_1 (decoded, true);
1046}
1047
14f9c5c9 1048/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1049 quotes, unfolded, but with the quotes stripped away. Result good
1050 to next call. */
1051
d2e4a39e
AS
1052char *
1053ada_fold_name (const char *name)
14f9c5c9 1054{
d2e4a39e 1055 static char *fold_buffer = NULL;
14f9c5c9
AS
1056 static size_t fold_buffer_size = 0;
1057
1058 int len = strlen (name);
d2e4a39e 1059 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1060
1061 if (name[0] == '\'')
1062 {
d2e4a39e
AS
1063 strncpy (fold_buffer, name + 1, len - 2);
1064 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1065 }
1066 else
1067 {
1068 int i;
5b4ee69b 1069
14f9c5c9 1070 for (i = 0; i <= len; i += 1)
4c4b4cd2 1071 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1072 }
1073
1074 return fold_buffer;
1075}
1076
529cad9c
PH
1077/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1078
1079static int
1080is_lower_alphanum (const char c)
1081{
1082 return (isdigit (c) || (isalpha (c) && islower (c)));
1083}
1084
c90092fe
JB
1085/* ENCODED is the linkage name of a symbol and LEN contains its length.
1086 This function saves in LEN the length of that same symbol name but
1087 without either of these suffixes:
29480c32
JB
1088 . .{DIGIT}+
1089 . ${DIGIT}+
1090 . ___{DIGIT}+
1091 . __{DIGIT}+.
c90092fe 1092
29480c32
JB
1093 These are suffixes introduced by the compiler for entities such as
1094 nested subprogram for instance, in order to avoid name clashes.
1095 They do not serve any purpose for the debugger. */
1096
1097static void
1098ada_remove_trailing_digits (const char *encoded, int *len)
1099{
1100 if (*len > 1 && isdigit (encoded[*len - 1]))
1101 {
1102 int i = *len - 2;
5b4ee69b 1103
29480c32
JB
1104 while (i > 0 && isdigit (encoded[i]))
1105 i--;
1106 if (i >= 0 && encoded[i] == '.')
1107 *len = i;
1108 else if (i >= 0 && encoded[i] == '$')
1109 *len = i;
61012eef 1110 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1111 *len = i - 2;
61012eef 1112 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1113 *len = i - 1;
1114 }
1115}
1116
1117/* Remove the suffix introduced by the compiler for protected object
1118 subprograms. */
1119
1120static void
1121ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1122{
1123 /* Remove trailing N. */
1124
1125 /* Protected entry subprograms are broken into two
1126 separate subprograms: The first one is unprotected, and has
1127 a 'N' suffix; the second is the protected version, and has
0963b4bd 1128 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1129 the protection. Since the P subprograms are internally generated,
1130 we leave these names undecoded, giving the user a clue that this
1131 entity is internal. */
1132
1133 if (*len > 1
1134 && encoded[*len - 1] == 'N'
1135 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1136 *len = *len - 1;
1137}
1138
69fadcdf
JB
1139/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1140
1141static void
1142ada_remove_Xbn_suffix (const char *encoded, int *len)
1143{
1144 int i = *len - 1;
1145
1146 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1147 i--;
1148
1149 if (encoded[i] != 'X')
1150 return;
1151
1152 if (i == 0)
1153 return;
1154
1155 if (isalnum (encoded[i-1]))
1156 *len = i;
1157}
1158
29480c32
JB
1159/* If ENCODED follows the GNAT entity encoding conventions, then return
1160 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1161 replaced by ENCODED.
14f9c5c9 1162
4c4b4cd2 1163 The resulting string is valid until the next call of ada_decode.
29480c32 1164 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1165 is returned. */
1166
1167const char *
1168ada_decode (const char *encoded)
14f9c5c9
AS
1169{
1170 int i, j;
1171 int len0;
d2e4a39e 1172 const char *p;
4c4b4cd2 1173 char *decoded;
14f9c5c9 1174 int at_start_name;
4c4b4cd2
PH
1175 static char *decoding_buffer = NULL;
1176 static size_t decoding_buffer_size = 0;
d2e4a39e 1177
0d81f350
JG
1178 /* With function descriptors on PPC64, the value of a symbol named
1179 ".FN", if it exists, is the entry point of the function "FN". */
1180 if (encoded[0] == '.')
1181 encoded += 1;
1182
29480c32
JB
1183 /* The name of the Ada main procedure starts with "_ada_".
1184 This prefix is not part of the decoded name, so skip this part
1185 if we see this prefix. */
61012eef 1186 if (startswith (encoded, "_ada_"))
4c4b4cd2 1187 encoded += 5;
14f9c5c9 1188
29480c32
JB
1189 /* If the name starts with '_', then it is not a properly encoded
1190 name, so do not attempt to decode it. Similarly, if the name
1191 starts with '<', the name should not be decoded. */
4c4b4cd2 1192 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1193 goto Suppress;
1194
4c4b4cd2 1195 len0 = strlen (encoded);
4c4b4cd2 1196
29480c32
JB
1197 ada_remove_trailing_digits (encoded, &len0);
1198 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1199
4c4b4cd2
PH
1200 /* Remove the ___X.* suffix if present. Do not forget to verify that
1201 the suffix is located before the current "end" of ENCODED. We want
1202 to avoid re-matching parts of ENCODED that have previously been
1203 marked as discarded (by decrementing LEN0). */
1204 p = strstr (encoded, "___");
1205 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1206 {
1207 if (p[3] == 'X')
4c4b4cd2 1208 len0 = p - encoded;
14f9c5c9 1209 else
4c4b4cd2 1210 goto Suppress;
14f9c5c9 1211 }
4c4b4cd2 1212
29480c32
JB
1213 /* Remove any trailing TKB suffix. It tells us that this symbol
1214 is for the body of a task, but that information does not actually
1215 appear in the decoded name. */
1216
61012eef 1217 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1218 len0 -= 3;
76a01679 1219
a10967fa
JB
1220 /* Remove any trailing TB suffix. The TB suffix is slightly different
1221 from the TKB suffix because it is used for non-anonymous task
1222 bodies. */
1223
61012eef 1224 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1225 len0 -= 2;
1226
29480c32
JB
1227 /* Remove trailing "B" suffixes. */
1228 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1229
61012eef 1230 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1231 len0 -= 1;
1232
4c4b4cd2 1233 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1234
4c4b4cd2
PH
1235 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1236 decoded = decoding_buffer;
14f9c5c9 1237
29480c32
JB
1238 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1239
4c4b4cd2 1240 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1241 {
4c4b4cd2
PH
1242 i = len0 - 2;
1243 while ((i >= 0 && isdigit (encoded[i]))
1244 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1245 i -= 1;
1246 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1247 len0 = i - 1;
1248 else if (encoded[i] == '$')
1249 len0 = i;
d2e4a39e 1250 }
14f9c5c9 1251
29480c32
JB
1252 /* The first few characters that are not alphabetic are not part
1253 of any encoding we use, so we can copy them over verbatim. */
1254
4c4b4cd2
PH
1255 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1256 decoded[j] = encoded[i];
14f9c5c9
AS
1257
1258 at_start_name = 1;
1259 while (i < len0)
1260 {
29480c32 1261 /* Is this a symbol function? */
4c4b4cd2
PH
1262 if (at_start_name && encoded[i] == 'O')
1263 {
1264 int k;
5b4ee69b 1265
4c4b4cd2
PH
1266 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1267 {
1268 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1269 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1270 op_len - 1) == 0)
1271 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1272 {
1273 strcpy (decoded + j, ada_opname_table[k].decoded);
1274 at_start_name = 0;
1275 i += op_len;
1276 j += strlen (ada_opname_table[k].decoded);
1277 break;
1278 }
1279 }
1280 if (ada_opname_table[k].encoded != NULL)
1281 continue;
1282 }
14f9c5c9
AS
1283 at_start_name = 0;
1284
529cad9c
PH
1285 /* Replace "TK__" with "__", which will eventually be translated
1286 into "." (just below). */
1287
61012eef 1288 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1289 i += 2;
529cad9c 1290
29480c32
JB
1291 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1292 be translated into "." (just below). These are internal names
1293 generated for anonymous blocks inside which our symbol is nested. */
1294
1295 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1296 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1297 && isdigit (encoded [i+4]))
1298 {
1299 int k = i + 5;
1300
1301 while (k < len0 && isdigit (encoded[k]))
1302 k++; /* Skip any extra digit. */
1303
1304 /* Double-check that the "__B_{DIGITS}+" sequence we found
1305 is indeed followed by "__". */
1306 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1307 i = k;
1308 }
1309
529cad9c
PH
1310 /* Remove _E{DIGITS}+[sb] */
1311
1312 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1313 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1314 one implements the actual entry code, and has a suffix following
1315 the convention above; the second one implements the barrier and
1316 uses the same convention as above, except that the 'E' is replaced
1317 by a 'B'.
1318
1319 Just as above, we do not decode the name of barrier functions
1320 to give the user a clue that the code he is debugging has been
1321 internally generated. */
1322
1323 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1324 && isdigit (encoded[i+2]))
1325 {
1326 int k = i + 3;
1327
1328 while (k < len0 && isdigit (encoded[k]))
1329 k++;
1330
1331 if (k < len0
1332 && (encoded[k] == 'b' || encoded[k] == 's'))
1333 {
1334 k++;
1335 /* Just as an extra precaution, make sure that if this
1336 suffix is followed by anything else, it is a '_'.
1337 Otherwise, we matched this sequence by accident. */
1338 if (k == len0
1339 || (k < len0 && encoded[k] == '_'))
1340 i = k;
1341 }
1342 }
1343
1344 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1345 the GNAT front-end in protected object subprograms. */
1346
1347 if (i < len0 + 3
1348 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1349 {
1350 /* Backtrack a bit up until we reach either the begining of
1351 the encoded name, or "__". Make sure that we only find
1352 digits or lowercase characters. */
1353 const char *ptr = encoded + i - 1;
1354
1355 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1356 ptr--;
1357 if (ptr < encoded
1358 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1359 i++;
1360 }
1361
4c4b4cd2
PH
1362 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1363 {
29480c32
JB
1364 /* This is a X[bn]* sequence not separated from the previous
1365 part of the name with a non-alpha-numeric character (in other
1366 words, immediately following an alpha-numeric character), then
1367 verify that it is placed at the end of the encoded name. If
1368 not, then the encoding is not valid and we should abort the
1369 decoding. Otherwise, just skip it, it is used in body-nested
1370 package names. */
4c4b4cd2
PH
1371 do
1372 i += 1;
1373 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1374 if (i < len0)
1375 goto Suppress;
1376 }
cdc7bb92 1377 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1378 {
29480c32 1379 /* Replace '__' by '.'. */
4c4b4cd2
PH
1380 decoded[j] = '.';
1381 at_start_name = 1;
1382 i += 2;
1383 j += 1;
1384 }
14f9c5c9 1385 else
4c4b4cd2 1386 {
29480c32
JB
1387 /* It's a character part of the decoded name, so just copy it
1388 over. */
4c4b4cd2
PH
1389 decoded[j] = encoded[i];
1390 i += 1;
1391 j += 1;
1392 }
14f9c5c9 1393 }
4c4b4cd2 1394 decoded[j] = '\000';
14f9c5c9 1395
29480c32
JB
1396 /* Decoded names should never contain any uppercase character.
1397 Double-check this, and abort the decoding if we find one. */
1398
4c4b4cd2
PH
1399 for (i = 0; decoded[i] != '\0'; i += 1)
1400 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1401 goto Suppress;
1402
4c4b4cd2
PH
1403 if (strcmp (decoded, encoded) == 0)
1404 return encoded;
1405 else
1406 return decoded;
14f9c5c9
AS
1407
1408Suppress:
4c4b4cd2
PH
1409 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1410 decoded = decoding_buffer;
1411 if (encoded[0] == '<')
1412 strcpy (decoded, encoded);
14f9c5c9 1413 else
88c15c34 1414 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1415 return decoded;
1416
1417}
1418
1419/* Table for keeping permanent unique copies of decoded names. Once
1420 allocated, names in this table are never released. While this is a
1421 storage leak, it should not be significant unless there are massive
1422 changes in the set of decoded names in successive versions of a
1423 symbol table loaded during a single session. */
1424static struct htab *decoded_names_store;
1425
1426/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1427 in the language-specific part of GSYMBOL, if it has not been
1428 previously computed. Tries to save the decoded name in the same
1429 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1430 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1431 GSYMBOL).
4c4b4cd2
PH
1432 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1433 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1434 when a decoded name is cached in it. */
4c4b4cd2 1435
45e6c716 1436const char *
f85f34ed 1437ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1438{
f85f34ed
TT
1439 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1440 const char **resultp =
615b3f62 1441 &gsymbol->language_specific.demangled_name;
5b4ee69b 1442
f85f34ed 1443 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1444 {
1445 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1446 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1447
f85f34ed 1448 gsymbol->ada_mangled = 1;
5b4ee69b 1449
f85f34ed 1450 if (obstack != NULL)
224c3ddb
SM
1451 *resultp
1452 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1453 else
76a01679 1454 {
f85f34ed
TT
1455 /* Sometimes, we can't find a corresponding objfile, in
1456 which case, we put the result on the heap. Since we only
1457 decode when needed, we hope this usually does not cause a
1458 significant memory leak (FIXME). */
1459
76a01679
JB
1460 char **slot = (char **) htab_find_slot (decoded_names_store,
1461 decoded, INSERT);
5b4ee69b 1462
76a01679
JB
1463 if (*slot == NULL)
1464 *slot = xstrdup (decoded);
1465 *resultp = *slot;
1466 }
4c4b4cd2 1467 }
14f9c5c9 1468
4c4b4cd2
PH
1469 return *resultp;
1470}
76a01679 1471
2c0b251b 1472static char *
76a01679 1473ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1474{
1475 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1476}
1477
8b302db8
TT
1478/* Implement la_sniff_from_mangled_name for Ada. */
1479
1480static int
1481ada_sniff_from_mangled_name (const char *mangled, char **out)
1482{
1483 const char *demangled = ada_decode (mangled);
1484
1485 *out = NULL;
1486
1487 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1488 {
1489 /* Set the gsymbol language to Ada, but still return 0.
1490 Two reasons for that:
1491
1492 1. For Ada, we prefer computing the symbol's decoded name
1493 on the fly rather than pre-compute it, in order to save
1494 memory (Ada projects are typically very large).
1495
1496 2. There are some areas in the definition of the GNAT
1497 encoding where, with a bit of bad luck, we might be able
1498 to decode a non-Ada symbol, generating an incorrect
1499 demangled name (Eg: names ending with "TB" for instance
1500 are identified as task bodies and so stripped from
1501 the decoded name returned).
1502
1503 Returning 1, here, but not setting *DEMANGLED, helps us get a
1504 little bit of the best of both worlds. Because we're last,
1505 we should not affect any of the other languages that were
1506 able to demangle the symbol before us; we get to correctly
1507 tag Ada symbols as such; and even if we incorrectly tagged a
1508 non-Ada symbol, which should be rare, any routing through the
1509 Ada language should be transparent (Ada tries to behave much
1510 like C/C++ with non-Ada symbols). */
1511 return 1;
1512 }
1513
1514 return 0;
1515}
1516
14f9c5c9 1517\f
d2e4a39e 1518
4c4b4cd2 1519 /* Arrays */
14f9c5c9 1520
28c85d6c
JB
1521/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1522 generated by the GNAT compiler to describe the index type used
1523 for each dimension of an array, check whether it follows the latest
1524 known encoding. If not, fix it up to conform to the latest encoding.
1525 Otherwise, do nothing. This function also does nothing if
1526 INDEX_DESC_TYPE is NULL.
1527
1528 The GNAT encoding used to describle the array index type evolved a bit.
1529 Initially, the information would be provided through the name of each
1530 field of the structure type only, while the type of these fields was
1531 described as unspecified and irrelevant. The debugger was then expected
1532 to perform a global type lookup using the name of that field in order
1533 to get access to the full index type description. Because these global
1534 lookups can be very expensive, the encoding was later enhanced to make
1535 the global lookup unnecessary by defining the field type as being
1536 the full index type description.
1537
1538 The purpose of this routine is to allow us to support older versions
1539 of the compiler by detecting the use of the older encoding, and by
1540 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1541 we essentially replace each field's meaningless type by the associated
1542 index subtype). */
1543
1544void
1545ada_fixup_array_indexes_type (struct type *index_desc_type)
1546{
1547 int i;
1548
1549 if (index_desc_type == NULL)
1550 return;
1551 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1552
1553 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1554 to check one field only, no need to check them all). If not, return
1555 now.
1556
1557 If our INDEX_DESC_TYPE was generated using the older encoding,
1558 the field type should be a meaningless integer type whose name
1559 is not equal to the field name. */
1560 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1561 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1562 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1563 return;
1564
1565 /* Fixup each field of INDEX_DESC_TYPE. */
1566 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1567 {
0d5cff50 1568 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1569 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1570
1571 if (raw_type)
1572 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1573 }
1574}
1575
4c4b4cd2 1576/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1577
a121b7c1 1578static const char *bound_name[] = {
d2e4a39e 1579 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1580 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1581};
1582
1583/* Maximum number of array dimensions we are prepared to handle. */
1584
4c4b4cd2 1585#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1586
14f9c5c9 1587
4c4b4cd2
PH
1588/* The desc_* routines return primitive portions of array descriptors
1589 (fat pointers). */
14f9c5c9
AS
1590
1591/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1592 level of indirection, if needed. */
1593
d2e4a39e
AS
1594static struct type *
1595desc_base_type (struct type *type)
14f9c5c9
AS
1596{
1597 if (type == NULL)
1598 return NULL;
61ee279c 1599 type = ada_check_typedef (type);
720d1a40
JB
1600 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1601 type = ada_typedef_target_type (type);
1602
1265e4aa
JB
1603 if (type != NULL
1604 && (TYPE_CODE (type) == TYPE_CODE_PTR
1605 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1606 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1607 else
1608 return type;
1609}
1610
4c4b4cd2
PH
1611/* True iff TYPE indicates a "thin" array pointer type. */
1612
14f9c5c9 1613static int
d2e4a39e 1614is_thin_pntr (struct type *type)
14f9c5c9 1615{
d2e4a39e 1616 return
14f9c5c9
AS
1617 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1618 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1619}
1620
4c4b4cd2
PH
1621/* The descriptor type for thin pointer type TYPE. */
1622
d2e4a39e
AS
1623static struct type *
1624thin_descriptor_type (struct type *type)
14f9c5c9 1625{
d2e4a39e 1626 struct type *base_type = desc_base_type (type);
5b4ee69b 1627
14f9c5c9
AS
1628 if (base_type == NULL)
1629 return NULL;
1630 if (is_suffix (ada_type_name (base_type), "___XVE"))
1631 return base_type;
d2e4a39e 1632 else
14f9c5c9 1633 {
d2e4a39e 1634 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1635
14f9c5c9 1636 if (alt_type == NULL)
4c4b4cd2 1637 return base_type;
14f9c5c9 1638 else
4c4b4cd2 1639 return alt_type;
14f9c5c9
AS
1640 }
1641}
1642
4c4b4cd2
PH
1643/* A pointer to the array data for thin-pointer value VAL. */
1644
d2e4a39e
AS
1645static struct value *
1646thin_data_pntr (struct value *val)
14f9c5c9 1647{
828292f2 1648 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1649 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1650
556bdfd4
UW
1651 data_type = lookup_pointer_type (data_type);
1652
14f9c5c9 1653 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1654 return value_cast (data_type, value_copy (val));
d2e4a39e 1655 else
42ae5230 1656 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1657}
1658
4c4b4cd2
PH
1659/* True iff TYPE indicates a "thick" array pointer type. */
1660
14f9c5c9 1661static int
d2e4a39e 1662is_thick_pntr (struct type *type)
14f9c5c9
AS
1663{
1664 type = desc_base_type (type);
1665 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1666 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1667}
1668
4c4b4cd2
PH
1669/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1670 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1671
d2e4a39e
AS
1672static struct type *
1673desc_bounds_type (struct type *type)
14f9c5c9 1674{
d2e4a39e 1675 struct type *r;
14f9c5c9
AS
1676
1677 type = desc_base_type (type);
1678
1679 if (type == NULL)
1680 return NULL;
1681 else if (is_thin_pntr (type))
1682 {
1683 type = thin_descriptor_type (type);
1684 if (type == NULL)
4c4b4cd2 1685 return NULL;
14f9c5c9
AS
1686 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1687 if (r != NULL)
61ee279c 1688 return ada_check_typedef (r);
14f9c5c9
AS
1689 }
1690 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1691 {
1692 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1693 if (r != NULL)
61ee279c 1694 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1695 }
1696 return NULL;
1697}
1698
1699/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1700 one, a pointer to its bounds data. Otherwise NULL. */
1701
d2e4a39e
AS
1702static struct value *
1703desc_bounds (struct value *arr)
14f9c5c9 1704{
df407dfe 1705 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1706
d2e4a39e 1707 if (is_thin_pntr (type))
14f9c5c9 1708 {
d2e4a39e 1709 struct type *bounds_type =
4c4b4cd2 1710 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1711 LONGEST addr;
1712
4cdfadb1 1713 if (bounds_type == NULL)
323e0a4a 1714 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1715
1716 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1717 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1718 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1719 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1720 addr = value_as_long (arr);
d2e4a39e 1721 else
42ae5230 1722 addr = value_address (arr);
14f9c5c9 1723
d2e4a39e 1724 return
4c4b4cd2
PH
1725 value_from_longest (lookup_pointer_type (bounds_type),
1726 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1727 }
1728
1729 else if (is_thick_pntr (type))
05e522ef
JB
1730 {
1731 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1732 _("Bad GNAT array descriptor"));
1733 struct type *p_bounds_type = value_type (p_bounds);
1734
1735 if (p_bounds_type
1736 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1737 {
1738 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1739
1740 if (TYPE_STUB (target_type))
1741 p_bounds = value_cast (lookup_pointer_type
1742 (ada_check_typedef (target_type)),
1743 p_bounds);
1744 }
1745 else
1746 error (_("Bad GNAT array descriptor"));
1747
1748 return p_bounds;
1749 }
14f9c5c9
AS
1750 else
1751 return NULL;
1752}
1753
4c4b4cd2
PH
1754/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1755 position of the field containing the address of the bounds data. */
1756
14f9c5c9 1757static int
d2e4a39e 1758fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1759{
1760 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1761}
1762
1763/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1764 size of the field containing the address of the bounds data. */
1765
14f9c5c9 1766static int
d2e4a39e 1767fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1768{
1769 type = desc_base_type (type);
1770
d2e4a39e 1771 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1772 return TYPE_FIELD_BITSIZE (type, 1);
1773 else
61ee279c 1774 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1775}
1776
4c4b4cd2 1777/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1778 pointer to one, the type of its array data (a array-with-no-bounds type);
1779 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1780 data. */
4c4b4cd2 1781
d2e4a39e 1782static struct type *
556bdfd4 1783desc_data_target_type (struct type *type)
14f9c5c9
AS
1784{
1785 type = desc_base_type (type);
1786
4c4b4cd2 1787 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1788 if (is_thin_pntr (type))
556bdfd4 1789 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1790 else if (is_thick_pntr (type))
556bdfd4
UW
1791 {
1792 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1793
1794 if (data_type
1795 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1796 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1797 }
1798
1799 return NULL;
14f9c5c9
AS
1800}
1801
1802/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1803 its array data. */
4c4b4cd2 1804
d2e4a39e
AS
1805static struct value *
1806desc_data (struct value *arr)
14f9c5c9 1807{
df407dfe 1808 struct type *type = value_type (arr);
5b4ee69b 1809
14f9c5c9
AS
1810 if (is_thin_pntr (type))
1811 return thin_data_pntr (arr);
1812 else if (is_thick_pntr (type))
d2e4a39e 1813 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1814 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1815 else
1816 return NULL;
1817}
1818
1819
1820/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1821 position of the field containing the address of the data. */
1822
14f9c5c9 1823static int
d2e4a39e 1824fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1825{
1826 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1827}
1828
1829/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1830 size of the field containing the address of the data. */
1831
14f9c5c9 1832static int
d2e4a39e 1833fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1834{
1835 type = desc_base_type (type);
1836
1837 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1838 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1839 else
14f9c5c9
AS
1840 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1841}
1842
4c4b4cd2 1843/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1844 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
d2e4a39e
AS
1847static struct value *
1848desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1849{
d2e4a39e 1850 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1851 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1852}
1853
1854/* If BOUNDS is an array-bounds structure type, return the bit position
1855 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1856 bound, if WHICH is 1. The first bound is I=1. */
1857
14f9c5c9 1858static int
d2e4a39e 1859desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1860{
d2e4a39e 1861 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1862}
1863
1864/* If BOUNDS is an array-bounds structure type, return the bit field size
1865 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1866 bound, if WHICH is 1. The first bound is I=1. */
1867
76a01679 1868static int
d2e4a39e 1869desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1870{
1871 type = desc_base_type (type);
1872
d2e4a39e
AS
1873 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1874 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1875 else
1876 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1877}
1878
1879/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1880 Ith bound (numbering from 1). Otherwise, NULL. */
1881
d2e4a39e
AS
1882static struct type *
1883desc_index_type (struct type *type, int i)
14f9c5c9
AS
1884{
1885 type = desc_base_type (type);
1886
1887 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1888 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1889 else
14f9c5c9
AS
1890 return NULL;
1891}
1892
4c4b4cd2
PH
1893/* The number of index positions in the array-bounds type TYPE.
1894 Return 0 if TYPE is NULL. */
1895
14f9c5c9 1896static int
d2e4a39e 1897desc_arity (struct type *type)
14f9c5c9
AS
1898{
1899 type = desc_base_type (type);
1900
1901 if (type != NULL)
1902 return TYPE_NFIELDS (type) / 2;
1903 return 0;
1904}
1905
4c4b4cd2
PH
1906/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1907 an array descriptor type (representing an unconstrained array
1908 type). */
1909
76a01679
JB
1910static int
1911ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1912{
1913 if (type == NULL)
1914 return 0;
61ee279c 1915 type = ada_check_typedef (type);
4c4b4cd2 1916 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1917 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1918}
1919
52ce6436 1920/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1921 * to one. */
52ce6436 1922
2c0b251b 1923static int
52ce6436
PH
1924ada_is_array_type (struct type *type)
1925{
1926 while (type != NULL
1927 && (TYPE_CODE (type) == TYPE_CODE_PTR
1928 || TYPE_CODE (type) == TYPE_CODE_REF))
1929 type = TYPE_TARGET_TYPE (type);
1930 return ada_is_direct_array_type (type);
1931}
1932
4c4b4cd2 1933/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1934
14f9c5c9 1935int
4c4b4cd2 1936ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1937{
1938 if (type == NULL)
1939 return 0;
61ee279c 1940 type = ada_check_typedef (type);
14f9c5c9 1941 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1942 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1943 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1944 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1945}
1946
4c4b4cd2
PH
1947/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1948
14f9c5c9 1949int
4c4b4cd2 1950ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1951{
556bdfd4 1952 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1953
1954 if (type == NULL)
1955 return 0;
61ee279c 1956 type = ada_check_typedef (type);
556bdfd4
UW
1957 return (data_type != NULL
1958 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1959 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1960}
1961
1962/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1963 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1964 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1965 is still needed. */
1966
14f9c5c9 1967int
ebf56fd3 1968ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1969{
d2e4a39e 1970 return
14f9c5c9
AS
1971 type != NULL
1972 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1973 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1974 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1975 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1976}
1977
1978
4c4b4cd2 1979/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1980 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1981 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1982 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1983 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1984 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1985 a descriptor. */
d2e4a39e
AS
1986struct type *
1987ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1988{
ad82864c
JB
1989 if (ada_is_constrained_packed_array_type (value_type (arr)))
1990 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1991
df407dfe
AC
1992 if (!ada_is_array_descriptor_type (value_type (arr)))
1993 return value_type (arr);
d2e4a39e
AS
1994
1995 if (!bounds)
ad82864c
JB
1996 {
1997 struct type *array_type =
1998 ada_check_typedef (desc_data_target_type (value_type (arr)));
1999
2000 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2001 TYPE_FIELD_BITSIZE (array_type, 0) =
2002 decode_packed_array_bitsize (value_type (arr));
2003
2004 return array_type;
2005 }
14f9c5c9
AS
2006 else
2007 {
d2e4a39e 2008 struct type *elt_type;
14f9c5c9 2009 int arity;
d2e4a39e 2010 struct value *descriptor;
14f9c5c9 2011
df407dfe
AC
2012 elt_type = ada_array_element_type (value_type (arr), -1);
2013 arity = ada_array_arity (value_type (arr));
14f9c5c9 2014
d2e4a39e 2015 if (elt_type == NULL || arity == 0)
df407dfe 2016 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2017
2018 descriptor = desc_bounds (arr);
d2e4a39e 2019 if (value_as_long (descriptor) == 0)
4c4b4cd2 2020 return NULL;
d2e4a39e 2021 while (arity > 0)
4c4b4cd2 2022 {
e9bb382b
UW
2023 struct type *range_type = alloc_type_copy (value_type (arr));
2024 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2025 struct value *low = desc_one_bound (descriptor, arity, 0);
2026 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2027
5b4ee69b 2028 arity -= 1;
0c9c3474
SA
2029 create_static_range_type (range_type, value_type (low),
2030 longest_to_int (value_as_long (low)),
2031 longest_to_int (value_as_long (high)));
4c4b4cd2 2032 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2033
2034 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2035 {
2036 /* We need to store the element packed bitsize, as well as
2037 recompute the array size, because it was previously
2038 computed based on the unpacked element size. */
2039 LONGEST lo = value_as_long (low);
2040 LONGEST hi = value_as_long (high);
2041
2042 TYPE_FIELD_BITSIZE (elt_type, 0) =
2043 decode_packed_array_bitsize (value_type (arr));
2044 /* If the array has no element, then the size is already
2045 zero, and does not need to be recomputed. */
2046 if (lo < hi)
2047 {
2048 int array_bitsize =
2049 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2050
2051 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2052 }
2053 }
4c4b4cd2 2054 }
14f9c5c9
AS
2055
2056 return lookup_pointer_type (elt_type);
2057 }
2058}
2059
2060/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2061 Otherwise, returns either a standard GDB array with bounds set
2062 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2063 GDB array. Returns NULL if ARR is a null fat pointer. */
2064
d2e4a39e
AS
2065struct value *
2066ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2067{
df407dfe 2068 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2069 {
d2e4a39e 2070 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2071
14f9c5c9 2072 if (arrType == NULL)
4c4b4cd2 2073 return NULL;
14f9c5c9
AS
2074 return value_cast (arrType, value_copy (desc_data (arr)));
2075 }
ad82864c
JB
2076 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2077 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2078 else
2079 return arr;
2080}
2081
2082/* If ARR does not represent an array, returns ARR unchanged.
2083 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2084 be ARR itself if it already is in the proper form). */
2085
720d1a40 2086struct value *
d2e4a39e 2087ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2088{
df407dfe 2089 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2090 {
d2e4a39e 2091 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2092
14f9c5c9 2093 if (arrVal == NULL)
323e0a4a 2094 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2095 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2096 return value_ind (arrVal);
2097 }
ad82864c
JB
2098 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2099 return decode_constrained_packed_array (arr);
d2e4a39e 2100 else
14f9c5c9
AS
2101 return arr;
2102}
2103
2104/* If TYPE represents a GNAT array type, return it translated to an
2105 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2106 packing). For other types, is the identity. */
2107
d2e4a39e
AS
2108struct type *
2109ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2110{
ad82864c
JB
2111 if (ada_is_constrained_packed_array_type (type))
2112 return decode_constrained_packed_array_type (type);
17280b9f
UW
2113
2114 if (ada_is_array_descriptor_type (type))
556bdfd4 2115 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2116
2117 return type;
14f9c5c9
AS
2118}
2119
4c4b4cd2
PH
2120/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2121
ad82864c
JB
2122static int
2123ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2124{
2125 if (type == NULL)
2126 return 0;
4c4b4cd2 2127 type = desc_base_type (type);
61ee279c 2128 type = ada_check_typedef (type);
d2e4a39e 2129 return
14f9c5c9
AS
2130 ada_type_name (type) != NULL
2131 && strstr (ada_type_name (type), "___XP") != NULL;
2132}
2133
ad82864c
JB
2134/* Non-zero iff TYPE represents a standard GNAT constrained
2135 packed-array type. */
2136
2137int
2138ada_is_constrained_packed_array_type (struct type *type)
2139{
2140 return ada_is_packed_array_type (type)
2141 && !ada_is_array_descriptor_type (type);
2142}
2143
2144/* Non-zero iff TYPE represents an array descriptor for a
2145 unconstrained packed-array type. */
2146
2147static int
2148ada_is_unconstrained_packed_array_type (struct type *type)
2149{
2150 return ada_is_packed_array_type (type)
2151 && ada_is_array_descriptor_type (type);
2152}
2153
2154/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2155 return the size of its elements in bits. */
2156
2157static long
2158decode_packed_array_bitsize (struct type *type)
2159{
0d5cff50
DE
2160 const char *raw_name;
2161 const char *tail;
ad82864c
JB
2162 long bits;
2163
720d1a40
JB
2164 /* Access to arrays implemented as fat pointers are encoded as a typedef
2165 of the fat pointer type. We need the name of the fat pointer type
2166 to do the decoding, so strip the typedef layer. */
2167 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2168 type = ada_typedef_target_type (type);
2169
2170 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2171 if (!raw_name)
2172 raw_name = ada_type_name (desc_base_type (type));
2173
2174 if (!raw_name)
2175 return 0;
2176
2177 tail = strstr (raw_name, "___XP");
720d1a40 2178 gdb_assert (tail != NULL);
ad82864c
JB
2179
2180 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2181 {
2182 lim_warning
2183 (_("could not understand bit size information on packed array"));
2184 return 0;
2185 }
2186
2187 return bits;
2188}
2189
14f9c5c9
AS
2190/* Given that TYPE is a standard GDB array type with all bounds filled
2191 in, and that the element size of its ultimate scalar constituents
2192 (that is, either its elements, or, if it is an array of arrays, its
2193 elements' elements, etc.) is *ELT_BITS, return an identical type,
2194 but with the bit sizes of its elements (and those of any
2195 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2196 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2197 in bits.
2198
2199 Note that, for arrays whose index type has an XA encoding where
2200 a bound references a record discriminant, getting that discriminant,
2201 and therefore the actual value of that bound, is not possible
2202 because none of the given parameters gives us access to the record.
2203 This function assumes that it is OK in the context where it is being
2204 used to return an array whose bounds are still dynamic and where
2205 the length is arbitrary. */
4c4b4cd2 2206
d2e4a39e 2207static struct type *
ad82864c 2208constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2209{
d2e4a39e
AS
2210 struct type *new_elt_type;
2211 struct type *new_type;
99b1c762
JB
2212 struct type *index_type_desc;
2213 struct type *index_type;
14f9c5c9
AS
2214 LONGEST low_bound, high_bound;
2215
61ee279c 2216 type = ada_check_typedef (type);
14f9c5c9
AS
2217 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2218 return type;
2219
99b1c762
JB
2220 index_type_desc = ada_find_parallel_type (type, "___XA");
2221 if (index_type_desc)
2222 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2223 NULL);
2224 else
2225 index_type = TYPE_INDEX_TYPE (type);
2226
e9bb382b 2227 new_type = alloc_type_copy (type);
ad82864c
JB
2228 new_elt_type =
2229 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2230 elt_bits);
99b1c762 2231 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2232 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2233 TYPE_NAME (new_type) = ada_type_name (type);
2234
4a46959e
JB
2235 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2236 && is_dynamic_type (check_typedef (index_type)))
2237 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2238 low_bound = high_bound = 0;
2239 if (high_bound < low_bound)
2240 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2241 else
14f9c5c9
AS
2242 {
2243 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2244 TYPE_LENGTH (new_type) =
4c4b4cd2 2245 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2246 }
2247
876cecd0 2248 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2249 return new_type;
2250}
2251
ad82864c
JB
2252/* The array type encoded by TYPE, where
2253 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2254
d2e4a39e 2255static struct type *
ad82864c 2256decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2257{
0d5cff50 2258 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2259 char *name;
0d5cff50 2260 const char *tail;
d2e4a39e 2261 struct type *shadow_type;
14f9c5c9 2262 long bits;
14f9c5c9 2263
727e3d2e
JB
2264 if (!raw_name)
2265 raw_name = ada_type_name (desc_base_type (type));
2266
2267 if (!raw_name)
2268 return NULL;
2269
2270 name = (char *) alloca (strlen (raw_name) + 1);
2271 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2272 type = desc_base_type (type);
2273
14f9c5c9
AS
2274 memcpy (name, raw_name, tail - raw_name);
2275 name[tail - raw_name] = '\000';
2276
b4ba55a1
JB
2277 shadow_type = ada_find_parallel_type_with_name (type, name);
2278
2279 if (shadow_type == NULL)
14f9c5c9 2280 {
323e0a4a 2281 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2282 return NULL;
2283 }
f168693b 2284 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2285
2286 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2287 {
0963b4bd
MS
2288 lim_warning (_("could not understand bounds "
2289 "information on packed array"));
14f9c5c9
AS
2290 return NULL;
2291 }
d2e4a39e 2292
ad82864c
JB
2293 bits = decode_packed_array_bitsize (type);
2294 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2295}
2296
ad82864c
JB
2297/* Given that ARR is a struct value *indicating a GNAT constrained packed
2298 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2299 standard GDB array type except that the BITSIZEs of the array
2300 target types are set to the number of bits in each element, and the
4c4b4cd2 2301 type length is set appropriately. */
14f9c5c9 2302
d2e4a39e 2303static struct value *
ad82864c 2304decode_constrained_packed_array (struct value *arr)
14f9c5c9 2305{
4c4b4cd2 2306 struct type *type;
14f9c5c9 2307
11aa919a
PMR
2308 /* If our value is a pointer, then dereference it. Likewise if
2309 the value is a reference. Make sure that this operation does not
2310 cause the target type to be fixed, as this would indirectly cause
2311 this array to be decoded. The rest of the routine assumes that
2312 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2313 and "value_ind" routines to perform the dereferencing, as opposed
2314 to using "ada_coerce_ref" or "ada_value_ind". */
2315 arr = coerce_ref (arr);
828292f2 2316 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2317 arr = value_ind (arr);
4c4b4cd2 2318
ad82864c 2319 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2320 if (type == NULL)
2321 {
323e0a4a 2322 error (_("can't unpack array"));
14f9c5c9
AS
2323 return NULL;
2324 }
61ee279c 2325
50810684 2326 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2327 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2328 {
2329 /* This is a (right-justified) modular type representing a packed
2330 array with no wrapper. In order to interpret the value through
2331 the (left-justified) packed array type we just built, we must
2332 first left-justify it. */
2333 int bit_size, bit_pos;
2334 ULONGEST mod;
2335
df407dfe 2336 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2337 bit_size = 0;
2338 while (mod > 0)
2339 {
2340 bit_size += 1;
2341 mod >>= 1;
2342 }
df407dfe 2343 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2344 arr = ada_value_primitive_packed_val (arr, NULL,
2345 bit_pos / HOST_CHAR_BIT,
2346 bit_pos % HOST_CHAR_BIT,
2347 bit_size,
2348 type);
2349 }
2350
4c4b4cd2 2351 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2352}
2353
2354
2355/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2356 given in IND. ARR must be a simple array. */
14f9c5c9 2357
d2e4a39e
AS
2358static struct value *
2359value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2360{
2361 int i;
2362 int bits, elt_off, bit_off;
2363 long elt_total_bit_offset;
d2e4a39e
AS
2364 struct type *elt_type;
2365 struct value *v;
14f9c5c9
AS
2366
2367 bits = 0;
2368 elt_total_bit_offset = 0;
df407dfe 2369 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2370 for (i = 0; i < arity; i += 1)
14f9c5c9 2371 {
d2e4a39e 2372 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2373 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2374 error
0963b4bd
MS
2375 (_("attempt to do packed indexing of "
2376 "something other than a packed array"));
14f9c5c9 2377 else
4c4b4cd2
PH
2378 {
2379 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2380 LONGEST lowerbound, upperbound;
2381 LONGEST idx;
2382
2383 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2384 {
323e0a4a 2385 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2386 lowerbound = upperbound = 0;
2387 }
2388
3cb382c9 2389 idx = pos_atr (ind[i]);
4c4b4cd2 2390 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2391 lim_warning (_("packed array index %ld out of bounds"),
2392 (long) idx);
4c4b4cd2
PH
2393 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2394 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2395 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2396 }
14f9c5c9
AS
2397 }
2398 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2399 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2400
2401 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2402 bits, elt_type);
14f9c5c9
AS
2403 return v;
2404}
2405
4c4b4cd2 2406/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2407
2408static int
d2e4a39e 2409has_negatives (struct type *type)
14f9c5c9 2410{
d2e4a39e
AS
2411 switch (TYPE_CODE (type))
2412 {
2413 default:
2414 return 0;
2415 case TYPE_CODE_INT:
2416 return !TYPE_UNSIGNED (type);
2417 case TYPE_CODE_RANGE:
2418 return TYPE_LOW_BOUND (type) < 0;
2419 }
14f9c5c9 2420}
d2e4a39e 2421
f93fca70 2422/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2423 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2424 the unpacked buffer.
14f9c5c9 2425
5b639dea
JB
2426 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2427 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2428
f93fca70
JB
2429 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2430 zero otherwise.
14f9c5c9 2431
f93fca70 2432 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2433
f93fca70
JB
2434 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2435
2436static void
2437ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2438 gdb_byte *unpacked, int unpacked_len,
2439 int is_big_endian, int is_signed_type,
2440 int is_scalar)
2441{
a1c95e6b
JB
2442 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2443 int src_idx; /* Index into the source area */
2444 int src_bytes_left; /* Number of source bytes left to process. */
2445 int srcBitsLeft; /* Number of source bits left to move */
2446 int unusedLS; /* Number of bits in next significant
2447 byte of source that are unused */
2448
a1c95e6b
JB
2449 int unpacked_idx; /* Index into the unpacked buffer */
2450 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2451
4c4b4cd2 2452 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2453 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2454 unsigned char sign;
a1c95e6b 2455
4c4b4cd2
PH
2456 /* Transmit bytes from least to most significant; delta is the direction
2457 the indices move. */
f93fca70 2458 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2459
5b639dea
JB
2460 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2461 bits from SRC. .*/
2462 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2463 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2464 bit_size, unpacked_len);
2465
14f9c5c9 2466 srcBitsLeft = bit_size;
086ca51f 2467 src_bytes_left = src_len;
f93fca70 2468 unpacked_bytes_left = unpacked_len;
14f9c5c9 2469 sign = 0;
f93fca70
JB
2470
2471 if (is_big_endian)
14f9c5c9 2472 {
086ca51f 2473 src_idx = src_len - 1;
f93fca70
JB
2474 if (is_signed_type
2475 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2476 sign = ~0;
d2e4a39e
AS
2477
2478 unusedLS =
4c4b4cd2
PH
2479 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2480 % HOST_CHAR_BIT;
14f9c5c9 2481
f93fca70
JB
2482 if (is_scalar)
2483 {
2484 accumSize = 0;
2485 unpacked_idx = unpacked_len - 1;
2486 }
2487 else
2488 {
4c4b4cd2
PH
2489 /* Non-scalar values must be aligned at a byte boundary... */
2490 accumSize =
2491 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2492 /* ... And are placed at the beginning (most-significant) bytes
2493 of the target. */
086ca51f
JB
2494 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2495 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2496 }
14f9c5c9 2497 }
d2e4a39e 2498 else
14f9c5c9
AS
2499 {
2500 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2501
086ca51f 2502 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2503 unusedLS = bit_offset;
2504 accumSize = 0;
2505
f93fca70 2506 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2507 sign = ~0;
14f9c5c9 2508 }
d2e4a39e 2509
14f9c5c9 2510 accum = 0;
086ca51f 2511 while (src_bytes_left > 0)
14f9c5c9
AS
2512 {
2513 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2514 part of the value. */
d2e4a39e 2515 unsigned int unusedMSMask =
4c4b4cd2
PH
2516 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2517 1;
2518 /* Sign-extend bits for this byte. */
14f9c5c9 2519 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2520
d2e4a39e 2521 accum |=
086ca51f 2522 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2523 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2524 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2525 {
db297a65 2526 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2527 accumSize -= HOST_CHAR_BIT;
2528 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2529 unpacked_bytes_left -= 1;
2530 unpacked_idx += delta;
4c4b4cd2 2531 }
14f9c5c9
AS
2532 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2533 unusedLS = 0;
086ca51f
JB
2534 src_bytes_left -= 1;
2535 src_idx += delta;
14f9c5c9 2536 }
086ca51f 2537 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2538 {
2539 accum |= sign << accumSize;
db297a65 2540 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2541 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2542 if (accumSize < 0)
2543 accumSize = 0;
14f9c5c9 2544 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2545 unpacked_bytes_left -= 1;
2546 unpacked_idx += delta;
14f9c5c9 2547 }
f93fca70
JB
2548}
2549
2550/* Create a new value of type TYPE from the contents of OBJ starting
2551 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2552 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2553 assigning through the result will set the field fetched from.
2554 VALADDR is ignored unless OBJ is NULL, in which case,
2555 VALADDR+OFFSET must address the start of storage containing the
2556 packed value. The value returned in this case is never an lval.
2557 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2558
2559struct value *
2560ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2561 long offset, int bit_offset, int bit_size,
2562 struct type *type)
2563{
2564 struct value *v;
bfb1c796 2565 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2566 gdb_byte *unpacked;
220475ed 2567 const int is_scalar = is_scalar_type (type);
d0a9e810 2568 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2569 gdb::byte_vector staging;
f93fca70
JB
2570
2571 type = ada_check_typedef (type);
2572
d0a9e810 2573 if (obj == NULL)
bfb1c796 2574 src = valaddr + offset;
d0a9e810 2575 else
bfb1c796 2576 src = value_contents (obj) + offset;
d0a9e810
JB
2577
2578 if (is_dynamic_type (type))
2579 {
2580 /* The length of TYPE might by dynamic, so we need to resolve
2581 TYPE in order to know its actual size, which we then use
2582 to create the contents buffer of the value we return.
2583 The difficulty is that the data containing our object is
2584 packed, and therefore maybe not at a byte boundary. So, what
2585 we do, is unpack the data into a byte-aligned buffer, and then
2586 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2587 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2588 staging.resize (staging_len);
d0a9e810
JB
2589
2590 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2591 staging.data (), staging.size (),
d0a9e810
JB
2592 is_big_endian, has_negatives (type),
2593 is_scalar);
d5722aa2 2594 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2595 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2596 {
2597 /* This happens when the length of the object is dynamic,
2598 and is actually smaller than the space reserved for it.
2599 For instance, in an array of variant records, the bit_size
2600 we're given is the array stride, which is constant and
2601 normally equal to the maximum size of its element.
2602 But, in reality, each element only actually spans a portion
2603 of that stride. */
2604 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2605 }
d0a9e810
JB
2606 }
2607
f93fca70
JB
2608 if (obj == NULL)
2609 {
2610 v = allocate_value (type);
bfb1c796 2611 src = valaddr + offset;
f93fca70
JB
2612 }
2613 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2614 {
0cafa88c 2615 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2616 gdb_byte *buf;
0cafa88c 2617
f93fca70 2618 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2619 buf = (gdb_byte *) alloca (src_len);
2620 read_memory (value_address (v), buf, src_len);
2621 src = buf;
f93fca70
JB
2622 }
2623 else
2624 {
2625 v = allocate_value (type);
bfb1c796 2626 src = value_contents (obj) + offset;
f93fca70
JB
2627 }
2628
2629 if (obj != NULL)
2630 {
2631 long new_offset = offset;
2632
2633 set_value_component_location (v, obj);
2634 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2635 set_value_bitsize (v, bit_size);
2636 if (value_bitpos (v) >= HOST_CHAR_BIT)
2637 {
2638 ++new_offset;
2639 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2640 }
2641 set_value_offset (v, new_offset);
2642
2643 /* Also set the parent value. This is needed when trying to
2644 assign a new value (in inferior memory). */
2645 set_value_parent (v, obj);
2646 }
2647 else
2648 set_value_bitsize (v, bit_size);
bfb1c796 2649 unpacked = value_contents_writeable (v);
f93fca70
JB
2650
2651 if (bit_size == 0)
2652 {
2653 memset (unpacked, 0, TYPE_LENGTH (type));
2654 return v;
2655 }
2656
d5722aa2 2657 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2658 {
d0a9e810
JB
2659 /* Small short-cut: If we've unpacked the data into a buffer
2660 of the same size as TYPE's length, then we can reuse that,
2661 instead of doing the unpacking again. */
d5722aa2 2662 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2663 }
d0a9e810
JB
2664 else
2665 ada_unpack_from_contents (src, bit_offset, bit_size,
2666 unpacked, TYPE_LENGTH (type),
2667 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2668
14f9c5c9
AS
2669 return v;
2670}
d2e4a39e 2671
14f9c5c9
AS
2672/* Store the contents of FROMVAL into the location of TOVAL.
2673 Return a new value with the location of TOVAL and contents of
2674 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2675 floating-point or non-scalar types. */
14f9c5c9 2676
d2e4a39e
AS
2677static struct value *
2678ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2679{
df407dfe
AC
2680 struct type *type = value_type (toval);
2681 int bits = value_bitsize (toval);
14f9c5c9 2682
52ce6436
PH
2683 toval = ada_coerce_ref (toval);
2684 fromval = ada_coerce_ref (fromval);
2685
2686 if (ada_is_direct_array_type (value_type (toval)))
2687 toval = ada_coerce_to_simple_array (toval);
2688 if (ada_is_direct_array_type (value_type (fromval)))
2689 fromval = ada_coerce_to_simple_array (fromval);
2690
88e3b34b 2691 if (!deprecated_value_modifiable (toval))
323e0a4a 2692 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2693
d2e4a39e 2694 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2695 && bits > 0
d2e4a39e 2696 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2697 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2698 {
df407dfe
AC
2699 int len = (value_bitpos (toval)
2700 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2701 int from_size;
224c3ddb 2702 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2703 struct value *val;
42ae5230 2704 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2705
2706 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2707 fromval = value_cast (type, fromval);
14f9c5c9 2708
52ce6436 2709 read_memory (to_addr, buffer, len);
aced2898
PH
2710 from_size = value_bitsize (fromval);
2711 if (from_size == 0)
2712 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4
TT
2713
2714 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2715 ULONGEST from_offset = 0;
2716 if (is_big_endian && is_scalar_type (value_type (fromval)))
2717 from_offset = from_size - bits;
2718 copy_bitwise (buffer, value_bitpos (toval),
2719 value_contents (fromval), from_offset,
2720 bits, is_big_endian);
972daa01 2721 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2722
14f9c5c9 2723 val = value_copy (toval);
0fd88904 2724 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2725 TYPE_LENGTH (type));
04624583 2726 deprecated_set_value_type (val, type);
d2e4a39e 2727
14f9c5c9
AS
2728 return val;
2729 }
2730
2731 return value_assign (toval, fromval);
2732}
2733
2734
7c512744
JB
2735/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2736 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2737 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2738 COMPONENT, and not the inferior's memory. The current contents
2739 of COMPONENT are ignored.
2740
2741 Although not part of the initial design, this function also works
2742 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2743 had a null address, and COMPONENT had an address which is equal to
2744 its offset inside CONTAINER. */
2745
52ce6436
PH
2746static void
2747value_assign_to_component (struct value *container, struct value *component,
2748 struct value *val)
2749{
2750 LONGEST offset_in_container =
42ae5230 2751 (LONGEST) (value_address (component) - value_address (container));
7c512744 2752 int bit_offset_in_container =
52ce6436
PH
2753 value_bitpos (component) - value_bitpos (container);
2754 int bits;
7c512744 2755
52ce6436
PH
2756 val = value_cast (value_type (component), val);
2757
2758 if (value_bitsize (component) == 0)
2759 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2760 else
2761 bits = value_bitsize (component);
2762
50810684 2763 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2764 {
2765 int src_offset;
2766
2767 if (is_scalar_type (check_typedef (value_type (component))))
2768 src_offset
2769 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2770 else
2771 src_offset = 0;
a99bc3d2
JB
2772 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2773 value_bitpos (container) + bit_offset_in_container,
2774 value_contents (val), src_offset, bits, 1);
2a62dfa9 2775 }
52ce6436 2776 else
a99bc3d2
JB
2777 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2778 value_bitpos (container) + bit_offset_in_container,
2779 value_contents (val), 0, bits, 0);
7c512744
JB
2780}
2781
736ade86
XR
2782/* Determine if TYPE is an access to an unconstrained array. */
2783
d91e9ea8 2784bool
736ade86
XR
2785ada_is_access_to_unconstrained_array (struct type *type)
2786{
2787 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2788 && is_thick_pntr (ada_typedef_target_type (type)));
2789}
2790
4c4b4cd2
PH
2791/* The value of the element of array ARR at the ARITY indices given in IND.
2792 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2793 thereto. */
2794
d2e4a39e
AS
2795struct value *
2796ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2797{
2798 int k;
d2e4a39e
AS
2799 struct value *elt;
2800 struct type *elt_type;
14f9c5c9
AS
2801
2802 elt = ada_coerce_to_simple_array (arr);
2803
df407dfe 2804 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2805 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2806 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2807 return value_subscript_packed (elt, arity, ind);
2808
2809 for (k = 0; k < arity; k += 1)
2810 {
b9c50e9a
XR
2811 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2812
14f9c5c9 2813 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2814 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2815
2497b498 2816 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2817
2818 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2819 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2820 {
2821 /* The element is a typedef to an unconstrained array,
2822 except that the value_subscript call stripped the
2823 typedef layer. The typedef layer is GNAT's way to
2824 specify that the element is, at the source level, an
2825 access to the unconstrained array, rather than the
2826 unconstrained array. So, we need to restore that
2827 typedef layer, which we can do by forcing the element's
2828 type back to its original type. Otherwise, the returned
2829 value is going to be printed as the array, rather
2830 than as an access. Another symptom of the same issue
2831 would be that an expression trying to dereference the
2832 element would also be improperly rejected. */
2833 deprecated_set_value_type (elt, saved_elt_type);
2834 }
2835
2836 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2837 }
b9c50e9a 2838
14f9c5c9
AS
2839 return elt;
2840}
2841
deede10c
JB
2842/* Assuming ARR is a pointer to a GDB array, the value of the element
2843 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2844 Does not read the entire array into memory.
2845
2846 Note: Unlike what one would expect, this function is used instead of
2847 ada_value_subscript for basically all non-packed array types. The reason
2848 for this is that a side effect of doing our own pointer arithmetics instead
2849 of relying on value_subscript is that there is no implicit typedef peeling.
2850 This is important for arrays of array accesses, where it allows us to
2851 preserve the fact that the array's element is an array access, where the
2852 access part os encoded in a typedef layer. */
14f9c5c9 2853
2c0b251b 2854static struct value *
deede10c 2855ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2856{
2857 int k;
919e6dbe 2858 struct value *array_ind = ada_value_ind (arr);
deede10c 2859 struct type *type
919e6dbe
PMR
2860 = check_typedef (value_enclosing_type (array_ind));
2861
2862 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2863 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2864 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2865
2866 for (k = 0; k < arity; k += 1)
2867 {
2868 LONGEST lwb, upb;
aa715135 2869 struct value *lwb_value;
14f9c5c9
AS
2870
2871 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2872 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2873 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2874 value_copy (arr));
14f9c5c9 2875 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2876 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2877 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2878 type = TYPE_TARGET_TYPE (type);
2879 }
2880
2881 return value_ind (arr);
2882}
2883
0b5d8877 2884/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2885 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2886 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2887 this array is LOW, as per Ada rules. */
0b5d8877 2888static struct value *
f5938064
JG
2889ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2890 int low, int high)
0b5d8877 2891{
b0dd7688 2892 struct type *type0 = ada_check_typedef (type);
aa715135 2893 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2894 struct type *index_type
aa715135 2895 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2896 struct type *slice_type = create_array_type_with_stride
2897 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2898 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2899 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2900 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2901 LONGEST base_low_pos, low_pos;
2902 CORE_ADDR base;
2903
2904 if (!discrete_position (base_index_type, low, &low_pos)
2905 || !discrete_position (base_index_type, base_low, &base_low_pos))
2906 {
2907 warning (_("unable to get positions in slice, use bounds instead"));
2908 low_pos = low;
2909 base_low_pos = base_low;
2910 }
5b4ee69b 2911
aa715135
JG
2912 base = value_as_address (array_ptr)
2913 + ((low_pos - base_low_pos)
2914 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2915 return value_at_lazy (slice_type, base);
0b5d8877
PH
2916}
2917
2918
2919static struct value *
2920ada_value_slice (struct value *array, int low, int high)
2921{
b0dd7688 2922 struct type *type = ada_check_typedef (value_type (array));
aa715135 2923 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2924 struct type *index_type
2925 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2926 struct type *slice_type = create_array_type_with_stride
2927 (NULL, TYPE_TARGET_TYPE (type), index_type,
2928 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2929 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2930 LONGEST low_pos, high_pos;
5b4ee69b 2931
aa715135
JG
2932 if (!discrete_position (base_index_type, low, &low_pos)
2933 || !discrete_position (base_index_type, high, &high_pos))
2934 {
2935 warning (_("unable to get positions in slice, use bounds instead"));
2936 low_pos = low;
2937 high_pos = high;
2938 }
2939
2940 return value_cast (slice_type,
2941 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2942}
2943
14f9c5c9
AS
2944/* If type is a record type in the form of a standard GNAT array
2945 descriptor, returns the number of dimensions for type. If arr is a
2946 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2947 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2948
2949int
d2e4a39e 2950ada_array_arity (struct type *type)
14f9c5c9
AS
2951{
2952 int arity;
2953
2954 if (type == NULL)
2955 return 0;
2956
2957 type = desc_base_type (type);
2958
2959 arity = 0;
d2e4a39e 2960 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2961 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2962 else
2963 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2964 {
4c4b4cd2 2965 arity += 1;
61ee279c 2966 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2967 }
d2e4a39e 2968
14f9c5c9
AS
2969 return arity;
2970}
2971
2972/* If TYPE is a record type in the form of a standard GNAT array
2973 descriptor or a simple array type, returns the element type for
2974 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2975 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2976
d2e4a39e
AS
2977struct type *
2978ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2979{
2980 type = desc_base_type (type);
2981
d2e4a39e 2982 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2983 {
2984 int k;
d2e4a39e 2985 struct type *p_array_type;
14f9c5c9 2986
556bdfd4 2987 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2988
2989 k = ada_array_arity (type);
2990 if (k == 0)
4c4b4cd2 2991 return NULL;
d2e4a39e 2992
4c4b4cd2 2993 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2994 if (nindices >= 0 && k > nindices)
4c4b4cd2 2995 k = nindices;
d2e4a39e 2996 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2997 {
61ee279c 2998 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2999 k -= 1;
3000 }
14f9c5c9
AS
3001 return p_array_type;
3002 }
3003 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3004 {
3005 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3006 {
3007 type = TYPE_TARGET_TYPE (type);
3008 nindices -= 1;
3009 }
14f9c5c9
AS
3010 return type;
3011 }
3012
3013 return NULL;
3014}
3015
4c4b4cd2 3016/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3017 Does not examine memory. Throws an error if N is invalid or TYPE
3018 is not an array type. NAME is the name of the Ada attribute being
3019 evaluated ('range, 'first, 'last, or 'length); it is used in building
3020 the error message. */
14f9c5c9 3021
1eea4ebd
UW
3022static struct type *
3023ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3024{
4c4b4cd2
PH
3025 struct type *result_type;
3026
14f9c5c9
AS
3027 type = desc_base_type (type);
3028
1eea4ebd
UW
3029 if (n < 0 || n > ada_array_arity (type))
3030 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3031
4c4b4cd2 3032 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3033 {
3034 int i;
3035
3036 for (i = 1; i < n; i += 1)
4c4b4cd2 3037 type = TYPE_TARGET_TYPE (type);
262452ec 3038 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3039 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3040 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3041 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3042 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3043 result_type = NULL;
14f9c5c9 3044 }
d2e4a39e 3045 else
1eea4ebd
UW
3046 {
3047 result_type = desc_index_type (desc_bounds_type (type), n);
3048 if (result_type == NULL)
3049 error (_("attempt to take bound of something that is not an array"));
3050 }
3051
3052 return result_type;
14f9c5c9
AS
3053}
3054
3055/* Given that arr is an array type, returns the lower bound of the
3056 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3057 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3058 array-descriptor type. It works for other arrays with bounds supplied
3059 by run-time quantities other than discriminants. */
14f9c5c9 3060
abb68b3e 3061static LONGEST
fb5e3d5c 3062ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3063{
8a48ac95 3064 struct type *type, *index_type_desc, *index_type;
1ce677a4 3065 int i;
262452ec
JK
3066
3067 gdb_assert (which == 0 || which == 1);
14f9c5c9 3068
ad82864c
JB
3069 if (ada_is_constrained_packed_array_type (arr_type))
3070 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3071
4c4b4cd2 3072 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3073 return (LONGEST) - which;
14f9c5c9
AS
3074
3075 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3076 type = TYPE_TARGET_TYPE (arr_type);
3077 else
3078 type = arr_type;
3079
bafffb51
JB
3080 if (TYPE_FIXED_INSTANCE (type))
3081 {
3082 /* The array has already been fixed, so we do not need to
3083 check the parallel ___XA type again. That encoding has
3084 already been applied, so ignore it now. */
3085 index_type_desc = NULL;
3086 }
3087 else
3088 {
3089 index_type_desc = ada_find_parallel_type (type, "___XA");
3090 ada_fixup_array_indexes_type (index_type_desc);
3091 }
3092
262452ec 3093 if (index_type_desc != NULL)
28c85d6c
JB
3094 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3095 NULL);
262452ec 3096 else
8a48ac95
JB
3097 {
3098 struct type *elt_type = check_typedef (type);
3099
3100 for (i = 1; i < n; i++)
3101 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3102
3103 index_type = TYPE_INDEX_TYPE (elt_type);
3104 }
262452ec 3105
43bbcdc2
PH
3106 return
3107 (LONGEST) (which == 0
3108 ? ada_discrete_type_low_bound (index_type)
3109 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3110}
3111
3112/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3113 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3114 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3115 supplied by run-time quantities other than discriminants. */
14f9c5c9 3116
1eea4ebd 3117static LONGEST
4dc81987 3118ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3119{
eb479039
JB
3120 struct type *arr_type;
3121
3122 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3123 arr = value_ind (arr);
3124 arr_type = value_enclosing_type (arr);
14f9c5c9 3125
ad82864c
JB
3126 if (ada_is_constrained_packed_array_type (arr_type))
3127 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3128 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3129 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3130 else
1eea4ebd 3131 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3132}
3133
3134/* Given that arr is an array value, returns the length of the
3135 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3136 supplied by run-time quantities other than discriminants.
3137 Does not work for arrays indexed by enumeration types with representation
3138 clauses at the moment. */
14f9c5c9 3139
1eea4ebd 3140static LONGEST
d2e4a39e 3141ada_array_length (struct value *arr, int n)
14f9c5c9 3142{
aa715135
JG
3143 struct type *arr_type, *index_type;
3144 int low, high;
eb479039
JB
3145
3146 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3147 arr = value_ind (arr);
3148 arr_type = value_enclosing_type (arr);
14f9c5c9 3149
ad82864c
JB
3150 if (ada_is_constrained_packed_array_type (arr_type))
3151 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3152
4c4b4cd2 3153 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3154 {
3155 low = ada_array_bound_from_type (arr_type, n, 0);
3156 high = ada_array_bound_from_type (arr_type, n, 1);
3157 }
14f9c5c9 3158 else
aa715135
JG
3159 {
3160 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3161 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3162 }
3163
f168693b 3164 arr_type = check_typedef (arr_type);
7150d33c 3165 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3166 if (index_type != NULL)
3167 {
3168 struct type *base_type;
3169 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3170 base_type = TYPE_TARGET_TYPE (index_type);
3171 else
3172 base_type = index_type;
3173
3174 low = pos_atr (value_from_longest (base_type, low));
3175 high = pos_atr (value_from_longest (base_type, high));
3176 }
3177 return high - low + 1;
4c4b4cd2
PH
3178}
3179
bff8c71f
TT
3180/* An array whose type is that of ARR_TYPE (an array type), with
3181 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3182 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3183
3184static struct value *
bff8c71f 3185empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3186{
b0dd7688 3187 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3188 struct type *index_type
3189 = create_static_range_type
bff8c71f
TT
3190 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3191 high < low ? low - 1 : high);
b0dd7688 3192 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3193
0b5d8877 3194 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3195}
14f9c5c9 3196\f
d2e4a39e 3197
4c4b4cd2 3198 /* Name resolution */
14f9c5c9 3199
4c4b4cd2
PH
3200/* The "decoded" name for the user-definable Ada operator corresponding
3201 to OP. */
14f9c5c9 3202
d2e4a39e 3203static const char *
4c4b4cd2 3204ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3205{
3206 int i;
3207
4c4b4cd2 3208 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3209 {
3210 if (ada_opname_table[i].op == op)
4c4b4cd2 3211 return ada_opname_table[i].decoded;
14f9c5c9 3212 }
323e0a4a 3213 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3214}
3215
3216
4c4b4cd2
PH
3217/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3218 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3219 undefined namespace) and converts operators that are
3220 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3221 non-null, it provides a preferred result type [at the moment, only
3222 type void has any effect---causing procedures to be preferred over
3223 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3224 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3225
4c4b4cd2 3226static void
699bd4cf
TT
3227resolve (expression_up *expp, int void_context_p, int parse_completion,
3228 innermost_block_tracker *tracker)
14f9c5c9 3229{
30b15541
UW
3230 struct type *context_type = NULL;
3231 int pc = 0;
3232
3233 if (void_context_p)
3234 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3235
699bd4cf 3236 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
14f9c5c9
AS
3237}
3238
4c4b4cd2
PH
3239/* Resolve the operator of the subexpression beginning at
3240 position *POS of *EXPP. "Resolving" consists of replacing
3241 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3242 with their resolutions, replacing built-in operators with
3243 function calls to user-defined operators, where appropriate, and,
3244 when DEPROCEDURE_P is non-zero, converting function-valued variables
3245 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3246 are as in ada_resolve, above. */
14f9c5c9 3247
d2e4a39e 3248static struct value *
e9d9f57e 3249resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
699bd4cf
TT
3250 struct type *context_type, int parse_completion,
3251 innermost_block_tracker *tracker)
14f9c5c9
AS
3252{
3253 int pc = *pos;
3254 int i;
4c4b4cd2 3255 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3256 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3257 struct value **argvec; /* Vector of operand types (alloca'ed). */
3258 int nargs; /* Number of operands. */
52ce6436 3259 int oplen;
14f9c5c9
AS
3260
3261 argvec = NULL;
3262 nargs = 0;
e9d9f57e 3263 exp = expp->get ();
14f9c5c9 3264
52ce6436
PH
3265 /* Pass one: resolve operands, saving their types and updating *pos,
3266 if needed. */
14f9c5c9
AS
3267 switch (op)
3268 {
4c4b4cd2
PH
3269 case OP_FUNCALL:
3270 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3271 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3272 *pos += 7;
4c4b4cd2
PH
3273 else
3274 {
3275 *pos += 3;
699bd4cf 3276 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3277 }
3278 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3279 break;
3280
14f9c5c9 3281 case UNOP_ADDR:
4c4b4cd2 3282 *pos += 1;
699bd4cf 3283 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3284 break;
3285
52ce6436
PH
3286 case UNOP_QUAL:
3287 *pos += 3;
2a612529 3288 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
699bd4cf 3289 parse_completion, tracker);
4c4b4cd2
PH
3290 break;
3291
52ce6436 3292 case OP_ATR_MODULUS:
4c4b4cd2
PH
3293 case OP_ATR_SIZE:
3294 case OP_ATR_TAG:
4c4b4cd2
PH
3295 case OP_ATR_FIRST:
3296 case OP_ATR_LAST:
3297 case OP_ATR_LENGTH:
3298 case OP_ATR_POS:
3299 case OP_ATR_VAL:
4c4b4cd2
PH
3300 case OP_ATR_MIN:
3301 case OP_ATR_MAX:
52ce6436
PH
3302 case TERNOP_IN_RANGE:
3303 case BINOP_IN_BOUNDS:
3304 case UNOP_IN_RANGE:
3305 case OP_AGGREGATE:
3306 case OP_OTHERS:
3307 case OP_CHOICES:
3308 case OP_POSITIONAL:
3309 case OP_DISCRETE_RANGE:
3310 case OP_NAME:
3311 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3312 *pos += oplen;
14f9c5c9
AS
3313 break;
3314
3315 case BINOP_ASSIGN:
3316 {
4c4b4cd2
PH
3317 struct value *arg1;
3318
3319 *pos += 1;
699bd4cf 3320 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3321 if (arg1 == NULL)
699bd4cf 3322 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
4c4b4cd2 3323 else
699bd4cf
TT
3324 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3325 tracker);
4c4b4cd2 3326 break;
14f9c5c9
AS
3327 }
3328
4c4b4cd2 3329 case UNOP_CAST:
4c4b4cd2
PH
3330 *pos += 3;
3331 nargs = 1;
3332 break;
14f9c5c9 3333
4c4b4cd2
PH
3334 case BINOP_ADD:
3335 case BINOP_SUB:
3336 case BINOP_MUL:
3337 case BINOP_DIV:
3338 case BINOP_REM:
3339 case BINOP_MOD:
3340 case BINOP_EXP:
3341 case BINOP_CONCAT:
3342 case BINOP_LOGICAL_AND:
3343 case BINOP_LOGICAL_OR:
3344 case BINOP_BITWISE_AND:
3345 case BINOP_BITWISE_IOR:
3346 case BINOP_BITWISE_XOR:
14f9c5c9 3347
4c4b4cd2
PH
3348 case BINOP_EQUAL:
3349 case BINOP_NOTEQUAL:
3350 case BINOP_LESS:
3351 case BINOP_GTR:
3352 case BINOP_LEQ:
3353 case BINOP_GEQ:
14f9c5c9 3354
4c4b4cd2
PH
3355 case BINOP_REPEAT:
3356 case BINOP_SUBSCRIPT:
3357 case BINOP_COMMA:
40c8aaa9
JB
3358 *pos += 1;
3359 nargs = 2;
3360 break;
14f9c5c9 3361
4c4b4cd2
PH
3362 case UNOP_NEG:
3363 case UNOP_PLUS:
3364 case UNOP_LOGICAL_NOT:
3365 case UNOP_ABS:
3366 case UNOP_IND:
3367 *pos += 1;
3368 nargs = 1;
3369 break;
14f9c5c9 3370
4c4b4cd2 3371 case OP_LONG:
edd079d9 3372 case OP_FLOAT:
4c4b4cd2 3373 case OP_VAR_VALUE:
74ea4be4 3374 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3375 *pos += 4;
3376 break;
14f9c5c9 3377
4c4b4cd2
PH
3378 case OP_TYPE:
3379 case OP_BOOL:
3380 case OP_LAST:
4c4b4cd2
PH
3381 case OP_INTERNALVAR:
3382 *pos += 3;
3383 break;
14f9c5c9 3384
4c4b4cd2
PH
3385 case UNOP_MEMVAL:
3386 *pos += 3;
3387 nargs = 1;
3388 break;
3389
67f3407f
DJ
3390 case OP_REGISTER:
3391 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3392 break;
3393
4c4b4cd2
PH
3394 case STRUCTOP_STRUCT:
3395 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3396 nargs = 1;
3397 break;
3398
4c4b4cd2 3399 case TERNOP_SLICE:
4c4b4cd2
PH
3400 *pos += 1;
3401 nargs = 3;
3402 break;
3403
52ce6436 3404 case OP_STRING:
14f9c5c9 3405 break;
4c4b4cd2
PH
3406
3407 default:
323e0a4a 3408 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3409 }
3410
8d749320 3411 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2 3412 for (i = 0; i < nargs; i += 1)
699bd4cf
TT
3413 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3414 tracker);
4c4b4cd2 3415 argvec[i] = NULL;
e9d9f57e 3416 exp = expp->get ();
4c4b4cd2
PH
3417
3418 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3419 switch (op)
3420 {
3421 default:
3422 break;
3423
14f9c5c9 3424 case OP_VAR_VALUE:
4c4b4cd2 3425 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3426 {
54d343a2 3427 std::vector<struct block_symbol> candidates;
76a01679
JB
3428 int n_candidates;
3429
3430 n_candidates =
3431 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3432 (exp->elts[pc + 2].symbol),
3433 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3434 &candidates);
76a01679
JB
3435
3436 if (n_candidates > 1)
3437 {
3438 /* Types tend to get re-introduced locally, so if there
3439 are any local symbols that are not types, first filter
3440 out all types. */
3441 int j;
3442 for (j = 0; j < n_candidates; j += 1)
d12307c1 3443 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3444 {
3445 case LOC_REGISTER:
3446 case LOC_ARG:
3447 case LOC_REF_ARG:
76a01679
JB
3448 case LOC_REGPARM_ADDR:
3449 case LOC_LOCAL:
76a01679 3450 case LOC_COMPUTED:
76a01679
JB
3451 goto FoundNonType;
3452 default:
3453 break;
3454 }
3455 FoundNonType:
3456 if (j < n_candidates)
3457 {
3458 j = 0;
3459 while (j < n_candidates)
3460 {
d12307c1 3461 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3462 {
3463 candidates[j] = candidates[n_candidates - 1];
3464 n_candidates -= 1;
3465 }
3466 else
3467 j += 1;
3468 }
3469 }
3470 }
3471
3472 if (n_candidates == 0)
323e0a4a 3473 error (_("No definition found for %s"),
76a01679
JB
3474 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3475 else if (n_candidates == 1)
3476 i = 0;
3477 else if (deprocedure_p
54d343a2 3478 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3479 {
06d5cf63 3480 i = ada_resolve_function
54d343a2 3481 (candidates.data (), n_candidates, NULL, 0,
06d5cf63 3482 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2a612529 3483 context_type, parse_completion);
76a01679 3484 if (i < 0)
323e0a4a 3485 error (_("Could not find a match for %s"),
76a01679
JB
3486 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3487 }
3488 else
3489 {
323e0a4a 3490 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3491 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3492 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3493 i = 0;
3494 }
3495
3496 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3497 exp->elts[pc + 2].symbol = candidates[i].symbol;
699bd4cf 3498 tracker->update (candidates[i]);
76a01679
JB
3499 }
3500
3501 if (deprocedure_p
3502 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3503 == TYPE_CODE_FUNC))
3504 {
424da6cf 3505 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3506 exp->elts[pc + 2].symbol,
3507 exp->elts[pc + 1].block);
e9d9f57e 3508 exp = expp->get ();
76a01679 3509 }
14f9c5c9
AS
3510 break;
3511
3512 case OP_FUNCALL:
3513 {
4c4b4cd2 3514 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3515 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3516 {
54d343a2 3517 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3518 int n_candidates;
3519
3520 n_candidates =
76a01679
JB
3521 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3522 (exp->elts[pc + 5].symbol),
3523 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3524 &candidates);
ec6a20c2 3525
4c4b4cd2
PH
3526 if (n_candidates == 1)
3527 i = 0;
3528 else
3529 {
06d5cf63 3530 i = ada_resolve_function
54d343a2 3531 (candidates.data (), n_candidates,
06d5cf63
JB
3532 argvec, nargs,
3533 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2a612529 3534 context_type, parse_completion);
4c4b4cd2 3535 if (i < 0)
323e0a4a 3536 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3537 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3538 }
3539
3540 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3541 exp->elts[pc + 5].symbol = candidates[i].symbol;
699bd4cf 3542 tracker->update (candidates[i]);
4c4b4cd2 3543 }
14f9c5c9
AS
3544 }
3545 break;
3546 case BINOP_ADD:
3547 case BINOP_SUB:
3548 case BINOP_MUL:
3549 case BINOP_DIV:
3550 case BINOP_REM:
3551 case BINOP_MOD:
3552 case BINOP_CONCAT:
3553 case BINOP_BITWISE_AND:
3554 case BINOP_BITWISE_IOR:
3555 case BINOP_BITWISE_XOR:
3556 case BINOP_EQUAL:
3557 case BINOP_NOTEQUAL:
3558 case BINOP_LESS:
3559 case BINOP_GTR:
3560 case BINOP_LEQ:
3561 case BINOP_GEQ:
3562 case BINOP_EXP:
3563 case UNOP_NEG:
3564 case UNOP_PLUS:
3565 case UNOP_LOGICAL_NOT:
3566 case UNOP_ABS:
3567 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3568 {
54d343a2 3569 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3570 int n_candidates;
3571
3572 n_candidates =
b5ec771e 3573 ada_lookup_symbol_list (ada_decoded_op_name (op),
582942f4 3574 NULL, VAR_DOMAIN,
4eeaa230 3575 &candidates);
ec6a20c2 3576
54d343a2 3577 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
2a612529
TT
3578 nargs, ada_decoded_op_name (op), NULL,
3579 parse_completion);
4c4b4cd2
PH
3580 if (i < 0)
3581 break;
3582
d12307c1
PMR
3583 replace_operator_with_call (expp, pc, nargs, 1,
3584 candidates[i].symbol,
3585 candidates[i].block);
e9d9f57e 3586 exp = expp->get ();
4c4b4cd2 3587 }
14f9c5c9 3588 break;
4c4b4cd2
PH
3589
3590 case OP_TYPE:
b3dbf008 3591 case OP_REGISTER:
4c4b4cd2 3592 return NULL;
14f9c5c9
AS
3593 }
3594
3595 *pos = pc;
ced9779b
JB
3596 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3597 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3598 exp->elts[pc + 1].objfile,
3599 exp->elts[pc + 2].msymbol);
3600 else
3601 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3602}
3603
3604/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3605 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3606 a non-pointer. */
14f9c5c9 3607/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3608 liberal. */
14f9c5c9
AS
3609
3610static int
4dc81987 3611ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3612{
61ee279c
PH
3613 ftype = ada_check_typedef (ftype);
3614 atype = ada_check_typedef (atype);
14f9c5c9
AS
3615
3616 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3617 ftype = TYPE_TARGET_TYPE (ftype);
3618 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3619 atype = TYPE_TARGET_TYPE (atype);
3620
d2e4a39e 3621 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3622 {
3623 default:
5b3d5b7d 3624 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3625 case TYPE_CODE_PTR:
3626 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3627 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3628 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3629 else
1265e4aa
JB
3630 return (may_deref
3631 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3632 case TYPE_CODE_INT:
3633 case TYPE_CODE_ENUM:
3634 case TYPE_CODE_RANGE:
3635 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3636 {
3637 case TYPE_CODE_INT:
3638 case TYPE_CODE_ENUM:
3639 case TYPE_CODE_RANGE:
3640 return 1;
3641 default:
3642 return 0;
3643 }
14f9c5c9
AS
3644
3645 case TYPE_CODE_ARRAY:
d2e4a39e 3646 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3647 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3648
3649 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3650 if (ada_is_array_descriptor_type (ftype))
3651 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3652 || ada_is_array_descriptor_type (atype));
14f9c5c9 3653 else
4c4b4cd2
PH
3654 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3655 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3656
3657 case TYPE_CODE_UNION:
3658 case TYPE_CODE_FLT:
3659 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3660 }
3661}
3662
3663/* Return non-zero if the formals of FUNC "sufficiently match" the
3664 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3665 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3666 argument function. */
14f9c5c9
AS
3667
3668static int
d2e4a39e 3669ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3670{
3671 int i;
d2e4a39e 3672 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3673
1265e4aa
JB
3674 if (SYMBOL_CLASS (func) == LOC_CONST
3675 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3676 return (n_actuals == 0);
3677 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3678 return 0;
3679
3680 if (TYPE_NFIELDS (func_type) != n_actuals)
3681 return 0;
3682
3683 for (i = 0; i < n_actuals; i += 1)
3684 {
4c4b4cd2 3685 if (actuals[i] == NULL)
76a01679
JB
3686 return 0;
3687 else
3688 {
5b4ee69b
MS
3689 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3690 i));
df407dfe 3691 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3692
76a01679
JB
3693 if (!ada_type_match (ftype, atype, 1))
3694 return 0;
3695 }
14f9c5c9
AS
3696 }
3697 return 1;
3698}
3699
3700/* False iff function type FUNC_TYPE definitely does not produce a value
3701 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3702 FUNC_TYPE is not a valid function type with a non-null return type
3703 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3704
3705static int
d2e4a39e 3706return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3707{
d2e4a39e 3708 struct type *return_type;
14f9c5c9
AS
3709
3710 if (func_type == NULL)
3711 return 1;
3712
4c4b4cd2 3713 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3714 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3715 else
18af8284 3716 return_type = get_base_type (func_type);
14f9c5c9
AS
3717 if (return_type == NULL)
3718 return 1;
3719
18af8284 3720 context_type = get_base_type (context_type);
14f9c5c9
AS
3721
3722 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3723 return context_type == NULL || return_type == context_type;
3724 else if (context_type == NULL)
3725 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3726 else
3727 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3728}
3729
3730
4c4b4cd2 3731/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3732 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3733 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3734 that returns that type, then eliminate matches that don't. If
3735 CONTEXT_TYPE is void and there is at least one match that does not
3736 return void, eliminate all matches that do.
3737
14f9c5c9
AS
3738 Asks the user if there is more than one match remaining. Returns -1
3739 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3740 solely for messages. May re-arrange and modify SYMS in
3741 the process; the index returned is for the modified vector. */
14f9c5c9 3742
4c4b4cd2 3743static int
d12307c1 3744ada_resolve_function (struct block_symbol syms[],
4c4b4cd2 3745 int nsyms, struct value **args, int nargs,
2a612529
TT
3746 const char *name, struct type *context_type,
3747 int parse_completion)
14f9c5c9 3748{
30b15541 3749 int fallback;
14f9c5c9 3750 int k;
4c4b4cd2 3751 int m; /* Number of hits */
14f9c5c9 3752
d2e4a39e 3753 m = 0;
30b15541
UW
3754 /* In the first pass of the loop, we only accept functions matching
3755 context_type. If none are found, we add a second pass of the loop
3756 where every function is accepted. */
3757 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3758 {
3759 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3760 {
d12307c1 3761 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3762
d12307c1 3763 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3764 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3765 {
3766 syms[m] = syms[k];
3767 m += 1;
3768 }
3769 }
14f9c5c9
AS
3770 }
3771
dc5c8746
PMR
3772 /* If we got multiple matches, ask the user which one to use. Don't do this
3773 interactive thing during completion, though, as the purpose of the
3774 completion is providing a list of all possible matches. Prompting the
3775 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3776 if (m == 0)
3777 return -1;
dc5c8746 3778 else if (m > 1 && !parse_completion)
14f9c5c9 3779 {
323e0a4a 3780 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3781 user_select_syms (syms, m, 1);
14f9c5c9
AS
3782 return 0;
3783 }
3784 return 0;
3785}
3786
4c4b4cd2
PH
3787/* Returns true (non-zero) iff decoded name N0 should appear before N1
3788 in a listing of choices during disambiguation (see sort_choices, below).
3789 The idea is that overloadings of a subprogram name from the
3790 same package should sort in their source order. We settle for ordering
3791 such symbols by their trailing number (__N or $N). */
3792
14f9c5c9 3793static int
0d5cff50 3794encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3795{
3796 if (N1 == NULL)
3797 return 0;
3798 else if (N0 == NULL)
3799 return 1;
3800 else
3801 {
3802 int k0, k1;
5b4ee69b 3803
d2e4a39e 3804 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3805 ;
d2e4a39e 3806 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3807 ;
d2e4a39e 3808 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3809 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3810 {
3811 int n0, n1;
5b4ee69b 3812
4c4b4cd2
PH
3813 n0 = k0;
3814 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3815 n0 -= 1;
3816 n1 = k1;
3817 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3818 n1 -= 1;
3819 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3820 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3821 }
14f9c5c9
AS
3822 return (strcmp (N0, N1) < 0);
3823 }
3824}
d2e4a39e 3825
4c4b4cd2
PH
3826/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3827 encoded names. */
3828
d2e4a39e 3829static void
d12307c1 3830sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3831{
4c4b4cd2 3832 int i;
5b4ee69b 3833
d2e4a39e 3834 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3835 {
d12307c1 3836 struct block_symbol sym = syms[i];
14f9c5c9
AS
3837 int j;
3838
d2e4a39e 3839 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3840 {
d12307c1
PMR
3841 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3842 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3843 break;
3844 syms[j + 1] = syms[j];
3845 }
d2e4a39e 3846 syms[j + 1] = sym;
14f9c5c9
AS
3847 }
3848}
3849
d72413e6
PMR
3850/* Whether GDB should display formals and return types for functions in the
3851 overloads selection menu. */
3852static int print_signatures = 1;
3853
3854/* Print the signature for SYM on STREAM according to the FLAGS options. For
3855 all but functions, the signature is just the name of the symbol. For
3856 functions, this is the name of the function, the list of types for formals
3857 and the return type (if any). */
3858
3859static void
3860ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3861 const struct type_print_options *flags)
3862{
3863 struct type *type = SYMBOL_TYPE (sym);
3864
3865 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3866 if (!print_signatures
3867 || type == NULL
3868 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3869 return;
3870
3871 if (TYPE_NFIELDS (type) > 0)
3872 {
3873 int i;
3874
3875 fprintf_filtered (stream, " (");
3876 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3877 {
3878 if (i > 0)
3879 fprintf_filtered (stream, "; ");
3880 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3881 flags);
3882 }
3883 fprintf_filtered (stream, ")");
3884 }
3885 if (TYPE_TARGET_TYPE (type) != NULL
3886 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3887 {
3888 fprintf_filtered (stream, " return ");
3889 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3890 }
3891}
3892
4c4b4cd2
PH
3893/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3894 by asking the user (if necessary), returning the number selected,
3895 and setting the first elements of SYMS items. Error if no symbols
3896 selected. */
14f9c5c9
AS
3897
3898/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3899 to be re-integrated one of these days. */
14f9c5c9
AS
3900
3901int
d12307c1 3902user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3903{
3904 int i;
8d749320 3905 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3906 int n_chosen;
3907 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3908 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3909
3910 if (max_results < 1)
323e0a4a 3911 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3912 if (nsyms <= 1)
3913 return nsyms;
3914
717d2f5a
JB
3915 if (select_mode == multiple_symbols_cancel)
3916 error (_("\
3917canceled because the command is ambiguous\n\
3918See set/show multiple-symbol."));
a0087920 3919
717d2f5a
JB
3920 /* If select_mode is "all", then return all possible symbols.
3921 Only do that if more than one symbol can be selected, of course.
3922 Otherwise, display the menu as usual. */
3923 if (select_mode == multiple_symbols_all && max_results > 1)
3924 return nsyms;
3925
a0087920 3926 printf_filtered (_("[0] cancel\n"));
14f9c5c9 3927 if (max_results > 1)
a0087920 3928 printf_filtered (_("[1] all\n"));
14f9c5c9 3929
4c4b4cd2 3930 sort_choices (syms, nsyms);
14f9c5c9
AS
3931
3932 for (i = 0; i < nsyms; i += 1)
3933 {
d12307c1 3934 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3935 continue;
3936
d12307c1 3937 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3938 {
76a01679 3939 struct symtab_and_line sal =
d12307c1 3940 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3941
a0087920 3942 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3943 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3944 &type_print_raw_options);
323e0a4a 3945 if (sal.symtab == NULL)
a0087920
TT
3946 printf_filtered (_(" at <no source file available>:%d\n"),
3947 sal.line);
323e0a4a 3948 else
a0087920
TT
3949 printf_filtered (_(" at %s:%d\n"),
3950 symtab_to_filename_for_display (sal.symtab),
3951 sal.line);
4c4b4cd2
PH
3952 continue;
3953 }
d2e4a39e 3954 else
4c4b4cd2
PH
3955 {
3956 int is_enumeral =
d12307c1
PMR
3957 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3958 && SYMBOL_TYPE (syms[i].symbol) != NULL
3959 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3960 struct symtab *symtab = NULL;
3961
d12307c1
PMR
3962 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3963 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3964
d12307c1 3965 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6 3966 {
a0087920 3967 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3968 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3969 &type_print_raw_options);
a0087920
TT
3970 printf_filtered (_(" at %s:%d\n"),
3971 symtab_to_filename_for_display (symtab),
3972 SYMBOL_LINE (syms[i].symbol));
d72413e6 3973 }
76a01679 3974 else if (is_enumeral
d12307c1 3975 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3976 {
a0087920 3977 printf_filtered (("[%d] "), i + first_choice);
d12307c1 3978 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3979 gdb_stdout, -1, 0, &type_print_raw_options);
a0087920
TT
3980 printf_filtered (_("'(%s) (enumeral)\n"),
3981 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3982 }
d72413e6
PMR
3983 else
3984 {
a0087920 3985 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3986 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3987 &type_print_raw_options);
3988
3989 if (symtab != NULL)
a0087920
TT
3990 printf_filtered (is_enumeral
3991 ? _(" in %s (enumeral)\n")
3992 : _(" at %s:?\n"),
3993 symtab_to_filename_for_display (symtab));
d72413e6 3994 else
a0087920
TT
3995 printf_filtered (is_enumeral
3996 ? _(" (enumeral)\n")
3997 : _(" at ?\n"));
d72413e6 3998 }
4c4b4cd2 3999 }
14f9c5c9 4000 }
d2e4a39e 4001
14f9c5c9 4002 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4003 "overload-choice");
14f9c5c9
AS
4004
4005 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4006 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4007
4008 return n_chosen;
4009}
4010
4011/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4012 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4013 order in CHOICES[0 .. N-1], and return N.
4014
4015 The user types choices as a sequence of numbers on one line
4016 separated by blanks, encoding them as follows:
4017
4c4b4cd2 4018 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4019 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4020 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4021
4c4b4cd2 4022 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4023
4024 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4025 prompts (for use with the -f switch). */
14f9c5c9
AS
4026
4027int
d2e4a39e 4028get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4029 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4030{
d2e4a39e 4031 char *args;
a121b7c1 4032 const char *prompt;
14f9c5c9
AS
4033 int n_chosen;
4034 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4035
14f9c5c9
AS
4036 prompt = getenv ("PS2");
4037 if (prompt == NULL)
0bcd0149 4038 prompt = "> ";
14f9c5c9 4039
89fbedf3 4040 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 4041
14f9c5c9 4042 if (args == NULL)
323e0a4a 4043 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4044
4045 n_chosen = 0;
76a01679 4046
4c4b4cd2
PH
4047 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4048 order, as given in args. Choices are validated. */
14f9c5c9
AS
4049 while (1)
4050 {
d2e4a39e 4051 char *args2;
14f9c5c9
AS
4052 int choice, j;
4053
0fcd72ba 4054 args = skip_spaces (args);
14f9c5c9 4055 if (*args == '\0' && n_chosen == 0)
323e0a4a 4056 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4057 else if (*args == '\0')
4c4b4cd2 4058 break;
14f9c5c9
AS
4059
4060 choice = strtol (args, &args2, 10);
d2e4a39e 4061 if (args == args2 || choice < 0
4c4b4cd2 4062 || choice > n_choices + first_choice - 1)
323e0a4a 4063 error (_("Argument must be choice number"));
14f9c5c9
AS
4064 args = args2;
4065
d2e4a39e 4066 if (choice == 0)
323e0a4a 4067 error (_("cancelled"));
14f9c5c9
AS
4068
4069 if (choice < first_choice)
4c4b4cd2
PH
4070 {
4071 n_chosen = n_choices;
4072 for (j = 0; j < n_choices; j += 1)
4073 choices[j] = j;
4074 break;
4075 }
14f9c5c9
AS
4076 choice -= first_choice;
4077
d2e4a39e 4078 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4079 {
4080 }
14f9c5c9
AS
4081
4082 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4083 {
4084 int k;
5b4ee69b 4085
4c4b4cd2
PH
4086 for (k = n_chosen - 1; k > j; k -= 1)
4087 choices[k + 1] = choices[k];
4088 choices[j + 1] = choice;
4089 n_chosen += 1;
4090 }
14f9c5c9
AS
4091 }
4092
4093 if (n_chosen > max_results)
323e0a4a 4094 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4095
14f9c5c9
AS
4096 return n_chosen;
4097}
4098
4c4b4cd2
PH
4099/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4100 on the function identified by SYM and BLOCK, and taking NARGS
4101 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4102
4103static void
e9d9f57e 4104replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4105 int oplen, struct symbol *sym,
270140bd 4106 const struct block *block)
14f9c5c9
AS
4107{
4108 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4109 symbol, -oplen for operator being replaced). */
d2e4a39e 4110 struct expression *newexp = (struct expression *)
8c1a34e7 4111 xzalloc (sizeof (struct expression)
4c4b4cd2 4112 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4113 struct expression *exp = expp->get ();
14f9c5c9
AS
4114
4115 newexp->nelts = exp->nelts + 7 - oplen;
4116 newexp->language_defn = exp->language_defn;
3489610d 4117 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4118 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4119 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4120 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4121
4122 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4123 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4124
4125 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4126 newexp->elts[pc + 4].block = block;
4127 newexp->elts[pc + 5].symbol = sym;
4128
e9d9f57e 4129 expp->reset (newexp);
d2e4a39e 4130}
14f9c5c9
AS
4131
4132/* Type-class predicates */
4133
4c4b4cd2
PH
4134/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4135 or FLOAT). */
14f9c5c9
AS
4136
4137static int
d2e4a39e 4138numeric_type_p (struct type *type)
14f9c5c9
AS
4139{
4140 if (type == NULL)
4141 return 0;
d2e4a39e
AS
4142 else
4143 {
4144 switch (TYPE_CODE (type))
4c4b4cd2
PH
4145 {
4146 case TYPE_CODE_INT:
4147 case TYPE_CODE_FLT:
4148 return 1;
4149 case TYPE_CODE_RANGE:
4150 return (type == TYPE_TARGET_TYPE (type)
4151 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4152 default:
4153 return 0;
4154 }
d2e4a39e 4155 }
14f9c5c9
AS
4156}
4157
4c4b4cd2 4158/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4159
4160static int
d2e4a39e 4161integer_type_p (struct type *type)
14f9c5c9
AS
4162{
4163 if (type == NULL)
4164 return 0;
d2e4a39e
AS
4165 else
4166 {
4167 switch (TYPE_CODE (type))
4c4b4cd2
PH
4168 {
4169 case TYPE_CODE_INT:
4170 return 1;
4171 case TYPE_CODE_RANGE:
4172 return (type == TYPE_TARGET_TYPE (type)
4173 || integer_type_p (TYPE_TARGET_TYPE (type)));
4174 default:
4175 return 0;
4176 }
d2e4a39e 4177 }
14f9c5c9
AS
4178}
4179
4c4b4cd2 4180/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4181
4182static int
d2e4a39e 4183scalar_type_p (struct type *type)
14f9c5c9
AS
4184{
4185 if (type == NULL)
4186 return 0;
d2e4a39e
AS
4187 else
4188 {
4189 switch (TYPE_CODE (type))
4c4b4cd2
PH
4190 {
4191 case TYPE_CODE_INT:
4192 case TYPE_CODE_RANGE:
4193 case TYPE_CODE_ENUM:
4194 case TYPE_CODE_FLT:
4195 return 1;
4196 default:
4197 return 0;
4198 }
d2e4a39e 4199 }
14f9c5c9
AS
4200}
4201
4c4b4cd2 4202/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4203
4204static int
d2e4a39e 4205discrete_type_p (struct type *type)
14f9c5c9
AS
4206{
4207 if (type == NULL)
4208 return 0;
d2e4a39e
AS
4209 else
4210 {
4211 switch (TYPE_CODE (type))
4c4b4cd2
PH
4212 {
4213 case TYPE_CODE_INT:
4214 case TYPE_CODE_RANGE:
4215 case TYPE_CODE_ENUM:
872f0337 4216 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4217 return 1;
4218 default:
4219 return 0;
4220 }
d2e4a39e 4221 }
14f9c5c9
AS
4222}
4223
4c4b4cd2
PH
4224/* Returns non-zero if OP with operands in the vector ARGS could be
4225 a user-defined function. Errs on the side of pre-defined operators
4226 (i.e., result 0). */
14f9c5c9
AS
4227
4228static int
d2e4a39e 4229possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4230{
76a01679 4231 struct type *type0 =
df407dfe 4232 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4233 struct type *type1 =
df407dfe 4234 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4235
4c4b4cd2
PH
4236 if (type0 == NULL)
4237 return 0;
4238
14f9c5c9
AS
4239 switch (op)
4240 {
4241 default:
4242 return 0;
4243
4244 case BINOP_ADD:
4245 case BINOP_SUB:
4246 case BINOP_MUL:
4247 case BINOP_DIV:
d2e4a39e 4248 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4249
4250 case BINOP_REM:
4251 case BINOP_MOD:
4252 case BINOP_BITWISE_AND:
4253 case BINOP_BITWISE_IOR:
4254 case BINOP_BITWISE_XOR:
d2e4a39e 4255 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4256
4257 case BINOP_EQUAL:
4258 case BINOP_NOTEQUAL:
4259 case BINOP_LESS:
4260 case BINOP_GTR:
4261 case BINOP_LEQ:
4262 case BINOP_GEQ:
d2e4a39e 4263 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4264
4265 case BINOP_CONCAT:
ee90b9ab 4266 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4267
4268 case BINOP_EXP:
d2e4a39e 4269 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4270
4271 case UNOP_NEG:
4272 case UNOP_PLUS:
4273 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4274 case UNOP_ABS:
4275 return (!numeric_type_p (type0));
14f9c5c9
AS
4276
4277 }
4278}
4279\f
4c4b4cd2 4280 /* Renaming */
14f9c5c9 4281
aeb5907d
JB
4282/* NOTES:
4283
4284 1. In the following, we assume that a renaming type's name may
4285 have an ___XD suffix. It would be nice if this went away at some
4286 point.
4287 2. We handle both the (old) purely type-based representation of
4288 renamings and the (new) variable-based encoding. At some point,
4289 it is devoutly to be hoped that the former goes away
4290 (FIXME: hilfinger-2007-07-09).
4291 3. Subprogram renamings are not implemented, although the XRS
4292 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4293
4294/* If SYM encodes a renaming,
4295
4296 <renaming> renames <renamed entity>,
4297
4298 sets *LEN to the length of the renamed entity's name,
4299 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4300 the string describing the subcomponent selected from the renamed
0963b4bd 4301 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4302 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4303 are undefined). Otherwise, returns a value indicating the category
4304 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4305 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4306 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4307 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4308 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4309 may be NULL, in which case they are not assigned.
4310
4311 [Currently, however, GCC does not generate subprogram renamings.] */
4312
4313enum ada_renaming_category
4314ada_parse_renaming (struct symbol *sym,
4315 const char **renamed_entity, int *len,
4316 const char **renaming_expr)
4317{
4318 enum ada_renaming_category kind;
4319 const char *info;
4320 const char *suffix;
4321
4322 if (sym == NULL)
4323 return ADA_NOT_RENAMING;
4324 switch (SYMBOL_CLASS (sym))
14f9c5c9 4325 {
aeb5907d
JB
4326 default:
4327 return ADA_NOT_RENAMING;
4328 case LOC_TYPEDEF:
4329 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4330 renamed_entity, len, renaming_expr);
4331 case LOC_LOCAL:
4332 case LOC_STATIC:
4333 case LOC_COMPUTED:
4334 case LOC_OPTIMIZED_OUT:
4335 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4336 if (info == NULL)
4337 return ADA_NOT_RENAMING;
4338 switch (info[5])
4339 {
4340 case '_':
4341 kind = ADA_OBJECT_RENAMING;
4342 info += 6;
4343 break;
4344 case 'E':
4345 kind = ADA_EXCEPTION_RENAMING;
4346 info += 7;
4347 break;
4348 case 'P':
4349 kind = ADA_PACKAGE_RENAMING;
4350 info += 7;
4351 break;
4352 case 'S':
4353 kind = ADA_SUBPROGRAM_RENAMING;
4354 info += 7;
4355 break;
4356 default:
4357 return ADA_NOT_RENAMING;
4358 }
14f9c5c9 4359 }
4c4b4cd2 4360
aeb5907d
JB
4361 if (renamed_entity != NULL)
4362 *renamed_entity = info;
4363 suffix = strstr (info, "___XE");
4364 if (suffix == NULL || suffix == info)
4365 return ADA_NOT_RENAMING;
4366 if (len != NULL)
4367 *len = strlen (info) - strlen (suffix);
4368 suffix += 5;
4369 if (renaming_expr != NULL)
4370 *renaming_expr = suffix;
4371 return kind;
4372}
4373
4374/* Assuming TYPE encodes a renaming according to the old encoding in
4375 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4376 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4377 ADA_NOT_RENAMING otherwise. */
4378static enum ada_renaming_category
4379parse_old_style_renaming (struct type *type,
4380 const char **renamed_entity, int *len,
4381 const char **renaming_expr)
4382{
4383 enum ada_renaming_category kind;
4384 const char *name;
4385 const char *info;
4386 const char *suffix;
14f9c5c9 4387
aeb5907d
JB
4388 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4389 || TYPE_NFIELDS (type) != 1)
4390 return ADA_NOT_RENAMING;
14f9c5c9 4391
a737d952 4392 name = TYPE_NAME (type);
aeb5907d
JB
4393 if (name == NULL)
4394 return ADA_NOT_RENAMING;
4395
4396 name = strstr (name, "___XR");
4397 if (name == NULL)
4398 return ADA_NOT_RENAMING;
4399 switch (name[5])
4400 {
4401 case '\0':
4402 case '_':
4403 kind = ADA_OBJECT_RENAMING;
4404 break;
4405 case 'E':
4406 kind = ADA_EXCEPTION_RENAMING;
4407 break;
4408 case 'P':
4409 kind = ADA_PACKAGE_RENAMING;
4410 break;
4411 case 'S':
4412 kind = ADA_SUBPROGRAM_RENAMING;
4413 break;
4414 default:
4415 return ADA_NOT_RENAMING;
4416 }
14f9c5c9 4417
aeb5907d
JB
4418 info = TYPE_FIELD_NAME (type, 0);
4419 if (info == NULL)
4420 return ADA_NOT_RENAMING;
4421 if (renamed_entity != NULL)
4422 *renamed_entity = info;
4423 suffix = strstr (info, "___XE");
4424 if (renaming_expr != NULL)
4425 *renaming_expr = suffix + 5;
4426 if (suffix == NULL || suffix == info)
4427 return ADA_NOT_RENAMING;
4428 if (len != NULL)
4429 *len = suffix - info;
4430 return kind;
a5ee536b
JB
4431}
4432
4433/* Compute the value of the given RENAMING_SYM, which is expected to
4434 be a symbol encoding a renaming expression. BLOCK is the block
4435 used to evaluate the renaming. */
52ce6436 4436
a5ee536b
JB
4437static struct value *
4438ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4439 const struct block *block)
a5ee536b 4440{
bbc13ae3 4441 const char *sym_name;
a5ee536b 4442
bbc13ae3 4443 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4444 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4445 return evaluate_expression (expr.get ());
a5ee536b 4446}
14f9c5c9 4447\f
d2e4a39e 4448
4c4b4cd2 4449 /* Evaluation: Function Calls */
14f9c5c9 4450
4c4b4cd2 4451/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4452 lvalues, and otherwise has the side-effect of allocating memory
4453 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4454
d2e4a39e 4455static struct value *
40bc484c 4456ensure_lval (struct value *val)
14f9c5c9 4457{
40bc484c
JB
4458 if (VALUE_LVAL (val) == not_lval
4459 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4460 {
df407dfe 4461 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4462 const CORE_ADDR addr =
4463 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4464
a84a8a0d 4465 VALUE_LVAL (val) = lval_memory;
1a088441 4466 set_value_address (val, addr);
40bc484c 4467 write_memory (addr, value_contents (val), len);
c3e5cd34 4468 }
14f9c5c9
AS
4469
4470 return val;
4471}
4472
4473/* Return the value ACTUAL, converted to be an appropriate value for a
4474 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4475 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4476 values not residing in memory, updating it as needed. */
14f9c5c9 4477
a93c0eb6 4478struct value *
40bc484c 4479ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4480{
df407dfe 4481 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4482 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4483 struct type *formal_target =
4484 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4485 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4486 struct type *actual_target =
4487 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4488 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4489
4c4b4cd2 4490 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4491 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4492 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4493 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4494 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4495 {
a84a8a0d 4496 struct value *result;
5b4ee69b 4497
14f9c5c9 4498 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4499 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4500 result = desc_data (actual);
cb923fcc 4501 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4502 {
4503 if (VALUE_LVAL (actual) != lval_memory)
4504 {
4505 struct value *val;
5b4ee69b 4506
df407dfe 4507 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4508 val = allocate_value (actual_type);
990a07ab 4509 memcpy ((char *) value_contents_raw (val),
0fd88904 4510 (char *) value_contents (actual),
4c4b4cd2 4511 TYPE_LENGTH (actual_type));
40bc484c 4512 actual = ensure_lval (val);
4c4b4cd2 4513 }
a84a8a0d 4514 result = value_addr (actual);
4c4b4cd2 4515 }
a84a8a0d
JB
4516 else
4517 return actual;
b1af9e97 4518 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4519 }
4520 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4521 return ada_value_ind (actual);
8344af1e
JB
4522 else if (ada_is_aligner_type (formal_type))
4523 {
4524 /* We need to turn this parameter into an aligner type
4525 as well. */
4526 struct value *aligner = allocate_value (formal_type);
4527 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4528
4529 value_assign_to_component (aligner, component, actual);
4530 return aligner;
4531 }
14f9c5c9
AS
4532
4533 return actual;
4534}
4535
438c98a1
JB
4536/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4537 type TYPE. This is usually an inefficient no-op except on some targets
4538 (such as AVR) where the representation of a pointer and an address
4539 differs. */
4540
4541static CORE_ADDR
4542value_pointer (struct value *value, struct type *type)
4543{
4544 struct gdbarch *gdbarch = get_type_arch (type);
4545 unsigned len = TYPE_LENGTH (type);
224c3ddb 4546 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4547 CORE_ADDR addr;
4548
4549 addr = value_address (value);
4550 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4551 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4552 return addr;
4553}
4554
14f9c5c9 4555
4c4b4cd2
PH
4556/* Push a descriptor of type TYPE for array value ARR on the stack at
4557 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4558 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4559 to-descriptor type rather than a descriptor type), a struct value *
4560 representing a pointer to this descriptor. */
14f9c5c9 4561
d2e4a39e 4562static struct value *
40bc484c 4563make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4564{
d2e4a39e
AS
4565 struct type *bounds_type = desc_bounds_type (type);
4566 struct type *desc_type = desc_base_type (type);
4567 struct value *descriptor = allocate_value (desc_type);
4568 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4569 int i;
d2e4a39e 4570
0963b4bd
MS
4571 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4572 i > 0; i -= 1)
14f9c5c9 4573 {
19f220c3
JK
4574 modify_field (value_type (bounds), value_contents_writeable (bounds),
4575 ada_array_bound (arr, i, 0),
4576 desc_bound_bitpos (bounds_type, i, 0),
4577 desc_bound_bitsize (bounds_type, i, 0));
4578 modify_field (value_type (bounds), value_contents_writeable (bounds),
4579 ada_array_bound (arr, i, 1),
4580 desc_bound_bitpos (bounds_type, i, 1),
4581 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4582 }
d2e4a39e 4583
40bc484c 4584 bounds = ensure_lval (bounds);
d2e4a39e 4585
19f220c3
JK
4586 modify_field (value_type (descriptor),
4587 value_contents_writeable (descriptor),
4588 value_pointer (ensure_lval (arr),
4589 TYPE_FIELD_TYPE (desc_type, 0)),
4590 fat_pntr_data_bitpos (desc_type),
4591 fat_pntr_data_bitsize (desc_type));
4592
4593 modify_field (value_type (descriptor),
4594 value_contents_writeable (descriptor),
4595 value_pointer (bounds,
4596 TYPE_FIELD_TYPE (desc_type, 1)),
4597 fat_pntr_bounds_bitpos (desc_type),
4598 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4599
40bc484c 4600 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4601
4602 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4603 return value_addr (descriptor);
4604 else
4605 return descriptor;
4606}
14f9c5c9 4607\f
3d9434b5
JB
4608 /* Symbol Cache Module */
4609
3d9434b5 4610/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4611 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4612 on the type of entity being printed, the cache can make it as much
4613 as an order of magnitude faster than without it.
4614
4615 The descriptive type DWARF extension has significantly reduced
4616 the need for this cache, at least when DWARF is being used. However,
4617 even in this case, some expensive name-based symbol searches are still
4618 sometimes necessary - to find an XVZ variable, mostly. */
4619
ee01b665 4620/* Initialize the contents of SYM_CACHE. */
3d9434b5 4621
ee01b665
JB
4622static void
4623ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4624{
4625 obstack_init (&sym_cache->cache_space);
4626 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4627}
3d9434b5 4628
ee01b665
JB
4629/* Free the memory used by SYM_CACHE. */
4630
4631static void
4632ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4633{
ee01b665
JB
4634 obstack_free (&sym_cache->cache_space, NULL);
4635 xfree (sym_cache);
4636}
3d9434b5 4637
ee01b665
JB
4638/* Return the symbol cache associated to the given program space PSPACE.
4639 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4640
ee01b665
JB
4641static struct ada_symbol_cache *
4642ada_get_symbol_cache (struct program_space *pspace)
4643{
4644 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4645
66c168ae 4646 if (pspace_data->sym_cache == NULL)
ee01b665 4647 {
66c168ae
JB
4648 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4649 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4650 }
4651
66c168ae 4652 return pspace_data->sym_cache;
ee01b665 4653}
3d9434b5
JB
4654
4655/* Clear all entries from the symbol cache. */
4656
4657static void
4658ada_clear_symbol_cache (void)
4659{
ee01b665
JB
4660 struct ada_symbol_cache *sym_cache
4661 = ada_get_symbol_cache (current_program_space);
4662
4663 obstack_free (&sym_cache->cache_space, NULL);
4664 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4665}
4666
fe978cb0 4667/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4668 Return it if found, or NULL otherwise. */
4669
4670static struct cache_entry **
fe978cb0 4671find_entry (const char *name, domain_enum domain)
3d9434b5 4672{
ee01b665
JB
4673 struct ada_symbol_cache *sym_cache
4674 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4675 int h = msymbol_hash (name) % HASH_SIZE;
4676 struct cache_entry **e;
4677
ee01b665 4678 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4679 {
fe978cb0 4680 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4681 return e;
4682 }
4683 return NULL;
4684}
4685
fe978cb0 4686/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4687 Return 1 if found, 0 otherwise.
4688
4689 If an entry was found and SYM is not NULL, set *SYM to the entry's
4690 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4691
96d887e8 4692static int
fe978cb0 4693lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4694 struct symbol **sym, const struct block **block)
96d887e8 4695{
fe978cb0 4696 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4697
4698 if (e == NULL)
4699 return 0;
4700 if (sym != NULL)
4701 *sym = (*e)->sym;
4702 if (block != NULL)
4703 *block = (*e)->block;
4704 return 1;
96d887e8
PH
4705}
4706
3d9434b5 4707/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4708 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4709
96d887e8 4710static void
fe978cb0 4711cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4712 const struct block *block)
96d887e8 4713{
ee01b665
JB
4714 struct ada_symbol_cache *sym_cache
4715 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4716 int h;
4717 char *copy;
4718 struct cache_entry *e;
4719
1994afbf
DE
4720 /* Symbols for builtin types don't have a block.
4721 For now don't cache such symbols. */
4722 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4723 return;
4724
3d9434b5
JB
4725 /* If the symbol is a local symbol, then do not cache it, as a search
4726 for that symbol depends on the context. To determine whether
4727 the symbol is local or not, we check the block where we found it
4728 against the global and static blocks of its associated symtab. */
4729 if (sym
08be3fe3 4730 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4731 GLOBAL_BLOCK) != block
08be3fe3 4732 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4733 STATIC_BLOCK) != block)
3d9434b5
JB
4734 return;
4735
4736 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4737 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4738 e->next = sym_cache->root[h];
4739 sym_cache->root[h] = e;
224c3ddb
SM
4740 e->name = copy
4741 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4742 strcpy (copy, name);
4743 e->sym = sym;
fe978cb0 4744 e->domain = domain;
3d9434b5 4745 e->block = block;
96d887e8 4746}
4c4b4cd2
PH
4747\f
4748 /* Symbol Lookup */
4749
b5ec771e
PA
4750/* Return the symbol name match type that should be used used when
4751 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4752
4753 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4754 for Ada lookups. */
c0431670 4755
b5ec771e
PA
4756static symbol_name_match_type
4757name_match_type_from_name (const char *lookup_name)
c0431670 4758{
b5ec771e
PA
4759 return (strstr (lookup_name, "__") == NULL
4760 ? symbol_name_match_type::WILD
4761 : symbol_name_match_type::FULL);
c0431670
JB
4762}
4763
4c4b4cd2
PH
4764/* Return the result of a standard (literal, C-like) lookup of NAME in
4765 given DOMAIN, visible from lexical block BLOCK. */
4766
4767static struct symbol *
4768standard_lookup (const char *name, const struct block *block,
4769 domain_enum domain)
4770{
acbd605d 4771 /* Initialize it just to avoid a GCC false warning. */
6640a367 4772 struct block_symbol sym = {};
4c4b4cd2 4773
d12307c1
PMR
4774 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4775 return sym.symbol;
a2cd4f14 4776 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4777 cache_symbol (name, domain, sym.symbol, sym.block);
4778 return sym.symbol;
4c4b4cd2
PH
4779}
4780
4781
4782/* Non-zero iff there is at least one non-function/non-enumeral symbol
4783 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4784 since they contend in overloading in the same way. */
4785static int
d12307c1 4786is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4787{
4788 int i;
4789
4790 for (i = 0; i < n; i += 1)
d12307c1
PMR
4791 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4792 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4793 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4794 return 1;
4795
4796 return 0;
4797}
4798
4799/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4800 struct types. Otherwise, they may not. */
14f9c5c9
AS
4801
4802static int
d2e4a39e 4803equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4804{
d2e4a39e 4805 if (type0 == type1)
14f9c5c9 4806 return 1;
d2e4a39e 4807 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4808 || TYPE_CODE (type0) != TYPE_CODE (type1))
4809 return 0;
d2e4a39e 4810 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4811 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4812 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4813 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4814 return 1;
d2e4a39e 4815
14f9c5c9
AS
4816 return 0;
4817}
4818
4819/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4820 no more defined than that of SYM1. */
14f9c5c9
AS
4821
4822static int
d2e4a39e 4823lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4824{
4825 if (sym0 == sym1)
4826 return 1;
176620f1 4827 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4828 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4829 return 0;
4830
d2e4a39e 4831 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4832 {
4833 case LOC_UNDEF:
4834 return 1;
4835 case LOC_TYPEDEF:
4836 {
4c4b4cd2
PH
4837 struct type *type0 = SYMBOL_TYPE (sym0);
4838 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4839 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4840 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4841 int len0 = strlen (name0);
5b4ee69b 4842
4c4b4cd2
PH
4843 return
4844 TYPE_CODE (type0) == TYPE_CODE (type1)
4845 && (equiv_types (type0, type1)
4846 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4847 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4848 }
4849 case LOC_CONST:
4850 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4851 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4852 default:
4853 return 0;
14f9c5c9
AS
4854 }
4855}
4856
d12307c1 4857/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4858 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4859
4860static void
76a01679
JB
4861add_defn_to_vec (struct obstack *obstackp,
4862 struct symbol *sym,
f0c5f9b2 4863 const struct block *block)
14f9c5c9
AS
4864{
4865 int i;
d12307c1 4866 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4867
529cad9c
PH
4868 /* Do not try to complete stub types, as the debugger is probably
4869 already scanning all symbols matching a certain name at the
4870 time when this function is called. Trying to replace the stub
4871 type by its associated full type will cause us to restart a scan
4872 which may lead to an infinite recursion. Instead, the client
4873 collecting the matching symbols will end up collecting several
4874 matches, with at least one of them complete. It can then filter
4875 out the stub ones if needed. */
4876
4c4b4cd2
PH
4877 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4878 {
d12307c1 4879 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4880 return;
d12307c1 4881 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4882 {
d12307c1 4883 prevDefns[i].symbol = sym;
4c4b4cd2 4884 prevDefns[i].block = block;
4c4b4cd2 4885 return;
76a01679 4886 }
4c4b4cd2
PH
4887 }
4888
4889 {
d12307c1 4890 struct block_symbol info;
4c4b4cd2 4891
d12307c1 4892 info.symbol = sym;
4c4b4cd2 4893 info.block = block;
d12307c1 4894 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4895 }
4896}
4897
d12307c1
PMR
4898/* Number of block_symbol structures currently collected in current vector in
4899 OBSTACKP. */
4c4b4cd2 4900
76a01679
JB
4901static int
4902num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4903{
d12307c1 4904 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4905}
4906
d12307c1
PMR
4907/* Vector of block_symbol structures currently collected in current vector in
4908 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4909
d12307c1 4910static struct block_symbol *
4c4b4cd2
PH
4911defns_collected (struct obstack *obstackp, int finish)
4912{
4913 if (finish)
224c3ddb 4914 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4915 else
d12307c1 4916 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4917}
4918
7c7b6655
TT
4919/* Return a bound minimal symbol matching NAME according to Ada
4920 decoding rules. Returns an invalid symbol if there is no such
4921 minimal symbol. Names prefixed with "standard__" are handled
4922 specially: "standard__" is first stripped off, and only static and
4923 global symbols are searched. */
4c4b4cd2 4924
7c7b6655 4925struct bound_minimal_symbol
96d887e8 4926ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4927{
7c7b6655 4928 struct bound_minimal_symbol result;
4c4b4cd2 4929
7c7b6655
TT
4930 memset (&result, 0, sizeof (result));
4931
b5ec771e
PA
4932 symbol_name_match_type match_type = name_match_type_from_name (name);
4933 lookup_name_info lookup_name (name, match_type);
4934
4935 symbol_name_matcher_ftype *match_name
4936 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4937
2030c079 4938 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4939 {
7932255d 4940 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
4941 {
4942 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4943 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4944 {
4945 result.minsym = msymbol;
4946 result.objfile = objfile;
4947 break;
4948 }
4949 }
4950 }
4c4b4cd2 4951
7c7b6655 4952 return result;
96d887e8 4953}
4c4b4cd2 4954
2ff0a947
TT
4955/* Return all the bound minimal symbols matching NAME according to Ada
4956 decoding rules. Returns an empty vector if there is no such
4957 minimal symbol. Names prefixed with "standard__" are handled
4958 specially: "standard__" is first stripped off, and only static and
4959 global symbols are searched. */
4960
4961static std::vector<struct bound_minimal_symbol>
4962ada_lookup_simple_minsyms (const char *name)
4963{
4964 std::vector<struct bound_minimal_symbol> result;
4965
4966 symbol_name_match_type match_type = name_match_type_from_name (name);
4967 lookup_name_info lookup_name (name, match_type);
4968
4969 symbol_name_matcher_ftype *match_name
4970 = ada_get_symbol_name_matcher (lookup_name);
4971
4972 for (objfile *objfile : current_program_space->objfiles ())
4973 {
4974 for (minimal_symbol *msymbol : objfile->msymbols ())
4975 {
4976 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4977 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4978 result.push_back ({msymbol, objfile});
4979 }
4980 }
4981
4982 return result;
4983}
4984
96d887e8
PH
4985/* For all subprograms that statically enclose the subprogram of the
4986 selected frame, add symbols matching identifier NAME in DOMAIN
4987 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4988 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4989 with a wildcard prefix. */
4c4b4cd2 4990
96d887e8
PH
4991static void
4992add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4993 const lookup_name_info &lookup_name,
4994 domain_enum domain)
96d887e8 4995{
96d887e8 4996}
14f9c5c9 4997
96d887e8
PH
4998/* True if TYPE is definitely an artificial type supplied to a symbol
4999 for which no debugging information was given in the symbol file. */
14f9c5c9 5000
96d887e8
PH
5001static int
5002is_nondebugging_type (struct type *type)
5003{
0d5cff50 5004 const char *name = ada_type_name (type);
5b4ee69b 5005
96d887e8
PH
5006 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
5007}
4c4b4cd2 5008
8f17729f
JB
5009/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
5010 that are deemed "identical" for practical purposes.
5011
5012 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5013 types and that their number of enumerals is identical (in other
5014 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5015
5016static int
5017ada_identical_enum_types_p (struct type *type1, struct type *type2)
5018{
5019 int i;
5020
5021 /* The heuristic we use here is fairly conservative. We consider
5022 that 2 enumerate types are identical if they have the same
5023 number of enumerals and that all enumerals have the same
5024 underlying value and name. */
5025
5026 /* All enums in the type should have an identical underlying value. */
5027 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5028 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5029 return 0;
5030
5031 /* All enumerals should also have the same name (modulo any numerical
5032 suffix). */
5033 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5034 {
0d5cff50
DE
5035 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5036 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5037 int len_1 = strlen (name_1);
5038 int len_2 = strlen (name_2);
5039
5040 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5041 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5042 if (len_1 != len_2
5043 || strncmp (TYPE_FIELD_NAME (type1, i),
5044 TYPE_FIELD_NAME (type2, i),
5045 len_1) != 0)
5046 return 0;
5047 }
5048
5049 return 1;
5050}
5051
5052/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5053 that are deemed "identical" for practical purposes. Sometimes,
5054 enumerals are not strictly identical, but their types are so similar
5055 that they can be considered identical.
5056
5057 For instance, consider the following code:
5058
5059 type Color is (Black, Red, Green, Blue, White);
5060 type RGB_Color is new Color range Red .. Blue;
5061
5062 Type RGB_Color is a subrange of an implicit type which is a copy
5063 of type Color. If we call that implicit type RGB_ColorB ("B" is
5064 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5065 As a result, when an expression references any of the enumeral
5066 by name (Eg. "print green"), the expression is technically
5067 ambiguous and the user should be asked to disambiguate. But
5068 doing so would only hinder the user, since it wouldn't matter
5069 what choice he makes, the outcome would always be the same.
5070 So, for practical purposes, we consider them as the same. */
5071
5072static int
54d343a2 5073symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5074{
5075 int i;
5076
5077 /* Before performing a thorough comparison check of each type,
5078 we perform a series of inexpensive checks. We expect that these
5079 checks will quickly fail in the vast majority of cases, and thus
5080 help prevent the unnecessary use of a more expensive comparison.
5081 Said comparison also expects us to make some of these checks
5082 (see ada_identical_enum_types_p). */
5083
5084 /* Quick check: All symbols should have an enum type. */
54d343a2 5085 for (i = 0; i < syms.size (); i++)
d12307c1 5086 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5087 return 0;
5088
5089 /* Quick check: They should all have the same value. */
54d343a2 5090 for (i = 1; i < syms.size (); i++)
d12307c1 5091 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5092 return 0;
5093
5094 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5095 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5096 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5097 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5098 return 0;
5099
5100 /* All the sanity checks passed, so we might have a set of
5101 identical enumeration types. Perform a more complete
5102 comparison of the type of each symbol. */
54d343a2 5103 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5104 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5105 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5106 return 0;
5107
5108 return 1;
5109}
5110
54d343a2 5111/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5112 duplicate other symbols in the list (The only case I know of where
5113 this happens is when object files containing stabs-in-ecoff are
5114 linked with files containing ordinary ecoff debugging symbols (or no
5115 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5116 Returns the number of items in the modified list. */
4c4b4cd2 5117
96d887e8 5118static int
54d343a2 5119remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5120{
5121 int i, j;
4c4b4cd2 5122
8f17729f
JB
5123 /* We should never be called with less than 2 symbols, as there
5124 cannot be any extra symbol in that case. But it's easy to
5125 handle, since we have nothing to do in that case. */
54d343a2
TT
5126 if (syms->size () < 2)
5127 return syms->size ();
8f17729f 5128
96d887e8 5129 i = 0;
54d343a2 5130 while (i < syms->size ())
96d887e8 5131 {
a35ddb44 5132 int remove_p = 0;
339c13b6
JB
5133
5134 /* If two symbols have the same name and one of them is a stub type,
5135 the get rid of the stub. */
5136
54d343a2
TT
5137 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5138 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5139 {
54d343a2 5140 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5141 {
5142 if (j != i
54d343a2
TT
5143 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5144 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5145 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5146 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5147 remove_p = 1;
339c13b6
JB
5148 }
5149 }
5150
5151 /* Two symbols with the same name, same class and same address
5152 should be identical. */
5153
54d343a2
TT
5154 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5155 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5156 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5157 {
54d343a2 5158 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5159 {
5160 if (i != j
54d343a2
TT
5161 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5162 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5163 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5164 && SYMBOL_CLASS ((*syms)[i].symbol)
5165 == SYMBOL_CLASS ((*syms)[j].symbol)
5166 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5167 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5168 remove_p = 1;
4c4b4cd2 5169 }
4c4b4cd2 5170 }
339c13b6 5171
a35ddb44 5172 if (remove_p)
54d343a2 5173 syms->erase (syms->begin () + i);
339c13b6 5174
96d887e8 5175 i += 1;
14f9c5c9 5176 }
8f17729f
JB
5177
5178 /* If all the remaining symbols are identical enumerals, then
5179 just keep the first one and discard the rest.
5180
5181 Unlike what we did previously, we do not discard any entry
5182 unless they are ALL identical. This is because the symbol
5183 comparison is not a strict comparison, but rather a practical
5184 comparison. If all symbols are considered identical, then
5185 we can just go ahead and use the first one and discard the rest.
5186 But if we cannot reduce the list to a single element, we have
5187 to ask the user to disambiguate anyways. And if we have to
5188 present a multiple-choice menu, it's less confusing if the list
5189 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5190 if (symbols_are_identical_enums (*syms))
5191 syms->resize (1);
8f17729f 5192
54d343a2 5193 return syms->size ();
14f9c5c9
AS
5194}
5195
96d887e8
PH
5196/* Given a type that corresponds to a renaming entity, use the type name
5197 to extract the scope (package name or function name, fully qualified,
5198 and following the GNAT encoding convention) where this renaming has been
49d83361 5199 defined. */
4c4b4cd2 5200
49d83361 5201static std::string
96d887e8 5202xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5203{
96d887e8 5204 /* The renaming types adhere to the following convention:
0963b4bd 5205 <scope>__<rename>___<XR extension>.
96d887e8
PH
5206 So, to extract the scope, we search for the "___XR" extension,
5207 and then backtrack until we find the first "__". */
76a01679 5208
a737d952 5209 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5210 const char *suffix = strstr (name, "___XR");
5211 const char *last;
14f9c5c9 5212
96d887e8
PH
5213 /* Now, backtrack a bit until we find the first "__". Start looking
5214 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5215
96d887e8
PH
5216 for (last = suffix - 3; last > name; last--)
5217 if (last[0] == '_' && last[1] == '_')
5218 break;
76a01679 5219
96d887e8 5220 /* Make a copy of scope and return it. */
49d83361 5221 return std::string (name, last);
4c4b4cd2
PH
5222}
5223
96d887e8 5224/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5225
96d887e8
PH
5226static int
5227is_package_name (const char *name)
4c4b4cd2 5228{
96d887e8
PH
5229 /* Here, We take advantage of the fact that no symbols are generated
5230 for packages, while symbols are generated for each function.
5231 So the condition for NAME represent a package becomes equivalent
5232 to NAME not existing in our list of symbols. There is only one
5233 small complication with library-level functions (see below). */
4c4b4cd2 5234
96d887e8
PH
5235 /* If it is a function that has not been defined at library level,
5236 then we should be able to look it up in the symbols. */
5237 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5238 return 0;
14f9c5c9 5239
96d887e8
PH
5240 /* Library-level function names start with "_ada_". See if function
5241 "_ada_" followed by NAME can be found. */
14f9c5c9 5242
96d887e8 5243 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5244 functions names cannot contain "__" in them. */
96d887e8
PH
5245 if (strstr (name, "__") != NULL)
5246 return 0;
4c4b4cd2 5247
528e1572 5248 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5249
528e1572 5250 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5251}
14f9c5c9 5252
96d887e8 5253/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5254 not visible from FUNCTION_NAME. */
14f9c5c9 5255
96d887e8 5256static int
0d5cff50 5257old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5258{
aeb5907d
JB
5259 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5260 return 0;
5261
49d83361 5262 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5263
96d887e8 5264 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5265 if (is_package_name (scope.c_str ()))
5266 return 0;
14f9c5c9 5267
96d887e8
PH
5268 /* Check that the rename is in the current function scope by checking
5269 that its name starts with SCOPE. */
76a01679 5270
96d887e8
PH
5271 /* If the function name starts with "_ada_", it means that it is
5272 a library-level function. Strip this prefix before doing the
5273 comparison, as the encoding for the renaming does not contain
5274 this prefix. */
61012eef 5275 if (startswith (function_name, "_ada_"))
96d887e8 5276 function_name += 5;
f26caa11 5277
49d83361 5278 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5279}
5280
aeb5907d
JB
5281/* Remove entries from SYMS that corresponds to a renaming entity that
5282 is not visible from the function associated with CURRENT_BLOCK or
5283 that is superfluous due to the presence of more specific renaming
5284 information. Places surviving symbols in the initial entries of
5285 SYMS and returns the number of surviving symbols.
96d887e8
PH
5286
5287 Rationale:
aeb5907d
JB
5288 First, in cases where an object renaming is implemented as a
5289 reference variable, GNAT may produce both the actual reference
5290 variable and the renaming encoding. In this case, we discard the
5291 latter.
5292
5293 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5294 entity. Unfortunately, STABS currently does not support the definition
5295 of types that are local to a given lexical block, so all renamings types
5296 are emitted at library level. As a consequence, if an application
5297 contains two renaming entities using the same name, and a user tries to
5298 print the value of one of these entities, the result of the ada symbol
5299 lookup will also contain the wrong renaming type.
f26caa11 5300
96d887e8
PH
5301 This function partially covers for this limitation by attempting to
5302 remove from the SYMS list renaming symbols that should be visible
5303 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5304 method with the current information available. The implementation
5305 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5306
5307 - When the user tries to print a rename in a function while there
5308 is another rename entity defined in a package: Normally, the
5309 rename in the function has precedence over the rename in the
5310 package, so the latter should be removed from the list. This is
5311 currently not the case.
5312
5313 - This function will incorrectly remove valid renames if
5314 the CURRENT_BLOCK corresponds to a function which symbol name
5315 has been changed by an "Export" pragma. As a consequence,
5316 the user will be unable to print such rename entities. */
4c4b4cd2 5317
14f9c5c9 5318static int
54d343a2
TT
5319remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5320 const struct block *current_block)
4c4b4cd2
PH
5321{
5322 struct symbol *current_function;
0d5cff50 5323 const char *current_function_name;
4c4b4cd2 5324 int i;
aeb5907d
JB
5325 int is_new_style_renaming;
5326
5327 /* If there is both a renaming foo___XR... encoded as a variable and
5328 a simple variable foo in the same block, discard the latter.
0963b4bd 5329 First, zero out such symbols, then compress. */
aeb5907d 5330 is_new_style_renaming = 0;
54d343a2 5331 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5332 {
54d343a2
TT
5333 struct symbol *sym = (*syms)[i].symbol;
5334 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5335 const char *name;
5336 const char *suffix;
5337
5338 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5339 continue;
5340 name = SYMBOL_LINKAGE_NAME (sym);
5341 suffix = strstr (name, "___XR");
5342
5343 if (suffix != NULL)
5344 {
5345 int name_len = suffix - name;
5346 int j;
5b4ee69b 5347
aeb5907d 5348 is_new_style_renaming = 1;
54d343a2
TT
5349 for (j = 0; j < syms->size (); j += 1)
5350 if (i != j && (*syms)[j].symbol != NULL
5351 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5352 name_len) == 0
54d343a2
TT
5353 && block == (*syms)[j].block)
5354 (*syms)[j].symbol = NULL;
aeb5907d
JB
5355 }
5356 }
5357 if (is_new_style_renaming)
5358 {
5359 int j, k;
5360
54d343a2
TT
5361 for (j = k = 0; j < syms->size (); j += 1)
5362 if ((*syms)[j].symbol != NULL)
aeb5907d 5363 {
54d343a2 5364 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5365 k += 1;
5366 }
5367 return k;
5368 }
4c4b4cd2
PH
5369
5370 /* Extract the function name associated to CURRENT_BLOCK.
5371 Abort if unable to do so. */
76a01679 5372
4c4b4cd2 5373 if (current_block == NULL)
54d343a2 5374 return syms->size ();
76a01679 5375
7f0df278 5376 current_function = block_linkage_function (current_block);
4c4b4cd2 5377 if (current_function == NULL)
54d343a2 5378 return syms->size ();
4c4b4cd2
PH
5379
5380 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5381 if (current_function_name == NULL)
54d343a2 5382 return syms->size ();
4c4b4cd2
PH
5383
5384 /* Check each of the symbols, and remove it from the list if it is
5385 a type corresponding to a renaming that is out of the scope of
5386 the current block. */
5387
5388 i = 0;
54d343a2 5389 while (i < syms->size ())
4c4b4cd2 5390 {
54d343a2 5391 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5392 == ADA_OBJECT_RENAMING
54d343a2
TT
5393 && old_renaming_is_invisible ((*syms)[i].symbol,
5394 current_function_name))
5395 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5396 else
5397 i += 1;
5398 }
5399
54d343a2 5400 return syms->size ();
4c4b4cd2
PH
5401}
5402
339c13b6
JB
5403/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5404 whose name and domain match NAME and DOMAIN respectively.
5405 If no match was found, then extend the search to "enclosing"
5406 routines (in other words, if we're inside a nested function,
5407 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5408 If WILD_MATCH_P is nonzero, perform the naming matching in
5409 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5410
5411 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5412
5413static void
b5ec771e
PA
5414ada_add_local_symbols (struct obstack *obstackp,
5415 const lookup_name_info &lookup_name,
5416 const struct block *block, domain_enum domain)
339c13b6
JB
5417{
5418 int block_depth = 0;
5419
5420 while (block != NULL)
5421 {
5422 block_depth += 1;
b5ec771e 5423 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5424
5425 /* If we found a non-function match, assume that's the one. */
5426 if (is_nonfunction (defns_collected (obstackp, 0),
5427 num_defns_collected (obstackp)))
5428 return;
5429
5430 block = BLOCK_SUPERBLOCK (block);
5431 }
5432
5433 /* If no luck so far, try to find NAME as a local symbol in some lexically
5434 enclosing subprogram. */
5435 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5436 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5437}
5438
ccefe4c4 5439/* An object of this type is used as the user_data argument when
40658b94 5440 calling the map_matching_symbols method. */
ccefe4c4 5441
40658b94 5442struct match_data
ccefe4c4 5443{
40658b94 5444 struct objfile *objfile;
ccefe4c4 5445 struct obstack *obstackp;
40658b94
PH
5446 struct symbol *arg_sym;
5447 int found_sym;
ccefe4c4
TT
5448};
5449
22cee43f 5450/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5451 to a list of symbols. DATA0 is a pointer to a struct match_data *
5452 containing the obstack that collects the symbol list, the file that SYM
5453 must come from, a flag indicating whether a non-argument symbol has
5454 been found in the current block, and the last argument symbol
5455 passed in SYM within the current block (if any). When SYM is null,
5456 marking the end of a block, the argument symbol is added if no
5457 other has been found. */
ccefe4c4 5458
40658b94 5459static int
582942f4
TT
5460aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5461 void *data0)
ccefe4c4 5462{
40658b94
PH
5463 struct match_data *data = (struct match_data *) data0;
5464
5465 if (sym == NULL)
5466 {
5467 if (!data->found_sym && data->arg_sym != NULL)
5468 add_defn_to_vec (data->obstackp,
5469 fixup_symbol_section (data->arg_sym, data->objfile),
5470 block);
5471 data->found_sym = 0;
5472 data->arg_sym = NULL;
5473 }
5474 else
5475 {
5476 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5477 return 0;
5478 else if (SYMBOL_IS_ARGUMENT (sym))
5479 data->arg_sym = sym;
5480 else
5481 {
5482 data->found_sym = 1;
5483 add_defn_to_vec (data->obstackp,
5484 fixup_symbol_section (sym, data->objfile),
5485 block);
5486 }
5487 }
5488 return 0;
5489}
5490
b5ec771e
PA
5491/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5492 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5493 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5494
5495static int
5496ada_add_block_renamings (struct obstack *obstackp,
5497 const struct block *block,
b5ec771e
PA
5498 const lookup_name_info &lookup_name,
5499 domain_enum domain)
22cee43f
PMR
5500{
5501 struct using_direct *renaming;
5502 int defns_mark = num_defns_collected (obstackp);
5503
b5ec771e
PA
5504 symbol_name_matcher_ftype *name_match
5505 = ada_get_symbol_name_matcher (lookup_name);
5506
22cee43f
PMR
5507 for (renaming = block_using (block);
5508 renaming != NULL;
5509 renaming = renaming->next)
5510 {
5511 const char *r_name;
22cee43f
PMR
5512
5513 /* Avoid infinite recursions: skip this renaming if we are actually
5514 already traversing it.
5515
5516 Currently, symbol lookup in Ada don't use the namespace machinery from
5517 C++/Fortran support: skip namespace imports that use them. */
5518 if (renaming->searched
5519 || (renaming->import_src != NULL
5520 && renaming->import_src[0] != '\0')
5521 || (renaming->import_dest != NULL
5522 && renaming->import_dest[0] != '\0'))
5523 continue;
5524 renaming->searched = 1;
5525
5526 /* TODO: here, we perform another name-based symbol lookup, which can
5527 pull its own multiple overloads. In theory, we should be able to do
5528 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5529 not a simple name. But in order to do this, we would need to enhance
5530 the DWARF reader to associate a symbol to this renaming, instead of a
5531 name. So, for now, we do something simpler: re-use the C++/Fortran
5532 namespace machinery. */
5533 r_name = (renaming->alias != NULL
5534 ? renaming->alias
5535 : renaming->declaration);
b5ec771e
PA
5536 if (name_match (r_name, lookup_name, NULL))
5537 {
5538 lookup_name_info decl_lookup_name (renaming->declaration,
5539 lookup_name.match_type ());
5540 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5541 1, NULL);
5542 }
22cee43f
PMR
5543 renaming->searched = 0;
5544 }
5545 return num_defns_collected (obstackp) != defns_mark;
5546}
5547
db230ce3
JB
5548/* Implements compare_names, but only applying the comparision using
5549 the given CASING. */
5b4ee69b 5550
40658b94 5551static int
db230ce3
JB
5552compare_names_with_case (const char *string1, const char *string2,
5553 enum case_sensitivity casing)
40658b94
PH
5554{
5555 while (*string1 != '\0' && *string2 != '\0')
5556 {
db230ce3
JB
5557 char c1, c2;
5558
40658b94
PH
5559 if (isspace (*string1) || isspace (*string2))
5560 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5561
5562 if (casing == case_sensitive_off)
5563 {
5564 c1 = tolower (*string1);
5565 c2 = tolower (*string2);
5566 }
5567 else
5568 {
5569 c1 = *string1;
5570 c2 = *string2;
5571 }
5572 if (c1 != c2)
40658b94 5573 break;
db230ce3 5574
40658b94
PH
5575 string1 += 1;
5576 string2 += 1;
5577 }
db230ce3 5578
40658b94
PH
5579 switch (*string1)
5580 {
5581 case '(':
5582 return strcmp_iw_ordered (string1, string2);
5583 case '_':
5584 if (*string2 == '\0')
5585 {
052874e8 5586 if (is_name_suffix (string1))
40658b94
PH
5587 return 0;
5588 else
1a1d5513 5589 return 1;
40658b94 5590 }
dbb8534f 5591 /* FALLTHROUGH */
40658b94
PH
5592 default:
5593 if (*string2 == '(')
5594 return strcmp_iw_ordered (string1, string2);
5595 else
db230ce3
JB
5596 {
5597 if (casing == case_sensitive_off)
5598 return tolower (*string1) - tolower (*string2);
5599 else
5600 return *string1 - *string2;
5601 }
40658b94 5602 }
ccefe4c4
TT
5603}
5604
db230ce3
JB
5605/* Compare STRING1 to STRING2, with results as for strcmp.
5606 Compatible with strcmp_iw_ordered in that...
5607
5608 strcmp_iw_ordered (STRING1, STRING2) <= 0
5609
5610 ... implies...
5611
5612 compare_names (STRING1, STRING2) <= 0
5613
5614 (they may differ as to what symbols compare equal). */
5615
5616static int
5617compare_names (const char *string1, const char *string2)
5618{
5619 int result;
5620
5621 /* Similar to what strcmp_iw_ordered does, we need to perform
5622 a case-insensitive comparison first, and only resort to
5623 a second, case-sensitive, comparison if the first one was
5624 not sufficient to differentiate the two strings. */
5625
5626 result = compare_names_with_case (string1, string2, case_sensitive_off);
5627 if (result == 0)
5628 result = compare_names_with_case (string1, string2, case_sensitive_on);
5629
5630 return result;
5631}
5632
b5ec771e
PA
5633/* Convenience function to get at the Ada encoded lookup name for
5634 LOOKUP_NAME, as a C string. */
5635
5636static const char *
5637ada_lookup_name (const lookup_name_info &lookup_name)
5638{
5639 return lookup_name.ada ().lookup_name ().c_str ();
5640}
5641
339c13b6 5642/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5643 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5644 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5645 symbols otherwise. */
339c13b6
JB
5646
5647static void
b5ec771e
PA
5648add_nonlocal_symbols (struct obstack *obstackp,
5649 const lookup_name_info &lookup_name,
5650 domain_enum domain, int global)
339c13b6 5651{
40658b94 5652 struct match_data data;
339c13b6 5653
6475f2fe 5654 memset (&data, 0, sizeof data);
ccefe4c4 5655 data.obstackp = obstackp;
339c13b6 5656
b5ec771e
PA
5657 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5658
2030c079 5659 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5660 {
5661 data.objfile = objfile;
5662
5663 if (is_wild_match)
b5ec771e
PA
5664 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5665 domain, global,
4186eb54 5666 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5667 symbol_name_match_type::WILD,
5668 NULL);
40658b94 5669 else
b5ec771e
PA
5670 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5671 domain, global,
4186eb54 5672 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5673 symbol_name_match_type::FULL,
5674 compare_names);
22cee43f 5675
b669c953 5676 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5677 {
5678 const struct block *global_block
5679 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5680
b5ec771e
PA
5681 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5682 domain))
22cee43f
PMR
5683 data.found_sym = 1;
5684 }
40658b94
PH
5685 }
5686
5687 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5688 {
b5ec771e
PA
5689 const char *name = ada_lookup_name (lookup_name);
5690 std::string name1 = std::string ("<_ada_") + name + '>';
5691
2030c079 5692 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5693 {
40658b94 5694 data.objfile = objfile;
b5ec771e
PA
5695 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5696 domain, global,
0963b4bd
MS
5697 aux_add_nonlocal_symbols,
5698 &data,
b5ec771e
PA
5699 symbol_name_match_type::FULL,
5700 compare_names);
40658b94
PH
5701 }
5702 }
339c13b6
JB
5703}
5704
b5ec771e
PA
5705/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5706 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5707 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5708
22cee43f
PMR
5709 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5710 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5711 is the one match returned (no other matches in that or
d9680e73 5712 enclosing blocks is returned). If there are any matches in or
22cee43f 5713 surrounding BLOCK, then these alone are returned.
4eeaa230 5714
b5ec771e
PA
5715 Names prefixed with "standard__" are handled specially:
5716 "standard__" is first stripped off (by the lookup_name
5717 constructor), and only static and global symbols are searched.
14f9c5c9 5718
22cee43f
PMR
5719 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5720 to lookup global symbols. */
5721
5722static void
5723ada_add_all_symbols (struct obstack *obstackp,
5724 const struct block *block,
b5ec771e 5725 const lookup_name_info &lookup_name,
22cee43f
PMR
5726 domain_enum domain,
5727 int full_search,
5728 int *made_global_lookup_p)
14f9c5c9
AS
5729{
5730 struct symbol *sym;
14f9c5c9 5731
22cee43f
PMR
5732 if (made_global_lookup_p)
5733 *made_global_lookup_p = 0;
339c13b6
JB
5734
5735 /* Special case: If the user specifies a symbol name inside package
5736 Standard, do a non-wild matching of the symbol name without
5737 the "standard__" prefix. This was primarily introduced in order
5738 to allow the user to specifically access the standard exceptions
5739 using, for instance, Standard.Constraint_Error when Constraint_Error
5740 is ambiguous (due to the user defining its own Constraint_Error
5741 entity inside its program). */
b5ec771e
PA
5742 if (lookup_name.ada ().standard_p ())
5743 block = NULL;
4c4b4cd2 5744
339c13b6 5745 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5746
4eeaa230
DE
5747 if (block != NULL)
5748 {
5749 if (full_search)
b5ec771e 5750 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5751 else
5752 {
5753 /* In the !full_search case we're are being called by
5754 ada_iterate_over_symbols, and we don't want to search
5755 superblocks. */
b5ec771e 5756 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5757 }
22cee43f
PMR
5758 if (num_defns_collected (obstackp) > 0 || !full_search)
5759 return;
4eeaa230 5760 }
d2e4a39e 5761
339c13b6
JB
5762 /* No non-global symbols found. Check our cache to see if we have
5763 already performed this search before. If we have, then return
5764 the same result. */
5765
b5ec771e
PA
5766 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5767 domain, &sym, &block))
4c4b4cd2
PH
5768 {
5769 if (sym != NULL)
b5ec771e 5770 add_defn_to_vec (obstackp, sym, block);
22cee43f 5771 return;
4c4b4cd2 5772 }
14f9c5c9 5773
22cee43f
PMR
5774 if (made_global_lookup_p)
5775 *made_global_lookup_p = 1;
b1eedac9 5776
339c13b6
JB
5777 /* Search symbols from all global blocks. */
5778
b5ec771e 5779 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5780
4c4b4cd2 5781 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5782 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5783
22cee43f 5784 if (num_defns_collected (obstackp) == 0)
b5ec771e 5785 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5786}
5787
b5ec771e
PA
5788/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5789 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5790 matches.
54d343a2
TT
5791 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5792 found and the blocks and symbol tables (if any) in which they were
5793 found.
22cee43f
PMR
5794
5795 When full_search is non-zero, any non-function/non-enumeral
5796 symbol match within the nest of blocks whose innermost member is BLOCK,
5797 is the one match returned (no other matches in that or
5798 enclosing blocks is returned). If there are any matches in or
5799 surrounding BLOCK, then these alone are returned.
5800
5801 Names prefixed with "standard__" are handled specially: "standard__"
5802 is first stripped off, and only static and global symbols are searched. */
5803
5804static int
b5ec771e
PA
5805ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5806 const struct block *block,
22cee43f 5807 domain_enum domain,
54d343a2 5808 std::vector<struct block_symbol> *results,
22cee43f
PMR
5809 int full_search)
5810{
22cee43f
PMR
5811 int syms_from_global_search;
5812 int ndefns;
ec6a20c2 5813 auto_obstack obstack;
22cee43f 5814
ec6a20c2 5815 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5816 domain, full_search, &syms_from_global_search);
14f9c5c9 5817
ec6a20c2
JB
5818 ndefns = num_defns_collected (&obstack);
5819
54d343a2
TT
5820 struct block_symbol *base = defns_collected (&obstack, 1);
5821 for (int i = 0; i < ndefns; ++i)
5822 results->push_back (base[i]);
4c4b4cd2 5823
54d343a2 5824 ndefns = remove_extra_symbols (results);
4c4b4cd2 5825
b1eedac9 5826 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5827 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5828
b1eedac9 5829 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5830 cache_symbol (ada_lookup_name (lookup_name), domain,
5831 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5832
54d343a2 5833 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5834
14f9c5c9
AS
5835 return ndefns;
5836}
5837
b5ec771e 5838/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5839 in global scopes, returning the number of matches, and filling *RESULTS
5840 with (SYM,BLOCK) tuples.
ec6a20c2 5841
4eeaa230
DE
5842 See ada_lookup_symbol_list_worker for further details. */
5843
5844int
b5ec771e 5845ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5846 domain_enum domain,
5847 std::vector<struct block_symbol> *results)
4eeaa230 5848{
b5ec771e
PA
5849 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5850 lookup_name_info lookup_name (name, name_match_type);
5851
5852 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5853}
5854
5855/* Implementation of the la_iterate_over_symbols method. */
5856
5857static void
14bc53a8 5858ada_iterate_over_symbols
b5ec771e
PA
5859 (const struct block *block, const lookup_name_info &name,
5860 domain_enum domain,
14bc53a8 5861 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5862{
5863 int ndefs, i;
54d343a2 5864 std::vector<struct block_symbol> results;
4eeaa230
DE
5865
5866 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5867
4eeaa230
DE
5868 for (i = 0; i < ndefs; ++i)
5869 {
7e41c8db 5870 if (!callback (&results[i]))
4eeaa230
DE
5871 break;
5872 }
5873}
5874
4e5c77fe
JB
5875/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5876 to 1, but choosing the first symbol found if there are multiple
5877 choices.
5878
5e2336be
JB
5879 The result is stored in *INFO, which must be non-NULL.
5880 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5881
5882void
5883ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5884 domain_enum domain,
d12307c1 5885 struct block_symbol *info)
14f9c5c9 5886{
b5ec771e
PA
5887 /* Since we already have an encoded name, wrap it in '<>' to force a
5888 verbatim match. Otherwise, if the name happens to not look like
5889 an encoded name (because it doesn't include a "__"),
5890 ada_lookup_name_info would re-encode/fold it again, and that
5891 would e.g., incorrectly lowercase object renaming names like
5892 "R28b" -> "r28b". */
5893 std::string verbatim = std::string ("<") + name + '>';
5894
5e2336be 5895 gdb_assert (info != NULL);
f98fc17b 5896 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5897}
aeb5907d
JB
5898
5899/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5900 scope and in global scopes, or NULL if none. NAME is folded and
5901 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5902 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5903 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5904
d12307c1 5905struct block_symbol
aeb5907d 5906ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5907 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5908{
5909 if (is_a_field_of_this != NULL)
5910 *is_a_field_of_this = 0;
5911
54d343a2 5912 std::vector<struct block_symbol> candidates;
f98fc17b 5913 int n_candidates;
f98fc17b
PA
5914
5915 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5916
5917 if (n_candidates == 0)
54d343a2 5918 return {};
f98fc17b
PA
5919
5920 block_symbol info = candidates[0];
5921 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5922 return info;
4c4b4cd2 5923}
14f9c5c9 5924
d12307c1 5925static struct block_symbol
f606139a
DE
5926ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5927 const char *name,
76a01679 5928 const struct block *block,
21b556f4 5929 const domain_enum domain)
4c4b4cd2 5930{
d12307c1 5931 struct block_symbol sym;
04dccad0
JB
5932
5933 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5934 if (sym.symbol != NULL)
04dccad0
JB
5935 return sym;
5936
5937 /* If we haven't found a match at this point, try the primitive
5938 types. In other languages, this search is performed before
5939 searching for global symbols in order to short-circuit that
5940 global-symbol search if it happens that the name corresponds
5941 to a primitive type. But we cannot do the same in Ada, because
5942 it is perfectly legitimate for a program to declare a type which
5943 has the same name as a standard type. If looking up a type in
5944 that situation, we have traditionally ignored the primitive type
5945 in favor of user-defined types. This is why, unlike most other
5946 languages, we search the primitive types this late and only after
5947 having searched the global symbols without success. */
5948
5949 if (domain == VAR_DOMAIN)
5950 {
5951 struct gdbarch *gdbarch;
5952
5953 if (block == NULL)
5954 gdbarch = target_gdbarch ();
5955 else
5956 gdbarch = block_gdbarch (block);
d12307c1
PMR
5957 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5958 if (sym.symbol != NULL)
04dccad0
JB
5959 return sym;
5960 }
5961
6640a367 5962 return {};
14f9c5c9
AS
5963}
5964
5965
4c4b4cd2
PH
5966/* True iff STR is a possible encoded suffix of a normal Ada name
5967 that is to be ignored for matching purposes. Suffixes of parallel
5968 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5969 are given by any of the regular expressions:
4c4b4cd2 5970
babe1480
JB
5971 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5972 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5973 TKB [subprogram suffix for task bodies]
babe1480 5974 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5975 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5976
5977 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5978 match is performed. This sequence is used to differentiate homonyms,
5979 is an optional part of a valid name suffix. */
4c4b4cd2 5980
14f9c5c9 5981static int
d2e4a39e 5982is_name_suffix (const char *str)
14f9c5c9
AS
5983{
5984 int k;
4c4b4cd2
PH
5985 const char *matching;
5986 const int len = strlen (str);
5987
babe1480
JB
5988 /* Skip optional leading __[0-9]+. */
5989
4c4b4cd2
PH
5990 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5991 {
babe1480
JB
5992 str += 3;
5993 while (isdigit (str[0]))
5994 str += 1;
4c4b4cd2 5995 }
babe1480
JB
5996
5997 /* [.$][0-9]+ */
4c4b4cd2 5998
babe1480 5999 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6000 {
babe1480 6001 matching = str + 1;
4c4b4cd2
PH
6002 while (isdigit (matching[0]))
6003 matching += 1;
6004 if (matching[0] == '\0')
6005 return 1;
6006 }
6007
6008 /* ___[0-9]+ */
babe1480 6009
4c4b4cd2
PH
6010 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6011 {
6012 matching = str + 3;
6013 while (isdigit (matching[0]))
6014 matching += 1;
6015 if (matching[0] == '\0')
6016 return 1;
6017 }
6018
9ac7f98e
JB
6019 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6020
6021 if (strcmp (str, "TKB") == 0)
6022 return 1;
6023
529cad9c
PH
6024#if 0
6025 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6026 with a N at the end. Unfortunately, the compiler uses the same
6027 convention for other internal types it creates. So treating
529cad9c 6028 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6029 some regressions. For instance, consider the case of an enumerated
6030 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6031 name ends with N.
6032 Having a single character like this as a suffix carrying some
0963b4bd 6033 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6034 to be something like "_N" instead. In the meantime, do not do
6035 the following check. */
6036 /* Protected Object Subprograms */
6037 if (len == 1 && str [0] == 'N')
6038 return 1;
6039#endif
6040
6041 /* _E[0-9]+[bs]$ */
6042 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6043 {
6044 matching = str + 3;
6045 while (isdigit (matching[0]))
6046 matching += 1;
6047 if ((matching[0] == 'b' || matching[0] == 's')
6048 && matching [1] == '\0')
6049 return 1;
6050 }
6051
4c4b4cd2
PH
6052 /* ??? We should not modify STR directly, as we are doing below. This
6053 is fine in this case, but may become problematic later if we find
6054 that this alternative did not work, and want to try matching
6055 another one from the begining of STR. Since we modified it, we
6056 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6057 if (str[0] == 'X')
6058 {
6059 str += 1;
d2e4a39e 6060 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6061 {
6062 if (str[0] != 'n' && str[0] != 'b')
6063 return 0;
6064 str += 1;
6065 }
14f9c5c9 6066 }
babe1480 6067
14f9c5c9
AS
6068 if (str[0] == '\000')
6069 return 1;
babe1480 6070
d2e4a39e 6071 if (str[0] == '_')
14f9c5c9
AS
6072 {
6073 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6074 return 0;
d2e4a39e 6075 if (str[2] == '_')
4c4b4cd2 6076 {
61ee279c
PH
6077 if (strcmp (str + 3, "JM") == 0)
6078 return 1;
6079 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6080 the LJM suffix in favor of the JM one. But we will
6081 still accept LJM as a valid suffix for a reasonable
6082 amount of time, just to allow ourselves to debug programs
6083 compiled using an older version of GNAT. */
4c4b4cd2
PH
6084 if (strcmp (str + 3, "LJM") == 0)
6085 return 1;
6086 if (str[3] != 'X')
6087 return 0;
1265e4aa
JB
6088 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6089 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6090 return 1;
6091 if (str[4] == 'R' && str[5] != 'T')
6092 return 1;
6093 return 0;
6094 }
6095 if (!isdigit (str[2]))
6096 return 0;
6097 for (k = 3; str[k] != '\0'; k += 1)
6098 if (!isdigit (str[k]) && str[k] != '_')
6099 return 0;
14f9c5c9
AS
6100 return 1;
6101 }
4c4b4cd2 6102 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6103 {
4c4b4cd2
PH
6104 for (k = 2; str[k] != '\0'; k += 1)
6105 if (!isdigit (str[k]) && str[k] != '_')
6106 return 0;
14f9c5c9
AS
6107 return 1;
6108 }
6109 return 0;
6110}
d2e4a39e 6111
aeb5907d
JB
6112/* Return non-zero if the string starting at NAME and ending before
6113 NAME_END contains no capital letters. */
529cad9c
PH
6114
6115static int
6116is_valid_name_for_wild_match (const char *name0)
6117{
6118 const char *decoded_name = ada_decode (name0);
6119 int i;
6120
5823c3ef
JB
6121 /* If the decoded name starts with an angle bracket, it means that
6122 NAME0 does not follow the GNAT encoding format. It should then
6123 not be allowed as a possible wild match. */
6124 if (decoded_name[0] == '<')
6125 return 0;
6126
529cad9c
PH
6127 for (i=0; decoded_name[i] != '\0'; i++)
6128 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6129 return 0;
6130
6131 return 1;
6132}
6133
73589123
PH
6134/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6135 that could start a simple name. Assumes that *NAMEP points into
6136 the string beginning at NAME0. */
4c4b4cd2 6137
14f9c5c9 6138static int
73589123 6139advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6140{
73589123 6141 const char *name = *namep;
5b4ee69b 6142
5823c3ef 6143 while (1)
14f9c5c9 6144 {
aa27d0b3 6145 int t0, t1;
73589123
PH
6146
6147 t0 = *name;
6148 if (t0 == '_')
6149 {
6150 t1 = name[1];
6151 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6152 {
6153 name += 1;
61012eef 6154 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6155 break;
6156 else
6157 name += 1;
6158 }
aa27d0b3
JB
6159 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6160 || name[2] == target0))
73589123
PH
6161 {
6162 name += 2;
6163 break;
6164 }
6165 else
6166 return 0;
6167 }
6168 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6169 name += 1;
6170 else
5823c3ef 6171 return 0;
73589123
PH
6172 }
6173
6174 *namep = name;
6175 return 1;
6176}
6177
b5ec771e
PA
6178/* Return true iff NAME encodes a name of the form prefix.PATN.
6179 Ignores any informational suffixes of NAME (i.e., for which
6180 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6181 simple name. */
73589123 6182
b5ec771e 6183static bool
73589123
PH
6184wild_match (const char *name, const char *patn)
6185{
22e048c9 6186 const char *p;
73589123
PH
6187 const char *name0 = name;
6188
6189 while (1)
6190 {
6191 const char *match = name;
6192
6193 if (*name == *patn)
6194 {
6195 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6196 if (*p != *name)
6197 break;
6198 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6199 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6200
6201 if (name[-1] == '_')
6202 name -= 1;
6203 }
6204 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6205 return false;
96d887e8 6206 }
96d887e8
PH
6207}
6208
b5ec771e
PA
6209/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6210 any trailing suffixes that encode debugging information or leading
6211 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6212 information that is ignored). */
40658b94 6213
b5ec771e 6214static bool
c4d840bd
PH
6215full_match (const char *sym_name, const char *search_name)
6216{
b5ec771e
PA
6217 size_t search_name_len = strlen (search_name);
6218
6219 if (strncmp (sym_name, search_name, search_name_len) == 0
6220 && is_name_suffix (sym_name + search_name_len))
6221 return true;
6222
6223 if (startswith (sym_name, "_ada_")
6224 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6225 && is_name_suffix (sym_name + search_name_len + 5))
6226 return true;
c4d840bd 6227
b5ec771e
PA
6228 return false;
6229}
c4d840bd 6230
b5ec771e
PA
6231/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6232 *defn_symbols, updating the list of symbols in OBSTACKP (if
6233 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6234
6235static void
6236ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6237 const struct block *block,
6238 const lookup_name_info &lookup_name,
6239 domain_enum domain, struct objfile *objfile)
96d887e8 6240{
8157b174 6241 struct block_iterator iter;
96d887e8
PH
6242 /* A matching argument symbol, if any. */
6243 struct symbol *arg_sym;
6244 /* Set true when we find a matching non-argument symbol. */
6245 int found_sym;
6246 struct symbol *sym;
6247
6248 arg_sym = NULL;
6249 found_sym = 0;
b5ec771e
PA
6250 for (sym = block_iter_match_first (block, lookup_name, &iter);
6251 sym != NULL;
6252 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6253 {
b5ec771e
PA
6254 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6255 SYMBOL_DOMAIN (sym), domain))
6256 {
6257 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6258 {
6259 if (SYMBOL_IS_ARGUMENT (sym))
6260 arg_sym = sym;
6261 else
6262 {
6263 found_sym = 1;
6264 add_defn_to_vec (obstackp,
6265 fixup_symbol_section (sym, objfile),
6266 block);
6267 }
6268 }
6269 }
96d887e8
PH
6270 }
6271
22cee43f
PMR
6272 /* Handle renamings. */
6273
b5ec771e 6274 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6275 found_sym = 1;
6276
96d887e8
PH
6277 if (!found_sym && arg_sym != NULL)
6278 {
76a01679
JB
6279 add_defn_to_vec (obstackp,
6280 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6281 block);
96d887e8
PH
6282 }
6283
b5ec771e 6284 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6285 {
6286 arg_sym = NULL;
6287 found_sym = 0;
b5ec771e
PA
6288 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6289 const char *name = ada_lookup_name.c_str ();
6290 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6291
6292 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6293 {
4186eb54
KS
6294 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6295 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6296 {
6297 int cmp;
6298
6299 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6300 if (cmp == 0)
6301 {
61012eef 6302 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6303 if (cmp == 0)
6304 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6305 name_len);
6306 }
6307
6308 if (cmp == 0
6309 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6310 {
2a2d4dc3
AS
6311 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6312 {
6313 if (SYMBOL_IS_ARGUMENT (sym))
6314 arg_sym = sym;
6315 else
6316 {
6317 found_sym = 1;
6318 add_defn_to_vec (obstackp,
6319 fixup_symbol_section (sym, objfile),
6320 block);
6321 }
6322 }
76a01679
JB
6323 }
6324 }
76a01679 6325 }
96d887e8
PH
6326
6327 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6328 They aren't parameters, right? */
6329 if (!found_sym && arg_sym != NULL)
6330 {
6331 add_defn_to_vec (obstackp,
76a01679 6332 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6333 block);
96d887e8
PH
6334 }
6335 }
6336}
6337\f
41d27058
JB
6338
6339 /* Symbol Completion */
6340
b5ec771e 6341/* See symtab.h. */
41d27058 6342
b5ec771e
PA
6343bool
6344ada_lookup_name_info::matches
6345 (const char *sym_name,
6346 symbol_name_match_type match_type,
a207cff2 6347 completion_match_result *comp_match_res) const
41d27058 6348{
b5ec771e
PA
6349 bool match = false;
6350 const char *text = m_encoded_name.c_str ();
6351 size_t text_len = m_encoded_name.size ();
41d27058
JB
6352
6353 /* First, test against the fully qualified name of the symbol. */
6354
6355 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6356 match = true;
41d27058 6357
b5ec771e 6358 if (match && !m_encoded_p)
41d27058
JB
6359 {
6360 /* One needed check before declaring a positive match is to verify
6361 that iff we are doing a verbatim match, the decoded version
6362 of the symbol name starts with '<'. Otherwise, this symbol name
6363 is not a suitable completion. */
6364 const char *sym_name_copy = sym_name;
b5ec771e 6365 bool has_angle_bracket;
41d27058
JB
6366
6367 sym_name = ada_decode (sym_name);
6368 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6369 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6370 sym_name = sym_name_copy;
6371 }
6372
b5ec771e 6373 if (match && !m_verbatim_p)
41d27058
JB
6374 {
6375 /* When doing non-verbatim match, another check that needs to
6376 be done is to verify that the potentially matching symbol name
6377 does not include capital letters, because the ada-mode would
6378 not be able to understand these symbol names without the
6379 angle bracket notation. */
6380 const char *tmp;
6381
6382 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6383 if (*tmp != '\0')
b5ec771e 6384 match = false;
41d27058
JB
6385 }
6386
6387 /* Second: Try wild matching... */
6388
b5ec771e 6389 if (!match && m_wild_match_p)
41d27058
JB
6390 {
6391 /* Since we are doing wild matching, this means that TEXT
6392 may represent an unqualified symbol name. We therefore must
6393 also compare TEXT against the unqualified name of the symbol. */
6394 sym_name = ada_unqualified_name (ada_decode (sym_name));
6395
6396 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6397 match = true;
41d27058
JB
6398 }
6399
b5ec771e 6400 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6401
6402 if (!match)
b5ec771e 6403 return false;
41d27058 6404
a207cff2 6405 if (comp_match_res != NULL)
b5ec771e 6406 {
a207cff2 6407 std::string &match_str = comp_match_res->match.storage ();
41d27058 6408
b5ec771e 6409 if (!m_encoded_p)
a207cff2 6410 match_str = ada_decode (sym_name);
b5ec771e
PA
6411 else
6412 {
6413 if (m_verbatim_p)
6414 match_str = add_angle_brackets (sym_name);
6415 else
6416 match_str = sym_name;
41d27058 6417
b5ec771e 6418 }
a207cff2
PA
6419
6420 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6421 }
6422
b5ec771e 6423 return true;
41d27058
JB
6424}
6425
b5ec771e 6426/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6427 WORD is the entire command on which completion is made. */
41d27058 6428
eb3ff9a5
PA
6429static void
6430ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6431 complete_symbol_mode mode,
b5ec771e
PA
6432 symbol_name_match_type name_match_type,
6433 const char *text, const char *word,
eb3ff9a5 6434 enum type_code code)
41d27058 6435{
41d27058 6436 struct symbol *sym;
3977b71f 6437 const struct block *b, *surrounding_static_block = 0;
8157b174 6438 struct block_iterator iter;
41d27058 6439
2f68a895
TT
6440 gdb_assert (code == TYPE_CODE_UNDEF);
6441
1b026119 6442 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6443
6444 /* First, look at the partial symtab symbols. */
14bc53a8 6445 expand_symtabs_matching (NULL,
b5ec771e
PA
6446 lookup_name,
6447 NULL,
14bc53a8
PA
6448 NULL,
6449 ALL_DOMAIN);
41d27058
JB
6450
6451 /* At this point scan through the misc symbol vectors and add each
6452 symbol you find to the list. Eventually we want to ignore
6453 anything that isn't a text symbol (everything else will be
6454 handled by the psymtab code above). */
6455
2030c079 6456 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6457 {
7932255d 6458 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6459 {
6460 QUIT;
6461
6462 if (completion_skip_symbol (mode, msymbol))
6463 continue;
6464
6465 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6466
6467 /* Ada minimal symbols won't have their language set to Ada. If
6468 we let completion_list_add_name compare using the
6469 default/C-like matcher, then when completing e.g., symbols in a
6470 package named "pck", we'd match internal Ada symbols like
6471 "pckS", which are invalid in an Ada expression, unless you wrap
6472 them in '<' '>' to request a verbatim match.
6473
6474 Unfortunately, some Ada encoded names successfully demangle as
6475 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6476 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6477 with the wrong language set. Paper over that issue here. */
6478 if (symbol_language == language_auto
6479 || symbol_language == language_cplus)
6480 symbol_language = language_ada;
6481
6482 completion_list_add_name (tracker,
6483 symbol_language,
6484 MSYMBOL_LINKAGE_NAME (msymbol),
6485 lookup_name, text, word);
6486 }
6487 }
41d27058
JB
6488
6489 /* Search upwards from currently selected frame (so that we can
6490 complete on local vars. */
6491
6492 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6493 {
6494 if (!BLOCK_SUPERBLOCK (b))
6495 surrounding_static_block = b; /* For elmin of dups */
6496
6497 ALL_BLOCK_SYMBOLS (b, iter, sym)
6498 {
f9d67a22
PA
6499 if (completion_skip_symbol (mode, sym))
6500 continue;
6501
b5ec771e
PA
6502 completion_list_add_name (tracker,
6503 SYMBOL_LANGUAGE (sym),
6504 SYMBOL_LINKAGE_NAME (sym),
1b026119 6505 lookup_name, text, word);
41d27058
JB
6506 }
6507 }
6508
6509 /* Go through the symtabs and check the externs and statics for
43f3e411 6510 symbols which match. */
41d27058 6511
2030c079 6512 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6513 {
b669c953 6514 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6515 {
6516 QUIT;
6517 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6518 ALL_BLOCK_SYMBOLS (b, iter, sym)
6519 {
6520 if (completion_skip_symbol (mode, sym))
6521 continue;
f9d67a22 6522
d8aeb77f
TT
6523 completion_list_add_name (tracker,
6524 SYMBOL_LANGUAGE (sym),
6525 SYMBOL_LINKAGE_NAME (sym),
6526 lookup_name, text, word);
6527 }
6528 }
41d27058 6529 }
41d27058 6530
2030c079 6531 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6532 {
b669c953 6533 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6534 {
6535 QUIT;
6536 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6537 /* Don't do this block twice. */
6538 if (b == surrounding_static_block)
6539 continue;
6540 ALL_BLOCK_SYMBOLS (b, iter, sym)
6541 {
6542 if (completion_skip_symbol (mode, sym))
6543 continue;
f9d67a22 6544
d8aeb77f
TT
6545 completion_list_add_name (tracker,
6546 SYMBOL_LANGUAGE (sym),
6547 SYMBOL_LINKAGE_NAME (sym),
6548 lookup_name, text, word);
6549 }
6550 }
41d27058 6551 }
41d27058
JB
6552}
6553
963a6417 6554 /* Field Access */
96d887e8 6555
73fb9985
JB
6556/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6557 for tagged types. */
6558
6559static int
6560ada_is_dispatch_table_ptr_type (struct type *type)
6561{
0d5cff50 6562 const char *name;
73fb9985
JB
6563
6564 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6565 return 0;
6566
6567 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6568 if (name == NULL)
6569 return 0;
6570
6571 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6572}
6573
ac4a2da4
JG
6574/* Return non-zero if TYPE is an interface tag. */
6575
6576static int
6577ada_is_interface_tag (struct type *type)
6578{
6579 const char *name = TYPE_NAME (type);
6580
6581 if (name == NULL)
6582 return 0;
6583
6584 return (strcmp (name, "ada__tags__interface_tag") == 0);
6585}
6586
963a6417
PH
6587/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6588 to be invisible to users. */
96d887e8 6589
963a6417
PH
6590int
6591ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6592{
963a6417
PH
6593 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6594 return 1;
ffde82bf 6595
73fb9985
JB
6596 /* Check the name of that field. */
6597 {
6598 const char *name = TYPE_FIELD_NAME (type, field_num);
6599
6600 /* Anonymous field names should not be printed.
6601 brobecker/2007-02-20: I don't think this can actually happen
6602 but we don't want to print the value of annonymous fields anyway. */
6603 if (name == NULL)
6604 return 1;
6605
ffde82bf
JB
6606 /* Normally, fields whose name start with an underscore ("_")
6607 are fields that have been internally generated by the compiler,
6608 and thus should not be printed. The "_parent" field is special,
6609 however: This is a field internally generated by the compiler
6610 for tagged types, and it contains the components inherited from
6611 the parent type. This field should not be printed as is, but
6612 should not be ignored either. */
61012eef 6613 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6614 return 1;
6615 }
6616
ac4a2da4
JG
6617 /* If this is the dispatch table of a tagged type or an interface tag,
6618 then ignore. */
73fb9985 6619 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6620 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6621 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6622 return 1;
6623
6624 /* Not a special field, so it should not be ignored. */
6625 return 0;
963a6417 6626}
96d887e8 6627
963a6417 6628/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6629 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6630
963a6417
PH
6631int
6632ada_is_tagged_type (struct type *type, int refok)
6633{
988f6b3d 6634 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6635}
96d887e8 6636
963a6417 6637/* True iff TYPE represents the type of X'Tag */
96d887e8 6638
963a6417
PH
6639int
6640ada_is_tag_type (struct type *type)
6641{
460efde1
JB
6642 type = ada_check_typedef (type);
6643
963a6417
PH
6644 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6645 return 0;
6646 else
96d887e8 6647 {
963a6417 6648 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6649
963a6417
PH
6650 return (name != NULL
6651 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6652 }
96d887e8
PH
6653}
6654
963a6417 6655/* The type of the tag on VAL. */
76a01679 6656
963a6417
PH
6657struct type *
6658ada_tag_type (struct value *val)
96d887e8 6659{
988f6b3d 6660 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6661}
96d887e8 6662
b50d69b5
JG
6663/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6664 retired at Ada 05). */
6665
6666static int
6667is_ada95_tag (struct value *tag)
6668{
6669 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6670}
6671
963a6417 6672/* The value of the tag on VAL. */
96d887e8 6673
963a6417
PH
6674struct value *
6675ada_value_tag (struct value *val)
6676{
03ee6b2e 6677 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6678}
6679
963a6417
PH
6680/* The value of the tag on the object of type TYPE whose contents are
6681 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6682 ADDRESS. */
96d887e8 6683
963a6417 6684static struct value *
10a2c479 6685value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6686 const gdb_byte *valaddr,
963a6417 6687 CORE_ADDR address)
96d887e8 6688{
b5385fc0 6689 int tag_byte_offset;
963a6417 6690 struct type *tag_type;
5b4ee69b 6691
963a6417 6692 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6693 NULL, NULL, NULL))
96d887e8 6694 {
fc1a4b47 6695 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6696 ? NULL
6697 : valaddr + tag_byte_offset);
963a6417 6698 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6699
963a6417 6700 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6701 }
963a6417
PH
6702 return NULL;
6703}
96d887e8 6704
963a6417
PH
6705static struct type *
6706type_from_tag (struct value *tag)
6707{
6708 const char *type_name = ada_tag_name (tag);
5b4ee69b 6709
963a6417
PH
6710 if (type_name != NULL)
6711 return ada_find_any_type (ada_encode (type_name));
6712 return NULL;
6713}
96d887e8 6714
b50d69b5
JG
6715/* Given a value OBJ of a tagged type, return a value of this
6716 type at the base address of the object. The base address, as
6717 defined in Ada.Tags, it is the address of the primary tag of
6718 the object, and therefore where the field values of its full
6719 view can be fetched. */
6720
6721struct value *
6722ada_tag_value_at_base_address (struct value *obj)
6723{
b50d69b5
JG
6724 struct value *val;
6725 LONGEST offset_to_top = 0;
6726 struct type *ptr_type, *obj_type;
6727 struct value *tag;
6728 CORE_ADDR base_address;
6729
6730 obj_type = value_type (obj);
6731
6732 /* It is the responsability of the caller to deref pointers. */
6733
6734 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6735 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6736 return obj;
6737
6738 tag = ada_value_tag (obj);
6739 if (!tag)
6740 return obj;
6741
6742 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6743
6744 if (is_ada95_tag (tag))
6745 return obj;
6746
08f49010
XR
6747 ptr_type = language_lookup_primitive_type
6748 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6749 ptr_type = lookup_pointer_type (ptr_type);
6750 val = value_cast (ptr_type, tag);
6751 if (!val)
6752 return obj;
6753
6754 /* It is perfectly possible that an exception be raised while
6755 trying to determine the base address, just like for the tag;
6756 see ada_tag_name for more details. We do not print the error
6757 message for the same reason. */
6758
a70b8144 6759 try
b50d69b5
JG
6760 {
6761 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6762 }
6763
230d2906 6764 catch (const gdb_exception_error &e)
492d29ea
PA
6765 {
6766 return obj;
6767 }
b50d69b5
JG
6768
6769 /* If offset is null, nothing to do. */
6770
6771 if (offset_to_top == 0)
6772 return obj;
6773
6774 /* -1 is a special case in Ada.Tags; however, what should be done
6775 is not quite clear from the documentation. So do nothing for
6776 now. */
6777
6778 if (offset_to_top == -1)
6779 return obj;
6780
08f49010
XR
6781 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6782 from the base address. This was however incompatible with
6783 C++ dispatch table: C++ uses a *negative* value to *add*
6784 to the base address. Ada's convention has therefore been
6785 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6786 use the same convention. Here, we support both cases by
6787 checking the sign of OFFSET_TO_TOP. */
6788
6789 if (offset_to_top > 0)
6790 offset_to_top = -offset_to_top;
6791
6792 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6793 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6794
6795 /* Make sure that we have a proper tag at the new address.
6796 Otherwise, offset_to_top is bogus (which can happen when
6797 the object is not initialized yet). */
6798
6799 if (!tag)
6800 return obj;
6801
6802 obj_type = type_from_tag (tag);
6803
6804 if (!obj_type)
6805 return obj;
6806
6807 return value_from_contents_and_address (obj_type, NULL, base_address);
6808}
6809
1b611343
JB
6810/* Return the "ada__tags__type_specific_data" type. */
6811
6812static struct type *
6813ada_get_tsd_type (struct inferior *inf)
963a6417 6814{
1b611343 6815 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6816
1b611343
JB
6817 if (data->tsd_type == 0)
6818 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6819 return data->tsd_type;
6820}
529cad9c 6821
1b611343
JB
6822/* Return the TSD (type-specific data) associated to the given TAG.
6823 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6824
1b611343 6825 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6826
1b611343
JB
6827static struct value *
6828ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6829{
4c4b4cd2 6830 struct value *val;
1b611343 6831 struct type *type;
5b4ee69b 6832
1b611343
JB
6833 /* First option: The TSD is simply stored as a field of our TAG.
6834 Only older versions of GNAT would use this format, but we have
6835 to test it first, because there are no visible markers for
6836 the current approach except the absence of that field. */
529cad9c 6837
1b611343
JB
6838 val = ada_value_struct_elt (tag, "tsd", 1);
6839 if (val)
6840 return val;
e802dbe0 6841
1b611343
JB
6842 /* Try the second representation for the dispatch table (in which
6843 there is no explicit 'tsd' field in the referent of the tag pointer,
6844 and instead the tsd pointer is stored just before the dispatch
6845 table. */
e802dbe0 6846
1b611343
JB
6847 type = ada_get_tsd_type (current_inferior());
6848 if (type == NULL)
6849 return NULL;
6850 type = lookup_pointer_type (lookup_pointer_type (type));
6851 val = value_cast (type, tag);
6852 if (val == NULL)
6853 return NULL;
6854 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6855}
6856
1b611343
JB
6857/* Given the TSD of a tag (type-specific data), return a string
6858 containing the name of the associated type.
6859
6860 The returned value is good until the next call. May return NULL
6861 if we are unable to determine the tag name. */
6862
6863static char *
6864ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6865{
529cad9c
PH
6866 static char name[1024];
6867 char *p;
1b611343 6868 struct value *val;
529cad9c 6869
1b611343 6870 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6871 if (val == NULL)
1b611343 6872 return NULL;
4c4b4cd2
PH
6873 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6874 for (p = name; *p != '\0'; p += 1)
6875 if (isalpha (*p))
6876 *p = tolower (*p);
1b611343 6877 return name;
4c4b4cd2
PH
6878}
6879
6880/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6881 a C string.
6882
6883 Return NULL if the TAG is not an Ada tag, or if we were unable to
6884 determine the name of that tag. The result is good until the next
6885 call. */
4c4b4cd2
PH
6886
6887const char *
6888ada_tag_name (struct value *tag)
6889{
1b611343 6890 char *name = NULL;
5b4ee69b 6891
df407dfe 6892 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6893 return NULL;
1b611343
JB
6894
6895 /* It is perfectly possible that an exception be raised while trying
6896 to determine the TAG's name, even under normal circumstances:
6897 The associated variable may be uninitialized or corrupted, for
6898 instance. We do not let any exception propagate past this point.
6899 instead we return NULL.
6900
6901 We also do not print the error message either (which often is very
6902 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6903 the caller print a more meaningful message if necessary. */
a70b8144 6904 try
1b611343
JB
6905 {
6906 struct value *tsd = ada_get_tsd_from_tag (tag);
6907
6908 if (tsd != NULL)
6909 name = ada_tag_name_from_tsd (tsd);
6910 }
230d2906 6911 catch (const gdb_exception_error &e)
492d29ea
PA
6912 {
6913 }
1b611343
JB
6914
6915 return name;
4c4b4cd2
PH
6916}
6917
6918/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6919
d2e4a39e 6920struct type *
ebf56fd3 6921ada_parent_type (struct type *type)
14f9c5c9
AS
6922{
6923 int i;
6924
61ee279c 6925 type = ada_check_typedef (type);
14f9c5c9
AS
6926
6927 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6928 return NULL;
6929
6930 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6931 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6932 {
6933 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6934
6935 /* If the _parent field is a pointer, then dereference it. */
6936 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6937 parent_type = TYPE_TARGET_TYPE (parent_type);
6938 /* If there is a parallel XVS type, get the actual base type. */
6939 parent_type = ada_get_base_type (parent_type);
6940
6941 return ada_check_typedef (parent_type);
6942 }
14f9c5c9
AS
6943
6944 return NULL;
6945}
6946
4c4b4cd2
PH
6947/* True iff field number FIELD_NUM of structure type TYPE contains the
6948 parent-type (inherited) fields of a derived type. Assumes TYPE is
6949 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6950
6951int
ebf56fd3 6952ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6953{
61ee279c 6954 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6955
4c4b4cd2 6956 return (name != NULL
61012eef
GB
6957 && (startswith (name, "PARENT")
6958 || startswith (name, "_parent")));
14f9c5c9
AS
6959}
6960
4c4b4cd2 6961/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6962 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6963 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6964 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6965 structures. */
14f9c5c9
AS
6966
6967int
ebf56fd3 6968ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6969{
d2e4a39e 6970 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6971
dddc0e16
JB
6972 if (name != NULL && strcmp (name, "RETVAL") == 0)
6973 {
6974 /* This happens in functions with "out" or "in out" parameters
6975 which are passed by copy. For such functions, GNAT describes
6976 the function's return type as being a struct where the return
6977 value is in a field called RETVAL, and where the other "out"
6978 or "in out" parameters are fields of that struct. This is not
6979 a wrapper. */
6980 return 0;
6981 }
6982
d2e4a39e 6983 return (name != NULL
61012eef 6984 && (startswith (name, "PARENT")
4c4b4cd2 6985 || strcmp (name, "REP") == 0
61012eef 6986 || startswith (name, "_parent")
4c4b4cd2 6987 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6988}
6989
4c4b4cd2
PH
6990/* True iff field number FIELD_NUM of structure or union type TYPE
6991 is a variant wrapper. Assumes TYPE is a structure type with at least
6992 FIELD_NUM+1 fields. */
14f9c5c9
AS
6993
6994int
ebf56fd3 6995ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6996{
8ecb59f8
TT
6997 /* Only Ada types are eligible. */
6998 if (!ADA_TYPE_P (type))
6999 return 0;
7000
d2e4a39e 7001 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7002
14f9c5c9 7003 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7004 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7005 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7006 == TYPE_CODE_UNION)));
14f9c5c9
AS
7007}
7008
7009/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7010 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7011 returns the type of the controlling discriminant for the variant.
7012 May return NULL if the type could not be found. */
14f9c5c9 7013
d2e4a39e 7014struct type *
ebf56fd3 7015ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7016{
a121b7c1 7017 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7018
988f6b3d 7019 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7020}
7021
4c4b4cd2 7022/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7023 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7024 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7025
7026int
ebf56fd3 7027ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7028{
d2e4a39e 7029 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7030
14f9c5c9
AS
7031 return (name != NULL && name[0] == 'O');
7032}
7033
7034/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7035 returns the name of the discriminant controlling the variant.
7036 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7037
a121b7c1 7038const char *
ebf56fd3 7039ada_variant_discrim_name (struct type *type0)
14f9c5c9 7040{
d2e4a39e 7041 static char *result = NULL;
14f9c5c9 7042 static size_t result_len = 0;
d2e4a39e
AS
7043 struct type *type;
7044 const char *name;
7045 const char *discrim_end;
7046 const char *discrim_start;
14f9c5c9
AS
7047
7048 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7049 type = TYPE_TARGET_TYPE (type0);
7050 else
7051 type = type0;
7052
7053 name = ada_type_name (type);
7054
7055 if (name == NULL || name[0] == '\000')
7056 return "";
7057
7058 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7059 discrim_end -= 1)
7060 {
61012eef 7061 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7062 break;
14f9c5c9
AS
7063 }
7064 if (discrim_end == name)
7065 return "";
7066
d2e4a39e 7067 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7068 discrim_start -= 1)
7069 {
d2e4a39e 7070 if (discrim_start == name + 1)
4c4b4cd2 7071 return "";
76a01679 7072 if ((discrim_start > name + 3
61012eef 7073 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7074 || discrim_start[-1] == '.')
7075 break;
14f9c5c9
AS
7076 }
7077
7078 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7079 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7080 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7081 return result;
7082}
7083
4c4b4cd2
PH
7084/* Scan STR for a subtype-encoded number, beginning at position K.
7085 Put the position of the character just past the number scanned in
7086 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7087 Return 1 if there was a valid number at the given position, and 0
7088 otherwise. A "subtype-encoded" number consists of the absolute value
7089 in decimal, followed by the letter 'm' to indicate a negative number.
7090 Assumes 0m does not occur. */
14f9c5c9
AS
7091
7092int
d2e4a39e 7093ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7094{
7095 ULONGEST RU;
7096
d2e4a39e 7097 if (!isdigit (str[k]))
14f9c5c9
AS
7098 return 0;
7099
4c4b4cd2 7100 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7101 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7102 LONGEST. */
14f9c5c9
AS
7103 RU = 0;
7104 while (isdigit (str[k]))
7105 {
d2e4a39e 7106 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7107 k += 1;
7108 }
7109
d2e4a39e 7110 if (str[k] == 'm')
14f9c5c9
AS
7111 {
7112 if (R != NULL)
4c4b4cd2 7113 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7114 k += 1;
7115 }
7116 else if (R != NULL)
7117 *R = (LONGEST) RU;
7118
4c4b4cd2 7119 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7120 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7121 number representable as a LONGEST (although either would probably work
7122 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7123 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7124
7125 if (new_k != NULL)
7126 *new_k = k;
7127 return 1;
7128}
7129
4c4b4cd2
PH
7130/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7131 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7132 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7133
d2e4a39e 7134int
ebf56fd3 7135ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7136{
d2e4a39e 7137 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7138 int p;
7139
7140 p = 0;
7141 while (1)
7142 {
d2e4a39e 7143 switch (name[p])
4c4b4cd2
PH
7144 {
7145 case '\0':
7146 return 0;
7147 case 'S':
7148 {
7149 LONGEST W;
5b4ee69b 7150
4c4b4cd2
PH
7151 if (!ada_scan_number (name, p + 1, &W, &p))
7152 return 0;
7153 if (val == W)
7154 return 1;
7155 break;
7156 }
7157 case 'R':
7158 {
7159 LONGEST L, U;
5b4ee69b 7160
4c4b4cd2
PH
7161 if (!ada_scan_number (name, p + 1, &L, &p)
7162 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7163 return 0;
7164 if (val >= L && val <= U)
7165 return 1;
7166 break;
7167 }
7168 case 'O':
7169 return 1;
7170 default:
7171 return 0;
7172 }
7173 }
7174}
7175
0963b4bd 7176/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7177
7178/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7179 ARG_TYPE, extract and return the value of one of its (non-static)
7180 fields. FIELDNO says which field. Differs from value_primitive_field
7181 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7182
4c4b4cd2 7183static struct value *
d2e4a39e 7184ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7185 struct type *arg_type)
14f9c5c9 7186{
14f9c5c9
AS
7187 struct type *type;
7188
61ee279c 7189 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7190 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7191
4504bbde
TT
7192 /* Handle packed fields. It might be that the field is not packed
7193 relative to its containing structure, but the structure itself is
7194 packed; in this case we must take the bit-field path. */
7195 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7196 {
7197 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7198 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7199
0fd88904 7200 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7201 offset + bit_pos / 8,
7202 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7203 }
7204 else
7205 return value_primitive_field (arg1, offset, fieldno, arg_type);
7206}
7207
52ce6436
PH
7208/* Find field with name NAME in object of type TYPE. If found,
7209 set the following for each argument that is non-null:
7210 - *FIELD_TYPE_P to the field's type;
7211 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7212 an object of that type;
7213 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7214 - *BIT_SIZE_P to its size in bits if the field is packed, and
7215 0 otherwise;
7216 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7217 fields up to but not including the desired field, or by the total
7218 number of fields if not found. A NULL value of NAME never
7219 matches; the function just counts visible fields in this case.
7220
828d5846
XR
7221 Notice that we need to handle when a tagged record hierarchy
7222 has some components with the same name, like in this scenario:
7223
7224 type Top_T is tagged record
7225 N : Integer := 1;
7226 U : Integer := 974;
7227 A : Integer := 48;
7228 end record;
7229
7230 type Middle_T is new Top.Top_T with record
7231 N : Character := 'a';
7232 C : Integer := 3;
7233 end record;
7234
7235 type Bottom_T is new Middle.Middle_T with record
7236 N : Float := 4.0;
7237 C : Character := '5';
7238 X : Integer := 6;
7239 A : Character := 'J';
7240 end record;
7241
7242 Let's say we now have a variable declared and initialized as follow:
7243
7244 TC : Top_A := new Bottom_T;
7245
7246 And then we use this variable to call this function
7247
7248 procedure Assign (Obj: in out Top_T; TV : Integer);
7249
7250 as follow:
7251
7252 Assign (Top_T (B), 12);
7253
7254 Now, we're in the debugger, and we're inside that procedure
7255 then and we want to print the value of obj.c:
7256
7257 Usually, the tagged record or one of the parent type owns the
7258 component to print and there's no issue but in this particular
7259 case, what does it mean to ask for Obj.C? Since the actual
7260 type for object is type Bottom_T, it could mean two things: type
7261 component C from the Middle_T view, but also component C from
7262 Bottom_T. So in that "undefined" case, when the component is
7263 not found in the non-resolved type (which includes all the
7264 components of the parent type), then resolve it and see if we
7265 get better luck once expanded.
7266
7267 In the case of homonyms in the derived tagged type, we don't
7268 guaranty anything, and pick the one that's easiest for us
7269 to program.
7270
0963b4bd 7271 Returns 1 if found, 0 otherwise. */
52ce6436 7272
4c4b4cd2 7273static int
0d5cff50 7274find_struct_field (const char *name, struct type *type, int offset,
76a01679 7275 struct type **field_type_p,
52ce6436
PH
7276 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7277 int *index_p)
4c4b4cd2
PH
7278{
7279 int i;
828d5846 7280 int parent_offset = -1;
4c4b4cd2 7281
61ee279c 7282 type = ada_check_typedef (type);
76a01679 7283
52ce6436
PH
7284 if (field_type_p != NULL)
7285 *field_type_p = NULL;
7286 if (byte_offset_p != NULL)
d5d6fca5 7287 *byte_offset_p = 0;
52ce6436
PH
7288 if (bit_offset_p != NULL)
7289 *bit_offset_p = 0;
7290 if (bit_size_p != NULL)
7291 *bit_size_p = 0;
7292
7293 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7294 {
7295 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7296 int fld_offset = offset + bit_pos / 8;
0d5cff50 7297 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7298
4c4b4cd2
PH
7299 if (t_field_name == NULL)
7300 continue;
7301
828d5846
XR
7302 else if (ada_is_parent_field (type, i))
7303 {
7304 /* This is a field pointing us to the parent type of a tagged
7305 type. As hinted in this function's documentation, we give
7306 preference to fields in the current record first, so what
7307 we do here is just record the index of this field before
7308 we skip it. If it turns out we couldn't find our field
7309 in the current record, then we'll get back to it and search
7310 inside it whether the field might exist in the parent. */
7311
7312 parent_offset = i;
7313 continue;
7314 }
7315
52ce6436 7316 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7317 {
7318 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7319
52ce6436
PH
7320 if (field_type_p != NULL)
7321 *field_type_p = TYPE_FIELD_TYPE (type, i);
7322 if (byte_offset_p != NULL)
7323 *byte_offset_p = fld_offset;
7324 if (bit_offset_p != NULL)
7325 *bit_offset_p = bit_pos % 8;
7326 if (bit_size_p != NULL)
7327 *bit_size_p = bit_size;
76a01679
JB
7328 return 1;
7329 }
4c4b4cd2
PH
7330 else if (ada_is_wrapper_field (type, i))
7331 {
52ce6436
PH
7332 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7333 field_type_p, byte_offset_p, bit_offset_p,
7334 bit_size_p, index_p))
76a01679
JB
7335 return 1;
7336 }
4c4b4cd2
PH
7337 else if (ada_is_variant_part (type, i))
7338 {
52ce6436
PH
7339 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7340 fixed type?? */
4c4b4cd2 7341 int j;
52ce6436
PH
7342 struct type *field_type
7343 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7344
52ce6436 7345 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7346 {
76a01679
JB
7347 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7348 fld_offset
7349 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7350 field_type_p, byte_offset_p,
52ce6436 7351 bit_offset_p, bit_size_p, index_p))
76a01679 7352 return 1;
4c4b4cd2
PH
7353 }
7354 }
52ce6436
PH
7355 else if (index_p != NULL)
7356 *index_p += 1;
4c4b4cd2 7357 }
828d5846
XR
7358
7359 /* Field not found so far. If this is a tagged type which
7360 has a parent, try finding that field in the parent now. */
7361
7362 if (parent_offset != -1)
7363 {
7364 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7365 int fld_offset = offset + bit_pos / 8;
7366
7367 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7368 fld_offset, field_type_p, byte_offset_p,
7369 bit_offset_p, bit_size_p, index_p))
7370 return 1;
7371 }
7372
4c4b4cd2
PH
7373 return 0;
7374}
7375
0963b4bd 7376/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7377
52ce6436
PH
7378static int
7379num_visible_fields (struct type *type)
7380{
7381 int n;
5b4ee69b 7382
52ce6436
PH
7383 n = 0;
7384 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7385 return n;
7386}
14f9c5c9 7387
4c4b4cd2 7388/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7389 and search in it assuming it has (class) type TYPE.
7390 If found, return value, else return NULL.
7391
828d5846
XR
7392 Searches recursively through wrapper fields (e.g., '_parent').
7393
7394 In the case of homonyms in the tagged types, please refer to the
7395 long explanation in find_struct_field's function documentation. */
14f9c5c9 7396
4c4b4cd2 7397static struct value *
108d56a4 7398ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7399 struct type *type)
14f9c5c9
AS
7400{
7401 int i;
828d5846 7402 int parent_offset = -1;
14f9c5c9 7403
5b4ee69b 7404 type = ada_check_typedef (type);
52ce6436 7405 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7406 {
0d5cff50 7407 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7408
7409 if (t_field_name == NULL)
4c4b4cd2 7410 continue;
14f9c5c9 7411
828d5846
XR
7412 else if (ada_is_parent_field (type, i))
7413 {
7414 /* This is a field pointing us to the parent type of a tagged
7415 type. As hinted in this function's documentation, we give
7416 preference to fields in the current record first, so what
7417 we do here is just record the index of this field before
7418 we skip it. If it turns out we couldn't find our field
7419 in the current record, then we'll get back to it and search
7420 inside it whether the field might exist in the parent. */
7421
7422 parent_offset = i;
7423 continue;
7424 }
7425
14f9c5c9 7426 else if (field_name_match (t_field_name, name))
4c4b4cd2 7427 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7428
7429 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7430 {
0963b4bd 7431 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7432 ada_search_struct_field (name, arg,
7433 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7434 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7435
4c4b4cd2
PH
7436 if (v != NULL)
7437 return v;
7438 }
14f9c5c9
AS
7439
7440 else if (ada_is_variant_part (type, i))
4c4b4cd2 7441 {
0963b4bd 7442 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7443 int j;
5b4ee69b
MS
7444 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7445 i));
4c4b4cd2
PH
7446 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7447
52ce6436 7448 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7449 {
0963b4bd
MS
7450 struct value *v = ada_search_struct_field /* Force line
7451 break. */
06d5cf63
JB
7452 (name, arg,
7453 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7454 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7455
4c4b4cd2
PH
7456 if (v != NULL)
7457 return v;
7458 }
7459 }
14f9c5c9 7460 }
828d5846
XR
7461
7462 /* Field not found so far. If this is a tagged type which
7463 has a parent, try finding that field in the parent now. */
7464
7465 if (parent_offset != -1)
7466 {
7467 struct value *v = ada_search_struct_field (
7468 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7469 TYPE_FIELD_TYPE (type, parent_offset));
7470
7471 if (v != NULL)
7472 return v;
7473 }
7474
14f9c5c9
AS
7475 return NULL;
7476}
d2e4a39e 7477
52ce6436
PH
7478static struct value *ada_index_struct_field_1 (int *, struct value *,
7479 int, struct type *);
7480
7481
7482/* Return field #INDEX in ARG, where the index is that returned by
7483 * find_struct_field through its INDEX_P argument. Adjust the address
7484 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7485 * If found, return value, else return NULL. */
52ce6436
PH
7486
7487static struct value *
7488ada_index_struct_field (int index, struct value *arg, int offset,
7489 struct type *type)
7490{
7491 return ada_index_struct_field_1 (&index, arg, offset, type);
7492}
7493
7494
7495/* Auxiliary function for ada_index_struct_field. Like
7496 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7497 * *INDEX_P. */
52ce6436
PH
7498
7499static struct value *
7500ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7501 struct type *type)
7502{
7503 int i;
7504 type = ada_check_typedef (type);
7505
7506 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7507 {
7508 if (TYPE_FIELD_NAME (type, i) == NULL)
7509 continue;
7510 else if (ada_is_wrapper_field (type, i))
7511 {
0963b4bd 7512 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7513 ada_index_struct_field_1 (index_p, arg,
7514 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7515 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7516
52ce6436
PH
7517 if (v != NULL)
7518 return v;
7519 }
7520
7521 else if (ada_is_variant_part (type, i))
7522 {
7523 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7524 find_struct_field. */
52ce6436
PH
7525 error (_("Cannot assign this kind of variant record"));
7526 }
7527 else if (*index_p == 0)
7528 return ada_value_primitive_field (arg, offset, i, type);
7529 else
7530 *index_p -= 1;
7531 }
7532 return NULL;
7533}
7534
4c4b4cd2
PH
7535/* Given ARG, a value of type (pointer or reference to a)*
7536 structure/union, extract the component named NAME from the ultimate
7537 target structure/union and return it as a value with its
f5938064 7538 appropriate type.
14f9c5c9 7539
4c4b4cd2
PH
7540 The routine searches for NAME among all members of the structure itself
7541 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7542 (e.g., '_parent').
7543
03ee6b2e
PH
7544 If NO_ERR, then simply return NULL in case of error, rather than
7545 calling error. */
14f9c5c9 7546
d2e4a39e 7547struct value *
a121b7c1 7548ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7549{
4c4b4cd2 7550 struct type *t, *t1;
d2e4a39e 7551 struct value *v;
1f5d1570 7552 int check_tag;
14f9c5c9 7553
4c4b4cd2 7554 v = NULL;
df407dfe 7555 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7556 if (TYPE_CODE (t) == TYPE_CODE_REF)
7557 {
7558 t1 = TYPE_TARGET_TYPE (t);
7559 if (t1 == NULL)
03ee6b2e 7560 goto BadValue;
61ee279c 7561 t1 = ada_check_typedef (t1);
4c4b4cd2 7562 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7563 {
994b9211 7564 arg = coerce_ref (arg);
76a01679
JB
7565 t = t1;
7566 }
4c4b4cd2 7567 }
14f9c5c9 7568
4c4b4cd2
PH
7569 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7570 {
7571 t1 = TYPE_TARGET_TYPE (t);
7572 if (t1 == NULL)
03ee6b2e 7573 goto BadValue;
61ee279c 7574 t1 = ada_check_typedef (t1);
4c4b4cd2 7575 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7576 {
7577 arg = value_ind (arg);
7578 t = t1;
7579 }
4c4b4cd2 7580 else
76a01679 7581 break;
4c4b4cd2 7582 }
14f9c5c9 7583
4c4b4cd2 7584 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7585 goto BadValue;
14f9c5c9 7586
4c4b4cd2
PH
7587 if (t1 == t)
7588 v = ada_search_struct_field (name, arg, 0, t);
7589 else
7590 {
7591 int bit_offset, bit_size, byte_offset;
7592 struct type *field_type;
7593 CORE_ADDR address;
7594
76a01679 7595 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7596 address = value_address (ada_value_ind (arg));
4c4b4cd2 7597 else
b50d69b5 7598 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7599
828d5846
XR
7600 /* Check to see if this is a tagged type. We also need to handle
7601 the case where the type is a reference to a tagged type, but
7602 we have to be careful to exclude pointers to tagged types.
7603 The latter should be shown as usual (as a pointer), whereas
7604 a reference should mostly be transparent to the user. */
7605
7606 if (ada_is_tagged_type (t1, 0)
7607 || (TYPE_CODE (t1) == TYPE_CODE_REF
7608 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7609 {
7610 /* We first try to find the searched field in the current type.
7611 If not found then let's look in the fixed type. */
7612
7613 if (!find_struct_field (name, t1, 0,
7614 &field_type, &byte_offset, &bit_offset,
7615 &bit_size, NULL))
1f5d1570
JG
7616 check_tag = 1;
7617 else
7618 check_tag = 0;
828d5846
XR
7619 }
7620 else
1f5d1570
JG
7621 check_tag = 0;
7622
7623 /* Convert to fixed type in all cases, so that we have proper
7624 offsets to each field in unconstrained record types. */
7625 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7626 address, NULL, check_tag);
828d5846 7627
76a01679
JB
7628 if (find_struct_field (name, t1, 0,
7629 &field_type, &byte_offset, &bit_offset,
52ce6436 7630 &bit_size, NULL))
76a01679
JB
7631 {
7632 if (bit_size != 0)
7633 {
714e53ab
PH
7634 if (TYPE_CODE (t) == TYPE_CODE_REF)
7635 arg = ada_coerce_ref (arg);
7636 else
7637 arg = ada_value_ind (arg);
76a01679
JB
7638 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7639 bit_offset, bit_size,
7640 field_type);
7641 }
7642 else
f5938064 7643 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7644 }
7645 }
7646
03ee6b2e
PH
7647 if (v != NULL || no_err)
7648 return v;
7649 else
323e0a4a 7650 error (_("There is no member named %s."), name);
14f9c5c9 7651
03ee6b2e
PH
7652 BadValue:
7653 if (no_err)
7654 return NULL;
7655 else
0963b4bd
MS
7656 error (_("Attempt to extract a component of "
7657 "a value that is not a record."));
14f9c5c9
AS
7658}
7659
3b4de39c 7660/* Return a string representation of type TYPE. */
99bbb428 7661
3b4de39c 7662static std::string
99bbb428
PA
7663type_as_string (struct type *type)
7664{
d7e74731 7665 string_file tmp_stream;
99bbb428 7666
d7e74731 7667 type_print (type, "", &tmp_stream, -1);
99bbb428 7668
d7e74731 7669 return std::move (tmp_stream.string ());
99bbb428
PA
7670}
7671
14f9c5c9 7672/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7673 If DISPP is non-null, add its byte displacement from the beginning of a
7674 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7675 work for packed fields).
7676
7677 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7678 followed by "___".
14f9c5c9 7679
0963b4bd 7680 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7681 be a (pointer or reference)+ to a struct or union, and the
7682 ultimate target type will be searched.
14f9c5c9
AS
7683
7684 Looks recursively into variant clauses and parent types.
7685
828d5846
XR
7686 In the case of homonyms in the tagged types, please refer to the
7687 long explanation in find_struct_field's function documentation.
7688
4c4b4cd2
PH
7689 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7690 TYPE is not a type of the right kind. */
14f9c5c9 7691
4c4b4cd2 7692static struct type *
a121b7c1 7693ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7694 int noerr)
14f9c5c9
AS
7695{
7696 int i;
828d5846 7697 int parent_offset = -1;
14f9c5c9
AS
7698
7699 if (name == NULL)
7700 goto BadName;
7701
76a01679 7702 if (refok && type != NULL)
4c4b4cd2
PH
7703 while (1)
7704 {
61ee279c 7705 type = ada_check_typedef (type);
76a01679
JB
7706 if (TYPE_CODE (type) != TYPE_CODE_PTR
7707 && TYPE_CODE (type) != TYPE_CODE_REF)
7708 break;
7709 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7710 }
14f9c5c9 7711
76a01679 7712 if (type == NULL
1265e4aa
JB
7713 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7714 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7715 {
4c4b4cd2 7716 if (noerr)
76a01679 7717 return NULL;
99bbb428 7718
3b4de39c
PA
7719 error (_("Type %s is not a structure or union type"),
7720 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7721 }
7722
7723 type = to_static_fixed_type (type);
7724
7725 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7726 {
0d5cff50 7727 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7728 struct type *t;
d2e4a39e 7729
14f9c5c9 7730 if (t_field_name == NULL)
4c4b4cd2 7731 continue;
14f9c5c9 7732
828d5846
XR
7733 else if (ada_is_parent_field (type, i))
7734 {
7735 /* This is a field pointing us to the parent type of a tagged
7736 type. As hinted in this function's documentation, we give
7737 preference to fields in the current record first, so what
7738 we do here is just record the index of this field before
7739 we skip it. If it turns out we couldn't find our field
7740 in the current record, then we'll get back to it and search
7741 inside it whether the field might exist in the parent. */
7742
7743 parent_offset = i;
7744 continue;
7745 }
7746
14f9c5c9 7747 else if (field_name_match (t_field_name, name))
988f6b3d 7748 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7749
7750 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7751 {
4c4b4cd2 7752 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7753 0, 1);
4c4b4cd2 7754 if (t != NULL)
988f6b3d 7755 return t;
4c4b4cd2 7756 }
14f9c5c9
AS
7757
7758 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7759 {
7760 int j;
5b4ee69b
MS
7761 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7762 i));
4c4b4cd2
PH
7763
7764 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7765 {
b1f33ddd
JB
7766 /* FIXME pnh 2008/01/26: We check for a field that is
7767 NOT wrapped in a struct, since the compiler sometimes
7768 generates these for unchecked variant types. Revisit
0963b4bd 7769 if the compiler changes this practice. */
0d5cff50 7770 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7771
b1f33ddd
JB
7772 if (v_field_name != NULL
7773 && field_name_match (v_field_name, name))
460efde1 7774 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7775 else
0963b4bd
MS
7776 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7777 j),
988f6b3d 7778 name, 0, 1);
b1f33ddd 7779
4c4b4cd2 7780 if (t != NULL)
988f6b3d 7781 return t;
4c4b4cd2
PH
7782 }
7783 }
14f9c5c9
AS
7784
7785 }
7786
828d5846
XR
7787 /* Field not found so far. If this is a tagged type which
7788 has a parent, try finding that field in the parent now. */
7789
7790 if (parent_offset != -1)
7791 {
7792 struct type *t;
7793
7794 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7795 name, 0, 1);
7796 if (t != NULL)
7797 return t;
7798 }
7799
14f9c5c9 7800BadName:
d2e4a39e 7801 if (!noerr)
14f9c5c9 7802 {
2b2798cc 7803 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7804
7805 error (_("Type %s has no component named %s"),
3b4de39c 7806 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7807 }
7808
7809 return NULL;
7810}
7811
b1f33ddd
JB
7812/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7813 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7814 represents an unchecked union (that is, the variant part of a
0963b4bd 7815 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7816
7817static int
7818is_unchecked_variant (struct type *var_type, struct type *outer_type)
7819{
a121b7c1 7820 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7821
988f6b3d 7822 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7823}
7824
7825
14f9c5c9
AS
7826/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7827 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7828 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7829 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7830
d2e4a39e 7831int
ebf56fd3 7832ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7833 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7834{
7835 int others_clause;
7836 int i;
a121b7c1 7837 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7838 struct value *outer;
7839 struct value *discrim;
14f9c5c9
AS
7840 LONGEST discrim_val;
7841
012370f6
TT
7842 /* Using plain value_from_contents_and_address here causes problems
7843 because we will end up trying to resolve a type that is currently
7844 being constructed. */
7845 outer = value_from_contents_and_address_unresolved (outer_type,
7846 outer_valaddr, 0);
0c281816
JB
7847 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7848 if (discrim == NULL)
14f9c5c9 7849 return -1;
0c281816 7850 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7851
7852 others_clause = -1;
7853 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7854 {
7855 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7856 others_clause = i;
14f9c5c9 7857 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7858 return i;
14f9c5c9
AS
7859 }
7860
7861 return others_clause;
7862}
d2e4a39e 7863\f
14f9c5c9
AS
7864
7865
4c4b4cd2 7866 /* Dynamic-Sized Records */
14f9c5c9
AS
7867
7868/* Strategy: The type ostensibly attached to a value with dynamic size
7869 (i.e., a size that is not statically recorded in the debugging
7870 data) does not accurately reflect the size or layout of the value.
7871 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7872 conventional types that are constructed on the fly. */
14f9c5c9
AS
7873
7874/* There is a subtle and tricky problem here. In general, we cannot
7875 determine the size of dynamic records without its data. However,
7876 the 'struct value' data structure, which GDB uses to represent
7877 quantities in the inferior process (the target), requires the size
7878 of the type at the time of its allocation in order to reserve space
7879 for GDB's internal copy of the data. That's why the
7880 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7881 rather than struct value*s.
14f9c5c9
AS
7882
7883 However, GDB's internal history variables ($1, $2, etc.) are
7884 struct value*s containing internal copies of the data that are not, in
7885 general, the same as the data at their corresponding addresses in
7886 the target. Fortunately, the types we give to these values are all
7887 conventional, fixed-size types (as per the strategy described
7888 above), so that we don't usually have to perform the
7889 'to_fixed_xxx_type' conversions to look at their values.
7890 Unfortunately, there is one exception: if one of the internal
7891 history variables is an array whose elements are unconstrained
7892 records, then we will need to create distinct fixed types for each
7893 element selected. */
7894
7895/* The upshot of all of this is that many routines take a (type, host
7896 address, target address) triple as arguments to represent a value.
7897 The host address, if non-null, is supposed to contain an internal
7898 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7899 target at the target address. */
14f9c5c9
AS
7900
7901/* Assuming that VAL0 represents a pointer value, the result of
7902 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7903 dynamic-sized types. */
14f9c5c9 7904
d2e4a39e
AS
7905struct value *
7906ada_value_ind (struct value *val0)
14f9c5c9 7907{
c48db5ca 7908 struct value *val = value_ind (val0);
5b4ee69b 7909
b50d69b5
JG
7910 if (ada_is_tagged_type (value_type (val), 0))
7911 val = ada_tag_value_at_base_address (val);
7912
4c4b4cd2 7913 return ada_to_fixed_value (val);
14f9c5c9
AS
7914}
7915
7916/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7917 qualifiers on VAL0. */
7918
d2e4a39e
AS
7919static struct value *
7920ada_coerce_ref (struct value *val0)
7921{
df407dfe 7922 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7923 {
7924 struct value *val = val0;
5b4ee69b 7925
994b9211 7926 val = coerce_ref (val);
b50d69b5
JG
7927
7928 if (ada_is_tagged_type (value_type (val), 0))
7929 val = ada_tag_value_at_base_address (val);
7930
4c4b4cd2 7931 return ada_to_fixed_value (val);
d2e4a39e
AS
7932 }
7933 else
14f9c5c9
AS
7934 return val0;
7935}
7936
7937/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7938 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7939
7940static unsigned int
ebf56fd3 7941align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7942{
7943 return (off + alignment - 1) & ~(alignment - 1);
7944}
7945
4c4b4cd2 7946/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7947
7948static unsigned int
ebf56fd3 7949field_alignment (struct type *type, int f)
14f9c5c9 7950{
d2e4a39e 7951 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7952 int len;
14f9c5c9
AS
7953 int align_offset;
7954
64a1bf19
JB
7955 /* The field name should never be null, unless the debugging information
7956 is somehow malformed. In this case, we assume the field does not
7957 require any alignment. */
7958 if (name == NULL)
7959 return 1;
7960
7961 len = strlen (name);
7962
4c4b4cd2
PH
7963 if (!isdigit (name[len - 1]))
7964 return 1;
14f9c5c9 7965
d2e4a39e 7966 if (isdigit (name[len - 2]))
14f9c5c9
AS
7967 align_offset = len - 2;
7968 else
7969 align_offset = len - 1;
7970
61012eef 7971 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7972 return TARGET_CHAR_BIT;
7973
4c4b4cd2
PH
7974 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7975}
7976
852dff6c 7977/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7978
852dff6c
JB
7979static struct symbol *
7980ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7981{
7982 struct symbol *sym;
7983
7984 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7985 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7986 return sym;
7987
4186eb54
KS
7988 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7989 return sym;
14f9c5c9
AS
7990}
7991
dddfab26
UW
7992/* Find a type named NAME. Ignores ambiguity. This routine will look
7993 solely for types defined by debug info, it will not search the GDB
7994 primitive types. */
4c4b4cd2 7995
852dff6c 7996static struct type *
ebf56fd3 7997ada_find_any_type (const char *name)
14f9c5c9 7998{
852dff6c 7999 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 8000
14f9c5c9 8001 if (sym != NULL)
dddfab26 8002 return SYMBOL_TYPE (sym);
14f9c5c9 8003
dddfab26 8004 return NULL;
14f9c5c9
AS
8005}
8006
739593e0
JB
8007/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8008 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8009 symbol, in which case it is returned. Otherwise, this looks for
8010 symbols whose name is that of NAME_SYM suffixed with "___XR".
8011 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
8012
8013struct symbol *
270140bd 8014ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 8015{
739593e0 8016 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
8017 struct symbol *sym;
8018
739593e0
JB
8019 if (strstr (name, "___XR") != NULL)
8020 return name_sym;
8021
aeb5907d
JB
8022 sym = find_old_style_renaming_symbol (name, block);
8023
8024 if (sym != NULL)
8025 return sym;
8026
0963b4bd 8027 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 8028 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
8029 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8030 return sym;
8031 else
8032 return NULL;
8033}
8034
8035static struct symbol *
270140bd 8036find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 8037{
7f0df278 8038 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8039 char *rename;
8040
8041 if (function_sym != NULL)
8042 {
8043 /* If the symbol is defined inside a function, NAME is not fully
8044 qualified. This means we need to prepend the function name
8045 as well as adding the ``___XR'' suffix to build the name of
8046 the associated renaming symbol. */
0d5cff50 8047 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8048 /* Function names sometimes contain suffixes used
8049 for instance to qualify nested subprograms. When building
8050 the XR type name, we need to make sure that this suffix is
8051 not included. So do not include any suffix in the function
8052 name length below. */
69fadcdf 8053 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8054 const int rename_len = function_name_len + 2 /* "__" */
8055 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8056
529cad9c 8057 /* Strip the suffix if necessary. */
69fadcdf
JB
8058 ada_remove_trailing_digits (function_name, &function_name_len);
8059 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8060 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8061
4c4b4cd2
PH
8062 /* Library-level functions are a special case, as GNAT adds
8063 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8064 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8065 have this prefix, so we need to skip this prefix if present. */
8066 if (function_name_len > 5 /* "_ada_" */
8067 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8068 {
8069 function_name += 5;
8070 function_name_len -= 5;
8071 }
4c4b4cd2
PH
8072
8073 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8074 strncpy (rename, function_name, function_name_len);
8075 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8076 "__%s___XR", name);
4c4b4cd2
PH
8077 }
8078 else
8079 {
8080 const int rename_len = strlen (name) + 6;
5b4ee69b 8081
4c4b4cd2 8082 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8083 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8084 }
8085
852dff6c 8086 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8087}
8088
14f9c5c9 8089/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8090 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8091 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8092 otherwise return 0. */
8093
14f9c5c9 8094int
d2e4a39e 8095ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8096{
8097 if (type1 == NULL)
8098 return 1;
8099 else if (type0 == NULL)
8100 return 0;
8101 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8102 return 1;
8103 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8104 return 0;
4c4b4cd2
PH
8105 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8106 return 1;
ad82864c 8107 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8108 return 1;
4c4b4cd2
PH
8109 else if (ada_is_array_descriptor_type (type0)
8110 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8111 return 1;
aeb5907d
JB
8112 else
8113 {
a737d952
TT
8114 const char *type0_name = TYPE_NAME (type0);
8115 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
8116
8117 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8118 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8119 return 1;
8120 }
14f9c5c9
AS
8121 return 0;
8122}
8123
e86ca25f
TT
8124/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8125 null. */
4c4b4cd2 8126
0d5cff50 8127const char *
d2e4a39e 8128ada_type_name (struct type *type)
14f9c5c9 8129{
d2e4a39e 8130 if (type == NULL)
14f9c5c9 8131 return NULL;
e86ca25f 8132 return TYPE_NAME (type);
14f9c5c9
AS
8133}
8134
b4ba55a1
JB
8135/* Search the list of "descriptive" types associated to TYPE for a type
8136 whose name is NAME. */
8137
8138static struct type *
8139find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8140{
931e5bc3 8141 struct type *result, *tmp;
b4ba55a1 8142
c6044dd1
JB
8143 if (ada_ignore_descriptive_types_p)
8144 return NULL;
8145
b4ba55a1
JB
8146 /* If there no descriptive-type info, then there is no parallel type
8147 to be found. */
8148 if (!HAVE_GNAT_AUX_INFO (type))
8149 return NULL;
8150
8151 result = TYPE_DESCRIPTIVE_TYPE (type);
8152 while (result != NULL)
8153 {
0d5cff50 8154 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8155
8156 if (result_name == NULL)
8157 {
8158 warning (_("unexpected null name on descriptive type"));
8159 return NULL;
8160 }
8161
8162 /* If the names match, stop. */
8163 if (strcmp (result_name, name) == 0)
8164 break;
8165
8166 /* Otherwise, look at the next item on the list, if any. */
8167 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8168 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8169 else
8170 tmp = NULL;
8171
8172 /* If not found either, try after having resolved the typedef. */
8173 if (tmp != NULL)
8174 result = tmp;
b4ba55a1 8175 else
931e5bc3 8176 {
f168693b 8177 result = check_typedef (result);
931e5bc3
JG
8178 if (HAVE_GNAT_AUX_INFO (result))
8179 result = TYPE_DESCRIPTIVE_TYPE (result);
8180 else
8181 result = NULL;
8182 }
b4ba55a1
JB
8183 }
8184
8185 /* If we didn't find a match, see whether this is a packed array. With
8186 older compilers, the descriptive type information is either absent or
8187 irrelevant when it comes to packed arrays so the above lookup fails.
8188 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8189 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8190 return ada_find_any_type (name);
8191
8192 return result;
8193}
8194
8195/* Find a parallel type to TYPE with the specified NAME, using the
8196 descriptive type taken from the debugging information, if available,
8197 and otherwise using the (slower) name-based method. */
8198
8199static struct type *
8200ada_find_parallel_type_with_name (struct type *type, const char *name)
8201{
8202 struct type *result = NULL;
8203
8204 if (HAVE_GNAT_AUX_INFO (type))
8205 result = find_parallel_type_by_descriptive_type (type, name);
8206 else
8207 result = ada_find_any_type (name);
8208
8209 return result;
8210}
8211
8212/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8213 SUFFIX to the name of TYPE. */
14f9c5c9 8214
d2e4a39e 8215struct type *
ebf56fd3 8216ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8217{
0d5cff50 8218 char *name;
fe978cb0 8219 const char *type_name = ada_type_name (type);
14f9c5c9 8220 int len;
d2e4a39e 8221
fe978cb0 8222 if (type_name == NULL)
14f9c5c9
AS
8223 return NULL;
8224
fe978cb0 8225 len = strlen (type_name);
14f9c5c9 8226
b4ba55a1 8227 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8228
fe978cb0 8229 strcpy (name, type_name);
14f9c5c9
AS
8230 strcpy (name + len, suffix);
8231
b4ba55a1 8232 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8233}
8234
14f9c5c9 8235/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8236 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8237
d2e4a39e
AS
8238static struct type *
8239dynamic_template_type (struct type *type)
14f9c5c9 8240{
61ee279c 8241 type = ada_check_typedef (type);
14f9c5c9
AS
8242
8243 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8244 || ada_type_name (type) == NULL)
14f9c5c9 8245 return NULL;
d2e4a39e 8246 else
14f9c5c9
AS
8247 {
8248 int len = strlen (ada_type_name (type));
5b4ee69b 8249
4c4b4cd2
PH
8250 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8251 return type;
14f9c5c9 8252 else
4c4b4cd2 8253 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8254 }
8255}
8256
8257/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8258 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8259
d2e4a39e
AS
8260static int
8261is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8262{
8263 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8264
d2e4a39e 8265 return name != NULL
14f9c5c9
AS
8266 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8267 && strstr (name, "___XVL") != NULL;
8268}
8269
4c4b4cd2
PH
8270/* The index of the variant field of TYPE, or -1 if TYPE does not
8271 represent a variant record type. */
14f9c5c9 8272
d2e4a39e 8273static int
4c4b4cd2 8274variant_field_index (struct type *type)
14f9c5c9
AS
8275{
8276 int f;
8277
4c4b4cd2
PH
8278 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8279 return -1;
8280
8281 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8282 {
8283 if (ada_is_variant_part (type, f))
8284 return f;
8285 }
8286 return -1;
14f9c5c9
AS
8287}
8288
4c4b4cd2
PH
8289/* A record type with no fields. */
8290
d2e4a39e 8291static struct type *
fe978cb0 8292empty_record (struct type *templ)
14f9c5c9 8293{
fe978cb0 8294 struct type *type = alloc_type_copy (templ);
5b4ee69b 8295
14f9c5c9
AS
8296 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8297 TYPE_NFIELDS (type) = 0;
8298 TYPE_FIELDS (type) = NULL;
8ecb59f8 8299 INIT_NONE_SPECIFIC (type);
14f9c5c9 8300 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8301 TYPE_LENGTH (type) = 0;
8302 return type;
8303}
8304
8305/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8306 the value of type TYPE at VALADDR or ADDRESS (see comments at
8307 the beginning of this section) VAL according to GNAT conventions.
8308 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8309 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8310 an outer-level type (i.e., as opposed to a branch of a variant.) A
8311 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8312 of the variant.
14f9c5c9 8313
4c4b4cd2
PH
8314 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8315 length are not statically known are discarded. As a consequence,
8316 VALADDR, ADDRESS and DVAL0 are ignored.
8317
8318 NOTE: Limitations: For now, we assume that dynamic fields and
8319 variants occupy whole numbers of bytes. However, they need not be
8320 byte-aligned. */
8321
8322struct type *
10a2c479 8323ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8324 const gdb_byte *valaddr,
4c4b4cd2
PH
8325 CORE_ADDR address, struct value *dval0,
8326 int keep_dynamic_fields)
14f9c5c9 8327{
d2e4a39e
AS
8328 struct value *mark = value_mark ();
8329 struct value *dval;
8330 struct type *rtype;
14f9c5c9 8331 int nfields, bit_len;
4c4b4cd2 8332 int variant_field;
14f9c5c9 8333 long off;
d94e4f4f 8334 int fld_bit_len;
14f9c5c9
AS
8335 int f;
8336
4c4b4cd2
PH
8337 /* Compute the number of fields in this record type that are going
8338 to be processed: unless keep_dynamic_fields, this includes only
8339 fields whose position and length are static will be processed. */
8340 if (keep_dynamic_fields)
8341 nfields = TYPE_NFIELDS (type);
8342 else
8343 {
8344 nfields = 0;
76a01679 8345 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8346 && !ada_is_variant_part (type, nfields)
8347 && !is_dynamic_field (type, nfields))
8348 nfields++;
8349 }
8350
e9bb382b 8351 rtype = alloc_type_copy (type);
14f9c5c9 8352 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8353 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8354 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8355 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8356 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8357 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8358 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8359 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8360
d2e4a39e
AS
8361 off = 0;
8362 bit_len = 0;
4c4b4cd2
PH
8363 variant_field = -1;
8364
14f9c5c9
AS
8365 for (f = 0; f < nfields; f += 1)
8366 {
6c038f32
PH
8367 off = align_value (off, field_alignment (type, f))
8368 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8369 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8370 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8371
d2e4a39e 8372 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8373 {
8374 variant_field = f;
d94e4f4f 8375 fld_bit_len = 0;
4c4b4cd2 8376 }
14f9c5c9 8377 else if (is_dynamic_field (type, f))
4c4b4cd2 8378 {
284614f0
JB
8379 const gdb_byte *field_valaddr = valaddr;
8380 CORE_ADDR field_address = address;
8381 struct type *field_type =
8382 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8383
4c4b4cd2 8384 if (dval0 == NULL)
b5304971
JG
8385 {
8386 /* rtype's length is computed based on the run-time
8387 value of discriminants. If the discriminants are not
8388 initialized, the type size may be completely bogus and
0963b4bd 8389 GDB may fail to allocate a value for it. So check the
b5304971 8390 size first before creating the value. */
c1b5a1a6 8391 ada_ensure_varsize_limit (rtype);
012370f6
TT
8392 /* Using plain value_from_contents_and_address here
8393 causes problems because we will end up trying to
8394 resolve a type that is currently being
8395 constructed. */
8396 dval = value_from_contents_and_address_unresolved (rtype,
8397 valaddr,
8398 address);
9f1f738a 8399 rtype = value_type (dval);
b5304971 8400 }
4c4b4cd2
PH
8401 else
8402 dval = dval0;
8403
284614f0
JB
8404 /* If the type referenced by this field is an aligner type, we need
8405 to unwrap that aligner type, because its size might not be set.
8406 Keeping the aligner type would cause us to compute the wrong
8407 size for this field, impacting the offset of the all the fields
8408 that follow this one. */
8409 if (ada_is_aligner_type (field_type))
8410 {
8411 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8412
8413 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8414 field_address = cond_offset_target (field_address, field_offset);
8415 field_type = ada_aligned_type (field_type);
8416 }
8417
8418 field_valaddr = cond_offset_host (field_valaddr,
8419 off / TARGET_CHAR_BIT);
8420 field_address = cond_offset_target (field_address,
8421 off / TARGET_CHAR_BIT);
8422
8423 /* Get the fixed type of the field. Note that, in this case,
8424 we do not want to get the real type out of the tag: if
8425 the current field is the parent part of a tagged record,
8426 we will get the tag of the object. Clearly wrong: the real
8427 type of the parent is not the real type of the child. We
8428 would end up in an infinite loop. */
8429 field_type = ada_get_base_type (field_type);
8430 field_type = ada_to_fixed_type (field_type, field_valaddr,
8431 field_address, dval, 0);
27f2a97b
JB
8432 /* If the field size is already larger than the maximum
8433 object size, then the record itself will necessarily
8434 be larger than the maximum object size. We need to make
8435 this check now, because the size might be so ridiculously
8436 large (due to an uninitialized variable in the inferior)
8437 that it would cause an overflow when adding it to the
8438 record size. */
c1b5a1a6 8439 ada_ensure_varsize_limit (field_type);
284614f0
JB
8440
8441 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8442 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8443 /* The multiplication can potentially overflow. But because
8444 the field length has been size-checked just above, and
8445 assuming that the maximum size is a reasonable value,
8446 an overflow should not happen in practice. So rather than
8447 adding overflow recovery code to this already complex code,
8448 we just assume that it's not going to happen. */
d94e4f4f 8449 fld_bit_len =
4c4b4cd2
PH
8450 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8451 }
14f9c5c9 8452 else
4c4b4cd2 8453 {
5ded5331
JB
8454 /* Note: If this field's type is a typedef, it is important
8455 to preserve the typedef layer.
8456
8457 Otherwise, we might be transforming a typedef to a fat
8458 pointer (encoding a pointer to an unconstrained array),
8459 into a basic fat pointer (encoding an unconstrained
8460 array). As both types are implemented using the same
8461 structure, the typedef is the only clue which allows us
8462 to distinguish between the two options. Stripping it
8463 would prevent us from printing this field appropriately. */
8464 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8465 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8466 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8467 fld_bit_len =
4c4b4cd2
PH
8468 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8469 else
5ded5331
JB
8470 {
8471 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8472
8473 /* We need to be careful of typedefs when computing
8474 the length of our field. If this is a typedef,
8475 get the length of the target type, not the length
8476 of the typedef. */
8477 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8478 field_type = ada_typedef_target_type (field_type);
8479
8480 fld_bit_len =
8481 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8482 }
4c4b4cd2 8483 }
14f9c5c9 8484 if (off + fld_bit_len > bit_len)
4c4b4cd2 8485 bit_len = off + fld_bit_len;
d94e4f4f 8486 off += fld_bit_len;
4c4b4cd2
PH
8487 TYPE_LENGTH (rtype) =
8488 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8489 }
4c4b4cd2
PH
8490
8491 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8492 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8493 the record. This can happen in the presence of representation
8494 clauses. */
8495 if (variant_field >= 0)
8496 {
8497 struct type *branch_type;
8498
8499 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8500
8501 if (dval0 == NULL)
9f1f738a 8502 {
012370f6
TT
8503 /* Using plain value_from_contents_and_address here causes
8504 problems because we will end up trying to resolve a type
8505 that is currently being constructed. */
8506 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8507 address);
9f1f738a
SA
8508 rtype = value_type (dval);
8509 }
4c4b4cd2
PH
8510 else
8511 dval = dval0;
8512
8513 branch_type =
8514 to_fixed_variant_branch_type
8515 (TYPE_FIELD_TYPE (type, variant_field),
8516 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8517 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8518 if (branch_type == NULL)
8519 {
8520 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8521 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8522 TYPE_NFIELDS (rtype) -= 1;
8523 }
8524 else
8525 {
8526 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8527 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8528 fld_bit_len =
8529 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8530 TARGET_CHAR_BIT;
8531 if (off + fld_bit_len > bit_len)
8532 bit_len = off + fld_bit_len;
8533 TYPE_LENGTH (rtype) =
8534 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8535 }
8536 }
8537
714e53ab
PH
8538 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8539 should contain the alignment of that record, which should be a strictly
8540 positive value. If null or negative, then something is wrong, most
8541 probably in the debug info. In that case, we don't round up the size
0963b4bd 8542 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8543 the current RTYPE length might be good enough for our purposes. */
8544 if (TYPE_LENGTH (type) <= 0)
8545 {
323e0a4a 8546 if (TYPE_NAME (rtype))
cc1defb1
KS
8547 warning (_("Invalid type size for `%s' detected: %s."),
8548 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8549 else
cc1defb1
KS
8550 warning (_("Invalid type size for <unnamed> detected: %s."),
8551 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8552 }
8553 else
8554 {
8555 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8556 TYPE_LENGTH (type));
8557 }
14f9c5c9
AS
8558
8559 value_free_to_mark (mark);
d2e4a39e 8560 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8561 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8562 return rtype;
8563}
8564
4c4b4cd2
PH
8565/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8566 of 1. */
14f9c5c9 8567
d2e4a39e 8568static struct type *
fc1a4b47 8569template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8570 CORE_ADDR address, struct value *dval0)
8571{
8572 return ada_template_to_fixed_record_type_1 (type, valaddr,
8573 address, dval0, 1);
8574}
8575
8576/* An ordinary record type in which ___XVL-convention fields and
8577 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8578 static approximations, containing all possible fields. Uses
8579 no runtime values. Useless for use in values, but that's OK,
8580 since the results are used only for type determinations. Works on both
8581 structs and unions. Representation note: to save space, we memorize
8582 the result of this function in the TYPE_TARGET_TYPE of the
8583 template type. */
8584
8585static struct type *
8586template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8587{
8588 struct type *type;
8589 int nfields;
8590 int f;
8591
9e195661
PMR
8592 /* No need no do anything if the input type is already fixed. */
8593 if (TYPE_FIXED_INSTANCE (type0))
8594 return type0;
8595
8596 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8597 if (TYPE_TARGET_TYPE (type0) != NULL)
8598 return TYPE_TARGET_TYPE (type0);
8599
9e195661 8600 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8601 type = type0;
9e195661
PMR
8602 nfields = TYPE_NFIELDS (type0);
8603
8604 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8605 recompute all over next time. */
8606 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8607
8608 for (f = 0; f < nfields; f += 1)
8609 {
460efde1 8610 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8611 struct type *new_type;
14f9c5c9 8612
4c4b4cd2 8613 if (is_dynamic_field (type0, f))
460efde1
JB
8614 {
8615 field_type = ada_check_typedef (field_type);
8616 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8617 }
14f9c5c9 8618 else
f192137b 8619 new_type = static_unwrap_type (field_type);
9e195661
PMR
8620
8621 if (new_type != field_type)
8622 {
8623 /* Clone TYPE0 only the first time we get a new field type. */
8624 if (type == type0)
8625 {
8626 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8627 TYPE_CODE (type) = TYPE_CODE (type0);
8ecb59f8 8628 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8629 TYPE_NFIELDS (type) = nfields;
8630 TYPE_FIELDS (type) = (struct field *)
8631 TYPE_ALLOC (type, nfields * sizeof (struct field));
8632 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8633 sizeof (struct field) * nfields);
8634 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8635 TYPE_FIXED_INSTANCE (type) = 1;
8636 TYPE_LENGTH (type) = 0;
8637 }
8638 TYPE_FIELD_TYPE (type, f) = new_type;
8639 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8640 }
14f9c5c9 8641 }
9e195661 8642
14f9c5c9
AS
8643 return type;
8644}
8645
4c4b4cd2 8646/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8647 whose address in memory is ADDRESS, returns a revision of TYPE,
8648 which should be a non-dynamic-sized record, in which the variant
8649 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8650 for discriminant values in DVAL0, which can be NULL if the record
8651 contains the necessary discriminant values. */
8652
d2e4a39e 8653static struct type *
fc1a4b47 8654to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8655 CORE_ADDR address, struct value *dval0)
14f9c5c9 8656{
d2e4a39e 8657 struct value *mark = value_mark ();
4c4b4cd2 8658 struct value *dval;
d2e4a39e 8659 struct type *rtype;
14f9c5c9
AS
8660 struct type *branch_type;
8661 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8662 int variant_field = variant_field_index (type);
14f9c5c9 8663
4c4b4cd2 8664 if (variant_field == -1)
14f9c5c9
AS
8665 return type;
8666
4c4b4cd2 8667 if (dval0 == NULL)
9f1f738a
SA
8668 {
8669 dval = value_from_contents_and_address (type, valaddr, address);
8670 type = value_type (dval);
8671 }
4c4b4cd2
PH
8672 else
8673 dval = dval0;
8674
e9bb382b 8675 rtype = alloc_type_copy (type);
14f9c5c9 8676 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8677 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8678 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8679 TYPE_FIELDS (rtype) =
8680 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8681 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8682 sizeof (struct field) * nfields);
14f9c5c9 8683 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8684 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8685 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8686
4c4b4cd2
PH
8687 branch_type = to_fixed_variant_branch_type
8688 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8689 cond_offset_host (valaddr,
4c4b4cd2
PH
8690 TYPE_FIELD_BITPOS (type, variant_field)
8691 / TARGET_CHAR_BIT),
d2e4a39e 8692 cond_offset_target (address,
4c4b4cd2
PH
8693 TYPE_FIELD_BITPOS (type, variant_field)
8694 / TARGET_CHAR_BIT), dval);
d2e4a39e 8695 if (branch_type == NULL)
14f9c5c9 8696 {
4c4b4cd2 8697 int f;
5b4ee69b 8698
4c4b4cd2
PH
8699 for (f = variant_field + 1; f < nfields; f += 1)
8700 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8701 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8702 }
8703 else
8704 {
4c4b4cd2
PH
8705 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8706 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8707 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8708 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8709 }
4c4b4cd2 8710 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8711
4c4b4cd2 8712 value_free_to_mark (mark);
14f9c5c9
AS
8713 return rtype;
8714}
8715
8716/* An ordinary record type (with fixed-length fields) that describes
8717 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8718 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8719 should be in DVAL, a record value; it may be NULL if the object
8720 at ADDR itself contains any necessary discriminant values.
8721 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8722 values from the record are needed. Except in the case that DVAL,
8723 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8724 unchecked) is replaced by a particular branch of the variant.
8725
8726 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8727 is questionable and may be removed. It can arise during the
8728 processing of an unconstrained-array-of-record type where all the
8729 variant branches have exactly the same size. This is because in
8730 such cases, the compiler does not bother to use the XVS convention
8731 when encoding the record. I am currently dubious of this
8732 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8733
d2e4a39e 8734static struct type *
fc1a4b47 8735to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8736 CORE_ADDR address, struct value *dval)
14f9c5c9 8737{
d2e4a39e 8738 struct type *templ_type;
14f9c5c9 8739
876cecd0 8740 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8741 return type0;
8742
d2e4a39e 8743 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8744
8745 if (templ_type != NULL)
8746 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8747 else if (variant_field_index (type0) >= 0)
8748 {
8749 if (dval == NULL && valaddr == NULL && address == 0)
8750 return type0;
8751 return to_record_with_fixed_variant_part (type0, valaddr, address,
8752 dval);
8753 }
14f9c5c9
AS
8754 else
8755 {
876cecd0 8756 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8757 return type0;
8758 }
8759
8760}
8761
8762/* An ordinary record type (with fixed-length fields) that describes
8763 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8764 union type. Any necessary discriminants' values should be in DVAL,
8765 a record value. That is, this routine selects the appropriate
8766 branch of the union at ADDR according to the discriminant value
b1f33ddd 8767 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8768 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8769
d2e4a39e 8770static struct type *
fc1a4b47 8771to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8772 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8773{
8774 int which;
d2e4a39e
AS
8775 struct type *templ_type;
8776 struct type *var_type;
14f9c5c9
AS
8777
8778 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8779 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8780 else
14f9c5c9
AS
8781 var_type = var_type0;
8782
8783 templ_type = ada_find_parallel_type (var_type, "___XVU");
8784
8785 if (templ_type != NULL)
8786 var_type = templ_type;
8787
b1f33ddd
JB
8788 if (is_unchecked_variant (var_type, value_type (dval)))
8789 return var_type0;
d2e4a39e
AS
8790 which =
8791 ada_which_variant_applies (var_type,
0fd88904 8792 value_type (dval), value_contents (dval));
14f9c5c9
AS
8793
8794 if (which < 0)
e9bb382b 8795 return empty_record (var_type);
14f9c5c9 8796 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8797 return to_fixed_record_type
d2e4a39e
AS
8798 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8799 valaddr, address, dval);
4c4b4cd2 8800 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8801 return
8802 to_fixed_record_type
8803 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8804 else
8805 return TYPE_FIELD_TYPE (var_type, which);
8806}
8807
8908fca5
JB
8808/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8809 ENCODING_TYPE, a type following the GNAT conventions for discrete
8810 type encodings, only carries redundant information. */
8811
8812static int
8813ada_is_redundant_range_encoding (struct type *range_type,
8814 struct type *encoding_type)
8815{
108d56a4 8816 const char *bounds_str;
8908fca5
JB
8817 int n;
8818 LONGEST lo, hi;
8819
8820 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8821
005e2509
JB
8822 if (TYPE_CODE (get_base_type (range_type))
8823 != TYPE_CODE (get_base_type (encoding_type)))
8824 {
8825 /* The compiler probably used a simple base type to describe
8826 the range type instead of the range's actual base type,
8827 expecting us to get the real base type from the encoding
8828 anyway. In this situation, the encoding cannot be ignored
8829 as redundant. */
8830 return 0;
8831 }
8832
8908fca5
JB
8833 if (is_dynamic_type (range_type))
8834 return 0;
8835
8836 if (TYPE_NAME (encoding_type) == NULL)
8837 return 0;
8838
8839 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8840 if (bounds_str == NULL)
8841 return 0;
8842
8843 n = 8; /* Skip "___XDLU_". */
8844 if (!ada_scan_number (bounds_str, n, &lo, &n))
8845 return 0;
8846 if (TYPE_LOW_BOUND (range_type) != lo)
8847 return 0;
8848
8849 n += 2; /* Skip the "__" separator between the two bounds. */
8850 if (!ada_scan_number (bounds_str, n, &hi, &n))
8851 return 0;
8852 if (TYPE_HIGH_BOUND (range_type) != hi)
8853 return 0;
8854
8855 return 1;
8856}
8857
8858/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8859 a type following the GNAT encoding for describing array type
8860 indices, only carries redundant information. */
8861
8862static int
8863ada_is_redundant_index_type_desc (struct type *array_type,
8864 struct type *desc_type)
8865{
8866 struct type *this_layer = check_typedef (array_type);
8867 int i;
8868
8869 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8870 {
8871 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8872 TYPE_FIELD_TYPE (desc_type, i)))
8873 return 0;
8874 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8875 }
8876
8877 return 1;
8878}
8879
14f9c5c9
AS
8880/* Assuming that TYPE0 is an array type describing the type of a value
8881 at ADDR, and that DVAL describes a record containing any
8882 discriminants used in TYPE0, returns a type for the value that
8883 contains no dynamic components (that is, no components whose sizes
8884 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8885 true, gives an error message if the resulting type's size is over
4c4b4cd2 8886 varsize_limit. */
14f9c5c9 8887
d2e4a39e
AS
8888static struct type *
8889to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8890 int ignore_too_big)
14f9c5c9 8891{
d2e4a39e
AS
8892 struct type *index_type_desc;
8893 struct type *result;
ad82864c 8894 int constrained_packed_array_p;
931e5bc3 8895 static const char *xa_suffix = "___XA";
14f9c5c9 8896
b0dd7688 8897 type0 = ada_check_typedef (type0);
284614f0 8898 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8899 return type0;
14f9c5c9 8900
ad82864c
JB
8901 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8902 if (constrained_packed_array_p)
8903 type0 = decode_constrained_packed_array_type (type0);
284614f0 8904
931e5bc3
JG
8905 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8906
8907 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8908 encoding suffixed with 'P' may still be generated. If so,
8909 it should be used to find the XA type. */
8910
8911 if (index_type_desc == NULL)
8912 {
1da0522e 8913 const char *type_name = ada_type_name (type0);
931e5bc3 8914
1da0522e 8915 if (type_name != NULL)
931e5bc3 8916 {
1da0522e 8917 const int len = strlen (type_name);
931e5bc3
JG
8918 char *name = (char *) alloca (len + strlen (xa_suffix));
8919
1da0522e 8920 if (type_name[len - 1] == 'P')
931e5bc3 8921 {
1da0522e 8922 strcpy (name, type_name);
931e5bc3
JG
8923 strcpy (name + len - 1, xa_suffix);
8924 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8925 }
8926 }
8927 }
8928
28c85d6c 8929 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8930 if (index_type_desc != NULL
8931 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8932 {
8933 /* Ignore this ___XA parallel type, as it does not bring any
8934 useful information. This allows us to avoid creating fixed
8935 versions of the array's index types, which would be identical
8936 to the original ones. This, in turn, can also help avoid
8937 the creation of fixed versions of the array itself. */
8938 index_type_desc = NULL;
8939 }
8940
14f9c5c9
AS
8941 if (index_type_desc == NULL)
8942 {
61ee279c 8943 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8944
14f9c5c9 8945 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8946 depend on the contents of the array in properly constructed
8947 debugging data. */
529cad9c
PH
8948 /* Create a fixed version of the array element type.
8949 We're not providing the address of an element here,
e1d5a0d2 8950 and thus the actual object value cannot be inspected to do
529cad9c
PH
8951 the conversion. This should not be a problem, since arrays of
8952 unconstrained objects are not allowed. In particular, all
8953 the elements of an array of a tagged type should all be of
8954 the same type specified in the debugging info. No need to
8955 consult the object tag. */
1ed6ede0 8956 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8957
284614f0
JB
8958 /* Make sure we always create a new array type when dealing with
8959 packed array types, since we're going to fix-up the array
8960 type length and element bitsize a little further down. */
ad82864c 8961 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8962 result = type0;
14f9c5c9 8963 else
e9bb382b 8964 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8965 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8966 }
8967 else
8968 {
8969 int i;
8970 struct type *elt_type0;
8971
8972 elt_type0 = type0;
8973 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8974 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8975
8976 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8977 depend on the contents of the array in properly constructed
8978 debugging data. */
529cad9c
PH
8979 /* Create a fixed version of the array element type.
8980 We're not providing the address of an element here,
e1d5a0d2 8981 and thus the actual object value cannot be inspected to do
529cad9c
PH
8982 the conversion. This should not be a problem, since arrays of
8983 unconstrained objects are not allowed. In particular, all
8984 the elements of an array of a tagged type should all be of
8985 the same type specified in the debugging info. No need to
8986 consult the object tag. */
1ed6ede0
JB
8987 result =
8988 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8989
8990 elt_type0 = type0;
14f9c5c9 8991 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8992 {
8993 struct type *range_type =
28c85d6c 8994 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8995
e9bb382b 8996 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8997 result, range_type);
1ce677a4 8998 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8999 }
d2e4a39e 9000 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 9001 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
9002 }
9003
2e6fda7d
JB
9004 /* We want to preserve the type name. This can be useful when
9005 trying to get the type name of a value that has already been
9006 printed (for instance, if the user did "print VAR; whatis $". */
9007 TYPE_NAME (result) = TYPE_NAME (type0);
9008
ad82864c 9009 if (constrained_packed_array_p)
284614f0
JB
9010 {
9011 /* So far, the resulting type has been created as if the original
9012 type was a regular (non-packed) array type. As a result, the
9013 bitsize of the array elements needs to be set again, and the array
9014 length needs to be recomputed based on that bitsize. */
9015 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9016 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9017
9018 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9019 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9020 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9021 TYPE_LENGTH (result)++;
9022 }
9023
876cecd0 9024 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 9025 return result;
d2e4a39e 9026}
14f9c5c9
AS
9027
9028
9029/* A standard type (containing no dynamically sized components)
9030 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9031 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 9032 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
9033 ADDRESS or in VALADDR contains these discriminants.
9034
1ed6ede0
JB
9035 If CHECK_TAG is not null, in the case of tagged types, this function
9036 attempts to locate the object's tag and use it to compute the actual
9037 type. However, when ADDRESS is null, we cannot use it to determine the
9038 location of the tag, and therefore compute the tagged type's actual type.
9039 So we return the tagged type without consulting the tag. */
529cad9c 9040
f192137b
JB
9041static struct type *
9042ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9043 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9044{
61ee279c 9045 type = ada_check_typedef (type);
8ecb59f8
TT
9046
9047 /* Only un-fixed types need to be handled here. */
9048 if (!HAVE_GNAT_AUX_INFO (type))
9049 return type;
9050
d2e4a39e
AS
9051 switch (TYPE_CODE (type))
9052 {
9053 default:
14f9c5c9 9054 return type;
d2e4a39e 9055 case TYPE_CODE_STRUCT:
4c4b4cd2 9056 {
76a01679 9057 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9058 struct type *fixed_record_type =
9059 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9060
529cad9c
PH
9061 /* If STATIC_TYPE is a tagged type and we know the object's address,
9062 then we can determine its tag, and compute the object's actual
0963b4bd 9063 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9064 type (the parent part of the record may have dynamic fields
9065 and the way the location of _tag is expressed may depend on
9066 them). */
529cad9c 9067
1ed6ede0 9068 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9069 {
b50d69b5
JG
9070 struct value *tag =
9071 value_tag_from_contents_and_address
9072 (fixed_record_type,
9073 valaddr,
9074 address);
9075 struct type *real_type = type_from_tag (tag);
9076 struct value *obj =
9077 value_from_contents_and_address (fixed_record_type,
9078 valaddr,
9079 address);
9f1f738a 9080 fixed_record_type = value_type (obj);
76a01679 9081 if (real_type != NULL)
b50d69b5
JG
9082 return to_fixed_record_type
9083 (real_type, NULL,
9084 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9085 }
4af88198
JB
9086
9087 /* Check to see if there is a parallel ___XVZ variable.
9088 If there is, then it provides the actual size of our type. */
9089 else if (ada_type_name (fixed_record_type) != NULL)
9090 {
0d5cff50 9091 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9092 char *xvz_name
9093 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9094 bool xvz_found = false;
4af88198
JB
9095 LONGEST size;
9096
88c15c34 9097 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 9098 try
eccab96d
JB
9099 {
9100 xvz_found = get_int_var_value (xvz_name, size);
9101 }
230d2906 9102 catch (const gdb_exception_error &except)
eccab96d
JB
9103 {
9104 /* We found the variable, but somehow failed to read
9105 its value. Rethrow the same error, but with a little
9106 bit more information, to help the user understand
9107 what went wrong (Eg: the variable might have been
9108 optimized out). */
9109 throw_error (except.error,
9110 _("unable to read value of %s (%s)"),
3d6e9d23 9111 xvz_name, except.what ());
eccab96d 9112 }
eccab96d
JB
9113
9114 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9115 {
9116 fixed_record_type = copy_type (fixed_record_type);
9117 TYPE_LENGTH (fixed_record_type) = size;
9118
9119 /* The FIXED_RECORD_TYPE may have be a stub. We have
9120 observed this when the debugging info is STABS, and
9121 apparently it is something that is hard to fix.
9122
9123 In practice, we don't need the actual type definition
9124 at all, because the presence of the XVZ variable allows us
9125 to assume that there must be a XVS type as well, which we
9126 should be able to use later, when we need the actual type
9127 definition.
9128
9129 In the meantime, pretend that the "fixed" type we are
9130 returning is NOT a stub, because this can cause trouble
9131 when using this type to create new types targeting it.
9132 Indeed, the associated creation routines often check
9133 whether the target type is a stub and will try to replace
0963b4bd 9134 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9135 might cause the new type to have the wrong size too.
9136 Consider the case of an array, for instance, where the size
9137 of the array is computed from the number of elements in
9138 our array multiplied by the size of its element. */
9139 TYPE_STUB (fixed_record_type) = 0;
9140 }
9141 }
1ed6ede0 9142 return fixed_record_type;
4c4b4cd2 9143 }
d2e4a39e 9144 case TYPE_CODE_ARRAY:
4c4b4cd2 9145 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9146 case TYPE_CODE_UNION:
9147 if (dval == NULL)
4c4b4cd2 9148 return type;
d2e4a39e 9149 else
4c4b4cd2 9150 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9151 }
14f9c5c9
AS
9152}
9153
f192137b
JB
9154/* The same as ada_to_fixed_type_1, except that it preserves the type
9155 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9156
9157 The typedef layer needs be preserved in order to differentiate between
9158 arrays and array pointers when both types are implemented using the same
9159 fat pointer. In the array pointer case, the pointer is encoded as
9160 a typedef of the pointer type. For instance, considering:
9161
9162 type String_Access is access String;
9163 S1 : String_Access := null;
9164
9165 To the debugger, S1 is defined as a typedef of type String. But
9166 to the user, it is a pointer. So if the user tries to print S1,
9167 we should not dereference the array, but print the array address
9168 instead.
9169
9170 If we didn't preserve the typedef layer, we would lose the fact that
9171 the type is to be presented as a pointer (needs de-reference before
9172 being printed). And we would also use the source-level type name. */
f192137b
JB
9173
9174struct type *
9175ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9176 CORE_ADDR address, struct value *dval, int check_tag)
9177
9178{
9179 struct type *fixed_type =
9180 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9181
96dbd2c1
JB
9182 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9183 then preserve the typedef layer.
9184
9185 Implementation note: We can only check the main-type portion of
9186 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9187 from TYPE now returns a type that has the same instance flags
9188 as TYPE. For instance, if TYPE is a "typedef const", and its
9189 target type is a "struct", then the typedef elimination will return
9190 a "const" version of the target type. See check_typedef for more
9191 details about how the typedef layer elimination is done.
9192
9193 brobecker/2010-11-19: It seems to me that the only case where it is
9194 useful to preserve the typedef layer is when dealing with fat pointers.
9195 Perhaps, we could add a check for that and preserve the typedef layer
9196 only in that situation. But this seems unecessary so far, probably
9197 because we call check_typedef/ada_check_typedef pretty much everywhere.
9198 */
f192137b 9199 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9200 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9201 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9202 return type;
9203
9204 return fixed_type;
9205}
9206
14f9c5c9 9207/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9208 TYPE0, but based on no runtime data. */
14f9c5c9 9209
d2e4a39e
AS
9210static struct type *
9211to_static_fixed_type (struct type *type0)
14f9c5c9 9212{
d2e4a39e 9213 struct type *type;
14f9c5c9
AS
9214
9215 if (type0 == NULL)
9216 return NULL;
9217
876cecd0 9218 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9219 return type0;
9220
61ee279c 9221 type0 = ada_check_typedef (type0);
d2e4a39e 9222
14f9c5c9
AS
9223 switch (TYPE_CODE (type0))
9224 {
9225 default:
9226 return type0;
9227 case TYPE_CODE_STRUCT:
9228 type = dynamic_template_type (type0);
d2e4a39e 9229 if (type != NULL)
4c4b4cd2
PH
9230 return template_to_static_fixed_type (type);
9231 else
9232 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9233 case TYPE_CODE_UNION:
9234 type = ada_find_parallel_type (type0, "___XVU");
9235 if (type != NULL)
4c4b4cd2
PH
9236 return template_to_static_fixed_type (type);
9237 else
9238 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9239 }
9240}
9241
4c4b4cd2
PH
9242/* A static approximation of TYPE with all type wrappers removed. */
9243
d2e4a39e
AS
9244static struct type *
9245static_unwrap_type (struct type *type)
14f9c5c9
AS
9246{
9247 if (ada_is_aligner_type (type))
9248 {
61ee279c 9249 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9250 if (ada_type_name (type1) == NULL)
4c4b4cd2 9251 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9252
9253 return static_unwrap_type (type1);
9254 }
d2e4a39e 9255 else
14f9c5c9 9256 {
d2e4a39e 9257 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9258
d2e4a39e 9259 if (raw_real_type == type)
4c4b4cd2 9260 return type;
14f9c5c9 9261 else
4c4b4cd2 9262 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9263 }
9264}
9265
9266/* In some cases, incomplete and private types require
4c4b4cd2 9267 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9268 type Foo;
9269 type FooP is access Foo;
9270 V: FooP;
9271 type Foo is array ...;
4c4b4cd2 9272 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9273 cross-references to such types, we instead substitute for FooP a
9274 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9275 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9276
9277/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9278 exists, otherwise TYPE. */
9279
d2e4a39e 9280struct type *
61ee279c 9281ada_check_typedef (struct type *type)
14f9c5c9 9282{
727e3d2e
JB
9283 if (type == NULL)
9284 return NULL;
9285
736ade86
XR
9286 /* If our type is an access to an unconstrained array, which is encoded
9287 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9288 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9289 what allows us to distinguish between fat pointers that represent
9290 array types, and fat pointers that represent array access types
9291 (in both cases, the compiler implements them as fat pointers). */
736ade86 9292 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9293 return type;
9294
f168693b 9295 type = check_typedef (type);
14f9c5c9 9296 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9297 || !TYPE_STUB (type)
e86ca25f 9298 || TYPE_NAME (type) == NULL)
14f9c5c9 9299 return type;
d2e4a39e 9300 else
14f9c5c9 9301 {
e86ca25f 9302 const char *name = TYPE_NAME (type);
d2e4a39e 9303 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9304
05e522ef
JB
9305 if (type1 == NULL)
9306 return type;
9307
9308 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9309 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9310 types, only for the typedef-to-array types). If that's the case,
9311 strip the typedef layer. */
9312 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9313 type1 = ada_check_typedef (type1);
9314
9315 return type1;
14f9c5c9
AS
9316 }
9317}
9318
9319/* A value representing the data at VALADDR/ADDRESS as described by
9320 type TYPE0, but with a standard (static-sized) type that correctly
9321 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9322 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9323 creation of struct values]. */
14f9c5c9 9324
4c4b4cd2
PH
9325static struct value *
9326ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9327 struct value *val0)
14f9c5c9 9328{
1ed6ede0 9329 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9330
14f9c5c9
AS
9331 if (type == type0 && val0 != NULL)
9332 return val0;
cc0e770c
JB
9333
9334 if (VALUE_LVAL (val0) != lval_memory)
9335 {
9336 /* Our value does not live in memory; it could be a convenience
9337 variable, for instance. Create a not_lval value using val0's
9338 contents. */
9339 return value_from_contents (type, value_contents (val0));
9340 }
9341
9342 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9343}
9344
9345/* A value representing VAL, but with a standard (static-sized) type
9346 that correctly describes it. Does not necessarily create a new
9347 value. */
9348
0c3acc09 9349struct value *
4c4b4cd2
PH
9350ada_to_fixed_value (struct value *val)
9351{
c48db5ca 9352 val = unwrap_value (val);
d8ce9127 9353 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9354 return val;
14f9c5c9 9355}
d2e4a39e 9356\f
14f9c5c9 9357
14f9c5c9
AS
9358/* Attributes */
9359
4c4b4cd2
PH
9360/* Table mapping attribute numbers to names.
9361 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9362
d2e4a39e 9363static const char *attribute_names[] = {
14f9c5c9
AS
9364 "<?>",
9365
d2e4a39e 9366 "first",
14f9c5c9
AS
9367 "last",
9368 "length",
9369 "image",
14f9c5c9
AS
9370 "max",
9371 "min",
4c4b4cd2
PH
9372 "modulus",
9373 "pos",
9374 "size",
9375 "tag",
14f9c5c9 9376 "val",
14f9c5c9
AS
9377 0
9378};
9379
d2e4a39e 9380const char *
4c4b4cd2 9381ada_attribute_name (enum exp_opcode n)
14f9c5c9 9382{
4c4b4cd2
PH
9383 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9384 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9385 else
9386 return attribute_names[0];
9387}
9388
4c4b4cd2 9389/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9390
4c4b4cd2
PH
9391static LONGEST
9392pos_atr (struct value *arg)
14f9c5c9 9393{
24209737
PH
9394 struct value *val = coerce_ref (arg);
9395 struct type *type = value_type (val);
aa715135 9396 LONGEST result;
14f9c5c9 9397
d2e4a39e 9398 if (!discrete_type_p (type))
323e0a4a 9399 error (_("'POS only defined on discrete types"));
14f9c5c9 9400
aa715135
JG
9401 if (!discrete_position (type, value_as_long (val), &result))
9402 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9403
aa715135 9404 return result;
4c4b4cd2
PH
9405}
9406
9407static struct value *
3cb382c9 9408value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9409{
3cb382c9 9410 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9411}
9412
4c4b4cd2 9413/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9414
d2e4a39e
AS
9415static struct value *
9416value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9417{
d2e4a39e 9418 if (!discrete_type_p (type))
323e0a4a 9419 error (_("'VAL only defined on discrete types"));
df407dfe 9420 if (!integer_type_p (value_type (arg)))
323e0a4a 9421 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9422
9423 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9424 {
9425 long pos = value_as_long (arg);
5b4ee69b 9426
14f9c5c9 9427 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9428 error (_("argument to 'VAL out of range"));
14e75d8e 9429 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9430 }
9431 else
9432 return value_from_longest (type, value_as_long (arg));
9433}
14f9c5c9 9434\f
d2e4a39e 9435
4c4b4cd2 9436 /* Evaluation */
14f9c5c9 9437
4c4b4cd2
PH
9438/* True if TYPE appears to be an Ada character type.
9439 [At the moment, this is true only for Character and Wide_Character;
9440 It is a heuristic test that could stand improvement]. */
14f9c5c9 9441
fc913e53 9442bool
d2e4a39e 9443ada_is_character_type (struct type *type)
14f9c5c9 9444{
7b9f71f2
JB
9445 const char *name;
9446
9447 /* If the type code says it's a character, then assume it really is,
9448 and don't check any further. */
9449 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
fc913e53 9450 return true;
7b9f71f2
JB
9451
9452 /* Otherwise, assume it's a character type iff it is a discrete type
9453 with a known character type name. */
9454 name = ada_type_name (type);
9455 return (name != NULL
9456 && (TYPE_CODE (type) == TYPE_CODE_INT
9457 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9458 && (strcmp (name, "character") == 0
9459 || strcmp (name, "wide_character") == 0
5a517ebd 9460 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9461 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9462}
9463
4c4b4cd2 9464/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9465
fc913e53 9466bool
ebf56fd3 9467ada_is_string_type (struct type *type)
14f9c5c9 9468{
61ee279c 9469 type = ada_check_typedef (type);
d2e4a39e 9470 if (type != NULL
14f9c5c9 9471 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9472 && (ada_is_simple_array_type (type)
9473 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9474 && ada_array_arity (type) == 1)
9475 {
9476 struct type *elttype = ada_array_element_type (type, 1);
9477
9478 return ada_is_character_type (elttype);
9479 }
d2e4a39e 9480 else
fc913e53 9481 return false;
14f9c5c9
AS
9482}
9483
5bf03f13
JB
9484/* The compiler sometimes provides a parallel XVS type for a given
9485 PAD type. Normally, it is safe to follow the PAD type directly,
9486 but older versions of the compiler have a bug that causes the offset
9487 of its "F" field to be wrong. Following that field in that case
9488 would lead to incorrect results, but this can be worked around
9489 by ignoring the PAD type and using the associated XVS type instead.
9490
9491 Set to True if the debugger should trust the contents of PAD types.
9492 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9493static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9494
9495/* True if TYPE is a struct type introduced by the compiler to force the
9496 alignment of a value. Such types have a single field with a
4c4b4cd2 9497 distinctive name. */
14f9c5c9
AS
9498
9499int
ebf56fd3 9500ada_is_aligner_type (struct type *type)
14f9c5c9 9501{
61ee279c 9502 type = ada_check_typedef (type);
714e53ab 9503
5bf03f13 9504 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9505 return 0;
9506
14f9c5c9 9507 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9508 && TYPE_NFIELDS (type) == 1
9509 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9510}
9511
9512/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9513 the parallel type. */
14f9c5c9 9514
d2e4a39e
AS
9515struct type *
9516ada_get_base_type (struct type *raw_type)
14f9c5c9 9517{
d2e4a39e
AS
9518 struct type *real_type_namer;
9519 struct type *raw_real_type;
14f9c5c9
AS
9520
9521 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9522 return raw_type;
9523
284614f0
JB
9524 if (ada_is_aligner_type (raw_type))
9525 /* The encoding specifies that we should always use the aligner type.
9526 So, even if this aligner type has an associated XVS type, we should
9527 simply ignore it.
9528
9529 According to the compiler gurus, an XVS type parallel to an aligner
9530 type may exist because of a stabs limitation. In stabs, aligner
9531 types are empty because the field has a variable-sized type, and
9532 thus cannot actually be used as an aligner type. As a result,
9533 we need the associated parallel XVS type to decode the type.
9534 Since the policy in the compiler is to not change the internal
9535 representation based on the debugging info format, we sometimes
9536 end up having a redundant XVS type parallel to the aligner type. */
9537 return raw_type;
9538
14f9c5c9 9539 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9540 if (real_type_namer == NULL
14f9c5c9
AS
9541 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9542 || TYPE_NFIELDS (real_type_namer) != 1)
9543 return raw_type;
9544
f80d3ff2
JB
9545 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9546 {
9547 /* This is an older encoding form where the base type needs to be
9548 looked up by name. We prefer the newer enconding because it is
9549 more efficient. */
9550 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9551 if (raw_real_type == NULL)
9552 return raw_type;
9553 else
9554 return raw_real_type;
9555 }
9556
9557 /* The field in our XVS type is a reference to the base type. */
9558 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9559}
14f9c5c9 9560
4c4b4cd2 9561/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9562
d2e4a39e
AS
9563struct type *
9564ada_aligned_type (struct type *type)
14f9c5c9
AS
9565{
9566 if (ada_is_aligner_type (type))
9567 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9568 else
9569 return ada_get_base_type (type);
9570}
9571
9572
9573/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9574 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9575
fc1a4b47
AC
9576const gdb_byte *
9577ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9578{
d2e4a39e 9579 if (ada_is_aligner_type (type))
14f9c5c9 9580 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9581 valaddr +
9582 TYPE_FIELD_BITPOS (type,
9583 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9584 else
9585 return valaddr;
9586}
9587
4c4b4cd2
PH
9588
9589
14f9c5c9 9590/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9591 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9592const char *
9593ada_enum_name (const char *name)
14f9c5c9 9594{
4c4b4cd2
PH
9595 static char *result;
9596 static size_t result_len = 0;
e6a959d6 9597 const char *tmp;
14f9c5c9 9598
4c4b4cd2
PH
9599 /* First, unqualify the enumeration name:
9600 1. Search for the last '.' character. If we find one, then skip
177b42fe 9601 all the preceding characters, the unqualified name starts
76a01679 9602 right after that dot.
4c4b4cd2 9603 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9604 translates dots into "__". Search forward for double underscores,
9605 but stop searching when we hit an overloading suffix, which is
9606 of the form "__" followed by digits. */
4c4b4cd2 9607
c3e5cd34
PH
9608 tmp = strrchr (name, '.');
9609 if (tmp != NULL)
4c4b4cd2
PH
9610 name = tmp + 1;
9611 else
14f9c5c9 9612 {
4c4b4cd2
PH
9613 while ((tmp = strstr (name, "__")) != NULL)
9614 {
9615 if (isdigit (tmp[2]))
9616 break;
9617 else
9618 name = tmp + 2;
9619 }
14f9c5c9
AS
9620 }
9621
9622 if (name[0] == 'Q')
9623 {
14f9c5c9 9624 int v;
5b4ee69b 9625
14f9c5c9 9626 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9627 {
9628 if (sscanf (name + 2, "%x", &v) != 1)
9629 return name;
9630 }
14f9c5c9 9631 else
4c4b4cd2 9632 return name;
14f9c5c9 9633
4c4b4cd2 9634 GROW_VECT (result, result_len, 16);
14f9c5c9 9635 if (isascii (v) && isprint (v))
88c15c34 9636 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9637 else if (name[1] == 'U')
88c15c34 9638 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9639 else
88c15c34 9640 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9641
9642 return result;
9643 }
d2e4a39e 9644 else
4c4b4cd2 9645 {
c3e5cd34
PH
9646 tmp = strstr (name, "__");
9647 if (tmp == NULL)
9648 tmp = strstr (name, "$");
9649 if (tmp != NULL)
4c4b4cd2
PH
9650 {
9651 GROW_VECT (result, result_len, tmp - name + 1);
9652 strncpy (result, name, tmp - name);
9653 result[tmp - name] = '\0';
9654 return result;
9655 }
9656
9657 return name;
9658 }
14f9c5c9
AS
9659}
9660
14f9c5c9
AS
9661/* Evaluate the subexpression of EXP starting at *POS as for
9662 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9663 expression. */
14f9c5c9 9664
d2e4a39e
AS
9665static struct value *
9666evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9667{
4b27a620 9668 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9669}
9670
9671/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9672 value it wraps. */
14f9c5c9 9673
d2e4a39e
AS
9674static struct value *
9675unwrap_value (struct value *val)
14f9c5c9 9676{
df407dfe 9677 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9678
14f9c5c9
AS
9679 if (ada_is_aligner_type (type))
9680 {
de4d072f 9681 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9682 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9683
14f9c5c9 9684 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9685 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9686
9687 return unwrap_value (v);
9688 }
d2e4a39e 9689 else
14f9c5c9 9690 {
d2e4a39e 9691 struct type *raw_real_type =
61ee279c 9692 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9693
5bf03f13
JB
9694 /* If there is no parallel XVS or XVE type, then the value is
9695 already unwrapped. Return it without further modification. */
9696 if ((type == raw_real_type)
9697 && ada_find_parallel_type (type, "___XVE") == NULL)
9698 return val;
14f9c5c9 9699
d2e4a39e 9700 return
4c4b4cd2
PH
9701 coerce_unspec_val_to_type
9702 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9703 value_address (val),
1ed6ede0 9704 NULL, 1));
14f9c5c9
AS
9705 }
9706}
d2e4a39e
AS
9707
9708static struct value *
50eff16b 9709cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9710{
50eff16b
UW
9711 struct value *scale = ada_scaling_factor (value_type (arg));
9712 arg = value_cast (value_type (scale), arg);
14f9c5c9 9713
50eff16b
UW
9714 arg = value_binop (arg, scale, BINOP_MUL);
9715 return value_cast (type, arg);
14f9c5c9
AS
9716}
9717
d2e4a39e 9718static struct value *
50eff16b 9719cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9720{
50eff16b
UW
9721 if (type == value_type (arg))
9722 return arg;
5b4ee69b 9723
50eff16b
UW
9724 struct value *scale = ada_scaling_factor (type);
9725 if (ada_is_fixed_point_type (value_type (arg)))
9726 arg = cast_from_fixed (value_type (scale), arg);
9727 else
9728 arg = value_cast (value_type (scale), arg);
9729
9730 arg = value_binop (arg, scale, BINOP_DIV);
9731 return value_cast (type, arg);
14f9c5c9
AS
9732}
9733
d99dcf51
JB
9734/* Given two array types T1 and T2, return nonzero iff both arrays
9735 contain the same number of elements. */
9736
9737static int
9738ada_same_array_size_p (struct type *t1, struct type *t2)
9739{
9740 LONGEST lo1, hi1, lo2, hi2;
9741
9742 /* Get the array bounds in order to verify that the size of
9743 the two arrays match. */
9744 if (!get_array_bounds (t1, &lo1, &hi1)
9745 || !get_array_bounds (t2, &lo2, &hi2))
9746 error (_("unable to determine array bounds"));
9747
9748 /* To make things easier for size comparison, normalize a bit
9749 the case of empty arrays by making sure that the difference
9750 between upper bound and lower bound is always -1. */
9751 if (lo1 > hi1)
9752 hi1 = lo1 - 1;
9753 if (lo2 > hi2)
9754 hi2 = lo2 - 1;
9755
9756 return (hi1 - lo1 == hi2 - lo2);
9757}
9758
9759/* Assuming that VAL is an array of integrals, and TYPE represents
9760 an array with the same number of elements, but with wider integral
9761 elements, return an array "casted" to TYPE. In practice, this
9762 means that the returned array is built by casting each element
9763 of the original array into TYPE's (wider) element type. */
9764
9765static struct value *
9766ada_promote_array_of_integrals (struct type *type, struct value *val)
9767{
9768 struct type *elt_type = TYPE_TARGET_TYPE (type);
9769 LONGEST lo, hi;
9770 struct value *res;
9771 LONGEST i;
9772
9773 /* Verify that both val and type are arrays of scalars, and
9774 that the size of val's elements is smaller than the size
9775 of type's element. */
9776 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9777 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9778 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9779 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9780 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9781 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9782
9783 if (!get_array_bounds (type, &lo, &hi))
9784 error (_("unable to determine array bounds"));
9785
9786 res = allocate_value (type);
9787
9788 /* Promote each array element. */
9789 for (i = 0; i < hi - lo + 1; i++)
9790 {
9791 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9792
9793 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9794 value_contents_all (elt), TYPE_LENGTH (elt_type));
9795 }
9796
9797 return res;
9798}
9799
4c4b4cd2
PH
9800/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9801 return the converted value. */
9802
d2e4a39e
AS
9803static struct value *
9804coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9805{
df407dfe 9806 struct type *type2 = value_type (val);
5b4ee69b 9807
14f9c5c9
AS
9808 if (type == type2)
9809 return val;
9810
61ee279c
PH
9811 type2 = ada_check_typedef (type2);
9812 type = ada_check_typedef (type);
14f9c5c9 9813
d2e4a39e
AS
9814 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9815 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9816 {
9817 val = ada_value_ind (val);
df407dfe 9818 type2 = value_type (val);
14f9c5c9
AS
9819 }
9820
d2e4a39e 9821 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9822 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9823 {
d99dcf51
JB
9824 if (!ada_same_array_size_p (type, type2))
9825 error (_("cannot assign arrays of different length"));
9826
9827 if (is_integral_type (TYPE_TARGET_TYPE (type))
9828 && is_integral_type (TYPE_TARGET_TYPE (type2))
9829 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9830 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9831 {
9832 /* Allow implicit promotion of the array elements to
9833 a wider type. */
9834 return ada_promote_array_of_integrals (type, val);
9835 }
9836
9837 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9838 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9839 error (_("Incompatible types in assignment"));
04624583 9840 deprecated_set_value_type (val, type);
14f9c5c9 9841 }
d2e4a39e 9842 return val;
14f9c5c9
AS
9843}
9844
4c4b4cd2
PH
9845static struct value *
9846ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9847{
9848 struct value *val;
9849 struct type *type1, *type2;
9850 LONGEST v, v1, v2;
9851
994b9211
AC
9852 arg1 = coerce_ref (arg1);
9853 arg2 = coerce_ref (arg2);
18af8284
JB
9854 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9855 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9856
76a01679
JB
9857 if (TYPE_CODE (type1) != TYPE_CODE_INT
9858 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9859 return value_binop (arg1, arg2, op);
9860
76a01679 9861 switch (op)
4c4b4cd2
PH
9862 {
9863 case BINOP_MOD:
9864 case BINOP_DIV:
9865 case BINOP_REM:
9866 break;
9867 default:
9868 return value_binop (arg1, arg2, op);
9869 }
9870
9871 v2 = value_as_long (arg2);
9872 if (v2 == 0)
323e0a4a 9873 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9874
9875 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9876 return value_binop (arg1, arg2, op);
9877
9878 v1 = value_as_long (arg1);
9879 switch (op)
9880 {
9881 case BINOP_DIV:
9882 v = v1 / v2;
76a01679
JB
9883 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9884 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9885 break;
9886 case BINOP_REM:
9887 v = v1 % v2;
76a01679
JB
9888 if (v * v1 < 0)
9889 v -= v2;
4c4b4cd2
PH
9890 break;
9891 default:
9892 /* Should not reach this point. */
9893 v = 0;
9894 }
9895
9896 val = allocate_value (type1);
990a07ab 9897 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9898 TYPE_LENGTH (value_type (val)),
9899 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9900 return val;
9901}
9902
9903static int
9904ada_value_equal (struct value *arg1, struct value *arg2)
9905{
df407dfe
AC
9906 if (ada_is_direct_array_type (value_type (arg1))
9907 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9908 {
79e8fcaa
JB
9909 struct type *arg1_type, *arg2_type;
9910
f58b38bf
JB
9911 /* Automatically dereference any array reference before
9912 we attempt to perform the comparison. */
9913 arg1 = ada_coerce_ref (arg1);
9914 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9915
4c4b4cd2
PH
9916 arg1 = ada_coerce_to_simple_array (arg1);
9917 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9918
9919 arg1_type = ada_check_typedef (value_type (arg1));
9920 arg2_type = ada_check_typedef (value_type (arg2));
9921
9922 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9923 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9924 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9925 /* FIXME: The following works only for types whose
76a01679
JB
9926 representations use all bits (no padding or undefined bits)
9927 and do not have user-defined equality. */
79e8fcaa
JB
9928 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9929 && memcmp (value_contents (arg1), value_contents (arg2),
9930 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9931 }
9932 return value_equal (arg1, arg2);
9933}
9934
52ce6436
PH
9935/* Total number of component associations in the aggregate starting at
9936 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9937 OP_AGGREGATE. */
52ce6436
PH
9938
9939static int
9940num_component_specs (struct expression *exp, int pc)
9941{
9942 int n, m, i;
5b4ee69b 9943
52ce6436
PH
9944 m = exp->elts[pc + 1].longconst;
9945 pc += 3;
9946 n = 0;
9947 for (i = 0; i < m; i += 1)
9948 {
9949 switch (exp->elts[pc].opcode)
9950 {
9951 default:
9952 n += 1;
9953 break;
9954 case OP_CHOICES:
9955 n += exp->elts[pc + 1].longconst;
9956 break;
9957 }
9958 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9959 }
9960 return n;
9961}
9962
9963/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9964 component of LHS (a simple array or a record), updating *POS past
9965 the expression, assuming that LHS is contained in CONTAINER. Does
9966 not modify the inferior's memory, nor does it modify LHS (unless
9967 LHS == CONTAINER). */
9968
9969static void
9970assign_component (struct value *container, struct value *lhs, LONGEST index,
9971 struct expression *exp, int *pos)
9972{
9973 struct value *mark = value_mark ();
9974 struct value *elt;
0e2da9f0 9975 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9976
0e2da9f0 9977 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9978 {
22601c15
UW
9979 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9980 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9981
52ce6436
PH
9982 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9983 }
9984 else
9985 {
9986 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9987 elt = ada_to_fixed_value (elt);
52ce6436
PH
9988 }
9989
9990 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9991 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9992 else
9993 value_assign_to_component (container, elt,
9994 ada_evaluate_subexp (NULL, exp, pos,
9995 EVAL_NORMAL));
9996
9997 value_free_to_mark (mark);
9998}
9999
10000/* Assuming that LHS represents an lvalue having a record or array
10001 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10002 of that aggregate's value to LHS, advancing *POS past the
10003 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10004 lvalue containing LHS (possibly LHS itself). Does not modify
10005 the inferior's memory, nor does it modify the contents of
0963b4bd 10006 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
10007
10008static struct value *
10009assign_aggregate (struct value *container,
10010 struct value *lhs, struct expression *exp,
10011 int *pos, enum noside noside)
10012{
10013 struct type *lhs_type;
10014 int n = exp->elts[*pos+1].longconst;
10015 LONGEST low_index, high_index;
10016 int num_specs;
10017 LONGEST *indices;
10018 int max_indices, num_indices;
52ce6436 10019 int i;
52ce6436
PH
10020
10021 *pos += 3;
10022 if (noside != EVAL_NORMAL)
10023 {
52ce6436
PH
10024 for (i = 0; i < n; i += 1)
10025 ada_evaluate_subexp (NULL, exp, pos, noside);
10026 return container;
10027 }
10028
10029 container = ada_coerce_ref (container);
10030 if (ada_is_direct_array_type (value_type (container)))
10031 container = ada_coerce_to_simple_array (container);
10032 lhs = ada_coerce_ref (lhs);
10033 if (!deprecated_value_modifiable (lhs))
10034 error (_("Left operand of assignment is not a modifiable lvalue."));
10035
0e2da9f0 10036 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10037 if (ada_is_direct_array_type (lhs_type))
10038 {
10039 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 10040 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10041 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10042 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10043 }
10044 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10045 {
10046 low_index = 0;
10047 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10048 }
10049 else
10050 error (_("Left-hand side must be array or record."));
10051
10052 num_specs = num_component_specs (exp, *pos - 3);
10053 max_indices = 4 * num_specs + 4;
8d749320 10054 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10055 indices[0] = indices[1] = low_index - 1;
10056 indices[2] = indices[3] = high_index + 1;
10057 num_indices = 4;
10058
10059 for (i = 0; i < n; i += 1)
10060 {
10061 switch (exp->elts[*pos].opcode)
10062 {
1fbf5ada
JB
10063 case OP_CHOICES:
10064 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10065 &num_indices, max_indices,
10066 low_index, high_index);
10067 break;
10068 case OP_POSITIONAL:
10069 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10070 &num_indices, max_indices,
10071 low_index, high_index);
1fbf5ada
JB
10072 break;
10073 case OP_OTHERS:
10074 if (i != n-1)
10075 error (_("Misplaced 'others' clause"));
10076 aggregate_assign_others (container, lhs, exp, pos, indices,
10077 num_indices, low_index, high_index);
10078 break;
10079 default:
10080 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10081 }
10082 }
10083
10084 return container;
10085}
10086
10087/* Assign into the component of LHS indexed by the OP_POSITIONAL
10088 construct at *POS, updating *POS past the construct, given that
10089 the positions are relative to lower bound LOW, where HIGH is the
10090 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10091 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10092 assign_aggregate. */
52ce6436
PH
10093static void
10094aggregate_assign_positional (struct value *container,
10095 struct value *lhs, struct expression *exp,
10096 int *pos, LONGEST *indices, int *num_indices,
10097 int max_indices, LONGEST low, LONGEST high)
10098{
10099 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10100
10101 if (ind - 1 == high)
e1d5a0d2 10102 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10103 if (ind <= high)
10104 {
10105 add_component_interval (ind, ind, indices, num_indices, max_indices);
10106 *pos += 3;
10107 assign_component (container, lhs, ind, exp, pos);
10108 }
10109 else
10110 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10111}
10112
10113/* Assign into the components of LHS indexed by the OP_CHOICES
10114 construct at *POS, updating *POS past the construct, given that
10115 the allowable indices are LOW..HIGH. Record the indices assigned
10116 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10117 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10118static void
10119aggregate_assign_from_choices (struct value *container,
10120 struct value *lhs, struct expression *exp,
10121 int *pos, LONGEST *indices, int *num_indices,
10122 int max_indices, LONGEST low, LONGEST high)
10123{
10124 int j;
10125 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10126 int choice_pos, expr_pc;
10127 int is_array = ada_is_direct_array_type (value_type (lhs));
10128
10129 choice_pos = *pos += 3;
10130
10131 for (j = 0; j < n_choices; j += 1)
10132 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10133 expr_pc = *pos;
10134 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10135
10136 for (j = 0; j < n_choices; j += 1)
10137 {
10138 LONGEST lower, upper;
10139 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10140
52ce6436
PH
10141 if (op == OP_DISCRETE_RANGE)
10142 {
10143 choice_pos += 1;
10144 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10145 EVAL_NORMAL));
10146 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10147 EVAL_NORMAL));
10148 }
10149 else if (is_array)
10150 {
10151 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10152 EVAL_NORMAL));
10153 upper = lower;
10154 }
10155 else
10156 {
10157 int ind;
0d5cff50 10158 const char *name;
5b4ee69b 10159
52ce6436
PH
10160 switch (op)
10161 {
10162 case OP_NAME:
10163 name = &exp->elts[choice_pos + 2].string;
10164 break;
10165 case OP_VAR_VALUE:
10166 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10167 break;
10168 default:
10169 error (_("Invalid record component association."));
10170 }
10171 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10172 ind = 0;
10173 if (! find_struct_field (name, value_type (lhs), 0,
10174 NULL, NULL, NULL, NULL, &ind))
10175 error (_("Unknown component name: %s."), name);
10176 lower = upper = ind;
10177 }
10178
10179 if (lower <= upper && (lower < low || upper > high))
10180 error (_("Index in component association out of bounds."));
10181
10182 add_component_interval (lower, upper, indices, num_indices,
10183 max_indices);
10184 while (lower <= upper)
10185 {
10186 int pos1;
5b4ee69b 10187
52ce6436
PH
10188 pos1 = expr_pc;
10189 assign_component (container, lhs, lower, exp, &pos1);
10190 lower += 1;
10191 }
10192 }
10193}
10194
10195/* Assign the value of the expression in the OP_OTHERS construct in
10196 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10197 have not been previously assigned. The index intervals already assigned
10198 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10199 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10200static void
10201aggregate_assign_others (struct value *container,
10202 struct value *lhs, struct expression *exp,
10203 int *pos, LONGEST *indices, int num_indices,
10204 LONGEST low, LONGEST high)
10205{
10206 int i;
5ce64950 10207 int expr_pc = *pos + 1;
52ce6436
PH
10208
10209 for (i = 0; i < num_indices - 2; i += 2)
10210 {
10211 LONGEST ind;
5b4ee69b 10212
52ce6436
PH
10213 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10214 {
5ce64950 10215 int localpos;
5b4ee69b 10216
5ce64950
MS
10217 localpos = expr_pc;
10218 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10219 }
10220 }
10221 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10222}
10223
10224/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10225 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10226 modifying *SIZE as needed. It is an error if *SIZE exceeds
10227 MAX_SIZE. The resulting intervals do not overlap. */
10228static void
10229add_component_interval (LONGEST low, LONGEST high,
10230 LONGEST* indices, int *size, int max_size)
10231{
10232 int i, j;
5b4ee69b 10233
52ce6436
PH
10234 for (i = 0; i < *size; i += 2) {
10235 if (high >= indices[i] && low <= indices[i + 1])
10236 {
10237 int kh;
5b4ee69b 10238
52ce6436
PH
10239 for (kh = i + 2; kh < *size; kh += 2)
10240 if (high < indices[kh])
10241 break;
10242 if (low < indices[i])
10243 indices[i] = low;
10244 indices[i + 1] = indices[kh - 1];
10245 if (high > indices[i + 1])
10246 indices[i + 1] = high;
10247 memcpy (indices + i + 2, indices + kh, *size - kh);
10248 *size -= kh - i - 2;
10249 return;
10250 }
10251 else if (high < indices[i])
10252 break;
10253 }
10254
10255 if (*size == max_size)
10256 error (_("Internal error: miscounted aggregate components."));
10257 *size += 2;
10258 for (j = *size-1; j >= i+2; j -= 1)
10259 indices[j] = indices[j - 2];
10260 indices[i] = low;
10261 indices[i + 1] = high;
10262}
10263
6e48bd2c
JB
10264/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10265 is different. */
10266
10267static struct value *
b7e22850 10268ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10269{
10270 if (type == ada_check_typedef (value_type (arg2)))
10271 return arg2;
10272
10273 if (ada_is_fixed_point_type (type))
95f39a5b 10274 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10275
10276 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10277 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10278
10279 return value_cast (type, arg2);
10280}
10281
284614f0
JB
10282/* Evaluating Ada expressions, and printing their result.
10283 ------------------------------------------------------
10284
21649b50
JB
10285 1. Introduction:
10286 ----------------
10287
284614f0
JB
10288 We usually evaluate an Ada expression in order to print its value.
10289 We also evaluate an expression in order to print its type, which
10290 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10291 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10292 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10293 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10294 similar.
10295
10296 Evaluating expressions is a little more complicated for Ada entities
10297 than it is for entities in languages such as C. The main reason for
10298 this is that Ada provides types whose definition might be dynamic.
10299 One example of such types is variant records. Or another example
10300 would be an array whose bounds can only be known at run time.
10301
10302 The following description is a general guide as to what should be
10303 done (and what should NOT be done) in order to evaluate an expression
10304 involving such types, and when. This does not cover how the semantic
10305 information is encoded by GNAT as this is covered separatly. For the
10306 document used as the reference for the GNAT encoding, see exp_dbug.ads
10307 in the GNAT sources.
10308
10309 Ideally, we should embed each part of this description next to its
10310 associated code. Unfortunately, the amount of code is so vast right
10311 now that it's hard to see whether the code handling a particular
10312 situation might be duplicated or not. One day, when the code is
10313 cleaned up, this guide might become redundant with the comments
10314 inserted in the code, and we might want to remove it.
10315
21649b50
JB
10316 2. ``Fixing'' an Entity, the Simple Case:
10317 -----------------------------------------
10318
284614f0
JB
10319 When evaluating Ada expressions, the tricky issue is that they may
10320 reference entities whose type contents and size are not statically
10321 known. Consider for instance a variant record:
10322
10323 type Rec (Empty : Boolean := True) is record
10324 case Empty is
10325 when True => null;
10326 when False => Value : Integer;
10327 end case;
10328 end record;
10329 Yes : Rec := (Empty => False, Value => 1);
10330 No : Rec := (empty => True);
10331
10332 The size and contents of that record depends on the value of the
10333 descriminant (Rec.Empty). At this point, neither the debugging
10334 information nor the associated type structure in GDB are able to
10335 express such dynamic types. So what the debugger does is to create
10336 "fixed" versions of the type that applies to the specific object.
10337 We also informally refer to this opperation as "fixing" an object,
10338 which means creating its associated fixed type.
10339
10340 Example: when printing the value of variable "Yes" above, its fixed
10341 type would look like this:
10342
10343 type Rec is record
10344 Empty : Boolean;
10345 Value : Integer;
10346 end record;
10347
10348 On the other hand, if we printed the value of "No", its fixed type
10349 would become:
10350
10351 type Rec is record
10352 Empty : Boolean;
10353 end record;
10354
10355 Things become a little more complicated when trying to fix an entity
10356 with a dynamic type that directly contains another dynamic type,
10357 such as an array of variant records, for instance. There are
10358 two possible cases: Arrays, and records.
10359
21649b50
JB
10360 3. ``Fixing'' Arrays:
10361 ---------------------
10362
10363 The type structure in GDB describes an array in terms of its bounds,
10364 and the type of its elements. By design, all elements in the array
10365 have the same type and we cannot represent an array of variant elements
10366 using the current type structure in GDB. When fixing an array,
10367 we cannot fix the array element, as we would potentially need one
10368 fixed type per element of the array. As a result, the best we can do
10369 when fixing an array is to produce an array whose bounds and size
10370 are correct (allowing us to read it from memory), but without having
10371 touched its element type. Fixing each element will be done later,
10372 when (if) necessary.
10373
10374 Arrays are a little simpler to handle than records, because the same
10375 amount of memory is allocated for each element of the array, even if
1b536f04 10376 the amount of space actually used by each element differs from element
21649b50 10377 to element. Consider for instance the following array of type Rec:
284614f0
JB
10378
10379 type Rec_Array is array (1 .. 2) of Rec;
10380
1b536f04
JB
10381 The actual amount of memory occupied by each element might be different
10382 from element to element, depending on the value of their discriminant.
21649b50 10383 But the amount of space reserved for each element in the array remains
1b536f04 10384 fixed regardless. So we simply need to compute that size using
21649b50
JB
10385 the debugging information available, from which we can then determine
10386 the array size (we multiply the number of elements of the array by
10387 the size of each element).
10388
10389 The simplest case is when we have an array of a constrained element
10390 type. For instance, consider the following type declarations:
10391
10392 type Bounded_String (Max_Size : Integer) is
10393 Length : Integer;
10394 Buffer : String (1 .. Max_Size);
10395 end record;
10396 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10397
10398 In this case, the compiler describes the array as an array of
10399 variable-size elements (identified by its XVS suffix) for which
10400 the size can be read in the parallel XVZ variable.
10401
10402 In the case of an array of an unconstrained element type, the compiler
10403 wraps the array element inside a private PAD type. This type should not
10404 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10405 that we also use the adjective "aligner" in our code to designate
10406 these wrapper types.
10407
1b536f04 10408 In some cases, the size allocated for each element is statically
21649b50
JB
10409 known. In that case, the PAD type already has the correct size,
10410 and the array element should remain unfixed.
10411
10412 But there are cases when this size is not statically known.
10413 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10414
10415 type Dynamic is array (1 .. Five) of Integer;
10416 type Wrapper (Has_Length : Boolean := False) is record
10417 Data : Dynamic;
10418 case Has_Length is
10419 when True => Length : Integer;
10420 when False => null;
10421 end case;
10422 end record;
10423 type Wrapper_Array is array (1 .. 2) of Wrapper;
10424
10425 Hello : Wrapper_Array := (others => (Has_Length => True,
10426 Data => (others => 17),
10427 Length => 1));
10428
10429
10430 The debugging info would describe variable Hello as being an
10431 array of a PAD type. The size of that PAD type is not statically
10432 known, but can be determined using a parallel XVZ variable.
10433 In that case, a copy of the PAD type with the correct size should
10434 be used for the fixed array.
10435
21649b50
JB
10436 3. ``Fixing'' record type objects:
10437 ----------------------------------
10438
10439 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10440 record types. In this case, in order to compute the associated
10441 fixed type, we need to determine the size and offset of each of
10442 its components. This, in turn, requires us to compute the fixed
10443 type of each of these components.
10444
10445 Consider for instance the example:
10446
10447 type Bounded_String (Max_Size : Natural) is record
10448 Str : String (1 .. Max_Size);
10449 Length : Natural;
10450 end record;
10451 My_String : Bounded_String (Max_Size => 10);
10452
10453 In that case, the position of field "Length" depends on the size
10454 of field Str, which itself depends on the value of the Max_Size
21649b50 10455 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10456 we need to fix the type of field Str. Therefore, fixing a variant
10457 record requires us to fix each of its components.
10458
10459 However, if a component does not have a dynamic size, the component
10460 should not be fixed. In particular, fields that use a PAD type
10461 should not fixed. Here is an example where this might happen
10462 (assuming type Rec above):
10463
10464 type Container (Big : Boolean) is record
10465 First : Rec;
10466 After : Integer;
10467 case Big is
10468 when True => Another : Integer;
10469 when False => null;
10470 end case;
10471 end record;
10472 My_Container : Container := (Big => False,
10473 First => (Empty => True),
10474 After => 42);
10475
10476 In that example, the compiler creates a PAD type for component First,
10477 whose size is constant, and then positions the component After just
10478 right after it. The offset of component After is therefore constant
10479 in this case.
10480
10481 The debugger computes the position of each field based on an algorithm
10482 that uses, among other things, the actual position and size of the field
21649b50
JB
10483 preceding it. Let's now imagine that the user is trying to print
10484 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10485 end up computing the offset of field After based on the size of the
10486 fixed version of field First. And since in our example First has
10487 only one actual field, the size of the fixed type is actually smaller
10488 than the amount of space allocated to that field, and thus we would
10489 compute the wrong offset of field After.
10490
21649b50
JB
10491 To make things more complicated, we need to watch out for dynamic
10492 components of variant records (identified by the ___XVL suffix in
10493 the component name). Even if the target type is a PAD type, the size
10494 of that type might not be statically known. So the PAD type needs
10495 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10496 we might end up with the wrong size for our component. This can be
10497 observed with the following type declarations:
284614f0
JB
10498
10499 type Octal is new Integer range 0 .. 7;
10500 type Octal_Array is array (Positive range <>) of Octal;
10501 pragma Pack (Octal_Array);
10502
10503 type Octal_Buffer (Size : Positive) is record
10504 Buffer : Octal_Array (1 .. Size);
10505 Length : Integer;
10506 end record;
10507
10508 In that case, Buffer is a PAD type whose size is unset and needs
10509 to be computed by fixing the unwrapped type.
10510
21649b50
JB
10511 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10512 ----------------------------------------------------------
10513
10514 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10515 thus far, be actually fixed?
10516
10517 The answer is: Only when referencing that element. For instance
10518 when selecting one component of a record, this specific component
10519 should be fixed at that point in time. Or when printing the value
10520 of a record, each component should be fixed before its value gets
10521 printed. Similarly for arrays, the element of the array should be
10522 fixed when printing each element of the array, or when extracting
10523 one element out of that array. On the other hand, fixing should
10524 not be performed on the elements when taking a slice of an array!
10525
31432a67 10526 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10527 size of each field is that we end up also miscomputing the size
10528 of the containing type. This can have adverse results when computing
10529 the value of an entity. GDB fetches the value of an entity based
10530 on the size of its type, and thus a wrong size causes GDB to fetch
10531 the wrong amount of memory. In the case where the computed size is
10532 too small, GDB fetches too little data to print the value of our
31432a67 10533 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10534 past the buffer containing the data =:-o. */
10535
ced9779b
JB
10536/* Evaluate a subexpression of EXP, at index *POS, and return a value
10537 for that subexpression cast to TO_TYPE. Advance *POS over the
10538 subexpression. */
10539
10540static value *
10541ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10542 enum noside noside, struct type *to_type)
10543{
10544 int pc = *pos;
10545
10546 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10547 || exp->elts[pc].opcode == OP_VAR_VALUE)
10548 {
10549 (*pos) += 4;
10550
10551 value *val;
10552 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10553 {
10554 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10555 return value_zero (to_type, not_lval);
10556
10557 val = evaluate_var_msym_value (noside,
10558 exp->elts[pc + 1].objfile,
10559 exp->elts[pc + 2].msymbol);
10560 }
10561 else
10562 val = evaluate_var_value (noside,
10563 exp->elts[pc + 1].block,
10564 exp->elts[pc + 2].symbol);
10565
10566 if (noside == EVAL_SKIP)
10567 return eval_skip_value (exp);
10568
10569 val = ada_value_cast (to_type, val);
10570
10571 /* Follow the Ada language semantics that do not allow taking
10572 an address of the result of a cast (view conversion in Ada). */
10573 if (VALUE_LVAL (val) == lval_memory)
10574 {
10575 if (value_lazy (val))
10576 value_fetch_lazy (val);
10577 VALUE_LVAL (val) = not_lval;
10578 }
10579 return val;
10580 }
10581
10582 value *val = evaluate_subexp (to_type, exp, pos, noside);
10583 if (noside == EVAL_SKIP)
10584 return eval_skip_value (exp);
10585 return ada_value_cast (to_type, val);
10586}
10587
284614f0
JB
10588/* Implement the evaluate_exp routine in the exp_descriptor structure
10589 for the Ada language. */
10590
52ce6436 10591static struct value *
ebf56fd3 10592ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10593 int *pos, enum noside noside)
14f9c5c9
AS
10594{
10595 enum exp_opcode op;
b5385fc0 10596 int tem;
14f9c5c9 10597 int pc;
5ec18f2b 10598 int preeval_pos;
14f9c5c9
AS
10599 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10600 struct type *type;
52ce6436 10601 int nargs, oplen;
d2e4a39e 10602 struct value **argvec;
14f9c5c9 10603
d2e4a39e
AS
10604 pc = *pos;
10605 *pos += 1;
14f9c5c9
AS
10606 op = exp->elts[pc].opcode;
10607
d2e4a39e 10608 switch (op)
14f9c5c9
AS
10609 {
10610 default:
10611 *pos -= 1;
6e48bd2c 10612 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10613
10614 if (noside == EVAL_NORMAL)
10615 arg1 = unwrap_value (arg1);
6e48bd2c 10616
edd079d9 10617 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10618 then we need to perform the conversion manually, because
10619 evaluate_subexp_standard doesn't do it. This conversion is
10620 necessary in Ada because the different kinds of float/fixed
10621 types in Ada have different representations.
10622
10623 Similarly, we need to perform the conversion from OP_LONG
10624 ourselves. */
edd079d9 10625 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10626 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10627
10628 return arg1;
4c4b4cd2
PH
10629
10630 case OP_STRING:
10631 {
76a01679 10632 struct value *result;
5b4ee69b 10633
76a01679
JB
10634 *pos -= 1;
10635 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10636 /* The result type will have code OP_STRING, bashed there from
10637 OP_ARRAY. Bash it back. */
df407dfe
AC
10638 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10639 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10640 return result;
4c4b4cd2 10641 }
14f9c5c9
AS
10642
10643 case UNOP_CAST:
10644 (*pos) += 2;
10645 type = exp->elts[pc + 1].type;
ced9779b 10646 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10647
4c4b4cd2
PH
10648 case UNOP_QUAL:
10649 (*pos) += 2;
10650 type = exp->elts[pc + 1].type;
10651 return ada_evaluate_subexp (type, exp, pos, noside);
10652
14f9c5c9
AS
10653 case BINOP_ASSIGN:
10654 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10655 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10656 {
10657 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10658 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10659 return arg1;
10660 return ada_value_assign (arg1, arg1);
10661 }
003f3813
JB
10662 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10663 except if the lhs of our assignment is a convenience variable.
10664 In the case of assigning to a convenience variable, the lhs
10665 should be exactly the result of the evaluation of the rhs. */
10666 type = value_type (arg1);
10667 if (VALUE_LVAL (arg1) == lval_internalvar)
10668 type = NULL;
10669 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10670 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10671 return arg1;
df407dfe
AC
10672 if (ada_is_fixed_point_type (value_type (arg1)))
10673 arg2 = cast_to_fixed (value_type (arg1), arg2);
10674 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10675 error
323e0a4a 10676 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10677 else
df407dfe 10678 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10679 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10680
10681 case BINOP_ADD:
10682 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10683 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10684 if (noside == EVAL_SKIP)
4c4b4cd2 10685 goto nosideret;
2ac8a782
JB
10686 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10687 return (value_from_longest
10688 (value_type (arg1),
10689 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10690 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10691 return (value_from_longest
10692 (value_type (arg2),
10693 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10694 if ((ada_is_fixed_point_type (value_type (arg1))
10695 || ada_is_fixed_point_type (value_type (arg2)))
10696 && value_type (arg1) != value_type (arg2))
323e0a4a 10697 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10698 /* Do the addition, and cast the result to the type of the first
10699 argument. We cannot cast the result to a reference type, so if
10700 ARG1 is a reference type, find its underlying type. */
10701 type = value_type (arg1);
10702 while (TYPE_CODE (type) == TYPE_CODE_REF)
10703 type = TYPE_TARGET_TYPE (type);
f44316fa 10704 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10705 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10706
10707 case BINOP_SUB:
10708 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10709 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10710 if (noside == EVAL_SKIP)
4c4b4cd2 10711 goto nosideret;
2ac8a782
JB
10712 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10713 return (value_from_longest
10714 (value_type (arg1),
10715 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10716 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10717 return (value_from_longest
10718 (value_type (arg2),
10719 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10720 if ((ada_is_fixed_point_type (value_type (arg1))
10721 || ada_is_fixed_point_type (value_type (arg2)))
10722 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10723 error (_("Operands of fixed-point subtraction "
10724 "must have the same type"));
b7789565
JB
10725 /* Do the substraction, and cast the result to the type of the first
10726 argument. We cannot cast the result to a reference type, so if
10727 ARG1 is a reference type, find its underlying type. */
10728 type = value_type (arg1);
10729 while (TYPE_CODE (type) == TYPE_CODE_REF)
10730 type = TYPE_TARGET_TYPE (type);
f44316fa 10731 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10732 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10733
10734 case BINOP_MUL:
10735 case BINOP_DIV:
e1578042
JB
10736 case BINOP_REM:
10737 case BINOP_MOD:
14f9c5c9
AS
10738 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10739 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10740 if (noside == EVAL_SKIP)
4c4b4cd2 10741 goto nosideret;
e1578042 10742 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10743 {
10744 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10745 return value_zero (value_type (arg1), not_lval);
10746 }
14f9c5c9 10747 else
4c4b4cd2 10748 {
a53b7a21 10749 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10750 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10751 arg1 = cast_from_fixed (type, arg1);
df407dfe 10752 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10753 arg2 = cast_from_fixed (type, arg2);
f44316fa 10754 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10755 return ada_value_binop (arg1, arg2, op);
10756 }
10757
4c4b4cd2
PH
10758 case BINOP_EQUAL:
10759 case BINOP_NOTEQUAL:
14f9c5c9 10760 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10761 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10762 if (noside == EVAL_SKIP)
76a01679 10763 goto nosideret;
4c4b4cd2 10764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10765 tem = 0;
4c4b4cd2 10766 else
f44316fa
UW
10767 {
10768 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10769 tem = ada_value_equal (arg1, arg2);
10770 }
4c4b4cd2 10771 if (op == BINOP_NOTEQUAL)
76a01679 10772 tem = !tem;
fbb06eb1
UW
10773 type = language_bool_type (exp->language_defn, exp->gdbarch);
10774 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10775
10776 case UNOP_NEG:
10777 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10778 if (noside == EVAL_SKIP)
10779 goto nosideret;
df407dfe
AC
10780 else if (ada_is_fixed_point_type (value_type (arg1)))
10781 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10782 else
f44316fa
UW
10783 {
10784 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10785 return value_neg (arg1);
10786 }
4c4b4cd2 10787
2330c6c6
JB
10788 case BINOP_LOGICAL_AND:
10789 case BINOP_LOGICAL_OR:
10790 case UNOP_LOGICAL_NOT:
000d5124
JB
10791 {
10792 struct value *val;
10793
10794 *pos -= 1;
10795 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10796 type = language_bool_type (exp->language_defn, exp->gdbarch);
10797 return value_cast (type, val);
000d5124 10798 }
2330c6c6
JB
10799
10800 case BINOP_BITWISE_AND:
10801 case BINOP_BITWISE_IOR:
10802 case BINOP_BITWISE_XOR:
000d5124
JB
10803 {
10804 struct value *val;
10805
10806 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10807 *pos = pc;
10808 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10809
10810 return value_cast (value_type (arg1), val);
10811 }
2330c6c6 10812
14f9c5c9
AS
10813 case OP_VAR_VALUE:
10814 *pos -= 1;
6799def4 10815
14f9c5c9 10816 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10817 {
10818 *pos += 4;
10819 goto nosideret;
10820 }
da5c522f
JB
10821
10822 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10823 /* Only encountered when an unresolved symbol occurs in a
10824 context other than a function call, in which case, it is
52ce6436 10825 invalid. */
323e0a4a 10826 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10827 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10828
10829 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10830 {
0c1f74cf 10831 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10832 /* Check to see if this is a tagged type. We also need to handle
10833 the case where the type is a reference to a tagged type, but
10834 we have to be careful to exclude pointers to tagged types.
10835 The latter should be shown as usual (as a pointer), whereas
10836 a reference should mostly be transparent to the user. */
10837 if (ada_is_tagged_type (type, 0)
023db19c 10838 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10839 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10840 {
10841 /* Tagged types are a little special in the fact that the real
10842 type is dynamic and can only be determined by inspecting the
10843 object's tag. This means that we need to get the object's
10844 value first (EVAL_NORMAL) and then extract the actual object
10845 type from its tag.
10846
10847 Note that we cannot skip the final step where we extract
10848 the object type from its tag, because the EVAL_NORMAL phase
10849 results in dynamic components being resolved into fixed ones.
10850 This can cause problems when trying to print the type
10851 description of tagged types whose parent has a dynamic size:
10852 We use the type name of the "_parent" component in order
10853 to print the name of the ancestor type in the type description.
10854 If that component had a dynamic size, the resolution into
10855 a fixed type would result in the loss of that type name,
10856 thus preventing us from printing the name of the ancestor
10857 type in the type description. */
10858 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10859
10860 if (TYPE_CODE (type) != TYPE_CODE_REF)
10861 {
10862 struct type *actual_type;
10863
10864 actual_type = type_from_tag (ada_value_tag (arg1));
10865 if (actual_type == NULL)
10866 /* If, for some reason, we were unable to determine
10867 the actual type from the tag, then use the static
10868 approximation that we just computed as a fallback.
10869 This can happen if the debugging information is
10870 incomplete, for instance. */
10871 actual_type = type;
10872 return value_zero (actual_type, not_lval);
10873 }
10874 else
10875 {
10876 /* In the case of a ref, ada_coerce_ref takes care
10877 of determining the actual type. But the evaluation
10878 should return a ref as it should be valid to ask
10879 for its address; so rebuild a ref after coerce. */
10880 arg1 = ada_coerce_ref (arg1);
a65cfae5 10881 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10882 }
10883 }
0c1f74cf 10884
84754697
JB
10885 /* Records and unions for which GNAT encodings have been
10886 generated need to be statically fixed as well.
10887 Otherwise, non-static fixing produces a type where
10888 all dynamic properties are removed, which prevents "ptype"
10889 from being able to completely describe the type.
10890 For instance, a case statement in a variant record would be
10891 replaced by the relevant components based on the actual
10892 value of the discriminants. */
10893 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10894 && dynamic_template_type (type) != NULL)
10895 || (TYPE_CODE (type) == TYPE_CODE_UNION
10896 && ada_find_parallel_type (type, "___XVU") != NULL))
10897 {
10898 *pos += 4;
10899 return value_zero (to_static_fixed_type (type), not_lval);
10900 }
4c4b4cd2 10901 }
da5c522f
JB
10902
10903 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10904 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10905
10906 case OP_FUNCALL:
10907 (*pos) += 2;
10908
10909 /* Allocate arg vector, including space for the function to be
10910 called in argvec[0] and a terminating NULL. */
10911 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10912 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10913
10914 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10915 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10916 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10917 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10918 else
10919 {
10920 for (tem = 0; tem <= nargs; tem += 1)
10921 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10922 argvec[tem] = 0;
10923
10924 if (noside == EVAL_SKIP)
10925 goto nosideret;
10926 }
10927
ad82864c
JB
10928 if (ada_is_constrained_packed_array_type
10929 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10930 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10931 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10932 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10933 /* This is a packed array that has already been fixed, and
10934 therefore already coerced to a simple array. Nothing further
10935 to do. */
10936 ;
e6c2c623
PMR
10937 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10938 {
10939 /* Make sure we dereference references so that all the code below
10940 feels like it's really handling the referenced value. Wrapping
10941 types (for alignment) may be there, so make sure we strip them as
10942 well. */
10943 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10944 }
10945 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10946 && VALUE_LVAL (argvec[0]) == lval_memory)
10947 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10948
df407dfe 10949 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10950
10951 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10952 them. So, if this is an array typedef (encoding use for array
10953 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10954 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10955 type = ada_typedef_target_type (type);
10956
4c4b4cd2
PH
10957 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10958 {
61ee279c 10959 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10960 {
10961 case TYPE_CODE_FUNC:
61ee279c 10962 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10963 break;
10964 case TYPE_CODE_ARRAY:
10965 break;
10966 case TYPE_CODE_STRUCT:
10967 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10968 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10969 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10970 break;
10971 default:
323e0a4a 10972 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10973 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10974 break;
10975 }
10976 }
10977
10978 switch (TYPE_CODE (type))
10979 {
10980 case TYPE_CODE_FUNC:
10981 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10982 {
7022349d
PA
10983 if (TYPE_TARGET_TYPE (type) == NULL)
10984 error_call_unknown_return_type (NULL);
10985 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10986 }
e71585ff
PA
10987 return call_function_by_hand (argvec[0], NULL,
10988 gdb::make_array_view (argvec + 1,
10989 nargs));
c8ea1972
PH
10990 case TYPE_CODE_INTERNAL_FUNCTION:
10991 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10992 /* We don't know anything about what the internal
10993 function might return, but we have to return
10994 something. */
10995 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10996 not_lval);
10997 else
10998 return call_internal_function (exp->gdbarch, exp->language_defn,
10999 argvec[0], nargs, argvec + 1);
11000
4c4b4cd2
PH
11001 case TYPE_CODE_STRUCT:
11002 {
11003 int arity;
11004
4c4b4cd2
PH
11005 arity = ada_array_arity (type);
11006 type = ada_array_element_type (type, nargs);
11007 if (type == NULL)
323e0a4a 11008 error (_("cannot subscript or call a record"));
4c4b4cd2 11009 if (arity != nargs)
323e0a4a 11010 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 11011 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 11012 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11013 return
11014 unwrap_value (ada_value_subscript
11015 (argvec[0], nargs, argvec + 1));
11016 }
11017 case TYPE_CODE_ARRAY:
11018 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11019 {
11020 type = ada_array_element_type (type, nargs);
11021 if (type == NULL)
323e0a4a 11022 error (_("element type of array unknown"));
4c4b4cd2 11023 else
0a07e705 11024 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11025 }
11026 return
11027 unwrap_value (ada_value_subscript
11028 (ada_coerce_to_simple_array (argvec[0]),
11029 nargs, argvec + 1));
11030 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
11031 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11032 {
deede10c 11033 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
11034 type = ada_array_element_type (type, nargs);
11035 if (type == NULL)
323e0a4a 11036 error (_("element type of array unknown"));
4c4b4cd2 11037 else
0a07e705 11038 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11039 }
11040 return
deede10c
JB
11041 unwrap_value (ada_value_ptr_subscript (argvec[0],
11042 nargs, argvec + 1));
4c4b4cd2
PH
11043
11044 default:
e1d5a0d2
PH
11045 error (_("Attempt to index or call something other than an "
11046 "array or function"));
4c4b4cd2
PH
11047 }
11048
11049 case TERNOP_SLICE:
11050 {
11051 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11052 struct value *low_bound_val =
11053 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11054 struct value *high_bound_val =
11055 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11056 LONGEST low_bound;
11057 LONGEST high_bound;
5b4ee69b 11058
994b9211
AC
11059 low_bound_val = coerce_ref (low_bound_val);
11060 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11061 low_bound = value_as_long (low_bound_val);
11062 high_bound = value_as_long (high_bound_val);
963a6417 11063
4c4b4cd2
PH
11064 if (noside == EVAL_SKIP)
11065 goto nosideret;
11066
4c4b4cd2
PH
11067 /* If this is a reference to an aligner type, then remove all
11068 the aligners. */
df407dfe
AC
11069 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11070 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11071 TYPE_TARGET_TYPE (value_type (array)) =
11072 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11073
ad82864c 11074 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11075 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11076
11077 /* If this is a reference to an array or an array lvalue,
11078 convert to a pointer. */
df407dfe
AC
11079 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11080 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11081 && VALUE_LVAL (array) == lval_memory))
11082 array = value_addr (array);
11083
1265e4aa 11084 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11085 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11086 (value_type (array))))
bff8c71f
TT
11087 return empty_array (ada_type_of_array (array, 0), low_bound,
11088 high_bound);
4c4b4cd2
PH
11089
11090 array = ada_coerce_to_simple_array_ptr (array);
11091
714e53ab
PH
11092 /* If we have more than one level of pointer indirection,
11093 dereference the value until we get only one level. */
df407dfe
AC
11094 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11095 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11096 == TYPE_CODE_PTR))
11097 array = value_ind (array);
11098
11099 /* Make sure we really do have an array type before going further,
11100 to avoid a SEGV when trying to get the index type or the target
11101 type later down the road if the debug info generated by
11102 the compiler is incorrect or incomplete. */
df407dfe 11103 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11104 error (_("cannot take slice of non-array"));
714e53ab 11105
828292f2
JB
11106 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11107 == TYPE_CODE_PTR)
4c4b4cd2 11108 {
828292f2
JB
11109 struct type *type0 = ada_check_typedef (value_type (array));
11110
0b5d8877 11111 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 11112 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
11113 else
11114 {
11115 struct type *arr_type0 =
828292f2 11116 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11117
f5938064
JG
11118 return ada_value_slice_from_ptr (array, arr_type0,
11119 longest_to_int (low_bound),
11120 longest_to_int (high_bound));
4c4b4cd2
PH
11121 }
11122 }
11123 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11124 return array;
11125 else if (high_bound < low_bound)
bff8c71f 11126 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 11127 else
529cad9c
PH
11128 return ada_value_slice (array, longest_to_int (low_bound),
11129 longest_to_int (high_bound));
4c4b4cd2 11130 }
14f9c5c9 11131
4c4b4cd2
PH
11132 case UNOP_IN_RANGE:
11133 (*pos) += 2;
11134 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11135 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11136
14f9c5c9 11137 if (noside == EVAL_SKIP)
4c4b4cd2 11138 goto nosideret;
14f9c5c9 11139
4c4b4cd2
PH
11140 switch (TYPE_CODE (type))
11141 {
11142 default:
e1d5a0d2
PH
11143 lim_warning (_("Membership test incompletely implemented; "
11144 "always returns true"));
fbb06eb1
UW
11145 type = language_bool_type (exp->language_defn, exp->gdbarch);
11146 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11147
11148 case TYPE_CODE_RANGE:
030b4912
UW
11149 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11150 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11151 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11152 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11153 type = language_bool_type (exp->language_defn, exp->gdbarch);
11154 return
11155 value_from_longest (type,
4c4b4cd2
PH
11156 (value_less (arg1, arg3)
11157 || value_equal (arg1, arg3))
11158 && (value_less (arg2, arg1)
11159 || value_equal (arg2, arg1)));
11160 }
11161
11162 case BINOP_IN_BOUNDS:
14f9c5c9 11163 (*pos) += 2;
4c4b4cd2
PH
11164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11165 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11166
4c4b4cd2
PH
11167 if (noside == EVAL_SKIP)
11168 goto nosideret;
14f9c5c9 11169
4c4b4cd2 11170 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11171 {
11172 type = language_bool_type (exp->language_defn, exp->gdbarch);
11173 return value_zero (type, not_lval);
11174 }
14f9c5c9 11175
4c4b4cd2 11176 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11177
1eea4ebd
UW
11178 type = ada_index_type (value_type (arg2), tem, "range");
11179 if (!type)
11180 type = value_type (arg1);
14f9c5c9 11181
1eea4ebd
UW
11182 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11183 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11184
f44316fa
UW
11185 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11186 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11187 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11188 return
fbb06eb1 11189 value_from_longest (type,
4c4b4cd2
PH
11190 (value_less (arg1, arg3)
11191 || value_equal (arg1, arg3))
11192 && (value_less (arg2, arg1)
11193 || value_equal (arg2, arg1)));
11194
11195 case TERNOP_IN_RANGE:
11196 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11197 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11198 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11199
11200 if (noside == EVAL_SKIP)
11201 goto nosideret;
11202
f44316fa
UW
11203 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11204 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11205 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11206 return
fbb06eb1 11207 value_from_longest (type,
4c4b4cd2
PH
11208 (value_less (arg1, arg3)
11209 || value_equal (arg1, arg3))
11210 && (value_less (arg2, arg1)
11211 || value_equal (arg2, arg1)));
11212
11213 case OP_ATR_FIRST:
11214 case OP_ATR_LAST:
11215 case OP_ATR_LENGTH:
11216 {
76a01679 11217 struct type *type_arg;
5b4ee69b 11218
76a01679
JB
11219 if (exp->elts[*pos].opcode == OP_TYPE)
11220 {
11221 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11222 arg1 = NULL;
5bc23cb3 11223 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11224 }
11225 else
11226 {
11227 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11228 type_arg = NULL;
11229 }
11230
11231 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11232 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11233 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11234 *pos += 4;
11235
11236 if (noside == EVAL_SKIP)
11237 goto nosideret;
11238
11239 if (type_arg == NULL)
11240 {
11241 arg1 = ada_coerce_ref (arg1);
11242
ad82864c 11243 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11244 arg1 = ada_coerce_to_simple_array (arg1);
11245
aa4fb036 11246 if (op == OP_ATR_LENGTH)
1eea4ebd 11247 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11248 else
11249 {
11250 type = ada_index_type (value_type (arg1), tem,
11251 ada_attribute_name (op));
11252 if (type == NULL)
11253 type = builtin_type (exp->gdbarch)->builtin_int;
11254 }
76a01679
JB
11255
11256 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11257 return allocate_value (type);
76a01679
JB
11258
11259 switch (op)
11260 {
11261 default: /* Should never happen. */
323e0a4a 11262 error (_("unexpected attribute encountered"));
76a01679 11263 case OP_ATR_FIRST:
1eea4ebd
UW
11264 return value_from_longest
11265 (type, ada_array_bound (arg1, tem, 0));
76a01679 11266 case OP_ATR_LAST:
1eea4ebd
UW
11267 return value_from_longest
11268 (type, ada_array_bound (arg1, tem, 1));
76a01679 11269 case OP_ATR_LENGTH:
1eea4ebd
UW
11270 return value_from_longest
11271 (type, ada_array_length (arg1, tem));
76a01679
JB
11272 }
11273 }
11274 else if (discrete_type_p (type_arg))
11275 {
11276 struct type *range_type;
0d5cff50 11277 const char *name = ada_type_name (type_arg);
5b4ee69b 11278
76a01679
JB
11279 range_type = NULL;
11280 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11281 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11282 if (range_type == NULL)
11283 range_type = type_arg;
11284 switch (op)
11285 {
11286 default:
323e0a4a 11287 error (_("unexpected attribute encountered"));
76a01679 11288 case OP_ATR_FIRST:
690cc4eb 11289 return value_from_longest
43bbcdc2 11290 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11291 case OP_ATR_LAST:
690cc4eb 11292 return value_from_longest
43bbcdc2 11293 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11294 case OP_ATR_LENGTH:
323e0a4a 11295 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11296 }
11297 }
11298 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11299 error (_("unimplemented type attribute"));
76a01679
JB
11300 else
11301 {
11302 LONGEST low, high;
11303
ad82864c
JB
11304 if (ada_is_constrained_packed_array_type (type_arg))
11305 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11306
aa4fb036 11307 if (op == OP_ATR_LENGTH)
1eea4ebd 11308 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11309 else
11310 {
11311 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11312 if (type == NULL)
11313 type = builtin_type (exp->gdbarch)->builtin_int;
11314 }
1eea4ebd 11315
76a01679
JB
11316 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11317 return allocate_value (type);
11318
11319 switch (op)
11320 {
11321 default:
323e0a4a 11322 error (_("unexpected attribute encountered"));
76a01679 11323 case OP_ATR_FIRST:
1eea4ebd 11324 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11325 return value_from_longest (type, low);
11326 case OP_ATR_LAST:
1eea4ebd 11327 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11328 return value_from_longest (type, high);
11329 case OP_ATR_LENGTH:
1eea4ebd
UW
11330 low = ada_array_bound_from_type (type_arg, tem, 0);
11331 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11332 return value_from_longest (type, high - low + 1);
11333 }
11334 }
14f9c5c9
AS
11335 }
11336
4c4b4cd2
PH
11337 case OP_ATR_TAG:
11338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11339 if (noside == EVAL_SKIP)
76a01679 11340 goto nosideret;
4c4b4cd2
PH
11341
11342 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11343 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11344
11345 return ada_value_tag (arg1);
11346
11347 case OP_ATR_MIN:
11348 case OP_ATR_MAX:
11349 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11350 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11351 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11352 if (noside == EVAL_SKIP)
76a01679 11353 goto nosideret;
d2e4a39e 11354 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11355 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11356 else
f44316fa
UW
11357 {
11358 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11359 return value_binop (arg1, arg2,
11360 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11361 }
14f9c5c9 11362
4c4b4cd2
PH
11363 case OP_ATR_MODULUS:
11364 {
31dedfee 11365 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11366
5b4ee69b 11367 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11368 if (noside == EVAL_SKIP)
11369 goto nosideret;
4c4b4cd2 11370
76a01679 11371 if (!ada_is_modular_type (type_arg))
323e0a4a 11372 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11373
76a01679
JB
11374 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11375 ada_modulus (type_arg));
4c4b4cd2
PH
11376 }
11377
11378
11379 case OP_ATR_POS:
11380 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11381 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11382 if (noside == EVAL_SKIP)
76a01679 11383 goto nosideret;
3cb382c9
UW
11384 type = builtin_type (exp->gdbarch)->builtin_int;
11385 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11386 return value_zero (type, not_lval);
14f9c5c9 11387 else
3cb382c9 11388 return value_pos_atr (type, arg1);
14f9c5c9 11389
4c4b4cd2
PH
11390 case OP_ATR_SIZE:
11391 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11392 type = value_type (arg1);
11393
11394 /* If the argument is a reference, then dereference its type, since
11395 the user is really asking for the size of the actual object,
11396 not the size of the pointer. */
11397 if (TYPE_CODE (type) == TYPE_CODE_REF)
11398 type = TYPE_TARGET_TYPE (type);
11399
4c4b4cd2 11400 if (noside == EVAL_SKIP)
76a01679 11401 goto nosideret;
4c4b4cd2 11402 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11403 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11404 else
22601c15 11405 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11406 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11407
11408 case OP_ATR_VAL:
11409 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11411 type = exp->elts[pc + 2].type;
14f9c5c9 11412 if (noside == EVAL_SKIP)
76a01679 11413 goto nosideret;
4c4b4cd2 11414 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11415 return value_zero (type, not_lval);
4c4b4cd2 11416 else
76a01679 11417 return value_val_atr (type, arg1);
4c4b4cd2
PH
11418
11419 case BINOP_EXP:
11420 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11421 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11422 if (noside == EVAL_SKIP)
11423 goto nosideret;
11424 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11425 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11426 else
f44316fa
UW
11427 {
11428 /* For integer exponentiation operations,
11429 only promote the first argument. */
11430 if (is_integral_type (value_type (arg2)))
11431 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11432 else
11433 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11434
11435 return value_binop (arg1, arg2, op);
11436 }
4c4b4cd2
PH
11437
11438 case UNOP_PLUS:
11439 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11440 if (noside == EVAL_SKIP)
11441 goto nosideret;
11442 else
11443 return arg1;
11444
11445 case UNOP_ABS:
11446 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11447 if (noside == EVAL_SKIP)
11448 goto nosideret;
f44316fa 11449 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11450 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11451 return value_neg (arg1);
14f9c5c9 11452 else
4c4b4cd2 11453 return arg1;
14f9c5c9
AS
11454
11455 case UNOP_IND:
5ec18f2b 11456 preeval_pos = *pos;
6b0d7253 11457 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11458 if (noside == EVAL_SKIP)
4c4b4cd2 11459 goto nosideret;
df407dfe 11460 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11461 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11462 {
11463 if (ada_is_array_descriptor_type (type))
11464 /* GDB allows dereferencing GNAT array descriptors. */
11465 {
11466 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11467
4c4b4cd2 11468 if (arrType == NULL)
323e0a4a 11469 error (_("Attempt to dereference null array pointer."));
00a4c844 11470 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11471 }
11472 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11473 || TYPE_CODE (type) == TYPE_CODE_REF
11474 /* In C you can dereference an array to get the 1st elt. */
11475 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11476 {
5ec18f2b
JG
11477 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11478 only be determined by inspecting the object's tag.
11479 This means that we need to evaluate completely the
11480 expression in order to get its type. */
11481
023db19c
JB
11482 if ((TYPE_CODE (type) == TYPE_CODE_REF
11483 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11484 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11485 {
11486 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11487 EVAL_NORMAL);
11488 type = value_type (ada_value_ind (arg1));
11489 }
11490 else
11491 {
11492 type = to_static_fixed_type
11493 (ada_aligned_type
11494 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11495 }
c1b5a1a6 11496 ada_ensure_varsize_limit (type);
714e53ab
PH
11497 return value_zero (type, lval_memory);
11498 }
4c4b4cd2 11499 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11500 {
11501 /* GDB allows dereferencing an int. */
11502 if (expect_type == NULL)
11503 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11504 lval_memory);
11505 else
11506 {
11507 expect_type =
11508 to_static_fixed_type (ada_aligned_type (expect_type));
11509 return value_zero (expect_type, lval_memory);
11510 }
11511 }
4c4b4cd2 11512 else
323e0a4a 11513 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11514 }
0963b4bd 11515 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11516 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11517
96967637
JB
11518 if (TYPE_CODE (type) == TYPE_CODE_INT)
11519 /* GDB allows dereferencing an int. If we were given
11520 the expect_type, then use that as the target type.
11521 Otherwise, assume that the target type is an int. */
11522 {
11523 if (expect_type != NULL)
11524 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11525 arg1));
11526 else
11527 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11528 (CORE_ADDR) value_as_address (arg1));
11529 }
6b0d7253 11530
4c4b4cd2
PH
11531 if (ada_is_array_descriptor_type (type))
11532 /* GDB allows dereferencing GNAT array descriptors. */
11533 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11534 else
4c4b4cd2 11535 return ada_value_ind (arg1);
14f9c5c9
AS
11536
11537 case STRUCTOP_STRUCT:
11538 tem = longest_to_int (exp->elts[pc + 1].longconst);
11539 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11540 preeval_pos = *pos;
14f9c5c9
AS
11541 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11542 if (noside == EVAL_SKIP)
4c4b4cd2 11543 goto nosideret;
14f9c5c9 11544 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11545 {
df407dfe 11546 struct type *type1 = value_type (arg1);
5b4ee69b 11547
76a01679
JB
11548 if (ada_is_tagged_type (type1, 1))
11549 {
11550 type = ada_lookup_struct_elt_type (type1,
11551 &exp->elts[pc + 2].string,
988f6b3d 11552 1, 1);
5ec18f2b
JG
11553
11554 /* If the field is not found, check if it exists in the
11555 extension of this object's type. This means that we
11556 need to evaluate completely the expression. */
11557
76a01679 11558 if (type == NULL)
5ec18f2b
JG
11559 {
11560 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11561 EVAL_NORMAL);
11562 arg1 = ada_value_struct_elt (arg1,
11563 &exp->elts[pc + 2].string,
11564 0);
11565 arg1 = unwrap_value (arg1);
11566 type = value_type (ada_to_fixed_value (arg1));
11567 }
76a01679
JB
11568 }
11569 else
11570 type =
11571 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11572 0);
76a01679
JB
11573
11574 return value_zero (ada_aligned_type (type), lval_memory);
11575 }
14f9c5c9 11576 else
a579cd9a
MW
11577 {
11578 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11579 arg1 = unwrap_value (arg1);
11580 return ada_to_fixed_value (arg1);
11581 }
284614f0 11582
14f9c5c9 11583 case OP_TYPE:
4c4b4cd2
PH
11584 /* The value is not supposed to be used. This is here to make it
11585 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11586 (*pos) += 2;
11587 if (noside == EVAL_SKIP)
4c4b4cd2 11588 goto nosideret;
14f9c5c9 11589 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11590 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11591 else
323e0a4a 11592 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11593
11594 case OP_AGGREGATE:
11595 case OP_CHOICES:
11596 case OP_OTHERS:
11597 case OP_DISCRETE_RANGE:
11598 case OP_POSITIONAL:
11599 case OP_NAME:
11600 if (noside == EVAL_NORMAL)
11601 switch (op)
11602 {
11603 case OP_NAME:
11604 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11605 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11606 case OP_AGGREGATE:
11607 error (_("Aggregates only allowed on the right of an assignment"));
11608 default:
0963b4bd
MS
11609 internal_error (__FILE__, __LINE__,
11610 _("aggregate apparently mangled"));
52ce6436
PH
11611 }
11612
11613 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11614 *pos += oplen - 1;
11615 for (tem = 0; tem < nargs; tem += 1)
11616 ada_evaluate_subexp (NULL, exp, pos, noside);
11617 goto nosideret;
14f9c5c9
AS
11618 }
11619
11620nosideret:
ced9779b 11621 return eval_skip_value (exp);
14f9c5c9 11622}
14f9c5c9 11623\f
d2e4a39e 11624
4c4b4cd2 11625 /* Fixed point */
14f9c5c9
AS
11626
11627/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11628 type name that encodes the 'small and 'delta information.
4c4b4cd2 11629 Otherwise, return NULL. */
14f9c5c9 11630
d2e4a39e 11631static const char *
ebf56fd3 11632fixed_type_info (struct type *type)
14f9c5c9 11633{
d2e4a39e 11634 const char *name = ada_type_name (type);
14f9c5c9
AS
11635 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11636
d2e4a39e
AS
11637 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11638 {
14f9c5c9 11639 const char *tail = strstr (name, "___XF_");
5b4ee69b 11640
14f9c5c9 11641 if (tail == NULL)
4c4b4cd2 11642 return NULL;
d2e4a39e 11643 else
4c4b4cd2 11644 return tail + 5;
14f9c5c9
AS
11645 }
11646 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11647 return fixed_type_info (TYPE_TARGET_TYPE (type));
11648 else
11649 return NULL;
11650}
11651
4c4b4cd2 11652/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11653
11654int
ebf56fd3 11655ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11656{
11657 return fixed_type_info (type) != NULL;
11658}
11659
4c4b4cd2
PH
11660/* Return non-zero iff TYPE represents a System.Address type. */
11661
11662int
11663ada_is_system_address_type (struct type *type)
11664{
11665 return (TYPE_NAME (type)
11666 && strcmp (TYPE_NAME (type), "system__address") == 0);
11667}
11668
14f9c5c9 11669/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11670 type, return the target floating-point type to be used to represent
11671 of this type during internal computation. */
11672
11673static struct type *
11674ada_scaling_type (struct type *type)
11675{
11676 return builtin_type (get_type_arch (type))->builtin_long_double;
11677}
11678
11679/* Assuming that TYPE is the representation of an Ada fixed-point
11680 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11681 delta cannot be determined. */
14f9c5c9 11682
50eff16b 11683struct value *
ebf56fd3 11684ada_delta (struct type *type)
14f9c5c9
AS
11685{
11686 const char *encoding = fixed_type_info (type);
50eff16b
UW
11687 struct type *scale_type = ada_scaling_type (type);
11688
11689 long long num, den;
11690
11691 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11692 return nullptr;
d2e4a39e 11693 else
50eff16b
UW
11694 return value_binop (value_from_longest (scale_type, num),
11695 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11696}
11697
11698/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11699 factor ('SMALL value) associated with the type. */
14f9c5c9 11700
50eff16b
UW
11701struct value *
11702ada_scaling_factor (struct type *type)
14f9c5c9
AS
11703{
11704 const char *encoding = fixed_type_info (type);
50eff16b
UW
11705 struct type *scale_type = ada_scaling_type (type);
11706
11707 long long num0, den0, num1, den1;
14f9c5c9 11708 int n;
d2e4a39e 11709
50eff16b 11710 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11711 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11712
11713 if (n < 2)
50eff16b 11714 return value_from_longest (scale_type, 1);
14f9c5c9 11715 else if (n == 4)
50eff16b
UW
11716 return value_binop (value_from_longest (scale_type, num1),
11717 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11718 else
50eff16b
UW
11719 return value_binop (value_from_longest (scale_type, num0),
11720 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11721}
11722
14f9c5c9 11723\f
d2e4a39e 11724
4c4b4cd2 11725 /* Range types */
14f9c5c9
AS
11726
11727/* Scan STR beginning at position K for a discriminant name, and
11728 return the value of that discriminant field of DVAL in *PX. If
11729 PNEW_K is not null, put the position of the character beyond the
11730 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11731 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11732
11733static int
108d56a4 11734scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11735 int *pnew_k)
14f9c5c9
AS
11736{
11737 static char *bound_buffer = NULL;
11738 static size_t bound_buffer_len = 0;
5da1a4d3 11739 const char *pstart, *pend, *bound;
d2e4a39e 11740 struct value *bound_val;
14f9c5c9
AS
11741
11742 if (dval == NULL || str == NULL || str[k] == '\0')
11743 return 0;
11744
5da1a4d3
SM
11745 pstart = str + k;
11746 pend = strstr (pstart, "__");
14f9c5c9
AS
11747 if (pend == NULL)
11748 {
5da1a4d3 11749 bound = pstart;
14f9c5c9
AS
11750 k += strlen (bound);
11751 }
d2e4a39e 11752 else
14f9c5c9 11753 {
5da1a4d3
SM
11754 int len = pend - pstart;
11755
11756 /* Strip __ and beyond. */
11757 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11758 strncpy (bound_buffer, pstart, len);
11759 bound_buffer[len] = '\0';
11760
14f9c5c9 11761 bound = bound_buffer;
d2e4a39e 11762 k = pend - str;
14f9c5c9 11763 }
d2e4a39e 11764
df407dfe 11765 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11766 if (bound_val == NULL)
11767 return 0;
11768
11769 *px = value_as_long (bound_val);
11770 if (pnew_k != NULL)
11771 *pnew_k = k;
11772 return 1;
11773}
11774
11775/* Value of variable named NAME in the current environment. If
11776 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11777 otherwise causes an error with message ERR_MSG. */
11778
d2e4a39e 11779static struct value *
edb0c9cb 11780get_var_value (const char *name, const char *err_msg)
14f9c5c9 11781{
b5ec771e 11782 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11783
54d343a2 11784 std::vector<struct block_symbol> syms;
b5ec771e
PA
11785 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11786 get_selected_block (0),
11787 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11788
11789 if (nsyms != 1)
11790 {
11791 if (err_msg == NULL)
4c4b4cd2 11792 return 0;
14f9c5c9 11793 else
8a3fe4f8 11794 error (("%s"), err_msg);
14f9c5c9
AS
11795 }
11796
54d343a2 11797 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11798}
d2e4a39e 11799
edb0c9cb
PA
11800/* Value of integer variable named NAME in the current environment.
11801 If no such variable is found, returns false. Otherwise, sets VALUE
11802 to the variable's value and returns true. */
4c4b4cd2 11803
edb0c9cb
PA
11804bool
11805get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11806{
4c4b4cd2 11807 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11808
14f9c5c9 11809 if (var_val == 0)
edb0c9cb
PA
11810 return false;
11811
11812 value = value_as_long (var_val);
11813 return true;
14f9c5c9 11814}
d2e4a39e 11815
14f9c5c9
AS
11816
11817/* Return a range type whose base type is that of the range type named
11818 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11819 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11820 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11821 corresponding range type from debug information; fall back to using it
11822 if symbol lookup fails. If a new type must be created, allocate it
11823 like ORIG_TYPE was. The bounds information, in general, is encoded
11824 in NAME, the base type given in the named range type. */
14f9c5c9 11825
d2e4a39e 11826static struct type *
28c85d6c 11827to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11828{
0d5cff50 11829 const char *name;
14f9c5c9 11830 struct type *base_type;
108d56a4 11831 const char *subtype_info;
14f9c5c9 11832
28c85d6c
JB
11833 gdb_assert (raw_type != NULL);
11834 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11835
1ce677a4 11836 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11837 base_type = TYPE_TARGET_TYPE (raw_type);
11838 else
11839 base_type = raw_type;
11840
28c85d6c 11841 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11842 subtype_info = strstr (name, "___XD");
11843 if (subtype_info == NULL)
690cc4eb 11844 {
43bbcdc2
PH
11845 LONGEST L = ada_discrete_type_low_bound (raw_type);
11846 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11847
690cc4eb
PH
11848 if (L < INT_MIN || U > INT_MAX)
11849 return raw_type;
11850 else
0c9c3474
SA
11851 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11852 L, U);
690cc4eb 11853 }
14f9c5c9
AS
11854 else
11855 {
11856 static char *name_buf = NULL;
11857 static size_t name_len = 0;
11858 int prefix_len = subtype_info - name;
11859 LONGEST L, U;
11860 struct type *type;
108d56a4 11861 const char *bounds_str;
14f9c5c9
AS
11862 int n;
11863
11864 GROW_VECT (name_buf, name_len, prefix_len + 5);
11865 strncpy (name_buf, name, prefix_len);
11866 name_buf[prefix_len] = '\0';
11867
11868 subtype_info += 5;
11869 bounds_str = strchr (subtype_info, '_');
11870 n = 1;
11871
d2e4a39e 11872 if (*subtype_info == 'L')
4c4b4cd2
PH
11873 {
11874 if (!ada_scan_number (bounds_str, n, &L, &n)
11875 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11876 return raw_type;
11877 if (bounds_str[n] == '_')
11878 n += 2;
0963b4bd 11879 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11880 n += 1;
11881 subtype_info += 1;
11882 }
d2e4a39e 11883 else
4c4b4cd2 11884 {
4c4b4cd2 11885 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11886 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11887 {
323e0a4a 11888 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11889 L = 1;
11890 }
11891 }
14f9c5c9 11892
d2e4a39e 11893 if (*subtype_info == 'U')
4c4b4cd2
PH
11894 {
11895 if (!ada_scan_number (bounds_str, n, &U, &n)
11896 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11897 return raw_type;
11898 }
d2e4a39e 11899 else
4c4b4cd2 11900 {
4c4b4cd2 11901 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11902 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11903 {
323e0a4a 11904 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11905 U = L;
11906 }
11907 }
14f9c5c9 11908
0c9c3474
SA
11909 type = create_static_range_type (alloc_type_copy (raw_type),
11910 base_type, L, U);
f5a91472
JB
11911 /* create_static_range_type alters the resulting type's length
11912 to match the size of the base_type, which is not what we want.
11913 Set it back to the original range type's length. */
11914 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11915 TYPE_NAME (type) = name;
14f9c5c9
AS
11916 return type;
11917 }
11918}
11919
4c4b4cd2
PH
11920/* True iff NAME is the name of a range type. */
11921
14f9c5c9 11922int
d2e4a39e 11923ada_is_range_type_name (const char *name)
14f9c5c9
AS
11924{
11925 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11926}
14f9c5c9 11927\f
d2e4a39e 11928
4c4b4cd2
PH
11929 /* Modular types */
11930
11931/* True iff TYPE is an Ada modular type. */
14f9c5c9 11932
14f9c5c9 11933int
d2e4a39e 11934ada_is_modular_type (struct type *type)
14f9c5c9 11935{
18af8284 11936 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11937
11938 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11939 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11940 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11941}
11942
4c4b4cd2
PH
11943/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11944
61ee279c 11945ULONGEST
0056e4d5 11946ada_modulus (struct type *type)
14f9c5c9 11947{
43bbcdc2 11948 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11949}
d2e4a39e 11950\f
f7f9143b
JB
11951
11952/* Ada exception catchpoint support:
11953 ---------------------------------
11954
11955 We support 3 kinds of exception catchpoints:
11956 . catchpoints on Ada exceptions
11957 . catchpoints on unhandled Ada exceptions
11958 . catchpoints on failed assertions
11959
11960 Exceptions raised during failed assertions, or unhandled exceptions
11961 could perfectly be caught with the general catchpoint on Ada exceptions.
11962 However, we can easily differentiate these two special cases, and having
11963 the option to distinguish these two cases from the rest can be useful
11964 to zero-in on certain situations.
11965
11966 Exception catchpoints are a specialized form of breakpoint,
11967 since they rely on inserting breakpoints inside known routines
11968 of the GNAT runtime. The implementation therefore uses a standard
11969 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11970 of breakpoint_ops.
11971
0259addd
JB
11972 Support in the runtime for exception catchpoints have been changed
11973 a few times already, and these changes affect the implementation
11974 of these catchpoints. In order to be able to support several
11975 variants of the runtime, we use a sniffer that will determine
28010a5d 11976 the runtime variant used by the program being debugged. */
f7f9143b 11977
82eacd52
JB
11978/* Ada's standard exceptions.
11979
11980 The Ada 83 standard also defined Numeric_Error. But there so many
11981 situations where it was unclear from the Ada 83 Reference Manual
11982 (RM) whether Constraint_Error or Numeric_Error should be raised,
11983 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11984 Interpretation saying that anytime the RM says that Numeric_Error
11985 should be raised, the implementation may raise Constraint_Error.
11986 Ada 95 went one step further and pretty much removed Numeric_Error
11987 from the list of standard exceptions (it made it a renaming of
11988 Constraint_Error, to help preserve compatibility when compiling
11989 an Ada83 compiler). As such, we do not include Numeric_Error from
11990 this list of standard exceptions. */
3d0b0fa3 11991
a121b7c1 11992static const char *standard_exc[] = {
3d0b0fa3
JB
11993 "constraint_error",
11994 "program_error",
11995 "storage_error",
11996 "tasking_error"
11997};
11998
0259addd
JB
11999typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
12000
12001/* A structure that describes how to support exception catchpoints
12002 for a given executable. */
12003
12004struct exception_support_info
12005{
12006 /* The name of the symbol to break on in order to insert
12007 a catchpoint on exceptions. */
12008 const char *catch_exception_sym;
12009
12010 /* The name of the symbol to break on in order to insert
12011 a catchpoint on unhandled exceptions. */
12012 const char *catch_exception_unhandled_sym;
12013
12014 /* The name of the symbol to break on in order to insert
12015 a catchpoint on failed assertions. */
12016 const char *catch_assert_sym;
12017
9f757bf7
XR
12018 /* The name of the symbol to break on in order to insert
12019 a catchpoint on exception handling. */
12020 const char *catch_handlers_sym;
12021
0259addd
JB
12022 /* Assuming that the inferior just triggered an unhandled exception
12023 catchpoint, this function is responsible for returning the address
12024 in inferior memory where the name of that exception is stored.
12025 Return zero if the address could not be computed. */
12026 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12027};
12028
12029static CORE_ADDR ada_unhandled_exception_name_addr (void);
12030static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12031
12032/* The following exception support info structure describes how to
12033 implement exception catchpoints with the latest version of the
12034 Ada runtime (as of 2007-03-06). */
12035
12036static const struct exception_support_info default_exception_support_info =
12037{
12038 "__gnat_debug_raise_exception", /* catch_exception_sym */
12039 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12040 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 12041 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12042 ada_unhandled_exception_name_addr
12043};
12044
12045/* The following exception support info structure describes how to
12046 implement exception catchpoints with a slightly older version
12047 of the Ada runtime. */
12048
12049static const struct exception_support_info exception_support_info_fallback =
12050{
12051 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12052 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12053 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12054 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12055 ada_unhandled_exception_name_addr_from_raise
12056};
12057
f17011e0
JB
12058/* Return nonzero if we can detect the exception support routines
12059 described in EINFO.
12060
12061 This function errors out if an abnormal situation is detected
12062 (for instance, if we find the exception support routines, but
12063 that support is found to be incomplete). */
12064
12065static int
12066ada_has_this_exception_support (const struct exception_support_info *einfo)
12067{
12068 struct symbol *sym;
12069
12070 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12071 that should be compiled with debugging information. As a result, we
12072 expect to find that symbol in the symtabs. */
12073
12074 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12075 if (sym == NULL)
a6af7abe
JB
12076 {
12077 /* Perhaps we did not find our symbol because the Ada runtime was
12078 compiled without debugging info, or simply stripped of it.
12079 It happens on some GNU/Linux distributions for instance, where
12080 users have to install a separate debug package in order to get
12081 the runtime's debugging info. In that situation, let the user
12082 know why we cannot insert an Ada exception catchpoint.
12083
12084 Note: Just for the purpose of inserting our Ada exception
12085 catchpoint, we could rely purely on the associated minimal symbol.
12086 But we would be operating in degraded mode anyway, since we are
12087 still lacking the debugging info needed later on to extract
12088 the name of the exception being raised (this name is printed in
12089 the catchpoint message, and is also used when trying to catch
12090 a specific exception). We do not handle this case for now. */
3b7344d5 12091 struct bound_minimal_symbol msym
1c8e84b0
JB
12092 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12093
3b7344d5 12094 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12095 error (_("Your Ada runtime appears to be missing some debugging "
12096 "information.\nCannot insert Ada exception catchpoint "
12097 "in this configuration."));
12098
12099 return 0;
12100 }
f17011e0
JB
12101
12102 /* Make sure that the symbol we found corresponds to a function. */
12103
12104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12105 error (_("Symbol \"%s\" is not a function (class = %d)"),
12106 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12107
12108 return 1;
12109}
12110
0259addd
JB
12111/* Inspect the Ada runtime and determine which exception info structure
12112 should be used to provide support for exception catchpoints.
12113
3eecfa55
JB
12114 This function will always set the per-inferior exception_info,
12115 or raise an error. */
0259addd
JB
12116
12117static void
12118ada_exception_support_info_sniffer (void)
12119{
3eecfa55 12120 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12121
12122 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12123 if (data->exception_info != NULL)
0259addd
JB
12124 return;
12125
12126 /* Check the latest (default) exception support info. */
f17011e0 12127 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12128 {
3eecfa55 12129 data->exception_info = &default_exception_support_info;
0259addd
JB
12130 return;
12131 }
12132
12133 /* Try our fallback exception suport info. */
f17011e0 12134 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12135 {
3eecfa55 12136 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12137 return;
12138 }
12139
12140 /* Sometimes, it is normal for us to not be able to find the routine
12141 we are looking for. This happens when the program is linked with
12142 the shared version of the GNAT runtime, and the program has not been
12143 started yet. Inform the user of these two possible causes if
12144 applicable. */
12145
ccefe4c4 12146 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12147 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12148
12149 /* If the symbol does not exist, then check that the program is
12150 already started, to make sure that shared libraries have been
12151 loaded. If it is not started, this may mean that the symbol is
12152 in a shared library. */
12153
e99b03dc 12154 if (inferior_ptid.pid () == 0)
0259addd
JB
12155 error (_("Unable to insert catchpoint. Try to start the program first."));
12156
12157 /* At this point, we know that we are debugging an Ada program and
12158 that the inferior has been started, but we still are not able to
0963b4bd 12159 find the run-time symbols. That can mean that we are in
0259addd
JB
12160 configurable run time mode, or that a-except as been optimized
12161 out by the linker... In any case, at this point it is not worth
12162 supporting this feature. */
12163
7dda8cff 12164 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12165}
12166
f7f9143b
JB
12167/* True iff FRAME is very likely to be that of a function that is
12168 part of the runtime system. This is all very heuristic, but is
12169 intended to be used as advice as to what frames are uninteresting
12170 to most users. */
12171
12172static int
12173is_known_support_routine (struct frame_info *frame)
12174{
692465f1 12175 enum language func_lang;
f7f9143b 12176 int i;
f35a17b5 12177 const char *fullname;
f7f9143b 12178
4ed6b5be
JB
12179 /* If this code does not have any debugging information (no symtab),
12180 This cannot be any user code. */
f7f9143b 12181
51abb421 12182 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12183 if (sal.symtab == NULL)
12184 return 1;
12185
4ed6b5be
JB
12186 /* If there is a symtab, but the associated source file cannot be
12187 located, then assume this is not user code: Selecting a frame
12188 for which we cannot display the code would not be very helpful
12189 for the user. This should also take care of case such as VxWorks
12190 where the kernel has some debugging info provided for a few units. */
f7f9143b 12191
f35a17b5
JK
12192 fullname = symtab_to_fullname (sal.symtab);
12193 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12194 return 1;
12195
4ed6b5be
JB
12196 /* Check the unit filename againt the Ada runtime file naming.
12197 We also check the name of the objfile against the name of some
12198 known system libraries that sometimes come with debugging info
12199 too. */
12200
f7f9143b
JB
12201 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12202 {
12203 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12204 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12205 return 1;
eb822aa6
DE
12206 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12207 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12208 return 1;
f7f9143b
JB
12209 }
12210
4ed6b5be 12211 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12212
c6dc63a1
TT
12213 gdb::unique_xmalloc_ptr<char> func_name
12214 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12215 if (func_name == NULL)
12216 return 1;
12217
12218 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12219 {
12220 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12221 if (re_exec (func_name.get ()))
12222 return 1;
f7f9143b
JB
12223 }
12224
12225 return 0;
12226}
12227
12228/* Find the first frame that contains debugging information and that is not
12229 part of the Ada run-time, starting from FI and moving upward. */
12230
0ef643c8 12231void
f7f9143b
JB
12232ada_find_printable_frame (struct frame_info *fi)
12233{
12234 for (; fi != NULL; fi = get_prev_frame (fi))
12235 {
12236 if (!is_known_support_routine (fi))
12237 {
12238 select_frame (fi);
12239 break;
12240 }
12241 }
12242
12243}
12244
12245/* Assuming that the inferior just triggered an unhandled exception
12246 catchpoint, return the address in inferior memory where the name
12247 of the exception is stored.
12248
12249 Return zero if the address could not be computed. */
12250
12251static CORE_ADDR
12252ada_unhandled_exception_name_addr (void)
0259addd
JB
12253{
12254 return parse_and_eval_address ("e.full_name");
12255}
12256
12257/* Same as ada_unhandled_exception_name_addr, except that this function
12258 should be used when the inferior uses an older version of the runtime,
12259 where the exception name needs to be extracted from a specific frame
12260 several frames up in the callstack. */
12261
12262static CORE_ADDR
12263ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12264{
12265 int frame_level;
12266 struct frame_info *fi;
3eecfa55 12267 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12268
12269 /* To determine the name of this exception, we need to select
12270 the frame corresponding to RAISE_SYM_NAME. This frame is
12271 at least 3 levels up, so we simply skip the first 3 frames
12272 without checking the name of their associated function. */
12273 fi = get_current_frame ();
12274 for (frame_level = 0; frame_level < 3; frame_level += 1)
12275 if (fi != NULL)
12276 fi = get_prev_frame (fi);
12277
12278 while (fi != NULL)
12279 {
692465f1
JB
12280 enum language func_lang;
12281
c6dc63a1
TT
12282 gdb::unique_xmalloc_ptr<char> func_name
12283 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12284 if (func_name != NULL)
12285 {
c6dc63a1 12286 if (strcmp (func_name.get (),
55b87a52
KS
12287 data->exception_info->catch_exception_sym) == 0)
12288 break; /* We found the frame we were looking for... */
55b87a52 12289 }
fb44b1a7 12290 fi = get_prev_frame (fi);
f7f9143b
JB
12291 }
12292
12293 if (fi == NULL)
12294 return 0;
12295
12296 select_frame (fi);
12297 return parse_and_eval_address ("id.full_name");
12298}
12299
12300/* Assuming the inferior just triggered an Ada exception catchpoint
12301 (of any type), return the address in inferior memory where the name
12302 of the exception is stored, if applicable.
12303
45db7c09
PA
12304 Assumes the selected frame is the current frame.
12305
f7f9143b
JB
12306 Return zero if the address could not be computed, or if not relevant. */
12307
12308static CORE_ADDR
761269c8 12309ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12310 struct breakpoint *b)
12311{
3eecfa55
JB
12312 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12313
f7f9143b
JB
12314 switch (ex)
12315 {
761269c8 12316 case ada_catch_exception:
f7f9143b
JB
12317 return (parse_and_eval_address ("e.full_name"));
12318 break;
12319
761269c8 12320 case ada_catch_exception_unhandled:
3eecfa55 12321 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12322 break;
9f757bf7
XR
12323
12324 case ada_catch_handlers:
12325 return 0; /* The runtimes does not provide access to the exception
12326 name. */
12327 break;
12328
761269c8 12329 case ada_catch_assert:
f7f9143b
JB
12330 return 0; /* Exception name is not relevant in this case. */
12331 break;
12332
12333 default:
12334 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12335 break;
12336 }
12337
12338 return 0; /* Should never be reached. */
12339}
12340
e547c119
JB
12341/* Assuming the inferior is stopped at an exception catchpoint,
12342 return the message which was associated to the exception, if
12343 available. Return NULL if the message could not be retrieved.
12344
e547c119
JB
12345 Note: The exception message can be associated to an exception
12346 either through the use of the Raise_Exception function, or
12347 more simply (Ada 2005 and later), via:
12348
12349 raise Exception_Name with "exception message";
12350
12351 */
12352
6f46ac85 12353static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12354ada_exception_message_1 (void)
12355{
12356 struct value *e_msg_val;
e547c119 12357 int e_msg_len;
e547c119
JB
12358
12359 /* For runtimes that support this feature, the exception message
12360 is passed as an unbounded string argument called "message". */
12361 e_msg_val = parse_and_eval ("message");
12362 if (e_msg_val == NULL)
12363 return NULL; /* Exception message not supported. */
12364
12365 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12366 gdb_assert (e_msg_val != NULL);
12367 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12368
12369 /* If the message string is empty, then treat it as if there was
12370 no exception message. */
12371 if (e_msg_len <= 0)
12372 return NULL;
12373
6f46ac85
TT
12374 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12375 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12376 e_msg.get ()[e_msg_len] = '\0';
e547c119 12377
e547c119
JB
12378 return e_msg;
12379}
12380
12381/* Same as ada_exception_message_1, except that all exceptions are
12382 contained here (returning NULL instead). */
12383
6f46ac85 12384static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12385ada_exception_message (void)
12386{
6f46ac85 12387 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12388
a70b8144 12389 try
e547c119
JB
12390 {
12391 e_msg = ada_exception_message_1 ();
12392 }
230d2906 12393 catch (const gdb_exception_error &e)
e547c119 12394 {
6f46ac85 12395 e_msg.reset (nullptr);
e547c119 12396 }
e547c119
JB
12397
12398 return e_msg;
12399}
12400
f7f9143b
JB
12401/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12402 any error that ada_exception_name_addr_1 might cause to be thrown.
12403 When an error is intercepted, a warning with the error message is printed,
12404 and zero is returned. */
12405
12406static CORE_ADDR
761269c8 12407ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12408 struct breakpoint *b)
12409{
f7f9143b
JB
12410 CORE_ADDR result = 0;
12411
a70b8144 12412 try
f7f9143b
JB
12413 {
12414 result = ada_exception_name_addr_1 (ex, b);
12415 }
12416
230d2906 12417 catch (const gdb_exception_error &e)
f7f9143b 12418 {
3d6e9d23 12419 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12420 return 0;
12421 }
12422
12423 return result;
12424}
12425
cb7de75e 12426static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12427 (const char *excep_string,
12428 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12429
12430/* Ada catchpoints.
12431
12432 In the case of catchpoints on Ada exceptions, the catchpoint will
12433 stop the target on every exception the program throws. When a user
12434 specifies the name of a specific exception, we translate this
12435 request into a condition expression (in text form), and then parse
12436 it into an expression stored in each of the catchpoint's locations.
12437 We then use this condition to check whether the exception that was
12438 raised is the one the user is interested in. If not, then the
12439 target is resumed again. We store the name of the requested
12440 exception, in order to be able to re-set the condition expression
12441 when symbols change. */
12442
12443/* An instance of this type is used to represent an Ada catchpoint
5625a286 12444 breakpoint location. */
28010a5d 12445
5625a286 12446class ada_catchpoint_location : public bp_location
28010a5d 12447{
5625a286 12448public:
5f486660
TT
12449 ada_catchpoint_location (breakpoint *owner)
12450 : bp_location (owner)
5625a286 12451 {}
28010a5d
PA
12452
12453 /* The condition that checks whether the exception that was raised
12454 is the specific exception the user specified on catchpoint
12455 creation. */
4d01a485 12456 expression_up excep_cond_expr;
28010a5d
PA
12457};
12458
c1fc2657 12459/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12460
c1fc2657 12461struct ada_catchpoint : public breakpoint
28010a5d 12462{
28010a5d 12463 /* The name of the specific exception the user specified. */
bc18fbb5 12464 std::string excep_string;
28010a5d
PA
12465};
12466
12467/* Parse the exception condition string in the context of each of the
12468 catchpoint's locations, and store them for later evaluation. */
12469
12470static void
9f757bf7
XR
12471create_excep_cond_exprs (struct ada_catchpoint *c,
12472 enum ada_exception_catchpoint_kind ex)
28010a5d 12473{
28010a5d 12474 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12475 if (c->excep_string.empty ())
28010a5d
PA
12476 return;
12477
12478 /* Same if there are no locations... */
c1fc2657 12479 if (c->loc == NULL)
28010a5d
PA
12480 return;
12481
2ff0a947
TT
12482 /* We have to compute the expression once for each program space,
12483 because the expression may hold the addresses of multiple symbols
12484 in some cases. */
12485 std::multimap<program_space *, struct bp_location *> loc_map;
bde09ab7 12486 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
2ff0a947 12487 loc_map.emplace (bl->pspace, bl);
28010a5d 12488
2ff0a947
TT
12489 scoped_restore_current_program_space save_pspace;
12490
12491 std::string cond_string;
12492 program_space *last_ps = nullptr;
12493 for (auto iter : loc_map)
28010a5d
PA
12494 {
12495 struct ada_catchpoint_location *ada_loc
2ff0a947
TT
12496 = (struct ada_catchpoint_location *) iter.second;
12497
12498 if (ada_loc->pspace != last_ps)
12499 {
12500 last_ps = ada_loc->pspace;
12501 set_current_program_space (last_ps);
12502
12503 /* Compute the condition expression in text form, from the
12504 specific expection we want to catch. */
12505 cond_string
12506 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12507 ex);
12508 }
12509
4d01a485 12510 expression_up exp;
28010a5d 12511
2ff0a947 12512 if (!ada_loc->shlib_disabled)
28010a5d 12513 {
bbc13ae3 12514 const char *s;
28010a5d 12515
cb7de75e 12516 s = cond_string.c_str ();
a70b8144 12517 try
28010a5d 12518 {
2ff0a947
TT
12519 exp = parse_exp_1 (&s, ada_loc->address,
12520 block_for_pc (ada_loc->address),
036e657b 12521 0);
28010a5d 12522 }
230d2906 12523 catch (const gdb_exception_error &e)
849f2b52
JB
12524 {
12525 warning (_("failed to reevaluate internal exception condition "
12526 "for catchpoint %d: %s"),
3d6e9d23 12527 c->number, e.what ());
849f2b52 12528 }
28010a5d
PA
12529 }
12530
b22e99fd 12531 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12532 }
28010a5d
PA
12533}
12534
28010a5d
PA
12535/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12536 structure for all exception catchpoint kinds. */
12537
12538static struct bp_location *
761269c8 12539allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12540 struct breakpoint *self)
12541{
5f486660 12542 return new ada_catchpoint_location (self);
28010a5d
PA
12543}
12544
12545/* Implement the RE_SET method in the breakpoint_ops structure for all
12546 exception catchpoint kinds. */
12547
12548static void
761269c8 12549re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12550{
12551 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12552
12553 /* Call the base class's method. This updates the catchpoint's
12554 locations. */
2060206e 12555 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12556
12557 /* Reparse the exception conditional expressions. One for each
12558 location. */
9f757bf7 12559 create_excep_cond_exprs (c, ex);
28010a5d
PA
12560}
12561
12562/* Returns true if we should stop for this breakpoint hit. If the
12563 user specified a specific exception, we only want to cause a stop
12564 if the program thrown that exception. */
12565
12566static int
12567should_stop_exception (const struct bp_location *bl)
12568{
12569 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12570 const struct ada_catchpoint_location *ada_loc
12571 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12572 int stop;
12573
12574 /* With no specific exception, should always stop. */
bc18fbb5 12575 if (c->excep_string.empty ())
28010a5d
PA
12576 return 1;
12577
12578 if (ada_loc->excep_cond_expr == NULL)
12579 {
12580 /* We will have a NULL expression if back when we were creating
12581 the expressions, this location's had failed to parse. */
12582 return 1;
12583 }
12584
12585 stop = 1;
a70b8144 12586 try
28010a5d
PA
12587 {
12588 struct value *mark;
12589
12590 mark = value_mark ();
4d01a485 12591 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12592 value_free_to_mark (mark);
12593 }
230d2906 12594 catch (const gdb_exception &ex)
492d29ea
PA
12595 {
12596 exception_fprintf (gdb_stderr, ex,
12597 _("Error in testing exception condition:\n"));
12598 }
492d29ea 12599
28010a5d
PA
12600 return stop;
12601}
12602
12603/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12604 for all exception catchpoint kinds. */
12605
12606static void
761269c8 12607check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12608{
12609 bs->stop = should_stop_exception (bs->bp_location_at);
12610}
12611
f7f9143b
JB
12612/* Implement the PRINT_IT method in the breakpoint_ops structure
12613 for all exception catchpoint kinds. */
12614
12615static enum print_stop_action
761269c8 12616print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12617{
79a45e25 12618 struct ui_out *uiout = current_uiout;
348d480f
PA
12619 struct breakpoint *b = bs->breakpoint_at;
12620
956a9fb9 12621 annotate_catchpoint (b->number);
f7f9143b 12622
112e8700 12623 if (uiout->is_mi_like_p ())
f7f9143b 12624 {
112e8700 12625 uiout->field_string ("reason",
956a9fb9 12626 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12627 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12628 }
12629
112e8700
SM
12630 uiout->text (b->disposition == disp_del
12631 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12632 uiout->field_int ("bkptno", b->number);
12633 uiout->text (", ");
f7f9143b 12634
45db7c09
PA
12635 /* ada_exception_name_addr relies on the selected frame being the
12636 current frame. Need to do this here because this function may be
12637 called more than once when printing a stop, and below, we'll
12638 select the first frame past the Ada run-time (see
12639 ada_find_printable_frame). */
12640 select_frame (get_current_frame ());
12641
f7f9143b
JB
12642 switch (ex)
12643 {
761269c8
JB
12644 case ada_catch_exception:
12645 case ada_catch_exception_unhandled:
9f757bf7 12646 case ada_catch_handlers:
956a9fb9
JB
12647 {
12648 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12649 char exception_name[256];
12650
12651 if (addr != 0)
12652 {
c714b426
PA
12653 read_memory (addr, (gdb_byte *) exception_name,
12654 sizeof (exception_name) - 1);
956a9fb9
JB
12655 exception_name [sizeof (exception_name) - 1] = '\0';
12656 }
12657 else
12658 {
12659 /* For some reason, we were unable to read the exception
12660 name. This could happen if the Runtime was compiled
12661 without debugging info, for instance. In that case,
12662 just replace the exception name by the generic string
12663 "exception" - it will read as "an exception" in the
12664 notification we are about to print. */
967cff16 12665 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12666 }
12667 /* In the case of unhandled exception breakpoints, we print
12668 the exception name as "unhandled EXCEPTION_NAME", to make
12669 it clearer to the user which kind of catchpoint just got
12670 hit. We used ui_out_text to make sure that this extra
12671 info does not pollute the exception name in the MI case. */
761269c8 12672 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12673 uiout->text ("unhandled ");
12674 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12675 }
12676 break;
761269c8 12677 case ada_catch_assert:
956a9fb9
JB
12678 /* In this case, the name of the exception is not really
12679 important. Just print "failed assertion" to make it clearer
12680 that his program just hit an assertion-failure catchpoint.
12681 We used ui_out_text because this info does not belong in
12682 the MI output. */
112e8700 12683 uiout->text ("failed assertion");
956a9fb9 12684 break;
f7f9143b 12685 }
e547c119 12686
6f46ac85 12687 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12688 if (exception_message != NULL)
12689 {
e547c119 12690 uiout->text (" (");
6f46ac85 12691 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12692 uiout->text (")");
e547c119
JB
12693 }
12694
112e8700 12695 uiout->text (" at ");
956a9fb9 12696 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12697
12698 return PRINT_SRC_AND_LOC;
12699}
12700
12701/* Implement the PRINT_ONE method in the breakpoint_ops structure
12702 for all exception catchpoint kinds. */
12703
12704static void
761269c8 12705print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12706 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12707{
79a45e25 12708 struct ui_out *uiout = current_uiout;
28010a5d 12709 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12710 struct value_print_options opts;
12711
12712 get_user_print_options (&opts);
12713 if (opts.addressprint)
f7f9143b
JB
12714 {
12715 annotate_field (4);
112e8700 12716 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12717 }
12718
12719 annotate_field (5);
a6d9a66e 12720 *last_loc = b->loc;
f7f9143b
JB
12721 switch (ex)
12722 {
761269c8 12723 case ada_catch_exception:
bc18fbb5 12724 if (!c->excep_string.empty ())
f7f9143b 12725 {
bc18fbb5
TT
12726 std::string msg = string_printf (_("`%s' Ada exception"),
12727 c->excep_string.c_str ());
28010a5d 12728
112e8700 12729 uiout->field_string ("what", msg);
f7f9143b
JB
12730 }
12731 else
112e8700 12732 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12733
12734 break;
12735
761269c8 12736 case ada_catch_exception_unhandled:
112e8700 12737 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12738 break;
12739
9f757bf7 12740 case ada_catch_handlers:
bc18fbb5 12741 if (!c->excep_string.empty ())
9f757bf7
XR
12742 {
12743 uiout->field_fmt ("what",
12744 _("`%s' Ada exception handlers"),
bc18fbb5 12745 c->excep_string.c_str ());
9f757bf7
XR
12746 }
12747 else
12748 uiout->field_string ("what", "all Ada exceptions handlers");
12749 break;
12750
761269c8 12751 case ada_catch_assert:
112e8700 12752 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12753 break;
12754
12755 default:
12756 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12757 break;
12758 }
12759}
12760
12761/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12762 for all exception catchpoint kinds. */
12763
12764static void
761269c8 12765print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12766 struct breakpoint *b)
12767{
28010a5d 12768 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12769 struct ui_out *uiout = current_uiout;
28010a5d 12770
112e8700 12771 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12772 : _("Catchpoint "));
112e8700
SM
12773 uiout->field_int ("bkptno", b->number);
12774 uiout->text (": ");
00eb2c4a 12775
f7f9143b
JB
12776 switch (ex)
12777 {
761269c8 12778 case ada_catch_exception:
bc18fbb5 12779 if (!c->excep_string.empty ())
00eb2c4a 12780 {
862d101a 12781 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12782 c->excep_string.c_str ());
862d101a 12783 uiout->text (info.c_str ());
00eb2c4a 12784 }
f7f9143b 12785 else
112e8700 12786 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12787 break;
12788
761269c8 12789 case ada_catch_exception_unhandled:
112e8700 12790 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12791 break;
9f757bf7
XR
12792
12793 case ada_catch_handlers:
bc18fbb5 12794 if (!c->excep_string.empty ())
9f757bf7
XR
12795 {
12796 std::string info
12797 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12798 c->excep_string.c_str ());
9f757bf7
XR
12799 uiout->text (info.c_str ());
12800 }
12801 else
12802 uiout->text (_("all Ada exceptions handlers"));
12803 break;
12804
761269c8 12805 case ada_catch_assert:
112e8700 12806 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12807 break;
12808
12809 default:
12810 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12811 break;
12812 }
12813}
12814
6149aea9
PA
12815/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12816 for all exception catchpoint kinds. */
12817
12818static void
761269c8 12819print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12820 struct breakpoint *b, struct ui_file *fp)
12821{
28010a5d
PA
12822 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12823
6149aea9
PA
12824 switch (ex)
12825 {
761269c8 12826 case ada_catch_exception:
6149aea9 12827 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12828 if (!c->excep_string.empty ())
12829 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12830 break;
12831
761269c8 12832 case ada_catch_exception_unhandled:
78076abc 12833 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12834 break;
12835
9f757bf7
XR
12836 case ada_catch_handlers:
12837 fprintf_filtered (fp, "catch handlers");
12838 break;
12839
761269c8 12840 case ada_catch_assert:
6149aea9
PA
12841 fprintf_filtered (fp, "catch assert");
12842 break;
12843
12844 default:
12845 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12846 }
d9b3f62e 12847 print_recreate_thread (b, fp);
6149aea9
PA
12848}
12849
f7f9143b
JB
12850/* Virtual table for "catch exception" breakpoints. */
12851
28010a5d
PA
12852static struct bp_location *
12853allocate_location_catch_exception (struct breakpoint *self)
12854{
761269c8 12855 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12856}
12857
12858static void
12859re_set_catch_exception (struct breakpoint *b)
12860{
761269c8 12861 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12862}
12863
12864static void
12865check_status_catch_exception (bpstat bs)
12866{
761269c8 12867 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12868}
12869
f7f9143b 12870static enum print_stop_action
348d480f 12871print_it_catch_exception (bpstat bs)
f7f9143b 12872{
761269c8 12873 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12874}
12875
12876static void
a6d9a66e 12877print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12878{
761269c8 12879 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12880}
12881
12882static void
12883print_mention_catch_exception (struct breakpoint *b)
12884{
761269c8 12885 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12886}
12887
6149aea9
PA
12888static void
12889print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12890{
761269c8 12891 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12892}
12893
2060206e 12894static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12895
12896/* Virtual table for "catch exception unhandled" breakpoints. */
12897
28010a5d
PA
12898static struct bp_location *
12899allocate_location_catch_exception_unhandled (struct breakpoint *self)
12900{
761269c8 12901 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12902}
12903
12904static void
12905re_set_catch_exception_unhandled (struct breakpoint *b)
12906{
761269c8 12907 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12908}
12909
12910static void
12911check_status_catch_exception_unhandled (bpstat bs)
12912{
761269c8 12913 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12914}
12915
f7f9143b 12916static enum print_stop_action
348d480f 12917print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12918{
761269c8 12919 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12920}
12921
12922static void
a6d9a66e
UW
12923print_one_catch_exception_unhandled (struct breakpoint *b,
12924 struct bp_location **last_loc)
f7f9143b 12925{
761269c8 12926 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12927}
12928
12929static void
12930print_mention_catch_exception_unhandled (struct breakpoint *b)
12931{
761269c8 12932 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12933}
12934
6149aea9
PA
12935static void
12936print_recreate_catch_exception_unhandled (struct breakpoint *b,
12937 struct ui_file *fp)
12938{
761269c8 12939 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12940}
12941
2060206e 12942static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12943
12944/* Virtual table for "catch assert" breakpoints. */
12945
28010a5d
PA
12946static struct bp_location *
12947allocate_location_catch_assert (struct breakpoint *self)
12948{
761269c8 12949 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12950}
12951
12952static void
12953re_set_catch_assert (struct breakpoint *b)
12954{
761269c8 12955 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12956}
12957
12958static void
12959check_status_catch_assert (bpstat bs)
12960{
761269c8 12961 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12962}
12963
f7f9143b 12964static enum print_stop_action
348d480f 12965print_it_catch_assert (bpstat bs)
f7f9143b 12966{
761269c8 12967 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12968}
12969
12970static void
a6d9a66e 12971print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12972{
761269c8 12973 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12974}
12975
12976static void
12977print_mention_catch_assert (struct breakpoint *b)
12978{
761269c8 12979 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12980}
12981
6149aea9
PA
12982static void
12983print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12984{
761269c8 12985 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12986}
12987
2060206e 12988static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12989
9f757bf7
XR
12990/* Virtual table for "catch handlers" breakpoints. */
12991
12992static struct bp_location *
12993allocate_location_catch_handlers (struct breakpoint *self)
12994{
12995 return allocate_location_exception (ada_catch_handlers, self);
12996}
12997
12998static void
12999re_set_catch_handlers (struct breakpoint *b)
13000{
13001 re_set_exception (ada_catch_handlers, b);
13002}
13003
13004static void
13005check_status_catch_handlers (bpstat bs)
13006{
13007 check_status_exception (ada_catch_handlers, bs);
13008}
13009
13010static enum print_stop_action
13011print_it_catch_handlers (bpstat bs)
13012{
13013 return print_it_exception (ada_catch_handlers, bs);
13014}
13015
13016static void
13017print_one_catch_handlers (struct breakpoint *b,
13018 struct bp_location **last_loc)
13019{
13020 print_one_exception (ada_catch_handlers, b, last_loc);
13021}
13022
13023static void
13024print_mention_catch_handlers (struct breakpoint *b)
13025{
13026 print_mention_exception (ada_catch_handlers, b);
13027}
13028
13029static void
13030print_recreate_catch_handlers (struct breakpoint *b,
13031 struct ui_file *fp)
13032{
13033 print_recreate_exception (ada_catch_handlers, b, fp);
13034}
13035
13036static struct breakpoint_ops catch_handlers_breakpoint_ops;
13037
f7f9143b
JB
13038/* Split the arguments specified in a "catch exception" command.
13039 Set EX to the appropriate catchpoint type.
28010a5d 13040 Set EXCEP_STRING to the name of the specific exception if
5845583d 13041 specified by the user.
9f757bf7
XR
13042 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13043 "catch handlers" command. False otherwise.
5845583d
JB
13044 If a condition is found at the end of the arguments, the condition
13045 expression is stored in COND_STRING (memory must be deallocated
13046 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
13047
13048static void
a121b7c1 13049catch_ada_exception_command_split (const char *args,
9f757bf7 13050 bool is_catch_handlers_cmd,
761269c8 13051 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
13052 std::string *excep_string,
13053 std::string *cond_string)
f7f9143b 13054{
bc18fbb5 13055 std::string exception_name;
f7f9143b 13056
bc18fbb5
TT
13057 exception_name = extract_arg (&args);
13058 if (exception_name == "if")
5845583d
JB
13059 {
13060 /* This is not an exception name; this is the start of a condition
13061 expression for a catchpoint on all exceptions. So, "un-get"
13062 this token, and set exception_name to NULL. */
bc18fbb5 13063 exception_name.clear ();
5845583d
JB
13064 args -= 2;
13065 }
f7f9143b 13066
5845583d 13067 /* Check to see if we have a condition. */
f7f9143b 13068
f1735a53 13069 args = skip_spaces (args);
61012eef 13070 if (startswith (args, "if")
5845583d
JB
13071 && (isspace (args[2]) || args[2] == '\0'))
13072 {
13073 args += 2;
f1735a53 13074 args = skip_spaces (args);
5845583d
JB
13075
13076 if (args[0] == '\0')
13077 error (_("Condition missing after `if' keyword"));
bc18fbb5 13078 *cond_string = args;
5845583d
JB
13079
13080 args += strlen (args);
13081 }
13082
13083 /* Check that we do not have any more arguments. Anything else
13084 is unexpected. */
f7f9143b
JB
13085
13086 if (args[0] != '\0')
13087 error (_("Junk at end of expression"));
13088
9f757bf7
XR
13089 if (is_catch_handlers_cmd)
13090 {
13091 /* Catch handling of exceptions. */
13092 *ex = ada_catch_handlers;
13093 *excep_string = exception_name;
13094 }
bc18fbb5 13095 else if (exception_name.empty ())
f7f9143b
JB
13096 {
13097 /* Catch all exceptions. */
761269c8 13098 *ex = ada_catch_exception;
bc18fbb5 13099 excep_string->clear ();
f7f9143b 13100 }
bc18fbb5 13101 else if (exception_name == "unhandled")
f7f9143b
JB
13102 {
13103 /* Catch unhandled exceptions. */
761269c8 13104 *ex = ada_catch_exception_unhandled;
bc18fbb5 13105 excep_string->clear ();
f7f9143b
JB
13106 }
13107 else
13108 {
13109 /* Catch a specific exception. */
761269c8 13110 *ex = ada_catch_exception;
28010a5d 13111 *excep_string = exception_name;
f7f9143b
JB
13112 }
13113}
13114
13115/* Return the name of the symbol on which we should break in order to
13116 implement a catchpoint of the EX kind. */
13117
13118static const char *
761269c8 13119ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13120{
3eecfa55
JB
13121 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13122
13123 gdb_assert (data->exception_info != NULL);
0259addd 13124
f7f9143b
JB
13125 switch (ex)
13126 {
761269c8 13127 case ada_catch_exception:
3eecfa55 13128 return (data->exception_info->catch_exception_sym);
f7f9143b 13129 break;
761269c8 13130 case ada_catch_exception_unhandled:
3eecfa55 13131 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13132 break;
761269c8 13133 case ada_catch_assert:
3eecfa55 13134 return (data->exception_info->catch_assert_sym);
f7f9143b 13135 break;
9f757bf7
XR
13136 case ada_catch_handlers:
13137 return (data->exception_info->catch_handlers_sym);
13138 break;
f7f9143b
JB
13139 default:
13140 internal_error (__FILE__, __LINE__,
13141 _("unexpected catchpoint kind (%d)"), ex);
13142 }
13143}
13144
13145/* Return the breakpoint ops "virtual table" used for catchpoints
13146 of the EX kind. */
13147
c0a91b2b 13148static const struct breakpoint_ops *
761269c8 13149ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13150{
13151 switch (ex)
13152 {
761269c8 13153 case ada_catch_exception:
f7f9143b
JB
13154 return (&catch_exception_breakpoint_ops);
13155 break;
761269c8 13156 case ada_catch_exception_unhandled:
f7f9143b
JB
13157 return (&catch_exception_unhandled_breakpoint_ops);
13158 break;
761269c8 13159 case ada_catch_assert:
f7f9143b
JB
13160 return (&catch_assert_breakpoint_ops);
13161 break;
9f757bf7
XR
13162 case ada_catch_handlers:
13163 return (&catch_handlers_breakpoint_ops);
13164 break;
f7f9143b
JB
13165 default:
13166 internal_error (__FILE__, __LINE__,
13167 _("unexpected catchpoint kind (%d)"), ex);
13168 }
13169}
13170
13171/* Return the condition that will be used to match the current exception
13172 being raised with the exception that the user wants to catch. This
13173 assumes that this condition is used when the inferior just triggered
13174 an exception catchpoint.
cb7de75e 13175 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13176
cb7de75e 13177static std::string
9f757bf7
XR
13178ada_exception_catchpoint_cond_string (const char *excep_string,
13179 enum ada_exception_catchpoint_kind ex)
f7f9143b 13180{
3d0b0fa3 13181 int i;
cb7de75e 13182 std::string result;
2ff0a947 13183 const char *name;
9f757bf7
XR
13184
13185 if (ex == ada_catch_handlers)
13186 {
13187 /* For exception handlers catchpoints, the condition string does
13188 not use the same parameter as for the other exceptions. */
2ff0a947
TT
13189 name = ("long_integer (GNAT_GCC_exception_Access"
13190 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13191 }
13192 else
2ff0a947 13193 name = "long_integer (e)";
3d0b0fa3 13194
0963b4bd 13195 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13196 runtime units that have been compiled without debugging info; if
28010a5d 13197 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13198 exception (e.g. "constraint_error") then, during the evaluation
13199 of the condition expression, the symbol lookup on this name would
0963b4bd 13200 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13201 may then be set only on user-defined exceptions which have the
13202 same not-fully-qualified name (e.g. my_package.constraint_error).
13203
13204 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13205 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13206 exception constraint_error" is rewritten into "catch exception
13207 standard.constraint_error".
13208
13209 If an exception named contraint_error is defined in another package of
13210 the inferior program, then the only way to specify this exception as a
13211 breakpoint condition is to use its fully-qualified named:
2ff0a947
TT
13212 e.g. my_package.constraint_error.
13213
13214 Furthermore, in some situations a standard exception's symbol may
13215 be present in more than one objfile, because the compiler may
13216 choose to emit copy relocations for them. So, we have to compare
13217 against all the possible addresses. */
3d0b0fa3 13218
2ff0a947
TT
13219 /* Storage for a rewritten symbol name. */
13220 std::string std_name;
3d0b0fa3
JB
13221 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13222 {
28010a5d 13223 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13224 {
2ff0a947
TT
13225 std_name = std::string ("standard.") + excep_string;
13226 excep_string = std_name.c_str ();
9f757bf7 13227 break;
3d0b0fa3
JB
13228 }
13229 }
9f757bf7 13230
2ff0a947
TT
13231 excep_string = ada_encode (excep_string);
13232 std::vector<struct bound_minimal_symbol> symbols
13233 = ada_lookup_simple_minsyms (excep_string);
bde09ab7 13234 for (const bound_minimal_symbol &msym : symbols)
2ff0a947
TT
13235 {
13236 if (!result.empty ())
13237 result += " or ";
13238 string_appendf (result, "%s = %s", name,
13239 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13240 }
9f757bf7 13241
9f757bf7 13242 return result;
f7f9143b
JB
13243}
13244
13245/* Return the symtab_and_line that should be used to insert an exception
13246 catchpoint of the TYPE kind.
13247
28010a5d
PA
13248 ADDR_STRING returns the name of the function where the real
13249 breakpoint that implements the catchpoints is set, depending on the
13250 type of catchpoint we need to create. */
f7f9143b
JB
13251
13252static struct symtab_and_line
bc18fbb5 13253ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 13254 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13255{
13256 const char *sym_name;
13257 struct symbol *sym;
f7f9143b 13258
0259addd
JB
13259 /* First, find out which exception support info to use. */
13260 ada_exception_support_info_sniffer ();
13261
13262 /* Then lookup the function on which we will break in order to catch
f7f9143b 13263 the Ada exceptions requested by the user. */
f7f9143b
JB
13264 sym_name = ada_exception_sym_name (ex);
13265 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13266
57aff202
JB
13267 if (sym == NULL)
13268 error (_("Catchpoint symbol not found: %s"), sym_name);
13269
13270 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13271 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13272
13273 /* Set ADDR_STRING. */
cc12f4a8 13274 *addr_string = sym_name;
f7f9143b 13275
f7f9143b 13276 /* Set OPS. */
4b9eee8c 13277 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13278
f17011e0 13279 return find_function_start_sal (sym, 1);
f7f9143b
JB
13280}
13281
b4a5b78b 13282/* Create an Ada exception catchpoint.
f7f9143b 13283
b4a5b78b 13284 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13285
bc18fbb5 13286 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13287 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13288 of the exception to which this catchpoint applies.
2df4d1d5 13289
bc18fbb5 13290 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13291
b4a5b78b
JB
13292 TEMPFLAG, if nonzero, means that the underlying breakpoint
13293 should be temporary.
28010a5d 13294
b4a5b78b 13295 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13296
349774ef 13297void
28010a5d 13298create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13299 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13300 const std::string &excep_string,
56ecd069 13301 const std::string &cond_string,
28010a5d 13302 int tempflag,
349774ef 13303 int disabled,
28010a5d
PA
13304 int from_tty)
13305{
cc12f4a8 13306 std::string addr_string;
b4a5b78b 13307 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13308 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13309
b270e6f9 13310 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
cc12f4a8 13311 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 13312 ops, tempflag, disabled, from_tty);
28010a5d 13313 c->excep_string = excep_string;
9f757bf7 13314 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13315 if (!cond_string.empty ())
13316 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13317 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13318}
13319
9ac4176b
PA
13320/* Implement the "catch exception" command. */
13321
13322static void
eb4c3f4a 13323catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13324 struct cmd_list_element *command)
13325{
a121b7c1 13326 const char *arg = arg_entry;
9ac4176b
PA
13327 struct gdbarch *gdbarch = get_current_arch ();
13328 int tempflag;
761269c8 13329 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13330 std::string excep_string;
56ecd069 13331 std::string cond_string;
9ac4176b
PA
13332
13333 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13334
13335 if (!arg)
13336 arg = "";
9f757bf7 13337 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13338 &cond_string);
9f757bf7
XR
13339 create_ada_exception_catchpoint (gdbarch, ex_kind,
13340 excep_string, cond_string,
13341 tempflag, 1 /* enabled */,
13342 from_tty);
13343}
13344
13345/* Implement the "catch handlers" command. */
13346
13347static void
13348catch_ada_handlers_command (const char *arg_entry, int from_tty,
13349 struct cmd_list_element *command)
13350{
13351 const char *arg = arg_entry;
13352 struct gdbarch *gdbarch = get_current_arch ();
13353 int tempflag;
13354 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13355 std::string excep_string;
56ecd069 13356 std::string cond_string;
9f757bf7
XR
13357
13358 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13359
13360 if (!arg)
13361 arg = "";
13362 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13363 &cond_string);
b4a5b78b
JB
13364 create_ada_exception_catchpoint (gdbarch, ex_kind,
13365 excep_string, cond_string,
349774ef
JB
13366 tempflag, 1 /* enabled */,
13367 from_tty);
9ac4176b
PA
13368}
13369
b4a5b78b 13370/* Split the arguments specified in a "catch assert" command.
5845583d 13371
b4a5b78b
JB
13372 ARGS contains the command's arguments (or the empty string if
13373 no arguments were passed).
5845583d
JB
13374
13375 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13376 (the memory needs to be deallocated after use). */
5845583d 13377
b4a5b78b 13378static void
56ecd069 13379catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13380{
f1735a53 13381 args = skip_spaces (args);
f7f9143b 13382
5845583d 13383 /* Check whether a condition was provided. */
61012eef 13384 if (startswith (args, "if")
5845583d 13385 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13386 {
5845583d 13387 args += 2;
f1735a53 13388 args = skip_spaces (args);
5845583d
JB
13389 if (args[0] == '\0')
13390 error (_("condition missing after `if' keyword"));
56ecd069 13391 cond_string.assign (args);
f7f9143b
JB
13392 }
13393
5845583d
JB
13394 /* Otherwise, there should be no other argument at the end of
13395 the command. */
13396 else if (args[0] != '\0')
13397 error (_("Junk at end of arguments."));
f7f9143b
JB
13398}
13399
9ac4176b
PA
13400/* Implement the "catch assert" command. */
13401
13402static void
eb4c3f4a 13403catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13404 struct cmd_list_element *command)
13405{
a121b7c1 13406 const char *arg = arg_entry;
9ac4176b
PA
13407 struct gdbarch *gdbarch = get_current_arch ();
13408 int tempflag;
56ecd069 13409 std::string cond_string;
9ac4176b
PA
13410
13411 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13412
13413 if (!arg)
13414 arg = "";
56ecd069 13415 catch_ada_assert_command_split (arg, cond_string);
761269c8 13416 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13417 "", cond_string,
349774ef
JB
13418 tempflag, 1 /* enabled */,
13419 from_tty);
9ac4176b 13420}
778865d3
JB
13421
13422/* Return non-zero if the symbol SYM is an Ada exception object. */
13423
13424static int
13425ada_is_exception_sym (struct symbol *sym)
13426{
a737d952 13427 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13428
13429 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13430 && SYMBOL_CLASS (sym) != LOC_BLOCK
13431 && SYMBOL_CLASS (sym) != LOC_CONST
13432 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13433 && type_name != NULL && strcmp (type_name, "exception") == 0);
13434}
13435
13436/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13437 Ada exception object. This matches all exceptions except the ones
13438 defined by the Ada language. */
13439
13440static int
13441ada_is_non_standard_exception_sym (struct symbol *sym)
13442{
13443 int i;
13444
13445 if (!ada_is_exception_sym (sym))
13446 return 0;
13447
13448 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13449 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13450 return 0; /* A standard exception. */
13451
13452 /* Numeric_Error is also a standard exception, so exclude it.
13453 See the STANDARD_EXC description for more details as to why
13454 this exception is not listed in that array. */
13455 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13456 return 0;
13457
13458 return 1;
13459}
13460
ab816a27 13461/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13462 objects.
13463
13464 The comparison is determined first by exception name, and then
13465 by exception address. */
13466
ab816a27 13467bool
cc536b21 13468ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13469{
778865d3
JB
13470 int result;
13471
ab816a27
TT
13472 result = strcmp (name, other.name);
13473 if (result < 0)
13474 return true;
13475 if (result == 0 && addr < other.addr)
13476 return true;
13477 return false;
13478}
778865d3 13479
ab816a27 13480bool
cc536b21 13481ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13482{
13483 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13484}
13485
13486/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13487 routine, but keeping the first SKIP elements untouched.
13488
13489 All duplicates are also removed. */
13490
13491static void
ab816a27 13492sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13493 int skip)
13494{
ab816a27
TT
13495 std::sort (exceptions->begin () + skip, exceptions->end ());
13496 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13497 exceptions->end ());
778865d3
JB
13498}
13499
778865d3
JB
13500/* Add all exceptions defined by the Ada standard whose name match
13501 a regular expression.
13502
13503 If PREG is not NULL, then this regexp_t object is used to
13504 perform the symbol name matching. Otherwise, no name-based
13505 filtering is performed.
13506
13507 EXCEPTIONS is a vector of exceptions to which matching exceptions
13508 gets pushed. */
13509
13510static void
2d7cc5c7 13511ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13512 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13513{
13514 int i;
13515
13516 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13517 {
13518 if (preg == NULL
2d7cc5c7 13519 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13520 {
13521 struct bound_minimal_symbol msymbol
13522 = ada_lookup_simple_minsym (standard_exc[i]);
13523
13524 if (msymbol.minsym != NULL)
13525 {
13526 struct ada_exc_info info
77e371c0 13527 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13528
ab816a27 13529 exceptions->push_back (info);
778865d3
JB
13530 }
13531 }
13532 }
13533}
13534
13535/* Add all Ada exceptions defined locally and accessible from the given
13536 FRAME.
13537
13538 If PREG is not NULL, then this regexp_t object is used to
13539 perform the symbol name matching. Otherwise, no name-based
13540 filtering is performed.
13541
13542 EXCEPTIONS is a vector of exceptions to which matching exceptions
13543 gets pushed. */
13544
13545static void
2d7cc5c7
PA
13546ada_add_exceptions_from_frame (compiled_regex *preg,
13547 struct frame_info *frame,
ab816a27 13548 std::vector<ada_exc_info> *exceptions)
778865d3 13549{
3977b71f 13550 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13551
13552 while (block != 0)
13553 {
13554 struct block_iterator iter;
13555 struct symbol *sym;
13556
13557 ALL_BLOCK_SYMBOLS (block, iter, sym)
13558 {
13559 switch (SYMBOL_CLASS (sym))
13560 {
13561 case LOC_TYPEDEF:
13562 case LOC_BLOCK:
13563 case LOC_CONST:
13564 break;
13565 default:
13566 if (ada_is_exception_sym (sym))
13567 {
13568 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13569 SYMBOL_VALUE_ADDRESS (sym)};
13570
ab816a27 13571 exceptions->push_back (info);
778865d3
JB
13572 }
13573 }
13574 }
13575 if (BLOCK_FUNCTION (block) != NULL)
13576 break;
13577 block = BLOCK_SUPERBLOCK (block);
13578 }
13579}
13580
14bc53a8
PA
13581/* Return true if NAME matches PREG or if PREG is NULL. */
13582
13583static bool
2d7cc5c7 13584name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13585{
13586 return (preg == NULL
2d7cc5c7 13587 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13588}
13589
778865d3
JB
13590/* Add all exceptions defined globally whose name name match
13591 a regular expression, excluding standard exceptions.
13592
13593 The reason we exclude standard exceptions is that they need
13594 to be handled separately: Standard exceptions are defined inside
13595 a runtime unit which is normally not compiled with debugging info,
13596 and thus usually do not show up in our symbol search. However,
13597 if the unit was in fact built with debugging info, we need to
13598 exclude them because they would duplicate the entry we found
13599 during the special loop that specifically searches for those
13600 standard exceptions.
13601
13602 If PREG is not NULL, then this regexp_t object is used to
13603 perform the symbol name matching. Otherwise, no name-based
13604 filtering is performed.
13605
13606 EXCEPTIONS is a vector of exceptions to which matching exceptions
13607 gets pushed. */
13608
13609static void
2d7cc5c7 13610ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13611 std::vector<ada_exc_info> *exceptions)
778865d3 13612{
14bc53a8
PA
13613 /* In Ada, the symbol "search name" is a linkage name, whereas the
13614 regular expression used to do the matching refers to the natural
13615 name. So match against the decoded name. */
13616 expand_symtabs_matching (NULL,
b5ec771e 13617 lookup_name_info::match_any (),
14bc53a8
PA
13618 [&] (const char *search_name)
13619 {
13620 const char *decoded = ada_decode (search_name);
13621 return name_matches_regex (decoded, preg);
13622 },
13623 NULL,
13624 VARIABLES_DOMAIN);
778865d3 13625
2030c079 13626 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13627 {
b669c953 13628 for (compunit_symtab *s : objfile->compunits ())
778865d3 13629 {
d8aeb77f
TT
13630 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13631 int i;
778865d3 13632
d8aeb77f
TT
13633 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13634 {
582942f4 13635 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13636 struct block_iterator iter;
13637 struct symbol *sym;
778865d3 13638
d8aeb77f
TT
13639 ALL_BLOCK_SYMBOLS (b, iter, sym)
13640 if (ada_is_non_standard_exception_sym (sym)
13641 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13642 {
13643 struct ada_exc_info info
13644 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13645
13646 exceptions->push_back (info);
13647 }
13648 }
778865d3
JB
13649 }
13650 }
13651}
13652
13653/* Implements ada_exceptions_list with the regular expression passed
13654 as a regex_t, rather than a string.
13655
13656 If not NULL, PREG is used to filter out exceptions whose names
13657 do not match. Otherwise, all exceptions are listed. */
13658
ab816a27 13659static std::vector<ada_exc_info>
2d7cc5c7 13660ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13661{
ab816a27 13662 std::vector<ada_exc_info> result;
778865d3
JB
13663 int prev_len;
13664
13665 /* First, list the known standard exceptions. These exceptions
13666 need to be handled separately, as they are usually defined in
13667 runtime units that have been compiled without debugging info. */
13668
13669 ada_add_standard_exceptions (preg, &result);
13670
13671 /* Next, find all exceptions whose scope is local and accessible
13672 from the currently selected frame. */
13673
13674 if (has_stack_frames ())
13675 {
ab816a27 13676 prev_len = result.size ();
778865d3
JB
13677 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13678 &result);
ab816a27 13679 if (result.size () > prev_len)
778865d3
JB
13680 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13681 }
13682
13683 /* Add all exceptions whose scope is global. */
13684
ab816a27 13685 prev_len = result.size ();
778865d3 13686 ada_add_global_exceptions (preg, &result);
ab816a27 13687 if (result.size () > prev_len)
778865d3
JB
13688 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13689
778865d3
JB
13690 return result;
13691}
13692
13693/* Return a vector of ada_exc_info.
13694
13695 If REGEXP is NULL, all exceptions are included in the result.
13696 Otherwise, it should contain a valid regular expression,
13697 and only the exceptions whose names match that regular expression
13698 are included in the result.
13699
13700 The exceptions are sorted in the following order:
13701 - Standard exceptions (defined by the Ada language), in
13702 alphabetical order;
13703 - Exceptions only visible from the current frame, in
13704 alphabetical order;
13705 - Exceptions whose scope is global, in alphabetical order. */
13706
ab816a27 13707std::vector<ada_exc_info>
778865d3
JB
13708ada_exceptions_list (const char *regexp)
13709{
2d7cc5c7
PA
13710 if (regexp == NULL)
13711 return ada_exceptions_list_1 (NULL);
778865d3 13712
2d7cc5c7
PA
13713 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13714 return ada_exceptions_list_1 (&reg);
778865d3
JB
13715}
13716
13717/* Implement the "info exceptions" command. */
13718
13719static void
1d12d88f 13720info_exceptions_command (const char *regexp, int from_tty)
778865d3 13721{
778865d3 13722 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13723
ab816a27 13724 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13725
13726 if (regexp != NULL)
13727 printf_filtered
13728 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13729 else
13730 printf_filtered (_("All defined Ada exceptions:\n"));
13731
ab816a27
TT
13732 for (const ada_exc_info &info : exceptions)
13733 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13734}
13735
4c4b4cd2
PH
13736 /* Operators */
13737/* Information about operators given special treatment in functions
13738 below. */
13739/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13740
13741#define ADA_OPERATORS \
13742 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13743 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13744 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13745 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13746 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13747 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13748 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13749 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13750 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13751 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13752 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13753 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13754 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13755 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13756 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13757 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13758 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13759 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13760 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13761
13762static void
554794dc
SDJ
13763ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13764 int *argsp)
4c4b4cd2
PH
13765{
13766 switch (exp->elts[pc - 1].opcode)
13767 {
76a01679 13768 default:
4c4b4cd2
PH
13769 operator_length_standard (exp, pc, oplenp, argsp);
13770 break;
13771
13772#define OP_DEFN(op, len, args, binop) \
13773 case op: *oplenp = len; *argsp = args; break;
13774 ADA_OPERATORS;
13775#undef OP_DEFN
52ce6436
PH
13776
13777 case OP_AGGREGATE:
13778 *oplenp = 3;
13779 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13780 break;
13781
13782 case OP_CHOICES:
13783 *oplenp = 3;
13784 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13785 break;
4c4b4cd2
PH
13786 }
13787}
13788
c0201579
JK
13789/* Implementation of the exp_descriptor method operator_check. */
13790
13791static int
13792ada_operator_check (struct expression *exp, int pos,
13793 int (*objfile_func) (struct objfile *objfile, void *data),
13794 void *data)
13795{
13796 const union exp_element *const elts = exp->elts;
13797 struct type *type = NULL;
13798
13799 switch (elts[pos].opcode)
13800 {
13801 case UNOP_IN_RANGE:
13802 case UNOP_QUAL:
13803 type = elts[pos + 1].type;
13804 break;
13805
13806 default:
13807 return operator_check_standard (exp, pos, objfile_func, data);
13808 }
13809
13810 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13811
13812 if (type && TYPE_OBJFILE (type)
13813 && (*objfile_func) (TYPE_OBJFILE (type), data))
13814 return 1;
13815
13816 return 0;
13817}
13818
a121b7c1 13819static const char *
4c4b4cd2
PH
13820ada_op_name (enum exp_opcode opcode)
13821{
13822 switch (opcode)
13823 {
76a01679 13824 default:
4c4b4cd2 13825 return op_name_standard (opcode);
52ce6436 13826
4c4b4cd2
PH
13827#define OP_DEFN(op, len, args, binop) case op: return #op;
13828 ADA_OPERATORS;
13829#undef OP_DEFN
52ce6436
PH
13830
13831 case OP_AGGREGATE:
13832 return "OP_AGGREGATE";
13833 case OP_CHOICES:
13834 return "OP_CHOICES";
13835 case OP_NAME:
13836 return "OP_NAME";
4c4b4cd2
PH
13837 }
13838}
13839
13840/* As for operator_length, but assumes PC is pointing at the first
13841 element of the operator, and gives meaningful results only for the
52ce6436 13842 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13843
13844static void
76a01679
JB
13845ada_forward_operator_length (struct expression *exp, int pc,
13846 int *oplenp, int *argsp)
4c4b4cd2 13847{
76a01679 13848 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13849 {
13850 default:
13851 *oplenp = *argsp = 0;
13852 break;
52ce6436 13853
4c4b4cd2
PH
13854#define OP_DEFN(op, len, args, binop) \
13855 case op: *oplenp = len; *argsp = args; break;
13856 ADA_OPERATORS;
13857#undef OP_DEFN
52ce6436
PH
13858
13859 case OP_AGGREGATE:
13860 *oplenp = 3;
13861 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13862 break;
13863
13864 case OP_CHOICES:
13865 *oplenp = 3;
13866 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13867 break;
13868
13869 case OP_STRING:
13870 case OP_NAME:
13871 {
13872 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13873
52ce6436
PH
13874 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13875 *argsp = 0;
13876 break;
13877 }
4c4b4cd2
PH
13878 }
13879}
13880
13881static int
13882ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13883{
13884 enum exp_opcode op = exp->elts[elt].opcode;
13885 int oplen, nargs;
13886 int pc = elt;
13887 int i;
76a01679 13888
4c4b4cd2
PH
13889 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13890
76a01679 13891 switch (op)
4c4b4cd2 13892 {
76a01679 13893 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13894 case OP_ATR_FIRST:
13895 case OP_ATR_LAST:
13896 case OP_ATR_LENGTH:
13897 case OP_ATR_IMAGE:
13898 case OP_ATR_MAX:
13899 case OP_ATR_MIN:
13900 case OP_ATR_MODULUS:
13901 case OP_ATR_POS:
13902 case OP_ATR_SIZE:
13903 case OP_ATR_TAG:
13904 case OP_ATR_VAL:
13905 break;
13906
13907 case UNOP_IN_RANGE:
13908 case UNOP_QUAL:
323e0a4a
AC
13909 /* XXX: gdb_sprint_host_address, type_sprint */
13910 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13911 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13912 fprintf_filtered (stream, " (");
13913 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13914 fprintf_filtered (stream, ")");
13915 break;
13916 case BINOP_IN_BOUNDS:
52ce6436
PH
13917 fprintf_filtered (stream, " (%d)",
13918 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13919 break;
13920 case TERNOP_IN_RANGE:
13921 break;
13922
52ce6436
PH
13923 case OP_AGGREGATE:
13924 case OP_OTHERS:
13925 case OP_DISCRETE_RANGE:
13926 case OP_POSITIONAL:
13927 case OP_CHOICES:
13928 break;
13929
13930 case OP_NAME:
13931 case OP_STRING:
13932 {
13933 char *name = &exp->elts[elt + 2].string;
13934 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13935
52ce6436
PH
13936 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13937 break;
13938 }
13939
4c4b4cd2
PH
13940 default:
13941 return dump_subexp_body_standard (exp, stream, elt);
13942 }
13943
13944 elt += oplen;
13945 for (i = 0; i < nargs; i += 1)
13946 elt = dump_subexp (exp, stream, elt);
13947
13948 return elt;
13949}
13950
13951/* The Ada extension of print_subexp (q.v.). */
13952
76a01679
JB
13953static void
13954ada_print_subexp (struct expression *exp, int *pos,
13955 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13956{
52ce6436 13957 int oplen, nargs, i;
4c4b4cd2
PH
13958 int pc = *pos;
13959 enum exp_opcode op = exp->elts[pc].opcode;
13960
13961 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13962
52ce6436 13963 *pos += oplen;
4c4b4cd2
PH
13964 switch (op)
13965 {
13966 default:
52ce6436 13967 *pos -= oplen;
4c4b4cd2
PH
13968 print_subexp_standard (exp, pos, stream, prec);
13969 return;
13970
13971 case OP_VAR_VALUE:
4c4b4cd2
PH
13972 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13973 return;
13974
13975 case BINOP_IN_BOUNDS:
323e0a4a 13976 /* XXX: sprint_subexp */
4c4b4cd2 13977 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13978 fputs_filtered (" in ", stream);
4c4b4cd2 13979 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13980 fputs_filtered ("'range", stream);
4c4b4cd2 13981 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13982 fprintf_filtered (stream, "(%ld)",
13983 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13984 return;
13985
13986 case TERNOP_IN_RANGE:
4c4b4cd2 13987 if (prec >= PREC_EQUAL)
76a01679 13988 fputs_filtered ("(", stream);
323e0a4a 13989 /* XXX: sprint_subexp */
4c4b4cd2 13990 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13991 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13992 print_subexp (exp, pos, stream, PREC_EQUAL);
13993 fputs_filtered (" .. ", stream);
13994 print_subexp (exp, pos, stream, PREC_EQUAL);
13995 if (prec >= PREC_EQUAL)
76a01679
JB
13996 fputs_filtered (")", stream);
13997 return;
4c4b4cd2
PH
13998
13999 case OP_ATR_FIRST:
14000 case OP_ATR_LAST:
14001 case OP_ATR_LENGTH:
14002 case OP_ATR_IMAGE:
14003 case OP_ATR_MAX:
14004 case OP_ATR_MIN:
14005 case OP_ATR_MODULUS:
14006 case OP_ATR_POS:
14007 case OP_ATR_SIZE:
14008 case OP_ATR_TAG:
14009 case OP_ATR_VAL:
4c4b4cd2 14010 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
14011 {
14012 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
14013 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14014 &type_print_raw_options);
76a01679
JB
14015 *pos += 3;
14016 }
4c4b4cd2 14017 else
76a01679 14018 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
14019 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14020 if (nargs > 1)
76a01679
JB
14021 {
14022 int tem;
5b4ee69b 14023
76a01679
JB
14024 for (tem = 1; tem < nargs; tem += 1)
14025 {
14026 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14027 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14028 }
14029 fputs_filtered (")", stream);
14030 }
4c4b4cd2 14031 return;
14f9c5c9 14032
4c4b4cd2 14033 case UNOP_QUAL:
4c4b4cd2
PH
14034 type_print (exp->elts[pc + 1].type, "", stream, 0);
14035 fputs_filtered ("'(", stream);
14036 print_subexp (exp, pos, stream, PREC_PREFIX);
14037 fputs_filtered (")", stream);
14038 return;
14f9c5c9 14039
4c4b4cd2 14040 case UNOP_IN_RANGE:
323e0a4a 14041 /* XXX: sprint_subexp */
4c4b4cd2 14042 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14043 fputs_filtered (" in ", stream);
79d43c61
TT
14044 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14045 &type_print_raw_options);
4c4b4cd2 14046 return;
52ce6436
PH
14047
14048 case OP_DISCRETE_RANGE:
14049 print_subexp (exp, pos, stream, PREC_SUFFIX);
14050 fputs_filtered ("..", stream);
14051 print_subexp (exp, pos, stream, PREC_SUFFIX);
14052 return;
14053
14054 case OP_OTHERS:
14055 fputs_filtered ("others => ", stream);
14056 print_subexp (exp, pos, stream, PREC_SUFFIX);
14057 return;
14058
14059 case OP_CHOICES:
14060 for (i = 0; i < nargs-1; i += 1)
14061 {
14062 if (i > 0)
14063 fputs_filtered ("|", stream);
14064 print_subexp (exp, pos, stream, PREC_SUFFIX);
14065 }
14066 fputs_filtered (" => ", stream);
14067 print_subexp (exp, pos, stream, PREC_SUFFIX);
14068 return;
14069
14070 case OP_POSITIONAL:
14071 print_subexp (exp, pos, stream, PREC_SUFFIX);
14072 return;
14073
14074 case OP_AGGREGATE:
14075 fputs_filtered ("(", stream);
14076 for (i = 0; i < nargs; i += 1)
14077 {
14078 if (i > 0)
14079 fputs_filtered (", ", stream);
14080 print_subexp (exp, pos, stream, PREC_SUFFIX);
14081 }
14082 fputs_filtered (")", stream);
14083 return;
4c4b4cd2
PH
14084 }
14085}
14f9c5c9
AS
14086
14087/* Table mapping opcodes into strings for printing operators
14088 and precedences of the operators. */
14089
d2e4a39e
AS
14090static const struct op_print ada_op_print_tab[] = {
14091 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14092 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14093 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14094 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14095 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14096 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14097 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14098 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14099 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14100 {">=", BINOP_GEQ, PREC_ORDER, 0},
14101 {">", BINOP_GTR, PREC_ORDER, 0},
14102 {"<", BINOP_LESS, PREC_ORDER, 0},
14103 {">>", BINOP_RSH, PREC_SHIFT, 0},
14104 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14105 {"+", BINOP_ADD, PREC_ADD, 0},
14106 {"-", BINOP_SUB, PREC_ADD, 0},
14107 {"&", BINOP_CONCAT, PREC_ADD, 0},
14108 {"*", BINOP_MUL, PREC_MUL, 0},
14109 {"/", BINOP_DIV, PREC_MUL, 0},
14110 {"rem", BINOP_REM, PREC_MUL, 0},
14111 {"mod", BINOP_MOD, PREC_MUL, 0},
14112 {"**", BINOP_EXP, PREC_REPEAT, 0},
14113 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14114 {"-", UNOP_NEG, PREC_PREFIX, 0},
14115 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14116 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14117 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14118 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14119 {".all", UNOP_IND, PREC_SUFFIX, 1},
14120 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14121 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14122 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14123};
14124\f
72d5681a
PH
14125enum ada_primitive_types {
14126 ada_primitive_type_int,
14127 ada_primitive_type_long,
14128 ada_primitive_type_short,
14129 ada_primitive_type_char,
14130 ada_primitive_type_float,
14131 ada_primitive_type_double,
14132 ada_primitive_type_void,
14133 ada_primitive_type_long_long,
14134 ada_primitive_type_long_double,
14135 ada_primitive_type_natural,
14136 ada_primitive_type_positive,
14137 ada_primitive_type_system_address,
08f49010 14138 ada_primitive_type_storage_offset,
72d5681a
PH
14139 nr_ada_primitive_types
14140};
6c038f32
PH
14141
14142static void
d4a9a881 14143ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14144 struct language_arch_info *lai)
14145{
d4a9a881 14146 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14147
72d5681a 14148 lai->primitive_type_vector
d4a9a881 14149 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14150 struct type *);
e9bb382b
UW
14151
14152 lai->primitive_type_vector [ada_primitive_type_int]
14153 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14154 0, "integer");
14155 lai->primitive_type_vector [ada_primitive_type_long]
14156 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14157 0, "long_integer");
14158 lai->primitive_type_vector [ada_primitive_type_short]
14159 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14160 0, "short_integer");
14161 lai->string_char_type
14162 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14163 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14164 lai->primitive_type_vector [ada_primitive_type_float]
14165 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14166 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14167 lai->primitive_type_vector [ada_primitive_type_double]
14168 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14169 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14170 lai->primitive_type_vector [ada_primitive_type_long_long]
14171 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14172 0, "long_long_integer");
14173 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14174 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14175 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14176 lai->primitive_type_vector [ada_primitive_type_natural]
14177 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14178 0, "natural");
14179 lai->primitive_type_vector [ada_primitive_type_positive]
14180 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14181 0, "positive");
14182 lai->primitive_type_vector [ada_primitive_type_void]
14183 = builtin->builtin_void;
14184
14185 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14186 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14187 "void"));
72d5681a
PH
14188 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14189 = "system__address";
fbb06eb1 14190
08f49010
XR
14191 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14192 type. This is a signed integral type whose size is the same as
14193 the size of addresses. */
14194 {
14195 unsigned int addr_length = TYPE_LENGTH
14196 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14197
14198 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14199 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14200 "storage_offset");
14201 }
14202
47e729a8 14203 lai->bool_type_symbol = NULL;
fbb06eb1 14204 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14205}
6c038f32
PH
14206\f
14207 /* Language vector */
14208
14209/* Not really used, but needed in the ada_language_defn. */
14210
14211static void
6c7a06a3 14212emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14213{
6c7a06a3 14214 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14215}
14216
14217static int
410a0ff2 14218parse (struct parser_state *ps)
6c038f32
PH
14219{
14220 warnings_issued = 0;
410a0ff2 14221 return ada_parse (ps);
6c038f32
PH
14222}
14223
14224static const struct exp_descriptor ada_exp_descriptor = {
14225 ada_print_subexp,
14226 ada_operator_length,
c0201579 14227 ada_operator_check,
6c038f32
PH
14228 ada_op_name,
14229 ada_dump_subexp_body,
14230 ada_evaluate_subexp
14231};
14232
b5ec771e
PA
14233/* symbol_name_matcher_ftype adapter for wild_match. */
14234
14235static bool
14236do_wild_match (const char *symbol_search_name,
14237 const lookup_name_info &lookup_name,
a207cff2 14238 completion_match_result *comp_match_res)
b5ec771e
PA
14239{
14240 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14241}
14242
14243/* symbol_name_matcher_ftype adapter for full_match. */
14244
14245static bool
14246do_full_match (const char *symbol_search_name,
14247 const lookup_name_info &lookup_name,
a207cff2 14248 completion_match_result *comp_match_res)
b5ec771e
PA
14249{
14250 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14251}
14252
a2cd4f14
JB
14253/* symbol_name_matcher_ftype for exact (verbatim) matches. */
14254
14255static bool
14256do_exact_match (const char *symbol_search_name,
14257 const lookup_name_info &lookup_name,
14258 completion_match_result *comp_match_res)
14259{
14260 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14261}
14262
b5ec771e
PA
14263/* Build the Ada lookup name for LOOKUP_NAME. */
14264
14265ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14266{
14267 const std::string &user_name = lookup_name.name ();
14268
14269 if (user_name[0] == '<')
14270 {
14271 if (user_name.back () == '>')
14272 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14273 else
14274 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14275 m_encoded_p = true;
14276 m_verbatim_p = true;
14277 m_wild_match_p = false;
14278 m_standard_p = false;
14279 }
14280 else
14281 {
14282 m_verbatim_p = false;
14283
14284 m_encoded_p = user_name.find ("__") != std::string::npos;
14285
14286 if (!m_encoded_p)
14287 {
14288 const char *folded = ada_fold_name (user_name.c_str ());
14289 const char *encoded = ada_encode_1 (folded, false);
14290 if (encoded != NULL)
14291 m_encoded_name = encoded;
14292 else
14293 m_encoded_name = user_name;
14294 }
14295 else
14296 m_encoded_name = user_name;
14297
14298 /* Handle the 'package Standard' special case. See description
14299 of m_standard_p. */
14300 if (startswith (m_encoded_name.c_str (), "standard__"))
14301 {
14302 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14303 m_standard_p = true;
14304 }
14305 else
14306 m_standard_p = false;
74ccd7f5 14307
b5ec771e
PA
14308 /* If the name contains a ".", then the user is entering a fully
14309 qualified entity name, and the match must not be done in wild
14310 mode. Similarly, if the user wants to complete what looks
14311 like an encoded name, the match must not be done in wild
14312 mode. Also, in the standard__ special case always do
14313 non-wild matching. */
14314 m_wild_match_p
14315 = (lookup_name.match_type () != symbol_name_match_type::FULL
14316 && !m_encoded_p
14317 && !m_standard_p
14318 && user_name.find ('.') == std::string::npos);
14319 }
14320}
14321
14322/* symbol_name_matcher_ftype method for Ada. This only handles
14323 completion mode. */
14324
14325static bool
14326ada_symbol_name_matches (const char *symbol_search_name,
14327 const lookup_name_info &lookup_name,
a207cff2 14328 completion_match_result *comp_match_res)
74ccd7f5 14329{
b5ec771e
PA
14330 return lookup_name.ada ().matches (symbol_search_name,
14331 lookup_name.match_type (),
a207cff2 14332 comp_match_res);
b5ec771e
PA
14333}
14334
de63c46b
PA
14335/* A name matcher that matches the symbol name exactly, with
14336 strcmp. */
14337
14338static bool
14339literal_symbol_name_matcher (const char *symbol_search_name,
14340 const lookup_name_info &lookup_name,
14341 completion_match_result *comp_match_res)
14342{
14343 const std::string &name = lookup_name.name ();
14344
14345 int cmp = (lookup_name.completion_mode ()
14346 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14347 : strcmp (symbol_search_name, name.c_str ()));
14348 if (cmp == 0)
14349 {
14350 if (comp_match_res != NULL)
14351 comp_match_res->set_match (symbol_search_name);
14352 return true;
14353 }
14354 else
14355 return false;
14356}
14357
b5ec771e
PA
14358/* Implement the "la_get_symbol_name_matcher" language_defn method for
14359 Ada. */
14360
14361static symbol_name_matcher_ftype *
14362ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14363{
de63c46b
PA
14364 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14365 return literal_symbol_name_matcher;
14366
b5ec771e
PA
14367 if (lookup_name.completion_mode ())
14368 return ada_symbol_name_matches;
74ccd7f5 14369 else
b5ec771e
PA
14370 {
14371 if (lookup_name.ada ().wild_match_p ())
14372 return do_wild_match;
a2cd4f14
JB
14373 else if (lookup_name.ada ().verbatim_p ())
14374 return do_exact_match;
b5ec771e
PA
14375 else
14376 return do_full_match;
14377 }
74ccd7f5
JB
14378}
14379
a5ee536b
JB
14380/* Implement the "la_read_var_value" language_defn method for Ada. */
14381
14382static struct value *
63e43d3a
PMR
14383ada_read_var_value (struct symbol *var, const struct block *var_block,
14384 struct frame_info *frame)
a5ee536b 14385{
3977b71f 14386 const struct block *frame_block = NULL;
a5ee536b
JB
14387 struct symbol *renaming_sym = NULL;
14388
14389 /* The only case where default_read_var_value is not sufficient
14390 is when VAR is a renaming... */
14391 if (frame)
14392 frame_block = get_frame_block (frame, NULL);
14393 if (frame_block)
14394 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14395 if (renaming_sym != NULL)
14396 return ada_read_renaming_var_value (renaming_sym, frame_block);
14397
14398 /* This is a typical case where we expect the default_read_var_value
14399 function to work. */
63e43d3a 14400 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14401}
14402
56618e20
TT
14403static const char *ada_extensions[] =
14404{
14405 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14406};
14407
47e77640 14408extern const struct language_defn ada_language_defn = {
6c038f32 14409 "ada", /* Language name */
6abde28f 14410 "Ada",
6c038f32 14411 language_ada,
6c038f32 14412 range_check_off,
6c038f32
PH
14413 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14414 that's not quite what this means. */
6c038f32 14415 array_row_major,
9a044a89 14416 macro_expansion_no,
56618e20 14417 ada_extensions,
6c038f32
PH
14418 &ada_exp_descriptor,
14419 parse,
6c038f32
PH
14420 resolve,
14421 ada_printchar, /* Print a character constant */
14422 ada_printstr, /* Function to print string constant */
14423 emit_char, /* Function to print single char (not used) */
6c038f32 14424 ada_print_type, /* Print a type using appropriate syntax */
be942545 14425 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14426 ada_val_print, /* Print a value using appropriate syntax */
14427 ada_value_print, /* Print a top-level value */
a5ee536b 14428 ada_read_var_value, /* la_read_var_value */
6c038f32 14429 NULL, /* Language specific skip_trampoline */
2b2d9e11 14430 NULL, /* name_of_this */
59cc4834 14431 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14432 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14433 basic_lookup_transparent_type, /* lookup_transparent_type */
14434 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14435 ada_sniff_from_mangled_name,
0963b4bd
MS
14436 NULL, /* Language specific
14437 class_name_from_physname */
6c038f32
PH
14438 ada_op_print_tab, /* expression operators for printing */
14439 0, /* c-style arrays */
14440 1, /* String lower bound */
6c038f32 14441 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14442 ada_collect_symbol_completion_matches,
72d5681a 14443 ada_language_arch_info,
e79af960 14444 ada_print_array_index,
41f1b697 14445 default_pass_by_reference,
ae6a3a4c 14446 c_get_string,
e2b7af72 14447 ada_watch_location_expression,
b5ec771e 14448 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14449 ada_iterate_over_symbols,
5ffa0793 14450 default_search_name_hash,
a53b64ea 14451 &ada_varobj_ops,
bb2ec1b3 14452 NULL,
721b08c6 14453 NULL,
4be290b2 14454 ada_is_string_type,
721b08c6 14455 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14456};
14457
5bf03f13
JB
14458/* Command-list for the "set/show ada" prefix command. */
14459static struct cmd_list_element *set_ada_list;
14460static struct cmd_list_element *show_ada_list;
14461
14462/* Implement the "set ada" prefix command. */
14463
14464static void
981a3fb3 14465set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14466{
14467 printf_unfiltered (_(\
14468"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14469 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14470}
14471
14472/* Implement the "show ada" prefix command. */
14473
14474static void
981a3fb3 14475show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14476{
14477 cmd_show_list (show_ada_list, from_tty, "");
14478}
14479
2060206e
PA
14480static void
14481initialize_ada_catchpoint_ops (void)
14482{
14483 struct breakpoint_ops *ops;
14484
14485 initialize_breakpoint_ops ();
14486
14487 ops = &catch_exception_breakpoint_ops;
14488 *ops = bkpt_breakpoint_ops;
2060206e
PA
14489 ops->allocate_location = allocate_location_catch_exception;
14490 ops->re_set = re_set_catch_exception;
14491 ops->check_status = check_status_catch_exception;
14492 ops->print_it = print_it_catch_exception;
14493 ops->print_one = print_one_catch_exception;
14494 ops->print_mention = print_mention_catch_exception;
14495 ops->print_recreate = print_recreate_catch_exception;
14496
14497 ops = &catch_exception_unhandled_breakpoint_ops;
14498 *ops = bkpt_breakpoint_ops;
2060206e
PA
14499 ops->allocate_location = allocate_location_catch_exception_unhandled;
14500 ops->re_set = re_set_catch_exception_unhandled;
14501 ops->check_status = check_status_catch_exception_unhandled;
14502 ops->print_it = print_it_catch_exception_unhandled;
14503 ops->print_one = print_one_catch_exception_unhandled;
14504 ops->print_mention = print_mention_catch_exception_unhandled;
14505 ops->print_recreate = print_recreate_catch_exception_unhandled;
14506
14507 ops = &catch_assert_breakpoint_ops;
14508 *ops = bkpt_breakpoint_ops;
2060206e
PA
14509 ops->allocate_location = allocate_location_catch_assert;
14510 ops->re_set = re_set_catch_assert;
14511 ops->check_status = check_status_catch_assert;
14512 ops->print_it = print_it_catch_assert;
14513 ops->print_one = print_one_catch_assert;
14514 ops->print_mention = print_mention_catch_assert;
14515 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14516
14517 ops = &catch_handlers_breakpoint_ops;
14518 *ops = bkpt_breakpoint_ops;
14519 ops->allocate_location = allocate_location_catch_handlers;
14520 ops->re_set = re_set_catch_handlers;
14521 ops->check_status = check_status_catch_handlers;
14522 ops->print_it = print_it_catch_handlers;
14523 ops->print_one = print_one_catch_handlers;
14524 ops->print_mention = print_mention_catch_handlers;
14525 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14526}
14527
3d9434b5
JB
14528/* This module's 'new_objfile' observer. */
14529
14530static void
14531ada_new_objfile_observer (struct objfile *objfile)
14532{
14533 ada_clear_symbol_cache ();
14534}
14535
14536/* This module's 'free_objfile' observer. */
14537
14538static void
14539ada_free_objfile_observer (struct objfile *objfile)
14540{
14541 ada_clear_symbol_cache ();
14542}
14543
d2e4a39e 14544void
6c038f32 14545_initialize_ada_language (void)
14f9c5c9 14546{
2060206e
PA
14547 initialize_ada_catchpoint_ops ();
14548
5bf03f13 14549 add_prefix_cmd ("ada", no_class, set_ada_command,
470678d7 14550 _("Prefix command for changing Ada-specific settings"),
5bf03f13
JB
14551 &set_ada_list, "set ada ", 0, &setlist);
14552
14553 add_prefix_cmd ("ada", no_class, show_ada_command,
14554 _("Generic command for showing Ada-specific settings."),
14555 &show_ada_list, "show ada ", 0, &showlist);
14556
14557 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14558 &trust_pad_over_xvs, _("\
14559Enable or disable an optimization trusting PAD types over XVS types"), _("\
14560Show whether an optimization trusting PAD types over XVS types is activated"),
14561 _("\
14562This is related to the encoding used by the GNAT compiler. The debugger\n\
14563should normally trust the contents of PAD types, but certain older versions\n\
14564of GNAT have a bug that sometimes causes the information in the PAD type\n\
14565to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14566work around this bug. It is always safe to turn this option \"off\", but\n\
14567this incurs a slight performance penalty, so it is recommended to NOT change\n\
14568this option to \"off\" unless necessary."),
14569 NULL, NULL, &set_ada_list, &show_ada_list);
14570
d72413e6
PMR
14571 add_setshow_boolean_cmd ("print-signatures", class_vars,
14572 &print_signatures, _("\
14573Enable or disable the output of formal and return types for functions in the \
14574overloads selection menu"), _("\
14575Show whether the output of formal and return types for functions in the \
14576overloads selection menu is activated"),
14577 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14578
9ac4176b
PA
14579 add_catch_command ("exception", _("\
14580Catch Ada exceptions, when raised.\n\
60a90376
JB
14581Usage: catch exception [ ARG ]\n\
14582\n\
14583Without any argument, stop when any Ada exception is raised.\n\
14584If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14585being raised does not have a handler (and will therefore lead to the task's\n\
14586termination).\n\
14587Otherwise, the catchpoint only stops when the name of the exception being\n\
14588raised is the same as ARG."),
9ac4176b
PA
14589 catch_ada_exception_command,
14590 NULL,
14591 CATCH_PERMANENT,
14592 CATCH_TEMPORARY);
9f757bf7
XR
14593
14594 add_catch_command ("handlers", _("\
14595Catch Ada exceptions, when handled.\n\
14596With an argument, catch only exceptions with the given name."),
14597 catch_ada_handlers_command,
14598 NULL,
14599 CATCH_PERMANENT,
14600 CATCH_TEMPORARY);
9ac4176b
PA
14601 add_catch_command ("assert", _("\
14602Catch failed Ada assertions, when raised.\n\
14603With an argument, catch only exceptions with the given name."),
14604 catch_assert_command,
14605 NULL,
14606 CATCH_PERMANENT,
14607 CATCH_TEMPORARY);
14608
6c038f32 14609 varsize_limit = 65536;
3fcded8f
JB
14610 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14611 &varsize_limit, _("\
14612Set the maximum number of bytes allowed in a variable-size object."), _("\
14613Show the maximum number of bytes allowed in a variable-size object."), _("\
14614Attempts to access an object whose size is not a compile-time constant\n\
14615and exceeds this limit will cause an error."),
14616 NULL, NULL, &setlist, &showlist);
6c038f32 14617
778865d3
JB
14618 add_info ("exceptions", info_exceptions_command,
14619 _("\
14620List all Ada exception names.\n\
14621If a regular expression is passed as an argument, only those matching\n\
14622the regular expression are listed."));
14623
c6044dd1
JB
14624 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14625 _("Set Ada maintenance-related variables."),
14626 &maint_set_ada_cmdlist, "maintenance set ada ",
14627 0/*allow-unknown*/, &maintenance_set_cmdlist);
14628
14629 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14630 _("Show Ada maintenance-related variables"),
14631 &maint_show_ada_cmdlist, "maintenance show ada ",
14632 0/*allow-unknown*/, &maintenance_show_cmdlist);
14633
14634 add_setshow_boolean_cmd
14635 ("ignore-descriptive-types", class_maintenance,
14636 &ada_ignore_descriptive_types_p,
14637 _("Set whether descriptive types generated by GNAT should be ignored."),
14638 _("Show whether descriptive types generated by GNAT should be ignored."),
14639 _("\
14640When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14641DWARF attribute."),
14642 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14643
459a2e4c
TT
14644 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14645 NULL, xcalloc, xfree);
6b69afc4 14646
3d9434b5 14647 /* The ada-lang observers. */
76727919
TT
14648 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14649 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14650 gdb::observers::inferior_exit.attach (ada_inferior_exit);
ee01b665
JB
14651
14652 /* Setup various context-specific data. */
e802dbe0 14653 ada_inferior_data
8e260fc0 14654 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14655 ada_pspace_data_handle
14656 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14657}
This page took 2.60651 seconds and 4 git commands to generate.