Make warning usable earlier
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
60250e8b 48#include "exceptions.h"
f7f9143b
JB
49#include "annotate.h"
50#include "valprint.h"
9bbc9174 51#include "source.h"
0259addd 52#include "observer.h"
2ba95b9b 53#include "vec.h"
692465f1 54#include "stack.h"
fa864999 55#include "gdb_vecs.h"
79d43c61 56#include "typeprint.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 109 const struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
4c4b4cd2 112static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
119static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 120
4c4b4cd2 121static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 122 struct type *);
14f9c5c9 123
d2e4a39e 124static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 125 struct symbol *, const struct block *);
14f9c5c9 126
d2e4a39e 127static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 128
4c4b4cd2
PH
129static char *ada_op_name (enum exp_opcode);
130
131static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 132
d2e4a39e 133static int numeric_type_p (struct type *);
14f9c5c9 134
d2e4a39e 135static int integer_type_p (struct type *);
14f9c5c9 136
d2e4a39e 137static int scalar_type_p (struct type *);
14f9c5c9 138
d2e4a39e 139static int discrete_type_p (struct type *);
14f9c5c9 140
aeb5907d
JB
141static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 147 const struct block *);
aeb5907d 148
4c4b4cd2 149static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 150 int, int, int *);
4c4b4cd2 151
d2e4a39e 152static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 153
b4ba55a1
JB
154static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
d2e4a39e 157static int is_dynamic_field (struct type *, int);
14f9c5c9 158
10a2c479 159static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 160 const gdb_byte *,
4c4b4cd2
PH
161 CORE_ADDR, struct value *);
162
163static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 164
28c85d6c 165static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 166
d2e4a39e 167static struct type *to_static_fixed_type (struct type *);
f192137b 168static struct type *static_unwrap_type (struct type *type);
14f9c5c9 169
d2e4a39e 170static struct value *unwrap_value (struct value *);
14f9c5c9 171
ad82864c 172static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 173
ad82864c 174static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 175
ad82864c
JB
176static long decode_packed_array_bitsize (struct type *);
177
178static struct value *decode_constrained_packed_array (struct value *);
179
180static int ada_is_packed_array_type (struct type *);
181
182static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 183
d2e4a39e 184static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 185 struct value **);
14f9c5c9 186
50810684 187static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 188
4c4b4cd2
PH
189static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
14f9c5c9 191
d2e4a39e 192static struct value *get_var_value (char *, char *);
14f9c5c9 193
d2e4a39e 194static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 195
d2e4a39e 196static int equiv_types (struct type *, struct type *);
14f9c5c9 197
d2e4a39e 198static int is_name_suffix (const char *);
14f9c5c9 199
73589123
PH
200static int advance_wild_match (const char **, const char *, int);
201
202static int wild_match (const char *, const char *);
14f9c5c9 203
d2e4a39e 204static struct value *ada_coerce_ref (struct value *);
14f9c5c9 205
4c4b4cd2
PH
206static LONGEST pos_atr (struct value *);
207
3cb382c9 208static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 209
d2e4a39e 210static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 211
4c4b4cd2
PH
212static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
14f9c5c9 214
4c4b4cd2
PH
215static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
0d5cff50 221static int find_struct_field (const char *, struct type *, int,
52ce6436 222 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
223
224static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
4c4b4cd2
PH
227static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
4c4b4cd2
PH
231static int ada_is_direct_array_type (struct type *);
232
72d5681a
PH
233static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
714e53ab
PH
235
236static void check_size (const struct type *);
52ce6436
PH
237
238static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
242 struct expression *,
243 int *, enum noside);
52ce6436
PH
244
245static void aggregate_assign_from_choices (struct value *, struct value *,
246 struct expression *,
247 int *, LONGEST *, int *,
248 int, LONGEST, LONGEST);
249
250static void aggregate_assign_positional (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *, int,
253 LONGEST, LONGEST);
254
255
256static void aggregate_assign_others (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int, LONGEST, LONGEST);
259
260
261static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
262
263
264static struct value *ada_evaluate_subexp (struct type *, struct expression *,
265 int *, enum noside);
266
267static void ada_forward_operator_length (struct expression *, int, int *,
268 int *);
852dff6c
JB
269
270static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
271\f
272
ee01b665
JB
273/* The result of a symbol lookup to be stored in our symbol cache. */
274
275struct cache_entry
276{
277 /* The name used to perform the lookup. */
278 const char *name;
279 /* The namespace used during the lookup. */
280 domain_enum namespace;
281 /* The symbol returned by the lookup, or NULL if no matching symbol
282 was found. */
283 struct symbol *sym;
284 /* The block where the symbol was found, or NULL if no matching
285 symbol was found. */
286 const struct block *block;
287 /* A pointer to the next entry with the same hash. */
288 struct cache_entry *next;
289};
290
291/* The Ada symbol cache, used to store the result of Ada-mode symbol
292 lookups in the course of executing the user's commands.
293
294 The cache is implemented using a simple, fixed-sized hash.
295 The size is fixed on the grounds that there are not likely to be
296 all that many symbols looked up during any given session, regardless
297 of the size of the symbol table. If we decide to go to a resizable
298 table, let's just use the stuff from libiberty instead. */
299
300#define HASH_SIZE 1009
301
302struct ada_symbol_cache
303{
304 /* An obstack used to store the entries in our cache. */
305 struct obstack cache_space;
306
307 /* The root of the hash table used to implement our symbol cache. */
308 struct cache_entry *root[HASH_SIZE];
309};
310
311static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 312
4c4b4cd2 313/* Maximum-sized dynamic type. */
14f9c5c9
AS
314static unsigned int varsize_limit;
315
4c4b4cd2
PH
316/* FIXME: brobecker/2003-09-17: No longer a const because it is
317 returned by a function that does not return a const char *. */
318static char *ada_completer_word_break_characters =
319#ifdef VMS
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321#else
14f9c5c9 322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 323#endif
14f9c5c9 324
4c4b4cd2 325/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 326static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 327 = "__gnat_ada_main_program_name";
14f9c5c9 328
4c4b4cd2
PH
329/* Limit on the number of warnings to raise per expression evaluation. */
330static int warning_limit = 2;
331
332/* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334static int warnings_issued = 0;
335
336static const char *known_runtime_file_name_patterns[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
338};
339
340static const char *known_auxiliary_function_name_patterns[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
342};
343
344/* Space for allocating results of ada_lookup_symbol_list. */
345static struct obstack symbol_list_obstack;
346
c6044dd1
JB
347/* Maintenance-related settings for this module. */
348
349static struct cmd_list_element *maint_set_ada_cmdlist;
350static struct cmd_list_element *maint_show_ada_cmdlist;
351
352/* Implement the "maintenance set ada" (prefix) command. */
353
354static void
355maint_set_ada_cmd (char *args, int from_tty)
356{
635c7e8a
TT
357 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
358 gdb_stdout);
c6044dd1
JB
359}
360
361/* Implement the "maintenance show ada" (prefix) command. */
362
363static void
364maint_show_ada_cmd (char *args, int from_tty)
365{
366 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
367}
368
369/* The "maintenance ada set/show ignore-descriptive-type" value. */
370
371static int ada_ignore_descriptive_types_p = 0;
372
e802dbe0
JB
373 /* Inferior-specific data. */
374
375/* Per-inferior data for this module. */
376
377struct ada_inferior_data
378{
379 /* The ada__tags__type_specific_data type, which is used when decoding
380 tagged types. With older versions of GNAT, this type was directly
381 accessible through a component ("tsd") in the object tag. But this
382 is no longer the case, so we cache it for each inferior. */
383 struct type *tsd_type;
3eecfa55
JB
384
385 /* The exception_support_info data. This data is used to determine
386 how to implement support for Ada exception catchpoints in a given
387 inferior. */
388 const struct exception_support_info *exception_info;
e802dbe0
JB
389};
390
391/* Our key to this module's inferior data. */
392static const struct inferior_data *ada_inferior_data;
393
394/* A cleanup routine for our inferior data. */
395static void
396ada_inferior_data_cleanup (struct inferior *inf, void *arg)
397{
398 struct ada_inferior_data *data;
399
400 data = inferior_data (inf, ada_inferior_data);
401 if (data != NULL)
402 xfree (data);
403}
404
405/* Return our inferior data for the given inferior (INF).
406
407 This function always returns a valid pointer to an allocated
408 ada_inferior_data structure. If INF's inferior data has not
409 been previously set, this functions creates a new one with all
410 fields set to zero, sets INF's inferior to it, and then returns
411 a pointer to that newly allocated ada_inferior_data. */
412
413static struct ada_inferior_data *
414get_ada_inferior_data (struct inferior *inf)
415{
416 struct ada_inferior_data *data;
417
418 data = inferior_data (inf, ada_inferior_data);
419 if (data == NULL)
420 {
41bf6aca 421 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
422 set_inferior_data (inf, ada_inferior_data, data);
423 }
424
425 return data;
426}
427
428/* Perform all necessary cleanups regarding our module's inferior data
429 that is required after the inferior INF just exited. */
430
431static void
432ada_inferior_exit (struct inferior *inf)
433{
434 ada_inferior_data_cleanup (inf, NULL);
435 set_inferior_data (inf, ada_inferior_data, NULL);
436}
437
ee01b665
JB
438
439 /* program-space-specific data. */
440
441/* This module's per-program-space data. */
442struct ada_pspace_data
443{
444 /* The Ada symbol cache. */
445 struct ada_symbol_cache *sym_cache;
446};
447
448/* Key to our per-program-space data. */
449static const struct program_space_data *ada_pspace_data_handle;
450
451/* Return this module's data for the given program space (PSPACE).
452 If not is found, add a zero'ed one now.
453
454 This function always returns a valid object. */
455
456static struct ada_pspace_data *
457get_ada_pspace_data (struct program_space *pspace)
458{
459 struct ada_pspace_data *data;
460
461 data = program_space_data (pspace, ada_pspace_data_handle);
462 if (data == NULL)
463 {
464 data = XCNEW (struct ada_pspace_data);
465 set_program_space_data (pspace, ada_pspace_data_handle, data);
466 }
467
468 return data;
469}
470
471/* The cleanup callback for this module's per-program-space data. */
472
473static void
474ada_pspace_data_cleanup (struct program_space *pspace, void *data)
475{
476 struct ada_pspace_data *pspace_data = data;
477
478 if (pspace_data->sym_cache != NULL)
479 ada_free_symbol_cache (pspace_data->sym_cache);
480 xfree (pspace_data);
481}
482
4c4b4cd2
PH
483 /* Utilities */
484
720d1a40 485/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 486 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
487
488 Normally, we really expect a typedef type to only have 1 typedef layer.
489 In other words, we really expect the target type of a typedef type to be
490 a non-typedef type. This is particularly true for Ada units, because
491 the language does not have a typedef vs not-typedef distinction.
492 In that respect, the Ada compiler has been trying to eliminate as many
493 typedef definitions in the debugging information, since they generally
494 do not bring any extra information (we still use typedef under certain
495 circumstances related mostly to the GNAT encoding).
496
497 Unfortunately, we have seen situations where the debugging information
498 generated by the compiler leads to such multiple typedef layers. For
499 instance, consider the following example with stabs:
500
501 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
502 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
503
504 This is an error in the debugging information which causes type
505 pck__float_array___XUP to be defined twice, and the second time,
506 it is defined as a typedef of a typedef.
507
508 This is on the fringe of legality as far as debugging information is
509 concerned, and certainly unexpected. But it is easy to handle these
510 situations correctly, so we can afford to be lenient in this case. */
511
512static struct type *
513ada_typedef_target_type (struct type *type)
514{
515 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
516 type = TYPE_TARGET_TYPE (type);
517 return type;
518}
519
41d27058
JB
520/* Given DECODED_NAME a string holding a symbol name in its
521 decoded form (ie using the Ada dotted notation), returns
522 its unqualified name. */
523
524static const char *
525ada_unqualified_name (const char *decoded_name)
526{
527 const char *result = strrchr (decoded_name, '.');
528
529 if (result != NULL)
530 result++; /* Skip the dot... */
531 else
532 result = decoded_name;
533
534 return result;
535}
536
537/* Return a string starting with '<', followed by STR, and '>'.
538 The result is good until the next call. */
539
540static char *
541add_angle_brackets (const char *str)
542{
543 static char *result = NULL;
544
545 xfree (result);
88c15c34 546 result = xstrprintf ("<%s>", str);
41d27058
JB
547 return result;
548}
96d887e8 549
4c4b4cd2
PH
550static char *
551ada_get_gdb_completer_word_break_characters (void)
552{
553 return ada_completer_word_break_characters;
554}
555
e79af960
JB
556/* Print an array element index using the Ada syntax. */
557
558static void
559ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 560 const struct value_print_options *options)
e79af960 561{
79a45b7d 562 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
563 fprintf_filtered (stream, " => ");
564}
565
f27cf670 566/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 567 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 568 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 569
f27cf670
AS
570void *
571grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 572{
d2e4a39e
AS
573 if (*size < min_size)
574 {
575 *size *= 2;
576 if (*size < min_size)
4c4b4cd2 577 *size = min_size;
f27cf670 578 vect = xrealloc (vect, *size * element_size);
d2e4a39e 579 }
f27cf670 580 return vect;
14f9c5c9
AS
581}
582
583/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 584 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
585
586static int
ebf56fd3 587field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
588{
589 int len = strlen (target);
5b4ee69b 590
d2e4a39e 591 return
4c4b4cd2
PH
592 (strncmp (field_name, target, len) == 0
593 && (field_name[len] == '\0'
594 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
595 && strcmp (field_name + strlen (field_name) - 6,
596 "___XVN") != 0)));
14f9c5c9
AS
597}
598
599
872c8b51
JB
600/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
601 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
602 and return its index. This function also handles fields whose name
603 have ___ suffixes because the compiler sometimes alters their name
604 by adding such a suffix to represent fields with certain constraints.
605 If the field could not be found, return a negative number if
606 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
607
608int
609ada_get_field_index (const struct type *type, const char *field_name,
610 int maybe_missing)
611{
612 int fieldno;
872c8b51
JB
613 struct type *struct_type = check_typedef ((struct type *) type);
614
615 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
616 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
617 return fieldno;
618
619 if (!maybe_missing)
323e0a4a 620 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 621 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
622
623 return -1;
624}
625
626/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
627
628int
d2e4a39e 629ada_name_prefix_len (const char *name)
14f9c5c9
AS
630{
631 if (name == NULL)
632 return 0;
d2e4a39e 633 else
14f9c5c9 634 {
d2e4a39e 635 const char *p = strstr (name, "___");
5b4ee69b 636
14f9c5c9 637 if (p == NULL)
4c4b4cd2 638 return strlen (name);
14f9c5c9 639 else
4c4b4cd2 640 return p - name;
14f9c5c9
AS
641 }
642}
643
4c4b4cd2
PH
644/* Return non-zero if SUFFIX is a suffix of STR.
645 Return zero if STR is null. */
646
14f9c5c9 647static int
d2e4a39e 648is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
649{
650 int len1, len2;
5b4ee69b 651
14f9c5c9
AS
652 if (str == NULL)
653 return 0;
654 len1 = strlen (str);
655 len2 = strlen (suffix);
4c4b4cd2 656 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
657}
658
4c4b4cd2
PH
659/* The contents of value VAL, treated as a value of type TYPE. The
660 result is an lval in memory if VAL is. */
14f9c5c9 661
d2e4a39e 662static struct value *
4c4b4cd2 663coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 664{
61ee279c 665 type = ada_check_typedef (type);
df407dfe 666 if (value_type (val) == type)
4c4b4cd2 667 return val;
d2e4a39e 668 else
14f9c5c9 669 {
4c4b4cd2
PH
670 struct value *result;
671
672 /* Make sure that the object size is not unreasonable before
673 trying to allocate some memory for it. */
714e53ab 674 check_size (type);
4c4b4cd2 675
41e8491f
JK
676 if (value_lazy (val)
677 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
678 result = allocate_value_lazy (type);
679 else
680 {
681 result = allocate_value (type);
9a0dc9e3 682 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 683 }
74bcbdf3 684 set_value_component_location (result, val);
9bbda503
AC
685 set_value_bitsize (result, value_bitsize (val));
686 set_value_bitpos (result, value_bitpos (val));
42ae5230 687 set_value_address (result, value_address (val));
14f9c5c9
AS
688 return result;
689 }
690}
691
fc1a4b47
AC
692static const gdb_byte *
693cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
694{
695 if (valaddr == NULL)
696 return NULL;
697 else
698 return valaddr + offset;
699}
700
701static CORE_ADDR
ebf56fd3 702cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
703{
704 if (address == 0)
705 return 0;
d2e4a39e 706 else
14f9c5c9
AS
707 return address + offset;
708}
709
4c4b4cd2
PH
710/* Issue a warning (as for the definition of warning in utils.c, but
711 with exactly one argument rather than ...), unless the limit on the
712 number of warnings has passed during the evaluation of the current
713 expression. */
a2249542 714
77109804
AC
715/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
716 provided by "complaint". */
a0b31db1 717static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 718
14f9c5c9 719static void
a2249542 720lim_warning (const char *format, ...)
14f9c5c9 721{
a2249542 722 va_list args;
a2249542 723
5b4ee69b 724 va_start (args, format);
4c4b4cd2
PH
725 warnings_issued += 1;
726 if (warnings_issued <= warning_limit)
a2249542
MK
727 vwarning (format, args);
728
729 va_end (args);
4c4b4cd2
PH
730}
731
714e53ab
PH
732/* Issue an error if the size of an object of type T is unreasonable,
733 i.e. if it would be a bad idea to allocate a value of this type in
734 GDB. */
735
736static void
737check_size (const struct type *type)
738{
739 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 740 error (_("object size is larger than varsize-limit"));
714e53ab
PH
741}
742
0963b4bd 743/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 744static LONGEST
c3e5cd34 745max_of_size (int size)
4c4b4cd2 746{
76a01679 747 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 748
76a01679 749 return top_bit | (top_bit - 1);
4c4b4cd2
PH
750}
751
0963b4bd 752/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 753static LONGEST
c3e5cd34 754min_of_size (int size)
4c4b4cd2 755{
c3e5cd34 756 return -max_of_size (size) - 1;
4c4b4cd2
PH
757}
758
0963b4bd 759/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 760static ULONGEST
c3e5cd34 761umax_of_size (int size)
4c4b4cd2 762{
76a01679 763 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 764
76a01679 765 return top_bit | (top_bit - 1);
4c4b4cd2
PH
766}
767
0963b4bd 768/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
769static LONGEST
770max_of_type (struct type *t)
4c4b4cd2 771{
c3e5cd34
PH
772 if (TYPE_UNSIGNED (t))
773 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
774 else
775 return max_of_size (TYPE_LENGTH (t));
776}
777
0963b4bd 778/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780min_of_type (struct type *t)
781{
782 if (TYPE_UNSIGNED (t))
783 return 0;
784 else
785 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
786}
787
788/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
789LONGEST
790ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 791{
8739bc53 792 type = resolve_dynamic_type (type, 0);
76a01679 793 switch (TYPE_CODE (type))
4c4b4cd2
PH
794 {
795 case TYPE_CODE_RANGE:
690cc4eb 796 return TYPE_HIGH_BOUND (type);
4c4b4cd2 797 case TYPE_CODE_ENUM:
14e75d8e 798 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
799 case TYPE_CODE_BOOL:
800 return 1;
801 case TYPE_CODE_CHAR:
76a01679 802 case TYPE_CODE_INT:
690cc4eb 803 return max_of_type (type);
4c4b4cd2 804 default:
43bbcdc2 805 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
806 }
807}
808
14e75d8e 809/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
810LONGEST
811ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 812{
8739bc53 813 type = resolve_dynamic_type (type, 0);
76a01679 814 switch (TYPE_CODE (type))
4c4b4cd2
PH
815 {
816 case TYPE_CODE_RANGE:
690cc4eb 817 return TYPE_LOW_BOUND (type);
4c4b4cd2 818 case TYPE_CODE_ENUM:
14e75d8e 819 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
820 case TYPE_CODE_BOOL:
821 return 0;
822 case TYPE_CODE_CHAR:
76a01679 823 case TYPE_CODE_INT:
690cc4eb 824 return min_of_type (type);
4c4b4cd2 825 default:
43bbcdc2 826 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
827 }
828}
829
830/* The identity on non-range types. For range types, the underlying
76a01679 831 non-range scalar type. */
4c4b4cd2
PH
832
833static struct type *
18af8284 834get_base_type (struct type *type)
4c4b4cd2
PH
835{
836 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
837 {
76a01679
JB
838 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
839 return type;
4c4b4cd2
PH
840 type = TYPE_TARGET_TYPE (type);
841 }
842 return type;
14f9c5c9 843}
41246937
JB
844
845/* Return a decoded version of the given VALUE. This means returning
846 a value whose type is obtained by applying all the GNAT-specific
847 encondings, making the resulting type a static but standard description
848 of the initial type. */
849
850struct value *
851ada_get_decoded_value (struct value *value)
852{
853 struct type *type = ada_check_typedef (value_type (value));
854
855 if (ada_is_array_descriptor_type (type)
856 || (ada_is_constrained_packed_array_type (type)
857 && TYPE_CODE (type) != TYPE_CODE_PTR))
858 {
859 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
860 value = ada_coerce_to_simple_array_ptr (value);
861 else
862 value = ada_coerce_to_simple_array (value);
863 }
864 else
865 value = ada_to_fixed_value (value);
866
867 return value;
868}
869
870/* Same as ada_get_decoded_value, but with the given TYPE.
871 Because there is no associated actual value for this type,
872 the resulting type might be a best-effort approximation in
873 the case of dynamic types. */
874
875struct type *
876ada_get_decoded_type (struct type *type)
877{
878 type = to_static_fixed_type (type);
879 if (ada_is_constrained_packed_array_type (type))
880 type = ada_coerce_to_simple_array_type (type);
881 return type;
882}
883
4c4b4cd2 884\f
76a01679 885
4c4b4cd2 886 /* Language Selection */
14f9c5c9
AS
887
888/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 889 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 890
14f9c5c9 891enum language
ccefe4c4 892ada_update_initial_language (enum language lang)
14f9c5c9 893{
d2e4a39e 894 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 895 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 896 return language_ada;
14f9c5c9
AS
897
898 return lang;
899}
96d887e8
PH
900
901/* If the main procedure is written in Ada, then return its name.
902 The result is good until the next call. Return NULL if the main
903 procedure doesn't appear to be in Ada. */
904
905char *
906ada_main_name (void)
907{
3b7344d5 908 struct bound_minimal_symbol msym;
f9bc20b9 909 static char *main_program_name = NULL;
6c038f32 910
96d887e8
PH
911 /* For Ada, the name of the main procedure is stored in a specific
912 string constant, generated by the binder. Look for that symbol,
913 extract its address, and then read that string. If we didn't find
914 that string, then most probably the main procedure is not written
915 in Ada. */
916 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
917
3b7344d5 918 if (msym.minsym != NULL)
96d887e8 919 {
f9bc20b9
JB
920 CORE_ADDR main_program_name_addr;
921 int err_code;
922
77e371c0 923 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 924 if (main_program_name_addr == 0)
323e0a4a 925 error (_("Invalid address for Ada main program name."));
96d887e8 926
f9bc20b9
JB
927 xfree (main_program_name);
928 target_read_string (main_program_name_addr, &main_program_name,
929 1024, &err_code);
930
931 if (err_code != 0)
932 return NULL;
96d887e8
PH
933 return main_program_name;
934 }
935
936 /* The main procedure doesn't seem to be in Ada. */
937 return NULL;
938}
14f9c5c9 939\f
4c4b4cd2 940 /* Symbols */
d2e4a39e 941
4c4b4cd2
PH
942/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
943 of NULLs. */
14f9c5c9 944
d2e4a39e
AS
945const struct ada_opname_map ada_opname_table[] = {
946 {"Oadd", "\"+\"", BINOP_ADD},
947 {"Osubtract", "\"-\"", BINOP_SUB},
948 {"Omultiply", "\"*\"", BINOP_MUL},
949 {"Odivide", "\"/\"", BINOP_DIV},
950 {"Omod", "\"mod\"", BINOP_MOD},
951 {"Orem", "\"rem\"", BINOP_REM},
952 {"Oexpon", "\"**\"", BINOP_EXP},
953 {"Olt", "\"<\"", BINOP_LESS},
954 {"Ole", "\"<=\"", BINOP_LEQ},
955 {"Ogt", "\">\"", BINOP_GTR},
956 {"Oge", "\">=\"", BINOP_GEQ},
957 {"Oeq", "\"=\"", BINOP_EQUAL},
958 {"One", "\"/=\"", BINOP_NOTEQUAL},
959 {"Oand", "\"and\"", BINOP_BITWISE_AND},
960 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
961 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
962 {"Oconcat", "\"&\"", BINOP_CONCAT},
963 {"Oabs", "\"abs\"", UNOP_ABS},
964 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
965 {"Oadd", "\"+\"", UNOP_PLUS},
966 {"Osubtract", "\"-\"", UNOP_NEG},
967 {NULL, NULL}
14f9c5c9
AS
968};
969
4c4b4cd2
PH
970/* The "encoded" form of DECODED, according to GNAT conventions.
971 The result is valid until the next call to ada_encode. */
972
14f9c5c9 973char *
4c4b4cd2 974ada_encode (const char *decoded)
14f9c5c9 975{
4c4b4cd2
PH
976 static char *encoding_buffer = NULL;
977 static size_t encoding_buffer_size = 0;
d2e4a39e 978 const char *p;
14f9c5c9 979 int k;
d2e4a39e 980
4c4b4cd2 981 if (decoded == NULL)
14f9c5c9
AS
982 return NULL;
983
4c4b4cd2
PH
984 GROW_VECT (encoding_buffer, encoding_buffer_size,
985 2 * strlen (decoded) + 10);
14f9c5c9
AS
986
987 k = 0;
4c4b4cd2 988 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 989 {
cdc7bb92 990 if (*p == '.')
4c4b4cd2
PH
991 {
992 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
993 k += 2;
994 }
14f9c5c9 995 else if (*p == '"')
4c4b4cd2
PH
996 {
997 const struct ada_opname_map *mapping;
998
999 for (mapping = ada_opname_table;
1265e4aa
JB
1000 mapping->encoded != NULL
1001 && strncmp (mapping->decoded, p,
1002 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
1003 ;
1004 if (mapping->encoded == NULL)
323e0a4a 1005 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1006 strcpy (encoding_buffer + k, mapping->encoded);
1007 k += strlen (mapping->encoded);
1008 break;
1009 }
d2e4a39e 1010 else
4c4b4cd2
PH
1011 {
1012 encoding_buffer[k] = *p;
1013 k += 1;
1014 }
14f9c5c9
AS
1015 }
1016
4c4b4cd2
PH
1017 encoding_buffer[k] = '\0';
1018 return encoding_buffer;
14f9c5c9
AS
1019}
1020
1021/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1022 quotes, unfolded, but with the quotes stripped away. Result good
1023 to next call. */
1024
d2e4a39e
AS
1025char *
1026ada_fold_name (const char *name)
14f9c5c9 1027{
d2e4a39e 1028 static char *fold_buffer = NULL;
14f9c5c9
AS
1029 static size_t fold_buffer_size = 0;
1030
1031 int len = strlen (name);
d2e4a39e 1032 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1033
1034 if (name[0] == '\'')
1035 {
d2e4a39e
AS
1036 strncpy (fold_buffer, name + 1, len - 2);
1037 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1038 }
1039 else
1040 {
1041 int i;
5b4ee69b 1042
14f9c5c9 1043 for (i = 0; i <= len; i += 1)
4c4b4cd2 1044 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1045 }
1046
1047 return fold_buffer;
1048}
1049
529cad9c
PH
1050/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1051
1052static int
1053is_lower_alphanum (const char c)
1054{
1055 return (isdigit (c) || (isalpha (c) && islower (c)));
1056}
1057
c90092fe
JB
1058/* ENCODED is the linkage name of a symbol and LEN contains its length.
1059 This function saves in LEN the length of that same symbol name but
1060 without either of these suffixes:
29480c32
JB
1061 . .{DIGIT}+
1062 . ${DIGIT}+
1063 . ___{DIGIT}+
1064 . __{DIGIT}+.
c90092fe 1065
29480c32
JB
1066 These are suffixes introduced by the compiler for entities such as
1067 nested subprogram for instance, in order to avoid name clashes.
1068 They do not serve any purpose for the debugger. */
1069
1070static void
1071ada_remove_trailing_digits (const char *encoded, int *len)
1072{
1073 if (*len > 1 && isdigit (encoded[*len - 1]))
1074 {
1075 int i = *len - 2;
5b4ee69b 1076
29480c32
JB
1077 while (i > 0 && isdigit (encoded[i]))
1078 i--;
1079 if (i >= 0 && encoded[i] == '.')
1080 *len = i;
1081 else if (i >= 0 && encoded[i] == '$')
1082 *len = i;
1083 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1084 *len = i - 2;
1085 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1086 *len = i - 1;
1087 }
1088}
1089
1090/* Remove the suffix introduced by the compiler for protected object
1091 subprograms. */
1092
1093static void
1094ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1095{
1096 /* Remove trailing N. */
1097
1098 /* Protected entry subprograms are broken into two
1099 separate subprograms: The first one is unprotected, and has
1100 a 'N' suffix; the second is the protected version, and has
0963b4bd 1101 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1102 the protection. Since the P subprograms are internally generated,
1103 we leave these names undecoded, giving the user a clue that this
1104 entity is internal. */
1105
1106 if (*len > 1
1107 && encoded[*len - 1] == 'N'
1108 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1109 *len = *len - 1;
1110}
1111
69fadcdf
JB
1112/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1113
1114static void
1115ada_remove_Xbn_suffix (const char *encoded, int *len)
1116{
1117 int i = *len - 1;
1118
1119 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1120 i--;
1121
1122 if (encoded[i] != 'X')
1123 return;
1124
1125 if (i == 0)
1126 return;
1127
1128 if (isalnum (encoded[i-1]))
1129 *len = i;
1130}
1131
29480c32
JB
1132/* If ENCODED follows the GNAT entity encoding conventions, then return
1133 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1134 replaced by ENCODED.
14f9c5c9 1135
4c4b4cd2 1136 The resulting string is valid until the next call of ada_decode.
29480c32 1137 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1138 is returned. */
1139
1140const char *
1141ada_decode (const char *encoded)
14f9c5c9
AS
1142{
1143 int i, j;
1144 int len0;
d2e4a39e 1145 const char *p;
4c4b4cd2 1146 char *decoded;
14f9c5c9 1147 int at_start_name;
4c4b4cd2
PH
1148 static char *decoding_buffer = NULL;
1149 static size_t decoding_buffer_size = 0;
d2e4a39e 1150
29480c32
JB
1151 /* The name of the Ada main procedure starts with "_ada_".
1152 This prefix is not part of the decoded name, so skip this part
1153 if we see this prefix. */
4c4b4cd2
PH
1154 if (strncmp (encoded, "_ada_", 5) == 0)
1155 encoded += 5;
14f9c5c9 1156
29480c32
JB
1157 /* If the name starts with '_', then it is not a properly encoded
1158 name, so do not attempt to decode it. Similarly, if the name
1159 starts with '<', the name should not be decoded. */
4c4b4cd2 1160 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1161 goto Suppress;
1162
4c4b4cd2 1163 len0 = strlen (encoded);
4c4b4cd2 1164
29480c32
JB
1165 ada_remove_trailing_digits (encoded, &len0);
1166 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1167
4c4b4cd2
PH
1168 /* Remove the ___X.* suffix if present. Do not forget to verify that
1169 the suffix is located before the current "end" of ENCODED. We want
1170 to avoid re-matching parts of ENCODED that have previously been
1171 marked as discarded (by decrementing LEN0). */
1172 p = strstr (encoded, "___");
1173 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1174 {
1175 if (p[3] == 'X')
4c4b4cd2 1176 len0 = p - encoded;
14f9c5c9 1177 else
4c4b4cd2 1178 goto Suppress;
14f9c5c9 1179 }
4c4b4cd2 1180
29480c32
JB
1181 /* Remove any trailing TKB suffix. It tells us that this symbol
1182 is for the body of a task, but that information does not actually
1183 appear in the decoded name. */
1184
4c4b4cd2 1185 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1186 len0 -= 3;
76a01679 1187
a10967fa
JB
1188 /* Remove any trailing TB suffix. The TB suffix is slightly different
1189 from the TKB suffix because it is used for non-anonymous task
1190 bodies. */
1191
1192 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1193 len0 -= 2;
1194
29480c32
JB
1195 /* Remove trailing "B" suffixes. */
1196 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1197
4c4b4cd2 1198 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1199 len0 -= 1;
1200
4c4b4cd2 1201 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1202
4c4b4cd2
PH
1203 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1204 decoded = decoding_buffer;
14f9c5c9 1205
29480c32
JB
1206 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1207
4c4b4cd2 1208 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1209 {
4c4b4cd2
PH
1210 i = len0 - 2;
1211 while ((i >= 0 && isdigit (encoded[i]))
1212 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1213 i -= 1;
1214 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1215 len0 = i - 1;
1216 else if (encoded[i] == '$')
1217 len0 = i;
d2e4a39e 1218 }
14f9c5c9 1219
29480c32
JB
1220 /* The first few characters that are not alphabetic are not part
1221 of any encoding we use, so we can copy them over verbatim. */
1222
4c4b4cd2
PH
1223 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1224 decoded[j] = encoded[i];
14f9c5c9
AS
1225
1226 at_start_name = 1;
1227 while (i < len0)
1228 {
29480c32 1229 /* Is this a symbol function? */
4c4b4cd2
PH
1230 if (at_start_name && encoded[i] == 'O')
1231 {
1232 int k;
5b4ee69b 1233
4c4b4cd2
PH
1234 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1235 {
1236 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1237 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1238 op_len - 1) == 0)
1239 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1240 {
1241 strcpy (decoded + j, ada_opname_table[k].decoded);
1242 at_start_name = 0;
1243 i += op_len;
1244 j += strlen (ada_opname_table[k].decoded);
1245 break;
1246 }
1247 }
1248 if (ada_opname_table[k].encoded != NULL)
1249 continue;
1250 }
14f9c5c9
AS
1251 at_start_name = 0;
1252
529cad9c
PH
1253 /* Replace "TK__" with "__", which will eventually be translated
1254 into "." (just below). */
1255
4c4b4cd2
PH
1256 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1257 i += 2;
529cad9c 1258
29480c32
JB
1259 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1260 be translated into "." (just below). These are internal names
1261 generated for anonymous blocks inside which our symbol is nested. */
1262
1263 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1264 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1265 && isdigit (encoded [i+4]))
1266 {
1267 int k = i + 5;
1268
1269 while (k < len0 && isdigit (encoded[k]))
1270 k++; /* Skip any extra digit. */
1271
1272 /* Double-check that the "__B_{DIGITS}+" sequence we found
1273 is indeed followed by "__". */
1274 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1275 i = k;
1276 }
1277
529cad9c
PH
1278 /* Remove _E{DIGITS}+[sb] */
1279
1280 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1281 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1282 one implements the actual entry code, and has a suffix following
1283 the convention above; the second one implements the barrier and
1284 uses the same convention as above, except that the 'E' is replaced
1285 by a 'B'.
1286
1287 Just as above, we do not decode the name of barrier functions
1288 to give the user a clue that the code he is debugging has been
1289 internally generated. */
1290
1291 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1292 && isdigit (encoded[i+2]))
1293 {
1294 int k = i + 3;
1295
1296 while (k < len0 && isdigit (encoded[k]))
1297 k++;
1298
1299 if (k < len0
1300 && (encoded[k] == 'b' || encoded[k] == 's'))
1301 {
1302 k++;
1303 /* Just as an extra precaution, make sure that if this
1304 suffix is followed by anything else, it is a '_'.
1305 Otherwise, we matched this sequence by accident. */
1306 if (k == len0
1307 || (k < len0 && encoded[k] == '_'))
1308 i = k;
1309 }
1310 }
1311
1312 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1313 the GNAT front-end in protected object subprograms. */
1314
1315 if (i < len0 + 3
1316 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1317 {
1318 /* Backtrack a bit up until we reach either the begining of
1319 the encoded name, or "__". Make sure that we only find
1320 digits or lowercase characters. */
1321 const char *ptr = encoded + i - 1;
1322
1323 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1324 ptr--;
1325 if (ptr < encoded
1326 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1327 i++;
1328 }
1329
4c4b4cd2
PH
1330 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1331 {
29480c32
JB
1332 /* This is a X[bn]* sequence not separated from the previous
1333 part of the name with a non-alpha-numeric character (in other
1334 words, immediately following an alpha-numeric character), then
1335 verify that it is placed at the end of the encoded name. If
1336 not, then the encoding is not valid and we should abort the
1337 decoding. Otherwise, just skip it, it is used in body-nested
1338 package names. */
4c4b4cd2
PH
1339 do
1340 i += 1;
1341 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1342 if (i < len0)
1343 goto Suppress;
1344 }
cdc7bb92 1345 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1346 {
29480c32 1347 /* Replace '__' by '.'. */
4c4b4cd2
PH
1348 decoded[j] = '.';
1349 at_start_name = 1;
1350 i += 2;
1351 j += 1;
1352 }
14f9c5c9 1353 else
4c4b4cd2 1354 {
29480c32
JB
1355 /* It's a character part of the decoded name, so just copy it
1356 over. */
4c4b4cd2
PH
1357 decoded[j] = encoded[i];
1358 i += 1;
1359 j += 1;
1360 }
14f9c5c9 1361 }
4c4b4cd2 1362 decoded[j] = '\000';
14f9c5c9 1363
29480c32
JB
1364 /* Decoded names should never contain any uppercase character.
1365 Double-check this, and abort the decoding if we find one. */
1366
4c4b4cd2
PH
1367 for (i = 0; decoded[i] != '\0'; i += 1)
1368 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1369 goto Suppress;
1370
4c4b4cd2
PH
1371 if (strcmp (decoded, encoded) == 0)
1372 return encoded;
1373 else
1374 return decoded;
14f9c5c9
AS
1375
1376Suppress:
4c4b4cd2
PH
1377 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1378 decoded = decoding_buffer;
1379 if (encoded[0] == '<')
1380 strcpy (decoded, encoded);
14f9c5c9 1381 else
88c15c34 1382 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1383 return decoded;
1384
1385}
1386
1387/* Table for keeping permanent unique copies of decoded names. Once
1388 allocated, names in this table are never released. While this is a
1389 storage leak, it should not be significant unless there are massive
1390 changes in the set of decoded names in successive versions of a
1391 symbol table loaded during a single session. */
1392static struct htab *decoded_names_store;
1393
1394/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1395 in the language-specific part of GSYMBOL, if it has not been
1396 previously computed. Tries to save the decoded name in the same
1397 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1398 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1399 GSYMBOL).
4c4b4cd2
PH
1400 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1401 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1402 when a decoded name is cached in it. */
4c4b4cd2 1403
45e6c716 1404const char *
f85f34ed 1405ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1406{
f85f34ed
TT
1407 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1408 const char **resultp =
1409 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1410
f85f34ed 1411 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1412 {
1413 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1414 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1415
f85f34ed 1416 gsymbol->ada_mangled = 1;
5b4ee69b 1417
f85f34ed
TT
1418 if (obstack != NULL)
1419 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1420 else
76a01679 1421 {
f85f34ed
TT
1422 /* Sometimes, we can't find a corresponding objfile, in
1423 which case, we put the result on the heap. Since we only
1424 decode when needed, we hope this usually does not cause a
1425 significant memory leak (FIXME). */
1426
76a01679
JB
1427 char **slot = (char **) htab_find_slot (decoded_names_store,
1428 decoded, INSERT);
5b4ee69b 1429
76a01679
JB
1430 if (*slot == NULL)
1431 *slot = xstrdup (decoded);
1432 *resultp = *slot;
1433 }
4c4b4cd2 1434 }
14f9c5c9 1435
4c4b4cd2
PH
1436 return *resultp;
1437}
76a01679 1438
2c0b251b 1439static char *
76a01679 1440ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1441{
1442 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1443}
1444
1445/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1446 suffixes that encode debugging information or leading _ada_ on
1447 SYM_NAME (see is_name_suffix commentary for the debugging
1448 information that is ignored). If WILD, then NAME need only match a
1449 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1450 either argument is NULL. */
14f9c5c9 1451
2c0b251b 1452static int
40658b94 1453match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1454{
1455 if (sym_name == NULL || name == NULL)
1456 return 0;
1457 else if (wild)
73589123 1458 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1459 else
1460 {
1461 int len_name = strlen (name);
5b4ee69b 1462
4c4b4cd2
PH
1463 return (strncmp (sym_name, name, len_name) == 0
1464 && is_name_suffix (sym_name + len_name))
1465 || (strncmp (sym_name, "_ada_", 5) == 0
1466 && strncmp (sym_name + 5, name, len_name) == 0
1467 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1468 }
14f9c5c9 1469}
14f9c5c9 1470\f
d2e4a39e 1471
4c4b4cd2 1472 /* Arrays */
14f9c5c9 1473
28c85d6c
JB
1474/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1475 generated by the GNAT compiler to describe the index type used
1476 for each dimension of an array, check whether it follows the latest
1477 known encoding. If not, fix it up to conform to the latest encoding.
1478 Otherwise, do nothing. This function also does nothing if
1479 INDEX_DESC_TYPE is NULL.
1480
1481 The GNAT encoding used to describle the array index type evolved a bit.
1482 Initially, the information would be provided through the name of each
1483 field of the structure type only, while the type of these fields was
1484 described as unspecified and irrelevant. The debugger was then expected
1485 to perform a global type lookup using the name of that field in order
1486 to get access to the full index type description. Because these global
1487 lookups can be very expensive, the encoding was later enhanced to make
1488 the global lookup unnecessary by defining the field type as being
1489 the full index type description.
1490
1491 The purpose of this routine is to allow us to support older versions
1492 of the compiler by detecting the use of the older encoding, and by
1493 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1494 we essentially replace each field's meaningless type by the associated
1495 index subtype). */
1496
1497void
1498ada_fixup_array_indexes_type (struct type *index_desc_type)
1499{
1500 int i;
1501
1502 if (index_desc_type == NULL)
1503 return;
1504 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1505
1506 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1507 to check one field only, no need to check them all). If not, return
1508 now.
1509
1510 If our INDEX_DESC_TYPE was generated using the older encoding,
1511 the field type should be a meaningless integer type whose name
1512 is not equal to the field name. */
1513 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1514 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1515 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1516 return;
1517
1518 /* Fixup each field of INDEX_DESC_TYPE. */
1519 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1520 {
0d5cff50 1521 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1522 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1523
1524 if (raw_type)
1525 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1526 }
1527}
1528
4c4b4cd2 1529/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1530
d2e4a39e
AS
1531static char *bound_name[] = {
1532 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1533 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1534};
1535
1536/* Maximum number of array dimensions we are prepared to handle. */
1537
4c4b4cd2 1538#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1539
14f9c5c9 1540
4c4b4cd2
PH
1541/* The desc_* routines return primitive portions of array descriptors
1542 (fat pointers). */
14f9c5c9
AS
1543
1544/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1545 level of indirection, if needed. */
1546
d2e4a39e
AS
1547static struct type *
1548desc_base_type (struct type *type)
14f9c5c9
AS
1549{
1550 if (type == NULL)
1551 return NULL;
61ee279c 1552 type = ada_check_typedef (type);
720d1a40
JB
1553 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1554 type = ada_typedef_target_type (type);
1555
1265e4aa
JB
1556 if (type != NULL
1557 && (TYPE_CODE (type) == TYPE_CODE_PTR
1558 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1559 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1560 else
1561 return type;
1562}
1563
4c4b4cd2
PH
1564/* True iff TYPE indicates a "thin" array pointer type. */
1565
14f9c5c9 1566static int
d2e4a39e 1567is_thin_pntr (struct type *type)
14f9c5c9 1568{
d2e4a39e 1569 return
14f9c5c9
AS
1570 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1571 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1572}
1573
4c4b4cd2
PH
1574/* The descriptor type for thin pointer type TYPE. */
1575
d2e4a39e
AS
1576static struct type *
1577thin_descriptor_type (struct type *type)
14f9c5c9 1578{
d2e4a39e 1579 struct type *base_type = desc_base_type (type);
5b4ee69b 1580
14f9c5c9
AS
1581 if (base_type == NULL)
1582 return NULL;
1583 if (is_suffix (ada_type_name (base_type), "___XVE"))
1584 return base_type;
d2e4a39e 1585 else
14f9c5c9 1586 {
d2e4a39e 1587 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1588
14f9c5c9 1589 if (alt_type == NULL)
4c4b4cd2 1590 return base_type;
14f9c5c9 1591 else
4c4b4cd2 1592 return alt_type;
14f9c5c9
AS
1593 }
1594}
1595
4c4b4cd2
PH
1596/* A pointer to the array data for thin-pointer value VAL. */
1597
d2e4a39e
AS
1598static struct value *
1599thin_data_pntr (struct value *val)
14f9c5c9 1600{
828292f2 1601 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1602 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1603
556bdfd4
UW
1604 data_type = lookup_pointer_type (data_type);
1605
14f9c5c9 1606 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1607 return value_cast (data_type, value_copy (val));
d2e4a39e 1608 else
42ae5230 1609 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1610}
1611
4c4b4cd2
PH
1612/* True iff TYPE indicates a "thick" array pointer type. */
1613
14f9c5c9 1614static int
d2e4a39e 1615is_thick_pntr (struct type *type)
14f9c5c9
AS
1616{
1617 type = desc_base_type (type);
1618 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1619 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1620}
1621
4c4b4cd2
PH
1622/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1623 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1624
d2e4a39e
AS
1625static struct type *
1626desc_bounds_type (struct type *type)
14f9c5c9 1627{
d2e4a39e 1628 struct type *r;
14f9c5c9
AS
1629
1630 type = desc_base_type (type);
1631
1632 if (type == NULL)
1633 return NULL;
1634 else if (is_thin_pntr (type))
1635 {
1636 type = thin_descriptor_type (type);
1637 if (type == NULL)
4c4b4cd2 1638 return NULL;
14f9c5c9
AS
1639 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1640 if (r != NULL)
61ee279c 1641 return ada_check_typedef (r);
14f9c5c9
AS
1642 }
1643 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1644 {
1645 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1646 if (r != NULL)
61ee279c 1647 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1648 }
1649 return NULL;
1650}
1651
1652/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1653 one, a pointer to its bounds data. Otherwise NULL. */
1654
d2e4a39e
AS
1655static struct value *
1656desc_bounds (struct value *arr)
14f9c5c9 1657{
df407dfe 1658 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1659
d2e4a39e 1660 if (is_thin_pntr (type))
14f9c5c9 1661 {
d2e4a39e 1662 struct type *bounds_type =
4c4b4cd2 1663 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1664 LONGEST addr;
1665
4cdfadb1 1666 if (bounds_type == NULL)
323e0a4a 1667 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1668
1669 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1670 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1671 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1672 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1673 addr = value_as_long (arr);
d2e4a39e 1674 else
42ae5230 1675 addr = value_address (arr);
14f9c5c9 1676
d2e4a39e 1677 return
4c4b4cd2
PH
1678 value_from_longest (lookup_pointer_type (bounds_type),
1679 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1680 }
1681
1682 else if (is_thick_pntr (type))
05e522ef
JB
1683 {
1684 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1685 _("Bad GNAT array descriptor"));
1686 struct type *p_bounds_type = value_type (p_bounds);
1687
1688 if (p_bounds_type
1689 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1690 {
1691 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1692
1693 if (TYPE_STUB (target_type))
1694 p_bounds = value_cast (lookup_pointer_type
1695 (ada_check_typedef (target_type)),
1696 p_bounds);
1697 }
1698 else
1699 error (_("Bad GNAT array descriptor"));
1700
1701 return p_bounds;
1702 }
14f9c5c9
AS
1703 else
1704 return NULL;
1705}
1706
4c4b4cd2
PH
1707/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1708 position of the field containing the address of the bounds data. */
1709
14f9c5c9 1710static int
d2e4a39e 1711fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1712{
1713 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1714}
1715
1716/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1717 size of the field containing the address of the bounds data. */
1718
14f9c5c9 1719static int
d2e4a39e 1720fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1721{
1722 type = desc_base_type (type);
1723
d2e4a39e 1724 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1725 return TYPE_FIELD_BITSIZE (type, 1);
1726 else
61ee279c 1727 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1728}
1729
4c4b4cd2 1730/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1731 pointer to one, the type of its array data (a array-with-no-bounds type);
1732 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1733 data. */
4c4b4cd2 1734
d2e4a39e 1735static struct type *
556bdfd4 1736desc_data_target_type (struct type *type)
14f9c5c9
AS
1737{
1738 type = desc_base_type (type);
1739
4c4b4cd2 1740 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1741 if (is_thin_pntr (type))
556bdfd4 1742 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1743 else if (is_thick_pntr (type))
556bdfd4
UW
1744 {
1745 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1746
1747 if (data_type
1748 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1749 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1750 }
1751
1752 return NULL;
14f9c5c9
AS
1753}
1754
1755/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1756 its array data. */
4c4b4cd2 1757
d2e4a39e
AS
1758static struct value *
1759desc_data (struct value *arr)
14f9c5c9 1760{
df407dfe 1761 struct type *type = value_type (arr);
5b4ee69b 1762
14f9c5c9
AS
1763 if (is_thin_pntr (type))
1764 return thin_data_pntr (arr);
1765 else if (is_thick_pntr (type))
d2e4a39e 1766 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1767 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1768 else
1769 return NULL;
1770}
1771
1772
1773/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1774 position of the field containing the address of the data. */
1775
14f9c5c9 1776static int
d2e4a39e 1777fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1778{
1779 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1780}
1781
1782/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1783 size of the field containing the address of the data. */
1784
14f9c5c9 1785static int
d2e4a39e 1786fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1787{
1788 type = desc_base_type (type);
1789
1790 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1791 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1792 else
14f9c5c9
AS
1793 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1794}
1795
4c4b4cd2 1796/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1797 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1798 bound, if WHICH is 1. The first bound is I=1. */
1799
d2e4a39e
AS
1800static struct value *
1801desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1802{
d2e4a39e 1803 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1804 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1805}
1806
1807/* If BOUNDS is an array-bounds structure type, return the bit position
1808 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1809 bound, if WHICH is 1. The first bound is I=1. */
1810
14f9c5c9 1811static int
d2e4a39e 1812desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1813{
d2e4a39e 1814 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1815}
1816
1817/* If BOUNDS is an array-bounds structure type, return the bit field size
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
76a01679 1821static int
d2e4a39e 1822desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1823{
1824 type = desc_base_type (type);
1825
d2e4a39e
AS
1826 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1828 else
1829 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1830}
1831
1832/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1833 Ith bound (numbering from 1). Otherwise, NULL. */
1834
d2e4a39e
AS
1835static struct type *
1836desc_index_type (struct type *type, int i)
14f9c5c9
AS
1837{
1838 type = desc_base_type (type);
1839
1840 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1841 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1842 else
14f9c5c9
AS
1843 return NULL;
1844}
1845
4c4b4cd2
PH
1846/* The number of index positions in the array-bounds type TYPE.
1847 Return 0 if TYPE is NULL. */
1848
14f9c5c9 1849static int
d2e4a39e 1850desc_arity (struct type *type)
14f9c5c9
AS
1851{
1852 type = desc_base_type (type);
1853
1854 if (type != NULL)
1855 return TYPE_NFIELDS (type) / 2;
1856 return 0;
1857}
1858
4c4b4cd2
PH
1859/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1860 an array descriptor type (representing an unconstrained array
1861 type). */
1862
76a01679
JB
1863static int
1864ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1865{
1866 if (type == NULL)
1867 return 0;
61ee279c 1868 type = ada_check_typedef (type);
4c4b4cd2 1869 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1870 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1871}
1872
52ce6436 1873/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1874 * to one. */
52ce6436 1875
2c0b251b 1876static int
52ce6436
PH
1877ada_is_array_type (struct type *type)
1878{
1879 while (type != NULL
1880 && (TYPE_CODE (type) == TYPE_CODE_PTR
1881 || TYPE_CODE (type) == TYPE_CODE_REF))
1882 type = TYPE_TARGET_TYPE (type);
1883 return ada_is_direct_array_type (type);
1884}
1885
4c4b4cd2 1886/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1887
14f9c5c9 1888int
4c4b4cd2 1889ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1890{
1891 if (type == NULL)
1892 return 0;
61ee279c 1893 type = ada_check_typedef (type);
14f9c5c9 1894 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1895 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1896 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1897 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1898}
1899
4c4b4cd2
PH
1900/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1901
14f9c5c9 1902int
4c4b4cd2 1903ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1904{
556bdfd4 1905 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1906
1907 if (type == NULL)
1908 return 0;
61ee279c 1909 type = ada_check_typedef (type);
556bdfd4
UW
1910 return (data_type != NULL
1911 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1912 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1913}
1914
1915/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1916 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1917 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1918 is still needed. */
1919
14f9c5c9 1920int
ebf56fd3 1921ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1922{
d2e4a39e 1923 return
14f9c5c9
AS
1924 type != NULL
1925 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1926 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1927 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1928 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1929}
1930
1931
4c4b4cd2 1932/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1933 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1934 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1935 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1936 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1937 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1938 a descriptor. */
d2e4a39e
AS
1939struct type *
1940ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1941{
ad82864c
JB
1942 if (ada_is_constrained_packed_array_type (value_type (arr)))
1943 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1944
df407dfe
AC
1945 if (!ada_is_array_descriptor_type (value_type (arr)))
1946 return value_type (arr);
d2e4a39e
AS
1947
1948 if (!bounds)
ad82864c
JB
1949 {
1950 struct type *array_type =
1951 ada_check_typedef (desc_data_target_type (value_type (arr)));
1952
1953 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1954 TYPE_FIELD_BITSIZE (array_type, 0) =
1955 decode_packed_array_bitsize (value_type (arr));
1956
1957 return array_type;
1958 }
14f9c5c9
AS
1959 else
1960 {
d2e4a39e 1961 struct type *elt_type;
14f9c5c9 1962 int arity;
d2e4a39e 1963 struct value *descriptor;
14f9c5c9 1964
df407dfe
AC
1965 elt_type = ada_array_element_type (value_type (arr), -1);
1966 arity = ada_array_arity (value_type (arr));
14f9c5c9 1967
d2e4a39e 1968 if (elt_type == NULL || arity == 0)
df407dfe 1969 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1970
1971 descriptor = desc_bounds (arr);
d2e4a39e 1972 if (value_as_long (descriptor) == 0)
4c4b4cd2 1973 return NULL;
d2e4a39e 1974 while (arity > 0)
4c4b4cd2 1975 {
e9bb382b
UW
1976 struct type *range_type = alloc_type_copy (value_type (arr));
1977 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1978 struct value *low = desc_one_bound (descriptor, arity, 0);
1979 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1980
5b4ee69b 1981 arity -= 1;
0c9c3474
SA
1982 create_static_range_type (range_type, value_type (low),
1983 longest_to_int (value_as_long (low)),
1984 longest_to_int (value_as_long (high)));
4c4b4cd2 1985 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1986
1987 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1988 {
1989 /* We need to store the element packed bitsize, as well as
1990 recompute the array size, because it was previously
1991 computed based on the unpacked element size. */
1992 LONGEST lo = value_as_long (low);
1993 LONGEST hi = value_as_long (high);
1994
1995 TYPE_FIELD_BITSIZE (elt_type, 0) =
1996 decode_packed_array_bitsize (value_type (arr));
1997 /* If the array has no element, then the size is already
1998 zero, and does not need to be recomputed. */
1999 if (lo < hi)
2000 {
2001 int array_bitsize =
2002 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2003
2004 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2005 }
2006 }
4c4b4cd2 2007 }
14f9c5c9
AS
2008
2009 return lookup_pointer_type (elt_type);
2010 }
2011}
2012
2013/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2014 Otherwise, returns either a standard GDB array with bounds set
2015 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2016 GDB array. Returns NULL if ARR is a null fat pointer. */
2017
d2e4a39e
AS
2018struct value *
2019ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2020{
df407dfe 2021 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2022 {
d2e4a39e 2023 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2024
14f9c5c9 2025 if (arrType == NULL)
4c4b4cd2 2026 return NULL;
14f9c5c9
AS
2027 return value_cast (arrType, value_copy (desc_data (arr)));
2028 }
ad82864c
JB
2029 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2030 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2031 else
2032 return arr;
2033}
2034
2035/* If ARR does not represent an array, returns ARR unchanged.
2036 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2037 be ARR itself if it already is in the proper form). */
2038
720d1a40 2039struct value *
d2e4a39e 2040ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2041{
df407dfe 2042 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2043 {
d2e4a39e 2044 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2045
14f9c5c9 2046 if (arrVal == NULL)
323e0a4a 2047 error (_("Bounds unavailable for null array pointer."));
529cad9c 2048 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2049 return value_ind (arrVal);
2050 }
ad82864c
JB
2051 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2052 return decode_constrained_packed_array (arr);
d2e4a39e 2053 else
14f9c5c9
AS
2054 return arr;
2055}
2056
2057/* If TYPE represents a GNAT array type, return it translated to an
2058 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2059 packing). For other types, is the identity. */
2060
d2e4a39e
AS
2061struct type *
2062ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2063{
ad82864c
JB
2064 if (ada_is_constrained_packed_array_type (type))
2065 return decode_constrained_packed_array_type (type);
17280b9f
UW
2066
2067 if (ada_is_array_descriptor_type (type))
556bdfd4 2068 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2069
2070 return type;
14f9c5c9
AS
2071}
2072
4c4b4cd2
PH
2073/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2074
ad82864c
JB
2075static int
2076ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2077{
2078 if (type == NULL)
2079 return 0;
4c4b4cd2 2080 type = desc_base_type (type);
61ee279c 2081 type = ada_check_typedef (type);
d2e4a39e 2082 return
14f9c5c9
AS
2083 ada_type_name (type) != NULL
2084 && strstr (ada_type_name (type), "___XP") != NULL;
2085}
2086
ad82864c
JB
2087/* Non-zero iff TYPE represents a standard GNAT constrained
2088 packed-array type. */
2089
2090int
2091ada_is_constrained_packed_array_type (struct type *type)
2092{
2093 return ada_is_packed_array_type (type)
2094 && !ada_is_array_descriptor_type (type);
2095}
2096
2097/* Non-zero iff TYPE represents an array descriptor for a
2098 unconstrained packed-array type. */
2099
2100static int
2101ada_is_unconstrained_packed_array_type (struct type *type)
2102{
2103 return ada_is_packed_array_type (type)
2104 && ada_is_array_descriptor_type (type);
2105}
2106
2107/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2108 return the size of its elements in bits. */
2109
2110static long
2111decode_packed_array_bitsize (struct type *type)
2112{
0d5cff50
DE
2113 const char *raw_name;
2114 const char *tail;
ad82864c
JB
2115 long bits;
2116
720d1a40
JB
2117 /* Access to arrays implemented as fat pointers are encoded as a typedef
2118 of the fat pointer type. We need the name of the fat pointer type
2119 to do the decoding, so strip the typedef layer. */
2120 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2121 type = ada_typedef_target_type (type);
2122
2123 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2124 if (!raw_name)
2125 raw_name = ada_type_name (desc_base_type (type));
2126
2127 if (!raw_name)
2128 return 0;
2129
2130 tail = strstr (raw_name, "___XP");
720d1a40 2131 gdb_assert (tail != NULL);
ad82864c
JB
2132
2133 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2134 {
2135 lim_warning
2136 (_("could not understand bit size information on packed array"));
2137 return 0;
2138 }
2139
2140 return bits;
2141}
2142
14f9c5c9
AS
2143/* Given that TYPE is a standard GDB array type with all bounds filled
2144 in, and that the element size of its ultimate scalar constituents
2145 (that is, either its elements, or, if it is an array of arrays, its
2146 elements' elements, etc.) is *ELT_BITS, return an identical type,
2147 but with the bit sizes of its elements (and those of any
2148 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2149 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2150 in bits. */
2151
d2e4a39e 2152static struct type *
ad82864c 2153constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2154{
d2e4a39e
AS
2155 struct type *new_elt_type;
2156 struct type *new_type;
99b1c762
JB
2157 struct type *index_type_desc;
2158 struct type *index_type;
14f9c5c9
AS
2159 LONGEST low_bound, high_bound;
2160
61ee279c 2161 type = ada_check_typedef (type);
14f9c5c9
AS
2162 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2163 return type;
2164
99b1c762
JB
2165 index_type_desc = ada_find_parallel_type (type, "___XA");
2166 if (index_type_desc)
2167 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2168 NULL);
2169 else
2170 index_type = TYPE_INDEX_TYPE (type);
2171
e9bb382b 2172 new_type = alloc_type_copy (type);
ad82864c
JB
2173 new_elt_type =
2174 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2175 elt_bits);
99b1c762 2176 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2177 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2178 TYPE_NAME (new_type) = ada_type_name (type);
2179
99b1c762 2180 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2181 low_bound = high_bound = 0;
2182 if (high_bound < low_bound)
2183 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2184 else
14f9c5c9
AS
2185 {
2186 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2187 TYPE_LENGTH (new_type) =
4c4b4cd2 2188 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2189 }
2190
876cecd0 2191 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2192 return new_type;
2193}
2194
ad82864c
JB
2195/* The array type encoded by TYPE, where
2196 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2197
d2e4a39e 2198static struct type *
ad82864c 2199decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2200{
0d5cff50 2201 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2202 char *name;
0d5cff50 2203 const char *tail;
d2e4a39e 2204 struct type *shadow_type;
14f9c5c9 2205 long bits;
14f9c5c9 2206
727e3d2e
JB
2207 if (!raw_name)
2208 raw_name = ada_type_name (desc_base_type (type));
2209
2210 if (!raw_name)
2211 return NULL;
2212
2213 name = (char *) alloca (strlen (raw_name) + 1);
2214 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2215 type = desc_base_type (type);
2216
14f9c5c9
AS
2217 memcpy (name, raw_name, tail - raw_name);
2218 name[tail - raw_name] = '\000';
2219
b4ba55a1
JB
2220 shadow_type = ada_find_parallel_type_with_name (type, name);
2221
2222 if (shadow_type == NULL)
14f9c5c9 2223 {
323e0a4a 2224 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2225 return NULL;
2226 }
cb249c71 2227 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2228
2229 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2230 {
0963b4bd
MS
2231 lim_warning (_("could not understand bounds "
2232 "information on packed array"));
14f9c5c9
AS
2233 return NULL;
2234 }
d2e4a39e 2235
ad82864c
JB
2236 bits = decode_packed_array_bitsize (type);
2237 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2238}
2239
ad82864c
JB
2240/* Given that ARR is a struct value *indicating a GNAT constrained packed
2241 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2242 standard GDB array type except that the BITSIZEs of the array
2243 target types are set to the number of bits in each element, and the
4c4b4cd2 2244 type length is set appropriately. */
14f9c5c9 2245
d2e4a39e 2246static struct value *
ad82864c 2247decode_constrained_packed_array (struct value *arr)
14f9c5c9 2248{
4c4b4cd2 2249 struct type *type;
14f9c5c9 2250
11aa919a
PMR
2251 /* If our value is a pointer, then dereference it. Likewise if
2252 the value is a reference. Make sure that this operation does not
2253 cause the target type to be fixed, as this would indirectly cause
2254 this array to be decoded. The rest of the routine assumes that
2255 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2256 and "value_ind" routines to perform the dereferencing, as opposed
2257 to using "ada_coerce_ref" or "ada_value_ind". */
2258 arr = coerce_ref (arr);
828292f2 2259 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2260 arr = value_ind (arr);
4c4b4cd2 2261
ad82864c 2262 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2263 if (type == NULL)
2264 {
323e0a4a 2265 error (_("can't unpack array"));
14f9c5c9
AS
2266 return NULL;
2267 }
61ee279c 2268
50810684 2269 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2270 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2271 {
2272 /* This is a (right-justified) modular type representing a packed
2273 array with no wrapper. In order to interpret the value through
2274 the (left-justified) packed array type we just built, we must
2275 first left-justify it. */
2276 int bit_size, bit_pos;
2277 ULONGEST mod;
2278
df407dfe 2279 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2280 bit_size = 0;
2281 while (mod > 0)
2282 {
2283 bit_size += 1;
2284 mod >>= 1;
2285 }
df407dfe 2286 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2287 arr = ada_value_primitive_packed_val (arr, NULL,
2288 bit_pos / HOST_CHAR_BIT,
2289 bit_pos % HOST_CHAR_BIT,
2290 bit_size,
2291 type);
2292 }
2293
4c4b4cd2 2294 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2295}
2296
2297
2298/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2299 given in IND. ARR must be a simple array. */
14f9c5c9 2300
d2e4a39e
AS
2301static struct value *
2302value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2303{
2304 int i;
2305 int bits, elt_off, bit_off;
2306 long elt_total_bit_offset;
d2e4a39e
AS
2307 struct type *elt_type;
2308 struct value *v;
14f9c5c9
AS
2309
2310 bits = 0;
2311 elt_total_bit_offset = 0;
df407dfe 2312 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2313 for (i = 0; i < arity; i += 1)
14f9c5c9 2314 {
d2e4a39e 2315 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2316 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2317 error
0963b4bd
MS
2318 (_("attempt to do packed indexing of "
2319 "something other than a packed array"));
14f9c5c9 2320 else
4c4b4cd2
PH
2321 {
2322 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2323 LONGEST lowerbound, upperbound;
2324 LONGEST idx;
2325
2326 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2327 {
323e0a4a 2328 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2329 lowerbound = upperbound = 0;
2330 }
2331
3cb382c9 2332 idx = pos_atr (ind[i]);
4c4b4cd2 2333 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2334 lim_warning (_("packed array index %ld out of bounds"),
2335 (long) idx);
4c4b4cd2
PH
2336 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2337 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2338 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2339 }
14f9c5c9
AS
2340 }
2341 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2342 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2343
2344 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2345 bits, elt_type);
14f9c5c9
AS
2346 return v;
2347}
2348
4c4b4cd2 2349/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2350
2351static int
d2e4a39e 2352has_negatives (struct type *type)
14f9c5c9 2353{
d2e4a39e
AS
2354 switch (TYPE_CODE (type))
2355 {
2356 default:
2357 return 0;
2358 case TYPE_CODE_INT:
2359 return !TYPE_UNSIGNED (type);
2360 case TYPE_CODE_RANGE:
2361 return TYPE_LOW_BOUND (type) < 0;
2362 }
14f9c5c9 2363}
d2e4a39e 2364
14f9c5c9
AS
2365
2366/* Create a new value of type TYPE from the contents of OBJ starting
2367 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2368 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2369 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2370 VALADDR is ignored unless OBJ is NULL, in which case,
2371 VALADDR+OFFSET must address the start of storage containing the
2372 packed value. The value returned in this case is never an lval.
2373 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2374
d2e4a39e 2375struct value *
fc1a4b47 2376ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2377 long offset, int bit_offset, int bit_size,
4c4b4cd2 2378 struct type *type)
14f9c5c9 2379{
d2e4a39e 2380 struct value *v;
4c4b4cd2
PH
2381 int src, /* Index into the source area */
2382 targ, /* Index into the target area */
2383 srcBitsLeft, /* Number of source bits left to move */
2384 nsrc, ntarg, /* Number of source and target bytes */
2385 unusedLS, /* Number of bits in next significant
2386 byte of source that are unused */
2387 accumSize; /* Number of meaningful bits in accum */
2388 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2389 unsigned char *unpacked;
4c4b4cd2 2390 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2391 unsigned char sign;
2392 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2393 /* Transmit bytes from least to most significant; delta is the direction
2394 the indices move. */
50810684 2395 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2396
61ee279c 2397 type = ada_check_typedef (type);
14f9c5c9
AS
2398
2399 if (obj == NULL)
2400 {
2401 v = allocate_value (type);
d2e4a39e 2402 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2403 }
9214ee5f 2404 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2405 {
53ba8333 2406 v = value_at (type, value_address (obj));
9f1f738a 2407 type = value_type (v);
d2e4a39e 2408 bytes = (unsigned char *) alloca (len);
53ba8333 2409 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2410 }
d2e4a39e 2411 else
14f9c5c9
AS
2412 {
2413 v = allocate_value (type);
0fd88904 2414 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2415 }
d2e4a39e
AS
2416
2417 if (obj != NULL)
14f9c5c9 2418 {
53ba8333 2419 long new_offset = offset;
5b4ee69b 2420
74bcbdf3 2421 set_value_component_location (v, obj);
9bbda503
AC
2422 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2423 set_value_bitsize (v, bit_size);
df407dfe 2424 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2425 {
53ba8333 2426 ++new_offset;
9bbda503 2427 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2428 }
53ba8333
JB
2429 set_value_offset (v, new_offset);
2430
2431 /* Also set the parent value. This is needed when trying to
2432 assign a new value (in inferior memory). */
2433 set_value_parent (v, obj);
14f9c5c9
AS
2434 }
2435 else
9bbda503 2436 set_value_bitsize (v, bit_size);
0fd88904 2437 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2438
2439 srcBitsLeft = bit_size;
2440 nsrc = len;
2441 ntarg = TYPE_LENGTH (type);
2442 sign = 0;
2443 if (bit_size == 0)
2444 {
2445 memset (unpacked, 0, TYPE_LENGTH (type));
2446 return v;
2447 }
50810684 2448 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2449 {
d2e4a39e 2450 src = len - 1;
1265e4aa
JB
2451 if (has_negatives (type)
2452 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2453 sign = ~0;
d2e4a39e
AS
2454
2455 unusedLS =
4c4b4cd2
PH
2456 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2457 % HOST_CHAR_BIT;
14f9c5c9
AS
2458
2459 switch (TYPE_CODE (type))
4c4b4cd2
PH
2460 {
2461 case TYPE_CODE_ARRAY:
2462 case TYPE_CODE_UNION:
2463 case TYPE_CODE_STRUCT:
2464 /* Non-scalar values must be aligned at a byte boundary... */
2465 accumSize =
2466 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2467 /* ... And are placed at the beginning (most-significant) bytes
2468 of the target. */
529cad9c 2469 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2470 ntarg = targ + 1;
4c4b4cd2
PH
2471 break;
2472 default:
2473 accumSize = 0;
2474 targ = TYPE_LENGTH (type) - 1;
2475 break;
2476 }
14f9c5c9 2477 }
d2e4a39e 2478 else
14f9c5c9
AS
2479 {
2480 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2481
2482 src = targ = 0;
2483 unusedLS = bit_offset;
2484 accumSize = 0;
2485
d2e4a39e 2486 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2487 sign = ~0;
14f9c5c9 2488 }
d2e4a39e 2489
14f9c5c9
AS
2490 accum = 0;
2491 while (nsrc > 0)
2492 {
2493 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2494 part of the value. */
d2e4a39e 2495 unsigned int unusedMSMask =
4c4b4cd2
PH
2496 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2497 1;
2498 /* Sign-extend bits for this byte. */
14f9c5c9 2499 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2500
d2e4a39e 2501 accum |=
4c4b4cd2 2502 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2503 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2504 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2505 {
2506 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2507 accumSize -= HOST_CHAR_BIT;
2508 accum >>= HOST_CHAR_BIT;
2509 ntarg -= 1;
2510 targ += delta;
2511 }
14f9c5c9
AS
2512 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2513 unusedLS = 0;
2514 nsrc -= 1;
2515 src += delta;
2516 }
2517 while (ntarg > 0)
2518 {
2519 accum |= sign << accumSize;
2520 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2521 accumSize -= HOST_CHAR_BIT;
2522 accum >>= HOST_CHAR_BIT;
2523 ntarg -= 1;
2524 targ += delta;
2525 }
2526
2527 return v;
2528}
d2e4a39e 2529
14f9c5c9
AS
2530/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2531 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2532 not overlap. */
14f9c5c9 2533static void
fc1a4b47 2534move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2535 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2536{
2537 unsigned int accum, mask;
2538 int accum_bits, chunk_size;
2539
2540 target += targ_offset / HOST_CHAR_BIT;
2541 targ_offset %= HOST_CHAR_BIT;
2542 source += src_offset / HOST_CHAR_BIT;
2543 src_offset %= HOST_CHAR_BIT;
50810684 2544 if (bits_big_endian_p)
14f9c5c9
AS
2545 {
2546 accum = (unsigned char) *source;
2547 source += 1;
2548 accum_bits = HOST_CHAR_BIT - src_offset;
2549
d2e4a39e 2550 while (n > 0)
4c4b4cd2
PH
2551 {
2552 int unused_right;
5b4ee69b 2553
4c4b4cd2
PH
2554 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2555 accum_bits += HOST_CHAR_BIT;
2556 source += 1;
2557 chunk_size = HOST_CHAR_BIT - targ_offset;
2558 if (chunk_size > n)
2559 chunk_size = n;
2560 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2561 mask = ((1 << chunk_size) - 1) << unused_right;
2562 *target =
2563 (*target & ~mask)
2564 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2565 n -= chunk_size;
2566 accum_bits -= chunk_size;
2567 target += 1;
2568 targ_offset = 0;
2569 }
14f9c5c9
AS
2570 }
2571 else
2572 {
2573 accum = (unsigned char) *source >> src_offset;
2574 source += 1;
2575 accum_bits = HOST_CHAR_BIT - src_offset;
2576
d2e4a39e 2577 while (n > 0)
4c4b4cd2
PH
2578 {
2579 accum = accum + ((unsigned char) *source << accum_bits);
2580 accum_bits += HOST_CHAR_BIT;
2581 source += 1;
2582 chunk_size = HOST_CHAR_BIT - targ_offset;
2583 if (chunk_size > n)
2584 chunk_size = n;
2585 mask = ((1 << chunk_size) - 1) << targ_offset;
2586 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2587 n -= chunk_size;
2588 accum_bits -= chunk_size;
2589 accum >>= chunk_size;
2590 target += 1;
2591 targ_offset = 0;
2592 }
14f9c5c9
AS
2593 }
2594}
2595
14f9c5c9
AS
2596/* Store the contents of FROMVAL into the location of TOVAL.
2597 Return a new value with the location of TOVAL and contents of
2598 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2599 floating-point or non-scalar types. */
14f9c5c9 2600
d2e4a39e
AS
2601static struct value *
2602ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2603{
df407dfe
AC
2604 struct type *type = value_type (toval);
2605 int bits = value_bitsize (toval);
14f9c5c9 2606
52ce6436
PH
2607 toval = ada_coerce_ref (toval);
2608 fromval = ada_coerce_ref (fromval);
2609
2610 if (ada_is_direct_array_type (value_type (toval)))
2611 toval = ada_coerce_to_simple_array (toval);
2612 if (ada_is_direct_array_type (value_type (fromval)))
2613 fromval = ada_coerce_to_simple_array (fromval);
2614
88e3b34b 2615 if (!deprecated_value_modifiable (toval))
323e0a4a 2616 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2617
d2e4a39e 2618 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2619 && bits > 0
d2e4a39e 2620 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2621 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2622 {
df407dfe
AC
2623 int len = (value_bitpos (toval)
2624 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2625 int from_size;
948f8e3d 2626 gdb_byte *buffer = alloca (len);
d2e4a39e 2627 struct value *val;
42ae5230 2628 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2629
2630 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2631 fromval = value_cast (type, fromval);
14f9c5c9 2632
52ce6436 2633 read_memory (to_addr, buffer, len);
aced2898
PH
2634 from_size = value_bitsize (fromval);
2635 if (from_size == 0)
2636 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2637 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2638 move_bits (buffer, value_bitpos (toval),
50810684 2639 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2640 else
50810684
UW
2641 move_bits (buffer, value_bitpos (toval),
2642 value_contents (fromval), 0, bits, 0);
972daa01 2643 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2644
14f9c5c9 2645 val = value_copy (toval);
0fd88904 2646 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2647 TYPE_LENGTH (type));
04624583 2648 deprecated_set_value_type (val, type);
d2e4a39e 2649
14f9c5c9
AS
2650 return val;
2651 }
2652
2653 return value_assign (toval, fromval);
2654}
2655
2656
52ce6436
PH
2657/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2658 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2659 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2660 * COMPONENT, and not the inferior's memory. The current contents
2661 * of COMPONENT are ignored. */
2662static void
2663value_assign_to_component (struct value *container, struct value *component,
2664 struct value *val)
2665{
2666 LONGEST offset_in_container =
42ae5230 2667 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2668 int bit_offset_in_container =
2669 value_bitpos (component) - value_bitpos (container);
2670 int bits;
2671
2672 val = value_cast (value_type (component), val);
2673
2674 if (value_bitsize (component) == 0)
2675 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2676 else
2677 bits = value_bitsize (component);
2678
50810684 2679 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2680 move_bits (value_contents_writeable (container) + offset_in_container,
2681 value_bitpos (container) + bit_offset_in_container,
2682 value_contents (val),
2683 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2684 bits, 1);
52ce6436
PH
2685 else
2686 move_bits (value_contents_writeable (container) + offset_in_container,
2687 value_bitpos (container) + bit_offset_in_container,
50810684 2688 value_contents (val), 0, bits, 0);
52ce6436
PH
2689}
2690
4c4b4cd2
PH
2691/* The value of the element of array ARR at the ARITY indices given in IND.
2692 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2693 thereto. */
2694
d2e4a39e
AS
2695struct value *
2696ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2697{
2698 int k;
d2e4a39e
AS
2699 struct value *elt;
2700 struct type *elt_type;
14f9c5c9
AS
2701
2702 elt = ada_coerce_to_simple_array (arr);
2703
df407dfe 2704 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2705 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2706 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2707 return value_subscript_packed (elt, arity, ind);
2708
2709 for (k = 0; k < arity; k += 1)
2710 {
2711 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2712 error (_("too many subscripts (%d expected)"), k);
2497b498 2713 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2714 }
2715 return elt;
2716}
2717
2718/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2719 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2720 IND. Does not read the entire array into memory. */
14f9c5c9 2721
2c0b251b 2722static struct value *
d2e4a39e 2723ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2724 struct value **ind)
14f9c5c9
AS
2725{
2726 int k;
2727
2728 for (k = 0; k < arity; k += 1)
2729 {
2730 LONGEST lwb, upb;
14f9c5c9
AS
2731
2732 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2733 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2734 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2735 value_copy (arr));
14f9c5c9 2736 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2737 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2738 type = TYPE_TARGET_TYPE (type);
2739 }
2740
2741 return value_ind (arr);
2742}
2743
0b5d8877 2744/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2745 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2746 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2747 per Ada rules. */
0b5d8877 2748static struct value *
f5938064
JG
2749ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2750 int low, int high)
0b5d8877 2751{
b0dd7688 2752 struct type *type0 = ada_check_typedef (type);
6c038f32 2753 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2754 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2755 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2756 struct type *index_type
2757 = create_static_range_type (NULL,
2758 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2759 low, high);
6c038f32 2760 struct type *slice_type =
b0dd7688 2761 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2762
f5938064 2763 return value_at_lazy (slice_type, base);
0b5d8877
PH
2764}
2765
2766
2767static struct value *
2768ada_value_slice (struct value *array, int low, int high)
2769{
b0dd7688 2770 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2771 struct type *index_type
2772 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2773 struct type *slice_type =
0b5d8877 2774 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2775
6c038f32 2776 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2777}
2778
14f9c5c9
AS
2779/* If type is a record type in the form of a standard GNAT array
2780 descriptor, returns the number of dimensions for type. If arr is a
2781 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2782 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2783
2784int
d2e4a39e 2785ada_array_arity (struct type *type)
14f9c5c9
AS
2786{
2787 int arity;
2788
2789 if (type == NULL)
2790 return 0;
2791
2792 type = desc_base_type (type);
2793
2794 arity = 0;
d2e4a39e 2795 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2796 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2797 else
2798 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2799 {
4c4b4cd2 2800 arity += 1;
61ee279c 2801 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2802 }
d2e4a39e 2803
14f9c5c9
AS
2804 return arity;
2805}
2806
2807/* If TYPE is a record type in the form of a standard GNAT array
2808 descriptor or a simple array type, returns the element type for
2809 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2810 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2811
d2e4a39e
AS
2812struct type *
2813ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2814{
2815 type = desc_base_type (type);
2816
d2e4a39e 2817 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2818 {
2819 int k;
d2e4a39e 2820 struct type *p_array_type;
14f9c5c9 2821
556bdfd4 2822 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2823
2824 k = ada_array_arity (type);
2825 if (k == 0)
4c4b4cd2 2826 return NULL;
d2e4a39e 2827
4c4b4cd2 2828 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2829 if (nindices >= 0 && k > nindices)
4c4b4cd2 2830 k = nindices;
d2e4a39e 2831 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2832 {
61ee279c 2833 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2834 k -= 1;
2835 }
14f9c5c9
AS
2836 return p_array_type;
2837 }
2838 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2839 {
2840 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2841 {
2842 type = TYPE_TARGET_TYPE (type);
2843 nindices -= 1;
2844 }
14f9c5c9
AS
2845 return type;
2846 }
2847
2848 return NULL;
2849}
2850
4c4b4cd2 2851/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2852 Does not examine memory. Throws an error if N is invalid or TYPE
2853 is not an array type. NAME is the name of the Ada attribute being
2854 evaluated ('range, 'first, 'last, or 'length); it is used in building
2855 the error message. */
14f9c5c9 2856
1eea4ebd
UW
2857static struct type *
2858ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2859{
4c4b4cd2
PH
2860 struct type *result_type;
2861
14f9c5c9
AS
2862 type = desc_base_type (type);
2863
1eea4ebd
UW
2864 if (n < 0 || n > ada_array_arity (type))
2865 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2866
4c4b4cd2 2867 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2868 {
2869 int i;
2870
2871 for (i = 1; i < n; i += 1)
4c4b4cd2 2872 type = TYPE_TARGET_TYPE (type);
262452ec 2873 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2874 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2875 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2876 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2877 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2878 result_type = NULL;
14f9c5c9 2879 }
d2e4a39e 2880 else
1eea4ebd
UW
2881 {
2882 result_type = desc_index_type (desc_bounds_type (type), n);
2883 if (result_type == NULL)
2884 error (_("attempt to take bound of something that is not an array"));
2885 }
2886
2887 return result_type;
14f9c5c9
AS
2888}
2889
2890/* Given that arr is an array type, returns the lower bound of the
2891 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2892 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2893 array-descriptor type. It works for other arrays with bounds supplied
2894 by run-time quantities other than discriminants. */
14f9c5c9 2895
abb68b3e 2896static LONGEST
fb5e3d5c 2897ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2898{
8a48ac95 2899 struct type *type, *index_type_desc, *index_type;
1ce677a4 2900 int i;
262452ec
JK
2901
2902 gdb_assert (which == 0 || which == 1);
14f9c5c9 2903
ad82864c
JB
2904 if (ada_is_constrained_packed_array_type (arr_type))
2905 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2906
4c4b4cd2 2907 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2908 return (LONGEST) - which;
14f9c5c9
AS
2909
2910 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2911 type = TYPE_TARGET_TYPE (arr_type);
2912 else
2913 type = arr_type;
2914
2915 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2916 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2917 if (index_type_desc != NULL)
28c85d6c
JB
2918 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2919 NULL);
262452ec 2920 else
8a48ac95
JB
2921 {
2922 struct type *elt_type = check_typedef (type);
2923
2924 for (i = 1; i < n; i++)
2925 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2926
2927 index_type = TYPE_INDEX_TYPE (elt_type);
2928 }
262452ec 2929
43bbcdc2
PH
2930 return
2931 (LONGEST) (which == 0
2932 ? ada_discrete_type_low_bound (index_type)
2933 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2934}
2935
2936/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2937 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2938 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2939 supplied by run-time quantities other than discriminants. */
14f9c5c9 2940
1eea4ebd 2941static LONGEST
4dc81987 2942ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2943{
df407dfe 2944 struct type *arr_type = value_type (arr);
14f9c5c9 2945
ad82864c
JB
2946 if (ada_is_constrained_packed_array_type (arr_type))
2947 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2948 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2949 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2950 else
1eea4ebd 2951 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2952}
2953
2954/* Given that arr is an array value, returns the length of the
2955 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2956 supplied by run-time quantities other than discriminants.
2957 Does not work for arrays indexed by enumeration types with representation
2958 clauses at the moment. */
14f9c5c9 2959
1eea4ebd 2960static LONGEST
d2e4a39e 2961ada_array_length (struct value *arr, int n)
14f9c5c9 2962{
df407dfe 2963 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2964
ad82864c
JB
2965 if (ada_is_constrained_packed_array_type (arr_type))
2966 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2967
4c4b4cd2 2968 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2969 return (ada_array_bound_from_type (arr_type, n, 1)
2970 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2971 else
1eea4ebd
UW
2972 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2973 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2974}
2975
2976/* An empty array whose type is that of ARR_TYPE (an array type),
2977 with bounds LOW to LOW-1. */
2978
2979static struct value *
2980empty_array (struct type *arr_type, int low)
2981{
b0dd7688 2982 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
2983 struct type *index_type
2984 = create_static_range_type
2985 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 2986 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2987
0b5d8877 2988 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2989}
14f9c5c9 2990\f
d2e4a39e 2991
4c4b4cd2 2992 /* Name resolution */
14f9c5c9 2993
4c4b4cd2
PH
2994/* The "decoded" name for the user-definable Ada operator corresponding
2995 to OP. */
14f9c5c9 2996
d2e4a39e 2997static const char *
4c4b4cd2 2998ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2999{
3000 int i;
3001
4c4b4cd2 3002 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3003 {
3004 if (ada_opname_table[i].op == op)
4c4b4cd2 3005 return ada_opname_table[i].decoded;
14f9c5c9 3006 }
323e0a4a 3007 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3008}
3009
3010
4c4b4cd2
PH
3011/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3012 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3013 undefined namespace) and converts operators that are
3014 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3015 non-null, it provides a preferred result type [at the moment, only
3016 type void has any effect---causing procedures to be preferred over
3017 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3018 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3019
4c4b4cd2
PH
3020static void
3021resolve (struct expression **expp, int void_context_p)
14f9c5c9 3022{
30b15541
UW
3023 struct type *context_type = NULL;
3024 int pc = 0;
3025
3026 if (void_context_p)
3027 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3028
3029 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3030}
3031
4c4b4cd2
PH
3032/* Resolve the operator of the subexpression beginning at
3033 position *POS of *EXPP. "Resolving" consists of replacing
3034 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3035 with their resolutions, replacing built-in operators with
3036 function calls to user-defined operators, where appropriate, and,
3037 when DEPROCEDURE_P is non-zero, converting function-valued variables
3038 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3039 are as in ada_resolve, above. */
14f9c5c9 3040
d2e4a39e 3041static struct value *
4c4b4cd2 3042resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3043 struct type *context_type)
14f9c5c9
AS
3044{
3045 int pc = *pos;
3046 int i;
4c4b4cd2 3047 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3048 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3049 struct value **argvec; /* Vector of operand types (alloca'ed). */
3050 int nargs; /* Number of operands. */
52ce6436 3051 int oplen;
14f9c5c9
AS
3052
3053 argvec = NULL;
3054 nargs = 0;
3055 exp = *expp;
3056
52ce6436
PH
3057 /* Pass one: resolve operands, saving their types and updating *pos,
3058 if needed. */
14f9c5c9
AS
3059 switch (op)
3060 {
4c4b4cd2
PH
3061 case OP_FUNCALL:
3062 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3063 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3064 *pos += 7;
4c4b4cd2
PH
3065 else
3066 {
3067 *pos += 3;
3068 resolve_subexp (expp, pos, 0, NULL);
3069 }
3070 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3071 break;
3072
14f9c5c9 3073 case UNOP_ADDR:
4c4b4cd2
PH
3074 *pos += 1;
3075 resolve_subexp (expp, pos, 0, NULL);
3076 break;
3077
52ce6436
PH
3078 case UNOP_QUAL:
3079 *pos += 3;
17466c1a 3080 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3081 break;
3082
52ce6436 3083 case OP_ATR_MODULUS:
4c4b4cd2
PH
3084 case OP_ATR_SIZE:
3085 case OP_ATR_TAG:
4c4b4cd2
PH
3086 case OP_ATR_FIRST:
3087 case OP_ATR_LAST:
3088 case OP_ATR_LENGTH:
3089 case OP_ATR_POS:
3090 case OP_ATR_VAL:
4c4b4cd2
PH
3091 case OP_ATR_MIN:
3092 case OP_ATR_MAX:
52ce6436
PH
3093 case TERNOP_IN_RANGE:
3094 case BINOP_IN_BOUNDS:
3095 case UNOP_IN_RANGE:
3096 case OP_AGGREGATE:
3097 case OP_OTHERS:
3098 case OP_CHOICES:
3099 case OP_POSITIONAL:
3100 case OP_DISCRETE_RANGE:
3101 case OP_NAME:
3102 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3103 *pos += oplen;
14f9c5c9
AS
3104 break;
3105
3106 case BINOP_ASSIGN:
3107 {
4c4b4cd2
PH
3108 struct value *arg1;
3109
3110 *pos += 1;
3111 arg1 = resolve_subexp (expp, pos, 0, NULL);
3112 if (arg1 == NULL)
3113 resolve_subexp (expp, pos, 1, NULL);
3114 else
df407dfe 3115 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3116 break;
14f9c5c9
AS
3117 }
3118
4c4b4cd2 3119 case UNOP_CAST:
4c4b4cd2
PH
3120 *pos += 3;
3121 nargs = 1;
3122 break;
14f9c5c9 3123
4c4b4cd2
PH
3124 case BINOP_ADD:
3125 case BINOP_SUB:
3126 case BINOP_MUL:
3127 case BINOP_DIV:
3128 case BINOP_REM:
3129 case BINOP_MOD:
3130 case BINOP_EXP:
3131 case BINOP_CONCAT:
3132 case BINOP_LOGICAL_AND:
3133 case BINOP_LOGICAL_OR:
3134 case BINOP_BITWISE_AND:
3135 case BINOP_BITWISE_IOR:
3136 case BINOP_BITWISE_XOR:
14f9c5c9 3137
4c4b4cd2
PH
3138 case BINOP_EQUAL:
3139 case BINOP_NOTEQUAL:
3140 case BINOP_LESS:
3141 case BINOP_GTR:
3142 case BINOP_LEQ:
3143 case BINOP_GEQ:
14f9c5c9 3144
4c4b4cd2
PH
3145 case BINOP_REPEAT:
3146 case BINOP_SUBSCRIPT:
3147 case BINOP_COMMA:
40c8aaa9
JB
3148 *pos += 1;
3149 nargs = 2;
3150 break;
14f9c5c9 3151
4c4b4cd2
PH
3152 case UNOP_NEG:
3153 case UNOP_PLUS:
3154 case UNOP_LOGICAL_NOT:
3155 case UNOP_ABS:
3156 case UNOP_IND:
3157 *pos += 1;
3158 nargs = 1;
3159 break;
14f9c5c9 3160
4c4b4cd2
PH
3161 case OP_LONG:
3162 case OP_DOUBLE:
3163 case OP_VAR_VALUE:
3164 *pos += 4;
3165 break;
14f9c5c9 3166
4c4b4cd2
PH
3167 case OP_TYPE:
3168 case OP_BOOL:
3169 case OP_LAST:
4c4b4cd2
PH
3170 case OP_INTERNALVAR:
3171 *pos += 3;
3172 break;
14f9c5c9 3173
4c4b4cd2
PH
3174 case UNOP_MEMVAL:
3175 *pos += 3;
3176 nargs = 1;
3177 break;
3178
67f3407f
DJ
3179 case OP_REGISTER:
3180 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3181 break;
3182
4c4b4cd2
PH
3183 case STRUCTOP_STRUCT:
3184 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3185 nargs = 1;
3186 break;
3187
4c4b4cd2 3188 case TERNOP_SLICE:
4c4b4cd2
PH
3189 *pos += 1;
3190 nargs = 3;
3191 break;
3192
52ce6436 3193 case OP_STRING:
14f9c5c9 3194 break;
4c4b4cd2
PH
3195
3196 default:
323e0a4a 3197 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3198 }
3199
76a01679 3200 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3201 for (i = 0; i < nargs; i += 1)
3202 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3203 argvec[i] = NULL;
3204 exp = *expp;
3205
3206 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3207 switch (op)
3208 {
3209 default:
3210 break;
3211
14f9c5c9 3212 case OP_VAR_VALUE:
4c4b4cd2 3213 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3214 {
3215 struct ada_symbol_info *candidates;
3216 int n_candidates;
3217
3218 n_candidates =
3219 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3220 (exp->elts[pc + 2].symbol),
3221 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3222 &candidates);
76a01679
JB
3223
3224 if (n_candidates > 1)
3225 {
3226 /* Types tend to get re-introduced locally, so if there
3227 are any local symbols that are not types, first filter
3228 out all types. */
3229 int j;
3230 for (j = 0; j < n_candidates; j += 1)
3231 switch (SYMBOL_CLASS (candidates[j].sym))
3232 {
3233 case LOC_REGISTER:
3234 case LOC_ARG:
3235 case LOC_REF_ARG:
76a01679
JB
3236 case LOC_REGPARM_ADDR:
3237 case LOC_LOCAL:
76a01679 3238 case LOC_COMPUTED:
76a01679
JB
3239 goto FoundNonType;
3240 default:
3241 break;
3242 }
3243 FoundNonType:
3244 if (j < n_candidates)
3245 {
3246 j = 0;
3247 while (j < n_candidates)
3248 {
3249 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3250 {
3251 candidates[j] = candidates[n_candidates - 1];
3252 n_candidates -= 1;
3253 }
3254 else
3255 j += 1;
3256 }
3257 }
3258 }
3259
3260 if (n_candidates == 0)
323e0a4a 3261 error (_("No definition found for %s"),
76a01679
JB
3262 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3263 else if (n_candidates == 1)
3264 i = 0;
3265 else if (deprocedure_p
3266 && !is_nonfunction (candidates, n_candidates))
3267 {
06d5cf63
JB
3268 i = ada_resolve_function
3269 (candidates, n_candidates, NULL, 0,
3270 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3271 context_type);
76a01679 3272 if (i < 0)
323e0a4a 3273 error (_("Could not find a match for %s"),
76a01679
JB
3274 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3275 }
3276 else
3277 {
323e0a4a 3278 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3279 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3280 user_select_syms (candidates, n_candidates, 1);
3281 i = 0;
3282 }
3283
3284 exp->elts[pc + 1].block = candidates[i].block;
3285 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3286 if (innermost_block == NULL
3287 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3288 innermost_block = candidates[i].block;
3289 }
3290
3291 if (deprocedure_p
3292 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3293 == TYPE_CODE_FUNC))
3294 {
3295 replace_operator_with_call (expp, pc, 0, 0,
3296 exp->elts[pc + 2].symbol,
3297 exp->elts[pc + 1].block);
3298 exp = *expp;
3299 }
14f9c5c9
AS
3300 break;
3301
3302 case OP_FUNCALL:
3303 {
4c4b4cd2 3304 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3305 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3306 {
3307 struct ada_symbol_info *candidates;
3308 int n_candidates;
3309
3310 n_candidates =
76a01679
JB
3311 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3312 (exp->elts[pc + 5].symbol),
3313 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3314 &candidates);
4c4b4cd2
PH
3315 if (n_candidates == 1)
3316 i = 0;
3317 else
3318 {
06d5cf63
JB
3319 i = ada_resolve_function
3320 (candidates, n_candidates,
3321 argvec, nargs,
3322 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3323 context_type);
4c4b4cd2 3324 if (i < 0)
323e0a4a 3325 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3326 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3327 }
3328
3329 exp->elts[pc + 4].block = candidates[i].block;
3330 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3331 if (innermost_block == NULL
3332 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3333 innermost_block = candidates[i].block;
3334 }
14f9c5c9
AS
3335 }
3336 break;
3337 case BINOP_ADD:
3338 case BINOP_SUB:
3339 case BINOP_MUL:
3340 case BINOP_DIV:
3341 case BINOP_REM:
3342 case BINOP_MOD:
3343 case BINOP_CONCAT:
3344 case BINOP_BITWISE_AND:
3345 case BINOP_BITWISE_IOR:
3346 case BINOP_BITWISE_XOR:
3347 case BINOP_EQUAL:
3348 case BINOP_NOTEQUAL:
3349 case BINOP_LESS:
3350 case BINOP_GTR:
3351 case BINOP_LEQ:
3352 case BINOP_GEQ:
3353 case BINOP_EXP:
3354 case UNOP_NEG:
3355 case UNOP_PLUS:
3356 case UNOP_LOGICAL_NOT:
3357 case UNOP_ABS:
3358 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3359 {
3360 struct ada_symbol_info *candidates;
3361 int n_candidates;
3362
3363 n_candidates =
3364 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3365 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3366 &candidates);
4c4b4cd2 3367 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3368 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3369 if (i < 0)
3370 break;
3371
76a01679
JB
3372 replace_operator_with_call (expp, pc, nargs, 1,
3373 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3374 exp = *expp;
3375 }
14f9c5c9 3376 break;
4c4b4cd2
PH
3377
3378 case OP_TYPE:
b3dbf008 3379 case OP_REGISTER:
4c4b4cd2 3380 return NULL;
14f9c5c9
AS
3381 }
3382
3383 *pos = pc;
3384 return evaluate_subexp_type (exp, pos);
3385}
3386
3387/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3388 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3389 a non-pointer. */
14f9c5c9 3390/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3391 liberal. */
14f9c5c9
AS
3392
3393static int
4dc81987 3394ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3395{
61ee279c
PH
3396 ftype = ada_check_typedef (ftype);
3397 atype = ada_check_typedef (atype);
14f9c5c9
AS
3398
3399 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3400 ftype = TYPE_TARGET_TYPE (ftype);
3401 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3402 atype = TYPE_TARGET_TYPE (atype);
3403
d2e4a39e 3404 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3405 {
3406 default:
5b3d5b7d 3407 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3408 case TYPE_CODE_PTR:
3409 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3410 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3411 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3412 else
1265e4aa
JB
3413 return (may_deref
3414 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3415 case TYPE_CODE_INT:
3416 case TYPE_CODE_ENUM:
3417 case TYPE_CODE_RANGE:
3418 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3419 {
3420 case TYPE_CODE_INT:
3421 case TYPE_CODE_ENUM:
3422 case TYPE_CODE_RANGE:
3423 return 1;
3424 default:
3425 return 0;
3426 }
14f9c5c9
AS
3427
3428 case TYPE_CODE_ARRAY:
d2e4a39e 3429 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3430 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3431
3432 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3433 if (ada_is_array_descriptor_type (ftype))
3434 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3435 || ada_is_array_descriptor_type (atype));
14f9c5c9 3436 else
4c4b4cd2
PH
3437 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3438 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3439
3440 case TYPE_CODE_UNION:
3441 case TYPE_CODE_FLT:
3442 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3443 }
3444}
3445
3446/* Return non-zero if the formals of FUNC "sufficiently match" the
3447 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3448 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3449 argument function. */
14f9c5c9
AS
3450
3451static int
d2e4a39e 3452ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3453{
3454 int i;
d2e4a39e 3455 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3456
1265e4aa
JB
3457 if (SYMBOL_CLASS (func) == LOC_CONST
3458 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3459 return (n_actuals == 0);
3460 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3461 return 0;
3462
3463 if (TYPE_NFIELDS (func_type) != n_actuals)
3464 return 0;
3465
3466 for (i = 0; i < n_actuals; i += 1)
3467 {
4c4b4cd2 3468 if (actuals[i] == NULL)
76a01679
JB
3469 return 0;
3470 else
3471 {
5b4ee69b
MS
3472 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3473 i));
df407dfe 3474 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3475
76a01679
JB
3476 if (!ada_type_match (ftype, atype, 1))
3477 return 0;
3478 }
14f9c5c9
AS
3479 }
3480 return 1;
3481}
3482
3483/* False iff function type FUNC_TYPE definitely does not produce a value
3484 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3485 FUNC_TYPE is not a valid function type with a non-null return type
3486 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3487
3488static int
d2e4a39e 3489return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3490{
d2e4a39e 3491 struct type *return_type;
14f9c5c9
AS
3492
3493 if (func_type == NULL)
3494 return 1;
3495
4c4b4cd2 3496 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3497 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3498 else
18af8284 3499 return_type = get_base_type (func_type);
14f9c5c9
AS
3500 if (return_type == NULL)
3501 return 1;
3502
18af8284 3503 context_type = get_base_type (context_type);
14f9c5c9
AS
3504
3505 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3506 return context_type == NULL || return_type == context_type;
3507 else if (context_type == NULL)
3508 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3509 else
3510 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3511}
3512
3513
4c4b4cd2 3514/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3515 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3516 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3517 that returns that type, then eliminate matches that don't. If
3518 CONTEXT_TYPE is void and there is at least one match that does not
3519 return void, eliminate all matches that do.
3520
14f9c5c9
AS
3521 Asks the user if there is more than one match remaining. Returns -1
3522 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3523 solely for messages. May re-arrange and modify SYMS in
3524 the process; the index returned is for the modified vector. */
14f9c5c9 3525
4c4b4cd2
PH
3526static int
3527ada_resolve_function (struct ada_symbol_info syms[],
3528 int nsyms, struct value **args, int nargs,
3529 const char *name, struct type *context_type)
14f9c5c9 3530{
30b15541 3531 int fallback;
14f9c5c9 3532 int k;
4c4b4cd2 3533 int m; /* Number of hits */
14f9c5c9 3534
d2e4a39e 3535 m = 0;
30b15541
UW
3536 /* In the first pass of the loop, we only accept functions matching
3537 context_type. If none are found, we add a second pass of the loop
3538 where every function is accepted. */
3539 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3540 {
3541 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3542 {
61ee279c 3543 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3544
3545 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3546 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3547 {
3548 syms[m] = syms[k];
3549 m += 1;
3550 }
3551 }
14f9c5c9
AS
3552 }
3553
3554 if (m == 0)
3555 return -1;
3556 else if (m > 1)
3557 {
323e0a4a 3558 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3559 user_select_syms (syms, m, 1);
14f9c5c9
AS
3560 return 0;
3561 }
3562 return 0;
3563}
3564
4c4b4cd2
PH
3565/* Returns true (non-zero) iff decoded name N0 should appear before N1
3566 in a listing of choices during disambiguation (see sort_choices, below).
3567 The idea is that overloadings of a subprogram name from the
3568 same package should sort in their source order. We settle for ordering
3569 such symbols by their trailing number (__N or $N). */
3570
14f9c5c9 3571static int
0d5cff50 3572encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3573{
3574 if (N1 == NULL)
3575 return 0;
3576 else if (N0 == NULL)
3577 return 1;
3578 else
3579 {
3580 int k0, k1;
5b4ee69b 3581
d2e4a39e 3582 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3583 ;
d2e4a39e 3584 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3585 ;
d2e4a39e 3586 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3587 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3588 {
3589 int n0, n1;
5b4ee69b 3590
4c4b4cd2
PH
3591 n0 = k0;
3592 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3593 n0 -= 1;
3594 n1 = k1;
3595 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3596 n1 -= 1;
3597 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3598 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3599 }
14f9c5c9
AS
3600 return (strcmp (N0, N1) < 0);
3601 }
3602}
d2e4a39e 3603
4c4b4cd2
PH
3604/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3605 encoded names. */
3606
d2e4a39e 3607static void
4c4b4cd2 3608sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3609{
4c4b4cd2 3610 int i;
5b4ee69b 3611
d2e4a39e 3612 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3613 {
4c4b4cd2 3614 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3615 int j;
3616
d2e4a39e 3617 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3618 {
3619 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3620 SYMBOL_LINKAGE_NAME (sym.sym)))
3621 break;
3622 syms[j + 1] = syms[j];
3623 }
d2e4a39e 3624 syms[j + 1] = sym;
14f9c5c9
AS
3625 }
3626}
3627
4c4b4cd2
PH
3628/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3629 by asking the user (if necessary), returning the number selected,
3630 and setting the first elements of SYMS items. Error if no symbols
3631 selected. */
14f9c5c9
AS
3632
3633/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3634 to be re-integrated one of these days. */
14f9c5c9
AS
3635
3636int
4c4b4cd2 3637user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3638{
3639 int i;
d2e4a39e 3640 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3641 int n_chosen;
3642 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3643 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3644
3645 if (max_results < 1)
323e0a4a 3646 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3647 if (nsyms <= 1)
3648 return nsyms;
3649
717d2f5a
JB
3650 if (select_mode == multiple_symbols_cancel)
3651 error (_("\
3652canceled because the command is ambiguous\n\
3653See set/show multiple-symbol."));
3654
3655 /* If select_mode is "all", then return all possible symbols.
3656 Only do that if more than one symbol can be selected, of course.
3657 Otherwise, display the menu as usual. */
3658 if (select_mode == multiple_symbols_all && max_results > 1)
3659 return nsyms;
3660
323e0a4a 3661 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3662 if (max_results > 1)
323e0a4a 3663 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3664
4c4b4cd2 3665 sort_choices (syms, nsyms);
14f9c5c9
AS
3666
3667 for (i = 0; i < nsyms; i += 1)
3668 {
4c4b4cd2
PH
3669 if (syms[i].sym == NULL)
3670 continue;
3671
3672 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3673 {
76a01679
JB
3674 struct symtab_and_line sal =
3675 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3676
323e0a4a
AC
3677 if (sal.symtab == NULL)
3678 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3679 i + first_choice,
3680 SYMBOL_PRINT_NAME (syms[i].sym),
3681 sal.line);
3682 else
3683 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3684 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3685 symtab_to_filename_for_display (sal.symtab),
3686 sal.line);
4c4b4cd2
PH
3687 continue;
3688 }
d2e4a39e 3689 else
4c4b4cd2
PH
3690 {
3691 int is_enumeral =
3692 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3693 && SYMBOL_TYPE (syms[i].sym) != NULL
3694 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3695 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3696
3697 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3698 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3699 i + first_choice,
3700 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3701 symtab_to_filename_for_display (symtab),
3702 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3703 else if (is_enumeral
3704 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3705 {
a3f17187 3706 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3707 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3708 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3709 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3710 SYMBOL_PRINT_NAME (syms[i].sym));
3711 }
3712 else if (symtab != NULL)
3713 printf_unfiltered (is_enumeral
323e0a4a
AC
3714 ? _("[%d] %s in %s (enumeral)\n")
3715 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3716 i + first_choice,
3717 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3718 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3719 else
3720 printf_unfiltered (is_enumeral
323e0a4a
AC
3721 ? _("[%d] %s (enumeral)\n")
3722 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3723 i + first_choice,
3724 SYMBOL_PRINT_NAME (syms[i].sym));
3725 }
14f9c5c9 3726 }
d2e4a39e 3727
14f9c5c9 3728 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3729 "overload-choice");
14f9c5c9
AS
3730
3731 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3732 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3733
3734 return n_chosen;
3735}
3736
3737/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3738 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3739 order in CHOICES[0 .. N-1], and return N.
3740
3741 The user types choices as a sequence of numbers on one line
3742 separated by blanks, encoding them as follows:
3743
4c4b4cd2 3744 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3745 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3746 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3747
4c4b4cd2 3748 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3749
3750 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3751 prompts (for use with the -f switch). */
14f9c5c9
AS
3752
3753int
d2e4a39e 3754get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3755 int is_all_choice, char *annotation_suffix)
14f9c5c9 3756{
d2e4a39e 3757 char *args;
0bcd0149 3758 char *prompt;
14f9c5c9
AS
3759 int n_chosen;
3760 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3761
14f9c5c9
AS
3762 prompt = getenv ("PS2");
3763 if (prompt == NULL)
0bcd0149 3764 prompt = "> ";
14f9c5c9 3765
0bcd0149 3766 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3767
14f9c5c9 3768 if (args == NULL)
323e0a4a 3769 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3770
3771 n_chosen = 0;
76a01679 3772
4c4b4cd2
PH
3773 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3774 order, as given in args. Choices are validated. */
14f9c5c9
AS
3775 while (1)
3776 {
d2e4a39e 3777 char *args2;
14f9c5c9
AS
3778 int choice, j;
3779
0fcd72ba 3780 args = skip_spaces (args);
14f9c5c9 3781 if (*args == '\0' && n_chosen == 0)
323e0a4a 3782 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3783 else if (*args == '\0')
4c4b4cd2 3784 break;
14f9c5c9
AS
3785
3786 choice = strtol (args, &args2, 10);
d2e4a39e 3787 if (args == args2 || choice < 0
4c4b4cd2 3788 || choice > n_choices + first_choice - 1)
323e0a4a 3789 error (_("Argument must be choice number"));
14f9c5c9
AS
3790 args = args2;
3791
d2e4a39e 3792 if (choice == 0)
323e0a4a 3793 error (_("cancelled"));
14f9c5c9
AS
3794
3795 if (choice < first_choice)
4c4b4cd2
PH
3796 {
3797 n_chosen = n_choices;
3798 for (j = 0; j < n_choices; j += 1)
3799 choices[j] = j;
3800 break;
3801 }
14f9c5c9
AS
3802 choice -= first_choice;
3803
d2e4a39e 3804 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3805 {
3806 }
14f9c5c9
AS
3807
3808 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3809 {
3810 int k;
5b4ee69b 3811
4c4b4cd2
PH
3812 for (k = n_chosen - 1; k > j; k -= 1)
3813 choices[k + 1] = choices[k];
3814 choices[j + 1] = choice;
3815 n_chosen += 1;
3816 }
14f9c5c9
AS
3817 }
3818
3819 if (n_chosen > max_results)
323e0a4a 3820 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3821
14f9c5c9
AS
3822 return n_chosen;
3823}
3824
4c4b4cd2
PH
3825/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3826 on the function identified by SYM and BLOCK, and taking NARGS
3827 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3828
3829static void
d2e4a39e 3830replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3831 int oplen, struct symbol *sym,
270140bd 3832 const struct block *block)
14f9c5c9
AS
3833{
3834 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3835 symbol, -oplen for operator being replaced). */
d2e4a39e 3836 struct expression *newexp = (struct expression *)
8c1a34e7 3837 xzalloc (sizeof (struct expression)
4c4b4cd2 3838 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3839 struct expression *exp = *expp;
14f9c5c9
AS
3840
3841 newexp->nelts = exp->nelts + 7 - oplen;
3842 newexp->language_defn = exp->language_defn;
3489610d 3843 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3844 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3845 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3846 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3847
3848 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3849 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3850
3851 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3852 newexp->elts[pc + 4].block = block;
3853 newexp->elts[pc + 5].symbol = sym;
3854
3855 *expp = newexp;
aacb1f0a 3856 xfree (exp);
d2e4a39e 3857}
14f9c5c9
AS
3858
3859/* Type-class predicates */
3860
4c4b4cd2
PH
3861/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3862 or FLOAT). */
14f9c5c9
AS
3863
3864static int
d2e4a39e 3865numeric_type_p (struct type *type)
14f9c5c9
AS
3866{
3867 if (type == NULL)
3868 return 0;
d2e4a39e
AS
3869 else
3870 {
3871 switch (TYPE_CODE (type))
4c4b4cd2
PH
3872 {
3873 case TYPE_CODE_INT:
3874 case TYPE_CODE_FLT:
3875 return 1;
3876 case TYPE_CODE_RANGE:
3877 return (type == TYPE_TARGET_TYPE (type)
3878 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3879 default:
3880 return 0;
3881 }
d2e4a39e 3882 }
14f9c5c9
AS
3883}
3884
4c4b4cd2 3885/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3886
3887static int
d2e4a39e 3888integer_type_p (struct type *type)
14f9c5c9
AS
3889{
3890 if (type == NULL)
3891 return 0;
d2e4a39e
AS
3892 else
3893 {
3894 switch (TYPE_CODE (type))
4c4b4cd2
PH
3895 {
3896 case TYPE_CODE_INT:
3897 return 1;
3898 case TYPE_CODE_RANGE:
3899 return (type == TYPE_TARGET_TYPE (type)
3900 || integer_type_p (TYPE_TARGET_TYPE (type)));
3901 default:
3902 return 0;
3903 }
d2e4a39e 3904 }
14f9c5c9
AS
3905}
3906
4c4b4cd2 3907/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3908
3909static int
d2e4a39e 3910scalar_type_p (struct type *type)
14f9c5c9
AS
3911{
3912 if (type == NULL)
3913 return 0;
d2e4a39e
AS
3914 else
3915 {
3916 switch (TYPE_CODE (type))
4c4b4cd2
PH
3917 {
3918 case TYPE_CODE_INT:
3919 case TYPE_CODE_RANGE:
3920 case TYPE_CODE_ENUM:
3921 case TYPE_CODE_FLT:
3922 return 1;
3923 default:
3924 return 0;
3925 }
d2e4a39e 3926 }
14f9c5c9
AS
3927}
3928
4c4b4cd2 3929/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3930
3931static int
d2e4a39e 3932discrete_type_p (struct type *type)
14f9c5c9
AS
3933{
3934 if (type == NULL)
3935 return 0;
d2e4a39e
AS
3936 else
3937 {
3938 switch (TYPE_CODE (type))
4c4b4cd2
PH
3939 {
3940 case TYPE_CODE_INT:
3941 case TYPE_CODE_RANGE:
3942 case TYPE_CODE_ENUM:
872f0337 3943 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3944 return 1;
3945 default:
3946 return 0;
3947 }
d2e4a39e 3948 }
14f9c5c9
AS
3949}
3950
4c4b4cd2
PH
3951/* Returns non-zero if OP with operands in the vector ARGS could be
3952 a user-defined function. Errs on the side of pre-defined operators
3953 (i.e., result 0). */
14f9c5c9
AS
3954
3955static int
d2e4a39e 3956possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3957{
76a01679 3958 struct type *type0 =
df407dfe 3959 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3960 struct type *type1 =
df407dfe 3961 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3962
4c4b4cd2
PH
3963 if (type0 == NULL)
3964 return 0;
3965
14f9c5c9
AS
3966 switch (op)
3967 {
3968 default:
3969 return 0;
3970
3971 case BINOP_ADD:
3972 case BINOP_SUB:
3973 case BINOP_MUL:
3974 case BINOP_DIV:
d2e4a39e 3975 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3976
3977 case BINOP_REM:
3978 case BINOP_MOD:
3979 case BINOP_BITWISE_AND:
3980 case BINOP_BITWISE_IOR:
3981 case BINOP_BITWISE_XOR:
d2e4a39e 3982 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3983
3984 case BINOP_EQUAL:
3985 case BINOP_NOTEQUAL:
3986 case BINOP_LESS:
3987 case BINOP_GTR:
3988 case BINOP_LEQ:
3989 case BINOP_GEQ:
d2e4a39e 3990 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3991
3992 case BINOP_CONCAT:
ee90b9ab 3993 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3994
3995 case BINOP_EXP:
d2e4a39e 3996 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3997
3998 case UNOP_NEG:
3999 case UNOP_PLUS:
4000 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4001 case UNOP_ABS:
4002 return (!numeric_type_p (type0));
14f9c5c9
AS
4003
4004 }
4005}
4006\f
4c4b4cd2 4007 /* Renaming */
14f9c5c9 4008
aeb5907d
JB
4009/* NOTES:
4010
4011 1. In the following, we assume that a renaming type's name may
4012 have an ___XD suffix. It would be nice if this went away at some
4013 point.
4014 2. We handle both the (old) purely type-based representation of
4015 renamings and the (new) variable-based encoding. At some point,
4016 it is devoutly to be hoped that the former goes away
4017 (FIXME: hilfinger-2007-07-09).
4018 3. Subprogram renamings are not implemented, although the XRS
4019 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4020
4021/* If SYM encodes a renaming,
4022
4023 <renaming> renames <renamed entity>,
4024
4025 sets *LEN to the length of the renamed entity's name,
4026 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4027 the string describing the subcomponent selected from the renamed
0963b4bd 4028 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4029 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4030 are undefined). Otherwise, returns a value indicating the category
4031 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4032 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4033 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4034 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4035 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4036 may be NULL, in which case they are not assigned.
4037
4038 [Currently, however, GCC does not generate subprogram renamings.] */
4039
4040enum ada_renaming_category
4041ada_parse_renaming (struct symbol *sym,
4042 const char **renamed_entity, int *len,
4043 const char **renaming_expr)
4044{
4045 enum ada_renaming_category kind;
4046 const char *info;
4047 const char *suffix;
4048
4049 if (sym == NULL)
4050 return ADA_NOT_RENAMING;
4051 switch (SYMBOL_CLASS (sym))
14f9c5c9 4052 {
aeb5907d
JB
4053 default:
4054 return ADA_NOT_RENAMING;
4055 case LOC_TYPEDEF:
4056 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4057 renamed_entity, len, renaming_expr);
4058 case LOC_LOCAL:
4059 case LOC_STATIC:
4060 case LOC_COMPUTED:
4061 case LOC_OPTIMIZED_OUT:
4062 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4063 if (info == NULL)
4064 return ADA_NOT_RENAMING;
4065 switch (info[5])
4066 {
4067 case '_':
4068 kind = ADA_OBJECT_RENAMING;
4069 info += 6;
4070 break;
4071 case 'E':
4072 kind = ADA_EXCEPTION_RENAMING;
4073 info += 7;
4074 break;
4075 case 'P':
4076 kind = ADA_PACKAGE_RENAMING;
4077 info += 7;
4078 break;
4079 case 'S':
4080 kind = ADA_SUBPROGRAM_RENAMING;
4081 info += 7;
4082 break;
4083 default:
4084 return ADA_NOT_RENAMING;
4085 }
14f9c5c9 4086 }
4c4b4cd2 4087
aeb5907d
JB
4088 if (renamed_entity != NULL)
4089 *renamed_entity = info;
4090 suffix = strstr (info, "___XE");
4091 if (suffix == NULL || suffix == info)
4092 return ADA_NOT_RENAMING;
4093 if (len != NULL)
4094 *len = strlen (info) - strlen (suffix);
4095 suffix += 5;
4096 if (renaming_expr != NULL)
4097 *renaming_expr = suffix;
4098 return kind;
4099}
4100
4101/* Assuming TYPE encodes a renaming according to the old encoding in
4102 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4103 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4104 ADA_NOT_RENAMING otherwise. */
4105static enum ada_renaming_category
4106parse_old_style_renaming (struct type *type,
4107 const char **renamed_entity, int *len,
4108 const char **renaming_expr)
4109{
4110 enum ada_renaming_category kind;
4111 const char *name;
4112 const char *info;
4113 const char *suffix;
14f9c5c9 4114
aeb5907d
JB
4115 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4116 || TYPE_NFIELDS (type) != 1)
4117 return ADA_NOT_RENAMING;
14f9c5c9 4118
aeb5907d
JB
4119 name = type_name_no_tag (type);
4120 if (name == NULL)
4121 return ADA_NOT_RENAMING;
4122
4123 name = strstr (name, "___XR");
4124 if (name == NULL)
4125 return ADA_NOT_RENAMING;
4126 switch (name[5])
4127 {
4128 case '\0':
4129 case '_':
4130 kind = ADA_OBJECT_RENAMING;
4131 break;
4132 case 'E':
4133 kind = ADA_EXCEPTION_RENAMING;
4134 break;
4135 case 'P':
4136 kind = ADA_PACKAGE_RENAMING;
4137 break;
4138 case 'S':
4139 kind = ADA_SUBPROGRAM_RENAMING;
4140 break;
4141 default:
4142 return ADA_NOT_RENAMING;
4143 }
14f9c5c9 4144
aeb5907d
JB
4145 info = TYPE_FIELD_NAME (type, 0);
4146 if (info == NULL)
4147 return ADA_NOT_RENAMING;
4148 if (renamed_entity != NULL)
4149 *renamed_entity = info;
4150 suffix = strstr (info, "___XE");
4151 if (renaming_expr != NULL)
4152 *renaming_expr = suffix + 5;
4153 if (suffix == NULL || suffix == info)
4154 return ADA_NOT_RENAMING;
4155 if (len != NULL)
4156 *len = suffix - info;
4157 return kind;
a5ee536b
JB
4158}
4159
4160/* Compute the value of the given RENAMING_SYM, which is expected to
4161 be a symbol encoding a renaming expression. BLOCK is the block
4162 used to evaluate the renaming. */
52ce6436 4163
a5ee536b
JB
4164static struct value *
4165ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4166 const struct block *block)
a5ee536b 4167{
bbc13ae3 4168 const char *sym_name;
a5ee536b
JB
4169 struct expression *expr;
4170 struct value *value;
4171 struct cleanup *old_chain = NULL;
4172
bbc13ae3 4173 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4174 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4175 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4176 value = evaluate_expression (expr);
4177
4178 do_cleanups (old_chain);
4179 return value;
4180}
14f9c5c9 4181\f
d2e4a39e 4182
4c4b4cd2 4183 /* Evaluation: Function Calls */
14f9c5c9 4184
4c4b4cd2 4185/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4186 lvalues, and otherwise has the side-effect of allocating memory
4187 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4188
d2e4a39e 4189static struct value *
40bc484c 4190ensure_lval (struct value *val)
14f9c5c9 4191{
40bc484c
JB
4192 if (VALUE_LVAL (val) == not_lval
4193 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4194 {
df407dfe 4195 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4196 const CORE_ADDR addr =
4197 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4198
40bc484c 4199 set_value_address (val, addr);
a84a8a0d 4200 VALUE_LVAL (val) = lval_memory;
40bc484c 4201 write_memory (addr, value_contents (val), len);
c3e5cd34 4202 }
14f9c5c9
AS
4203
4204 return val;
4205}
4206
4207/* Return the value ACTUAL, converted to be an appropriate value for a
4208 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4209 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4210 values not residing in memory, updating it as needed. */
14f9c5c9 4211
a93c0eb6 4212struct value *
40bc484c 4213ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4214{
df407dfe 4215 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4216 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4217 struct type *formal_target =
4218 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4219 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4220 struct type *actual_target =
4221 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4222 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4223
4c4b4cd2 4224 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4225 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4226 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4227 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4228 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4229 {
a84a8a0d 4230 struct value *result;
5b4ee69b 4231
14f9c5c9 4232 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4233 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4234 result = desc_data (actual);
14f9c5c9 4235 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4236 {
4237 if (VALUE_LVAL (actual) != lval_memory)
4238 {
4239 struct value *val;
5b4ee69b 4240
df407dfe 4241 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4242 val = allocate_value (actual_type);
990a07ab 4243 memcpy ((char *) value_contents_raw (val),
0fd88904 4244 (char *) value_contents (actual),
4c4b4cd2 4245 TYPE_LENGTH (actual_type));
40bc484c 4246 actual = ensure_lval (val);
4c4b4cd2 4247 }
a84a8a0d 4248 result = value_addr (actual);
4c4b4cd2 4249 }
a84a8a0d
JB
4250 else
4251 return actual;
b1af9e97 4252 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4253 }
4254 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4255 return ada_value_ind (actual);
4256
4257 return actual;
4258}
4259
438c98a1
JB
4260/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4261 type TYPE. This is usually an inefficient no-op except on some targets
4262 (such as AVR) where the representation of a pointer and an address
4263 differs. */
4264
4265static CORE_ADDR
4266value_pointer (struct value *value, struct type *type)
4267{
4268 struct gdbarch *gdbarch = get_type_arch (type);
4269 unsigned len = TYPE_LENGTH (type);
4270 gdb_byte *buf = alloca (len);
4271 CORE_ADDR addr;
4272
4273 addr = value_address (value);
4274 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4275 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4276 return addr;
4277}
4278
14f9c5c9 4279
4c4b4cd2
PH
4280/* Push a descriptor of type TYPE for array value ARR on the stack at
4281 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4282 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4283 to-descriptor type rather than a descriptor type), a struct value *
4284 representing a pointer to this descriptor. */
14f9c5c9 4285
d2e4a39e 4286static struct value *
40bc484c 4287make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4288{
d2e4a39e
AS
4289 struct type *bounds_type = desc_bounds_type (type);
4290 struct type *desc_type = desc_base_type (type);
4291 struct value *descriptor = allocate_value (desc_type);
4292 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4293 int i;
d2e4a39e 4294
0963b4bd
MS
4295 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4296 i > 0; i -= 1)
14f9c5c9 4297 {
19f220c3
JK
4298 modify_field (value_type (bounds), value_contents_writeable (bounds),
4299 ada_array_bound (arr, i, 0),
4300 desc_bound_bitpos (bounds_type, i, 0),
4301 desc_bound_bitsize (bounds_type, i, 0));
4302 modify_field (value_type (bounds), value_contents_writeable (bounds),
4303 ada_array_bound (arr, i, 1),
4304 desc_bound_bitpos (bounds_type, i, 1),
4305 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4306 }
d2e4a39e 4307
40bc484c 4308 bounds = ensure_lval (bounds);
d2e4a39e 4309
19f220c3
JK
4310 modify_field (value_type (descriptor),
4311 value_contents_writeable (descriptor),
4312 value_pointer (ensure_lval (arr),
4313 TYPE_FIELD_TYPE (desc_type, 0)),
4314 fat_pntr_data_bitpos (desc_type),
4315 fat_pntr_data_bitsize (desc_type));
4316
4317 modify_field (value_type (descriptor),
4318 value_contents_writeable (descriptor),
4319 value_pointer (bounds,
4320 TYPE_FIELD_TYPE (desc_type, 1)),
4321 fat_pntr_bounds_bitpos (desc_type),
4322 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4323
40bc484c 4324 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4325
4326 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4327 return value_addr (descriptor);
4328 else
4329 return descriptor;
4330}
14f9c5c9 4331\f
3d9434b5
JB
4332 /* Symbol Cache Module */
4333
3d9434b5 4334/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4335 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4336 on the type of entity being printed, the cache can make it as much
4337 as an order of magnitude faster than without it.
4338
4339 The descriptive type DWARF extension has significantly reduced
4340 the need for this cache, at least when DWARF is being used. However,
4341 even in this case, some expensive name-based symbol searches are still
4342 sometimes necessary - to find an XVZ variable, mostly. */
4343
ee01b665 4344/* Initialize the contents of SYM_CACHE. */
3d9434b5 4345
ee01b665
JB
4346static void
4347ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4348{
4349 obstack_init (&sym_cache->cache_space);
4350 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4351}
3d9434b5 4352
ee01b665
JB
4353/* Free the memory used by SYM_CACHE. */
4354
4355static void
4356ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4357{
ee01b665
JB
4358 obstack_free (&sym_cache->cache_space, NULL);
4359 xfree (sym_cache);
4360}
3d9434b5 4361
ee01b665
JB
4362/* Return the symbol cache associated to the given program space PSPACE.
4363 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4364
ee01b665
JB
4365static struct ada_symbol_cache *
4366ada_get_symbol_cache (struct program_space *pspace)
4367{
4368 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4369 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4370
4371 if (sym_cache == NULL)
4372 {
4373 sym_cache = XCNEW (struct ada_symbol_cache);
4374 ada_init_symbol_cache (sym_cache);
4375 }
4376
4377 return sym_cache;
4378}
3d9434b5
JB
4379
4380/* Clear all entries from the symbol cache. */
4381
4382static void
4383ada_clear_symbol_cache (void)
4384{
ee01b665
JB
4385 struct ada_symbol_cache *sym_cache
4386 = ada_get_symbol_cache (current_program_space);
4387
4388 obstack_free (&sym_cache->cache_space, NULL);
4389 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4390}
4391
4392/* Search our cache for an entry matching NAME and NAMESPACE.
4393 Return it if found, or NULL otherwise. */
4394
4395static struct cache_entry **
4396find_entry (const char *name, domain_enum namespace)
4397{
ee01b665
JB
4398 struct ada_symbol_cache *sym_cache
4399 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4400 int h = msymbol_hash (name) % HASH_SIZE;
4401 struct cache_entry **e;
4402
ee01b665 4403 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5
JB
4404 {
4405 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4406 return e;
4407 }
4408 return NULL;
4409}
4410
4411/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4412 Return 1 if found, 0 otherwise.
4413
4414 If an entry was found and SYM is not NULL, set *SYM to the entry's
4415 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4416
96d887e8
PH
4417static int
4418lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4419 struct symbol **sym, const struct block **block)
96d887e8 4420{
3d9434b5
JB
4421 struct cache_entry **e = find_entry (name, namespace);
4422
4423 if (e == NULL)
4424 return 0;
4425 if (sym != NULL)
4426 *sym = (*e)->sym;
4427 if (block != NULL)
4428 *block = (*e)->block;
4429 return 1;
96d887e8
PH
4430}
4431
3d9434b5
JB
4432/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4433 in domain NAMESPACE, save this result in our symbol cache. */
4434
96d887e8
PH
4435static void
4436cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4437 const struct block *block)
96d887e8 4438{
ee01b665
JB
4439 struct ada_symbol_cache *sym_cache
4440 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4441 int h;
4442 char *copy;
4443 struct cache_entry *e;
4444
4445 /* If the symbol is a local symbol, then do not cache it, as a search
4446 for that symbol depends on the context. To determine whether
4447 the symbol is local or not, we check the block where we found it
4448 against the global and static blocks of its associated symtab. */
4449 if (sym
4450 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4451 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4452 return;
4453
4454 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4455 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4456 sizeof (*e));
4457 e->next = sym_cache->root[h];
4458 sym_cache->root[h] = e;
4459 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4460 strcpy (copy, name);
4461 e->sym = sym;
4462 e->namespace = namespace;
4463 e->block = block;
96d887e8 4464}
4c4b4cd2
PH
4465\f
4466 /* Symbol Lookup */
4467
c0431670
JB
4468/* Return nonzero if wild matching should be used when searching for
4469 all symbols matching LOOKUP_NAME.
4470
4471 LOOKUP_NAME is expected to be a symbol name after transformation
4472 for Ada lookups (see ada_name_for_lookup). */
4473
4474static int
4475should_use_wild_match (const char *lookup_name)
4476{
4477 return (strstr (lookup_name, "__") == NULL);
4478}
4479
4c4b4cd2
PH
4480/* Return the result of a standard (literal, C-like) lookup of NAME in
4481 given DOMAIN, visible from lexical block BLOCK. */
4482
4483static struct symbol *
4484standard_lookup (const char *name, const struct block *block,
4485 domain_enum domain)
4486{
acbd605d
MGD
4487 /* Initialize it just to avoid a GCC false warning. */
4488 struct symbol *sym = NULL;
4c4b4cd2 4489
2570f2b7 4490 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4491 return sym;
2570f2b7
UW
4492 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4493 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4494 return sym;
4495}
4496
4497
4498/* Non-zero iff there is at least one non-function/non-enumeral symbol
4499 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4500 since they contend in overloading in the same way. */
4501static int
4502is_nonfunction (struct ada_symbol_info syms[], int n)
4503{
4504 int i;
4505
4506 for (i = 0; i < n; i += 1)
4507 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4508 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4509 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4510 return 1;
4511
4512 return 0;
4513}
4514
4515/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4516 struct types. Otherwise, they may not. */
14f9c5c9
AS
4517
4518static int
d2e4a39e 4519equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4520{
d2e4a39e 4521 if (type0 == type1)
14f9c5c9 4522 return 1;
d2e4a39e 4523 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4524 || TYPE_CODE (type0) != TYPE_CODE (type1))
4525 return 0;
d2e4a39e 4526 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4527 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4528 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4529 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4530 return 1;
d2e4a39e 4531
14f9c5c9
AS
4532 return 0;
4533}
4534
4535/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4536 no more defined than that of SYM1. */
14f9c5c9
AS
4537
4538static int
d2e4a39e 4539lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4540{
4541 if (sym0 == sym1)
4542 return 1;
176620f1 4543 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4544 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4545 return 0;
4546
d2e4a39e 4547 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4548 {
4549 case LOC_UNDEF:
4550 return 1;
4551 case LOC_TYPEDEF:
4552 {
4c4b4cd2
PH
4553 struct type *type0 = SYMBOL_TYPE (sym0);
4554 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4555 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4556 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4557 int len0 = strlen (name0);
5b4ee69b 4558
4c4b4cd2
PH
4559 return
4560 TYPE_CODE (type0) == TYPE_CODE (type1)
4561 && (equiv_types (type0, type1)
4562 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4563 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4564 }
4565 case LOC_CONST:
4566 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4567 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4568 default:
4569 return 0;
14f9c5c9
AS
4570 }
4571}
4572
4c4b4cd2
PH
4573/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4574 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4575
4576static void
76a01679
JB
4577add_defn_to_vec (struct obstack *obstackp,
4578 struct symbol *sym,
f0c5f9b2 4579 const struct block *block)
14f9c5c9
AS
4580{
4581 int i;
4c4b4cd2 4582 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4583
529cad9c
PH
4584 /* Do not try to complete stub types, as the debugger is probably
4585 already scanning all symbols matching a certain name at the
4586 time when this function is called. Trying to replace the stub
4587 type by its associated full type will cause us to restart a scan
4588 which may lead to an infinite recursion. Instead, the client
4589 collecting the matching symbols will end up collecting several
4590 matches, with at least one of them complete. It can then filter
4591 out the stub ones if needed. */
4592
4c4b4cd2
PH
4593 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4594 {
4595 if (lesseq_defined_than (sym, prevDefns[i].sym))
4596 return;
4597 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4598 {
4599 prevDefns[i].sym = sym;
4600 prevDefns[i].block = block;
4c4b4cd2 4601 return;
76a01679 4602 }
4c4b4cd2
PH
4603 }
4604
4605 {
4606 struct ada_symbol_info info;
4607
4608 info.sym = sym;
4609 info.block = block;
4c4b4cd2
PH
4610 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4611 }
4612}
4613
4614/* Number of ada_symbol_info structures currently collected in
4615 current vector in *OBSTACKP. */
4616
76a01679
JB
4617static int
4618num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4619{
4620 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4621}
4622
4623/* Vector of ada_symbol_info structures currently collected in current
4624 vector in *OBSTACKP. If FINISH, close off the vector and return
4625 its final address. */
4626
76a01679 4627static struct ada_symbol_info *
4c4b4cd2
PH
4628defns_collected (struct obstack *obstackp, int finish)
4629{
4630 if (finish)
4631 return obstack_finish (obstackp);
4632 else
4633 return (struct ada_symbol_info *) obstack_base (obstackp);
4634}
4635
7c7b6655
TT
4636/* Return a bound minimal symbol matching NAME according to Ada
4637 decoding rules. Returns an invalid symbol if there is no such
4638 minimal symbol. Names prefixed with "standard__" are handled
4639 specially: "standard__" is first stripped off, and only static and
4640 global symbols are searched. */
4c4b4cd2 4641
7c7b6655 4642struct bound_minimal_symbol
96d887e8 4643ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4644{
7c7b6655 4645 struct bound_minimal_symbol result;
4c4b4cd2 4646 struct objfile *objfile;
96d887e8 4647 struct minimal_symbol *msymbol;
dc4024cd 4648 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4649
7c7b6655
TT
4650 memset (&result, 0, sizeof (result));
4651
c0431670
JB
4652 /* Special case: If the user specifies a symbol name inside package
4653 Standard, do a non-wild matching of the symbol name without
4654 the "standard__" prefix. This was primarily introduced in order
4655 to allow the user to specifically access the standard exceptions
4656 using, for instance, Standard.Constraint_Error when Constraint_Error
4657 is ambiguous (due to the user defining its own Constraint_Error
4658 entity inside its program). */
96d887e8 4659 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4660 name += sizeof ("standard__") - 1;
4c4b4cd2 4661
96d887e8
PH
4662 ALL_MSYMBOLS (objfile, msymbol)
4663 {
efd66ac6 4664 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4665 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4666 {
4667 result.minsym = msymbol;
4668 result.objfile = objfile;
4669 break;
4670 }
96d887e8 4671 }
4c4b4cd2 4672
7c7b6655 4673 return result;
96d887e8 4674}
4c4b4cd2 4675
96d887e8
PH
4676/* For all subprograms that statically enclose the subprogram of the
4677 selected frame, add symbols matching identifier NAME in DOMAIN
4678 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4679 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4680 with a wildcard prefix. */
4c4b4cd2 4681
96d887e8
PH
4682static void
4683add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4684 const char *name, domain_enum namespace,
48b78332 4685 int wild_match_p)
96d887e8 4686{
96d887e8 4687}
14f9c5c9 4688
96d887e8
PH
4689/* True if TYPE is definitely an artificial type supplied to a symbol
4690 for which no debugging information was given in the symbol file. */
14f9c5c9 4691
96d887e8
PH
4692static int
4693is_nondebugging_type (struct type *type)
4694{
0d5cff50 4695 const char *name = ada_type_name (type);
5b4ee69b 4696
96d887e8
PH
4697 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4698}
4c4b4cd2 4699
8f17729f
JB
4700/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4701 that are deemed "identical" for practical purposes.
4702
4703 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4704 types and that their number of enumerals is identical (in other
4705 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4706
4707static int
4708ada_identical_enum_types_p (struct type *type1, struct type *type2)
4709{
4710 int i;
4711
4712 /* The heuristic we use here is fairly conservative. We consider
4713 that 2 enumerate types are identical if they have the same
4714 number of enumerals and that all enumerals have the same
4715 underlying value and name. */
4716
4717 /* All enums in the type should have an identical underlying value. */
4718 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4719 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4720 return 0;
4721
4722 /* All enumerals should also have the same name (modulo any numerical
4723 suffix). */
4724 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4725 {
0d5cff50
DE
4726 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4727 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4728 int len_1 = strlen (name_1);
4729 int len_2 = strlen (name_2);
4730
4731 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4732 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4733 if (len_1 != len_2
4734 || strncmp (TYPE_FIELD_NAME (type1, i),
4735 TYPE_FIELD_NAME (type2, i),
4736 len_1) != 0)
4737 return 0;
4738 }
4739
4740 return 1;
4741}
4742
4743/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4744 that are deemed "identical" for practical purposes. Sometimes,
4745 enumerals are not strictly identical, but their types are so similar
4746 that they can be considered identical.
4747
4748 For instance, consider the following code:
4749
4750 type Color is (Black, Red, Green, Blue, White);
4751 type RGB_Color is new Color range Red .. Blue;
4752
4753 Type RGB_Color is a subrange of an implicit type which is a copy
4754 of type Color. If we call that implicit type RGB_ColorB ("B" is
4755 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4756 As a result, when an expression references any of the enumeral
4757 by name (Eg. "print green"), the expression is technically
4758 ambiguous and the user should be asked to disambiguate. But
4759 doing so would only hinder the user, since it wouldn't matter
4760 what choice he makes, the outcome would always be the same.
4761 So, for practical purposes, we consider them as the same. */
4762
4763static int
4764symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4765{
4766 int i;
4767
4768 /* Before performing a thorough comparison check of each type,
4769 we perform a series of inexpensive checks. We expect that these
4770 checks will quickly fail in the vast majority of cases, and thus
4771 help prevent the unnecessary use of a more expensive comparison.
4772 Said comparison also expects us to make some of these checks
4773 (see ada_identical_enum_types_p). */
4774
4775 /* Quick check: All symbols should have an enum type. */
4776 for (i = 0; i < nsyms; i++)
4777 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4778 return 0;
4779
4780 /* Quick check: They should all have the same value. */
4781 for (i = 1; i < nsyms; i++)
4782 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4783 return 0;
4784
4785 /* Quick check: They should all have the same number of enumerals. */
4786 for (i = 1; i < nsyms; i++)
4787 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4788 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4789 return 0;
4790
4791 /* All the sanity checks passed, so we might have a set of
4792 identical enumeration types. Perform a more complete
4793 comparison of the type of each symbol. */
4794 for (i = 1; i < nsyms; i++)
4795 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4796 SYMBOL_TYPE (syms[0].sym)))
4797 return 0;
4798
4799 return 1;
4800}
4801
96d887e8
PH
4802/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4803 duplicate other symbols in the list (The only case I know of where
4804 this happens is when object files containing stabs-in-ecoff are
4805 linked with files containing ordinary ecoff debugging symbols (or no
4806 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4807 Returns the number of items in the modified list. */
4c4b4cd2 4808
96d887e8
PH
4809static int
4810remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4811{
4812 int i, j;
4c4b4cd2 4813
8f17729f
JB
4814 /* We should never be called with less than 2 symbols, as there
4815 cannot be any extra symbol in that case. But it's easy to
4816 handle, since we have nothing to do in that case. */
4817 if (nsyms < 2)
4818 return nsyms;
4819
96d887e8
PH
4820 i = 0;
4821 while (i < nsyms)
4822 {
a35ddb44 4823 int remove_p = 0;
339c13b6
JB
4824
4825 /* If two symbols have the same name and one of them is a stub type,
4826 the get rid of the stub. */
4827
4828 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4829 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4830 {
4831 for (j = 0; j < nsyms; j++)
4832 {
4833 if (j != i
4834 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4835 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4836 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4837 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4838 remove_p = 1;
339c13b6
JB
4839 }
4840 }
4841
4842 /* Two symbols with the same name, same class and same address
4843 should be identical. */
4844
4845 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4846 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4847 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4848 {
4849 for (j = 0; j < nsyms; j += 1)
4850 {
4851 if (i != j
4852 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4853 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4854 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4855 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4856 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4857 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4858 remove_p = 1;
4c4b4cd2 4859 }
4c4b4cd2 4860 }
339c13b6 4861
a35ddb44 4862 if (remove_p)
339c13b6
JB
4863 {
4864 for (j = i + 1; j < nsyms; j += 1)
4865 syms[j - 1] = syms[j];
4866 nsyms -= 1;
4867 }
4868
96d887e8 4869 i += 1;
14f9c5c9 4870 }
8f17729f
JB
4871
4872 /* If all the remaining symbols are identical enumerals, then
4873 just keep the first one and discard the rest.
4874
4875 Unlike what we did previously, we do not discard any entry
4876 unless they are ALL identical. This is because the symbol
4877 comparison is not a strict comparison, but rather a practical
4878 comparison. If all symbols are considered identical, then
4879 we can just go ahead and use the first one and discard the rest.
4880 But if we cannot reduce the list to a single element, we have
4881 to ask the user to disambiguate anyways. And if we have to
4882 present a multiple-choice menu, it's less confusing if the list
4883 isn't missing some choices that were identical and yet distinct. */
4884 if (symbols_are_identical_enums (syms, nsyms))
4885 nsyms = 1;
4886
96d887e8 4887 return nsyms;
14f9c5c9
AS
4888}
4889
96d887e8
PH
4890/* Given a type that corresponds to a renaming entity, use the type name
4891 to extract the scope (package name or function name, fully qualified,
4892 and following the GNAT encoding convention) where this renaming has been
4893 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4894
96d887e8
PH
4895static char *
4896xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4897{
96d887e8 4898 /* The renaming types adhere to the following convention:
0963b4bd 4899 <scope>__<rename>___<XR extension>.
96d887e8
PH
4900 So, to extract the scope, we search for the "___XR" extension,
4901 and then backtrack until we find the first "__". */
76a01679 4902
96d887e8
PH
4903 const char *name = type_name_no_tag (renaming_type);
4904 char *suffix = strstr (name, "___XR");
4905 char *last;
4906 int scope_len;
4907 char *scope;
14f9c5c9 4908
96d887e8
PH
4909 /* Now, backtrack a bit until we find the first "__". Start looking
4910 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4911
96d887e8
PH
4912 for (last = suffix - 3; last > name; last--)
4913 if (last[0] == '_' && last[1] == '_')
4914 break;
76a01679 4915
96d887e8 4916 /* Make a copy of scope and return it. */
14f9c5c9 4917
96d887e8
PH
4918 scope_len = last - name;
4919 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4920
96d887e8
PH
4921 strncpy (scope, name, scope_len);
4922 scope[scope_len] = '\0';
4c4b4cd2 4923
96d887e8 4924 return scope;
4c4b4cd2
PH
4925}
4926
96d887e8 4927/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4928
96d887e8
PH
4929static int
4930is_package_name (const char *name)
4c4b4cd2 4931{
96d887e8
PH
4932 /* Here, We take advantage of the fact that no symbols are generated
4933 for packages, while symbols are generated for each function.
4934 So the condition for NAME represent a package becomes equivalent
4935 to NAME not existing in our list of symbols. There is only one
4936 small complication with library-level functions (see below). */
4c4b4cd2 4937
96d887e8 4938 char *fun_name;
76a01679 4939
96d887e8
PH
4940 /* If it is a function that has not been defined at library level,
4941 then we should be able to look it up in the symbols. */
4942 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4943 return 0;
14f9c5c9 4944
96d887e8
PH
4945 /* Library-level function names start with "_ada_". See if function
4946 "_ada_" followed by NAME can be found. */
14f9c5c9 4947
96d887e8 4948 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4949 functions names cannot contain "__" in them. */
96d887e8
PH
4950 if (strstr (name, "__") != NULL)
4951 return 0;
4c4b4cd2 4952
b435e160 4953 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4954
96d887e8
PH
4955 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4956}
14f9c5c9 4957
96d887e8 4958/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4959 not visible from FUNCTION_NAME. */
14f9c5c9 4960
96d887e8 4961static int
0d5cff50 4962old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4963{
aeb5907d 4964 char *scope;
1509e573 4965 struct cleanup *old_chain;
aeb5907d
JB
4966
4967 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4968 return 0;
4969
4970 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 4971 old_chain = make_cleanup (xfree, scope);
14f9c5c9 4972
96d887e8
PH
4973 /* If the rename has been defined in a package, then it is visible. */
4974 if (is_package_name (scope))
1509e573
JB
4975 {
4976 do_cleanups (old_chain);
4977 return 0;
4978 }
14f9c5c9 4979
96d887e8
PH
4980 /* Check that the rename is in the current function scope by checking
4981 that its name starts with SCOPE. */
76a01679 4982
96d887e8
PH
4983 /* If the function name starts with "_ada_", it means that it is
4984 a library-level function. Strip this prefix before doing the
4985 comparison, as the encoding for the renaming does not contain
4986 this prefix. */
4987 if (strncmp (function_name, "_ada_", 5) == 0)
4988 function_name += 5;
f26caa11 4989
1509e573
JB
4990 {
4991 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4992
4993 do_cleanups (old_chain);
4994 return is_invisible;
4995 }
f26caa11
PH
4996}
4997
aeb5907d
JB
4998/* Remove entries from SYMS that corresponds to a renaming entity that
4999 is not visible from the function associated with CURRENT_BLOCK or
5000 that is superfluous due to the presence of more specific renaming
5001 information. Places surviving symbols in the initial entries of
5002 SYMS and returns the number of surviving symbols.
96d887e8
PH
5003
5004 Rationale:
aeb5907d
JB
5005 First, in cases where an object renaming is implemented as a
5006 reference variable, GNAT may produce both the actual reference
5007 variable and the renaming encoding. In this case, we discard the
5008 latter.
5009
5010 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5011 entity. Unfortunately, STABS currently does not support the definition
5012 of types that are local to a given lexical block, so all renamings types
5013 are emitted at library level. As a consequence, if an application
5014 contains two renaming entities using the same name, and a user tries to
5015 print the value of one of these entities, the result of the ada symbol
5016 lookup will also contain the wrong renaming type.
f26caa11 5017
96d887e8
PH
5018 This function partially covers for this limitation by attempting to
5019 remove from the SYMS list renaming symbols that should be visible
5020 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5021 method with the current information available. The implementation
5022 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5023
5024 - When the user tries to print a rename in a function while there
5025 is another rename entity defined in a package: Normally, the
5026 rename in the function has precedence over the rename in the
5027 package, so the latter should be removed from the list. This is
5028 currently not the case.
5029
5030 - This function will incorrectly remove valid renames if
5031 the CURRENT_BLOCK corresponds to a function which symbol name
5032 has been changed by an "Export" pragma. As a consequence,
5033 the user will be unable to print such rename entities. */
4c4b4cd2 5034
14f9c5c9 5035static int
aeb5907d
JB
5036remove_irrelevant_renamings (struct ada_symbol_info *syms,
5037 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5038{
5039 struct symbol *current_function;
0d5cff50 5040 const char *current_function_name;
4c4b4cd2 5041 int i;
aeb5907d
JB
5042 int is_new_style_renaming;
5043
5044 /* If there is both a renaming foo___XR... encoded as a variable and
5045 a simple variable foo in the same block, discard the latter.
0963b4bd 5046 First, zero out such symbols, then compress. */
aeb5907d
JB
5047 is_new_style_renaming = 0;
5048 for (i = 0; i < nsyms; i += 1)
5049 {
5050 struct symbol *sym = syms[i].sym;
270140bd 5051 const struct block *block = syms[i].block;
aeb5907d
JB
5052 const char *name;
5053 const char *suffix;
5054
5055 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5056 continue;
5057 name = SYMBOL_LINKAGE_NAME (sym);
5058 suffix = strstr (name, "___XR");
5059
5060 if (suffix != NULL)
5061 {
5062 int name_len = suffix - name;
5063 int j;
5b4ee69b 5064
aeb5907d
JB
5065 is_new_style_renaming = 1;
5066 for (j = 0; j < nsyms; j += 1)
5067 if (i != j && syms[j].sym != NULL
5068 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5069 name_len) == 0
5070 && block == syms[j].block)
5071 syms[j].sym = NULL;
5072 }
5073 }
5074 if (is_new_style_renaming)
5075 {
5076 int j, k;
5077
5078 for (j = k = 0; j < nsyms; j += 1)
5079 if (syms[j].sym != NULL)
5080 {
5081 syms[k] = syms[j];
5082 k += 1;
5083 }
5084 return k;
5085 }
4c4b4cd2
PH
5086
5087 /* Extract the function name associated to CURRENT_BLOCK.
5088 Abort if unable to do so. */
76a01679 5089
4c4b4cd2
PH
5090 if (current_block == NULL)
5091 return nsyms;
76a01679 5092
7f0df278 5093 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5094 if (current_function == NULL)
5095 return nsyms;
5096
5097 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5098 if (current_function_name == NULL)
5099 return nsyms;
5100
5101 /* Check each of the symbols, and remove it from the list if it is
5102 a type corresponding to a renaming that is out of the scope of
5103 the current block. */
5104
5105 i = 0;
5106 while (i < nsyms)
5107 {
aeb5907d
JB
5108 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5109 == ADA_OBJECT_RENAMING
5110 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5111 {
5112 int j;
5b4ee69b 5113
aeb5907d 5114 for (j = i + 1; j < nsyms; j += 1)
76a01679 5115 syms[j - 1] = syms[j];
4c4b4cd2
PH
5116 nsyms -= 1;
5117 }
5118 else
5119 i += 1;
5120 }
5121
5122 return nsyms;
5123}
5124
339c13b6
JB
5125/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5126 whose name and domain match NAME and DOMAIN respectively.
5127 If no match was found, then extend the search to "enclosing"
5128 routines (in other words, if we're inside a nested function,
5129 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5130 If WILD_MATCH_P is nonzero, perform the naming matching in
5131 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5132
5133 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5134
5135static void
5136ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5137 const struct block *block, domain_enum domain,
d0a8ab18 5138 int wild_match_p)
339c13b6
JB
5139{
5140 int block_depth = 0;
5141
5142 while (block != NULL)
5143 {
5144 block_depth += 1;
d0a8ab18
JB
5145 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5146 wild_match_p);
339c13b6
JB
5147
5148 /* If we found a non-function match, assume that's the one. */
5149 if (is_nonfunction (defns_collected (obstackp, 0),
5150 num_defns_collected (obstackp)))
5151 return;
5152
5153 block = BLOCK_SUPERBLOCK (block);
5154 }
5155
5156 /* If no luck so far, try to find NAME as a local symbol in some lexically
5157 enclosing subprogram. */
5158 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5159 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5160}
5161
ccefe4c4 5162/* An object of this type is used as the user_data argument when
40658b94 5163 calling the map_matching_symbols method. */
ccefe4c4 5164
40658b94 5165struct match_data
ccefe4c4 5166{
40658b94 5167 struct objfile *objfile;
ccefe4c4 5168 struct obstack *obstackp;
40658b94
PH
5169 struct symbol *arg_sym;
5170 int found_sym;
ccefe4c4
TT
5171};
5172
40658b94
PH
5173/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5174 to a list of symbols. DATA0 is a pointer to a struct match_data *
5175 containing the obstack that collects the symbol list, the file that SYM
5176 must come from, a flag indicating whether a non-argument symbol has
5177 been found in the current block, and the last argument symbol
5178 passed in SYM within the current block (if any). When SYM is null,
5179 marking the end of a block, the argument symbol is added if no
5180 other has been found. */
ccefe4c4 5181
40658b94
PH
5182static int
5183aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5184{
40658b94
PH
5185 struct match_data *data = (struct match_data *) data0;
5186
5187 if (sym == NULL)
5188 {
5189 if (!data->found_sym && data->arg_sym != NULL)
5190 add_defn_to_vec (data->obstackp,
5191 fixup_symbol_section (data->arg_sym, data->objfile),
5192 block);
5193 data->found_sym = 0;
5194 data->arg_sym = NULL;
5195 }
5196 else
5197 {
5198 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5199 return 0;
5200 else if (SYMBOL_IS_ARGUMENT (sym))
5201 data->arg_sym = sym;
5202 else
5203 {
5204 data->found_sym = 1;
5205 add_defn_to_vec (data->obstackp,
5206 fixup_symbol_section (sym, data->objfile),
5207 block);
5208 }
5209 }
5210 return 0;
5211}
5212
db230ce3
JB
5213/* Implements compare_names, but only applying the comparision using
5214 the given CASING. */
5b4ee69b 5215
40658b94 5216static int
db230ce3
JB
5217compare_names_with_case (const char *string1, const char *string2,
5218 enum case_sensitivity casing)
40658b94
PH
5219{
5220 while (*string1 != '\0' && *string2 != '\0')
5221 {
db230ce3
JB
5222 char c1, c2;
5223
40658b94
PH
5224 if (isspace (*string1) || isspace (*string2))
5225 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5226
5227 if (casing == case_sensitive_off)
5228 {
5229 c1 = tolower (*string1);
5230 c2 = tolower (*string2);
5231 }
5232 else
5233 {
5234 c1 = *string1;
5235 c2 = *string2;
5236 }
5237 if (c1 != c2)
40658b94 5238 break;
db230ce3 5239
40658b94
PH
5240 string1 += 1;
5241 string2 += 1;
5242 }
db230ce3 5243
40658b94
PH
5244 switch (*string1)
5245 {
5246 case '(':
5247 return strcmp_iw_ordered (string1, string2);
5248 case '_':
5249 if (*string2 == '\0')
5250 {
052874e8 5251 if (is_name_suffix (string1))
40658b94
PH
5252 return 0;
5253 else
1a1d5513 5254 return 1;
40658b94 5255 }
dbb8534f 5256 /* FALLTHROUGH */
40658b94
PH
5257 default:
5258 if (*string2 == '(')
5259 return strcmp_iw_ordered (string1, string2);
5260 else
db230ce3
JB
5261 {
5262 if (casing == case_sensitive_off)
5263 return tolower (*string1) - tolower (*string2);
5264 else
5265 return *string1 - *string2;
5266 }
40658b94 5267 }
ccefe4c4
TT
5268}
5269
db230ce3
JB
5270/* Compare STRING1 to STRING2, with results as for strcmp.
5271 Compatible with strcmp_iw_ordered in that...
5272
5273 strcmp_iw_ordered (STRING1, STRING2) <= 0
5274
5275 ... implies...
5276
5277 compare_names (STRING1, STRING2) <= 0
5278
5279 (they may differ as to what symbols compare equal). */
5280
5281static int
5282compare_names (const char *string1, const char *string2)
5283{
5284 int result;
5285
5286 /* Similar to what strcmp_iw_ordered does, we need to perform
5287 a case-insensitive comparison first, and only resort to
5288 a second, case-sensitive, comparison if the first one was
5289 not sufficient to differentiate the two strings. */
5290
5291 result = compare_names_with_case (string1, string2, case_sensitive_off);
5292 if (result == 0)
5293 result = compare_names_with_case (string1, string2, case_sensitive_on);
5294
5295 return result;
5296}
5297
339c13b6
JB
5298/* Add to OBSTACKP all non-local symbols whose name and domain match
5299 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5300 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5301
5302static void
40658b94
PH
5303add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5304 domain_enum domain, int global,
5305 int is_wild_match)
339c13b6
JB
5306{
5307 struct objfile *objfile;
40658b94 5308 struct match_data data;
339c13b6 5309
6475f2fe 5310 memset (&data, 0, sizeof data);
ccefe4c4 5311 data.obstackp = obstackp;
339c13b6 5312
ccefe4c4 5313 ALL_OBJFILES (objfile)
40658b94
PH
5314 {
5315 data.objfile = objfile;
5316
5317 if (is_wild_match)
4186eb54
KS
5318 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5319 aux_add_nonlocal_symbols, &data,
5320 wild_match, NULL);
40658b94 5321 else
4186eb54
KS
5322 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5323 aux_add_nonlocal_symbols, &data,
5324 full_match, compare_names);
40658b94
PH
5325 }
5326
5327 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5328 {
5329 ALL_OBJFILES (objfile)
5330 {
5331 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5332 strcpy (name1, "_ada_");
5333 strcpy (name1 + sizeof ("_ada_") - 1, name);
5334 data.objfile = objfile;
ade7ed9e
DE
5335 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5336 global,
0963b4bd
MS
5337 aux_add_nonlocal_symbols,
5338 &data,
40658b94
PH
5339 full_match, compare_names);
5340 }
5341 }
339c13b6
JB
5342}
5343
4eeaa230
DE
5344/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5345 non-zero, enclosing scope and in global scopes, returning the number of
5346 matches.
9f88c959 5347 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5348 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5349 any) in which they were found. This vector is transient---good only to
5350 the next call of ada_lookup_symbol_list.
5351
5352 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5353 symbol match within the nest of blocks whose innermost member is BLOCK0,
5354 is the one match returned (no other matches in that or
d9680e73 5355 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5356 surrounding BLOCK0, then these alone are returned.
5357
9f88c959 5358 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5359 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5360
4eeaa230
DE
5361static int
5362ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5363 domain_enum namespace,
5364 struct ada_symbol_info **results,
5365 int full_search)
14f9c5c9
AS
5366{
5367 struct symbol *sym;
f0c5f9b2 5368 const struct block *block;
4c4b4cd2 5369 const char *name;
82ccd55e 5370 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5371 int cacheIfUnique;
4c4b4cd2 5372 int ndefns;
14f9c5c9 5373
4c4b4cd2
PH
5374 obstack_free (&symbol_list_obstack, NULL);
5375 obstack_init (&symbol_list_obstack);
14f9c5c9 5376
14f9c5c9
AS
5377 cacheIfUnique = 0;
5378
5379 /* Search specified block and its superiors. */
5380
4c4b4cd2 5381 name = name0;
f0c5f9b2 5382 block = block0;
339c13b6
JB
5383
5384 /* Special case: If the user specifies a symbol name inside package
5385 Standard, do a non-wild matching of the symbol name without
5386 the "standard__" prefix. This was primarily introduced in order
5387 to allow the user to specifically access the standard exceptions
5388 using, for instance, Standard.Constraint_Error when Constraint_Error
5389 is ambiguous (due to the user defining its own Constraint_Error
5390 entity inside its program). */
4c4b4cd2
PH
5391 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5392 {
4c4b4cd2
PH
5393 block = NULL;
5394 name = name0 + sizeof ("standard__") - 1;
5395 }
5396
339c13b6 5397 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5398
4eeaa230
DE
5399 if (block != NULL)
5400 {
5401 if (full_search)
5402 {
5403 ada_add_local_symbols (&symbol_list_obstack, name, block,
5404 namespace, wild_match_p);
5405 }
5406 else
5407 {
5408 /* In the !full_search case we're are being called by
5409 ada_iterate_over_symbols, and we don't want to search
5410 superblocks. */
5411 ada_add_block_symbols (&symbol_list_obstack, block, name,
5412 namespace, NULL, wild_match_p);
5413 }
5414 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5415 goto done;
5416 }
d2e4a39e 5417
339c13b6
JB
5418 /* No non-global symbols found. Check our cache to see if we have
5419 already performed this search before. If we have, then return
5420 the same result. */
5421
14f9c5c9 5422 cacheIfUnique = 1;
2570f2b7 5423 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5424 {
5425 if (sym != NULL)
2570f2b7 5426 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5427 goto done;
5428 }
14f9c5c9 5429
339c13b6
JB
5430 /* Search symbols from all global blocks. */
5431
40658b94 5432 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5433 wild_match_p);
d2e4a39e 5434
4c4b4cd2 5435 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5436 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5437
4c4b4cd2 5438 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5439 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5440 wild_match_p);
14f9c5c9 5441
4c4b4cd2
PH
5442done:
5443 ndefns = num_defns_collected (&symbol_list_obstack);
5444 *results = defns_collected (&symbol_list_obstack, 1);
5445
5446 ndefns = remove_extra_symbols (*results, ndefns);
5447
2ad01556 5448 if (ndefns == 0 && full_search)
2570f2b7 5449 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5450
2ad01556 5451 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5452 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5453
aeb5907d 5454 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5455
14f9c5c9
AS
5456 return ndefns;
5457}
5458
4eeaa230
DE
5459/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5460 in global scopes, returning the number of matches, and setting *RESULTS
5461 to a vector of (SYM,BLOCK) tuples.
5462 See ada_lookup_symbol_list_worker for further details. */
5463
5464int
5465ada_lookup_symbol_list (const char *name0, const struct block *block0,
5466 domain_enum domain, struct ada_symbol_info **results)
5467{
5468 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5469}
5470
5471/* Implementation of the la_iterate_over_symbols method. */
5472
5473static void
5474ada_iterate_over_symbols (const struct block *block,
5475 const char *name, domain_enum domain,
5476 symbol_found_callback_ftype *callback,
5477 void *data)
5478{
5479 int ndefs, i;
5480 struct ada_symbol_info *results;
5481
5482 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5483 for (i = 0; i < ndefs; ++i)
5484 {
5485 if (! (*callback) (results[i].sym, data))
5486 break;
5487 }
5488}
5489
f8eba3c6
TT
5490/* If NAME is the name of an entity, return a string that should
5491 be used to look that entity up in Ada units. This string should
5492 be deallocated after use using xfree.
5493
5494 NAME can have any form that the "break" or "print" commands might
5495 recognize. In other words, it does not have to be the "natural"
5496 name, or the "encoded" name. */
5497
5498char *
5499ada_name_for_lookup (const char *name)
5500{
5501 char *canon;
5502 int nlen = strlen (name);
5503
5504 if (name[0] == '<' && name[nlen - 1] == '>')
5505 {
5506 canon = xmalloc (nlen - 1);
5507 memcpy (canon, name + 1, nlen - 2);
5508 canon[nlen - 2] = '\0';
5509 }
5510 else
5511 canon = xstrdup (ada_encode (ada_fold_name (name)));
5512 return canon;
5513}
5514
4e5c77fe
JB
5515/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5516 to 1, but choosing the first symbol found if there are multiple
5517 choices.
5518
5e2336be
JB
5519 The result is stored in *INFO, which must be non-NULL.
5520 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5521
5522void
5523ada_lookup_encoded_symbol (const char *name, const struct block *block,
5524 domain_enum namespace,
5e2336be 5525 struct ada_symbol_info *info)
14f9c5c9 5526{
4c4b4cd2 5527 struct ada_symbol_info *candidates;
14f9c5c9
AS
5528 int n_candidates;
5529
5e2336be
JB
5530 gdb_assert (info != NULL);
5531 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5532
4eeaa230 5533 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5534 if (n_candidates == 0)
4e5c77fe 5535 return;
4c4b4cd2 5536
5e2336be
JB
5537 *info = candidates[0];
5538 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5539}
aeb5907d
JB
5540
5541/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5542 scope and in global scopes, or NULL if none. NAME is folded and
5543 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5544 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5545 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5546
aeb5907d
JB
5547struct symbol *
5548ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5549 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5550{
5e2336be 5551 struct ada_symbol_info info;
4e5c77fe 5552
aeb5907d
JB
5553 if (is_a_field_of_this != NULL)
5554 *is_a_field_of_this = 0;
5555
4e5c77fe 5556 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5557 block0, namespace, &info);
5558 return info.sym;
4c4b4cd2 5559}
14f9c5c9 5560
4c4b4cd2
PH
5561static struct symbol *
5562ada_lookup_symbol_nonlocal (const char *name,
76a01679 5563 const struct block *block,
21b556f4 5564 const domain_enum domain)
4c4b4cd2 5565{
94af9270 5566 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5567}
5568
5569
4c4b4cd2
PH
5570/* True iff STR is a possible encoded suffix of a normal Ada name
5571 that is to be ignored for matching purposes. Suffixes of parallel
5572 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5573 are given by any of the regular expressions:
4c4b4cd2 5574
babe1480
JB
5575 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5576 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5577 TKB [subprogram suffix for task bodies]
babe1480 5578 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5579 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5580
5581 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5582 match is performed. This sequence is used to differentiate homonyms,
5583 is an optional part of a valid name suffix. */
4c4b4cd2 5584
14f9c5c9 5585static int
d2e4a39e 5586is_name_suffix (const char *str)
14f9c5c9
AS
5587{
5588 int k;
4c4b4cd2
PH
5589 const char *matching;
5590 const int len = strlen (str);
5591
babe1480
JB
5592 /* Skip optional leading __[0-9]+. */
5593
4c4b4cd2
PH
5594 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5595 {
babe1480
JB
5596 str += 3;
5597 while (isdigit (str[0]))
5598 str += 1;
4c4b4cd2 5599 }
babe1480
JB
5600
5601 /* [.$][0-9]+ */
4c4b4cd2 5602
babe1480 5603 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5604 {
babe1480 5605 matching = str + 1;
4c4b4cd2
PH
5606 while (isdigit (matching[0]))
5607 matching += 1;
5608 if (matching[0] == '\0')
5609 return 1;
5610 }
5611
5612 /* ___[0-9]+ */
babe1480 5613
4c4b4cd2
PH
5614 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5615 {
5616 matching = str + 3;
5617 while (isdigit (matching[0]))
5618 matching += 1;
5619 if (matching[0] == '\0')
5620 return 1;
5621 }
5622
9ac7f98e
JB
5623 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5624
5625 if (strcmp (str, "TKB") == 0)
5626 return 1;
5627
529cad9c
PH
5628#if 0
5629 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5630 with a N at the end. Unfortunately, the compiler uses the same
5631 convention for other internal types it creates. So treating
529cad9c 5632 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5633 some regressions. For instance, consider the case of an enumerated
5634 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5635 name ends with N.
5636 Having a single character like this as a suffix carrying some
0963b4bd 5637 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5638 to be something like "_N" instead. In the meantime, do not do
5639 the following check. */
5640 /* Protected Object Subprograms */
5641 if (len == 1 && str [0] == 'N')
5642 return 1;
5643#endif
5644
5645 /* _E[0-9]+[bs]$ */
5646 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5647 {
5648 matching = str + 3;
5649 while (isdigit (matching[0]))
5650 matching += 1;
5651 if ((matching[0] == 'b' || matching[0] == 's')
5652 && matching [1] == '\0')
5653 return 1;
5654 }
5655
4c4b4cd2
PH
5656 /* ??? We should not modify STR directly, as we are doing below. This
5657 is fine in this case, but may become problematic later if we find
5658 that this alternative did not work, and want to try matching
5659 another one from the begining of STR. Since we modified it, we
5660 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5661 if (str[0] == 'X')
5662 {
5663 str += 1;
d2e4a39e 5664 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5665 {
5666 if (str[0] != 'n' && str[0] != 'b')
5667 return 0;
5668 str += 1;
5669 }
14f9c5c9 5670 }
babe1480 5671
14f9c5c9
AS
5672 if (str[0] == '\000')
5673 return 1;
babe1480 5674
d2e4a39e 5675 if (str[0] == '_')
14f9c5c9
AS
5676 {
5677 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5678 return 0;
d2e4a39e 5679 if (str[2] == '_')
4c4b4cd2 5680 {
61ee279c
PH
5681 if (strcmp (str + 3, "JM") == 0)
5682 return 1;
5683 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5684 the LJM suffix in favor of the JM one. But we will
5685 still accept LJM as a valid suffix for a reasonable
5686 amount of time, just to allow ourselves to debug programs
5687 compiled using an older version of GNAT. */
4c4b4cd2
PH
5688 if (strcmp (str + 3, "LJM") == 0)
5689 return 1;
5690 if (str[3] != 'X')
5691 return 0;
1265e4aa
JB
5692 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5693 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5694 return 1;
5695 if (str[4] == 'R' && str[5] != 'T')
5696 return 1;
5697 return 0;
5698 }
5699 if (!isdigit (str[2]))
5700 return 0;
5701 for (k = 3; str[k] != '\0'; k += 1)
5702 if (!isdigit (str[k]) && str[k] != '_')
5703 return 0;
14f9c5c9
AS
5704 return 1;
5705 }
4c4b4cd2 5706 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5707 {
4c4b4cd2
PH
5708 for (k = 2; str[k] != '\0'; k += 1)
5709 if (!isdigit (str[k]) && str[k] != '_')
5710 return 0;
14f9c5c9
AS
5711 return 1;
5712 }
5713 return 0;
5714}
d2e4a39e 5715
aeb5907d
JB
5716/* Return non-zero if the string starting at NAME and ending before
5717 NAME_END contains no capital letters. */
529cad9c
PH
5718
5719static int
5720is_valid_name_for_wild_match (const char *name0)
5721{
5722 const char *decoded_name = ada_decode (name0);
5723 int i;
5724
5823c3ef
JB
5725 /* If the decoded name starts with an angle bracket, it means that
5726 NAME0 does not follow the GNAT encoding format. It should then
5727 not be allowed as a possible wild match. */
5728 if (decoded_name[0] == '<')
5729 return 0;
5730
529cad9c
PH
5731 for (i=0; decoded_name[i] != '\0'; i++)
5732 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5733 return 0;
5734
5735 return 1;
5736}
5737
73589123
PH
5738/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5739 that could start a simple name. Assumes that *NAMEP points into
5740 the string beginning at NAME0. */
4c4b4cd2 5741
14f9c5c9 5742static int
73589123 5743advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5744{
73589123 5745 const char *name = *namep;
5b4ee69b 5746
5823c3ef 5747 while (1)
14f9c5c9 5748 {
aa27d0b3 5749 int t0, t1;
73589123
PH
5750
5751 t0 = *name;
5752 if (t0 == '_')
5753 {
5754 t1 = name[1];
5755 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5756 {
5757 name += 1;
5758 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5759 break;
5760 else
5761 name += 1;
5762 }
aa27d0b3
JB
5763 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5764 || name[2] == target0))
73589123
PH
5765 {
5766 name += 2;
5767 break;
5768 }
5769 else
5770 return 0;
5771 }
5772 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5773 name += 1;
5774 else
5823c3ef 5775 return 0;
73589123
PH
5776 }
5777
5778 *namep = name;
5779 return 1;
5780}
5781
5782/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5783 informational suffixes of NAME (i.e., for which is_name_suffix is
5784 true). Assumes that PATN is a lower-cased Ada simple name. */
5785
5786static int
5787wild_match (const char *name, const char *patn)
5788{
22e048c9 5789 const char *p;
73589123
PH
5790 const char *name0 = name;
5791
5792 while (1)
5793 {
5794 const char *match = name;
5795
5796 if (*name == *patn)
5797 {
5798 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5799 if (*p != *name)
5800 break;
5801 if (*p == '\0' && is_name_suffix (name))
5802 return match != name0 && !is_valid_name_for_wild_match (name0);
5803
5804 if (name[-1] == '_')
5805 name -= 1;
5806 }
5807 if (!advance_wild_match (&name, name0, *patn))
5808 return 1;
96d887e8 5809 }
96d887e8
PH
5810}
5811
40658b94
PH
5812/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5813 informational suffix. */
5814
c4d840bd
PH
5815static int
5816full_match (const char *sym_name, const char *search_name)
5817{
40658b94 5818 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5819}
5820
5821
96d887e8
PH
5822/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5823 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5824 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5825 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5826
5827static void
5828ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5829 const struct block *block, const char *name,
96d887e8 5830 domain_enum domain, struct objfile *objfile,
2570f2b7 5831 int wild)
96d887e8 5832{
8157b174 5833 struct block_iterator iter;
96d887e8
PH
5834 int name_len = strlen (name);
5835 /* A matching argument symbol, if any. */
5836 struct symbol *arg_sym;
5837 /* Set true when we find a matching non-argument symbol. */
5838 int found_sym;
5839 struct symbol *sym;
5840
5841 arg_sym = NULL;
5842 found_sym = 0;
5843 if (wild)
5844 {
8157b174
TT
5845 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5846 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5847 {
4186eb54
KS
5848 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5849 SYMBOL_DOMAIN (sym), domain)
73589123 5850 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5851 {
2a2d4dc3
AS
5852 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5853 continue;
5854 else if (SYMBOL_IS_ARGUMENT (sym))
5855 arg_sym = sym;
5856 else
5857 {
76a01679
JB
5858 found_sym = 1;
5859 add_defn_to_vec (obstackp,
5860 fixup_symbol_section (sym, objfile),
2570f2b7 5861 block);
76a01679
JB
5862 }
5863 }
5864 }
96d887e8
PH
5865 }
5866 else
5867 {
8157b174
TT
5868 for (sym = block_iter_match_first (block, name, full_match, &iter);
5869 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5870 {
4186eb54
KS
5871 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5872 SYMBOL_DOMAIN (sym), domain))
76a01679 5873 {
c4d840bd
PH
5874 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5875 {
5876 if (SYMBOL_IS_ARGUMENT (sym))
5877 arg_sym = sym;
5878 else
2a2d4dc3 5879 {
c4d840bd
PH
5880 found_sym = 1;
5881 add_defn_to_vec (obstackp,
5882 fixup_symbol_section (sym, objfile),
5883 block);
2a2d4dc3 5884 }
c4d840bd 5885 }
76a01679
JB
5886 }
5887 }
96d887e8
PH
5888 }
5889
5890 if (!found_sym && arg_sym != NULL)
5891 {
76a01679
JB
5892 add_defn_to_vec (obstackp,
5893 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5894 block);
96d887e8
PH
5895 }
5896
5897 if (!wild)
5898 {
5899 arg_sym = NULL;
5900 found_sym = 0;
5901
5902 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5903 {
4186eb54
KS
5904 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5905 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5906 {
5907 int cmp;
5908
5909 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5910 if (cmp == 0)
5911 {
5912 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5913 if (cmp == 0)
5914 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5915 name_len);
5916 }
5917
5918 if (cmp == 0
5919 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5920 {
2a2d4dc3
AS
5921 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5922 {
5923 if (SYMBOL_IS_ARGUMENT (sym))
5924 arg_sym = sym;
5925 else
5926 {
5927 found_sym = 1;
5928 add_defn_to_vec (obstackp,
5929 fixup_symbol_section (sym, objfile),
5930 block);
5931 }
5932 }
76a01679
JB
5933 }
5934 }
76a01679 5935 }
96d887e8
PH
5936
5937 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5938 They aren't parameters, right? */
5939 if (!found_sym && arg_sym != NULL)
5940 {
5941 add_defn_to_vec (obstackp,
76a01679 5942 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5943 block);
96d887e8
PH
5944 }
5945 }
5946}
5947\f
41d27058
JB
5948
5949 /* Symbol Completion */
5950
5951/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5952 name in a form that's appropriate for the completion. The result
5953 does not need to be deallocated, but is only good until the next call.
5954
5955 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5956 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5957 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5958 in its encoded form. */
5959
5960static const char *
5961symbol_completion_match (const char *sym_name,
5962 const char *text, int text_len,
6ea35997 5963 int wild_match_p, int encoded_p)
41d27058 5964{
41d27058
JB
5965 const int verbatim_match = (text[0] == '<');
5966 int match = 0;
5967
5968 if (verbatim_match)
5969 {
5970 /* Strip the leading angle bracket. */
5971 text = text + 1;
5972 text_len--;
5973 }
5974
5975 /* First, test against the fully qualified name of the symbol. */
5976
5977 if (strncmp (sym_name, text, text_len) == 0)
5978 match = 1;
5979
6ea35997 5980 if (match && !encoded_p)
41d27058
JB
5981 {
5982 /* One needed check before declaring a positive match is to verify
5983 that iff we are doing a verbatim match, the decoded version
5984 of the symbol name starts with '<'. Otherwise, this symbol name
5985 is not a suitable completion. */
5986 const char *sym_name_copy = sym_name;
5987 int has_angle_bracket;
5988
5989 sym_name = ada_decode (sym_name);
5990 has_angle_bracket = (sym_name[0] == '<');
5991 match = (has_angle_bracket == verbatim_match);
5992 sym_name = sym_name_copy;
5993 }
5994
5995 if (match && !verbatim_match)
5996 {
5997 /* When doing non-verbatim match, another check that needs to
5998 be done is to verify that the potentially matching symbol name
5999 does not include capital letters, because the ada-mode would
6000 not be able to understand these symbol names without the
6001 angle bracket notation. */
6002 const char *tmp;
6003
6004 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6005 if (*tmp != '\0')
6006 match = 0;
6007 }
6008
6009 /* Second: Try wild matching... */
6010
e701b3c0 6011 if (!match && wild_match_p)
41d27058
JB
6012 {
6013 /* Since we are doing wild matching, this means that TEXT
6014 may represent an unqualified symbol name. We therefore must
6015 also compare TEXT against the unqualified name of the symbol. */
6016 sym_name = ada_unqualified_name (ada_decode (sym_name));
6017
6018 if (strncmp (sym_name, text, text_len) == 0)
6019 match = 1;
6020 }
6021
6022 /* Finally: If we found a mach, prepare the result to return. */
6023
6024 if (!match)
6025 return NULL;
6026
6027 if (verbatim_match)
6028 sym_name = add_angle_brackets (sym_name);
6029
6ea35997 6030 if (!encoded_p)
41d27058
JB
6031 sym_name = ada_decode (sym_name);
6032
6033 return sym_name;
6034}
6035
6036/* A companion function to ada_make_symbol_completion_list().
6037 Check if SYM_NAME represents a symbol which name would be suitable
6038 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6039 it is appended at the end of the given string vector SV.
6040
6041 ORIG_TEXT is the string original string from the user command
6042 that needs to be completed. WORD is the entire command on which
6043 completion should be performed. These two parameters are used to
6044 determine which part of the symbol name should be added to the
6045 completion vector.
c0af1706 6046 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6047 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6048 encoded formed (in which case the completion should also be
6049 encoded). */
6050
6051static void
d6565258 6052symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6053 const char *sym_name,
6054 const char *text, int text_len,
6055 const char *orig_text, const char *word,
cb8e9b97 6056 int wild_match_p, int encoded_p)
41d27058
JB
6057{
6058 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6059 wild_match_p, encoded_p);
41d27058
JB
6060 char *completion;
6061
6062 if (match == NULL)
6063 return;
6064
6065 /* We found a match, so add the appropriate completion to the given
6066 string vector. */
6067
6068 if (word == orig_text)
6069 {
6070 completion = xmalloc (strlen (match) + 5);
6071 strcpy (completion, match);
6072 }
6073 else if (word > orig_text)
6074 {
6075 /* Return some portion of sym_name. */
6076 completion = xmalloc (strlen (match) + 5);
6077 strcpy (completion, match + (word - orig_text));
6078 }
6079 else
6080 {
6081 /* Return some of ORIG_TEXT plus sym_name. */
6082 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6083 strncpy (completion, word, orig_text - word);
6084 completion[orig_text - word] = '\0';
6085 strcat (completion, match);
6086 }
6087
d6565258 6088 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6089}
6090
ccefe4c4 6091/* An object of this type is passed as the user_data argument to the
bb4142cf 6092 expand_symtabs_matching method. */
ccefe4c4
TT
6093struct add_partial_datum
6094{
6095 VEC(char_ptr) **completions;
6f937416 6096 const char *text;
ccefe4c4 6097 int text_len;
6f937416
PA
6098 const char *text0;
6099 const char *word;
ccefe4c4
TT
6100 int wild_match;
6101 int encoded;
6102};
6103
bb4142cf
DE
6104/* A callback for expand_symtabs_matching. */
6105
7b08b9eb 6106static int
bb4142cf 6107ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6108{
6109 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6110
6111 return symbol_completion_match (name, data->text, data->text_len,
6112 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6113}
6114
49c4e619
TT
6115/* Return a list of possible symbol names completing TEXT0. WORD is
6116 the entire command on which completion is made. */
41d27058 6117
49c4e619 6118static VEC (char_ptr) *
6f937416
PA
6119ada_make_symbol_completion_list (const char *text0, const char *word,
6120 enum type_code code)
41d27058
JB
6121{
6122 char *text;
6123 int text_len;
b1ed564a
JB
6124 int wild_match_p;
6125 int encoded_p;
2ba95b9b 6126 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
6127 struct symbol *sym;
6128 struct symtab *s;
41d27058
JB
6129 struct minimal_symbol *msymbol;
6130 struct objfile *objfile;
3977b71f 6131 const struct block *b, *surrounding_static_block = 0;
41d27058 6132 int i;
8157b174 6133 struct block_iterator iter;
b8fea896 6134 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6135
2f68a895
TT
6136 gdb_assert (code == TYPE_CODE_UNDEF);
6137
41d27058
JB
6138 if (text0[0] == '<')
6139 {
6140 text = xstrdup (text0);
6141 make_cleanup (xfree, text);
6142 text_len = strlen (text);
b1ed564a
JB
6143 wild_match_p = 0;
6144 encoded_p = 1;
41d27058
JB
6145 }
6146 else
6147 {
6148 text = xstrdup (ada_encode (text0));
6149 make_cleanup (xfree, text);
6150 text_len = strlen (text);
6151 for (i = 0; i < text_len; i++)
6152 text[i] = tolower (text[i]);
6153
b1ed564a 6154 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6155 /* If the name contains a ".", then the user is entering a fully
6156 qualified entity name, and the match must not be done in wild
6157 mode. Similarly, if the user wants to complete what looks like
6158 an encoded name, the match must not be done in wild mode. */
b1ed564a 6159 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6160 }
6161
6162 /* First, look at the partial symtab symbols. */
41d27058 6163 {
ccefe4c4
TT
6164 struct add_partial_datum data;
6165
6166 data.completions = &completions;
6167 data.text = text;
6168 data.text_len = text_len;
6169 data.text0 = text0;
6170 data.word = word;
b1ed564a
JB
6171 data.wild_match = wild_match_p;
6172 data.encoded = encoded_p;
bb4142cf
DE
6173 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6174 &data);
41d27058
JB
6175 }
6176
6177 /* At this point scan through the misc symbol vectors and add each
6178 symbol you find to the list. Eventually we want to ignore
6179 anything that isn't a text symbol (everything else will be
6180 handled by the psymtab code above). */
6181
6182 ALL_MSYMBOLS (objfile, msymbol)
6183 {
6184 QUIT;
efd66ac6 6185 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6186 text, text_len, text0, word, wild_match_p,
6187 encoded_p);
41d27058
JB
6188 }
6189
6190 /* Search upwards from currently selected frame (so that we can
6191 complete on local vars. */
6192
6193 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6194 {
6195 if (!BLOCK_SUPERBLOCK (b))
6196 surrounding_static_block = b; /* For elmin of dups */
6197
6198 ALL_BLOCK_SYMBOLS (b, iter, sym)
6199 {
d6565258 6200 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6201 text, text_len, text0, word,
b1ed564a 6202 wild_match_p, encoded_p);
41d27058
JB
6203 }
6204 }
6205
6206 /* Go through the symtabs and check the externs and statics for
6207 symbols which match. */
6208
6209 ALL_SYMTABS (objfile, s)
6210 {
6211 QUIT;
6212 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6213 ALL_BLOCK_SYMBOLS (b, iter, sym)
6214 {
d6565258 6215 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6216 text, text_len, text0, word,
b1ed564a 6217 wild_match_p, encoded_p);
41d27058
JB
6218 }
6219 }
6220
6221 ALL_SYMTABS (objfile, s)
6222 {
6223 QUIT;
6224 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6225 /* Don't do this block twice. */
6226 if (b == surrounding_static_block)
6227 continue;
6228 ALL_BLOCK_SYMBOLS (b, iter, sym)
6229 {
d6565258 6230 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6231 text, text_len, text0, word,
b1ed564a 6232 wild_match_p, encoded_p);
41d27058
JB
6233 }
6234 }
6235
b8fea896 6236 do_cleanups (old_chain);
49c4e619 6237 return completions;
41d27058
JB
6238}
6239
963a6417 6240 /* Field Access */
96d887e8 6241
73fb9985
JB
6242/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6243 for tagged types. */
6244
6245static int
6246ada_is_dispatch_table_ptr_type (struct type *type)
6247{
0d5cff50 6248 const char *name;
73fb9985
JB
6249
6250 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6251 return 0;
6252
6253 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6254 if (name == NULL)
6255 return 0;
6256
6257 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6258}
6259
ac4a2da4
JG
6260/* Return non-zero if TYPE is an interface tag. */
6261
6262static int
6263ada_is_interface_tag (struct type *type)
6264{
6265 const char *name = TYPE_NAME (type);
6266
6267 if (name == NULL)
6268 return 0;
6269
6270 return (strcmp (name, "ada__tags__interface_tag") == 0);
6271}
6272
963a6417
PH
6273/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6274 to be invisible to users. */
96d887e8 6275
963a6417
PH
6276int
6277ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6278{
963a6417
PH
6279 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6280 return 1;
ffde82bf 6281
73fb9985
JB
6282 /* Check the name of that field. */
6283 {
6284 const char *name = TYPE_FIELD_NAME (type, field_num);
6285
6286 /* Anonymous field names should not be printed.
6287 brobecker/2007-02-20: I don't think this can actually happen
6288 but we don't want to print the value of annonymous fields anyway. */
6289 if (name == NULL)
6290 return 1;
6291
ffde82bf
JB
6292 /* Normally, fields whose name start with an underscore ("_")
6293 are fields that have been internally generated by the compiler,
6294 and thus should not be printed. The "_parent" field is special,
6295 however: This is a field internally generated by the compiler
6296 for tagged types, and it contains the components inherited from
6297 the parent type. This field should not be printed as is, but
6298 should not be ignored either. */
73fb9985
JB
6299 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6300 return 1;
6301 }
6302
ac4a2da4
JG
6303 /* If this is the dispatch table of a tagged type or an interface tag,
6304 then ignore. */
73fb9985 6305 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6306 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6307 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6308 return 1;
6309
6310 /* Not a special field, so it should not be ignored. */
6311 return 0;
963a6417 6312}
96d887e8 6313
963a6417 6314/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6315 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6316
963a6417
PH
6317int
6318ada_is_tagged_type (struct type *type, int refok)
6319{
6320 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6321}
96d887e8 6322
963a6417 6323/* True iff TYPE represents the type of X'Tag */
96d887e8 6324
963a6417
PH
6325int
6326ada_is_tag_type (struct type *type)
6327{
6328 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6329 return 0;
6330 else
96d887e8 6331 {
963a6417 6332 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6333
963a6417
PH
6334 return (name != NULL
6335 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6336 }
96d887e8
PH
6337}
6338
963a6417 6339/* The type of the tag on VAL. */
76a01679 6340
963a6417
PH
6341struct type *
6342ada_tag_type (struct value *val)
96d887e8 6343{
df407dfe 6344 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6345}
96d887e8 6346
b50d69b5
JG
6347/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6348 retired at Ada 05). */
6349
6350static int
6351is_ada95_tag (struct value *tag)
6352{
6353 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6354}
6355
963a6417 6356/* The value of the tag on VAL. */
96d887e8 6357
963a6417
PH
6358struct value *
6359ada_value_tag (struct value *val)
6360{
03ee6b2e 6361 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6362}
6363
963a6417
PH
6364/* The value of the tag on the object of type TYPE whose contents are
6365 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6366 ADDRESS. */
96d887e8 6367
963a6417 6368static struct value *
10a2c479 6369value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6370 const gdb_byte *valaddr,
963a6417 6371 CORE_ADDR address)
96d887e8 6372{
b5385fc0 6373 int tag_byte_offset;
963a6417 6374 struct type *tag_type;
5b4ee69b 6375
963a6417 6376 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6377 NULL, NULL, NULL))
96d887e8 6378 {
fc1a4b47 6379 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6380 ? NULL
6381 : valaddr + tag_byte_offset);
963a6417 6382 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6383
963a6417 6384 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6385 }
963a6417
PH
6386 return NULL;
6387}
96d887e8 6388
963a6417
PH
6389static struct type *
6390type_from_tag (struct value *tag)
6391{
6392 const char *type_name = ada_tag_name (tag);
5b4ee69b 6393
963a6417
PH
6394 if (type_name != NULL)
6395 return ada_find_any_type (ada_encode (type_name));
6396 return NULL;
6397}
96d887e8 6398
b50d69b5
JG
6399/* Given a value OBJ of a tagged type, return a value of this
6400 type at the base address of the object. The base address, as
6401 defined in Ada.Tags, it is the address of the primary tag of
6402 the object, and therefore where the field values of its full
6403 view can be fetched. */
6404
6405struct value *
6406ada_tag_value_at_base_address (struct value *obj)
6407{
6408 volatile struct gdb_exception e;
6409 struct value *val;
6410 LONGEST offset_to_top = 0;
6411 struct type *ptr_type, *obj_type;
6412 struct value *tag;
6413 CORE_ADDR base_address;
6414
6415 obj_type = value_type (obj);
6416
6417 /* It is the responsability of the caller to deref pointers. */
6418
6419 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6420 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6421 return obj;
6422
6423 tag = ada_value_tag (obj);
6424 if (!tag)
6425 return obj;
6426
6427 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6428
6429 if (is_ada95_tag (tag))
6430 return obj;
6431
6432 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6433 ptr_type = lookup_pointer_type (ptr_type);
6434 val = value_cast (ptr_type, tag);
6435 if (!val)
6436 return obj;
6437
6438 /* It is perfectly possible that an exception be raised while
6439 trying to determine the base address, just like for the tag;
6440 see ada_tag_name for more details. We do not print the error
6441 message for the same reason. */
6442
6443 TRY_CATCH (e, RETURN_MASK_ERROR)
6444 {
6445 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6446 }
6447
6448 if (e.reason < 0)
6449 return obj;
6450
6451 /* If offset is null, nothing to do. */
6452
6453 if (offset_to_top == 0)
6454 return obj;
6455
6456 /* -1 is a special case in Ada.Tags; however, what should be done
6457 is not quite clear from the documentation. So do nothing for
6458 now. */
6459
6460 if (offset_to_top == -1)
6461 return obj;
6462
6463 base_address = value_address (obj) - offset_to_top;
6464 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6465
6466 /* Make sure that we have a proper tag at the new address.
6467 Otherwise, offset_to_top is bogus (which can happen when
6468 the object is not initialized yet). */
6469
6470 if (!tag)
6471 return obj;
6472
6473 obj_type = type_from_tag (tag);
6474
6475 if (!obj_type)
6476 return obj;
6477
6478 return value_from_contents_and_address (obj_type, NULL, base_address);
6479}
6480
1b611343
JB
6481/* Return the "ada__tags__type_specific_data" type. */
6482
6483static struct type *
6484ada_get_tsd_type (struct inferior *inf)
963a6417 6485{
1b611343 6486 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6487
1b611343
JB
6488 if (data->tsd_type == 0)
6489 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6490 return data->tsd_type;
6491}
529cad9c 6492
1b611343
JB
6493/* Return the TSD (type-specific data) associated to the given TAG.
6494 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6495
1b611343 6496 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6497
1b611343
JB
6498static struct value *
6499ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6500{
4c4b4cd2 6501 struct value *val;
1b611343 6502 struct type *type;
5b4ee69b 6503
1b611343
JB
6504 /* First option: The TSD is simply stored as a field of our TAG.
6505 Only older versions of GNAT would use this format, but we have
6506 to test it first, because there are no visible markers for
6507 the current approach except the absence of that field. */
529cad9c 6508
1b611343
JB
6509 val = ada_value_struct_elt (tag, "tsd", 1);
6510 if (val)
6511 return val;
e802dbe0 6512
1b611343
JB
6513 /* Try the second representation for the dispatch table (in which
6514 there is no explicit 'tsd' field in the referent of the tag pointer,
6515 and instead the tsd pointer is stored just before the dispatch
6516 table. */
e802dbe0 6517
1b611343
JB
6518 type = ada_get_tsd_type (current_inferior());
6519 if (type == NULL)
6520 return NULL;
6521 type = lookup_pointer_type (lookup_pointer_type (type));
6522 val = value_cast (type, tag);
6523 if (val == NULL)
6524 return NULL;
6525 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6526}
6527
1b611343
JB
6528/* Given the TSD of a tag (type-specific data), return a string
6529 containing the name of the associated type.
6530
6531 The returned value is good until the next call. May return NULL
6532 if we are unable to determine the tag name. */
6533
6534static char *
6535ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6536{
529cad9c
PH
6537 static char name[1024];
6538 char *p;
1b611343 6539 struct value *val;
529cad9c 6540
1b611343 6541 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6542 if (val == NULL)
1b611343 6543 return NULL;
4c4b4cd2
PH
6544 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6545 for (p = name; *p != '\0'; p += 1)
6546 if (isalpha (*p))
6547 *p = tolower (*p);
1b611343 6548 return name;
4c4b4cd2
PH
6549}
6550
6551/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6552 a C string.
6553
6554 Return NULL if the TAG is not an Ada tag, or if we were unable to
6555 determine the name of that tag. The result is good until the next
6556 call. */
4c4b4cd2
PH
6557
6558const char *
6559ada_tag_name (struct value *tag)
6560{
1b611343
JB
6561 volatile struct gdb_exception e;
6562 char *name = NULL;
5b4ee69b 6563
df407dfe 6564 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6565 return NULL;
1b611343
JB
6566
6567 /* It is perfectly possible that an exception be raised while trying
6568 to determine the TAG's name, even under normal circumstances:
6569 The associated variable may be uninitialized or corrupted, for
6570 instance. We do not let any exception propagate past this point.
6571 instead we return NULL.
6572
6573 We also do not print the error message either (which often is very
6574 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6575 the caller print a more meaningful message if necessary. */
6576 TRY_CATCH (e, RETURN_MASK_ERROR)
6577 {
6578 struct value *tsd = ada_get_tsd_from_tag (tag);
6579
6580 if (tsd != NULL)
6581 name = ada_tag_name_from_tsd (tsd);
6582 }
6583
6584 return name;
4c4b4cd2
PH
6585}
6586
6587/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6588
d2e4a39e 6589struct type *
ebf56fd3 6590ada_parent_type (struct type *type)
14f9c5c9
AS
6591{
6592 int i;
6593
61ee279c 6594 type = ada_check_typedef (type);
14f9c5c9
AS
6595
6596 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6597 return NULL;
6598
6599 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6600 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6601 {
6602 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6603
6604 /* If the _parent field is a pointer, then dereference it. */
6605 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6606 parent_type = TYPE_TARGET_TYPE (parent_type);
6607 /* If there is a parallel XVS type, get the actual base type. */
6608 parent_type = ada_get_base_type (parent_type);
6609
6610 return ada_check_typedef (parent_type);
6611 }
14f9c5c9
AS
6612
6613 return NULL;
6614}
6615
4c4b4cd2
PH
6616/* True iff field number FIELD_NUM of structure type TYPE contains the
6617 parent-type (inherited) fields of a derived type. Assumes TYPE is
6618 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6619
6620int
ebf56fd3 6621ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6622{
61ee279c 6623 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6624
4c4b4cd2
PH
6625 return (name != NULL
6626 && (strncmp (name, "PARENT", 6) == 0
6627 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6628}
6629
4c4b4cd2 6630/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6631 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6632 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6633 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6634 structures. */
14f9c5c9
AS
6635
6636int
ebf56fd3 6637ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6638{
d2e4a39e 6639 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6640
d2e4a39e 6641 return (name != NULL
4c4b4cd2
PH
6642 && (strncmp (name, "PARENT", 6) == 0
6643 || strcmp (name, "REP") == 0
6644 || strncmp (name, "_parent", 7) == 0
6645 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6646}
6647
4c4b4cd2
PH
6648/* True iff field number FIELD_NUM of structure or union type TYPE
6649 is a variant wrapper. Assumes TYPE is a structure type with at least
6650 FIELD_NUM+1 fields. */
14f9c5c9
AS
6651
6652int
ebf56fd3 6653ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6654{
d2e4a39e 6655 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6656
14f9c5c9 6657 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6658 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6659 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6660 == TYPE_CODE_UNION)));
14f9c5c9
AS
6661}
6662
6663/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6664 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6665 returns the type of the controlling discriminant for the variant.
6666 May return NULL if the type could not be found. */
14f9c5c9 6667
d2e4a39e 6668struct type *
ebf56fd3 6669ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6670{
d2e4a39e 6671 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6672
7c964f07 6673 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6674}
6675
4c4b4cd2 6676/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6677 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6678 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6679
6680int
ebf56fd3 6681ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6682{
d2e4a39e 6683 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6684
14f9c5c9
AS
6685 return (name != NULL && name[0] == 'O');
6686}
6687
6688/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6689 returns the name of the discriminant controlling the variant.
6690 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6691
d2e4a39e 6692char *
ebf56fd3 6693ada_variant_discrim_name (struct type *type0)
14f9c5c9 6694{
d2e4a39e 6695 static char *result = NULL;
14f9c5c9 6696 static size_t result_len = 0;
d2e4a39e
AS
6697 struct type *type;
6698 const char *name;
6699 const char *discrim_end;
6700 const char *discrim_start;
14f9c5c9
AS
6701
6702 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6703 type = TYPE_TARGET_TYPE (type0);
6704 else
6705 type = type0;
6706
6707 name = ada_type_name (type);
6708
6709 if (name == NULL || name[0] == '\000')
6710 return "";
6711
6712 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6713 discrim_end -= 1)
6714 {
4c4b4cd2
PH
6715 if (strncmp (discrim_end, "___XVN", 6) == 0)
6716 break;
14f9c5c9
AS
6717 }
6718 if (discrim_end == name)
6719 return "";
6720
d2e4a39e 6721 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6722 discrim_start -= 1)
6723 {
d2e4a39e 6724 if (discrim_start == name + 1)
4c4b4cd2 6725 return "";
76a01679 6726 if ((discrim_start > name + 3
4c4b4cd2
PH
6727 && strncmp (discrim_start - 3, "___", 3) == 0)
6728 || discrim_start[-1] == '.')
6729 break;
14f9c5c9
AS
6730 }
6731
6732 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6733 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6734 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6735 return result;
6736}
6737
4c4b4cd2
PH
6738/* Scan STR for a subtype-encoded number, beginning at position K.
6739 Put the position of the character just past the number scanned in
6740 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6741 Return 1 if there was a valid number at the given position, and 0
6742 otherwise. A "subtype-encoded" number consists of the absolute value
6743 in decimal, followed by the letter 'm' to indicate a negative number.
6744 Assumes 0m does not occur. */
14f9c5c9
AS
6745
6746int
d2e4a39e 6747ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6748{
6749 ULONGEST RU;
6750
d2e4a39e 6751 if (!isdigit (str[k]))
14f9c5c9
AS
6752 return 0;
6753
4c4b4cd2 6754 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6755 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6756 LONGEST. */
14f9c5c9
AS
6757 RU = 0;
6758 while (isdigit (str[k]))
6759 {
d2e4a39e 6760 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6761 k += 1;
6762 }
6763
d2e4a39e 6764 if (str[k] == 'm')
14f9c5c9
AS
6765 {
6766 if (R != NULL)
4c4b4cd2 6767 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6768 k += 1;
6769 }
6770 else if (R != NULL)
6771 *R = (LONGEST) RU;
6772
4c4b4cd2 6773 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6774 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6775 number representable as a LONGEST (although either would probably work
6776 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6777 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6778
6779 if (new_k != NULL)
6780 *new_k = k;
6781 return 1;
6782}
6783
4c4b4cd2
PH
6784/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6785 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6786 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6787
d2e4a39e 6788int
ebf56fd3 6789ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6790{
d2e4a39e 6791 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6792 int p;
6793
6794 p = 0;
6795 while (1)
6796 {
d2e4a39e 6797 switch (name[p])
4c4b4cd2
PH
6798 {
6799 case '\0':
6800 return 0;
6801 case 'S':
6802 {
6803 LONGEST W;
5b4ee69b 6804
4c4b4cd2
PH
6805 if (!ada_scan_number (name, p + 1, &W, &p))
6806 return 0;
6807 if (val == W)
6808 return 1;
6809 break;
6810 }
6811 case 'R':
6812 {
6813 LONGEST L, U;
5b4ee69b 6814
4c4b4cd2
PH
6815 if (!ada_scan_number (name, p + 1, &L, &p)
6816 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6817 return 0;
6818 if (val >= L && val <= U)
6819 return 1;
6820 break;
6821 }
6822 case 'O':
6823 return 1;
6824 default:
6825 return 0;
6826 }
6827 }
6828}
6829
0963b4bd 6830/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6831
6832/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6833 ARG_TYPE, extract and return the value of one of its (non-static)
6834 fields. FIELDNO says which field. Differs from value_primitive_field
6835 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6836
4c4b4cd2 6837static struct value *
d2e4a39e 6838ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6839 struct type *arg_type)
14f9c5c9 6840{
14f9c5c9
AS
6841 struct type *type;
6842
61ee279c 6843 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6844 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6845
4c4b4cd2 6846 /* Handle packed fields. */
14f9c5c9
AS
6847
6848 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6849 {
6850 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6851 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6852
0fd88904 6853 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6854 offset + bit_pos / 8,
6855 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6856 }
6857 else
6858 return value_primitive_field (arg1, offset, fieldno, arg_type);
6859}
6860
52ce6436
PH
6861/* Find field with name NAME in object of type TYPE. If found,
6862 set the following for each argument that is non-null:
6863 - *FIELD_TYPE_P to the field's type;
6864 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6865 an object of that type;
6866 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6867 - *BIT_SIZE_P to its size in bits if the field is packed, and
6868 0 otherwise;
6869 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6870 fields up to but not including the desired field, or by the total
6871 number of fields if not found. A NULL value of NAME never
6872 matches; the function just counts visible fields in this case.
6873
0963b4bd 6874 Returns 1 if found, 0 otherwise. */
52ce6436 6875
4c4b4cd2 6876static int
0d5cff50 6877find_struct_field (const char *name, struct type *type, int offset,
76a01679 6878 struct type **field_type_p,
52ce6436
PH
6879 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6880 int *index_p)
4c4b4cd2
PH
6881{
6882 int i;
6883
61ee279c 6884 type = ada_check_typedef (type);
76a01679 6885
52ce6436
PH
6886 if (field_type_p != NULL)
6887 *field_type_p = NULL;
6888 if (byte_offset_p != NULL)
d5d6fca5 6889 *byte_offset_p = 0;
52ce6436
PH
6890 if (bit_offset_p != NULL)
6891 *bit_offset_p = 0;
6892 if (bit_size_p != NULL)
6893 *bit_size_p = 0;
6894
6895 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6896 {
6897 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6898 int fld_offset = offset + bit_pos / 8;
0d5cff50 6899 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6900
4c4b4cd2
PH
6901 if (t_field_name == NULL)
6902 continue;
6903
52ce6436 6904 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6905 {
6906 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6907
52ce6436
PH
6908 if (field_type_p != NULL)
6909 *field_type_p = TYPE_FIELD_TYPE (type, i);
6910 if (byte_offset_p != NULL)
6911 *byte_offset_p = fld_offset;
6912 if (bit_offset_p != NULL)
6913 *bit_offset_p = bit_pos % 8;
6914 if (bit_size_p != NULL)
6915 *bit_size_p = bit_size;
76a01679
JB
6916 return 1;
6917 }
4c4b4cd2
PH
6918 else if (ada_is_wrapper_field (type, i))
6919 {
52ce6436
PH
6920 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6921 field_type_p, byte_offset_p, bit_offset_p,
6922 bit_size_p, index_p))
76a01679
JB
6923 return 1;
6924 }
4c4b4cd2
PH
6925 else if (ada_is_variant_part (type, i))
6926 {
52ce6436
PH
6927 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6928 fixed type?? */
4c4b4cd2 6929 int j;
52ce6436
PH
6930 struct type *field_type
6931 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6932
52ce6436 6933 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6934 {
76a01679
JB
6935 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6936 fld_offset
6937 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6938 field_type_p, byte_offset_p,
52ce6436 6939 bit_offset_p, bit_size_p, index_p))
76a01679 6940 return 1;
4c4b4cd2
PH
6941 }
6942 }
52ce6436
PH
6943 else if (index_p != NULL)
6944 *index_p += 1;
4c4b4cd2
PH
6945 }
6946 return 0;
6947}
6948
0963b4bd 6949/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6950
52ce6436
PH
6951static int
6952num_visible_fields (struct type *type)
6953{
6954 int n;
5b4ee69b 6955
52ce6436
PH
6956 n = 0;
6957 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6958 return n;
6959}
14f9c5c9 6960
4c4b4cd2 6961/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6962 and search in it assuming it has (class) type TYPE.
6963 If found, return value, else return NULL.
6964
4c4b4cd2 6965 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6966
4c4b4cd2 6967static struct value *
d2e4a39e 6968ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6969 struct type *type)
14f9c5c9
AS
6970{
6971 int i;
14f9c5c9 6972
5b4ee69b 6973 type = ada_check_typedef (type);
52ce6436 6974 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6975 {
0d5cff50 6976 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6977
6978 if (t_field_name == NULL)
4c4b4cd2 6979 continue;
14f9c5c9
AS
6980
6981 else if (field_name_match (t_field_name, name))
4c4b4cd2 6982 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6983
6984 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6985 {
0963b4bd 6986 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6987 ada_search_struct_field (name, arg,
6988 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6989 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6990
4c4b4cd2
PH
6991 if (v != NULL)
6992 return v;
6993 }
14f9c5c9
AS
6994
6995 else if (ada_is_variant_part (type, i))
4c4b4cd2 6996 {
0963b4bd 6997 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6998 int j;
5b4ee69b
MS
6999 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7000 i));
4c4b4cd2
PH
7001 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7002
52ce6436 7003 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7004 {
0963b4bd
MS
7005 struct value *v = ada_search_struct_field /* Force line
7006 break. */
06d5cf63
JB
7007 (name, arg,
7008 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7009 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7010
4c4b4cd2
PH
7011 if (v != NULL)
7012 return v;
7013 }
7014 }
14f9c5c9
AS
7015 }
7016 return NULL;
7017}
d2e4a39e 7018
52ce6436
PH
7019static struct value *ada_index_struct_field_1 (int *, struct value *,
7020 int, struct type *);
7021
7022
7023/* Return field #INDEX in ARG, where the index is that returned by
7024 * find_struct_field through its INDEX_P argument. Adjust the address
7025 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7026 * If found, return value, else return NULL. */
52ce6436
PH
7027
7028static struct value *
7029ada_index_struct_field (int index, struct value *arg, int offset,
7030 struct type *type)
7031{
7032 return ada_index_struct_field_1 (&index, arg, offset, type);
7033}
7034
7035
7036/* Auxiliary function for ada_index_struct_field. Like
7037 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7038 * *INDEX_P. */
52ce6436
PH
7039
7040static struct value *
7041ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7042 struct type *type)
7043{
7044 int i;
7045 type = ada_check_typedef (type);
7046
7047 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7048 {
7049 if (TYPE_FIELD_NAME (type, i) == NULL)
7050 continue;
7051 else if (ada_is_wrapper_field (type, i))
7052 {
0963b4bd 7053 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7054 ada_index_struct_field_1 (index_p, arg,
7055 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7056 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7057
52ce6436
PH
7058 if (v != NULL)
7059 return v;
7060 }
7061
7062 else if (ada_is_variant_part (type, i))
7063 {
7064 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7065 find_struct_field. */
52ce6436
PH
7066 error (_("Cannot assign this kind of variant record"));
7067 }
7068 else if (*index_p == 0)
7069 return ada_value_primitive_field (arg, offset, i, type);
7070 else
7071 *index_p -= 1;
7072 }
7073 return NULL;
7074}
7075
4c4b4cd2
PH
7076/* Given ARG, a value of type (pointer or reference to a)*
7077 structure/union, extract the component named NAME from the ultimate
7078 target structure/union and return it as a value with its
f5938064 7079 appropriate type.
14f9c5c9 7080
4c4b4cd2
PH
7081 The routine searches for NAME among all members of the structure itself
7082 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7083 (e.g., '_parent').
7084
03ee6b2e
PH
7085 If NO_ERR, then simply return NULL in case of error, rather than
7086 calling error. */
14f9c5c9 7087
d2e4a39e 7088struct value *
03ee6b2e 7089ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7090{
4c4b4cd2 7091 struct type *t, *t1;
d2e4a39e 7092 struct value *v;
14f9c5c9 7093
4c4b4cd2 7094 v = NULL;
df407dfe 7095 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7096 if (TYPE_CODE (t) == TYPE_CODE_REF)
7097 {
7098 t1 = TYPE_TARGET_TYPE (t);
7099 if (t1 == NULL)
03ee6b2e 7100 goto BadValue;
61ee279c 7101 t1 = ada_check_typedef (t1);
4c4b4cd2 7102 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7103 {
994b9211 7104 arg = coerce_ref (arg);
76a01679
JB
7105 t = t1;
7106 }
4c4b4cd2 7107 }
14f9c5c9 7108
4c4b4cd2
PH
7109 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7110 {
7111 t1 = TYPE_TARGET_TYPE (t);
7112 if (t1 == NULL)
03ee6b2e 7113 goto BadValue;
61ee279c 7114 t1 = ada_check_typedef (t1);
4c4b4cd2 7115 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7116 {
7117 arg = value_ind (arg);
7118 t = t1;
7119 }
4c4b4cd2 7120 else
76a01679 7121 break;
4c4b4cd2 7122 }
14f9c5c9 7123
4c4b4cd2 7124 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7125 goto BadValue;
14f9c5c9 7126
4c4b4cd2
PH
7127 if (t1 == t)
7128 v = ada_search_struct_field (name, arg, 0, t);
7129 else
7130 {
7131 int bit_offset, bit_size, byte_offset;
7132 struct type *field_type;
7133 CORE_ADDR address;
7134
76a01679 7135 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7136 address = value_address (ada_value_ind (arg));
4c4b4cd2 7137 else
b50d69b5 7138 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7139
1ed6ede0 7140 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7141 if (find_struct_field (name, t1, 0,
7142 &field_type, &byte_offset, &bit_offset,
52ce6436 7143 &bit_size, NULL))
76a01679
JB
7144 {
7145 if (bit_size != 0)
7146 {
714e53ab
PH
7147 if (TYPE_CODE (t) == TYPE_CODE_REF)
7148 arg = ada_coerce_ref (arg);
7149 else
7150 arg = ada_value_ind (arg);
76a01679
JB
7151 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7152 bit_offset, bit_size,
7153 field_type);
7154 }
7155 else
f5938064 7156 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7157 }
7158 }
7159
03ee6b2e
PH
7160 if (v != NULL || no_err)
7161 return v;
7162 else
323e0a4a 7163 error (_("There is no member named %s."), name);
14f9c5c9 7164
03ee6b2e
PH
7165 BadValue:
7166 if (no_err)
7167 return NULL;
7168 else
0963b4bd
MS
7169 error (_("Attempt to extract a component of "
7170 "a value that is not a record."));
14f9c5c9
AS
7171}
7172
7173/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7174 If DISPP is non-null, add its byte displacement from the beginning of a
7175 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7176 work for packed fields).
7177
7178 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7179 followed by "___".
14f9c5c9 7180
0963b4bd 7181 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7182 be a (pointer or reference)+ to a struct or union, and the
7183 ultimate target type will be searched.
14f9c5c9
AS
7184
7185 Looks recursively into variant clauses and parent types.
7186
4c4b4cd2
PH
7187 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7188 TYPE is not a type of the right kind. */
14f9c5c9 7189
4c4b4cd2 7190static struct type *
76a01679
JB
7191ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7192 int noerr, int *dispp)
14f9c5c9
AS
7193{
7194 int i;
7195
7196 if (name == NULL)
7197 goto BadName;
7198
76a01679 7199 if (refok && type != NULL)
4c4b4cd2
PH
7200 while (1)
7201 {
61ee279c 7202 type = ada_check_typedef (type);
76a01679
JB
7203 if (TYPE_CODE (type) != TYPE_CODE_PTR
7204 && TYPE_CODE (type) != TYPE_CODE_REF)
7205 break;
7206 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7207 }
14f9c5c9 7208
76a01679 7209 if (type == NULL
1265e4aa
JB
7210 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7211 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7212 {
4c4b4cd2 7213 if (noerr)
76a01679 7214 return NULL;
4c4b4cd2 7215 else
76a01679
JB
7216 {
7217 target_terminal_ours ();
7218 gdb_flush (gdb_stdout);
323e0a4a
AC
7219 if (type == NULL)
7220 error (_("Type (null) is not a structure or union type"));
7221 else
7222 {
7223 /* XXX: type_sprint */
7224 fprintf_unfiltered (gdb_stderr, _("Type "));
7225 type_print (type, "", gdb_stderr, -1);
7226 error (_(" is not a structure or union type"));
7227 }
76a01679 7228 }
14f9c5c9
AS
7229 }
7230
7231 type = to_static_fixed_type (type);
7232
7233 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7234 {
0d5cff50 7235 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7236 struct type *t;
7237 int disp;
d2e4a39e 7238
14f9c5c9 7239 if (t_field_name == NULL)
4c4b4cd2 7240 continue;
14f9c5c9
AS
7241
7242 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7243 {
7244 if (dispp != NULL)
7245 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7246 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7247 }
14f9c5c9
AS
7248
7249 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7250 {
7251 disp = 0;
7252 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7253 0, 1, &disp);
7254 if (t != NULL)
7255 {
7256 if (dispp != NULL)
7257 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7258 return t;
7259 }
7260 }
14f9c5c9
AS
7261
7262 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7263 {
7264 int j;
5b4ee69b
MS
7265 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7266 i));
4c4b4cd2
PH
7267
7268 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7269 {
b1f33ddd
JB
7270 /* FIXME pnh 2008/01/26: We check for a field that is
7271 NOT wrapped in a struct, since the compiler sometimes
7272 generates these for unchecked variant types. Revisit
0963b4bd 7273 if the compiler changes this practice. */
0d5cff50 7274 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7275 disp = 0;
b1f33ddd
JB
7276 if (v_field_name != NULL
7277 && field_name_match (v_field_name, name))
7278 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7279 else
0963b4bd
MS
7280 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7281 j),
b1f33ddd
JB
7282 name, 0, 1, &disp);
7283
4c4b4cd2
PH
7284 if (t != NULL)
7285 {
7286 if (dispp != NULL)
7287 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7288 return t;
7289 }
7290 }
7291 }
14f9c5c9
AS
7292
7293 }
7294
7295BadName:
d2e4a39e 7296 if (!noerr)
14f9c5c9
AS
7297 {
7298 target_terminal_ours ();
7299 gdb_flush (gdb_stdout);
323e0a4a
AC
7300 if (name == NULL)
7301 {
7302 /* XXX: type_sprint */
7303 fprintf_unfiltered (gdb_stderr, _("Type "));
7304 type_print (type, "", gdb_stderr, -1);
7305 error (_(" has no component named <null>"));
7306 }
7307 else
7308 {
7309 /* XXX: type_sprint */
7310 fprintf_unfiltered (gdb_stderr, _("Type "));
7311 type_print (type, "", gdb_stderr, -1);
7312 error (_(" has no component named %s"), name);
7313 }
14f9c5c9
AS
7314 }
7315
7316 return NULL;
7317}
7318
b1f33ddd
JB
7319/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7320 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7321 represents an unchecked union (that is, the variant part of a
0963b4bd 7322 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7323
7324static int
7325is_unchecked_variant (struct type *var_type, struct type *outer_type)
7326{
7327 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7328
b1f33ddd
JB
7329 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7330 == NULL);
7331}
7332
7333
14f9c5c9
AS
7334/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7335 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7336 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7337 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7338
d2e4a39e 7339int
ebf56fd3 7340ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7341 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7342{
7343 int others_clause;
7344 int i;
d2e4a39e 7345 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7346 struct value *outer;
7347 struct value *discrim;
14f9c5c9
AS
7348 LONGEST discrim_val;
7349
012370f6
TT
7350 /* Using plain value_from_contents_and_address here causes problems
7351 because we will end up trying to resolve a type that is currently
7352 being constructed. */
7353 outer = value_from_contents_and_address_unresolved (outer_type,
7354 outer_valaddr, 0);
0c281816
JB
7355 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7356 if (discrim == NULL)
14f9c5c9 7357 return -1;
0c281816 7358 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7359
7360 others_clause = -1;
7361 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7362 {
7363 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7364 others_clause = i;
14f9c5c9 7365 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7366 return i;
14f9c5c9
AS
7367 }
7368
7369 return others_clause;
7370}
d2e4a39e 7371\f
14f9c5c9
AS
7372
7373
4c4b4cd2 7374 /* Dynamic-Sized Records */
14f9c5c9
AS
7375
7376/* Strategy: The type ostensibly attached to a value with dynamic size
7377 (i.e., a size that is not statically recorded in the debugging
7378 data) does not accurately reflect the size or layout of the value.
7379 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7380 conventional types that are constructed on the fly. */
14f9c5c9
AS
7381
7382/* There is a subtle and tricky problem here. In general, we cannot
7383 determine the size of dynamic records without its data. However,
7384 the 'struct value' data structure, which GDB uses to represent
7385 quantities in the inferior process (the target), requires the size
7386 of the type at the time of its allocation in order to reserve space
7387 for GDB's internal copy of the data. That's why the
7388 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7389 rather than struct value*s.
14f9c5c9
AS
7390
7391 However, GDB's internal history variables ($1, $2, etc.) are
7392 struct value*s containing internal copies of the data that are not, in
7393 general, the same as the data at their corresponding addresses in
7394 the target. Fortunately, the types we give to these values are all
7395 conventional, fixed-size types (as per the strategy described
7396 above), so that we don't usually have to perform the
7397 'to_fixed_xxx_type' conversions to look at their values.
7398 Unfortunately, there is one exception: if one of the internal
7399 history variables is an array whose elements are unconstrained
7400 records, then we will need to create distinct fixed types for each
7401 element selected. */
7402
7403/* The upshot of all of this is that many routines take a (type, host
7404 address, target address) triple as arguments to represent a value.
7405 The host address, if non-null, is supposed to contain an internal
7406 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7407 target at the target address. */
14f9c5c9
AS
7408
7409/* Assuming that VAL0 represents a pointer value, the result of
7410 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7411 dynamic-sized types. */
14f9c5c9 7412
d2e4a39e
AS
7413struct value *
7414ada_value_ind (struct value *val0)
14f9c5c9 7415{
c48db5ca 7416 struct value *val = value_ind (val0);
5b4ee69b 7417
b50d69b5
JG
7418 if (ada_is_tagged_type (value_type (val), 0))
7419 val = ada_tag_value_at_base_address (val);
7420
4c4b4cd2 7421 return ada_to_fixed_value (val);
14f9c5c9
AS
7422}
7423
7424/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7425 qualifiers on VAL0. */
7426
d2e4a39e
AS
7427static struct value *
7428ada_coerce_ref (struct value *val0)
7429{
df407dfe 7430 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7431 {
7432 struct value *val = val0;
5b4ee69b 7433
994b9211 7434 val = coerce_ref (val);
b50d69b5
JG
7435
7436 if (ada_is_tagged_type (value_type (val), 0))
7437 val = ada_tag_value_at_base_address (val);
7438
4c4b4cd2 7439 return ada_to_fixed_value (val);
d2e4a39e
AS
7440 }
7441 else
14f9c5c9
AS
7442 return val0;
7443}
7444
7445/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7446 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7447
7448static unsigned int
ebf56fd3 7449align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7450{
7451 return (off + alignment - 1) & ~(alignment - 1);
7452}
7453
4c4b4cd2 7454/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7455
7456static unsigned int
ebf56fd3 7457field_alignment (struct type *type, int f)
14f9c5c9 7458{
d2e4a39e 7459 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7460 int len;
14f9c5c9
AS
7461 int align_offset;
7462
64a1bf19
JB
7463 /* The field name should never be null, unless the debugging information
7464 is somehow malformed. In this case, we assume the field does not
7465 require any alignment. */
7466 if (name == NULL)
7467 return 1;
7468
7469 len = strlen (name);
7470
4c4b4cd2
PH
7471 if (!isdigit (name[len - 1]))
7472 return 1;
14f9c5c9 7473
d2e4a39e 7474 if (isdigit (name[len - 2]))
14f9c5c9
AS
7475 align_offset = len - 2;
7476 else
7477 align_offset = len - 1;
7478
4c4b4cd2 7479 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7480 return TARGET_CHAR_BIT;
7481
4c4b4cd2
PH
7482 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7483}
7484
852dff6c 7485/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7486
852dff6c
JB
7487static struct symbol *
7488ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7489{
7490 struct symbol *sym;
7491
7492 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7493 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7494 return sym;
7495
4186eb54
KS
7496 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7497 return sym;
14f9c5c9
AS
7498}
7499
dddfab26
UW
7500/* Find a type named NAME. Ignores ambiguity. This routine will look
7501 solely for types defined by debug info, it will not search the GDB
7502 primitive types. */
4c4b4cd2 7503
852dff6c 7504static struct type *
ebf56fd3 7505ada_find_any_type (const char *name)
14f9c5c9 7506{
852dff6c 7507 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7508
14f9c5c9 7509 if (sym != NULL)
dddfab26 7510 return SYMBOL_TYPE (sym);
14f9c5c9 7511
dddfab26 7512 return NULL;
14f9c5c9
AS
7513}
7514
739593e0
JB
7515/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7516 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7517 symbol, in which case it is returned. Otherwise, this looks for
7518 symbols whose name is that of NAME_SYM suffixed with "___XR".
7519 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7520
7521struct symbol *
270140bd 7522ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7523{
739593e0 7524 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7525 struct symbol *sym;
7526
739593e0
JB
7527 if (strstr (name, "___XR") != NULL)
7528 return name_sym;
7529
aeb5907d
JB
7530 sym = find_old_style_renaming_symbol (name, block);
7531
7532 if (sym != NULL)
7533 return sym;
7534
0963b4bd 7535 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7536 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7537 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7538 return sym;
7539 else
7540 return NULL;
7541}
7542
7543static struct symbol *
270140bd 7544find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7545{
7f0df278 7546 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7547 char *rename;
7548
7549 if (function_sym != NULL)
7550 {
7551 /* If the symbol is defined inside a function, NAME is not fully
7552 qualified. This means we need to prepend the function name
7553 as well as adding the ``___XR'' suffix to build the name of
7554 the associated renaming symbol. */
0d5cff50 7555 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7556 /* Function names sometimes contain suffixes used
7557 for instance to qualify nested subprograms. When building
7558 the XR type name, we need to make sure that this suffix is
7559 not included. So do not include any suffix in the function
7560 name length below. */
69fadcdf 7561 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7562 const int rename_len = function_name_len + 2 /* "__" */
7563 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7564
529cad9c 7565 /* Strip the suffix if necessary. */
69fadcdf
JB
7566 ada_remove_trailing_digits (function_name, &function_name_len);
7567 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7568 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7569
4c4b4cd2
PH
7570 /* Library-level functions are a special case, as GNAT adds
7571 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7572 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7573 have this prefix, so we need to skip this prefix if present. */
7574 if (function_name_len > 5 /* "_ada_" */
7575 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7576 {
7577 function_name += 5;
7578 function_name_len -= 5;
7579 }
4c4b4cd2
PH
7580
7581 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7582 strncpy (rename, function_name, function_name_len);
7583 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7584 "__%s___XR", name);
4c4b4cd2
PH
7585 }
7586 else
7587 {
7588 const int rename_len = strlen (name) + 6;
5b4ee69b 7589
4c4b4cd2 7590 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7591 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7592 }
7593
852dff6c 7594 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7595}
7596
14f9c5c9 7597/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7598 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7599 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7600 otherwise return 0. */
7601
14f9c5c9 7602int
d2e4a39e 7603ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7604{
7605 if (type1 == NULL)
7606 return 1;
7607 else if (type0 == NULL)
7608 return 0;
7609 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7610 return 1;
7611 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7612 return 0;
4c4b4cd2
PH
7613 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7614 return 1;
ad82864c 7615 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7616 return 1;
4c4b4cd2
PH
7617 else if (ada_is_array_descriptor_type (type0)
7618 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7619 return 1;
aeb5907d
JB
7620 else
7621 {
7622 const char *type0_name = type_name_no_tag (type0);
7623 const char *type1_name = type_name_no_tag (type1);
7624
7625 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7626 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7627 return 1;
7628 }
14f9c5c9
AS
7629 return 0;
7630}
7631
7632/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7633 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7634
0d5cff50 7635const char *
d2e4a39e 7636ada_type_name (struct type *type)
14f9c5c9 7637{
d2e4a39e 7638 if (type == NULL)
14f9c5c9
AS
7639 return NULL;
7640 else if (TYPE_NAME (type) != NULL)
7641 return TYPE_NAME (type);
7642 else
7643 return TYPE_TAG_NAME (type);
7644}
7645
b4ba55a1
JB
7646/* Search the list of "descriptive" types associated to TYPE for a type
7647 whose name is NAME. */
7648
7649static struct type *
7650find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7651{
7652 struct type *result;
7653
c6044dd1
JB
7654 if (ada_ignore_descriptive_types_p)
7655 return NULL;
7656
b4ba55a1
JB
7657 /* If there no descriptive-type info, then there is no parallel type
7658 to be found. */
7659 if (!HAVE_GNAT_AUX_INFO (type))
7660 return NULL;
7661
7662 result = TYPE_DESCRIPTIVE_TYPE (type);
7663 while (result != NULL)
7664 {
0d5cff50 7665 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7666
7667 if (result_name == NULL)
7668 {
7669 warning (_("unexpected null name on descriptive type"));
7670 return NULL;
7671 }
7672
7673 /* If the names match, stop. */
7674 if (strcmp (result_name, name) == 0)
7675 break;
7676
7677 /* Otherwise, look at the next item on the list, if any. */
7678 if (HAVE_GNAT_AUX_INFO (result))
7679 result = TYPE_DESCRIPTIVE_TYPE (result);
7680 else
7681 result = NULL;
7682 }
7683
7684 /* If we didn't find a match, see whether this is a packed array. With
7685 older compilers, the descriptive type information is either absent or
7686 irrelevant when it comes to packed arrays so the above lookup fails.
7687 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7688 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7689 return ada_find_any_type (name);
7690
7691 return result;
7692}
7693
7694/* Find a parallel type to TYPE with the specified NAME, using the
7695 descriptive type taken from the debugging information, if available,
7696 and otherwise using the (slower) name-based method. */
7697
7698static struct type *
7699ada_find_parallel_type_with_name (struct type *type, const char *name)
7700{
7701 struct type *result = NULL;
7702
7703 if (HAVE_GNAT_AUX_INFO (type))
7704 result = find_parallel_type_by_descriptive_type (type, name);
7705 else
7706 result = ada_find_any_type (name);
7707
7708 return result;
7709}
7710
7711/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7712 SUFFIX to the name of TYPE. */
14f9c5c9 7713
d2e4a39e 7714struct type *
ebf56fd3 7715ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7716{
0d5cff50
DE
7717 char *name;
7718 const char *typename = ada_type_name (type);
14f9c5c9 7719 int len;
d2e4a39e 7720
14f9c5c9
AS
7721 if (typename == NULL)
7722 return NULL;
7723
7724 len = strlen (typename);
7725
b4ba55a1 7726 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7727
7728 strcpy (name, typename);
7729 strcpy (name + len, suffix);
7730
b4ba55a1 7731 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7732}
7733
14f9c5c9 7734/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7735 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7736
d2e4a39e
AS
7737static struct type *
7738dynamic_template_type (struct type *type)
14f9c5c9 7739{
61ee279c 7740 type = ada_check_typedef (type);
14f9c5c9
AS
7741
7742 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7743 || ada_type_name (type) == NULL)
14f9c5c9 7744 return NULL;
d2e4a39e 7745 else
14f9c5c9
AS
7746 {
7747 int len = strlen (ada_type_name (type));
5b4ee69b 7748
4c4b4cd2
PH
7749 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7750 return type;
14f9c5c9 7751 else
4c4b4cd2 7752 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7753 }
7754}
7755
7756/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7757 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7758
d2e4a39e
AS
7759static int
7760is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7761{
7762 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7763
d2e4a39e 7764 return name != NULL
14f9c5c9
AS
7765 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7766 && strstr (name, "___XVL") != NULL;
7767}
7768
4c4b4cd2
PH
7769/* The index of the variant field of TYPE, or -1 if TYPE does not
7770 represent a variant record type. */
14f9c5c9 7771
d2e4a39e 7772static int
4c4b4cd2 7773variant_field_index (struct type *type)
14f9c5c9
AS
7774{
7775 int f;
7776
4c4b4cd2
PH
7777 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7778 return -1;
7779
7780 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7781 {
7782 if (ada_is_variant_part (type, f))
7783 return f;
7784 }
7785 return -1;
14f9c5c9
AS
7786}
7787
4c4b4cd2
PH
7788/* A record type with no fields. */
7789
d2e4a39e 7790static struct type *
e9bb382b 7791empty_record (struct type *template)
14f9c5c9 7792{
e9bb382b 7793 struct type *type = alloc_type_copy (template);
5b4ee69b 7794
14f9c5c9
AS
7795 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7796 TYPE_NFIELDS (type) = 0;
7797 TYPE_FIELDS (type) = NULL;
b1f33ddd 7798 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7799 TYPE_NAME (type) = "<empty>";
7800 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7801 TYPE_LENGTH (type) = 0;
7802 return type;
7803}
7804
7805/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7806 the value of type TYPE at VALADDR or ADDRESS (see comments at
7807 the beginning of this section) VAL according to GNAT conventions.
7808 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7809 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7810 an outer-level type (i.e., as opposed to a branch of a variant.) A
7811 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7812 of the variant.
14f9c5c9 7813
4c4b4cd2
PH
7814 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7815 length are not statically known are discarded. As a consequence,
7816 VALADDR, ADDRESS and DVAL0 are ignored.
7817
7818 NOTE: Limitations: For now, we assume that dynamic fields and
7819 variants occupy whole numbers of bytes. However, they need not be
7820 byte-aligned. */
7821
7822struct type *
10a2c479 7823ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7824 const gdb_byte *valaddr,
4c4b4cd2
PH
7825 CORE_ADDR address, struct value *dval0,
7826 int keep_dynamic_fields)
14f9c5c9 7827{
d2e4a39e
AS
7828 struct value *mark = value_mark ();
7829 struct value *dval;
7830 struct type *rtype;
14f9c5c9 7831 int nfields, bit_len;
4c4b4cd2 7832 int variant_field;
14f9c5c9 7833 long off;
d94e4f4f 7834 int fld_bit_len;
14f9c5c9
AS
7835 int f;
7836
4c4b4cd2
PH
7837 /* Compute the number of fields in this record type that are going
7838 to be processed: unless keep_dynamic_fields, this includes only
7839 fields whose position and length are static will be processed. */
7840 if (keep_dynamic_fields)
7841 nfields = TYPE_NFIELDS (type);
7842 else
7843 {
7844 nfields = 0;
76a01679 7845 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7846 && !ada_is_variant_part (type, nfields)
7847 && !is_dynamic_field (type, nfields))
7848 nfields++;
7849 }
7850
e9bb382b 7851 rtype = alloc_type_copy (type);
14f9c5c9
AS
7852 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7853 INIT_CPLUS_SPECIFIC (rtype);
7854 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7855 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7856 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7857 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7858 TYPE_NAME (rtype) = ada_type_name (type);
7859 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7860 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7861
d2e4a39e
AS
7862 off = 0;
7863 bit_len = 0;
4c4b4cd2
PH
7864 variant_field = -1;
7865
14f9c5c9
AS
7866 for (f = 0; f < nfields; f += 1)
7867 {
6c038f32
PH
7868 off = align_value (off, field_alignment (type, f))
7869 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7870 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7871 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7872
d2e4a39e 7873 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7874 {
7875 variant_field = f;
d94e4f4f 7876 fld_bit_len = 0;
4c4b4cd2 7877 }
14f9c5c9 7878 else if (is_dynamic_field (type, f))
4c4b4cd2 7879 {
284614f0
JB
7880 const gdb_byte *field_valaddr = valaddr;
7881 CORE_ADDR field_address = address;
7882 struct type *field_type =
7883 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7884
4c4b4cd2 7885 if (dval0 == NULL)
b5304971
JG
7886 {
7887 /* rtype's length is computed based on the run-time
7888 value of discriminants. If the discriminants are not
7889 initialized, the type size may be completely bogus and
0963b4bd 7890 GDB may fail to allocate a value for it. So check the
b5304971
JG
7891 size first before creating the value. */
7892 check_size (rtype);
012370f6
TT
7893 /* Using plain value_from_contents_and_address here
7894 causes problems because we will end up trying to
7895 resolve a type that is currently being
7896 constructed. */
7897 dval = value_from_contents_and_address_unresolved (rtype,
7898 valaddr,
7899 address);
9f1f738a 7900 rtype = value_type (dval);
b5304971 7901 }
4c4b4cd2
PH
7902 else
7903 dval = dval0;
7904
284614f0
JB
7905 /* If the type referenced by this field is an aligner type, we need
7906 to unwrap that aligner type, because its size might not be set.
7907 Keeping the aligner type would cause us to compute the wrong
7908 size for this field, impacting the offset of the all the fields
7909 that follow this one. */
7910 if (ada_is_aligner_type (field_type))
7911 {
7912 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7913
7914 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7915 field_address = cond_offset_target (field_address, field_offset);
7916 field_type = ada_aligned_type (field_type);
7917 }
7918
7919 field_valaddr = cond_offset_host (field_valaddr,
7920 off / TARGET_CHAR_BIT);
7921 field_address = cond_offset_target (field_address,
7922 off / TARGET_CHAR_BIT);
7923
7924 /* Get the fixed type of the field. Note that, in this case,
7925 we do not want to get the real type out of the tag: if
7926 the current field is the parent part of a tagged record,
7927 we will get the tag of the object. Clearly wrong: the real
7928 type of the parent is not the real type of the child. We
7929 would end up in an infinite loop. */
7930 field_type = ada_get_base_type (field_type);
7931 field_type = ada_to_fixed_type (field_type, field_valaddr,
7932 field_address, dval, 0);
27f2a97b
JB
7933 /* If the field size is already larger than the maximum
7934 object size, then the record itself will necessarily
7935 be larger than the maximum object size. We need to make
7936 this check now, because the size might be so ridiculously
7937 large (due to an uninitialized variable in the inferior)
7938 that it would cause an overflow when adding it to the
7939 record size. */
7940 check_size (field_type);
284614f0
JB
7941
7942 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7943 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7944 /* The multiplication can potentially overflow. But because
7945 the field length has been size-checked just above, and
7946 assuming that the maximum size is a reasonable value,
7947 an overflow should not happen in practice. So rather than
7948 adding overflow recovery code to this already complex code,
7949 we just assume that it's not going to happen. */
d94e4f4f 7950 fld_bit_len =
4c4b4cd2
PH
7951 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7952 }
14f9c5c9 7953 else
4c4b4cd2 7954 {
5ded5331
JB
7955 /* Note: If this field's type is a typedef, it is important
7956 to preserve the typedef layer.
7957
7958 Otherwise, we might be transforming a typedef to a fat
7959 pointer (encoding a pointer to an unconstrained array),
7960 into a basic fat pointer (encoding an unconstrained
7961 array). As both types are implemented using the same
7962 structure, the typedef is the only clue which allows us
7963 to distinguish between the two options. Stripping it
7964 would prevent us from printing this field appropriately. */
7965 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7966 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7967 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7968 fld_bit_len =
4c4b4cd2
PH
7969 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7970 else
5ded5331
JB
7971 {
7972 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7973
7974 /* We need to be careful of typedefs when computing
7975 the length of our field. If this is a typedef,
7976 get the length of the target type, not the length
7977 of the typedef. */
7978 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7979 field_type = ada_typedef_target_type (field_type);
7980
7981 fld_bit_len =
7982 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7983 }
4c4b4cd2 7984 }
14f9c5c9 7985 if (off + fld_bit_len > bit_len)
4c4b4cd2 7986 bit_len = off + fld_bit_len;
d94e4f4f 7987 off += fld_bit_len;
4c4b4cd2
PH
7988 TYPE_LENGTH (rtype) =
7989 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7990 }
4c4b4cd2
PH
7991
7992 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7993 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7994 the record. This can happen in the presence of representation
7995 clauses. */
7996 if (variant_field >= 0)
7997 {
7998 struct type *branch_type;
7999
8000 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8001
8002 if (dval0 == NULL)
9f1f738a 8003 {
012370f6
TT
8004 /* Using plain value_from_contents_and_address here causes
8005 problems because we will end up trying to resolve a type
8006 that is currently being constructed. */
8007 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8008 address);
9f1f738a
SA
8009 rtype = value_type (dval);
8010 }
4c4b4cd2
PH
8011 else
8012 dval = dval0;
8013
8014 branch_type =
8015 to_fixed_variant_branch_type
8016 (TYPE_FIELD_TYPE (type, variant_field),
8017 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8018 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8019 if (branch_type == NULL)
8020 {
8021 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8022 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8023 TYPE_NFIELDS (rtype) -= 1;
8024 }
8025 else
8026 {
8027 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8028 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8029 fld_bit_len =
8030 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8031 TARGET_CHAR_BIT;
8032 if (off + fld_bit_len > bit_len)
8033 bit_len = off + fld_bit_len;
8034 TYPE_LENGTH (rtype) =
8035 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8036 }
8037 }
8038
714e53ab
PH
8039 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8040 should contain the alignment of that record, which should be a strictly
8041 positive value. If null or negative, then something is wrong, most
8042 probably in the debug info. In that case, we don't round up the size
0963b4bd 8043 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8044 the current RTYPE length might be good enough for our purposes. */
8045 if (TYPE_LENGTH (type) <= 0)
8046 {
323e0a4a
AC
8047 if (TYPE_NAME (rtype))
8048 warning (_("Invalid type size for `%s' detected: %d."),
8049 TYPE_NAME (rtype), TYPE_LENGTH (type));
8050 else
8051 warning (_("Invalid type size for <unnamed> detected: %d."),
8052 TYPE_LENGTH (type));
714e53ab
PH
8053 }
8054 else
8055 {
8056 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8057 TYPE_LENGTH (type));
8058 }
14f9c5c9
AS
8059
8060 value_free_to_mark (mark);
d2e4a39e 8061 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8062 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8063 return rtype;
8064}
8065
4c4b4cd2
PH
8066/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8067 of 1. */
14f9c5c9 8068
d2e4a39e 8069static struct type *
fc1a4b47 8070template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8071 CORE_ADDR address, struct value *dval0)
8072{
8073 return ada_template_to_fixed_record_type_1 (type, valaddr,
8074 address, dval0, 1);
8075}
8076
8077/* An ordinary record type in which ___XVL-convention fields and
8078 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8079 static approximations, containing all possible fields. Uses
8080 no runtime values. Useless for use in values, but that's OK,
8081 since the results are used only for type determinations. Works on both
8082 structs and unions. Representation note: to save space, we memorize
8083 the result of this function in the TYPE_TARGET_TYPE of the
8084 template type. */
8085
8086static struct type *
8087template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8088{
8089 struct type *type;
8090 int nfields;
8091 int f;
8092
4c4b4cd2
PH
8093 if (TYPE_TARGET_TYPE (type0) != NULL)
8094 return TYPE_TARGET_TYPE (type0);
8095
8096 nfields = TYPE_NFIELDS (type0);
8097 type = type0;
14f9c5c9
AS
8098
8099 for (f = 0; f < nfields; f += 1)
8100 {
61ee279c 8101 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 8102 struct type *new_type;
14f9c5c9 8103
4c4b4cd2
PH
8104 if (is_dynamic_field (type0, f))
8105 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 8106 else
f192137b 8107 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8108 if (type == type0 && new_type != field_type)
8109 {
e9bb382b 8110 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8111 TYPE_CODE (type) = TYPE_CODE (type0);
8112 INIT_CPLUS_SPECIFIC (type);
8113 TYPE_NFIELDS (type) = nfields;
8114 TYPE_FIELDS (type) = (struct field *)
8115 TYPE_ALLOC (type, nfields * sizeof (struct field));
8116 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8117 sizeof (struct field) * nfields);
8118 TYPE_NAME (type) = ada_type_name (type0);
8119 TYPE_TAG_NAME (type) = NULL;
876cecd0 8120 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8121 TYPE_LENGTH (type) = 0;
8122 }
8123 TYPE_FIELD_TYPE (type, f) = new_type;
8124 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8125 }
14f9c5c9
AS
8126 return type;
8127}
8128
4c4b4cd2 8129/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8130 whose address in memory is ADDRESS, returns a revision of TYPE,
8131 which should be a non-dynamic-sized record, in which the variant
8132 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8133 for discriminant values in DVAL0, which can be NULL if the record
8134 contains the necessary discriminant values. */
8135
d2e4a39e 8136static struct type *
fc1a4b47 8137to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8138 CORE_ADDR address, struct value *dval0)
14f9c5c9 8139{
d2e4a39e 8140 struct value *mark = value_mark ();
4c4b4cd2 8141 struct value *dval;
d2e4a39e 8142 struct type *rtype;
14f9c5c9
AS
8143 struct type *branch_type;
8144 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8145 int variant_field = variant_field_index (type);
14f9c5c9 8146
4c4b4cd2 8147 if (variant_field == -1)
14f9c5c9
AS
8148 return type;
8149
4c4b4cd2 8150 if (dval0 == NULL)
9f1f738a
SA
8151 {
8152 dval = value_from_contents_and_address (type, valaddr, address);
8153 type = value_type (dval);
8154 }
4c4b4cd2
PH
8155 else
8156 dval = dval0;
8157
e9bb382b 8158 rtype = alloc_type_copy (type);
14f9c5c9 8159 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8160 INIT_CPLUS_SPECIFIC (rtype);
8161 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8162 TYPE_FIELDS (rtype) =
8163 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8164 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8165 sizeof (struct field) * nfields);
14f9c5c9
AS
8166 TYPE_NAME (rtype) = ada_type_name (type);
8167 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8168 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8169 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8170
4c4b4cd2
PH
8171 branch_type = to_fixed_variant_branch_type
8172 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8173 cond_offset_host (valaddr,
4c4b4cd2
PH
8174 TYPE_FIELD_BITPOS (type, variant_field)
8175 / TARGET_CHAR_BIT),
d2e4a39e 8176 cond_offset_target (address,
4c4b4cd2
PH
8177 TYPE_FIELD_BITPOS (type, variant_field)
8178 / TARGET_CHAR_BIT), dval);
d2e4a39e 8179 if (branch_type == NULL)
14f9c5c9 8180 {
4c4b4cd2 8181 int f;
5b4ee69b 8182
4c4b4cd2
PH
8183 for (f = variant_field + 1; f < nfields; f += 1)
8184 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8185 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8186 }
8187 else
8188 {
4c4b4cd2
PH
8189 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8190 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8191 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8192 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8193 }
4c4b4cd2 8194 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8195
4c4b4cd2 8196 value_free_to_mark (mark);
14f9c5c9
AS
8197 return rtype;
8198}
8199
8200/* An ordinary record type (with fixed-length fields) that describes
8201 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8202 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8203 should be in DVAL, a record value; it may be NULL if the object
8204 at ADDR itself contains any necessary discriminant values.
8205 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8206 values from the record are needed. Except in the case that DVAL,
8207 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8208 unchecked) is replaced by a particular branch of the variant.
8209
8210 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8211 is questionable and may be removed. It can arise during the
8212 processing of an unconstrained-array-of-record type where all the
8213 variant branches have exactly the same size. This is because in
8214 such cases, the compiler does not bother to use the XVS convention
8215 when encoding the record. I am currently dubious of this
8216 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8217
d2e4a39e 8218static struct type *
fc1a4b47 8219to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8220 CORE_ADDR address, struct value *dval)
14f9c5c9 8221{
d2e4a39e 8222 struct type *templ_type;
14f9c5c9 8223
876cecd0 8224 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8225 return type0;
8226
d2e4a39e 8227 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8228
8229 if (templ_type != NULL)
8230 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8231 else if (variant_field_index (type0) >= 0)
8232 {
8233 if (dval == NULL && valaddr == NULL && address == 0)
8234 return type0;
8235 return to_record_with_fixed_variant_part (type0, valaddr, address,
8236 dval);
8237 }
14f9c5c9
AS
8238 else
8239 {
876cecd0 8240 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8241 return type0;
8242 }
8243
8244}
8245
8246/* An ordinary record type (with fixed-length fields) that describes
8247 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8248 union type. Any necessary discriminants' values should be in DVAL,
8249 a record value. That is, this routine selects the appropriate
8250 branch of the union at ADDR according to the discriminant value
b1f33ddd 8251 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8252 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8253
d2e4a39e 8254static struct type *
fc1a4b47 8255to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8256 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8257{
8258 int which;
d2e4a39e
AS
8259 struct type *templ_type;
8260 struct type *var_type;
14f9c5c9
AS
8261
8262 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8263 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8264 else
14f9c5c9
AS
8265 var_type = var_type0;
8266
8267 templ_type = ada_find_parallel_type (var_type, "___XVU");
8268
8269 if (templ_type != NULL)
8270 var_type = templ_type;
8271
b1f33ddd
JB
8272 if (is_unchecked_variant (var_type, value_type (dval)))
8273 return var_type0;
d2e4a39e
AS
8274 which =
8275 ada_which_variant_applies (var_type,
0fd88904 8276 value_type (dval), value_contents (dval));
14f9c5c9
AS
8277
8278 if (which < 0)
e9bb382b 8279 return empty_record (var_type);
14f9c5c9 8280 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8281 return to_fixed_record_type
d2e4a39e
AS
8282 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8283 valaddr, address, dval);
4c4b4cd2 8284 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8285 return
8286 to_fixed_record_type
8287 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8288 else
8289 return TYPE_FIELD_TYPE (var_type, which);
8290}
8291
8292/* Assuming that TYPE0 is an array type describing the type of a value
8293 at ADDR, and that DVAL describes a record containing any
8294 discriminants used in TYPE0, returns a type for the value that
8295 contains no dynamic components (that is, no components whose sizes
8296 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8297 true, gives an error message if the resulting type's size is over
4c4b4cd2 8298 varsize_limit. */
14f9c5c9 8299
d2e4a39e
AS
8300static struct type *
8301to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8302 int ignore_too_big)
14f9c5c9 8303{
d2e4a39e
AS
8304 struct type *index_type_desc;
8305 struct type *result;
ad82864c 8306 int constrained_packed_array_p;
14f9c5c9 8307
b0dd7688 8308 type0 = ada_check_typedef (type0);
284614f0 8309 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8310 return type0;
14f9c5c9 8311
ad82864c
JB
8312 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8313 if (constrained_packed_array_p)
8314 type0 = decode_constrained_packed_array_type (type0);
284614f0 8315
14f9c5c9 8316 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8317 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8318 if (index_type_desc == NULL)
8319 {
61ee279c 8320 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8321
14f9c5c9 8322 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8323 depend on the contents of the array in properly constructed
8324 debugging data. */
529cad9c
PH
8325 /* Create a fixed version of the array element type.
8326 We're not providing the address of an element here,
e1d5a0d2 8327 and thus the actual object value cannot be inspected to do
529cad9c
PH
8328 the conversion. This should not be a problem, since arrays of
8329 unconstrained objects are not allowed. In particular, all
8330 the elements of an array of a tagged type should all be of
8331 the same type specified in the debugging info. No need to
8332 consult the object tag. */
1ed6ede0 8333 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8334
284614f0
JB
8335 /* Make sure we always create a new array type when dealing with
8336 packed array types, since we're going to fix-up the array
8337 type length and element bitsize a little further down. */
ad82864c 8338 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8339 result = type0;
14f9c5c9 8340 else
e9bb382b 8341 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8342 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8343 }
8344 else
8345 {
8346 int i;
8347 struct type *elt_type0;
8348
8349 elt_type0 = type0;
8350 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8351 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8352
8353 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8354 depend on the contents of the array in properly constructed
8355 debugging data. */
529cad9c
PH
8356 /* Create a fixed version of the array element type.
8357 We're not providing the address of an element here,
e1d5a0d2 8358 and thus the actual object value cannot be inspected to do
529cad9c
PH
8359 the conversion. This should not be a problem, since arrays of
8360 unconstrained objects are not allowed. In particular, all
8361 the elements of an array of a tagged type should all be of
8362 the same type specified in the debugging info. No need to
8363 consult the object tag. */
1ed6ede0
JB
8364 result =
8365 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8366
8367 elt_type0 = type0;
14f9c5c9 8368 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8369 {
8370 struct type *range_type =
28c85d6c 8371 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8372
e9bb382b 8373 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8374 result, range_type);
1ce677a4 8375 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8376 }
d2e4a39e 8377 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8378 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8379 }
8380
2e6fda7d
JB
8381 /* We want to preserve the type name. This can be useful when
8382 trying to get the type name of a value that has already been
8383 printed (for instance, if the user did "print VAR; whatis $". */
8384 TYPE_NAME (result) = TYPE_NAME (type0);
8385
ad82864c 8386 if (constrained_packed_array_p)
284614f0
JB
8387 {
8388 /* So far, the resulting type has been created as if the original
8389 type was a regular (non-packed) array type. As a result, the
8390 bitsize of the array elements needs to be set again, and the array
8391 length needs to be recomputed based on that bitsize. */
8392 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8393 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8394
8395 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8396 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8397 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8398 TYPE_LENGTH (result)++;
8399 }
8400
876cecd0 8401 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8402 return result;
d2e4a39e 8403}
14f9c5c9
AS
8404
8405
8406/* A standard type (containing no dynamically sized components)
8407 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8408 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8409 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8410 ADDRESS or in VALADDR contains these discriminants.
8411
1ed6ede0
JB
8412 If CHECK_TAG is not null, in the case of tagged types, this function
8413 attempts to locate the object's tag and use it to compute the actual
8414 type. However, when ADDRESS is null, we cannot use it to determine the
8415 location of the tag, and therefore compute the tagged type's actual type.
8416 So we return the tagged type without consulting the tag. */
529cad9c 8417
f192137b
JB
8418static struct type *
8419ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8420 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8421{
61ee279c 8422 type = ada_check_typedef (type);
d2e4a39e
AS
8423 switch (TYPE_CODE (type))
8424 {
8425 default:
14f9c5c9 8426 return type;
d2e4a39e 8427 case TYPE_CODE_STRUCT:
4c4b4cd2 8428 {
76a01679 8429 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8430 struct type *fixed_record_type =
8431 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8432
529cad9c
PH
8433 /* If STATIC_TYPE is a tagged type and we know the object's address,
8434 then we can determine its tag, and compute the object's actual
0963b4bd 8435 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8436 type (the parent part of the record may have dynamic fields
8437 and the way the location of _tag is expressed may depend on
8438 them). */
529cad9c 8439
1ed6ede0 8440 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8441 {
b50d69b5
JG
8442 struct value *tag =
8443 value_tag_from_contents_and_address
8444 (fixed_record_type,
8445 valaddr,
8446 address);
8447 struct type *real_type = type_from_tag (tag);
8448 struct value *obj =
8449 value_from_contents_and_address (fixed_record_type,
8450 valaddr,
8451 address);
9f1f738a 8452 fixed_record_type = value_type (obj);
76a01679 8453 if (real_type != NULL)
b50d69b5
JG
8454 return to_fixed_record_type
8455 (real_type, NULL,
8456 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8457 }
4af88198
JB
8458
8459 /* Check to see if there is a parallel ___XVZ variable.
8460 If there is, then it provides the actual size of our type. */
8461 else if (ada_type_name (fixed_record_type) != NULL)
8462 {
0d5cff50 8463 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8464 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8465 int xvz_found = 0;
8466 LONGEST size;
8467
88c15c34 8468 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8469 size = get_int_var_value (xvz_name, &xvz_found);
8470 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8471 {
8472 fixed_record_type = copy_type (fixed_record_type);
8473 TYPE_LENGTH (fixed_record_type) = size;
8474
8475 /* The FIXED_RECORD_TYPE may have be a stub. We have
8476 observed this when the debugging info is STABS, and
8477 apparently it is something that is hard to fix.
8478
8479 In practice, we don't need the actual type definition
8480 at all, because the presence of the XVZ variable allows us
8481 to assume that there must be a XVS type as well, which we
8482 should be able to use later, when we need the actual type
8483 definition.
8484
8485 In the meantime, pretend that the "fixed" type we are
8486 returning is NOT a stub, because this can cause trouble
8487 when using this type to create new types targeting it.
8488 Indeed, the associated creation routines often check
8489 whether the target type is a stub and will try to replace
0963b4bd 8490 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8491 might cause the new type to have the wrong size too.
8492 Consider the case of an array, for instance, where the size
8493 of the array is computed from the number of elements in
8494 our array multiplied by the size of its element. */
8495 TYPE_STUB (fixed_record_type) = 0;
8496 }
8497 }
1ed6ede0 8498 return fixed_record_type;
4c4b4cd2 8499 }
d2e4a39e 8500 case TYPE_CODE_ARRAY:
4c4b4cd2 8501 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8502 case TYPE_CODE_UNION:
8503 if (dval == NULL)
4c4b4cd2 8504 return type;
d2e4a39e 8505 else
4c4b4cd2 8506 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8507 }
14f9c5c9
AS
8508}
8509
f192137b
JB
8510/* The same as ada_to_fixed_type_1, except that it preserves the type
8511 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8512
8513 The typedef layer needs be preserved in order to differentiate between
8514 arrays and array pointers when both types are implemented using the same
8515 fat pointer. In the array pointer case, the pointer is encoded as
8516 a typedef of the pointer type. For instance, considering:
8517
8518 type String_Access is access String;
8519 S1 : String_Access := null;
8520
8521 To the debugger, S1 is defined as a typedef of type String. But
8522 to the user, it is a pointer. So if the user tries to print S1,
8523 we should not dereference the array, but print the array address
8524 instead.
8525
8526 If we didn't preserve the typedef layer, we would lose the fact that
8527 the type is to be presented as a pointer (needs de-reference before
8528 being printed). And we would also use the source-level type name. */
f192137b
JB
8529
8530struct type *
8531ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8532 CORE_ADDR address, struct value *dval, int check_tag)
8533
8534{
8535 struct type *fixed_type =
8536 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8537
96dbd2c1
JB
8538 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8539 then preserve the typedef layer.
8540
8541 Implementation note: We can only check the main-type portion of
8542 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8543 from TYPE now returns a type that has the same instance flags
8544 as TYPE. For instance, if TYPE is a "typedef const", and its
8545 target type is a "struct", then the typedef elimination will return
8546 a "const" version of the target type. See check_typedef for more
8547 details about how the typedef layer elimination is done.
8548
8549 brobecker/2010-11-19: It seems to me that the only case where it is
8550 useful to preserve the typedef layer is when dealing with fat pointers.
8551 Perhaps, we could add a check for that and preserve the typedef layer
8552 only in that situation. But this seems unecessary so far, probably
8553 because we call check_typedef/ada_check_typedef pretty much everywhere.
8554 */
f192137b 8555 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8556 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8557 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8558 return type;
8559
8560 return fixed_type;
8561}
8562
14f9c5c9 8563/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8564 TYPE0, but based on no runtime data. */
14f9c5c9 8565
d2e4a39e
AS
8566static struct type *
8567to_static_fixed_type (struct type *type0)
14f9c5c9 8568{
d2e4a39e 8569 struct type *type;
14f9c5c9
AS
8570
8571 if (type0 == NULL)
8572 return NULL;
8573
876cecd0 8574 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8575 return type0;
8576
61ee279c 8577 type0 = ada_check_typedef (type0);
d2e4a39e 8578
14f9c5c9
AS
8579 switch (TYPE_CODE (type0))
8580 {
8581 default:
8582 return type0;
8583 case TYPE_CODE_STRUCT:
8584 type = dynamic_template_type (type0);
d2e4a39e 8585 if (type != NULL)
4c4b4cd2
PH
8586 return template_to_static_fixed_type (type);
8587 else
8588 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8589 case TYPE_CODE_UNION:
8590 type = ada_find_parallel_type (type0, "___XVU");
8591 if (type != NULL)
4c4b4cd2
PH
8592 return template_to_static_fixed_type (type);
8593 else
8594 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8595 }
8596}
8597
4c4b4cd2
PH
8598/* A static approximation of TYPE with all type wrappers removed. */
8599
d2e4a39e
AS
8600static struct type *
8601static_unwrap_type (struct type *type)
14f9c5c9
AS
8602{
8603 if (ada_is_aligner_type (type))
8604 {
61ee279c 8605 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8606 if (ada_type_name (type1) == NULL)
4c4b4cd2 8607 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8608
8609 return static_unwrap_type (type1);
8610 }
d2e4a39e 8611 else
14f9c5c9 8612 {
d2e4a39e 8613 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8614
d2e4a39e 8615 if (raw_real_type == type)
4c4b4cd2 8616 return type;
14f9c5c9 8617 else
4c4b4cd2 8618 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8619 }
8620}
8621
8622/* In some cases, incomplete and private types require
4c4b4cd2 8623 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8624 type Foo;
8625 type FooP is access Foo;
8626 V: FooP;
8627 type Foo is array ...;
4c4b4cd2 8628 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8629 cross-references to such types, we instead substitute for FooP a
8630 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8631 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8632
8633/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8634 exists, otherwise TYPE. */
8635
d2e4a39e 8636struct type *
61ee279c 8637ada_check_typedef (struct type *type)
14f9c5c9 8638{
727e3d2e
JB
8639 if (type == NULL)
8640 return NULL;
8641
720d1a40
JB
8642 /* If our type is a typedef type of a fat pointer, then we're done.
8643 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8644 what allows us to distinguish between fat pointers that represent
8645 array types, and fat pointers that represent array access types
8646 (in both cases, the compiler implements them as fat pointers). */
8647 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8648 && is_thick_pntr (ada_typedef_target_type (type)))
8649 return type;
8650
14f9c5c9
AS
8651 CHECK_TYPEDEF (type);
8652 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8653 || !TYPE_STUB (type)
14f9c5c9
AS
8654 || TYPE_TAG_NAME (type) == NULL)
8655 return type;
d2e4a39e 8656 else
14f9c5c9 8657 {
0d5cff50 8658 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8659 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8660
05e522ef
JB
8661 if (type1 == NULL)
8662 return type;
8663
8664 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8665 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8666 types, only for the typedef-to-array types). If that's the case,
8667 strip the typedef layer. */
8668 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8669 type1 = ada_check_typedef (type1);
8670
8671 return type1;
14f9c5c9
AS
8672 }
8673}
8674
8675/* A value representing the data at VALADDR/ADDRESS as described by
8676 type TYPE0, but with a standard (static-sized) type that correctly
8677 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8678 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8679 creation of struct values]. */
14f9c5c9 8680
4c4b4cd2
PH
8681static struct value *
8682ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8683 struct value *val0)
14f9c5c9 8684{
1ed6ede0 8685 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8686
14f9c5c9
AS
8687 if (type == type0 && val0 != NULL)
8688 return val0;
d2e4a39e 8689 else
4c4b4cd2
PH
8690 return value_from_contents_and_address (type, 0, address);
8691}
8692
8693/* A value representing VAL, but with a standard (static-sized) type
8694 that correctly describes it. Does not necessarily create a new
8695 value. */
8696
0c3acc09 8697struct value *
4c4b4cd2
PH
8698ada_to_fixed_value (struct value *val)
8699{
c48db5ca
JB
8700 val = unwrap_value (val);
8701 val = ada_to_fixed_value_create (value_type (val),
8702 value_address (val),
8703 val);
8704 return val;
14f9c5c9 8705}
d2e4a39e 8706\f
14f9c5c9 8707
14f9c5c9
AS
8708/* Attributes */
8709
4c4b4cd2
PH
8710/* Table mapping attribute numbers to names.
8711 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8712
d2e4a39e 8713static const char *attribute_names[] = {
14f9c5c9
AS
8714 "<?>",
8715
d2e4a39e 8716 "first",
14f9c5c9
AS
8717 "last",
8718 "length",
8719 "image",
14f9c5c9
AS
8720 "max",
8721 "min",
4c4b4cd2
PH
8722 "modulus",
8723 "pos",
8724 "size",
8725 "tag",
14f9c5c9 8726 "val",
14f9c5c9
AS
8727 0
8728};
8729
d2e4a39e 8730const char *
4c4b4cd2 8731ada_attribute_name (enum exp_opcode n)
14f9c5c9 8732{
4c4b4cd2
PH
8733 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8734 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8735 else
8736 return attribute_names[0];
8737}
8738
4c4b4cd2 8739/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8740
4c4b4cd2
PH
8741static LONGEST
8742pos_atr (struct value *arg)
14f9c5c9 8743{
24209737
PH
8744 struct value *val = coerce_ref (arg);
8745 struct type *type = value_type (val);
14f9c5c9 8746
d2e4a39e 8747 if (!discrete_type_p (type))
323e0a4a 8748 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8749
8750 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8751 {
8752 int i;
24209737 8753 LONGEST v = value_as_long (val);
14f9c5c9 8754
d2e4a39e 8755 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8756 {
14e75d8e 8757 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8758 return i;
8759 }
323e0a4a 8760 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8761 }
8762 else
24209737 8763 return value_as_long (val);
4c4b4cd2
PH
8764}
8765
8766static struct value *
3cb382c9 8767value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8768{
3cb382c9 8769 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8770}
8771
4c4b4cd2 8772/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8773
d2e4a39e
AS
8774static struct value *
8775value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8776{
d2e4a39e 8777 if (!discrete_type_p (type))
323e0a4a 8778 error (_("'VAL only defined on discrete types"));
df407dfe 8779 if (!integer_type_p (value_type (arg)))
323e0a4a 8780 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8781
8782 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8783 {
8784 long pos = value_as_long (arg);
5b4ee69b 8785
14f9c5c9 8786 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8787 error (_("argument to 'VAL out of range"));
14e75d8e 8788 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8789 }
8790 else
8791 return value_from_longest (type, value_as_long (arg));
8792}
14f9c5c9 8793\f
d2e4a39e 8794
4c4b4cd2 8795 /* Evaluation */
14f9c5c9 8796
4c4b4cd2
PH
8797/* True if TYPE appears to be an Ada character type.
8798 [At the moment, this is true only for Character and Wide_Character;
8799 It is a heuristic test that could stand improvement]. */
14f9c5c9 8800
d2e4a39e
AS
8801int
8802ada_is_character_type (struct type *type)
14f9c5c9 8803{
7b9f71f2
JB
8804 const char *name;
8805
8806 /* If the type code says it's a character, then assume it really is,
8807 and don't check any further. */
8808 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8809 return 1;
8810
8811 /* Otherwise, assume it's a character type iff it is a discrete type
8812 with a known character type name. */
8813 name = ada_type_name (type);
8814 return (name != NULL
8815 && (TYPE_CODE (type) == TYPE_CODE_INT
8816 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8817 && (strcmp (name, "character") == 0
8818 || strcmp (name, "wide_character") == 0
5a517ebd 8819 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8820 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8821}
8822
4c4b4cd2 8823/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8824
8825int
ebf56fd3 8826ada_is_string_type (struct type *type)
14f9c5c9 8827{
61ee279c 8828 type = ada_check_typedef (type);
d2e4a39e 8829 if (type != NULL
14f9c5c9 8830 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8831 && (ada_is_simple_array_type (type)
8832 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8833 && ada_array_arity (type) == 1)
8834 {
8835 struct type *elttype = ada_array_element_type (type, 1);
8836
8837 return ada_is_character_type (elttype);
8838 }
d2e4a39e 8839 else
14f9c5c9
AS
8840 return 0;
8841}
8842
5bf03f13
JB
8843/* The compiler sometimes provides a parallel XVS type for a given
8844 PAD type. Normally, it is safe to follow the PAD type directly,
8845 but older versions of the compiler have a bug that causes the offset
8846 of its "F" field to be wrong. Following that field in that case
8847 would lead to incorrect results, but this can be worked around
8848 by ignoring the PAD type and using the associated XVS type instead.
8849
8850 Set to True if the debugger should trust the contents of PAD types.
8851 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8852static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8853
8854/* True if TYPE is a struct type introduced by the compiler to force the
8855 alignment of a value. Such types have a single field with a
4c4b4cd2 8856 distinctive name. */
14f9c5c9
AS
8857
8858int
ebf56fd3 8859ada_is_aligner_type (struct type *type)
14f9c5c9 8860{
61ee279c 8861 type = ada_check_typedef (type);
714e53ab 8862
5bf03f13 8863 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8864 return 0;
8865
14f9c5c9 8866 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8867 && TYPE_NFIELDS (type) == 1
8868 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8869}
8870
8871/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8872 the parallel type. */
14f9c5c9 8873
d2e4a39e
AS
8874struct type *
8875ada_get_base_type (struct type *raw_type)
14f9c5c9 8876{
d2e4a39e
AS
8877 struct type *real_type_namer;
8878 struct type *raw_real_type;
14f9c5c9
AS
8879
8880 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8881 return raw_type;
8882
284614f0
JB
8883 if (ada_is_aligner_type (raw_type))
8884 /* The encoding specifies that we should always use the aligner type.
8885 So, even if this aligner type has an associated XVS type, we should
8886 simply ignore it.
8887
8888 According to the compiler gurus, an XVS type parallel to an aligner
8889 type may exist because of a stabs limitation. In stabs, aligner
8890 types are empty because the field has a variable-sized type, and
8891 thus cannot actually be used as an aligner type. As a result,
8892 we need the associated parallel XVS type to decode the type.
8893 Since the policy in the compiler is to not change the internal
8894 representation based on the debugging info format, we sometimes
8895 end up having a redundant XVS type parallel to the aligner type. */
8896 return raw_type;
8897
14f9c5c9 8898 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8899 if (real_type_namer == NULL
14f9c5c9
AS
8900 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8901 || TYPE_NFIELDS (real_type_namer) != 1)
8902 return raw_type;
8903
f80d3ff2
JB
8904 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8905 {
8906 /* This is an older encoding form where the base type needs to be
8907 looked up by name. We prefer the newer enconding because it is
8908 more efficient. */
8909 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8910 if (raw_real_type == NULL)
8911 return raw_type;
8912 else
8913 return raw_real_type;
8914 }
8915
8916 /* The field in our XVS type is a reference to the base type. */
8917 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8918}
14f9c5c9 8919
4c4b4cd2 8920/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8921
d2e4a39e
AS
8922struct type *
8923ada_aligned_type (struct type *type)
14f9c5c9
AS
8924{
8925 if (ada_is_aligner_type (type))
8926 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8927 else
8928 return ada_get_base_type (type);
8929}
8930
8931
8932/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8933 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8934
fc1a4b47
AC
8935const gdb_byte *
8936ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8937{
d2e4a39e 8938 if (ada_is_aligner_type (type))
14f9c5c9 8939 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8940 valaddr +
8941 TYPE_FIELD_BITPOS (type,
8942 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8943 else
8944 return valaddr;
8945}
8946
4c4b4cd2
PH
8947
8948
14f9c5c9 8949/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8950 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8951const char *
8952ada_enum_name (const char *name)
14f9c5c9 8953{
4c4b4cd2
PH
8954 static char *result;
8955 static size_t result_len = 0;
d2e4a39e 8956 char *tmp;
14f9c5c9 8957
4c4b4cd2
PH
8958 /* First, unqualify the enumeration name:
8959 1. Search for the last '.' character. If we find one, then skip
177b42fe 8960 all the preceding characters, the unqualified name starts
76a01679 8961 right after that dot.
4c4b4cd2 8962 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8963 translates dots into "__". Search forward for double underscores,
8964 but stop searching when we hit an overloading suffix, which is
8965 of the form "__" followed by digits. */
4c4b4cd2 8966
c3e5cd34
PH
8967 tmp = strrchr (name, '.');
8968 if (tmp != NULL)
4c4b4cd2
PH
8969 name = tmp + 1;
8970 else
14f9c5c9 8971 {
4c4b4cd2
PH
8972 while ((tmp = strstr (name, "__")) != NULL)
8973 {
8974 if (isdigit (tmp[2]))
8975 break;
8976 else
8977 name = tmp + 2;
8978 }
14f9c5c9
AS
8979 }
8980
8981 if (name[0] == 'Q')
8982 {
14f9c5c9 8983 int v;
5b4ee69b 8984
14f9c5c9 8985 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8986 {
8987 if (sscanf (name + 2, "%x", &v) != 1)
8988 return name;
8989 }
14f9c5c9 8990 else
4c4b4cd2 8991 return name;
14f9c5c9 8992
4c4b4cd2 8993 GROW_VECT (result, result_len, 16);
14f9c5c9 8994 if (isascii (v) && isprint (v))
88c15c34 8995 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8996 else if (name[1] == 'U')
88c15c34 8997 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8998 else
88c15c34 8999 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9000
9001 return result;
9002 }
d2e4a39e 9003 else
4c4b4cd2 9004 {
c3e5cd34
PH
9005 tmp = strstr (name, "__");
9006 if (tmp == NULL)
9007 tmp = strstr (name, "$");
9008 if (tmp != NULL)
4c4b4cd2
PH
9009 {
9010 GROW_VECT (result, result_len, tmp - name + 1);
9011 strncpy (result, name, tmp - name);
9012 result[tmp - name] = '\0';
9013 return result;
9014 }
9015
9016 return name;
9017 }
14f9c5c9
AS
9018}
9019
14f9c5c9
AS
9020/* Evaluate the subexpression of EXP starting at *POS as for
9021 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9022 expression. */
14f9c5c9 9023
d2e4a39e
AS
9024static struct value *
9025evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9026{
4b27a620 9027 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9028}
9029
9030/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9031 value it wraps. */
14f9c5c9 9032
d2e4a39e
AS
9033static struct value *
9034unwrap_value (struct value *val)
14f9c5c9 9035{
df407dfe 9036 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9037
14f9c5c9
AS
9038 if (ada_is_aligner_type (type))
9039 {
de4d072f 9040 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9041 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9042
14f9c5c9 9043 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9044 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9045
9046 return unwrap_value (v);
9047 }
d2e4a39e 9048 else
14f9c5c9 9049 {
d2e4a39e 9050 struct type *raw_real_type =
61ee279c 9051 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9052
5bf03f13
JB
9053 /* If there is no parallel XVS or XVE type, then the value is
9054 already unwrapped. Return it without further modification. */
9055 if ((type == raw_real_type)
9056 && ada_find_parallel_type (type, "___XVE") == NULL)
9057 return val;
14f9c5c9 9058
d2e4a39e 9059 return
4c4b4cd2
PH
9060 coerce_unspec_val_to_type
9061 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9062 value_address (val),
1ed6ede0 9063 NULL, 1));
14f9c5c9
AS
9064 }
9065}
d2e4a39e
AS
9066
9067static struct value *
9068cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9069{
9070 LONGEST val;
9071
df407dfe 9072 if (type == value_type (arg))
14f9c5c9 9073 return arg;
df407dfe 9074 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9075 val = ada_float_to_fixed (type,
df407dfe 9076 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9077 value_as_long (arg)));
d2e4a39e 9078 else
14f9c5c9 9079 {
a53b7a21 9080 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9081
14f9c5c9
AS
9082 val = ada_float_to_fixed (type, argd);
9083 }
9084
9085 return value_from_longest (type, val);
9086}
9087
d2e4a39e 9088static struct value *
a53b7a21 9089cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9090{
df407dfe 9091 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9092 value_as_long (arg));
5b4ee69b 9093
a53b7a21 9094 return value_from_double (type, val);
14f9c5c9
AS
9095}
9096
d99dcf51
JB
9097/* Given two array types T1 and T2, return nonzero iff both arrays
9098 contain the same number of elements. */
9099
9100static int
9101ada_same_array_size_p (struct type *t1, struct type *t2)
9102{
9103 LONGEST lo1, hi1, lo2, hi2;
9104
9105 /* Get the array bounds in order to verify that the size of
9106 the two arrays match. */
9107 if (!get_array_bounds (t1, &lo1, &hi1)
9108 || !get_array_bounds (t2, &lo2, &hi2))
9109 error (_("unable to determine array bounds"));
9110
9111 /* To make things easier for size comparison, normalize a bit
9112 the case of empty arrays by making sure that the difference
9113 between upper bound and lower bound is always -1. */
9114 if (lo1 > hi1)
9115 hi1 = lo1 - 1;
9116 if (lo2 > hi2)
9117 hi2 = lo2 - 1;
9118
9119 return (hi1 - lo1 == hi2 - lo2);
9120}
9121
9122/* Assuming that VAL is an array of integrals, and TYPE represents
9123 an array with the same number of elements, but with wider integral
9124 elements, return an array "casted" to TYPE. In practice, this
9125 means that the returned array is built by casting each element
9126 of the original array into TYPE's (wider) element type. */
9127
9128static struct value *
9129ada_promote_array_of_integrals (struct type *type, struct value *val)
9130{
9131 struct type *elt_type = TYPE_TARGET_TYPE (type);
9132 LONGEST lo, hi;
9133 struct value *res;
9134 LONGEST i;
9135
9136 /* Verify that both val and type are arrays of scalars, and
9137 that the size of val's elements is smaller than the size
9138 of type's element. */
9139 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9140 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9141 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9142 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9143 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9144 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9145
9146 if (!get_array_bounds (type, &lo, &hi))
9147 error (_("unable to determine array bounds"));
9148
9149 res = allocate_value (type);
9150
9151 /* Promote each array element. */
9152 for (i = 0; i < hi - lo + 1; i++)
9153 {
9154 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9155
9156 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9157 value_contents_all (elt), TYPE_LENGTH (elt_type));
9158 }
9159
9160 return res;
9161}
9162
4c4b4cd2
PH
9163/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9164 return the converted value. */
9165
d2e4a39e
AS
9166static struct value *
9167coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9168{
df407dfe 9169 struct type *type2 = value_type (val);
5b4ee69b 9170
14f9c5c9
AS
9171 if (type == type2)
9172 return val;
9173
61ee279c
PH
9174 type2 = ada_check_typedef (type2);
9175 type = ada_check_typedef (type);
14f9c5c9 9176
d2e4a39e
AS
9177 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9178 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9179 {
9180 val = ada_value_ind (val);
df407dfe 9181 type2 = value_type (val);
14f9c5c9
AS
9182 }
9183
d2e4a39e 9184 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9185 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9186 {
d99dcf51
JB
9187 if (!ada_same_array_size_p (type, type2))
9188 error (_("cannot assign arrays of different length"));
9189
9190 if (is_integral_type (TYPE_TARGET_TYPE (type))
9191 && is_integral_type (TYPE_TARGET_TYPE (type2))
9192 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9193 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9194 {
9195 /* Allow implicit promotion of the array elements to
9196 a wider type. */
9197 return ada_promote_array_of_integrals (type, val);
9198 }
9199
9200 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9201 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9202 error (_("Incompatible types in assignment"));
04624583 9203 deprecated_set_value_type (val, type);
14f9c5c9 9204 }
d2e4a39e 9205 return val;
14f9c5c9
AS
9206}
9207
4c4b4cd2
PH
9208static struct value *
9209ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9210{
9211 struct value *val;
9212 struct type *type1, *type2;
9213 LONGEST v, v1, v2;
9214
994b9211
AC
9215 arg1 = coerce_ref (arg1);
9216 arg2 = coerce_ref (arg2);
18af8284
JB
9217 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9218 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9219
76a01679
JB
9220 if (TYPE_CODE (type1) != TYPE_CODE_INT
9221 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9222 return value_binop (arg1, arg2, op);
9223
76a01679 9224 switch (op)
4c4b4cd2
PH
9225 {
9226 case BINOP_MOD:
9227 case BINOP_DIV:
9228 case BINOP_REM:
9229 break;
9230 default:
9231 return value_binop (arg1, arg2, op);
9232 }
9233
9234 v2 = value_as_long (arg2);
9235 if (v2 == 0)
323e0a4a 9236 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9237
9238 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9239 return value_binop (arg1, arg2, op);
9240
9241 v1 = value_as_long (arg1);
9242 switch (op)
9243 {
9244 case BINOP_DIV:
9245 v = v1 / v2;
76a01679
JB
9246 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9247 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9248 break;
9249 case BINOP_REM:
9250 v = v1 % v2;
76a01679
JB
9251 if (v * v1 < 0)
9252 v -= v2;
4c4b4cd2
PH
9253 break;
9254 default:
9255 /* Should not reach this point. */
9256 v = 0;
9257 }
9258
9259 val = allocate_value (type1);
990a07ab 9260 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9261 TYPE_LENGTH (value_type (val)),
9262 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9263 return val;
9264}
9265
9266static int
9267ada_value_equal (struct value *arg1, struct value *arg2)
9268{
df407dfe
AC
9269 if (ada_is_direct_array_type (value_type (arg1))
9270 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9271 {
f58b38bf
JB
9272 /* Automatically dereference any array reference before
9273 we attempt to perform the comparison. */
9274 arg1 = ada_coerce_ref (arg1);
9275 arg2 = ada_coerce_ref (arg2);
9276
4c4b4cd2
PH
9277 arg1 = ada_coerce_to_simple_array (arg1);
9278 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9279 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9280 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9281 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9282 /* FIXME: The following works only for types whose
76a01679
JB
9283 representations use all bits (no padding or undefined bits)
9284 and do not have user-defined equality. */
9285 return
df407dfe 9286 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9287 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9288 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9289 }
9290 return value_equal (arg1, arg2);
9291}
9292
52ce6436
PH
9293/* Total number of component associations in the aggregate starting at
9294 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9295 OP_AGGREGATE. */
52ce6436
PH
9296
9297static int
9298num_component_specs (struct expression *exp, int pc)
9299{
9300 int n, m, i;
5b4ee69b 9301
52ce6436
PH
9302 m = exp->elts[pc + 1].longconst;
9303 pc += 3;
9304 n = 0;
9305 for (i = 0; i < m; i += 1)
9306 {
9307 switch (exp->elts[pc].opcode)
9308 {
9309 default:
9310 n += 1;
9311 break;
9312 case OP_CHOICES:
9313 n += exp->elts[pc + 1].longconst;
9314 break;
9315 }
9316 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9317 }
9318 return n;
9319}
9320
9321/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9322 component of LHS (a simple array or a record), updating *POS past
9323 the expression, assuming that LHS is contained in CONTAINER. Does
9324 not modify the inferior's memory, nor does it modify LHS (unless
9325 LHS == CONTAINER). */
9326
9327static void
9328assign_component (struct value *container, struct value *lhs, LONGEST index,
9329 struct expression *exp, int *pos)
9330{
9331 struct value *mark = value_mark ();
9332 struct value *elt;
5b4ee69b 9333
52ce6436
PH
9334 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9335 {
22601c15
UW
9336 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9337 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9338
52ce6436
PH
9339 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9340 }
9341 else
9342 {
9343 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9344 elt = ada_to_fixed_value (elt);
52ce6436
PH
9345 }
9346
9347 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9348 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9349 else
9350 value_assign_to_component (container, elt,
9351 ada_evaluate_subexp (NULL, exp, pos,
9352 EVAL_NORMAL));
9353
9354 value_free_to_mark (mark);
9355}
9356
9357/* Assuming that LHS represents an lvalue having a record or array
9358 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9359 of that aggregate's value to LHS, advancing *POS past the
9360 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9361 lvalue containing LHS (possibly LHS itself). Does not modify
9362 the inferior's memory, nor does it modify the contents of
0963b4bd 9363 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9364
9365static struct value *
9366assign_aggregate (struct value *container,
9367 struct value *lhs, struct expression *exp,
9368 int *pos, enum noside noside)
9369{
9370 struct type *lhs_type;
9371 int n = exp->elts[*pos+1].longconst;
9372 LONGEST low_index, high_index;
9373 int num_specs;
9374 LONGEST *indices;
9375 int max_indices, num_indices;
52ce6436 9376 int i;
52ce6436
PH
9377
9378 *pos += 3;
9379 if (noside != EVAL_NORMAL)
9380 {
52ce6436
PH
9381 for (i = 0; i < n; i += 1)
9382 ada_evaluate_subexp (NULL, exp, pos, noside);
9383 return container;
9384 }
9385
9386 container = ada_coerce_ref (container);
9387 if (ada_is_direct_array_type (value_type (container)))
9388 container = ada_coerce_to_simple_array (container);
9389 lhs = ada_coerce_ref (lhs);
9390 if (!deprecated_value_modifiable (lhs))
9391 error (_("Left operand of assignment is not a modifiable lvalue."));
9392
9393 lhs_type = value_type (lhs);
9394 if (ada_is_direct_array_type (lhs_type))
9395 {
9396 lhs = ada_coerce_to_simple_array (lhs);
9397 lhs_type = value_type (lhs);
9398 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9399 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9400 }
9401 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9402 {
9403 low_index = 0;
9404 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9405 }
9406 else
9407 error (_("Left-hand side must be array or record."));
9408
9409 num_specs = num_component_specs (exp, *pos - 3);
9410 max_indices = 4 * num_specs + 4;
9411 indices = alloca (max_indices * sizeof (indices[0]));
9412 indices[0] = indices[1] = low_index - 1;
9413 indices[2] = indices[3] = high_index + 1;
9414 num_indices = 4;
9415
9416 for (i = 0; i < n; i += 1)
9417 {
9418 switch (exp->elts[*pos].opcode)
9419 {
1fbf5ada
JB
9420 case OP_CHOICES:
9421 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9422 &num_indices, max_indices,
9423 low_index, high_index);
9424 break;
9425 case OP_POSITIONAL:
9426 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9427 &num_indices, max_indices,
9428 low_index, high_index);
1fbf5ada
JB
9429 break;
9430 case OP_OTHERS:
9431 if (i != n-1)
9432 error (_("Misplaced 'others' clause"));
9433 aggregate_assign_others (container, lhs, exp, pos, indices,
9434 num_indices, low_index, high_index);
9435 break;
9436 default:
9437 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9438 }
9439 }
9440
9441 return container;
9442}
9443
9444/* Assign into the component of LHS indexed by the OP_POSITIONAL
9445 construct at *POS, updating *POS past the construct, given that
9446 the positions are relative to lower bound LOW, where HIGH is the
9447 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9448 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9449 assign_aggregate. */
52ce6436
PH
9450static void
9451aggregate_assign_positional (struct value *container,
9452 struct value *lhs, struct expression *exp,
9453 int *pos, LONGEST *indices, int *num_indices,
9454 int max_indices, LONGEST low, LONGEST high)
9455{
9456 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9457
9458 if (ind - 1 == high)
e1d5a0d2 9459 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9460 if (ind <= high)
9461 {
9462 add_component_interval (ind, ind, indices, num_indices, max_indices);
9463 *pos += 3;
9464 assign_component (container, lhs, ind, exp, pos);
9465 }
9466 else
9467 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9468}
9469
9470/* Assign into the components of LHS indexed by the OP_CHOICES
9471 construct at *POS, updating *POS past the construct, given that
9472 the allowable indices are LOW..HIGH. Record the indices assigned
9473 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9474 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9475static void
9476aggregate_assign_from_choices (struct value *container,
9477 struct value *lhs, struct expression *exp,
9478 int *pos, LONGEST *indices, int *num_indices,
9479 int max_indices, LONGEST low, LONGEST high)
9480{
9481 int j;
9482 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9483 int choice_pos, expr_pc;
9484 int is_array = ada_is_direct_array_type (value_type (lhs));
9485
9486 choice_pos = *pos += 3;
9487
9488 for (j = 0; j < n_choices; j += 1)
9489 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9490 expr_pc = *pos;
9491 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9492
9493 for (j = 0; j < n_choices; j += 1)
9494 {
9495 LONGEST lower, upper;
9496 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9497
52ce6436
PH
9498 if (op == OP_DISCRETE_RANGE)
9499 {
9500 choice_pos += 1;
9501 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9502 EVAL_NORMAL));
9503 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9504 EVAL_NORMAL));
9505 }
9506 else if (is_array)
9507 {
9508 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9509 EVAL_NORMAL));
9510 upper = lower;
9511 }
9512 else
9513 {
9514 int ind;
0d5cff50 9515 const char *name;
5b4ee69b 9516
52ce6436
PH
9517 switch (op)
9518 {
9519 case OP_NAME:
9520 name = &exp->elts[choice_pos + 2].string;
9521 break;
9522 case OP_VAR_VALUE:
9523 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9524 break;
9525 default:
9526 error (_("Invalid record component association."));
9527 }
9528 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9529 ind = 0;
9530 if (! find_struct_field (name, value_type (lhs), 0,
9531 NULL, NULL, NULL, NULL, &ind))
9532 error (_("Unknown component name: %s."), name);
9533 lower = upper = ind;
9534 }
9535
9536 if (lower <= upper && (lower < low || upper > high))
9537 error (_("Index in component association out of bounds."));
9538
9539 add_component_interval (lower, upper, indices, num_indices,
9540 max_indices);
9541 while (lower <= upper)
9542 {
9543 int pos1;
5b4ee69b 9544
52ce6436
PH
9545 pos1 = expr_pc;
9546 assign_component (container, lhs, lower, exp, &pos1);
9547 lower += 1;
9548 }
9549 }
9550}
9551
9552/* Assign the value of the expression in the OP_OTHERS construct in
9553 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9554 have not been previously assigned. The index intervals already assigned
9555 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9556 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9557static void
9558aggregate_assign_others (struct value *container,
9559 struct value *lhs, struct expression *exp,
9560 int *pos, LONGEST *indices, int num_indices,
9561 LONGEST low, LONGEST high)
9562{
9563 int i;
5ce64950 9564 int expr_pc = *pos + 1;
52ce6436
PH
9565
9566 for (i = 0; i < num_indices - 2; i += 2)
9567 {
9568 LONGEST ind;
5b4ee69b 9569
52ce6436
PH
9570 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9571 {
5ce64950 9572 int localpos;
5b4ee69b 9573
5ce64950
MS
9574 localpos = expr_pc;
9575 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9576 }
9577 }
9578 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9579}
9580
9581/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9582 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9583 modifying *SIZE as needed. It is an error if *SIZE exceeds
9584 MAX_SIZE. The resulting intervals do not overlap. */
9585static void
9586add_component_interval (LONGEST low, LONGEST high,
9587 LONGEST* indices, int *size, int max_size)
9588{
9589 int i, j;
5b4ee69b 9590
52ce6436
PH
9591 for (i = 0; i < *size; i += 2) {
9592 if (high >= indices[i] && low <= indices[i + 1])
9593 {
9594 int kh;
5b4ee69b 9595
52ce6436
PH
9596 for (kh = i + 2; kh < *size; kh += 2)
9597 if (high < indices[kh])
9598 break;
9599 if (low < indices[i])
9600 indices[i] = low;
9601 indices[i + 1] = indices[kh - 1];
9602 if (high > indices[i + 1])
9603 indices[i + 1] = high;
9604 memcpy (indices + i + 2, indices + kh, *size - kh);
9605 *size -= kh - i - 2;
9606 return;
9607 }
9608 else if (high < indices[i])
9609 break;
9610 }
9611
9612 if (*size == max_size)
9613 error (_("Internal error: miscounted aggregate components."));
9614 *size += 2;
9615 for (j = *size-1; j >= i+2; j -= 1)
9616 indices[j] = indices[j - 2];
9617 indices[i] = low;
9618 indices[i + 1] = high;
9619}
9620
6e48bd2c
JB
9621/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9622 is different. */
9623
9624static struct value *
9625ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9626{
9627 if (type == ada_check_typedef (value_type (arg2)))
9628 return arg2;
9629
9630 if (ada_is_fixed_point_type (type))
9631 return (cast_to_fixed (type, arg2));
9632
9633 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9634 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9635
9636 return value_cast (type, arg2);
9637}
9638
284614f0
JB
9639/* Evaluating Ada expressions, and printing their result.
9640 ------------------------------------------------------
9641
21649b50
JB
9642 1. Introduction:
9643 ----------------
9644
284614f0
JB
9645 We usually evaluate an Ada expression in order to print its value.
9646 We also evaluate an expression in order to print its type, which
9647 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9648 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9649 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9650 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9651 similar.
9652
9653 Evaluating expressions is a little more complicated for Ada entities
9654 than it is for entities in languages such as C. The main reason for
9655 this is that Ada provides types whose definition might be dynamic.
9656 One example of such types is variant records. Or another example
9657 would be an array whose bounds can only be known at run time.
9658
9659 The following description is a general guide as to what should be
9660 done (and what should NOT be done) in order to evaluate an expression
9661 involving such types, and when. This does not cover how the semantic
9662 information is encoded by GNAT as this is covered separatly. For the
9663 document used as the reference for the GNAT encoding, see exp_dbug.ads
9664 in the GNAT sources.
9665
9666 Ideally, we should embed each part of this description next to its
9667 associated code. Unfortunately, the amount of code is so vast right
9668 now that it's hard to see whether the code handling a particular
9669 situation might be duplicated or not. One day, when the code is
9670 cleaned up, this guide might become redundant with the comments
9671 inserted in the code, and we might want to remove it.
9672
21649b50
JB
9673 2. ``Fixing'' an Entity, the Simple Case:
9674 -----------------------------------------
9675
284614f0
JB
9676 When evaluating Ada expressions, the tricky issue is that they may
9677 reference entities whose type contents and size are not statically
9678 known. Consider for instance a variant record:
9679
9680 type Rec (Empty : Boolean := True) is record
9681 case Empty is
9682 when True => null;
9683 when False => Value : Integer;
9684 end case;
9685 end record;
9686 Yes : Rec := (Empty => False, Value => 1);
9687 No : Rec := (empty => True);
9688
9689 The size and contents of that record depends on the value of the
9690 descriminant (Rec.Empty). At this point, neither the debugging
9691 information nor the associated type structure in GDB are able to
9692 express such dynamic types. So what the debugger does is to create
9693 "fixed" versions of the type that applies to the specific object.
9694 We also informally refer to this opperation as "fixing" an object,
9695 which means creating its associated fixed type.
9696
9697 Example: when printing the value of variable "Yes" above, its fixed
9698 type would look like this:
9699
9700 type Rec is record
9701 Empty : Boolean;
9702 Value : Integer;
9703 end record;
9704
9705 On the other hand, if we printed the value of "No", its fixed type
9706 would become:
9707
9708 type Rec is record
9709 Empty : Boolean;
9710 end record;
9711
9712 Things become a little more complicated when trying to fix an entity
9713 with a dynamic type that directly contains another dynamic type,
9714 such as an array of variant records, for instance. There are
9715 two possible cases: Arrays, and records.
9716
21649b50
JB
9717 3. ``Fixing'' Arrays:
9718 ---------------------
9719
9720 The type structure in GDB describes an array in terms of its bounds,
9721 and the type of its elements. By design, all elements in the array
9722 have the same type and we cannot represent an array of variant elements
9723 using the current type structure in GDB. When fixing an array,
9724 we cannot fix the array element, as we would potentially need one
9725 fixed type per element of the array. As a result, the best we can do
9726 when fixing an array is to produce an array whose bounds and size
9727 are correct (allowing us to read it from memory), but without having
9728 touched its element type. Fixing each element will be done later,
9729 when (if) necessary.
9730
9731 Arrays are a little simpler to handle than records, because the same
9732 amount of memory is allocated for each element of the array, even if
1b536f04 9733 the amount of space actually used by each element differs from element
21649b50 9734 to element. Consider for instance the following array of type Rec:
284614f0
JB
9735
9736 type Rec_Array is array (1 .. 2) of Rec;
9737
1b536f04
JB
9738 The actual amount of memory occupied by each element might be different
9739 from element to element, depending on the value of their discriminant.
21649b50 9740 But the amount of space reserved for each element in the array remains
1b536f04 9741 fixed regardless. So we simply need to compute that size using
21649b50
JB
9742 the debugging information available, from which we can then determine
9743 the array size (we multiply the number of elements of the array by
9744 the size of each element).
9745
9746 The simplest case is when we have an array of a constrained element
9747 type. For instance, consider the following type declarations:
9748
9749 type Bounded_String (Max_Size : Integer) is
9750 Length : Integer;
9751 Buffer : String (1 .. Max_Size);
9752 end record;
9753 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9754
9755 In this case, the compiler describes the array as an array of
9756 variable-size elements (identified by its XVS suffix) for which
9757 the size can be read in the parallel XVZ variable.
9758
9759 In the case of an array of an unconstrained element type, the compiler
9760 wraps the array element inside a private PAD type. This type should not
9761 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9762 that we also use the adjective "aligner" in our code to designate
9763 these wrapper types.
9764
1b536f04 9765 In some cases, the size allocated for each element is statically
21649b50
JB
9766 known. In that case, the PAD type already has the correct size,
9767 and the array element should remain unfixed.
9768
9769 But there are cases when this size is not statically known.
9770 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9771
9772 type Dynamic is array (1 .. Five) of Integer;
9773 type Wrapper (Has_Length : Boolean := False) is record
9774 Data : Dynamic;
9775 case Has_Length is
9776 when True => Length : Integer;
9777 when False => null;
9778 end case;
9779 end record;
9780 type Wrapper_Array is array (1 .. 2) of Wrapper;
9781
9782 Hello : Wrapper_Array := (others => (Has_Length => True,
9783 Data => (others => 17),
9784 Length => 1));
9785
9786
9787 The debugging info would describe variable Hello as being an
9788 array of a PAD type. The size of that PAD type is not statically
9789 known, but can be determined using a parallel XVZ variable.
9790 In that case, a copy of the PAD type with the correct size should
9791 be used for the fixed array.
9792
21649b50
JB
9793 3. ``Fixing'' record type objects:
9794 ----------------------------------
9795
9796 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9797 record types. In this case, in order to compute the associated
9798 fixed type, we need to determine the size and offset of each of
9799 its components. This, in turn, requires us to compute the fixed
9800 type of each of these components.
9801
9802 Consider for instance the example:
9803
9804 type Bounded_String (Max_Size : Natural) is record
9805 Str : String (1 .. Max_Size);
9806 Length : Natural;
9807 end record;
9808 My_String : Bounded_String (Max_Size => 10);
9809
9810 In that case, the position of field "Length" depends on the size
9811 of field Str, which itself depends on the value of the Max_Size
21649b50 9812 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9813 we need to fix the type of field Str. Therefore, fixing a variant
9814 record requires us to fix each of its components.
9815
9816 However, if a component does not have a dynamic size, the component
9817 should not be fixed. In particular, fields that use a PAD type
9818 should not fixed. Here is an example where this might happen
9819 (assuming type Rec above):
9820
9821 type Container (Big : Boolean) is record
9822 First : Rec;
9823 After : Integer;
9824 case Big is
9825 when True => Another : Integer;
9826 when False => null;
9827 end case;
9828 end record;
9829 My_Container : Container := (Big => False,
9830 First => (Empty => True),
9831 After => 42);
9832
9833 In that example, the compiler creates a PAD type for component First,
9834 whose size is constant, and then positions the component After just
9835 right after it. The offset of component After is therefore constant
9836 in this case.
9837
9838 The debugger computes the position of each field based on an algorithm
9839 that uses, among other things, the actual position and size of the field
21649b50
JB
9840 preceding it. Let's now imagine that the user is trying to print
9841 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9842 end up computing the offset of field After based on the size of the
9843 fixed version of field First. And since in our example First has
9844 only one actual field, the size of the fixed type is actually smaller
9845 than the amount of space allocated to that field, and thus we would
9846 compute the wrong offset of field After.
9847
21649b50
JB
9848 To make things more complicated, we need to watch out for dynamic
9849 components of variant records (identified by the ___XVL suffix in
9850 the component name). Even if the target type is a PAD type, the size
9851 of that type might not be statically known. So the PAD type needs
9852 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9853 we might end up with the wrong size for our component. This can be
9854 observed with the following type declarations:
284614f0
JB
9855
9856 type Octal is new Integer range 0 .. 7;
9857 type Octal_Array is array (Positive range <>) of Octal;
9858 pragma Pack (Octal_Array);
9859
9860 type Octal_Buffer (Size : Positive) is record
9861 Buffer : Octal_Array (1 .. Size);
9862 Length : Integer;
9863 end record;
9864
9865 In that case, Buffer is a PAD type whose size is unset and needs
9866 to be computed by fixing the unwrapped type.
9867
21649b50
JB
9868 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9869 ----------------------------------------------------------
9870
9871 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9872 thus far, be actually fixed?
9873
9874 The answer is: Only when referencing that element. For instance
9875 when selecting one component of a record, this specific component
9876 should be fixed at that point in time. Or when printing the value
9877 of a record, each component should be fixed before its value gets
9878 printed. Similarly for arrays, the element of the array should be
9879 fixed when printing each element of the array, or when extracting
9880 one element out of that array. On the other hand, fixing should
9881 not be performed on the elements when taking a slice of an array!
9882
9883 Note that one of the side-effects of miscomputing the offset and
9884 size of each field is that we end up also miscomputing the size
9885 of the containing type. This can have adverse results when computing
9886 the value of an entity. GDB fetches the value of an entity based
9887 on the size of its type, and thus a wrong size causes GDB to fetch
9888 the wrong amount of memory. In the case where the computed size is
9889 too small, GDB fetches too little data to print the value of our
9890 entiry. Results in this case as unpredicatble, as we usually read
9891 past the buffer containing the data =:-o. */
9892
9893/* Implement the evaluate_exp routine in the exp_descriptor structure
9894 for the Ada language. */
9895
52ce6436 9896static struct value *
ebf56fd3 9897ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9898 int *pos, enum noside noside)
14f9c5c9
AS
9899{
9900 enum exp_opcode op;
b5385fc0 9901 int tem;
14f9c5c9 9902 int pc;
5ec18f2b 9903 int preeval_pos;
14f9c5c9
AS
9904 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9905 struct type *type;
52ce6436 9906 int nargs, oplen;
d2e4a39e 9907 struct value **argvec;
14f9c5c9 9908
d2e4a39e
AS
9909 pc = *pos;
9910 *pos += 1;
14f9c5c9
AS
9911 op = exp->elts[pc].opcode;
9912
d2e4a39e 9913 switch (op)
14f9c5c9
AS
9914 {
9915 default:
9916 *pos -= 1;
6e48bd2c 9917 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9918
9919 if (noside == EVAL_NORMAL)
9920 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9921
9922 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9923 then we need to perform the conversion manually, because
9924 evaluate_subexp_standard doesn't do it. This conversion is
9925 necessary in Ada because the different kinds of float/fixed
9926 types in Ada have different representations.
9927
9928 Similarly, we need to perform the conversion from OP_LONG
9929 ourselves. */
9930 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9931 arg1 = ada_value_cast (expect_type, arg1, noside);
9932
9933 return arg1;
4c4b4cd2
PH
9934
9935 case OP_STRING:
9936 {
76a01679 9937 struct value *result;
5b4ee69b 9938
76a01679
JB
9939 *pos -= 1;
9940 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9941 /* The result type will have code OP_STRING, bashed there from
9942 OP_ARRAY. Bash it back. */
df407dfe
AC
9943 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9944 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9945 return result;
4c4b4cd2 9946 }
14f9c5c9
AS
9947
9948 case UNOP_CAST:
9949 (*pos) += 2;
9950 type = exp->elts[pc + 1].type;
9951 arg1 = evaluate_subexp (type, exp, pos, noside);
9952 if (noside == EVAL_SKIP)
4c4b4cd2 9953 goto nosideret;
6e48bd2c 9954 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9955 return arg1;
9956
4c4b4cd2
PH
9957 case UNOP_QUAL:
9958 (*pos) += 2;
9959 type = exp->elts[pc + 1].type;
9960 return ada_evaluate_subexp (type, exp, pos, noside);
9961
14f9c5c9
AS
9962 case BINOP_ASSIGN:
9963 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9964 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9965 {
9966 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9967 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9968 return arg1;
9969 return ada_value_assign (arg1, arg1);
9970 }
003f3813
JB
9971 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9972 except if the lhs of our assignment is a convenience variable.
9973 In the case of assigning to a convenience variable, the lhs
9974 should be exactly the result of the evaluation of the rhs. */
9975 type = value_type (arg1);
9976 if (VALUE_LVAL (arg1) == lval_internalvar)
9977 type = NULL;
9978 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9979 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9980 return arg1;
df407dfe
AC
9981 if (ada_is_fixed_point_type (value_type (arg1)))
9982 arg2 = cast_to_fixed (value_type (arg1), arg2);
9983 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9984 error
323e0a4a 9985 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9986 else
df407dfe 9987 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9988 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9989
9990 case BINOP_ADD:
9991 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9992 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9993 if (noside == EVAL_SKIP)
4c4b4cd2 9994 goto nosideret;
2ac8a782
JB
9995 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9996 return (value_from_longest
9997 (value_type (arg1),
9998 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9999 if ((ada_is_fixed_point_type (value_type (arg1))
10000 || ada_is_fixed_point_type (value_type (arg2)))
10001 && value_type (arg1) != value_type (arg2))
323e0a4a 10002 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10003 /* Do the addition, and cast the result to the type of the first
10004 argument. We cannot cast the result to a reference type, so if
10005 ARG1 is a reference type, find its underlying type. */
10006 type = value_type (arg1);
10007 while (TYPE_CODE (type) == TYPE_CODE_REF)
10008 type = TYPE_TARGET_TYPE (type);
f44316fa 10009 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10010 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10011
10012 case BINOP_SUB:
10013 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10014 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10015 if (noside == EVAL_SKIP)
4c4b4cd2 10016 goto nosideret;
2ac8a782
JB
10017 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10018 return (value_from_longest
10019 (value_type (arg1),
10020 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10021 if ((ada_is_fixed_point_type (value_type (arg1))
10022 || ada_is_fixed_point_type (value_type (arg2)))
10023 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10024 error (_("Operands of fixed-point subtraction "
10025 "must have the same type"));
b7789565
JB
10026 /* Do the substraction, and cast the result to the type of the first
10027 argument. We cannot cast the result to a reference type, so if
10028 ARG1 is a reference type, find its underlying type. */
10029 type = value_type (arg1);
10030 while (TYPE_CODE (type) == TYPE_CODE_REF)
10031 type = TYPE_TARGET_TYPE (type);
f44316fa 10032 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10033 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10034
10035 case BINOP_MUL:
10036 case BINOP_DIV:
e1578042
JB
10037 case BINOP_REM:
10038 case BINOP_MOD:
14f9c5c9
AS
10039 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10040 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10041 if (noside == EVAL_SKIP)
4c4b4cd2 10042 goto nosideret;
e1578042 10043 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10044 {
10045 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10046 return value_zero (value_type (arg1), not_lval);
10047 }
14f9c5c9 10048 else
4c4b4cd2 10049 {
a53b7a21 10050 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10051 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10052 arg1 = cast_from_fixed (type, arg1);
df407dfe 10053 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10054 arg2 = cast_from_fixed (type, arg2);
f44316fa 10055 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10056 return ada_value_binop (arg1, arg2, op);
10057 }
10058
4c4b4cd2
PH
10059 case BINOP_EQUAL:
10060 case BINOP_NOTEQUAL:
14f9c5c9 10061 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10062 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10063 if (noside == EVAL_SKIP)
76a01679 10064 goto nosideret;
4c4b4cd2 10065 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10066 tem = 0;
4c4b4cd2 10067 else
f44316fa
UW
10068 {
10069 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10070 tem = ada_value_equal (arg1, arg2);
10071 }
4c4b4cd2 10072 if (op == BINOP_NOTEQUAL)
76a01679 10073 tem = !tem;
fbb06eb1
UW
10074 type = language_bool_type (exp->language_defn, exp->gdbarch);
10075 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10076
10077 case UNOP_NEG:
10078 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10079 if (noside == EVAL_SKIP)
10080 goto nosideret;
df407dfe
AC
10081 else if (ada_is_fixed_point_type (value_type (arg1)))
10082 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10083 else
f44316fa
UW
10084 {
10085 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10086 return value_neg (arg1);
10087 }
4c4b4cd2 10088
2330c6c6
JB
10089 case BINOP_LOGICAL_AND:
10090 case BINOP_LOGICAL_OR:
10091 case UNOP_LOGICAL_NOT:
000d5124
JB
10092 {
10093 struct value *val;
10094
10095 *pos -= 1;
10096 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10097 type = language_bool_type (exp->language_defn, exp->gdbarch);
10098 return value_cast (type, val);
000d5124 10099 }
2330c6c6
JB
10100
10101 case BINOP_BITWISE_AND:
10102 case BINOP_BITWISE_IOR:
10103 case BINOP_BITWISE_XOR:
000d5124
JB
10104 {
10105 struct value *val;
10106
10107 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10108 *pos = pc;
10109 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10110
10111 return value_cast (value_type (arg1), val);
10112 }
2330c6c6 10113
14f9c5c9
AS
10114 case OP_VAR_VALUE:
10115 *pos -= 1;
6799def4 10116
14f9c5c9 10117 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10118 {
10119 *pos += 4;
10120 goto nosideret;
10121 }
da5c522f
JB
10122
10123 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10124 /* Only encountered when an unresolved symbol occurs in a
10125 context other than a function call, in which case, it is
52ce6436 10126 invalid. */
323e0a4a 10127 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10128 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10129
10130 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10131 {
0c1f74cf 10132 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10133 /* Check to see if this is a tagged type. We also need to handle
10134 the case where the type is a reference to a tagged type, but
10135 we have to be careful to exclude pointers to tagged types.
10136 The latter should be shown as usual (as a pointer), whereas
10137 a reference should mostly be transparent to the user. */
10138 if (ada_is_tagged_type (type, 0)
023db19c 10139 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10140 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10141 {
10142 /* Tagged types are a little special in the fact that the real
10143 type is dynamic and can only be determined by inspecting the
10144 object's tag. This means that we need to get the object's
10145 value first (EVAL_NORMAL) and then extract the actual object
10146 type from its tag.
10147
10148 Note that we cannot skip the final step where we extract
10149 the object type from its tag, because the EVAL_NORMAL phase
10150 results in dynamic components being resolved into fixed ones.
10151 This can cause problems when trying to print the type
10152 description of tagged types whose parent has a dynamic size:
10153 We use the type name of the "_parent" component in order
10154 to print the name of the ancestor type in the type description.
10155 If that component had a dynamic size, the resolution into
10156 a fixed type would result in the loss of that type name,
10157 thus preventing us from printing the name of the ancestor
10158 type in the type description. */
10159 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10160
10161 if (TYPE_CODE (type) != TYPE_CODE_REF)
10162 {
10163 struct type *actual_type;
10164
10165 actual_type = type_from_tag (ada_value_tag (arg1));
10166 if (actual_type == NULL)
10167 /* If, for some reason, we were unable to determine
10168 the actual type from the tag, then use the static
10169 approximation that we just computed as a fallback.
10170 This can happen if the debugging information is
10171 incomplete, for instance. */
10172 actual_type = type;
10173 return value_zero (actual_type, not_lval);
10174 }
10175 else
10176 {
10177 /* In the case of a ref, ada_coerce_ref takes care
10178 of determining the actual type. But the evaluation
10179 should return a ref as it should be valid to ask
10180 for its address; so rebuild a ref after coerce. */
10181 arg1 = ada_coerce_ref (arg1);
10182 return value_ref (arg1);
10183 }
10184 }
0c1f74cf 10185
84754697
JB
10186 /* Records and unions for which GNAT encodings have been
10187 generated need to be statically fixed as well.
10188 Otherwise, non-static fixing produces a type where
10189 all dynamic properties are removed, which prevents "ptype"
10190 from being able to completely describe the type.
10191 For instance, a case statement in a variant record would be
10192 replaced by the relevant components based on the actual
10193 value of the discriminants. */
10194 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10195 && dynamic_template_type (type) != NULL)
10196 || (TYPE_CODE (type) == TYPE_CODE_UNION
10197 && ada_find_parallel_type (type, "___XVU") != NULL))
10198 {
10199 *pos += 4;
10200 return value_zero (to_static_fixed_type (type), not_lval);
10201 }
4c4b4cd2 10202 }
da5c522f
JB
10203
10204 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10205 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10206
10207 case OP_FUNCALL:
10208 (*pos) += 2;
10209
10210 /* Allocate arg vector, including space for the function to be
10211 called in argvec[0] and a terminating NULL. */
10212 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10213 argvec =
10214 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10215
10216 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10217 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10218 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10219 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10220 else
10221 {
10222 for (tem = 0; tem <= nargs; tem += 1)
10223 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10224 argvec[tem] = 0;
10225
10226 if (noside == EVAL_SKIP)
10227 goto nosideret;
10228 }
10229
ad82864c
JB
10230 if (ada_is_constrained_packed_array_type
10231 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10232 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10233 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10234 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10235 /* This is a packed array that has already been fixed, and
10236 therefore already coerced to a simple array. Nothing further
10237 to do. */
10238 ;
df407dfe
AC
10239 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10240 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10241 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10242 argvec[0] = value_addr (argvec[0]);
10243
df407dfe 10244 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10245
10246 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10247 them. So, if this is an array typedef (encoding use for array
10248 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10249 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10250 type = ada_typedef_target_type (type);
10251
4c4b4cd2
PH
10252 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10253 {
61ee279c 10254 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10255 {
10256 case TYPE_CODE_FUNC:
61ee279c 10257 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10258 break;
10259 case TYPE_CODE_ARRAY:
10260 break;
10261 case TYPE_CODE_STRUCT:
10262 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10263 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10264 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10265 break;
10266 default:
323e0a4a 10267 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10268 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10269 break;
10270 }
10271 }
10272
10273 switch (TYPE_CODE (type))
10274 {
10275 case TYPE_CODE_FUNC:
10276 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10277 {
10278 struct type *rtype = TYPE_TARGET_TYPE (type);
10279
10280 if (TYPE_GNU_IFUNC (type))
10281 return allocate_value (TYPE_TARGET_TYPE (rtype));
10282 return allocate_value (rtype);
10283 }
4c4b4cd2 10284 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10285 case TYPE_CODE_INTERNAL_FUNCTION:
10286 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10287 /* We don't know anything about what the internal
10288 function might return, but we have to return
10289 something. */
10290 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10291 not_lval);
10292 else
10293 return call_internal_function (exp->gdbarch, exp->language_defn,
10294 argvec[0], nargs, argvec + 1);
10295
4c4b4cd2
PH
10296 case TYPE_CODE_STRUCT:
10297 {
10298 int arity;
10299
4c4b4cd2
PH
10300 arity = ada_array_arity (type);
10301 type = ada_array_element_type (type, nargs);
10302 if (type == NULL)
323e0a4a 10303 error (_("cannot subscript or call a record"));
4c4b4cd2 10304 if (arity != nargs)
323e0a4a 10305 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10306 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10307 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10308 return
10309 unwrap_value (ada_value_subscript
10310 (argvec[0], nargs, argvec + 1));
10311 }
10312 case TYPE_CODE_ARRAY:
10313 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10314 {
10315 type = ada_array_element_type (type, nargs);
10316 if (type == NULL)
323e0a4a 10317 error (_("element type of array unknown"));
4c4b4cd2 10318 else
0a07e705 10319 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10320 }
10321 return
10322 unwrap_value (ada_value_subscript
10323 (ada_coerce_to_simple_array (argvec[0]),
10324 nargs, argvec + 1));
10325 case TYPE_CODE_PTR: /* Pointer to array */
10326 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10327 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10328 {
10329 type = ada_array_element_type (type, nargs);
10330 if (type == NULL)
323e0a4a 10331 error (_("element type of array unknown"));
4c4b4cd2 10332 else
0a07e705 10333 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10334 }
10335 return
10336 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10337 nargs, argvec + 1));
10338
10339 default:
e1d5a0d2
PH
10340 error (_("Attempt to index or call something other than an "
10341 "array or function"));
4c4b4cd2
PH
10342 }
10343
10344 case TERNOP_SLICE:
10345 {
10346 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10347 struct value *low_bound_val =
10348 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10349 struct value *high_bound_val =
10350 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10351 LONGEST low_bound;
10352 LONGEST high_bound;
5b4ee69b 10353
994b9211
AC
10354 low_bound_val = coerce_ref (low_bound_val);
10355 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10356 low_bound = pos_atr (low_bound_val);
10357 high_bound = pos_atr (high_bound_val);
963a6417 10358
4c4b4cd2
PH
10359 if (noside == EVAL_SKIP)
10360 goto nosideret;
10361
4c4b4cd2
PH
10362 /* If this is a reference to an aligner type, then remove all
10363 the aligners. */
df407dfe
AC
10364 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10365 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10366 TYPE_TARGET_TYPE (value_type (array)) =
10367 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10368
ad82864c 10369 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10370 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10371
10372 /* If this is a reference to an array or an array lvalue,
10373 convert to a pointer. */
df407dfe
AC
10374 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10375 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10376 && VALUE_LVAL (array) == lval_memory))
10377 array = value_addr (array);
10378
1265e4aa 10379 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10380 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10381 (value_type (array))))
0b5d8877 10382 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10383
10384 array = ada_coerce_to_simple_array_ptr (array);
10385
714e53ab
PH
10386 /* If we have more than one level of pointer indirection,
10387 dereference the value until we get only one level. */
df407dfe
AC
10388 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10389 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10390 == TYPE_CODE_PTR))
10391 array = value_ind (array);
10392
10393 /* Make sure we really do have an array type before going further,
10394 to avoid a SEGV when trying to get the index type or the target
10395 type later down the road if the debug info generated by
10396 the compiler is incorrect or incomplete. */
df407dfe 10397 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10398 error (_("cannot take slice of non-array"));
714e53ab 10399
828292f2
JB
10400 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10401 == TYPE_CODE_PTR)
4c4b4cd2 10402 {
828292f2
JB
10403 struct type *type0 = ada_check_typedef (value_type (array));
10404
0b5d8877 10405 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10406 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10407 else
10408 {
10409 struct type *arr_type0 =
828292f2 10410 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10411
f5938064
JG
10412 return ada_value_slice_from_ptr (array, arr_type0,
10413 longest_to_int (low_bound),
10414 longest_to_int (high_bound));
4c4b4cd2
PH
10415 }
10416 }
10417 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10418 return array;
10419 else if (high_bound < low_bound)
df407dfe 10420 return empty_array (value_type (array), low_bound);
4c4b4cd2 10421 else
529cad9c
PH
10422 return ada_value_slice (array, longest_to_int (low_bound),
10423 longest_to_int (high_bound));
4c4b4cd2 10424 }
14f9c5c9 10425
4c4b4cd2
PH
10426 case UNOP_IN_RANGE:
10427 (*pos) += 2;
10428 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10429 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10430
14f9c5c9 10431 if (noside == EVAL_SKIP)
4c4b4cd2 10432 goto nosideret;
14f9c5c9 10433
4c4b4cd2
PH
10434 switch (TYPE_CODE (type))
10435 {
10436 default:
e1d5a0d2
PH
10437 lim_warning (_("Membership test incompletely implemented; "
10438 "always returns true"));
fbb06eb1
UW
10439 type = language_bool_type (exp->language_defn, exp->gdbarch);
10440 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10441
10442 case TYPE_CODE_RANGE:
030b4912
UW
10443 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10444 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10445 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10446 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10447 type = language_bool_type (exp->language_defn, exp->gdbarch);
10448 return
10449 value_from_longest (type,
4c4b4cd2
PH
10450 (value_less (arg1, arg3)
10451 || value_equal (arg1, arg3))
10452 && (value_less (arg2, arg1)
10453 || value_equal (arg2, arg1)));
10454 }
10455
10456 case BINOP_IN_BOUNDS:
14f9c5c9 10457 (*pos) += 2;
4c4b4cd2
PH
10458 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10459 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10460
4c4b4cd2
PH
10461 if (noside == EVAL_SKIP)
10462 goto nosideret;
14f9c5c9 10463
4c4b4cd2 10464 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10465 {
10466 type = language_bool_type (exp->language_defn, exp->gdbarch);
10467 return value_zero (type, not_lval);
10468 }
14f9c5c9 10469
4c4b4cd2 10470 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10471
1eea4ebd
UW
10472 type = ada_index_type (value_type (arg2), tem, "range");
10473 if (!type)
10474 type = value_type (arg1);
14f9c5c9 10475
1eea4ebd
UW
10476 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10477 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10478
f44316fa
UW
10479 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10480 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10481 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10482 return
fbb06eb1 10483 value_from_longest (type,
4c4b4cd2
PH
10484 (value_less (arg1, arg3)
10485 || value_equal (arg1, arg3))
10486 && (value_less (arg2, arg1)
10487 || value_equal (arg2, arg1)));
10488
10489 case TERNOP_IN_RANGE:
10490 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10491 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10492 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10493
10494 if (noside == EVAL_SKIP)
10495 goto nosideret;
10496
f44316fa
UW
10497 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10498 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10499 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10500 return
fbb06eb1 10501 value_from_longest (type,
4c4b4cd2
PH
10502 (value_less (arg1, arg3)
10503 || value_equal (arg1, arg3))
10504 && (value_less (arg2, arg1)
10505 || value_equal (arg2, arg1)));
10506
10507 case OP_ATR_FIRST:
10508 case OP_ATR_LAST:
10509 case OP_ATR_LENGTH:
10510 {
76a01679 10511 struct type *type_arg;
5b4ee69b 10512
76a01679
JB
10513 if (exp->elts[*pos].opcode == OP_TYPE)
10514 {
10515 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10516 arg1 = NULL;
5bc23cb3 10517 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10518 }
10519 else
10520 {
10521 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10522 type_arg = NULL;
10523 }
10524
10525 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10526 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10527 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10528 *pos += 4;
10529
10530 if (noside == EVAL_SKIP)
10531 goto nosideret;
10532
10533 if (type_arg == NULL)
10534 {
10535 arg1 = ada_coerce_ref (arg1);
10536
ad82864c 10537 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10538 arg1 = ada_coerce_to_simple_array (arg1);
10539
aa4fb036 10540 if (op == OP_ATR_LENGTH)
1eea4ebd 10541 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10542 else
10543 {
10544 type = ada_index_type (value_type (arg1), tem,
10545 ada_attribute_name (op));
10546 if (type == NULL)
10547 type = builtin_type (exp->gdbarch)->builtin_int;
10548 }
76a01679
JB
10549
10550 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10551 return allocate_value (type);
76a01679
JB
10552
10553 switch (op)
10554 {
10555 default: /* Should never happen. */
323e0a4a 10556 error (_("unexpected attribute encountered"));
76a01679 10557 case OP_ATR_FIRST:
1eea4ebd
UW
10558 return value_from_longest
10559 (type, ada_array_bound (arg1, tem, 0));
76a01679 10560 case OP_ATR_LAST:
1eea4ebd
UW
10561 return value_from_longest
10562 (type, ada_array_bound (arg1, tem, 1));
76a01679 10563 case OP_ATR_LENGTH:
1eea4ebd
UW
10564 return value_from_longest
10565 (type, ada_array_length (arg1, tem));
76a01679
JB
10566 }
10567 }
10568 else if (discrete_type_p (type_arg))
10569 {
10570 struct type *range_type;
0d5cff50 10571 const char *name = ada_type_name (type_arg);
5b4ee69b 10572
76a01679
JB
10573 range_type = NULL;
10574 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10575 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10576 if (range_type == NULL)
10577 range_type = type_arg;
10578 switch (op)
10579 {
10580 default:
323e0a4a 10581 error (_("unexpected attribute encountered"));
76a01679 10582 case OP_ATR_FIRST:
690cc4eb 10583 return value_from_longest
43bbcdc2 10584 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10585 case OP_ATR_LAST:
690cc4eb 10586 return value_from_longest
43bbcdc2 10587 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10588 case OP_ATR_LENGTH:
323e0a4a 10589 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10590 }
10591 }
10592 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10593 error (_("unimplemented type attribute"));
76a01679
JB
10594 else
10595 {
10596 LONGEST low, high;
10597
ad82864c
JB
10598 if (ada_is_constrained_packed_array_type (type_arg))
10599 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10600
aa4fb036 10601 if (op == OP_ATR_LENGTH)
1eea4ebd 10602 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10603 else
10604 {
10605 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10606 if (type == NULL)
10607 type = builtin_type (exp->gdbarch)->builtin_int;
10608 }
1eea4ebd 10609
76a01679
JB
10610 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10611 return allocate_value (type);
10612
10613 switch (op)
10614 {
10615 default:
323e0a4a 10616 error (_("unexpected attribute encountered"));
76a01679 10617 case OP_ATR_FIRST:
1eea4ebd 10618 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10619 return value_from_longest (type, low);
10620 case OP_ATR_LAST:
1eea4ebd 10621 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10622 return value_from_longest (type, high);
10623 case OP_ATR_LENGTH:
1eea4ebd
UW
10624 low = ada_array_bound_from_type (type_arg, tem, 0);
10625 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10626 return value_from_longest (type, high - low + 1);
10627 }
10628 }
14f9c5c9
AS
10629 }
10630
4c4b4cd2
PH
10631 case OP_ATR_TAG:
10632 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10633 if (noside == EVAL_SKIP)
76a01679 10634 goto nosideret;
4c4b4cd2
PH
10635
10636 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10637 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10638
10639 return ada_value_tag (arg1);
10640
10641 case OP_ATR_MIN:
10642 case OP_ATR_MAX:
10643 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10644 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10645 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10646 if (noside == EVAL_SKIP)
76a01679 10647 goto nosideret;
d2e4a39e 10648 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10649 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10650 else
f44316fa
UW
10651 {
10652 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10653 return value_binop (arg1, arg2,
10654 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10655 }
14f9c5c9 10656
4c4b4cd2
PH
10657 case OP_ATR_MODULUS:
10658 {
31dedfee 10659 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10660
5b4ee69b 10661 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10662 if (noside == EVAL_SKIP)
10663 goto nosideret;
4c4b4cd2 10664
76a01679 10665 if (!ada_is_modular_type (type_arg))
323e0a4a 10666 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10667
76a01679
JB
10668 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10669 ada_modulus (type_arg));
4c4b4cd2
PH
10670 }
10671
10672
10673 case OP_ATR_POS:
10674 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10675 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10676 if (noside == EVAL_SKIP)
76a01679 10677 goto nosideret;
3cb382c9
UW
10678 type = builtin_type (exp->gdbarch)->builtin_int;
10679 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10680 return value_zero (type, not_lval);
14f9c5c9 10681 else
3cb382c9 10682 return value_pos_atr (type, arg1);
14f9c5c9 10683
4c4b4cd2
PH
10684 case OP_ATR_SIZE:
10685 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10686 type = value_type (arg1);
10687
10688 /* If the argument is a reference, then dereference its type, since
10689 the user is really asking for the size of the actual object,
10690 not the size of the pointer. */
10691 if (TYPE_CODE (type) == TYPE_CODE_REF)
10692 type = TYPE_TARGET_TYPE (type);
10693
4c4b4cd2 10694 if (noside == EVAL_SKIP)
76a01679 10695 goto nosideret;
4c4b4cd2 10696 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10697 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10698 else
22601c15 10699 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10700 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10701
10702 case OP_ATR_VAL:
10703 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10704 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10705 type = exp->elts[pc + 2].type;
14f9c5c9 10706 if (noside == EVAL_SKIP)
76a01679 10707 goto nosideret;
4c4b4cd2 10708 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10709 return value_zero (type, not_lval);
4c4b4cd2 10710 else
76a01679 10711 return value_val_atr (type, arg1);
4c4b4cd2
PH
10712
10713 case BINOP_EXP:
10714 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10715 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10716 if (noside == EVAL_SKIP)
10717 goto nosideret;
10718 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10719 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10720 else
f44316fa
UW
10721 {
10722 /* For integer exponentiation operations,
10723 only promote the first argument. */
10724 if (is_integral_type (value_type (arg2)))
10725 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10726 else
10727 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10728
10729 return value_binop (arg1, arg2, op);
10730 }
4c4b4cd2
PH
10731
10732 case UNOP_PLUS:
10733 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10734 if (noside == EVAL_SKIP)
10735 goto nosideret;
10736 else
10737 return arg1;
10738
10739 case UNOP_ABS:
10740 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10741 if (noside == EVAL_SKIP)
10742 goto nosideret;
f44316fa 10743 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10744 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10745 return value_neg (arg1);
14f9c5c9 10746 else
4c4b4cd2 10747 return arg1;
14f9c5c9
AS
10748
10749 case UNOP_IND:
5ec18f2b 10750 preeval_pos = *pos;
6b0d7253 10751 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10752 if (noside == EVAL_SKIP)
4c4b4cd2 10753 goto nosideret;
df407dfe 10754 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10755 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10756 {
10757 if (ada_is_array_descriptor_type (type))
10758 /* GDB allows dereferencing GNAT array descriptors. */
10759 {
10760 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10761
4c4b4cd2 10762 if (arrType == NULL)
323e0a4a 10763 error (_("Attempt to dereference null array pointer."));
00a4c844 10764 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10765 }
10766 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10767 || TYPE_CODE (type) == TYPE_CODE_REF
10768 /* In C you can dereference an array to get the 1st elt. */
10769 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10770 {
5ec18f2b
JG
10771 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10772 only be determined by inspecting the object's tag.
10773 This means that we need to evaluate completely the
10774 expression in order to get its type. */
10775
023db19c
JB
10776 if ((TYPE_CODE (type) == TYPE_CODE_REF
10777 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10778 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10779 {
10780 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10781 EVAL_NORMAL);
10782 type = value_type (ada_value_ind (arg1));
10783 }
10784 else
10785 {
10786 type = to_static_fixed_type
10787 (ada_aligned_type
10788 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10789 }
10790 check_size (type);
714e53ab
PH
10791 return value_zero (type, lval_memory);
10792 }
4c4b4cd2 10793 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10794 {
10795 /* GDB allows dereferencing an int. */
10796 if (expect_type == NULL)
10797 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10798 lval_memory);
10799 else
10800 {
10801 expect_type =
10802 to_static_fixed_type (ada_aligned_type (expect_type));
10803 return value_zero (expect_type, lval_memory);
10804 }
10805 }
4c4b4cd2 10806 else
323e0a4a 10807 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10808 }
0963b4bd 10809 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10810 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10811
96967637
JB
10812 if (TYPE_CODE (type) == TYPE_CODE_INT)
10813 /* GDB allows dereferencing an int. If we were given
10814 the expect_type, then use that as the target type.
10815 Otherwise, assume that the target type is an int. */
10816 {
10817 if (expect_type != NULL)
10818 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10819 arg1));
10820 else
10821 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10822 (CORE_ADDR) value_as_address (arg1));
10823 }
6b0d7253 10824
4c4b4cd2
PH
10825 if (ada_is_array_descriptor_type (type))
10826 /* GDB allows dereferencing GNAT array descriptors. */
10827 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10828 else
4c4b4cd2 10829 return ada_value_ind (arg1);
14f9c5c9
AS
10830
10831 case STRUCTOP_STRUCT:
10832 tem = longest_to_int (exp->elts[pc + 1].longconst);
10833 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 10834 preeval_pos = *pos;
14f9c5c9
AS
10835 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10836 if (noside == EVAL_SKIP)
4c4b4cd2 10837 goto nosideret;
14f9c5c9 10838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10839 {
df407dfe 10840 struct type *type1 = value_type (arg1);
5b4ee69b 10841
76a01679
JB
10842 if (ada_is_tagged_type (type1, 1))
10843 {
10844 type = ada_lookup_struct_elt_type (type1,
10845 &exp->elts[pc + 2].string,
10846 1, 1, NULL);
5ec18f2b
JG
10847
10848 /* If the field is not found, check if it exists in the
10849 extension of this object's type. This means that we
10850 need to evaluate completely the expression. */
10851
76a01679 10852 if (type == NULL)
5ec18f2b
JG
10853 {
10854 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10855 EVAL_NORMAL);
10856 arg1 = ada_value_struct_elt (arg1,
10857 &exp->elts[pc + 2].string,
10858 0);
10859 arg1 = unwrap_value (arg1);
10860 type = value_type (ada_to_fixed_value (arg1));
10861 }
76a01679
JB
10862 }
10863 else
10864 type =
10865 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10866 0, NULL);
10867
10868 return value_zero (ada_aligned_type (type), lval_memory);
10869 }
14f9c5c9 10870 else
284614f0
JB
10871 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10872 arg1 = unwrap_value (arg1);
10873 return ada_to_fixed_value (arg1);
10874
14f9c5c9 10875 case OP_TYPE:
4c4b4cd2
PH
10876 /* The value is not supposed to be used. This is here to make it
10877 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10878 (*pos) += 2;
10879 if (noside == EVAL_SKIP)
4c4b4cd2 10880 goto nosideret;
14f9c5c9 10881 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10882 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10883 else
323e0a4a 10884 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10885
10886 case OP_AGGREGATE:
10887 case OP_CHOICES:
10888 case OP_OTHERS:
10889 case OP_DISCRETE_RANGE:
10890 case OP_POSITIONAL:
10891 case OP_NAME:
10892 if (noside == EVAL_NORMAL)
10893 switch (op)
10894 {
10895 case OP_NAME:
10896 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10897 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10898 case OP_AGGREGATE:
10899 error (_("Aggregates only allowed on the right of an assignment"));
10900 default:
0963b4bd
MS
10901 internal_error (__FILE__, __LINE__,
10902 _("aggregate apparently mangled"));
52ce6436
PH
10903 }
10904
10905 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10906 *pos += oplen - 1;
10907 for (tem = 0; tem < nargs; tem += 1)
10908 ada_evaluate_subexp (NULL, exp, pos, noside);
10909 goto nosideret;
14f9c5c9
AS
10910 }
10911
10912nosideret:
22601c15 10913 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10914}
14f9c5c9 10915\f
d2e4a39e 10916
4c4b4cd2 10917 /* Fixed point */
14f9c5c9
AS
10918
10919/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10920 type name that encodes the 'small and 'delta information.
4c4b4cd2 10921 Otherwise, return NULL. */
14f9c5c9 10922
d2e4a39e 10923static const char *
ebf56fd3 10924fixed_type_info (struct type *type)
14f9c5c9 10925{
d2e4a39e 10926 const char *name = ada_type_name (type);
14f9c5c9
AS
10927 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10928
d2e4a39e
AS
10929 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10930 {
14f9c5c9 10931 const char *tail = strstr (name, "___XF_");
5b4ee69b 10932
14f9c5c9 10933 if (tail == NULL)
4c4b4cd2 10934 return NULL;
d2e4a39e 10935 else
4c4b4cd2 10936 return tail + 5;
14f9c5c9
AS
10937 }
10938 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10939 return fixed_type_info (TYPE_TARGET_TYPE (type));
10940 else
10941 return NULL;
10942}
10943
4c4b4cd2 10944/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10945
10946int
ebf56fd3 10947ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10948{
10949 return fixed_type_info (type) != NULL;
10950}
10951
4c4b4cd2
PH
10952/* Return non-zero iff TYPE represents a System.Address type. */
10953
10954int
10955ada_is_system_address_type (struct type *type)
10956{
10957 return (TYPE_NAME (type)
10958 && strcmp (TYPE_NAME (type), "system__address") == 0);
10959}
10960
14f9c5c9
AS
10961/* Assuming that TYPE is the representation of an Ada fixed-point
10962 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10963 delta cannot be determined. */
14f9c5c9
AS
10964
10965DOUBLEST
ebf56fd3 10966ada_delta (struct type *type)
14f9c5c9
AS
10967{
10968 const char *encoding = fixed_type_info (type);
facc390f 10969 DOUBLEST num, den;
14f9c5c9 10970
facc390f
JB
10971 /* Strictly speaking, num and den are encoded as integer. However,
10972 they may not fit into a long, and they will have to be converted
10973 to DOUBLEST anyway. So scan them as DOUBLEST. */
10974 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10975 &num, &den) < 2)
14f9c5c9 10976 return -1.0;
d2e4a39e 10977 else
facc390f 10978 return num / den;
14f9c5c9
AS
10979}
10980
10981/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10982 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10983
10984static DOUBLEST
ebf56fd3 10985scaling_factor (struct type *type)
14f9c5c9
AS
10986{
10987 const char *encoding = fixed_type_info (type);
facc390f 10988 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10989 int n;
d2e4a39e 10990
facc390f
JB
10991 /* Strictly speaking, num's and den's are encoded as integer. However,
10992 they may not fit into a long, and they will have to be converted
10993 to DOUBLEST anyway. So scan them as DOUBLEST. */
10994 n = sscanf (encoding,
10995 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10996 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10997 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10998
10999 if (n < 2)
11000 return 1.0;
11001 else if (n == 4)
facc390f 11002 return num1 / den1;
d2e4a39e 11003 else
facc390f 11004 return num0 / den0;
14f9c5c9
AS
11005}
11006
11007
11008/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11009 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11010
11011DOUBLEST
ebf56fd3 11012ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11013{
d2e4a39e 11014 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11015}
11016
4c4b4cd2
PH
11017/* The representation of a fixed-point value of type TYPE
11018 corresponding to the value X. */
14f9c5c9
AS
11019
11020LONGEST
ebf56fd3 11021ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11022{
11023 return (LONGEST) (x / scaling_factor (type) + 0.5);
11024}
11025
14f9c5c9 11026\f
d2e4a39e 11027
4c4b4cd2 11028 /* Range types */
14f9c5c9
AS
11029
11030/* Scan STR beginning at position K for a discriminant name, and
11031 return the value of that discriminant field of DVAL in *PX. If
11032 PNEW_K is not null, put the position of the character beyond the
11033 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11034 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11035
11036static int
07d8f827 11037scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11038 int *pnew_k)
14f9c5c9
AS
11039{
11040 static char *bound_buffer = NULL;
11041 static size_t bound_buffer_len = 0;
11042 char *bound;
11043 char *pend;
d2e4a39e 11044 struct value *bound_val;
14f9c5c9
AS
11045
11046 if (dval == NULL || str == NULL || str[k] == '\0')
11047 return 0;
11048
d2e4a39e 11049 pend = strstr (str + k, "__");
14f9c5c9
AS
11050 if (pend == NULL)
11051 {
d2e4a39e 11052 bound = str + k;
14f9c5c9
AS
11053 k += strlen (bound);
11054 }
d2e4a39e 11055 else
14f9c5c9 11056 {
d2e4a39e 11057 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11058 bound = bound_buffer;
d2e4a39e
AS
11059 strncpy (bound_buffer, str + k, pend - (str + k));
11060 bound[pend - (str + k)] = '\0';
11061 k = pend - str;
14f9c5c9 11062 }
d2e4a39e 11063
df407dfe 11064 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11065 if (bound_val == NULL)
11066 return 0;
11067
11068 *px = value_as_long (bound_val);
11069 if (pnew_k != NULL)
11070 *pnew_k = k;
11071 return 1;
11072}
11073
11074/* Value of variable named NAME in the current environment. If
11075 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11076 otherwise causes an error with message ERR_MSG. */
11077
d2e4a39e
AS
11078static struct value *
11079get_var_value (char *name, char *err_msg)
14f9c5c9 11080{
4c4b4cd2 11081 struct ada_symbol_info *syms;
14f9c5c9
AS
11082 int nsyms;
11083
4c4b4cd2 11084 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11085 &syms);
14f9c5c9
AS
11086
11087 if (nsyms != 1)
11088 {
11089 if (err_msg == NULL)
4c4b4cd2 11090 return 0;
14f9c5c9 11091 else
8a3fe4f8 11092 error (("%s"), err_msg);
14f9c5c9
AS
11093 }
11094
4c4b4cd2 11095 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11096}
d2e4a39e 11097
14f9c5c9 11098/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11099 no such variable found, returns 0, and sets *FLAG to 0. If
11100 successful, sets *FLAG to 1. */
11101
14f9c5c9 11102LONGEST
4c4b4cd2 11103get_int_var_value (char *name, int *flag)
14f9c5c9 11104{
4c4b4cd2 11105 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11106
14f9c5c9
AS
11107 if (var_val == 0)
11108 {
11109 if (flag != NULL)
4c4b4cd2 11110 *flag = 0;
14f9c5c9
AS
11111 return 0;
11112 }
11113 else
11114 {
11115 if (flag != NULL)
4c4b4cd2 11116 *flag = 1;
14f9c5c9
AS
11117 return value_as_long (var_val);
11118 }
11119}
d2e4a39e 11120
14f9c5c9
AS
11121
11122/* Return a range type whose base type is that of the range type named
11123 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11124 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11125 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11126 corresponding range type from debug information; fall back to using it
11127 if symbol lookup fails. If a new type must be created, allocate it
11128 like ORIG_TYPE was. The bounds information, in general, is encoded
11129 in NAME, the base type given in the named range type. */
14f9c5c9 11130
d2e4a39e 11131static struct type *
28c85d6c 11132to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11133{
0d5cff50 11134 const char *name;
14f9c5c9 11135 struct type *base_type;
d2e4a39e 11136 char *subtype_info;
14f9c5c9 11137
28c85d6c
JB
11138 gdb_assert (raw_type != NULL);
11139 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11140
1ce677a4 11141 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11142 base_type = TYPE_TARGET_TYPE (raw_type);
11143 else
11144 base_type = raw_type;
11145
28c85d6c 11146 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11147 subtype_info = strstr (name, "___XD");
11148 if (subtype_info == NULL)
690cc4eb 11149 {
43bbcdc2
PH
11150 LONGEST L = ada_discrete_type_low_bound (raw_type);
11151 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11152
690cc4eb
PH
11153 if (L < INT_MIN || U > INT_MAX)
11154 return raw_type;
11155 else
0c9c3474
SA
11156 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11157 L, U);
690cc4eb 11158 }
14f9c5c9
AS
11159 else
11160 {
11161 static char *name_buf = NULL;
11162 static size_t name_len = 0;
11163 int prefix_len = subtype_info - name;
11164 LONGEST L, U;
11165 struct type *type;
11166 char *bounds_str;
11167 int n;
11168
11169 GROW_VECT (name_buf, name_len, prefix_len + 5);
11170 strncpy (name_buf, name, prefix_len);
11171 name_buf[prefix_len] = '\0';
11172
11173 subtype_info += 5;
11174 bounds_str = strchr (subtype_info, '_');
11175 n = 1;
11176
d2e4a39e 11177 if (*subtype_info == 'L')
4c4b4cd2
PH
11178 {
11179 if (!ada_scan_number (bounds_str, n, &L, &n)
11180 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11181 return raw_type;
11182 if (bounds_str[n] == '_')
11183 n += 2;
0963b4bd 11184 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11185 n += 1;
11186 subtype_info += 1;
11187 }
d2e4a39e 11188 else
4c4b4cd2
PH
11189 {
11190 int ok;
5b4ee69b 11191
4c4b4cd2
PH
11192 strcpy (name_buf + prefix_len, "___L");
11193 L = get_int_var_value (name_buf, &ok);
11194 if (!ok)
11195 {
323e0a4a 11196 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11197 L = 1;
11198 }
11199 }
14f9c5c9 11200
d2e4a39e 11201 if (*subtype_info == 'U')
4c4b4cd2
PH
11202 {
11203 if (!ada_scan_number (bounds_str, n, &U, &n)
11204 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11205 return raw_type;
11206 }
d2e4a39e 11207 else
4c4b4cd2
PH
11208 {
11209 int ok;
5b4ee69b 11210
4c4b4cd2
PH
11211 strcpy (name_buf + prefix_len, "___U");
11212 U = get_int_var_value (name_buf, &ok);
11213 if (!ok)
11214 {
323e0a4a 11215 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11216 U = L;
11217 }
11218 }
14f9c5c9 11219
0c9c3474
SA
11220 type = create_static_range_type (alloc_type_copy (raw_type),
11221 base_type, L, U);
d2e4a39e 11222 TYPE_NAME (type) = name;
14f9c5c9
AS
11223 return type;
11224 }
11225}
11226
4c4b4cd2
PH
11227/* True iff NAME is the name of a range type. */
11228
14f9c5c9 11229int
d2e4a39e 11230ada_is_range_type_name (const char *name)
14f9c5c9
AS
11231{
11232 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11233}
14f9c5c9 11234\f
d2e4a39e 11235
4c4b4cd2
PH
11236 /* Modular types */
11237
11238/* True iff TYPE is an Ada modular type. */
14f9c5c9 11239
14f9c5c9 11240int
d2e4a39e 11241ada_is_modular_type (struct type *type)
14f9c5c9 11242{
18af8284 11243 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11244
11245 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11246 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11247 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11248}
11249
4c4b4cd2
PH
11250/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11251
61ee279c 11252ULONGEST
0056e4d5 11253ada_modulus (struct type *type)
14f9c5c9 11254{
43bbcdc2 11255 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11256}
d2e4a39e 11257\f
f7f9143b
JB
11258
11259/* Ada exception catchpoint support:
11260 ---------------------------------
11261
11262 We support 3 kinds of exception catchpoints:
11263 . catchpoints on Ada exceptions
11264 . catchpoints on unhandled Ada exceptions
11265 . catchpoints on failed assertions
11266
11267 Exceptions raised during failed assertions, or unhandled exceptions
11268 could perfectly be caught with the general catchpoint on Ada exceptions.
11269 However, we can easily differentiate these two special cases, and having
11270 the option to distinguish these two cases from the rest can be useful
11271 to zero-in on certain situations.
11272
11273 Exception catchpoints are a specialized form of breakpoint,
11274 since they rely on inserting breakpoints inside known routines
11275 of the GNAT runtime. The implementation therefore uses a standard
11276 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11277 of breakpoint_ops.
11278
0259addd
JB
11279 Support in the runtime for exception catchpoints have been changed
11280 a few times already, and these changes affect the implementation
11281 of these catchpoints. In order to be able to support several
11282 variants of the runtime, we use a sniffer that will determine
28010a5d 11283 the runtime variant used by the program being debugged. */
f7f9143b 11284
82eacd52
JB
11285/* Ada's standard exceptions.
11286
11287 The Ada 83 standard also defined Numeric_Error. But there so many
11288 situations where it was unclear from the Ada 83 Reference Manual
11289 (RM) whether Constraint_Error or Numeric_Error should be raised,
11290 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11291 Interpretation saying that anytime the RM says that Numeric_Error
11292 should be raised, the implementation may raise Constraint_Error.
11293 Ada 95 went one step further and pretty much removed Numeric_Error
11294 from the list of standard exceptions (it made it a renaming of
11295 Constraint_Error, to help preserve compatibility when compiling
11296 an Ada83 compiler). As such, we do not include Numeric_Error from
11297 this list of standard exceptions. */
3d0b0fa3
JB
11298
11299static char *standard_exc[] = {
11300 "constraint_error",
11301 "program_error",
11302 "storage_error",
11303 "tasking_error"
11304};
11305
0259addd
JB
11306typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11307
11308/* A structure that describes how to support exception catchpoints
11309 for a given executable. */
11310
11311struct exception_support_info
11312{
11313 /* The name of the symbol to break on in order to insert
11314 a catchpoint on exceptions. */
11315 const char *catch_exception_sym;
11316
11317 /* The name of the symbol to break on in order to insert
11318 a catchpoint on unhandled exceptions. */
11319 const char *catch_exception_unhandled_sym;
11320
11321 /* The name of the symbol to break on in order to insert
11322 a catchpoint on failed assertions. */
11323 const char *catch_assert_sym;
11324
11325 /* Assuming that the inferior just triggered an unhandled exception
11326 catchpoint, this function is responsible for returning the address
11327 in inferior memory where the name of that exception is stored.
11328 Return zero if the address could not be computed. */
11329 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11330};
11331
11332static CORE_ADDR ada_unhandled_exception_name_addr (void);
11333static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11334
11335/* The following exception support info structure describes how to
11336 implement exception catchpoints with the latest version of the
11337 Ada runtime (as of 2007-03-06). */
11338
11339static const struct exception_support_info default_exception_support_info =
11340{
11341 "__gnat_debug_raise_exception", /* catch_exception_sym */
11342 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11343 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11344 ada_unhandled_exception_name_addr
11345};
11346
11347/* The following exception support info structure describes how to
11348 implement exception catchpoints with a slightly older version
11349 of the Ada runtime. */
11350
11351static const struct exception_support_info exception_support_info_fallback =
11352{
11353 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11354 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11355 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11356 ada_unhandled_exception_name_addr_from_raise
11357};
11358
f17011e0
JB
11359/* Return nonzero if we can detect the exception support routines
11360 described in EINFO.
11361
11362 This function errors out if an abnormal situation is detected
11363 (for instance, if we find the exception support routines, but
11364 that support is found to be incomplete). */
11365
11366static int
11367ada_has_this_exception_support (const struct exception_support_info *einfo)
11368{
11369 struct symbol *sym;
11370
11371 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11372 that should be compiled with debugging information. As a result, we
11373 expect to find that symbol in the symtabs. */
11374
11375 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11376 if (sym == NULL)
a6af7abe
JB
11377 {
11378 /* Perhaps we did not find our symbol because the Ada runtime was
11379 compiled without debugging info, or simply stripped of it.
11380 It happens on some GNU/Linux distributions for instance, where
11381 users have to install a separate debug package in order to get
11382 the runtime's debugging info. In that situation, let the user
11383 know why we cannot insert an Ada exception catchpoint.
11384
11385 Note: Just for the purpose of inserting our Ada exception
11386 catchpoint, we could rely purely on the associated minimal symbol.
11387 But we would be operating in degraded mode anyway, since we are
11388 still lacking the debugging info needed later on to extract
11389 the name of the exception being raised (this name is printed in
11390 the catchpoint message, and is also used when trying to catch
11391 a specific exception). We do not handle this case for now. */
3b7344d5 11392 struct bound_minimal_symbol msym
1c8e84b0
JB
11393 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11394
3b7344d5 11395 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11396 error (_("Your Ada runtime appears to be missing some debugging "
11397 "information.\nCannot insert Ada exception catchpoint "
11398 "in this configuration."));
11399
11400 return 0;
11401 }
f17011e0
JB
11402
11403 /* Make sure that the symbol we found corresponds to a function. */
11404
11405 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11406 error (_("Symbol \"%s\" is not a function (class = %d)"),
11407 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11408
11409 return 1;
11410}
11411
0259addd
JB
11412/* Inspect the Ada runtime and determine which exception info structure
11413 should be used to provide support for exception catchpoints.
11414
3eecfa55
JB
11415 This function will always set the per-inferior exception_info,
11416 or raise an error. */
0259addd
JB
11417
11418static void
11419ada_exception_support_info_sniffer (void)
11420{
3eecfa55 11421 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11422
11423 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11424 if (data->exception_info != NULL)
0259addd
JB
11425 return;
11426
11427 /* Check the latest (default) exception support info. */
f17011e0 11428 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11429 {
3eecfa55 11430 data->exception_info = &default_exception_support_info;
0259addd
JB
11431 return;
11432 }
11433
11434 /* Try our fallback exception suport info. */
f17011e0 11435 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11436 {
3eecfa55 11437 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11438 return;
11439 }
11440
11441 /* Sometimes, it is normal for us to not be able to find the routine
11442 we are looking for. This happens when the program is linked with
11443 the shared version of the GNAT runtime, and the program has not been
11444 started yet. Inform the user of these two possible causes if
11445 applicable. */
11446
ccefe4c4 11447 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11448 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11449
11450 /* If the symbol does not exist, then check that the program is
11451 already started, to make sure that shared libraries have been
11452 loaded. If it is not started, this may mean that the symbol is
11453 in a shared library. */
11454
11455 if (ptid_get_pid (inferior_ptid) == 0)
11456 error (_("Unable to insert catchpoint. Try to start the program first."));
11457
11458 /* At this point, we know that we are debugging an Ada program and
11459 that the inferior has been started, but we still are not able to
0963b4bd 11460 find the run-time symbols. That can mean that we are in
0259addd
JB
11461 configurable run time mode, or that a-except as been optimized
11462 out by the linker... In any case, at this point it is not worth
11463 supporting this feature. */
11464
7dda8cff 11465 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11466}
11467
f7f9143b
JB
11468/* True iff FRAME is very likely to be that of a function that is
11469 part of the runtime system. This is all very heuristic, but is
11470 intended to be used as advice as to what frames are uninteresting
11471 to most users. */
11472
11473static int
11474is_known_support_routine (struct frame_info *frame)
11475{
4ed6b5be 11476 struct symtab_and_line sal;
55b87a52 11477 char *func_name;
692465f1 11478 enum language func_lang;
f7f9143b 11479 int i;
f35a17b5 11480 const char *fullname;
f7f9143b 11481
4ed6b5be
JB
11482 /* If this code does not have any debugging information (no symtab),
11483 This cannot be any user code. */
f7f9143b 11484
4ed6b5be 11485 find_frame_sal (frame, &sal);
f7f9143b
JB
11486 if (sal.symtab == NULL)
11487 return 1;
11488
4ed6b5be
JB
11489 /* If there is a symtab, but the associated source file cannot be
11490 located, then assume this is not user code: Selecting a frame
11491 for which we cannot display the code would not be very helpful
11492 for the user. This should also take care of case such as VxWorks
11493 where the kernel has some debugging info provided for a few units. */
f7f9143b 11494
f35a17b5
JK
11495 fullname = symtab_to_fullname (sal.symtab);
11496 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11497 return 1;
11498
4ed6b5be
JB
11499 /* Check the unit filename againt the Ada runtime file naming.
11500 We also check the name of the objfile against the name of some
11501 known system libraries that sometimes come with debugging info
11502 too. */
11503
f7f9143b
JB
11504 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11505 {
11506 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11507 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11508 return 1;
4ed6b5be 11509 if (sal.symtab->objfile != NULL
4262abfb 11510 && re_exec (objfile_name (sal.symtab->objfile)))
4ed6b5be 11511 return 1;
f7f9143b
JB
11512 }
11513
4ed6b5be 11514 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11515
e9e07ba6 11516 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11517 if (func_name == NULL)
11518 return 1;
11519
11520 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11521 {
11522 re_comp (known_auxiliary_function_name_patterns[i]);
11523 if (re_exec (func_name))
55b87a52
KS
11524 {
11525 xfree (func_name);
11526 return 1;
11527 }
f7f9143b
JB
11528 }
11529
55b87a52 11530 xfree (func_name);
f7f9143b
JB
11531 return 0;
11532}
11533
11534/* Find the first frame that contains debugging information and that is not
11535 part of the Ada run-time, starting from FI and moving upward. */
11536
0ef643c8 11537void
f7f9143b
JB
11538ada_find_printable_frame (struct frame_info *fi)
11539{
11540 for (; fi != NULL; fi = get_prev_frame (fi))
11541 {
11542 if (!is_known_support_routine (fi))
11543 {
11544 select_frame (fi);
11545 break;
11546 }
11547 }
11548
11549}
11550
11551/* Assuming that the inferior just triggered an unhandled exception
11552 catchpoint, return the address in inferior memory where the name
11553 of the exception is stored.
11554
11555 Return zero if the address could not be computed. */
11556
11557static CORE_ADDR
11558ada_unhandled_exception_name_addr (void)
0259addd
JB
11559{
11560 return parse_and_eval_address ("e.full_name");
11561}
11562
11563/* Same as ada_unhandled_exception_name_addr, except that this function
11564 should be used when the inferior uses an older version of the runtime,
11565 where the exception name needs to be extracted from a specific frame
11566 several frames up in the callstack. */
11567
11568static CORE_ADDR
11569ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11570{
11571 int frame_level;
11572 struct frame_info *fi;
3eecfa55 11573 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11574 struct cleanup *old_chain;
f7f9143b
JB
11575
11576 /* To determine the name of this exception, we need to select
11577 the frame corresponding to RAISE_SYM_NAME. This frame is
11578 at least 3 levels up, so we simply skip the first 3 frames
11579 without checking the name of their associated function. */
11580 fi = get_current_frame ();
11581 for (frame_level = 0; frame_level < 3; frame_level += 1)
11582 if (fi != NULL)
11583 fi = get_prev_frame (fi);
11584
55b87a52 11585 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11586 while (fi != NULL)
11587 {
55b87a52 11588 char *func_name;
692465f1
JB
11589 enum language func_lang;
11590
e9e07ba6 11591 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11592 if (func_name != NULL)
11593 {
11594 make_cleanup (xfree, func_name);
11595
11596 if (strcmp (func_name,
11597 data->exception_info->catch_exception_sym) == 0)
11598 break; /* We found the frame we were looking for... */
11599 fi = get_prev_frame (fi);
11600 }
f7f9143b 11601 }
55b87a52 11602 do_cleanups (old_chain);
f7f9143b
JB
11603
11604 if (fi == NULL)
11605 return 0;
11606
11607 select_frame (fi);
11608 return parse_and_eval_address ("id.full_name");
11609}
11610
11611/* Assuming the inferior just triggered an Ada exception catchpoint
11612 (of any type), return the address in inferior memory where the name
11613 of the exception is stored, if applicable.
11614
11615 Return zero if the address could not be computed, or if not relevant. */
11616
11617static CORE_ADDR
761269c8 11618ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11619 struct breakpoint *b)
11620{
3eecfa55
JB
11621 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11622
f7f9143b
JB
11623 switch (ex)
11624 {
761269c8 11625 case ada_catch_exception:
f7f9143b
JB
11626 return (parse_and_eval_address ("e.full_name"));
11627 break;
11628
761269c8 11629 case ada_catch_exception_unhandled:
3eecfa55 11630 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11631 break;
11632
761269c8 11633 case ada_catch_assert:
f7f9143b
JB
11634 return 0; /* Exception name is not relevant in this case. */
11635 break;
11636
11637 default:
11638 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11639 break;
11640 }
11641
11642 return 0; /* Should never be reached. */
11643}
11644
11645/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11646 any error that ada_exception_name_addr_1 might cause to be thrown.
11647 When an error is intercepted, a warning with the error message is printed,
11648 and zero is returned. */
11649
11650static CORE_ADDR
761269c8 11651ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11652 struct breakpoint *b)
11653{
bfd189b1 11654 volatile struct gdb_exception e;
f7f9143b
JB
11655 CORE_ADDR result = 0;
11656
11657 TRY_CATCH (e, RETURN_MASK_ERROR)
11658 {
11659 result = ada_exception_name_addr_1 (ex, b);
11660 }
11661
11662 if (e.reason < 0)
11663 {
11664 warning (_("failed to get exception name: %s"), e.message);
11665 return 0;
11666 }
11667
11668 return result;
11669}
11670
28010a5d
PA
11671static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11672
11673/* Ada catchpoints.
11674
11675 In the case of catchpoints on Ada exceptions, the catchpoint will
11676 stop the target on every exception the program throws. When a user
11677 specifies the name of a specific exception, we translate this
11678 request into a condition expression (in text form), and then parse
11679 it into an expression stored in each of the catchpoint's locations.
11680 We then use this condition to check whether the exception that was
11681 raised is the one the user is interested in. If not, then the
11682 target is resumed again. We store the name of the requested
11683 exception, in order to be able to re-set the condition expression
11684 when symbols change. */
11685
11686/* An instance of this type is used to represent an Ada catchpoint
11687 breakpoint location. It includes a "struct bp_location" as a kind
11688 of base class; users downcast to "struct bp_location *" when
11689 needed. */
11690
11691struct ada_catchpoint_location
11692{
11693 /* The base class. */
11694 struct bp_location base;
11695
11696 /* The condition that checks whether the exception that was raised
11697 is the specific exception the user specified on catchpoint
11698 creation. */
11699 struct expression *excep_cond_expr;
11700};
11701
11702/* Implement the DTOR method in the bp_location_ops structure for all
11703 Ada exception catchpoint kinds. */
11704
11705static void
11706ada_catchpoint_location_dtor (struct bp_location *bl)
11707{
11708 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11709
11710 xfree (al->excep_cond_expr);
11711}
11712
11713/* The vtable to be used in Ada catchpoint locations. */
11714
11715static const struct bp_location_ops ada_catchpoint_location_ops =
11716{
11717 ada_catchpoint_location_dtor
11718};
11719
11720/* An instance of this type is used to represent an Ada catchpoint.
11721 It includes a "struct breakpoint" as a kind of base class; users
11722 downcast to "struct breakpoint *" when needed. */
11723
11724struct ada_catchpoint
11725{
11726 /* The base class. */
11727 struct breakpoint base;
11728
11729 /* The name of the specific exception the user specified. */
11730 char *excep_string;
11731};
11732
11733/* Parse the exception condition string in the context of each of the
11734 catchpoint's locations, and store them for later evaluation. */
11735
11736static void
11737create_excep_cond_exprs (struct ada_catchpoint *c)
11738{
11739 struct cleanup *old_chain;
11740 struct bp_location *bl;
11741 char *cond_string;
11742
11743 /* Nothing to do if there's no specific exception to catch. */
11744 if (c->excep_string == NULL)
11745 return;
11746
11747 /* Same if there are no locations... */
11748 if (c->base.loc == NULL)
11749 return;
11750
11751 /* Compute the condition expression in text form, from the specific
11752 expection we want to catch. */
11753 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11754 old_chain = make_cleanup (xfree, cond_string);
11755
11756 /* Iterate over all the catchpoint's locations, and parse an
11757 expression for each. */
11758 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11759 {
11760 struct ada_catchpoint_location *ada_loc
11761 = (struct ada_catchpoint_location *) bl;
11762 struct expression *exp = NULL;
11763
11764 if (!bl->shlib_disabled)
11765 {
11766 volatile struct gdb_exception e;
bbc13ae3 11767 const char *s;
28010a5d
PA
11768
11769 s = cond_string;
11770 TRY_CATCH (e, RETURN_MASK_ERROR)
11771 {
1bb9788d
TT
11772 exp = parse_exp_1 (&s, bl->address,
11773 block_for_pc (bl->address), 0);
28010a5d
PA
11774 }
11775 if (e.reason < 0)
849f2b52
JB
11776 {
11777 warning (_("failed to reevaluate internal exception condition "
11778 "for catchpoint %d: %s"),
11779 c->base.number, e.message);
11780 /* There is a bug in GCC on sparc-solaris when building with
11781 optimization which causes EXP to change unexpectedly
11782 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11783 The problem should be fixed starting with GCC 4.9.
11784 In the meantime, work around it by forcing EXP back
11785 to NULL. */
11786 exp = NULL;
11787 }
28010a5d
PA
11788 }
11789
11790 ada_loc->excep_cond_expr = exp;
11791 }
11792
11793 do_cleanups (old_chain);
11794}
11795
11796/* Implement the DTOR method in the breakpoint_ops structure for all
11797 exception catchpoint kinds. */
11798
11799static void
761269c8 11800dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11801{
11802 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11803
11804 xfree (c->excep_string);
348d480f 11805
2060206e 11806 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11807}
11808
11809/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11810 structure for all exception catchpoint kinds. */
11811
11812static struct bp_location *
761269c8 11813allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11814 struct breakpoint *self)
11815{
11816 struct ada_catchpoint_location *loc;
11817
11818 loc = XNEW (struct ada_catchpoint_location);
11819 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11820 loc->excep_cond_expr = NULL;
11821 return &loc->base;
11822}
11823
11824/* Implement the RE_SET method in the breakpoint_ops structure for all
11825 exception catchpoint kinds. */
11826
11827static void
761269c8 11828re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11829{
11830 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11831
11832 /* Call the base class's method. This updates the catchpoint's
11833 locations. */
2060206e 11834 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11835
11836 /* Reparse the exception conditional expressions. One for each
11837 location. */
11838 create_excep_cond_exprs (c);
11839}
11840
11841/* Returns true if we should stop for this breakpoint hit. If the
11842 user specified a specific exception, we only want to cause a stop
11843 if the program thrown that exception. */
11844
11845static int
11846should_stop_exception (const struct bp_location *bl)
11847{
11848 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11849 const struct ada_catchpoint_location *ada_loc
11850 = (const struct ada_catchpoint_location *) bl;
11851 volatile struct gdb_exception ex;
11852 int stop;
11853
11854 /* With no specific exception, should always stop. */
11855 if (c->excep_string == NULL)
11856 return 1;
11857
11858 if (ada_loc->excep_cond_expr == NULL)
11859 {
11860 /* We will have a NULL expression if back when we were creating
11861 the expressions, this location's had failed to parse. */
11862 return 1;
11863 }
11864
11865 stop = 1;
11866 TRY_CATCH (ex, RETURN_MASK_ALL)
11867 {
11868 struct value *mark;
11869
11870 mark = value_mark ();
11871 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11872 value_free_to_mark (mark);
11873 }
11874 if (ex.reason < 0)
11875 exception_fprintf (gdb_stderr, ex,
11876 _("Error in testing exception condition:\n"));
11877 return stop;
11878}
11879
11880/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11881 for all exception catchpoint kinds. */
11882
11883static void
761269c8 11884check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
11885{
11886 bs->stop = should_stop_exception (bs->bp_location_at);
11887}
11888
f7f9143b
JB
11889/* Implement the PRINT_IT method in the breakpoint_ops structure
11890 for all exception catchpoint kinds. */
11891
11892static enum print_stop_action
761269c8 11893print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11894{
79a45e25 11895 struct ui_out *uiout = current_uiout;
348d480f
PA
11896 struct breakpoint *b = bs->breakpoint_at;
11897
956a9fb9 11898 annotate_catchpoint (b->number);
f7f9143b 11899
956a9fb9 11900 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11901 {
956a9fb9
JB
11902 ui_out_field_string (uiout, "reason",
11903 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11904 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11905 }
11906
00eb2c4a
JB
11907 ui_out_text (uiout,
11908 b->disposition == disp_del ? "\nTemporary catchpoint "
11909 : "\nCatchpoint ");
956a9fb9
JB
11910 ui_out_field_int (uiout, "bkptno", b->number);
11911 ui_out_text (uiout, ", ");
f7f9143b 11912
f7f9143b
JB
11913 switch (ex)
11914 {
761269c8
JB
11915 case ada_catch_exception:
11916 case ada_catch_exception_unhandled:
956a9fb9
JB
11917 {
11918 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11919 char exception_name[256];
11920
11921 if (addr != 0)
11922 {
c714b426
PA
11923 read_memory (addr, (gdb_byte *) exception_name,
11924 sizeof (exception_name) - 1);
956a9fb9
JB
11925 exception_name [sizeof (exception_name) - 1] = '\0';
11926 }
11927 else
11928 {
11929 /* For some reason, we were unable to read the exception
11930 name. This could happen if the Runtime was compiled
11931 without debugging info, for instance. In that case,
11932 just replace the exception name by the generic string
11933 "exception" - it will read as "an exception" in the
11934 notification we are about to print. */
967cff16 11935 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11936 }
11937 /* In the case of unhandled exception breakpoints, we print
11938 the exception name as "unhandled EXCEPTION_NAME", to make
11939 it clearer to the user which kind of catchpoint just got
11940 hit. We used ui_out_text to make sure that this extra
11941 info does not pollute the exception name in the MI case. */
761269c8 11942 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
11943 ui_out_text (uiout, "unhandled ");
11944 ui_out_field_string (uiout, "exception-name", exception_name);
11945 }
11946 break;
761269c8 11947 case ada_catch_assert:
956a9fb9
JB
11948 /* In this case, the name of the exception is not really
11949 important. Just print "failed assertion" to make it clearer
11950 that his program just hit an assertion-failure catchpoint.
11951 We used ui_out_text because this info does not belong in
11952 the MI output. */
11953 ui_out_text (uiout, "failed assertion");
11954 break;
f7f9143b 11955 }
956a9fb9
JB
11956 ui_out_text (uiout, " at ");
11957 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11958
11959 return PRINT_SRC_AND_LOC;
11960}
11961
11962/* Implement the PRINT_ONE method in the breakpoint_ops structure
11963 for all exception catchpoint kinds. */
11964
11965static void
761269c8 11966print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 11967 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11968{
79a45e25 11969 struct ui_out *uiout = current_uiout;
28010a5d 11970 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11971 struct value_print_options opts;
11972
11973 get_user_print_options (&opts);
11974 if (opts.addressprint)
f7f9143b
JB
11975 {
11976 annotate_field (4);
5af949e3 11977 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11978 }
11979
11980 annotate_field (5);
a6d9a66e 11981 *last_loc = b->loc;
f7f9143b
JB
11982 switch (ex)
11983 {
761269c8 11984 case ada_catch_exception:
28010a5d 11985 if (c->excep_string != NULL)
f7f9143b 11986 {
28010a5d
PA
11987 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11988
f7f9143b
JB
11989 ui_out_field_string (uiout, "what", msg);
11990 xfree (msg);
11991 }
11992 else
11993 ui_out_field_string (uiout, "what", "all Ada exceptions");
11994
11995 break;
11996
761269c8 11997 case ada_catch_exception_unhandled:
f7f9143b
JB
11998 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11999 break;
12000
761269c8 12001 case ada_catch_assert:
f7f9143b
JB
12002 ui_out_field_string (uiout, "what", "failed Ada assertions");
12003 break;
12004
12005 default:
12006 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12007 break;
12008 }
12009}
12010
12011/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12012 for all exception catchpoint kinds. */
12013
12014static void
761269c8 12015print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12016 struct breakpoint *b)
12017{
28010a5d 12018 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12019 struct ui_out *uiout = current_uiout;
28010a5d 12020
00eb2c4a
JB
12021 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12022 : _("Catchpoint "));
12023 ui_out_field_int (uiout, "bkptno", b->number);
12024 ui_out_text (uiout, ": ");
12025
f7f9143b
JB
12026 switch (ex)
12027 {
761269c8 12028 case ada_catch_exception:
28010a5d 12029 if (c->excep_string != NULL)
00eb2c4a
JB
12030 {
12031 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12032 struct cleanup *old_chain = make_cleanup (xfree, info);
12033
12034 ui_out_text (uiout, info);
12035 do_cleanups (old_chain);
12036 }
f7f9143b 12037 else
00eb2c4a 12038 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12039 break;
12040
761269c8 12041 case ada_catch_exception_unhandled:
00eb2c4a 12042 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12043 break;
12044
761269c8 12045 case ada_catch_assert:
00eb2c4a 12046 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12047 break;
12048
12049 default:
12050 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12051 break;
12052 }
12053}
12054
6149aea9
PA
12055/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12056 for all exception catchpoint kinds. */
12057
12058static void
761269c8 12059print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12060 struct breakpoint *b, struct ui_file *fp)
12061{
28010a5d
PA
12062 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12063
6149aea9
PA
12064 switch (ex)
12065 {
761269c8 12066 case ada_catch_exception:
6149aea9 12067 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12068 if (c->excep_string != NULL)
12069 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12070 break;
12071
761269c8 12072 case ada_catch_exception_unhandled:
78076abc 12073 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12074 break;
12075
761269c8 12076 case ada_catch_assert:
6149aea9
PA
12077 fprintf_filtered (fp, "catch assert");
12078 break;
12079
12080 default:
12081 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12082 }
d9b3f62e 12083 print_recreate_thread (b, fp);
6149aea9
PA
12084}
12085
f7f9143b
JB
12086/* Virtual table for "catch exception" breakpoints. */
12087
28010a5d
PA
12088static void
12089dtor_catch_exception (struct breakpoint *b)
12090{
761269c8 12091 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12092}
12093
12094static struct bp_location *
12095allocate_location_catch_exception (struct breakpoint *self)
12096{
761269c8 12097 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12098}
12099
12100static void
12101re_set_catch_exception (struct breakpoint *b)
12102{
761269c8 12103 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12104}
12105
12106static void
12107check_status_catch_exception (bpstat bs)
12108{
761269c8 12109 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12110}
12111
f7f9143b 12112static enum print_stop_action
348d480f 12113print_it_catch_exception (bpstat bs)
f7f9143b 12114{
761269c8 12115 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12116}
12117
12118static void
a6d9a66e 12119print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12120{
761269c8 12121 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12122}
12123
12124static void
12125print_mention_catch_exception (struct breakpoint *b)
12126{
761269c8 12127 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12128}
12129
6149aea9
PA
12130static void
12131print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12132{
761269c8 12133 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12134}
12135
2060206e 12136static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12137
12138/* Virtual table for "catch exception unhandled" breakpoints. */
12139
28010a5d
PA
12140static void
12141dtor_catch_exception_unhandled (struct breakpoint *b)
12142{
761269c8 12143 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12144}
12145
12146static struct bp_location *
12147allocate_location_catch_exception_unhandled (struct breakpoint *self)
12148{
761269c8 12149 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12150}
12151
12152static void
12153re_set_catch_exception_unhandled (struct breakpoint *b)
12154{
761269c8 12155 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12156}
12157
12158static void
12159check_status_catch_exception_unhandled (bpstat bs)
12160{
761269c8 12161 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12162}
12163
f7f9143b 12164static enum print_stop_action
348d480f 12165print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12166{
761269c8 12167 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12168}
12169
12170static void
a6d9a66e
UW
12171print_one_catch_exception_unhandled (struct breakpoint *b,
12172 struct bp_location **last_loc)
f7f9143b 12173{
761269c8 12174 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12175}
12176
12177static void
12178print_mention_catch_exception_unhandled (struct breakpoint *b)
12179{
761269c8 12180 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12181}
12182
6149aea9
PA
12183static void
12184print_recreate_catch_exception_unhandled (struct breakpoint *b,
12185 struct ui_file *fp)
12186{
761269c8 12187 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12188}
12189
2060206e 12190static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12191
12192/* Virtual table for "catch assert" breakpoints. */
12193
28010a5d
PA
12194static void
12195dtor_catch_assert (struct breakpoint *b)
12196{
761269c8 12197 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12198}
12199
12200static struct bp_location *
12201allocate_location_catch_assert (struct breakpoint *self)
12202{
761269c8 12203 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12204}
12205
12206static void
12207re_set_catch_assert (struct breakpoint *b)
12208{
761269c8 12209 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12210}
12211
12212static void
12213check_status_catch_assert (bpstat bs)
12214{
761269c8 12215 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12216}
12217
f7f9143b 12218static enum print_stop_action
348d480f 12219print_it_catch_assert (bpstat bs)
f7f9143b 12220{
761269c8 12221 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12222}
12223
12224static void
a6d9a66e 12225print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12226{
761269c8 12227 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12228}
12229
12230static void
12231print_mention_catch_assert (struct breakpoint *b)
12232{
761269c8 12233 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12234}
12235
6149aea9
PA
12236static void
12237print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12238{
761269c8 12239 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12240}
12241
2060206e 12242static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12243
f7f9143b
JB
12244/* Return a newly allocated copy of the first space-separated token
12245 in ARGSP, and then adjust ARGSP to point immediately after that
12246 token.
12247
12248 Return NULL if ARGPS does not contain any more tokens. */
12249
12250static char *
12251ada_get_next_arg (char **argsp)
12252{
12253 char *args = *argsp;
12254 char *end;
12255 char *result;
12256
0fcd72ba 12257 args = skip_spaces (args);
f7f9143b
JB
12258 if (args[0] == '\0')
12259 return NULL; /* No more arguments. */
12260
12261 /* Find the end of the current argument. */
12262
0fcd72ba 12263 end = skip_to_space (args);
f7f9143b
JB
12264
12265 /* Adjust ARGSP to point to the start of the next argument. */
12266
12267 *argsp = end;
12268
12269 /* Make a copy of the current argument and return it. */
12270
12271 result = xmalloc (end - args + 1);
12272 strncpy (result, args, end - args);
12273 result[end - args] = '\0';
12274
12275 return result;
12276}
12277
12278/* Split the arguments specified in a "catch exception" command.
12279 Set EX to the appropriate catchpoint type.
28010a5d 12280 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12281 specified by the user.
12282 If a condition is found at the end of the arguments, the condition
12283 expression is stored in COND_STRING (memory must be deallocated
12284 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12285
12286static void
12287catch_ada_exception_command_split (char *args,
761269c8 12288 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12289 char **excep_string,
12290 char **cond_string)
f7f9143b
JB
12291{
12292 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12293 char *exception_name;
5845583d 12294 char *cond = NULL;
f7f9143b
JB
12295
12296 exception_name = ada_get_next_arg (&args);
5845583d
JB
12297 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12298 {
12299 /* This is not an exception name; this is the start of a condition
12300 expression for a catchpoint on all exceptions. So, "un-get"
12301 this token, and set exception_name to NULL. */
12302 xfree (exception_name);
12303 exception_name = NULL;
12304 args -= 2;
12305 }
f7f9143b
JB
12306 make_cleanup (xfree, exception_name);
12307
5845583d 12308 /* Check to see if we have a condition. */
f7f9143b 12309
0fcd72ba 12310 args = skip_spaces (args);
5845583d
JB
12311 if (strncmp (args, "if", 2) == 0
12312 && (isspace (args[2]) || args[2] == '\0'))
12313 {
12314 args += 2;
12315 args = skip_spaces (args);
12316
12317 if (args[0] == '\0')
12318 error (_("Condition missing after `if' keyword"));
12319 cond = xstrdup (args);
12320 make_cleanup (xfree, cond);
12321
12322 args += strlen (args);
12323 }
12324
12325 /* Check that we do not have any more arguments. Anything else
12326 is unexpected. */
f7f9143b
JB
12327
12328 if (args[0] != '\0')
12329 error (_("Junk at end of expression"));
12330
12331 discard_cleanups (old_chain);
12332
12333 if (exception_name == NULL)
12334 {
12335 /* Catch all exceptions. */
761269c8 12336 *ex = ada_catch_exception;
28010a5d 12337 *excep_string = NULL;
f7f9143b
JB
12338 }
12339 else if (strcmp (exception_name, "unhandled") == 0)
12340 {
12341 /* Catch unhandled exceptions. */
761269c8 12342 *ex = ada_catch_exception_unhandled;
28010a5d 12343 *excep_string = NULL;
f7f9143b
JB
12344 }
12345 else
12346 {
12347 /* Catch a specific exception. */
761269c8 12348 *ex = ada_catch_exception;
28010a5d 12349 *excep_string = exception_name;
f7f9143b 12350 }
5845583d 12351 *cond_string = cond;
f7f9143b
JB
12352}
12353
12354/* Return the name of the symbol on which we should break in order to
12355 implement a catchpoint of the EX kind. */
12356
12357static const char *
761269c8 12358ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12359{
3eecfa55
JB
12360 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12361
12362 gdb_assert (data->exception_info != NULL);
0259addd 12363
f7f9143b
JB
12364 switch (ex)
12365 {
761269c8 12366 case ada_catch_exception:
3eecfa55 12367 return (data->exception_info->catch_exception_sym);
f7f9143b 12368 break;
761269c8 12369 case ada_catch_exception_unhandled:
3eecfa55 12370 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12371 break;
761269c8 12372 case ada_catch_assert:
3eecfa55 12373 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12374 break;
12375 default:
12376 internal_error (__FILE__, __LINE__,
12377 _("unexpected catchpoint kind (%d)"), ex);
12378 }
12379}
12380
12381/* Return the breakpoint ops "virtual table" used for catchpoints
12382 of the EX kind. */
12383
c0a91b2b 12384static const struct breakpoint_ops *
761269c8 12385ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12386{
12387 switch (ex)
12388 {
761269c8 12389 case ada_catch_exception:
f7f9143b
JB
12390 return (&catch_exception_breakpoint_ops);
12391 break;
761269c8 12392 case ada_catch_exception_unhandled:
f7f9143b
JB
12393 return (&catch_exception_unhandled_breakpoint_ops);
12394 break;
761269c8 12395 case ada_catch_assert:
f7f9143b
JB
12396 return (&catch_assert_breakpoint_ops);
12397 break;
12398 default:
12399 internal_error (__FILE__, __LINE__,
12400 _("unexpected catchpoint kind (%d)"), ex);
12401 }
12402}
12403
12404/* Return the condition that will be used to match the current exception
12405 being raised with the exception that the user wants to catch. This
12406 assumes that this condition is used when the inferior just triggered
12407 an exception catchpoint.
12408
12409 The string returned is a newly allocated string that needs to be
12410 deallocated later. */
12411
12412static char *
28010a5d 12413ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12414{
3d0b0fa3
JB
12415 int i;
12416
0963b4bd 12417 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12418 runtime units that have been compiled without debugging info; if
28010a5d 12419 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12420 exception (e.g. "constraint_error") then, during the evaluation
12421 of the condition expression, the symbol lookup on this name would
0963b4bd 12422 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12423 may then be set only on user-defined exceptions which have the
12424 same not-fully-qualified name (e.g. my_package.constraint_error).
12425
12426 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12427 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12428 exception constraint_error" is rewritten into "catch exception
12429 standard.constraint_error".
12430
12431 If an exception named contraint_error is defined in another package of
12432 the inferior program, then the only way to specify this exception as a
12433 breakpoint condition is to use its fully-qualified named:
12434 e.g. my_package.constraint_error. */
12435
12436 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12437 {
28010a5d 12438 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12439 {
12440 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12441 excep_string);
3d0b0fa3
JB
12442 }
12443 }
28010a5d 12444 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12445}
12446
12447/* Return the symtab_and_line that should be used to insert an exception
12448 catchpoint of the TYPE kind.
12449
28010a5d
PA
12450 EXCEP_STRING should contain the name of a specific exception that
12451 the catchpoint should catch, or NULL otherwise.
f7f9143b 12452
28010a5d
PA
12453 ADDR_STRING returns the name of the function where the real
12454 breakpoint that implements the catchpoints is set, depending on the
12455 type of catchpoint we need to create. */
f7f9143b
JB
12456
12457static struct symtab_and_line
761269c8 12458ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12459 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12460{
12461 const char *sym_name;
12462 struct symbol *sym;
f7f9143b 12463
0259addd
JB
12464 /* First, find out which exception support info to use. */
12465 ada_exception_support_info_sniffer ();
12466
12467 /* Then lookup the function on which we will break in order to catch
f7f9143b 12468 the Ada exceptions requested by the user. */
f7f9143b
JB
12469 sym_name = ada_exception_sym_name (ex);
12470 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12471
f17011e0
JB
12472 /* We can assume that SYM is not NULL at this stage. If the symbol
12473 did not exist, ada_exception_support_info_sniffer would have
12474 raised an exception.
f7f9143b 12475
f17011e0
JB
12476 Also, ada_exception_support_info_sniffer should have already
12477 verified that SYM is a function symbol. */
12478 gdb_assert (sym != NULL);
12479 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12480
12481 /* Set ADDR_STRING. */
f7f9143b
JB
12482 *addr_string = xstrdup (sym_name);
12483
f7f9143b 12484 /* Set OPS. */
4b9eee8c 12485 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12486
f17011e0 12487 return find_function_start_sal (sym, 1);
f7f9143b
JB
12488}
12489
b4a5b78b 12490/* Create an Ada exception catchpoint.
f7f9143b 12491
b4a5b78b 12492 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12493
2df4d1d5
JB
12494 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12495 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12496 of the exception to which this catchpoint applies. When not NULL,
12497 the string must be allocated on the heap, and its deallocation
12498 is no longer the responsibility of the caller.
12499
12500 COND_STRING, if not NULL, is the catchpoint condition. This string
12501 must be allocated on the heap, and its deallocation is no longer
12502 the responsibility of the caller.
f7f9143b 12503
b4a5b78b
JB
12504 TEMPFLAG, if nonzero, means that the underlying breakpoint
12505 should be temporary.
28010a5d 12506
b4a5b78b 12507 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12508
349774ef 12509void
28010a5d 12510create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12511 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12512 char *excep_string,
5845583d 12513 char *cond_string,
28010a5d 12514 int tempflag,
349774ef 12515 int disabled,
28010a5d
PA
12516 int from_tty)
12517{
12518 struct ada_catchpoint *c;
b4a5b78b
JB
12519 char *addr_string = NULL;
12520 const struct breakpoint_ops *ops = NULL;
12521 struct symtab_and_line sal
12522 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12523
12524 c = XNEW (struct ada_catchpoint);
12525 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12526 ops, tempflag, disabled, from_tty);
28010a5d
PA
12527 c->excep_string = excep_string;
12528 create_excep_cond_exprs (c);
5845583d
JB
12529 if (cond_string != NULL)
12530 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12531 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12532}
12533
9ac4176b
PA
12534/* Implement the "catch exception" command. */
12535
12536static void
12537catch_ada_exception_command (char *arg, int from_tty,
12538 struct cmd_list_element *command)
12539{
12540 struct gdbarch *gdbarch = get_current_arch ();
12541 int tempflag;
761269c8 12542 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12543 char *excep_string = NULL;
5845583d 12544 char *cond_string = NULL;
9ac4176b
PA
12545
12546 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12547
12548 if (!arg)
12549 arg = "";
b4a5b78b
JB
12550 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12551 &cond_string);
12552 create_ada_exception_catchpoint (gdbarch, ex_kind,
12553 excep_string, cond_string,
349774ef
JB
12554 tempflag, 1 /* enabled */,
12555 from_tty);
9ac4176b
PA
12556}
12557
b4a5b78b 12558/* Split the arguments specified in a "catch assert" command.
5845583d 12559
b4a5b78b
JB
12560 ARGS contains the command's arguments (or the empty string if
12561 no arguments were passed).
5845583d
JB
12562
12563 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12564 (the memory needs to be deallocated after use). */
5845583d 12565
b4a5b78b
JB
12566static void
12567catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12568{
5845583d 12569 args = skip_spaces (args);
f7f9143b 12570
5845583d
JB
12571 /* Check whether a condition was provided. */
12572 if (strncmp (args, "if", 2) == 0
12573 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12574 {
5845583d 12575 args += 2;
0fcd72ba 12576 args = skip_spaces (args);
5845583d
JB
12577 if (args[0] == '\0')
12578 error (_("condition missing after `if' keyword"));
12579 *cond_string = xstrdup (args);
f7f9143b
JB
12580 }
12581
5845583d
JB
12582 /* Otherwise, there should be no other argument at the end of
12583 the command. */
12584 else if (args[0] != '\0')
12585 error (_("Junk at end of arguments."));
f7f9143b
JB
12586}
12587
9ac4176b
PA
12588/* Implement the "catch assert" command. */
12589
12590static void
12591catch_assert_command (char *arg, int from_tty,
12592 struct cmd_list_element *command)
12593{
12594 struct gdbarch *gdbarch = get_current_arch ();
12595 int tempflag;
5845583d 12596 char *cond_string = NULL;
9ac4176b
PA
12597
12598 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12599
12600 if (!arg)
12601 arg = "";
b4a5b78b 12602 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12603 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12604 NULL, cond_string,
349774ef
JB
12605 tempflag, 1 /* enabled */,
12606 from_tty);
9ac4176b 12607}
778865d3
JB
12608
12609/* Return non-zero if the symbol SYM is an Ada exception object. */
12610
12611static int
12612ada_is_exception_sym (struct symbol *sym)
12613{
12614 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12615
12616 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12617 && SYMBOL_CLASS (sym) != LOC_BLOCK
12618 && SYMBOL_CLASS (sym) != LOC_CONST
12619 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12620 && type_name != NULL && strcmp (type_name, "exception") == 0);
12621}
12622
12623/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12624 Ada exception object. This matches all exceptions except the ones
12625 defined by the Ada language. */
12626
12627static int
12628ada_is_non_standard_exception_sym (struct symbol *sym)
12629{
12630 int i;
12631
12632 if (!ada_is_exception_sym (sym))
12633 return 0;
12634
12635 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12636 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12637 return 0; /* A standard exception. */
12638
12639 /* Numeric_Error is also a standard exception, so exclude it.
12640 See the STANDARD_EXC description for more details as to why
12641 this exception is not listed in that array. */
12642 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12643 return 0;
12644
12645 return 1;
12646}
12647
12648/* A helper function for qsort, comparing two struct ada_exc_info
12649 objects.
12650
12651 The comparison is determined first by exception name, and then
12652 by exception address. */
12653
12654static int
12655compare_ada_exception_info (const void *a, const void *b)
12656{
12657 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12658 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12659 int result;
12660
12661 result = strcmp (exc_a->name, exc_b->name);
12662 if (result != 0)
12663 return result;
12664
12665 if (exc_a->addr < exc_b->addr)
12666 return -1;
12667 if (exc_a->addr > exc_b->addr)
12668 return 1;
12669
12670 return 0;
12671}
12672
12673/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12674 routine, but keeping the first SKIP elements untouched.
12675
12676 All duplicates are also removed. */
12677
12678static void
12679sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12680 int skip)
12681{
12682 struct ada_exc_info *to_sort
12683 = VEC_address (ada_exc_info, *exceptions) + skip;
12684 int to_sort_len
12685 = VEC_length (ada_exc_info, *exceptions) - skip;
12686 int i, j;
12687
12688 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12689 compare_ada_exception_info);
12690
12691 for (i = 1, j = 1; i < to_sort_len; i++)
12692 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12693 to_sort[j++] = to_sort[i];
12694 to_sort_len = j;
12695 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12696}
12697
12698/* A function intended as the "name_matcher" callback in the struct
12699 quick_symbol_functions' expand_symtabs_matching method.
12700
12701 SEARCH_NAME is the symbol's search name.
12702
12703 If USER_DATA is not NULL, it is a pointer to a regext_t object
12704 used to match the symbol (by natural name). Otherwise, when USER_DATA
12705 is null, no filtering is performed, and all symbols are a positive
12706 match. */
12707
12708static int
12709ada_exc_search_name_matches (const char *search_name, void *user_data)
12710{
12711 regex_t *preg = user_data;
12712
12713 if (preg == NULL)
12714 return 1;
12715
12716 /* In Ada, the symbol "search name" is a linkage name, whereas
12717 the regular expression used to do the matching refers to
12718 the natural name. So match against the decoded name. */
12719 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12720}
12721
12722/* Add all exceptions defined by the Ada standard whose name match
12723 a regular expression.
12724
12725 If PREG is not NULL, then this regexp_t object is used to
12726 perform the symbol name matching. Otherwise, no name-based
12727 filtering is performed.
12728
12729 EXCEPTIONS is a vector of exceptions to which matching exceptions
12730 gets pushed. */
12731
12732static void
12733ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12734{
12735 int i;
12736
12737 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12738 {
12739 if (preg == NULL
12740 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12741 {
12742 struct bound_minimal_symbol msymbol
12743 = ada_lookup_simple_minsym (standard_exc[i]);
12744
12745 if (msymbol.minsym != NULL)
12746 {
12747 struct ada_exc_info info
77e371c0 12748 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12749
12750 VEC_safe_push (ada_exc_info, *exceptions, &info);
12751 }
12752 }
12753 }
12754}
12755
12756/* Add all Ada exceptions defined locally and accessible from the given
12757 FRAME.
12758
12759 If PREG is not NULL, then this regexp_t object is used to
12760 perform the symbol name matching. Otherwise, no name-based
12761 filtering is performed.
12762
12763 EXCEPTIONS is a vector of exceptions to which matching exceptions
12764 gets pushed. */
12765
12766static void
12767ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12768 VEC(ada_exc_info) **exceptions)
12769{
3977b71f 12770 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12771
12772 while (block != 0)
12773 {
12774 struct block_iterator iter;
12775 struct symbol *sym;
12776
12777 ALL_BLOCK_SYMBOLS (block, iter, sym)
12778 {
12779 switch (SYMBOL_CLASS (sym))
12780 {
12781 case LOC_TYPEDEF:
12782 case LOC_BLOCK:
12783 case LOC_CONST:
12784 break;
12785 default:
12786 if (ada_is_exception_sym (sym))
12787 {
12788 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12789 SYMBOL_VALUE_ADDRESS (sym)};
12790
12791 VEC_safe_push (ada_exc_info, *exceptions, &info);
12792 }
12793 }
12794 }
12795 if (BLOCK_FUNCTION (block) != NULL)
12796 break;
12797 block = BLOCK_SUPERBLOCK (block);
12798 }
12799}
12800
12801/* Add all exceptions defined globally whose name name match
12802 a regular expression, excluding standard exceptions.
12803
12804 The reason we exclude standard exceptions is that they need
12805 to be handled separately: Standard exceptions are defined inside
12806 a runtime unit which is normally not compiled with debugging info,
12807 and thus usually do not show up in our symbol search. However,
12808 if the unit was in fact built with debugging info, we need to
12809 exclude them because they would duplicate the entry we found
12810 during the special loop that specifically searches for those
12811 standard exceptions.
12812
12813 If PREG is not NULL, then this regexp_t object is used to
12814 perform the symbol name matching. Otherwise, no name-based
12815 filtering is performed.
12816
12817 EXCEPTIONS is a vector of exceptions to which matching exceptions
12818 gets pushed. */
12819
12820static void
12821ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12822{
12823 struct objfile *objfile;
12824 struct symtab *s;
12825
bb4142cf
DE
12826 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12827 VARIABLES_DOMAIN, preg);
778865d3
JB
12828
12829 ALL_PRIMARY_SYMTABS (objfile, s)
12830 {
346d1dfe 12831 const struct blockvector *bv = BLOCKVECTOR (s);
778865d3
JB
12832 int i;
12833
12834 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12835 {
12836 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12837 struct block_iterator iter;
12838 struct symbol *sym;
12839
12840 ALL_BLOCK_SYMBOLS (b, iter, sym)
12841 if (ada_is_non_standard_exception_sym (sym)
12842 && (preg == NULL
12843 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12844 0, NULL, 0) == 0))
12845 {
12846 struct ada_exc_info info
12847 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12848
12849 VEC_safe_push (ada_exc_info, *exceptions, &info);
12850 }
12851 }
12852 }
12853}
12854
12855/* Implements ada_exceptions_list with the regular expression passed
12856 as a regex_t, rather than a string.
12857
12858 If not NULL, PREG is used to filter out exceptions whose names
12859 do not match. Otherwise, all exceptions are listed. */
12860
12861static VEC(ada_exc_info) *
12862ada_exceptions_list_1 (regex_t *preg)
12863{
12864 VEC(ada_exc_info) *result = NULL;
12865 struct cleanup *old_chain
12866 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12867 int prev_len;
12868
12869 /* First, list the known standard exceptions. These exceptions
12870 need to be handled separately, as they are usually defined in
12871 runtime units that have been compiled without debugging info. */
12872
12873 ada_add_standard_exceptions (preg, &result);
12874
12875 /* Next, find all exceptions whose scope is local and accessible
12876 from the currently selected frame. */
12877
12878 if (has_stack_frames ())
12879 {
12880 prev_len = VEC_length (ada_exc_info, result);
12881 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12882 &result);
12883 if (VEC_length (ada_exc_info, result) > prev_len)
12884 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12885 }
12886
12887 /* Add all exceptions whose scope is global. */
12888
12889 prev_len = VEC_length (ada_exc_info, result);
12890 ada_add_global_exceptions (preg, &result);
12891 if (VEC_length (ada_exc_info, result) > prev_len)
12892 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12893
12894 discard_cleanups (old_chain);
12895 return result;
12896}
12897
12898/* Return a vector of ada_exc_info.
12899
12900 If REGEXP is NULL, all exceptions are included in the result.
12901 Otherwise, it should contain a valid regular expression,
12902 and only the exceptions whose names match that regular expression
12903 are included in the result.
12904
12905 The exceptions are sorted in the following order:
12906 - Standard exceptions (defined by the Ada language), in
12907 alphabetical order;
12908 - Exceptions only visible from the current frame, in
12909 alphabetical order;
12910 - Exceptions whose scope is global, in alphabetical order. */
12911
12912VEC(ada_exc_info) *
12913ada_exceptions_list (const char *regexp)
12914{
12915 VEC(ada_exc_info) *result = NULL;
12916 struct cleanup *old_chain = NULL;
12917 regex_t reg;
12918
12919 if (regexp != NULL)
12920 old_chain = compile_rx_or_error (&reg, regexp,
12921 _("invalid regular expression"));
12922
12923 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12924
12925 if (old_chain != NULL)
12926 do_cleanups (old_chain);
12927 return result;
12928}
12929
12930/* Implement the "info exceptions" command. */
12931
12932static void
12933info_exceptions_command (char *regexp, int from_tty)
12934{
12935 VEC(ada_exc_info) *exceptions;
12936 struct cleanup *cleanup;
12937 struct gdbarch *gdbarch = get_current_arch ();
12938 int ix;
12939 struct ada_exc_info *info;
12940
12941 exceptions = ada_exceptions_list (regexp);
12942 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12943
12944 if (regexp != NULL)
12945 printf_filtered
12946 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12947 else
12948 printf_filtered (_("All defined Ada exceptions:\n"));
12949
12950 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12951 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12952
12953 do_cleanups (cleanup);
12954}
12955
4c4b4cd2
PH
12956 /* Operators */
12957/* Information about operators given special treatment in functions
12958 below. */
12959/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12960
12961#define ADA_OPERATORS \
12962 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12963 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12964 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12965 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12966 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12967 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12968 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12969 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12970 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12971 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12972 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12973 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12974 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12975 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12976 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12977 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12978 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12979 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12980 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12981
12982static void
554794dc
SDJ
12983ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12984 int *argsp)
4c4b4cd2
PH
12985{
12986 switch (exp->elts[pc - 1].opcode)
12987 {
76a01679 12988 default:
4c4b4cd2
PH
12989 operator_length_standard (exp, pc, oplenp, argsp);
12990 break;
12991
12992#define OP_DEFN(op, len, args, binop) \
12993 case op: *oplenp = len; *argsp = args; break;
12994 ADA_OPERATORS;
12995#undef OP_DEFN
52ce6436
PH
12996
12997 case OP_AGGREGATE:
12998 *oplenp = 3;
12999 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13000 break;
13001
13002 case OP_CHOICES:
13003 *oplenp = 3;
13004 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13005 break;
4c4b4cd2
PH
13006 }
13007}
13008
c0201579
JK
13009/* Implementation of the exp_descriptor method operator_check. */
13010
13011static int
13012ada_operator_check (struct expression *exp, int pos,
13013 int (*objfile_func) (struct objfile *objfile, void *data),
13014 void *data)
13015{
13016 const union exp_element *const elts = exp->elts;
13017 struct type *type = NULL;
13018
13019 switch (elts[pos].opcode)
13020 {
13021 case UNOP_IN_RANGE:
13022 case UNOP_QUAL:
13023 type = elts[pos + 1].type;
13024 break;
13025
13026 default:
13027 return operator_check_standard (exp, pos, objfile_func, data);
13028 }
13029
13030 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13031
13032 if (type && TYPE_OBJFILE (type)
13033 && (*objfile_func) (TYPE_OBJFILE (type), data))
13034 return 1;
13035
13036 return 0;
13037}
13038
4c4b4cd2
PH
13039static char *
13040ada_op_name (enum exp_opcode opcode)
13041{
13042 switch (opcode)
13043 {
76a01679 13044 default:
4c4b4cd2 13045 return op_name_standard (opcode);
52ce6436 13046
4c4b4cd2
PH
13047#define OP_DEFN(op, len, args, binop) case op: return #op;
13048 ADA_OPERATORS;
13049#undef OP_DEFN
52ce6436
PH
13050
13051 case OP_AGGREGATE:
13052 return "OP_AGGREGATE";
13053 case OP_CHOICES:
13054 return "OP_CHOICES";
13055 case OP_NAME:
13056 return "OP_NAME";
4c4b4cd2
PH
13057 }
13058}
13059
13060/* As for operator_length, but assumes PC is pointing at the first
13061 element of the operator, and gives meaningful results only for the
52ce6436 13062 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13063
13064static void
76a01679
JB
13065ada_forward_operator_length (struct expression *exp, int pc,
13066 int *oplenp, int *argsp)
4c4b4cd2 13067{
76a01679 13068 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13069 {
13070 default:
13071 *oplenp = *argsp = 0;
13072 break;
52ce6436 13073
4c4b4cd2
PH
13074#define OP_DEFN(op, len, args, binop) \
13075 case op: *oplenp = len; *argsp = args; break;
13076 ADA_OPERATORS;
13077#undef OP_DEFN
52ce6436
PH
13078
13079 case OP_AGGREGATE:
13080 *oplenp = 3;
13081 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13082 break;
13083
13084 case OP_CHOICES:
13085 *oplenp = 3;
13086 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13087 break;
13088
13089 case OP_STRING:
13090 case OP_NAME:
13091 {
13092 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13093
52ce6436
PH
13094 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13095 *argsp = 0;
13096 break;
13097 }
4c4b4cd2
PH
13098 }
13099}
13100
13101static int
13102ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13103{
13104 enum exp_opcode op = exp->elts[elt].opcode;
13105 int oplen, nargs;
13106 int pc = elt;
13107 int i;
76a01679 13108
4c4b4cd2
PH
13109 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13110
76a01679 13111 switch (op)
4c4b4cd2 13112 {
76a01679 13113 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13114 case OP_ATR_FIRST:
13115 case OP_ATR_LAST:
13116 case OP_ATR_LENGTH:
13117 case OP_ATR_IMAGE:
13118 case OP_ATR_MAX:
13119 case OP_ATR_MIN:
13120 case OP_ATR_MODULUS:
13121 case OP_ATR_POS:
13122 case OP_ATR_SIZE:
13123 case OP_ATR_TAG:
13124 case OP_ATR_VAL:
13125 break;
13126
13127 case UNOP_IN_RANGE:
13128 case UNOP_QUAL:
323e0a4a
AC
13129 /* XXX: gdb_sprint_host_address, type_sprint */
13130 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13131 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13132 fprintf_filtered (stream, " (");
13133 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13134 fprintf_filtered (stream, ")");
13135 break;
13136 case BINOP_IN_BOUNDS:
52ce6436
PH
13137 fprintf_filtered (stream, " (%d)",
13138 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13139 break;
13140 case TERNOP_IN_RANGE:
13141 break;
13142
52ce6436
PH
13143 case OP_AGGREGATE:
13144 case OP_OTHERS:
13145 case OP_DISCRETE_RANGE:
13146 case OP_POSITIONAL:
13147 case OP_CHOICES:
13148 break;
13149
13150 case OP_NAME:
13151 case OP_STRING:
13152 {
13153 char *name = &exp->elts[elt + 2].string;
13154 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13155
52ce6436
PH
13156 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13157 break;
13158 }
13159
4c4b4cd2
PH
13160 default:
13161 return dump_subexp_body_standard (exp, stream, elt);
13162 }
13163
13164 elt += oplen;
13165 for (i = 0; i < nargs; i += 1)
13166 elt = dump_subexp (exp, stream, elt);
13167
13168 return elt;
13169}
13170
13171/* The Ada extension of print_subexp (q.v.). */
13172
76a01679
JB
13173static void
13174ada_print_subexp (struct expression *exp, int *pos,
13175 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13176{
52ce6436 13177 int oplen, nargs, i;
4c4b4cd2
PH
13178 int pc = *pos;
13179 enum exp_opcode op = exp->elts[pc].opcode;
13180
13181 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13182
52ce6436 13183 *pos += oplen;
4c4b4cd2
PH
13184 switch (op)
13185 {
13186 default:
52ce6436 13187 *pos -= oplen;
4c4b4cd2
PH
13188 print_subexp_standard (exp, pos, stream, prec);
13189 return;
13190
13191 case OP_VAR_VALUE:
4c4b4cd2
PH
13192 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13193 return;
13194
13195 case BINOP_IN_BOUNDS:
323e0a4a 13196 /* XXX: sprint_subexp */
4c4b4cd2 13197 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13198 fputs_filtered (" in ", stream);
4c4b4cd2 13199 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13200 fputs_filtered ("'range", stream);
4c4b4cd2 13201 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13202 fprintf_filtered (stream, "(%ld)",
13203 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13204 return;
13205
13206 case TERNOP_IN_RANGE:
4c4b4cd2 13207 if (prec >= PREC_EQUAL)
76a01679 13208 fputs_filtered ("(", stream);
323e0a4a 13209 /* XXX: sprint_subexp */
4c4b4cd2 13210 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13211 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13212 print_subexp (exp, pos, stream, PREC_EQUAL);
13213 fputs_filtered (" .. ", stream);
13214 print_subexp (exp, pos, stream, PREC_EQUAL);
13215 if (prec >= PREC_EQUAL)
76a01679
JB
13216 fputs_filtered (")", stream);
13217 return;
4c4b4cd2
PH
13218
13219 case OP_ATR_FIRST:
13220 case OP_ATR_LAST:
13221 case OP_ATR_LENGTH:
13222 case OP_ATR_IMAGE:
13223 case OP_ATR_MAX:
13224 case OP_ATR_MIN:
13225 case OP_ATR_MODULUS:
13226 case OP_ATR_POS:
13227 case OP_ATR_SIZE:
13228 case OP_ATR_TAG:
13229 case OP_ATR_VAL:
4c4b4cd2 13230 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13231 {
13232 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13233 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13234 &type_print_raw_options);
76a01679
JB
13235 *pos += 3;
13236 }
4c4b4cd2 13237 else
76a01679 13238 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13239 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13240 if (nargs > 1)
76a01679
JB
13241 {
13242 int tem;
5b4ee69b 13243
76a01679
JB
13244 for (tem = 1; tem < nargs; tem += 1)
13245 {
13246 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13247 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13248 }
13249 fputs_filtered (")", stream);
13250 }
4c4b4cd2 13251 return;
14f9c5c9 13252
4c4b4cd2 13253 case UNOP_QUAL:
4c4b4cd2
PH
13254 type_print (exp->elts[pc + 1].type, "", stream, 0);
13255 fputs_filtered ("'(", stream);
13256 print_subexp (exp, pos, stream, PREC_PREFIX);
13257 fputs_filtered (")", stream);
13258 return;
14f9c5c9 13259
4c4b4cd2 13260 case UNOP_IN_RANGE:
323e0a4a 13261 /* XXX: sprint_subexp */
4c4b4cd2 13262 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13263 fputs_filtered (" in ", stream);
79d43c61
TT
13264 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13265 &type_print_raw_options);
4c4b4cd2 13266 return;
52ce6436
PH
13267
13268 case OP_DISCRETE_RANGE:
13269 print_subexp (exp, pos, stream, PREC_SUFFIX);
13270 fputs_filtered ("..", stream);
13271 print_subexp (exp, pos, stream, PREC_SUFFIX);
13272 return;
13273
13274 case OP_OTHERS:
13275 fputs_filtered ("others => ", stream);
13276 print_subexp (exp, pos, stream, PREC_SUFFIX);
13277 return;
13278
13279 case OP_CHOICES:
13280 for (i = 0; i < nargs-1; i += 1)
13281 {
13282 if (i > 0)
13283 fputs_filtered ("|", stream);
13284 print_subexp (exp, pos, stream, PREC_SUFFIX);
13285 }
13286 fputs_filtered (" => ", stream);
13287 print_subexp (exp, pos, stream, PREC_SUFFIX);
13288 return;
13289
13290 case OP_POSITIONAL:
13291 print_subexp (exp, pos, stream, PREC_SUFFIX);
13292 return;
13293
13294 case OP_AGGREGATE:
13295 fputs_filtered ("(", stream);
13296 for (i = 0; i < nargs; i += 1)
13297 {
13298 if (i > 0)
13299 fputs_filtered (", ", stream);
13300 print_subexp (exp, pos, stream, PREC_SUFFIX);
13301 }
13302 fputs_filtered (")", stream);
13303 return;
4c4b4cd2
PH
13304 }
13305}
14f9c5c9
AS
13306
13307/* Table mapping opcodes into strings for printing operators
13308 and precedences of the operators. */
13309
d2e4a39e
AS
13310static const struct op_print ada_op_print_tab[] = {
13311 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13312 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13313 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13314 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13315 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13316 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13317 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13318 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13319 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13320 {">=", BINOP_GEQ, PREC_ORDER, 0},
13321 {">", BINOP_GTR, PREC_ORDER, 0},
13322 {"<", BINOP_LESS, PREC_ORDER, 0},
13323 {">>", BINOP_RSH, PREC_SHIFT, 0},
13324 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13325 {"+", BINOP_ADD, PREC_ADD, 0},
13326 {"-", BINOP_SUB, PREC_ADD, 0},
13327 {"&", BINOP_CONCAT, PREC_ADD, 0},
13328 {"*", BINOP_MUL, PREC_MUL, 0},
13329 {"/", BINOP_DIV, PREC_MUL, 0},
13330 {"rem", BINOP_REM, PREC_MUL, 0},
13331 {"mod", BINOP_MOD, PREC_MUL, 0},
13332 {"**", BINOP_EXP, PREC_REPEAT, 0},
13333 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13334 {"-", UNOP_NEG, PREC_PREFIX, 0},
13335 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13336 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13337 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13338 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13339 {".all", UNOP_IND, PREC_SUFFIX, 1},
13340 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13341 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13342 {NULL, 0, 0, 0}
14f9c5c9
AS
13343};
13344\f
72d5681a
PH
13345enum ada_primitive_types {
13346 ada_primitive_type_int,
13347 ada_primitive_type_long,
13348 ada_primitive_type_short,
13349 ada_primitive_type_char,
13350 ada_primitive_type_float,
13351 ada_primitive_type_double,
13352 ada_primitive_type_void,
13353 ada_primitive_type_long_long,
13354 ada_primitive_type_long_double,
13355 ada_primitive_type_natural,
13356 ada_primitive_type_positive,
13357 ada_primitive_type_system_address,
13358 nr_ada_primitive_types
13359};
6c038f32
PH
13360
13361static void
d4a9a881 13362ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13363 struct language_arch_info *lai)
13364{
d4a9a881 13365 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13366
72d5681a 13367 lai->primitive_type_vector
d4a9a881 13368 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13369 struct type *);
e9bb382b
UW
13370
13371 lai->primitive_type_vector [ada_primitive_type_int]
13372 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13373 0, "integer");
13374 lai->primitive_type_vector [ada_primitive_type_long]
13375 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13376 0, "long_integer");
13377 lai->primitive_type_vector [ada_primitive_type_short]
13378 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13379 0, "short_integer");
13380 lai->string_char_type
13381 = lai->primitive_type_vector [ada_primitive_type_char]
13382 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13383 lai->primitive_type_vector [ada_primitive_type_float]
13384 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13385 "float", NULL);
13386 lai->primitive_type_vector [ada_primitive_type_double]
13387 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13388 "long_float", NULL);
13389 lai->primitive_type_vector [ada_primitive_type_long_long]
13390 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13391 0, "long_long_integer");
13392 lai->primitive_type_vector [ada_primitive_type_long_double]
13393 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13394 "long_long_float", NULL);
13395 lai->primitive_type_vector [ada_primitive_type_natural]
13396 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13397 0, "natural");
13398 lai->primitive_type_vector [ada_primitive_type_positive]
13399 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13400 0, "positive");
13401 lai->primitive_type_vector [ada_primitive_type_void]
13402 = builtin->builtin_void;
13403
13404 lai->primitive_type_vector [ada_primitive_type_system_address]
13405 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13406 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13407 = "system__address";
fbb06eb1 13408
47e729a8 13409 lai->bool_type_symbol = NULL;
fbb06eb1 13410 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13411}
6c038f32
PH
13412\f
13413 /* Language vector */
13414
13415/* Not really used, but needed in the ada_language_defn. */
13416
13417static void
6c7a06a3 13418emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13419{
6c7a06a3 13420 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13421}
13422
13423static int
410a0ff2 13424parse (struct parser_state *ps)
6c038f32
PH
13425{
13426 warnings_issued = 0;
410a0ff2 13427 return ada_parse (ps);
6c038f32
PH
13428}
13429
13430static const struct exp_descriptor ada_exp_descriptor = {
13431 ada_print_subexp,
13432 ada_operator_length,
c0201579 13433 ada_operator_check,
6c038f32
PH
13434 ada_op_name,
13435 ada_dump_subexp_body,
13436 ada_evaluate_subexp
13437};
13438
1a119f36 13439/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13440 for Ada. */
13441
1a119f36
JB
13442static symbol_name_cmp_ftype
13443ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13444{
13445 if (should_use_wild_match (lookup_name))
13446 return wild_match;
13447 else
13448 return compare_names;
13449}
13450
a5ee536b
JB
13451/* Implement the "la_read_var_value" language_defn method for Ada. */
13452
13453static struct value *
13454ada_read_var_value (struct symbol *var, struct frame_info *frame)
13455{
3977b71f 13456 const struct block *frame_block = NULL;
a5ee536b
JB
13457 struct symbol *renaming_sym = NULL;
13458
13459 /* The only case where default_read_var_value is not sufficient
13460 is when VAR is a renaming... */
13461 if (frame)
13462 frame_block = get_frame_block (frame, NULL);
13463 if (frame_block)
13464 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13465 if (renaming_sym != NULL)
13466 return ada_read_renaming_var_value (renaming_sym, frame_block);
13467
13468 /* This is a typical case where we expect the default_read_var_value
13469 function to work. */
13470 return default_read_var_value (var, frame);
13471}
13472
6c038f32
PH
13473const struct language_defn ada_language_defn = {
13474 "ada", /* Language name */
6abde28f 13475 "Ada",
6c038f32 13476 language_ada,
6c038f32 13477 range_check_off,
6c038f32
PH
13478 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13479 that's not quite what this means. */
6c038f32 13480 array_row_major,
9a044a89 13481 macro_expansion_no,
6c038f32
PH
13482 &ada_exp_descriptor,
13483 parse,
13484 ada_error,
13485 resolve,
13486 ada_printchar, /* Print a character constant */
13487 ada_printstr, /* Function to print string constant */
13488 emit_char, /* Function to print single char (not used) */
6c038f32 13489 ada_print_type, /* Print a type using appropriate syntax */
be942545 13490 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13491 ada_val_print, /* Print a value using appropriate syntax */
13492 ada_value_print, /* Print a top-level value */
a5ee536b 13493 ada_read_var_value, /* la_read_var_value */
6c038f32 13494 NULL, /* Language specific skip_trampoline */
2b2d9e11 13495 NULL, /* name_of_this */
6c038f32
PH
13496 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13497 basic_lookup_transparent_type, /* lookup_transparent_type */
13498 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13499 NULL, /* Language specific
13500 class_name_from_physname */
6c038f32
PH
13501 ada_op_print_tab, /* expression operators for printing */
13502 0, /* c-style arrays */
13503 1, /* String lower bound */
6c038f32 13504 ada_get_gdb_completer_word_break_characters,
41d27058 13505 ada_make_symbol_completion_list,
72d5681a 13506 ada_language_arch_info,
e79af960 13507 ada_print_array_index,
41f1b697 13508 default_pass_by_reference,
ae6a3a4c 13509 c_get_string,
1a119f36 13510 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13511 ada_iterate_over_symbols,
a53b64ea 13512 &ada_varobj_ops,
6c038f32
PH
13513 LANG_MAGIC
13514};
13515
2c0b251b
PA
13516/* Provide a prototype to silence -Wmissing-prototypes. */
13517extern initialize_file_ftype _initialize_ada_language;
13518
5bf03f13
JB
13519/* Command-list for the "set/show ada" prefix command. */
13520static struct cmd_list_element *set_ada_list;
13521static struct cmd_list_element *show_ada_list;
13522
13523/* Implement the "set ada" prefix command. */
13524
13525static void
13526set_ada_command (char *arg, int from_tty)
13527{
13528 printf_unfiltered (_(\
13529"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13530 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13531}
13532
13533/* Implement the "show ada" prefix command. */
13534
13535static void
13536show_ada_command (char *args, int from_tty)
13537{
13538 cmd_show_list (show_ada_list, from_tty, "");
13539}
13540
2060206e
PA
13541static void
13542initialize_ada_catchpoint_ops (void)
13543{
13544 struct breakpoint_ops *ops;
13545
13546 initialize_breakpoint_ops ();
13547
13548 ops = &catch_exception_breakpoint_ops;
13549 *ops = bkpt_breakpoint_ops;
13550 ops->dtor = dtor_catch_exception;
13551 ops->allocate_location = allocate_location_catch_exception;
13552 ops->re_set = re_set_catch_exception;
13553 ops->check_status = check_status_catch_exception;
13554 ops->print_it = print_it_catch_exception;
13555 ops->print_one = print_one_catch_exception;
13556 ops->print_mention = print_mention_catch_exception;
13557 ops->print_recreate = print_recreate_catch_exception;
13558
13559 ops = &catch_exception_unhandled_breakpoint_ops;
13560 *ops = bkpt_breakpoint_ops;
13561 ops->dtor = dtor_catch_exception_unhandled;
13562 ops->allocate_location = allocate_location_catch_exception_unhandled;
13563 ops->re_set = re_set_catch_exception_unhandled;
13564 ops->check_status = check_status_catch_exception_unhandled;
13565 ops->print_it = print_it_catch_exception_unhandled;
13566 ops->print_one = print_one_catch_exception_unhandled;
13567 ops->print_mention = print_mention_catch_exception_unhandled;
13568 ops->print_recreate = print_recreate_catch_exception_unhandled;
13569
13570 ops = &catch_assert_breakpoint_ops;
13571 *ops = bkpt_breakpoint_ops;
13572 ops->dtor = dtor_catch_assert;
13573 ops->allocate_location = allocate_location_catch_assert;
13574 ops->re_set = re_set_catch_assert;
13575 ops->check_status = check_status_catch_assert;
13576 ops->print_it = print_it_catch_assert;
13577 ops->print_one = print_one_catch_assert;
13578 ops->print_mention = print_mention_catch_assert;
13579 ops->print_recreate = print_recreate_catch_assert;
13580}
13581
3d9434b5
JB
13582/* This module's 'new_objfile' observer. */
13583
13584static void
13585ada_new_objfile_observer (struct objfile *objfile)
13586{
13587 ada_clear_symbol_cache ();
13588}
13589
13590/* This module's 'free_objfile' observer. */
13591
13592static void
13593ada_free_objfile_observer (struct objfile *objfile)
13594{
13595 ada_clear_symbol_cache ();
13596}
13597
d2e4a39e 13598void
6c038f32 13599_initialize_ada_language (void)
14f9c5c9 13600{
6c038f32
PH
13601 add_language (&ada_language_defn);
13602
2060206e
PA
13603 initialize_ada_catchpoint_ops ();
13604
5bf03f13
JB
13605 add_prefix_cmd ("ada", no_class, set_ada_command,
13606 _("Prefix command for changing Ada-specfic settings"),
13607 &set_ada_list, "set ada ", 0, &setlist);
13608
13609 add_prefix_cmd ("ada", no_class, show_ada_command,
13610 _("Generic command for showing Ada-specific settings."),
13611 &show_ada_list, "show ada ", 0, &showlist);
13612
13613 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13614 &trust_pad_over_xvs, _("\
13615Enable or disable an optimization trusting PAD types over XVS types"), _("\
13616Show whether an optimization trusting PAD types over XVS types is activated"),
13617 _("\
13618This is related to the encoding used by the GNAT compiler. The debugger\n\
13619should normally trust the contents of PAD types, but certain older versions\n\
13620of GNAT have a bug that sometimes causes the information in the PAD type\n\
13621to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13622work around this bug. It is always safe to turn this option \"off\", but\n\
13623this incurs a slight performance penalty, so it is recommended to NOT change\n\
13624this option to \"off\" unless necessary."),
13625 NULL, NULL, &set_ada_list, &show_ada_list);
13626
9ac4176b
PA
13627 add_catch_command ("exception", _("\
13628Catch Ada exceptions, when raised.\n\
13629With an argument, catch only exceptions with the given name."),
13630 catch_ada_exception_command,
13631 NULL,
13632 CATCH_PERMANENT,
13633 CATCH_TEMPORARY);
13634 add_catch_command ("assert", _("\
13635Catch failed Ada assertions, when raised.\n\
13636With an argument, catch only exceptions with the given name."),
13637 catch_assert_command,
13638 NULL,
13639 CATCH_PERMANENT,
13640 CATCH_TEMPORARY);
13641
6c038f32 13642 varsize_limit = 65536;
6c038f32 13643
778865d3
JB
13644 add_info ("exceptions", info_exceptions_command,
13645 _("\
13646List all Ada exception names.\n\
13647If a regular expression is passed as an argument, only those matching\n\
13648the regular expression are listed."));
13649
c6044dd1
JB
13650 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13651 _("Set Ada maintenance-related variables."),
13652 &maint_set_ada_cmdlist, "maintenance set ada ",
13653 0/*allow-unknown*/, &maintenance_set_cmdlist);
13654
13655 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13656 _("Show Ada maintenance-related variables"),
13657 &maint_show_ada_cmdlist, "maintenance show ada ",
13658 0/*allow-unknown*/, &maintenance_show_cmdlist);
13659
13660 add_setshow_boolean_cmd
13661 ("ignore-descriptive-types", class_maintenance,
13662 &ada_ignore_descriptive_types_p,
13663 _("Set whether descriptive types generated by GNAT should be ignored."),
13664 _("Show whether descriptive types generated by GNAT should be ignored."),
13665 _("\
13666When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13667DWARF attribute."),
13668 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13669
6c038f32
PH
13670 obstack_init (&symbol_list_obstack);
13671
13672 decoded_names_store = htab_create_alloc
13673 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13674 NULL, xcalloc, xfree);
6b69afc4 13675
3d9434b5
JB
13676 /* The ada-lang observers. */
13677 observer_attach_new_objfile (ada_new_objfile_observer);
13678 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13679 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13680
13681 /* Setup various context-specific data. */
e802dbe0 13682 ada_inferior_data
8e260fc0 13683 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13684 ada_pspace_data_handle
13685 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13686}
This page took 2.366525 seconds and 4 git commands to generate.