Fix GDBserver build failure when $development is false
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
e2882c85 3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
e9d9f57e 127static struct value *resolve_subexp (expression_up *, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
e9d9f57e 130static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
227
228static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
d12307c1 231static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
232 struct value **, int, const char *,
233 struct type *);
234
4c4b4cd2
PH
235static int ada_is_direct_array_type (struct type *);
236
72d5681a
PH
237static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
714e53ab 239
52ce6436
PH
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
244 struct expression *,
245 int *, enum noside);
52ce6436
PH
246
247static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
852dff6c
JB
271
272static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
273
274static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
4c4b4cd2
PH
277\f
278
ee01b665
JB
279/* The result of a symbol lookup to be stored in our symbol cache. */
280
281struct cache_entry
282{
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
fe978cb0 286 domain_enum domain;
ee01b665
JB
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295};
296
297/* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306#define HASH_SIZE 1009
307
308struct ada_symbol_cache
309{
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315};
316
317static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 318
4c4b4cd2 319/* Maximum-sized dynamic type. */
14f9c5c9
AS
320static unsigned int varsize_limit;
321
67cb5b2d 322static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
323#ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325#else
14f9c5c9 326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 327#endif
14f9c5c9 328
4c4b4cd2 329/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 330static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 331 = "__gnat_ada_main_program_name";
14f9c5c9 332
4c4b4cd2
PH
333/* Limit on the number of warnings to raise per expression evaluation. */
334static int warning_limit = 2;
335
336/* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338static int warnings_issued = 0;
339
340static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342};
343
344static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346};
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
981a3fb3 356maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
981a3fb3 365maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
67cb5b2d 560static const char *
4c4b4cd2
PH
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
b5ec771e
PA
980/* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
4c4b4cd2 984
b5ec771e
PA
985static char *
986ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 987{
4c4b4cd2
PH
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
d2e4a39e 990 const char *p;
14f9c5c9 991 int k;
d2e4a39e 992
4c4b4cd2 993 if (decoded == NULL)
14f9c5c9
AS
994 return NULL;
995
4c4b4cd2
PH
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
14f9c5c9
AS
998
999 k = 0;
4c4b4cd2 1000 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1001 {
cdc7bb92 1002 if (*p == '.')
4c4b4cd2
PH
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
14f9c5c9 1007 else if (*p == '"')
4c4b4cd2
PH
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1265e4aa 1012 mapping->encoded != NULL
61012eef 1013 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1014 ;
1015 if (mapping->encoded == NULL)
b5ec771e
PA
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
4c4b4cd2
PH
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
d2e4a39e 1026 else
4c4b4cd2
PH
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
14f9c5c9
AS
1031 }
1032
4c4b4cd2
PH
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
14f9c5c9
AS
1035}
1036
b5ec771e
PA
1037/* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040char *
1041ada_encode (const char *decoded)
1042{
1043 return ada_encode_1 (decoded, true);
1044}
1045
14f9c5c9 1046/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
d2e4a39e
AS
1050char *
1051ada_fold_name (const char *name)
14f9c5c9 1052{
d2e4a39e 1053 static char *fold_buffer = NULL;
14f9c5c9
AS
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
d2e4a39e 1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1058
1059 if (name[0] == '\'')
1060 {
d2e4a39e
AS
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1063 }
1064 else
1065 {
1066 int i;
5b4ee69b 1067
14f9c5c9 1068 for (i = 0; i <= len; i += 1)
4c4b4cd2 1069 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1070 }
1071
1072 return fold_buffer;
1073}
1074
529cad9c
PH
1075/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077static int
1078is_lower_alphanum (const char c)
1079{
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081}
1082
c90092fe
JB
1083/* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
29480c32
JB
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
c90092fe 1090
29480c32
JB
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095static void
1096ada_remove_trailing_digits (const char *encoded, int *len)
1097{
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
5b4ee69b 1101
29480c32
JB
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
61012eef 1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1109 *len = i - 2;
61012eef 1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1111 *len = i - 1;
1112 }
1113}
1114
1115/* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118static void
1119ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120{
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
0963b4bd 1126 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135}
1136
69fadcdf
JB
1137/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139static void
1140ada_remove_Xbn_suffix (const char *encoded, int *len)
1141{
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155}
1156
29480c32
JB
1157/* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
14f9c5c9 1160
4c4b4cd2 1161 The resulting string is valid until the next call of ada_decode.
29480c32 1162 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1163 is returned. */
1164
1165const char *
1166ada_decode (const char *encoded)
14f9c5c9
AS
1167{
1168 int i, j;
1169 int len0;
d2e4a39e 1170 const char *p;
4c4b4cd2 1171 char *decoded;
14f9c5c9 1172 int at_start_name;
4c4b4cd2
PH
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
d2e4a39e 1175
29480c32
JB
1176 /* The name of the Ada main procedure starts with "_ada_".
1177 This prefix is not part of the decoded name, so skip this part
1178 if we see this prefix. */
61012eef 1179 if (startswith (encoded, "_ada_"))
4c4b4cd2 1180 encoded += 5;
14f9c5c9 1181
29480c32
JB
1182 /* If the name starts with '_', then it is not a properly encoded
1183 name, so do not attempt to decode it. Similarly, if the name
1184 starts with '<', the name should not be decoded. */
4c4b4cd2 1185 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1186 goto Suppress;
1187
4c4b4cd2 1188 len0 = strlen (encoded);
4c4b4cd2 1189
29480c32
JB
1190 ada_remove_trailing_digits (encoded, &len0);
1191 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1192
4c4b4cd2
PH
1193 /* Remove the ___X.* suffix if present. Do not forget to verify that
1194 the suffix is located before the current "end" of ENCODED. We want
1195 to avoid re-matching parts of ENCODED that have previously been
1196 marked as discarded (by decrementing LEN0). */
1197 p = strstr (encoded, "___");
1198 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1199 {
1200 if (p[3] == 'X')
4c4b4cd2 1201 len0 = p - encoded;
14f9c5c9 1202 else
4c4b4cd2 1203 goto Suppress;
14f9c5c9 1204 }
4c4b4cd2 1205
29480c32
JB
1206 /* Remove any trailing TKB suffix. It tells us that this symbol
1207 is for the body of a task, but that information does not actually
1208 appear in the decoded name. */
1209
61012eef 1210 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1211 len0 -= 3;
76a01679 1212
a10967fa
JB
1213 /* Remove any trailing TB suffix. The TB suffix is slightly different
1214 from the TKB suffix because it is used for non-anonymous task
1215 bodies. */
1216
61012eef 1217 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1218 len0 -= 2;
1219
29480c32
JB
1220 /* Remove trailing "B" suffixes. */
1221 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1222
61012eef 1223 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1224 len0 -= 1;
1225
4c4b4cd2 1226 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1227
4c4b4cd2
PH
1228 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1229 decoded = decoding_buffer;
14f9c5c9 1230
29480c32
JB
1231 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1232
4c4b4cd2 1233 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1234 {
4c4b4cd2
PH
1235 i = len0 - 2;
1236 while ((i >= 0 && isdigit (encoded[i]))
1237 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1238 i -= 1;
1239 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1240 len0 = i - 1;
1241 else if (encoded[i] == '$')
1242 len0 = i;
d2e4a39e 1243 }
14f9c5c9 1244
29480c32
JB
1245 /* The first few characters that are not alphabetic are not part
1246 of any encoding we use, so we can copy them over verbatim. */
1247
4c4b4cd2
PH
1248 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1249 decoded[j] = encoded[i];
14f9c5c9
AS
1250
1251 at_start_name = 1;
1252 while (i < len0)
1253 {
29480c32 1254 /* Is this a symbol function? */
4c4b4cd2
PH
1255 if (at_start_name && encoded[i] == 'O')
1256 {
1257 int k;
5b4ee69b 1258
4c4b4cd2
PH
1259 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1260 {
1261 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1262 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1263 op_len - 1) == 0)
1264 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1265 {
1266 strcpy (decoded + j, ada_opname_table[k].decoded);
1267 at_start_name = 0;
1268 i += op_len;
1269 j += strlen (ada_opname_table[k].decoded);
1270 break;
1271 }
1272 }
1273 if (ada_opname_table[k].encoded != NULL)
1274 continue;
1275 }
14f9c5c9
AS
1276 at_start_name = 0;
1277
529cad9c
PH
1278 /* Replace "TK__" with "__", which will eventually be translated
1279 into "." (just below). */
1280
61012eef 1281 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1282 i += 2;
529cad9c 1283
29480c32
JB
1284 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1285 be translated into "." (just below). These are internal names
1286 generated for anonymous blocks inside which our symbol is nested. */
1287
1288 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1289 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1290 && isdigit (encoded [i+4]))
1291 {
1292 int k = i + 5;
1293
1294 while (k < len0 && isdigit (encoded[k]))
1295 k++; /* Skip any extra digit. */
1296
1297 /* Double-check that the "__B_{DIGITS}+" sequence we found
1298 is indeed followed by "__". */
1299 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1300 i = k;
1301 }
1302
529cad9c
PH
1303 /* Remove _E{DIGITS}+[sb] */
1304
1305 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1306 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1307 one implements the actual entry code, and has a suffix following
1308 the convention above; the second one implements the barrier and
1309 uses the same convention as above, except that the 'E' is replaced
1310 by a 'B'.
1311
1312 Just as above, we do not decode the name of barrier functions
1313 to give the user a clue that the code he is debugging has been
1314 internally generated. */
1315
1316 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1317 && isdigit (encoded[i+2]))
1318 {
1319 int k = i + 3;
1320
1321 while (k < len0 && isdigit (encoded[k]))
1322 k++;
1323
1324 if (k < len0
1325 && (encoded[k] == 'b' || encoded[k] == 's'))
1326 {
1327 k++;
1328 /* Just as an extra precaution, make sure that if this
1329 suffix is followed by anything else, it is a '_'.
1330 Otherwise, we matched this sequence by accident. */
1331 if (k == len0
1332 || (k < len0 && encoded[k] == '_'))
1333 i = k;
1334 }
1335 }
1336
1337 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1338 the GNAT front-end in protected object subprograms. */
1339
1340 if (i < len0 + 3
1341 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1342 {
1343 /* Backtrack a bit up until we reach either the begining of
1344 the encoded name, or "__". Make sure that we only find
1345 digits or lowercase characters. */
1346 const char *ptr = encoded + i - 1;
1347
1348 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1349 ptr--;
1350 if (ptr < encoded
1351 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1352 i++;
1353 }
1354
4c4b4cd2
PH
1355 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1356 {
29480c32
JB
1357 /* This is a X[bn]* sequence not separated from the previous
1358 part of the name with a non-alpha-numeric character (in other
1359 words, immediately following an alpha-numeric character), then
1360 verify that it is placed at the end of the encoded name. If
1361 not, then the encoding is not valid and we should abort the
1362 decoding. Otherwise, just skip it, it is used in body-nested
1363 package names. */
4c4b4cd2
PH
1364 do
1365 i += 1;
1366 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1367 if (i < len0)
1368 goto Suppress;
1369 }
cdc7bb92 1370 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1371 {
29480c32 1372 /* Replace '__' by '.'. */
4c4b4cd2
PH
1373 decoded[j] = '.';
1374 at_start_name = 1;
1375 i += 2;
1376 j += 1;
1377 }
14f9c5c9 1378 else
4c4b4cd2 1379 {
29480c32
JB
1380 /* It's a character part of the decoded name, so just copy it
1381 over. */
4c4b4cd2
PH
1382 decoded[j] = encoded[i];
1383 i += 1;
1384 j += 1;
1385 }
14f9c5c9 1386 }
4c4b4cd2 1387 decoded[j] = '\000';
14f9c5c9 1388
29480c32
JB
1389 /* Decoded names should never contain any uppercase character.
1390 Double-check this, and abort the decoding if we find one. */
1391
4c4b4cd2
PH
1392 for (i = 0; decoded[i] != '\0'; i += 1)
1393 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1394 goto Suppress;
1395
4c4b4cd2
PH
1396 if (strcmp (decoded, encoded) == 0)
1397 return encoded;
1398 else
1399 return decoded;
14f9c5c9
AS
1400
1401Suppress:
4c4b4cd2
PH
1402 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1403 decoded = decoding_buffer;
1404 if (encoded[0] == '<')
1405 strcpy (decoded, encoded);
14f9c5c9 1406 else
88c15c34 1407 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1408 return decoded;
1409
1410}
1411
1412/* Table for keeping permanent unique copies of decoded names. Once
1413 allocated, names in this table are never released. While this is a
1414 storage leak, it should not be significant unless there are massive
1415 changes in the set of decoded names in successive versions of a
1416 symbol table loaded during a single session. */
1417static struct htab *decoded_names_store;
1418
1419/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1420 in the language-specific part of GSYMBOL, if it has not been
1421 previously computed. Tries to save the decoded name in the same
1422 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1423 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1424 GSYMBOL).
4c4b4cd2
PH
1425 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1426 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1427 when a decoded name is cached in it. */
4c4b4cd2 1428
45e6c716 1429const char *
f85f34ed 1430ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1431{
f85f34ed
TT
1432 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1433 const char **resultp =
615b3f62 1434 &gsymbol->language_specific.demangled_name;
5b4ee69b 1435
f85f34ed 1436 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1437 {
1438 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1439 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1440
f85f34ed 1441 gsymbol->ada_mangled = 1;
5b4ee69b 1442
f85f34ed 1443 if (obstack != NULL)
224c3ddb
SM
1444 *resultp
1445 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1446 else
76a01679 1447 {
f85f34ed
TT
1448 /* Sometimes, we can't find a corresponding objfile, in
1449 which case, we put the result on the heap. Since we only
1450 decode when needed, we hope this usually does not cause a
1451 significant memory leak (FIXME). */
1452
76a01679
JB
1453 char **slot = (char **) htab_find_slot (decoded_names_store,
1454 decoded, INSERT);
5b4ee69b 1455
76a01679
JB
1456 if (*slot == NULL)
1457 *slot = xstrdup (decoded);
1458 *resultp = *slot;
1459 }
4c4b4cd2 1460 }
14f9c5c9 1461
4c4b4cd2
PH
1462 return *resultp;
1463}
76a01679 1464
2c0b251b 1465static char *
76a01679 1466ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1467{
1468 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1469}
1470
8b302db8
TT
1471/* Implement la_sniff_from_mangled_name for Ada. */
1472
1473static int
1474ada_sniff_from_mangled_name (const char *mangled, char **out)
1475{
1476 const char *demangled = ada_decode (mangled);
1477
1478 *out = NULL;
1479
1480 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1481 {
1482 /* Set the gsymbol language to Ada, but still return 0.
1483 Two reasons for that:
1484
1485 1. For Ada, we prefer computing the symbol's decoded name
1486 on the fly rather than pre-compute it, in order to save
1487 memory (Ada projects are typically very large).
1488
1489 2. There are some areas in the definition of the GNAT
1490 encoding where, with a bit of bad luck, we might be able
1491 to decode a non-Ada symbol, generating an incorrect
1492 demangled name (Eg: names ending with "TB" for instance
1493 are identified as task bodies and so stripped from
1494 the decoded name returned).
1495
1496 Returning 1, here, but not setting *DEMANGLED, helps us get a
1497 little bit of the best of both worlds. Because we're last,
1498 we should not affect any of the other languages that were
1499 able to demangle the symbol before us; we get to correctly
1500 tag Ada symbols as such; and even if we incorrectly tagged a
1501 non-Ada symbol, which should be rare, any routing through the
1502 Ada language should be transparent (Ada tries to behave much
1503 like C/C++ with non-Ada symbols). */
1504 return 1;
1505 }
1506
1507 return 0;
1508}
1509
14f9c5c9 1510\f
d2e4a39e 1511
4c4b4cd2 1512 /* Arrays */
14f9c5c9 1513
28c85d6c
JB
1514/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1515 generated by the GNAT compiler to describe the index type used
1516 for each dimension of an array, check whether it follows the latest
1517 known encoding. If not, fix it up to conform to the latest encoding.
1518 Otherwise, do nothing. This function also does nothing if
1519 INDEX_DESC_TYPE is NULL.
1520
1521 The GNAT encoding used to describle the array index type evolved a bit.
1522 Initially, the information would be provided through the name of each
1523 field of the structure type only, while the type of these fields was
1524 described as unspecified and irrelevant. The debugger was then expected
1525 to perform a global type lookup using the name of that field in order
1526 to get access to the full index type description. Because these global
1527 lookups can be very expensive, the encoding was later enhanced to make
1528 the global lookup unnecessary by defining the field type as being
1529 the full index type description.
1530
1531 The purpose of this routine is to allow us to support older versions
1532 of the compiler by detecting the use of the older encoding, and by
1533 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1534 we essentially replace each field's meaningless type by the associated
1535 index subtype). */
1536
1537void
1538ada_fixup_array_indexes_type (struct type *index_desc_type)
1539{
1540 int i;
1541
1542 if (index_desc_type == NULL)
1543 return;
1544 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1545
1546 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1547 to check one field only, no need to check them all). If not, return
1548 now.
1549
1550 If our INDEX_DESC_TYPE was generated using the older encoding,
1551 the field type should be a meaningless integer type whose name
1552 is not equal to the field name. */
1553 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1554 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1555 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1556 return;
1557
1558 /* Fixup each field of INDEX_DESC_TYPE. */
1559 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1560 {
0d5cff50 1561 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1562 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1563
1564 if (raw_type)
1565 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1566 }
1567}
1568
4c4b4cd2 1569/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1570
a121b7c1 1571static const char *bound_name[] = {
d2e4a39e 1572 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1573 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1574};
1575
1576/* Maximum number of array dimensions we are prepared to handle. */
1577
4c4b4cd2 1578#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1579
14f9c5c9 1580
4c4b4cd2
PH
1581/* The desc_* routines return primitive portions of array descriptors
1582 (fat pointers). */
14f9c5c9
AS
1583
1584/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1585 level of indirection, if needed. */
1586
d2e4a39e
AS
1587static struct type *
1588desc_base_type (struct type *type)
14f9c5c9
AS
1589{
1590 if (type == NULL)
1591 return NULL;
61ee279c 1592 type = ada_check_typedef (type);
720d1a40
JB
1593 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1594 type = ada_typedef_target_type (type);
1595
1265e4aa
JB
1596 if (type != NULL
1597 && (TYPE_CODE (type) == TYPE_CODE_PTR
1598 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1599 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1600 else
1601 return type;
1602}
1603
4c4b4cd2
PH
1604/* True iff TYPE indicates a "thin" array pointer type. */
1605
14f9c5c9 1606static int
d2e4a39e 1607is_thin_pntr (struct type *type)
14f9c5c9 1608{
d2e4a39e 1609 return
14f9c5c9
AS
1610 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1611 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1612}
1613
4c4b4cd2
PH
1614/* The descriptor type for thin pointer type TYPE. */
1615
d2e4a39e
AS
1616static struct type *
1617thin_descriptor_type (struct type *type)
14f9c5c9 1618{
d2e4a39e 1619 struct type *base_type = desc_base_type (type);
5b4ee69b 1620
14f9c5c9
AS
1621 if (base_type == NULL)
1622 return NULL;
1623 if (is_suffix (ada_type_name (base_type), "___XVE"))
1624 return base_type;
d2e4a39e 1625 else
14f9c5c9 1626 {
d2e4a39e 1627 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1628
14f9c5c9 1629 if (alt_type == NULL)
4c4b4cd2 1630 return base_type;
14f9c5c9 1631 else
4c4b4cd2 1632 return alt_type;
14f9c5c9
AS
1633 }
1634}
1635
4c4b4cd2
PH
1636/* A pointer to the array data for thin-pointer value VAL. */
1637
d2e4a39e
AS
1638static struct value *
1639thin_data_pntr (struct value *val)
14f9c5c9 1640{
828292f2 1641 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1642 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1643
556bdfd4
UW
1644 data_type = lookup_pointer_type (data_type);
1645
14f9c5c9 1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1647 return value_cast (data_type, value_copy (val));
d2e4a39e 1648 else
42ae5230 1649 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1650}
1651
4c4b4cd2
PH
1652/* True iff TYPE indicates a "thick" array pointer type. */
1653
14f9c5c9 1654static int
d2e4a39e 1655is_thick_pntr (struct type *type)
14f9c5c9
AS
1656{
1657 type = desc_base_type (type);
1658 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1659 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1660}
1661
4c4b4cd2
PH
1662/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1663 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1664
d2e4a39e
AS
1665static struct type *
1666desc_bounds_type (struct type *type)
14f9c5c9 1667{
d2e4a39e 1668 struct type *r;
14f9c5c9
AS
1669
1670 type = desc_base_type (type);
1671
1672 if (type == NULL)
1673 return NULL;
1674 else if (is_thin_pntr (type))
1675 {
1676 type = thin_descriptor_type (type);
1677 if (type == NULL)
4c4b4cd2 1678 return NULL;
14f9c5c9
AS
1679 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1680 if (r != NULL)
61ee279c 1681 return ada_check_typedef (r);
14f9c5c9
AS
1682 }
1683 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1684 {
1685 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1686 if (r != NULL)
61ee279c 1687 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1688 }
1689 return NULL;
1690}
1691
1692/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1693 one, a pointer to its bounds data. Otherwise NULL. */
1694
d2e4a39e
AS
1695static struct value *
1696desc_bounds (struct value *arr)
14f9c5c9 1697{
df407dfe 1698 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1699
d2e4a39e 1700 if (is_thin_pntr (type))
14f9c5c9 1701 {
d2e4a39e 1702 struct type *bounds_type =
4c4b4cd2 1703 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1704 LONGEST addr;
1705
4cdfadb1 1706 if (bounds_type == NULL)
323e0a4a 1707 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1708
1709 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1710 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1711 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1712 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1713 addr = value_as_long (arr);
d2e4a39e 1714 else
42ae5230 1715 addr = value_address (arr);
14f9c5c9 1716
d2e4a39e 1717 return
4c4b4cd2
PH
1718 value_from_longest (lookup_pointer_type (bounds_type),
1719 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1720 }
1721
1722 else if (is_thick_pntr (type))
05e522ef
JB
1723 {
1724 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1725 _("Bad GNAT array descriptor"));
1726 struct type *p_bounds_type = value_type (p_bounds);
1727
1728 if (p_bounds_type
1729 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1730 {
1731 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1732
1733 if (TYPE_STUB (target_type))
1734 p_bounds = value_cast (lookup_pointer_type
1735 (ada_check_typedef (target_type)),
1736 p_bounds);
1737 }
1738 else
1739 error (_("Bad GNAT array descriptor"));
1740
1741 return p_bounds;
1742 }
14f9c5c9
AS
1743 else
1744 return NULL;
1745}
1746
4c4b4cd2
PH
1747/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the bounds data. */
1749
14f9c5c9 1750static int
d2e4a39e 1751fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1752{
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1754}
1755
1756/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1757 size of the field containing the address of the bounds data. */
1758
14f9c5c9 1759static int
d2e4a39e 1760fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1761{
1762 type = desc_base_type (type);
1763
d2e4a39e 1764 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1765 return TYPE_FIELD_BITSIZE (type, 1);
1766 else
61ee279c 1767 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1768}
1769
4c4b4cd2 1770/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1771 pointer to one, the type of its array data (a array-with-no-bounds type);
1772 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1773 data. */
4c4b4cd2 1774
d2e4a39e 1775static struct type *
556bdfd4 1776desc_data_target_type (struct type *type)
14f9c5c9
AS
1777{
1778 type = desc_base_type (type);
1779
4c4b4cd2 1780 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1781 if (is_thin_pntr (type))
556bdfd4 1782 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1783 else if (is_thick_pntr (type))
556bdfd4
UW
1784 {
1785 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1786
1787 if (data_type
1788 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1789 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1790 }
1791
1792 return NULL;
14f9c5c9
AS
1793}
1794
1795/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1796 its array data. */
4c4b4cd2 1797
d2e4a39e
AS
1798static struct value *
1799desc_data (struct value *arr)
14f9c5c9 1800{
df407dfe 1801 struct type *type = value_type (arr);
5b4ee69b 1802
14f9c5c9
AS
1803 if (is_thin_pntr (type))
1804 return thin_data_pntr (arr);
1805 else if (is_thick_pntr (type))
d2e4a39e 1806 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1807 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1808 else
1809 return NULL;
1810}
1811
1812
1813/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1814 position of the field containing the address of the data. */
1815
14f9c5c9 1816static int
d2e4a39e 1817fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1818{
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1820}
1821
1822/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1823 size of the field containing the address of the data. */
1824
14f9c5c9 1825static int
d2e4a39e 1826fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1827{
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1832 else
14f9c5c9
AS
1833 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1834}
1835
4c4b4cd2 1836/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1837 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1838 bound, if WHICH is 1. The first bound is I=1. */
1839
d2e4a39e
AS
1840static struct value *
1841desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1842{
d2e4a39e 1843 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1844 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1845}
1846
1847/* If BOUNDS is an array-bounds structure type, return the bit position
1848 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1849 bound, if WHICH is 1. The first bound is I=1. */
1850
14f9c5c9 1851static int
d2e4a39e 1852desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1853{
d2e4a39e 1854 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1855}
1856
1857/* If BOUNDS is an array-bounds structure type, return the bit field size
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1859 bound, if WHICH is 1. The first bound is I=1. */
1860
76a01679 1861static int
d2e4a39e 1862desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1863{
1864 type = desc_base_type (type);
1865
d2e4a39e
AS
1866 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1867 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1868 else
1869 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1870}
1871
1872/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1873 Ith bound (numbering from 1). Otherwise, NULL. */
1874
d2e4a39e
AS
1875static struct type *
1876desc_index_type (struct type *type, int i)
14f9c5c9
AS
1877{
1878 type = desc_base_type (type);
1879
1880 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1881 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 else
14f9c5c9
AS
1883 return NULL;
1884}
1885
4c4b4cd2
PH
1886/* The number of index positions in the array-bounds type TYPE.
1887 Return 0 if TYPE is NULL. */
1888
14f9c5c9 1889static int
d2e4a39e 1890desc_arity (struct type *type)
14f9c5c9
AS
1891{
1892 type = desc_base_type (type);
1893
1894 if (type != NULL)
1895 return TYPE_NFIELDS (type) / 2;
1896 return 0;
1897}
1898
4c4b4cd2
PH
1899/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1900 an array descriptor type (representing an unconstrained array
1901 type). */
1902
76a01679
JB
1903static int
1904ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1905{
1906 if (type == NULL)
1907 return 0;
61ee279c 1908 type = ada_check_typedef (type);
4c4b4cd2 1909 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1910 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1911}
1912
52ce6436 1913/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1914 * to one. */
52ce6436 1915
2c0b251b 1916static int
52ce6436
PH
1917ada_is_array_type (struct type *type)
1918{
1919 while (type != NULL
1920 && (TYPE_CODE (type) == TYPE_CODE_PTR
1921 || TYPE_CODE (type) == TYPE_CODE_REF))
1922 type = TYPE_TARGET_TYPE (type);
1923 return ada_is_direct_array_type (type);
1924}
1925
4c4b4cd2 1926/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1927
14f9c5c9 1928int
4c4b4cd2 1929ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1930{
1931 if (type == NULL)
1932 return 0;
61ee279c 1933 type = ada_check_typedef (type);
14f9c5c9 1934 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1935 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1936 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1937 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1938}
1939
4c4b4cd2
PH
1940/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1941
14f9c5c9 1942int
4c4b4cd2 1943ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1944{
556bdfd4 1945 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1946
1947 if (type == NULL)
1948 return 0;
61ee279c 1949 type = ada_check_typedef (type);
556bdfd4
UW
1950 return (data_type != NULL
1951 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1952 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1953}
1954
1955/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1956 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1957 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1958 is still needed. */
1959
14f9c5c9 1960int
ebf56fd3 1961ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1962{
d2e4a39e 1963 return
14f9c5c9
AS
1964 type != NULL
1965 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1966 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1967 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1968 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1969}
1970
1971
4c4b4cd2 1972/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1973 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1974 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1975 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1976 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1977 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1978 a descriptor. */
d2e4a39e
AS
1979struct type *
1980ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1981{
ad82864c
JB
1982 if (ada_is_constrained_packed_array_type (value_type (arr)))
1983 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1984
df407dfe
AC
1985 if (!ada_is_array_descriptor_type (value_type (arr)))
1986 return value_type (arr);
d2e4a39e
AS
1987
1988 if (!bounds)
ad82864c
JB
1989 {
1990 struct type *array_type =
1991 ada_check_typedef (desc_data_target_type (value_type (arr)));
1992
1993 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1994 TYPE_FIELD_BITSIZE (array_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996
1997 return array_type;
1998 }
14f9c5c9
AS
1999 else
2000 {
d2e4a39e 2001 struct type *elt_type;
14f9c5c9 2002 int arity;
d2e4a39e 2003 struct value *descriptor;
14f9c5c9 2004
df407dfe
AC
2005 elt_type = ada_array_element_type (value_type (arr), -1);
2006 arity = ada_array_arity (value_type (arr));
14f9c5c9 2007
d2e4a39e 2008 if (elt_type == NULL || arity == 0)
df407dfe 2009 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2010
2011 descriptor = desc_bounds (arr);
d2e4a39e 2012 if (value_as_long (descriptor) == 0)
4c4b4cd2 2013 return NULL;
d2e4a39e 2014 while (arity > 0)
4c4b4cd2 2015 {
e9bb382b
UW
2016 struct type *range_type = alloc_type_copy (value_type (arr));
2017 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2018 struct value *low = desc_one_bound (descriptor, arity, 0);
2019 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2020
5b4ee69b 2021 arity -= 1;
0c9c3474
SA
2022 create_static_range_type (range_type, value_type (low),
2023 longest_to_int (value_as_long (low)),
2024 longest_to_int (value_as_long (high)));
4c4b4cd2 2025 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2026
2027 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2028 {
2029 /* We need to store the element packed bitsize, as well as
2030 recompute the array size, because it was previously
2031 computed based on the unpacked element size. */
2032 LONGEST lo = value_as_long (low);
2033 LONGEST hi = value_as_long (high);
2034
2035 TYPE_FIELD_BITSIZE (elt_type, 0) =
2036 decode_packed_array_bitsize (value_type (arr));
2037 /* If the array has no element, then the size is already
2038 zero, and does not need to be recomputed. */
2039 if (lo < hi)
2040 {
2041 int array_bitsize =
2042 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2043
2044 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 }
2046 }
4c4b4cd2 2047 }
14f9c5c9
AS
2048
2049 return lookup_pointer_type (elt_type);
2050 }
2051}
2052
2053/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2054 Otherwise, returns either a standard GDB array with bounds set
2055 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2056 GDB array. Returns NULL if ARR is a null fat pointer. */
2057
d2e4a39e
AS
2058struct value *
2059ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2060{
df407dfe 2061 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2062 {
d2e4a39e 2063 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2064
14f9c5c9 2065 if (arrType == NULL)
4c4b4cd2 2066 return NULL;
14f9c5c9
AS
2067 return value_cast (arrType, value_copy (desc_data (arr)));
2068 }
ad82864c
JB
2069 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2070 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2071 else
2072 return arr;
2073}
2074
2075/* If ARR does not represent an array, returns ARR unchanged.
2076 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2077 be ARR itself if it already is in the proper form). */
2078
720d1a40 2079struct value *
d2e4a39e 2080ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2081{
df407dfe 2082 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2083 {
d2e4a39e 2084 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2085
14f9c5c9 2086 if (arrVal == NULL)
323e0a4a 2087 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2088 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2089 return value_ind (arrVal);
2090 }
ad82864c
JB
2091 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2092 return decode_constrained_packed_array (arr);
d2e4a39e 2093 else
14f9c5c9
AS
2094 return arr;
2095}
2096
2097/* If TYPE represents a GNAT array type, return it translated to an
2098 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2099 packing). For other types, is the identity. */
2100
d2e4a39e
AS
2101struct type *
2102ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2103{
ad82864c
JB
2104 if (ada_is_constrained_packed_array_type (type))
2105 return decode_constrained_packed_array_type (type);
17280b9f
UW
2106
2107 if (ada_is_array_descriptor_type (type))
556bdfd4 2108 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2109
2110 return type;
14f9c5c9
AS
2111}
2112
4c4b4cd2
PH
2113/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2114
ad82864c
JB
2115static int
2116ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2117{
2118 if (type == NULL)
2119 return 0;
4c4b4cd2 2120 type = desc_base_type (type);
61ee279c 2121 type = ada_check_typedef (type);
d2e4a39e 2122 return
14f9c5c9
AS
2123 ada_type_name (type) != NULL
2124 && strstr (ada_type_name (type), "___XP") != NULL;
2125}
2126
ad82864c
JB
2127/* Non-zero iff TYPE represents a standard GNAT constrained
2128 packed-array type. */
2129
2130int
2131ada_is_constrained_packed_array_type (struct type *type)
2132{
2133 return ada_is_packed_array_type (type)
2134 && !ada_is_array_descriptor_type (type);
2135}
2136
2137/* Non-zero iff TYPE represents an array descriptor for a
2138 unconstrained packed-array type. */
2139
2140static int
2141ada_is_unconstrained_packed_array_type (struct type *type)
2142{
2143 return ada_is_packed_array_type (type)
2144 && ada_is_array_descriptor_type (type);
2145}
2146
2147/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2148 return the size of its elements in bits. */
2149
2150static long
2151decode_packed_array_bitsize (struct type *type)
2152{
0d5cff50
DE
2153 const char *raw_name;
2154 const char *tail;
ad82864c
JB
2155 long bits;
2156
720d1a40
JB
2157 /* Access to arrays implemented as fat pointers are encoded as a typedef
2158 of the fat pointer type. We need the name of the fat pointer type
2159 to do the decoding, so strip the typedef layer. */
2160 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2161 type = ada_typedef_target_type (type);
2162
2163 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2164 if (!raw_name)
2165 raw_name = ada_type_name (desc_base_type (type));
2166
2167 if (!raw_name)
2168 return 0;
2169
2170 tail = strstr (raw_name, "___XP");
720d1a40 2171 gdb_assert (tail != NULL);
ad82864c
JB
2172
2173 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2174 {
2175 lim_warning
2176 (_("could not understand bit size information on packed array"));
2177 return 0;
2178 }
2179
2180 return bits;
2181}
2182
14f9c5c9
AS
2183/* Given that TYPE is a standard GDB array type with all bounds filled
2184 in, and that the element size of its ultimate scalar constituents
2185 (that is, either its elements, or, if it is an array of arrays, its
2186 elements' elements, etc.) is *ELT_BITS, return an identical type,
2187 but with the bit sizes of its elements (and those of any
2188 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2189 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2190 in bits.
2191
2192 Note that, for arrays whose index type has an XA encoding where
2193 a bound references a record discriminant, getting that discriminant,
2194 and therefore the actual value of that bound, is not possible
2195 because none of the given parameters gives us access to the record.
2196 This function assumes that it is OK in the context where it is being
2197 used to return an array whose bounds are still dynamic and where
2198 the length is arbitrary. */
4c4b4cd2 2199
d2e4a39e 2200static struct type *
ad82864c 2201constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2202{
d2e4a39e
AS
2203 struct type *new_elt_type;
2204 struct type *new_type;
99b1c762
JB
2205 struct type *index_type_desc;
2206 struct type *index_type;
14f9c5c9
AS
2207 LONGEST low_bound, high_bound;
2208
61ee279c 2209 type = ada_check_typedef (type);
14f9c5c9
AS
2210 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2211 return type;
2212
99b1c762
JB
2213 index_type_desc = ada_find_parallel_type (type, "___XA");
2214 if (index_type_desc)
2215 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2216 NULL);
2217 else
2218 index_type = TYPE_INDEX_TYPE (type);
2219
e9bb382b 2220 new_type = alloc_type_copy (type);
ad82864c
JB
2221 new_elt_type =
2222 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2223 elt_bits);
99b1c762 2224 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2225 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2226 TYPE_NAME (new_type) = ada_type_name (type);
2227
4a46959e
JB
2228 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2229 && is_dynamic_type (check_typedef (index_type)))
2230 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2231 low_bound = high_bound = 0;
2232 if (high_bound < low_bound)
2233 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2234 else
14f9c5c9
AS
2235 {
2236 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2237 TYPE_LENGTH (new_type) =
4c4b4cd2 2238 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2239 }
2240
876cecd0 2241 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2242 return new_type;
2243}
2244
ad82864c
JB
2245/* The array type encoded by TYPE, where
2246 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2247
d2e4a39e 2248static struct type *
ad82864c 2249decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2250{
0d5cff50 2251 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2252 char *name;
0d5cff50 2253 const char *tail;
d2e4a39e 2254 struct type *shadow_type;
14f9c5c9 2255 long bits;
14f9c5c9 2256
727e3d2e
JB
2257 if (!raw_name)
2258 raw_name = ada_type_name (desc_base_type (type));
2259
2260 if (!raw_name)
2261 return NULL;
2262
2263 name = (char *) alloca (strlen (raw_name) + 1);
2264 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2265 type = desc_base_type (type);
2266
14f9c5c9
AS
2267 memcpy (name, raw_name, tail - raw_name);
2268 name[tail - raw_name] = '\000';
2269
b4ba55a1
JB
2270 shadow_type = ada_find_parallel_type_with_name (type, name);
2271
2272 if (shadow_type == NULL)
14f9c5c9 2273 {
323e0a4a 2274 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2275 return NULL;
2276 }
f168693b 2277 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2278
2279 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2280 {
0963b4bd
MS
2281 lim_warning (_("could not understand bounds "
2282 "information on packed array"));
14f9c5c9
AS
2283 return NULL;
2284 }
d2e4a39e 2285
ad82864c
JB
2286 bits = decode_packed_array_bitsize (type);
2287 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2288}
2289
ad82864c
JB
2290/* Given that ARR is a struct value *indicating a GNAT constrained packed
2291 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2292 standard GDB array type except that the BITSIZEs of the array
2293 target types are set to the number of bits in each element, and the
4c4b4cd2 2294 type length is set appropriately. */
14f9c5c9 2295
d2e4a39e 2296static struct value *
ad82864c 2297decode_constrained_packed_array (struct value *arr)
14f9c5c9 2298{
4c4b4cd2 2299 struct type *type;
14f9c5c9 2300
11aa919a
PMR
2301 /* If our value is a pointer, then dereference it. Likewise if
2302 the value is a reference. Make sure that this operation does not
2303 cause the target type to be fixed, as this would indirectly cause
2304 this array to be decoded. The rest of the routine assumes that
2305 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2306 and "value_ind" routines to perform the dereferencing, as opposed
2307 to using "ada_coerce_ref" or "ada_value_ind". */
2308 arr = coerce_ref (arr);
828292f2 2309 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2310 arr = value_ind (arr);
4c4b4cd2 2311
ad82864c 2312 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2313 if (type == NULL)
2314 {
323e0a4a 2315 error (_("can't unpack array"));
14f9c5c9
AS
2316 return NULL;
2317 }
61ee279c 2318
50810684 2319 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2320 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2321 {
2322 /* This is a (right-justified) modular type representing a packed
2323 array with no wrapper. In order to interpret the value through
2324 the (left-justified) packed array type we just built, we must
2325 first left-justify it. */
2326 int bit_size, bit_pos;
2327 ULONGEST mod;
2328
df407dfe 2329 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2330 bit_size = 0;
2331 while (mod > 0)
2332 {
2333 bit_size += 1;
2334 mod >>= 1;
2335 }
df407dfe 2336 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2337 arr = ada_value_primitive_packed_val (arr, NULL,
2338 bit_pos / HOST_CHAR_BIT,
2339 bit_pos % HOST_CHAR_BIT,
2340 bit_size,
2341 type);
2342 }
2343
4c4b4cd2 2344 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2345}
2346
2347
2348/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2349 given in IND. ARR must be a simple array. */
14f9c5c9 2350
d2e4a39e
AS
2351static struct value *
2352value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2353{
2354 int i;
2355 int bits, elt_off, bit_off;
2356 long elt_total_bit_offset;
d2e4a39e
AS
2357 struct type *elt_type;
2358 struct value *v;
14f9c5c9
AS
2359
2360 bits = 0;
2361 elt_total_bit_offset = 0;
df407dfe 2362 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2363 for (i = 0; i < arity; i += 1)
14f9c5c9 2364 {
d2e4a39e 2365 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2366 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2367 error
0963b4bd
MS
2368 (_("attempt to do packed indexing of "
2369 "something other than a packed array"));
14f9c5c9 2370 else
4c4b4cd2
PH
2371 {
2372 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2373 LONGEST lowerbound, upperbound;
2374 LONGEST idx;
2375
2376 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2377 {
323e0a4a 2378 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2379 lowerbound = upperbound = 0;
2380 }
2381
3cb382c9 2382 idx = pos_atr (ind[i]);
4c4b4cd2 2383 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2384 lim_warning (_("packed array index %ld out of bounds"),
2385 (long) idx);
4c4b4cd2
PH
2386 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2387 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2388 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2389 }
14f9c5c9
AS
2390 }
2391 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2392 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2393
2394 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2395 bits, elt_type);
14f9c5c9
AS
2396 return v;
2397}
2398
4c4b4cd2 2399/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2400
2401static int
d2e4a39e 2402has_negatives (struct type *type)
14f9c5c9 2403{
d2e4a39e
AS
2404 switch (TYPE_CODE (type))
2405 {
2406 default:
2407 return 0;
2408 case TYPE_CODE_INT:
2409 return !TYPE_UNSIGNED (type);
2410 case TYPE_CODE_RANGE:
2411 return TYPE_LOW_BOUND (type) < 0;
2412 }
14f9c5c9 2413}
d2e4a39e 2414
f93fca70 2415/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2416 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2417 the unpacked buffer.
14f9c5c9 2418
5b639dea
JB
2419 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2420 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2421
f93fca70
JB
2422 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2423 zero otherwise.
14f9c5c9 2424
f93fca70 2425 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2426
f93fca70
JB
2427 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2428
2429static void
2430ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2431 gdb_byte *unpacked, int unpacked_len,
2432 int is_big_endian, int is_signed_type,
2433 int is_scalar)
2434{
a1c95e6b
JB
2435 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 int src_idx; /* Index into the source area */
2437 int src_bytes_left; /* Number of source bytes left to process. */
2438 int srcBitsLeft; /* Number of source bits left to move */
2439 int unusedLS; /* Number of bits in next significant
2440 byte of source that are unused */
2441
a1c95e6b
JB
2442 int unpacked_idx; /* Index into the unpacked buffer */
2443 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2444
4c4b4cd2 2445 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2446 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2447 unsigned char sign;
a1c95e6b 2448
4c4b4cd2
PH
2449 /* Transmit bytes from least to most significant; delta is the direction
2450 the indices move. */
f93fca70 2451 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2452
5b639dea
JB
2453 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2454 bits from SRC. .*/
2455 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2456 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2457 bit_size, unpacked_len);
2458
14f9c5c9 2459 srcBitsLeft = bit_size;
086ca51f 2460 src_bytes_left = src_len;
f93fca70 2461 unpacked_bytes_left = unpacked_len;
14f9c5c9 2462 sign = 0;
f93fca70
JB
2463
2464 if (is_big_endian)
14f9c5c9 2465 {
086ca51f 2466 src_idx = src_len - 1;
f93fca70
JB
2467 if (is_signed_type
2468 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2469 sign = ~0;
d2e4a39e
AS
2470
2471 unusedLS =
4c4b4cd2
PH
2472 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2473 % HOST_CHAR_BIT;
14f9c5c9 2474
f93fca70
JB
2475 if (is_scalar)
2476 {
2477 accumSize = 0;
2478 unpacked_idx = unpacked_len - 1;
2479 }
2480 else
2481 {
4c4b4cd2
PH
2482 /* Non-scalar values must be aligned at a byte boundary... */
2483 accumSize =
2484 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2485 /* ... And are placed at the beginning (most-significant) bytes
2486 of the target. */
086ca51f
JB
2487 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2488 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2489 }
14f9c5c9 2490 }
d2e4a39e 2491 else
14f9c5c9
AS
2492 {
2493 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2494
086ca51f 2495 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2496 unusedLS = bit_offset;
2497 accumSize = 0;
2498
f93fca70 2499 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2500 sign = ~0;
14f9c5c9 2501 }
d2e4a39e 2502
14f9c5c9 2503 accum = 0;
086ca51f 2504 while (src_bytes_left > 0)
14f9c5c9
AS
2505 {
2506 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2507 part of the value. */
d2e4a39e 2508 unsigned int unusedMSMask =
4c4b4cd2
PH
2509 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2510 1;
2511 /* Sign-extend bits for this byte. */
14f9c5c9 2512 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2513
d2e4a39e 2514 accum |=
086ca51f 2515 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2516 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2517 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2518 {
db297a65 2519 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2522 unpacked_bytes_left -= 1;
2523 unpacked_idx += delta;
4c4b4cd2 2524 }
14f9c5c9
AS
2525 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2526 unusedLS = 0;
086ca51f
JB
2527 src_bytes_left -= 1;
2528 src_idx += delta;
14f9c5c9 2529 }
086ca51f 2530 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2531 {
2532 accum |= sign << accumSize;
db297a65 2533 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2534 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2535 if (accumSize < 0)
2536 accumSize = 0;
14f9c5c9 2537 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2538 unpacked_bytes_left -= 1;
2539 unpacked_idx += delta;
14f9c5c9 2540 }
f93fca70
JB
2541}
2542
2543/* Create a new value of type TYPE from the contents of OBJ starting
2544 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2545 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2546 assigning through the result will set the field fetched from.
2547 VALADDR is ignored unless OBJ is NULL, in which case,
2548 VALADDR+OFFSET must address the start of storage containing the
2549 packed value. The value returned in this case is never an lval.
2550 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2551
2552struct value *
2553ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2554 long offset, int bit_offset, int bit_size,
2555 struct type *type)
2556{
2557 struct value *v;
bfb1c796 2558 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2559 gdb_byte *unpacked;
220475ed 2560 const int is_scalar = is_scalar_type (type);
d0a9e810 2561 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2562 gdb::byte_vector staging;
f93fca70
JB
2563
2564 type = ada_check_typedef (type);
2565
d0a9e810 2566 if (obj == NULL)
bfb1c796 2567 src = valaddr + offset;
d0a9e810 2568 else
bfb1c796 2569 src = value_contents (obj) + offset;
d0a9e810
JB
2570
2571 if (is_dynamic_type (type))
2572 {
2573 /* The length of TYPE might by dynamic, so we need to resolve
2574 TYPE in order to know its actual size, which we then use
2575 to create the contents buffer of the value we return.
2576 The difficulty is that the data containing our object is
2577 packed, and therefore maybe not at a byte boundary. So, what
2578 we do, is unpack the data into a byte-aligned buffer, and then
2579 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2580 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2581 staging.resize (staging_len);
d0a9e810
JB
2582
2583 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2584 staging.data (), staging.size (),
d0a9e810
JB
2585 is_big_endian, has_negatives (type),
2586 is_scalar);
d5722aa2 2587 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2588 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2589 {
2590 /* This happens when the length of the object is dynamic,
2591 and is actually smaller than the space reserved for it.
2592 For instance, in an array of variant records, the bit_size
2593 we're given is the array stride, which is constant and
2594 normally equal to the maximum size of its element.
2595 But, in reality, each element only actually spans a portion
2596 of that stride. */
2597 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2598 }
d0a9e810
JB
2599 }
2600
f93fca70
JB
2601 if (obj == NULL)
2602 {
2603 v = allocate_value (type);
bfb1c796 2604 src = valaddr + offset;
f93fca70
JB
2605 }
2606 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2607 {
0cafa88c 2608 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2609 gdb_byte *buf;
0cafa88c 2610
f93fca70 2611 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2612 buf = (gdb_byte *) alloca (src_len);
2613 read_memory (value_address (v), buf, src_len);
2614 src = buf;
f93fca70
JB
2615 }
2616 else
2617 {
2618 v = allocate_value (type);
bfb1c796 2619 src = value_contents (obj) + offset;
f93fca70
JB
2620 }
2621
2622 if (obj != NULL)
2623 {
2624 long new_offset = offset;
2625
2626 set_value_component_location (v, obj);
2627 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2628 set_value_bitsize (v, bit_size);
2629 if (value_bitpos (v) >= HOST_CHAR_BIT)
2630 {
2631 ++new_offset;
2632 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2633 }
2634 set_value_offset (v, new_offset);
2635
2636 /* Also set the parent value. This is needed when trying to
2637 assign a new value (in inferior memory). */
2638 set_value_parent (v, obj);
2639 }
2640 else
2641 set_value_bitsize (v, bit_size);
bfb1c796 2642 unpacked = value_contents_writeable (v);
f93fca70
JB
2643
2644 if (bit_size == 0)
2645 {
2646 memset (unpacked, 0, TYPE_LENGTH (type));
2647 return v;
2648 }
2649
d5722aa2 2650 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2651 {
d0a9e810
JB
2652 /* Small short-cut: If we've unpacked the data into a buffer
2653 of the same size as TYPE's length, then we can reuse that,
2654 instead of doing the unpacking again. */
d5722aa2 2655 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2656 }
d0a9e810
JB
2657 else
2658 ada_unpack_from_contents (src, bit_offset, bit_size,
2659 unpacked, TYPE_LENGTH (type),
2660 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2661
14f9c5c9
AS
2662 return v;
2663}
d2e4a39e 2664
14f9c5c9
AS
2665/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2666 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2667 not overlap. */
14f9c5c9 2668static void
fc1a4b47 2669move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2670 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2671{
2672 unsigned int accum, mask;
2673 int accum_bits, chunk_size;
2674
2675 target += targ_offset / HOST_CHAR_BIT;
2676 targ_offset %= HOST_CHAR_BIT;
2677 source += src_offset / HOST_CHAR_BIT;
2678 src_offset %= HOST_CHAR_BIT;
50810684 2679 if (bits_big_endian_p)
14f9c5c9
AS
2680 {
2681 accum = (unsigned char) *source;
2682 source += 1;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2684
d2e4a39e 2685 while (n > 0)
4c4b4cd2
PH
2686 {
2687 int unused_right;
5b4ee69b 2688
4c4b4cd2
PH
2689 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2696 mask = ((1 << chunk_size) - 1) << unused_right;
2697 *target =
2698 (*target & ~mask)
2699 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2700 n -= chunk_size;
2701 accum_bits -= chunk_size;
2702 target += 1;
2703 targ_offset = 0;
2704 }
14f9c5c9
AS
2705 }
2706 else
2707 {
2708 accum = (unsigned char) *source >> src_offset;
2709 source += 1;
2710 accum_bits = HOST_CHAR_BIT - src_offset;
2711
d2e4a39e 2712 while (n > 0)
4c4b4cd2
PH
2713 {
2714 accum = accum + ((unsigned char) *source << accum_bits);
2715 accum_bits += HOST_CHAR_BIT;
2716 source += 1;
2717 chunk_size = HOST_CHAR_BIT - targ_offset;
2718 if (chunk_size > n)
2719 chunk_size = n;
2720 mask = ((1 << chunk_size) - 1) << targ_offset;
2721 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2722 n -= chunk_size;
2723 accum_bits -= chunk_size;
2724 accum >>= chunk_size;
2725 target += 1;
2726 targ_offset = 0;
2727 }
14f9c5c9
AS
2728 }
2729}
2730
14f9c5c9
AS
2731/* Store the contents of FROMVAL into the location of TOVAL.
2732 Return a new value with the location of TOVAL and contents of
2733 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2734 floating-point or non-scalar types. */
14f9c5c9 2735
d2e4a39e
AS
2736static struct value *
2737ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2738{
df407dfe
AC
2739 struct type *type = value_type (toval);
2740 int bits = value_bitsize (toval);
14f9c5c9 2741
52ce6436
PH
2742 toval = ada_coerce_ref (toval);
2743 fromval = ada_coerce_ref (fromval);
2744
2745 if (ada_is_direct_array_type (value_type (toval)))
2746 toval = ada_coerce_to_simple_array (toval);
2747 if (ada_is_direct_array_type (value_type (fromval)))
2748 fromval = ada_coerce_to_simple_array (fromval);
2749
88e3b34b 2750 if (!deprecated_value_modifiable (toval))
323e0a4a 2751 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2752
d2e4a39e 2753 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2754 && bits > 0
d2e4a39e 2755 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2756 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2757 {
df407dfe
AC
2758 int len = (value_bitpos (toval)
2759 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2760 int from_size;
224c3ddb 2761 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2762 struct value *val;
42ae5230 2763 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2764
2765 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2766 fromval = value_cast (type, fromval);
14f9c5c9 2767
52ce6436 2768 read_memory (to_addr, buffer, len);
aced2898
PH
2769 from_size = value_bitsize (fromval);
2770 if (from_size == 0)
2771 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2772 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2773 move_bits (buffer, value_bitpos (toval),
50810684 2774 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2775 else
50810684
UW
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), 0, bits, 0);
972daa01 2778 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2779
14f9c5c9 2780 val = value_copy (toval);
0fd88904 2781 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2782 TYPE_LENGTH (type));
04624583 2783 deprecated_set_value_type (val, type);
d2e4a39e 2784
14f9c5c9
AS
2785 return val;
2786 }
2787
2788 return value_assign (toval, fromval);
2789}
2790
2791
7c512744
JB
2792/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2793 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2794 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2795 COMPONENT, and not the inferior's memory. The current contents
2796 of COMPONENT are ignored.
2797
2798 Although not part of the initial design, this function also works
2799 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2800 had a null address, and COMPONENT had an address which is equal to
2801 its offset inside CONTAINER. */
2802
52ce6436
PH
2803static void
2804value_assign_to_component (struct value *container, struct value *component,
2805 struct value *val)
2806{
2807 LONGEST offset_in_container =
42ae5230 2808 (LONGEST) (value_address (component) - value_address (container));
7c512744 2809 int bit_offset_in_container =
52ce6436
PH
2810 value_bitpos (component) - value_bitpos (container);
2811 int bits;
7c512744 2812
52ce6436
PH
2813 val = value_cast (value_type (component), val);
2814
2815 if (value_bitsize (component) == 0)
2816 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2817 else
2818 bits = value_bitsize (component);
2819
50810684 2820 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2821 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2822 value_bitpos (container) + bit_offset_in_container,
2823 value_contents (val),
2824 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2825 bits, 1);
52ce6436 2826 else
7c512744 2827 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2828 value_bitpos (container) + bit_offset_in_container,
50810684 2829 value_contents (val), 0, bits, 0);
7c512744
JB
2830}
2831
4c4b4cd2
PH
2832/* The value of the element of array ARR at the ARITY indices given in IND.
2833 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2834 thereto. */
2835
d2e4a39e
AS
2836struct value *
2837ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2838{
2839 int k;
d2e4a39e
AS
2840 struct value *elt;
2841 struct type *elt_type;
14f9c5c9
AS
2842
2843 elt = ada_coerce_to_simple_array (arr);
2844
df407dfe 2845 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2846 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2847 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2848 return value_subscript_packed (elt, arity, ind);
2849
2850 for (k = 0; k < arity; k += 1)
2851 {
2852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2853 error (_("too many subscripts (%d expected)"), k);
2497b498 2854 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2855 }
2856 return elt;
2857}
2858
deede10c
JB
2859/* Assuming ARR is a pointer to a GDB array, the value of the element
2860 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2861 Does not read the entire array into memory.
2862
2863 Note: Unlike what one would expect, this function is used instead of
2864 ada_value_subscript for basically all non-packed array types. The reason
2865 for this is that a side effect of doing our own pointer arithmetics instead
2866 of relying on value_subscript is that there is no implicit typedef peeling.
2867 This is important for arrays of array accesses, where it allows us to
2868 preserve the fact that the array's element is an array access, where the
2869 access part os encoded in a typedef layer. */
14f9c5c9 2870
2c0b251b 2871static struct value *
deede10c 2872ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2873{
2874 int k;
919e6dbe 2875 struct value *array_ind = ada_value_ind (arr);
deede10c 2876 struct type *type
919e6dbe
PMR
2877 = check_typedef (value_enclosing_type (array_ind));
2878
2879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2880 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2881 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2882
2883 for (k = 0; k < arity; k += 1)
2884 {
2885 LONGEST lwb, upb;
aa715135 2886 struct value *lwb_value;
14f9c5c9
AS
2887
2888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2889 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2890 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2891 value_copy (arr));
14f9c5c9 2892 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2893 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2894 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2895 type = TYPE_TARGET_TYPE (type);
2896 }
2897
2898 return value_ind (arr);
2899}
2900
0b5d8877 2901/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2902 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2903 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2904 this array is LOW, as per Ada rules. */
0b5d8877 2905static struct value *
f5938064
JG
2906ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2907 int low, int high)
0b5d8877 2908{
b0dd7688 2909 struct type *type0 = ada_check_typedef (type);
aa715135 2910 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2911 struct type *index_type
aa715135 2912 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2913 struct type *slice_type = create_array_type_with_stride
2914 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2915 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2916 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2917 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2918 LONGEST base_low_pos, low_pos;
2919 CORE_ADDR base;
2920
2921 if (!discrete_position (base_index_type, low, &low_pos)
2922 || !discrete_position (base_index_type, base_low, &base_low_pos))
2923 {
2924 warning (_("unable to get positions in slice, use bounds instead"));
2925 low_pos = low;
2926 base_low_pos = base_low;
2927 }
5b4ee69b 2928
aa715135
JG
2929 base = value_as_address (array_ptr)
2930 + ((low_pos - base_low_pos)
2931 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2932 return value_at_lazy (slice_type, base);
0b5d8877
PH
2933}
2934
2935
2936static struct value *
2937ada_value_slice (struct value *array, int low, int high)
2938{
b0dd7688 2939 struct type *type = ada_check_typedef (value_type (array));
aa715135 2940 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2941 struct type *index_type
2942 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2943 struct type *slice_type = create_array_type_with_stride
2944 (NULL, TYPE_TARGET_TYPE (type), index_type,
2945 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2946 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2947 LONGEST low_pos, high_pos;
5b4ee69b 2948
aa715135
JG
2949 if (!discrete_position (base_index_type, low, &low_pos)
2950 || !discrete_position (base_index_type, high, &high_pos))
2951 {
2952 warning (_("unable to get positions in slice, use bounds instead"));
2953 low_pos = low;
2954 high_pos = high;
2955 }
2956
2957 return value_cast (slice_type,
2958 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2959}
2960
14f9c5c9
AS
2961/* If type is a record type in the form of a standard GNAT array
2962 descriptor, returns the number of dimensions for type. If arr is a
2963 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2964 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2965
2966int
d2e4a39e 2967ada_array_arity (struct type *type)
14f9c5c9
AS
2968{
2969 int arity;
2970
2971 if (type == NULL)
2972 return 0;
2973
2974 type = desc_base_type (type);
2975
2976 arity = 0;
d2e4a39e 2977 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2978 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2979 else
2980 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2981 {
4c4b4cd2 2982 arity += 1;
61ee279c 2983 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2984 }
d2e4a39e 2985
14f9c5c9
AS
2986 return arity;
2987}
2988
2989/* If TYPE is a record type in the form of a standard GNAT array
2990 descriptor or a simple array type, returns the element type for
2991 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2992 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2993
d2e4a39e
AS
2994struct type *
2995ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2996{
2997 type = desc_base_type (type);
2998
d2e4a39e 2999 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
3000 {
3001 int k;
d2e4a39e 3002 struct type *p_array_type;
14f9c5c9 3003
556bdfd4 3004 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3005
3006 k = ada_array_arity (type);
3007 if (k == 0)
4c4b4cd2 3008 return NULL;
d2e4a39e 3009
4c4b4cd2 3010 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3011 if (nindices >= 0 && k > nindices)
4c4b4cd2 3012 k = nindices;
d2e4a39e 3013 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3014 {
61ee279c 3015 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3016 k -= 1;
3017 }
14f9c5c9
AS
3018 return p_array_type;
3019 }
3020 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3021 {
3022 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3023 {
3024 type = TYPE_TARGET_TYPE (type);
3025 nindices -= 1;
3026 }
14f9c5c9
AS
3027 return type;
3028 }
3029
3030 return NULL;
3031}
3032
4c4b4cd2 3033/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3034 Does not examine memory. Throws an error if N is invalid or TYPE
3035 is not an array type. NAME is the name of the Ada attribute being
3036 evaluated ('range, 'first, 'last, or 'length); it is used in building
3037 the error message. */
14f9c5c9 3038
1eea4ebd
UW
3039static struct type *
3040ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3041{
4c4b4cd2
PH
3042 struct type *result_type;
3043
14f9c5c9
AS
3044 type = desc_base_type (type);
3045
1eea4ebd
UW
3046 if (n < 0 || n > ada_array_arity (type))
3047 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3048
4c4b4cd2 3049 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3050 {
3051 int i;
3052
3053 for (i = 1; i < n; i += 1)
4c4b4cd2 3054 type = TYPE_TARGET_TYPE (type);
262452ec 3055 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3056 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3057 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3058 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3059 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3060 result_type = NULL;
14f9c5c9 3061 }
d2e4a39e 3062 else
1eea4ebd
UW
3063 {
3064 result_type = desc_index_type (desc_bounds_type (type), n);
3065 if (result_type == NULL)
3066 error (_("attempt to take bound of something that is not an array"));
3067 }
3068
3069 return result_type;
14f9c5c9
AS
3070}
3071
3072/* Given that arr is an array type, returns the lower bound of the
3073 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3074 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3075 array-descriptor type. It works for other arrays with bounds supplied
3076 by run-time quantities other than discriminants. */
14f9c5c9 3077
abb68b3e 3078static LONGEST
fb5e3d5c 3079ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3080{
8a48ac95 3081 struct type *type, *index_type_desc, *index_type;
1ce677a4 3082 int i;
262452ec
JK
3083
3084 gdb_assert (which == 0 || which == 1);
14f9c5c9 3085
ad82864c
JB
3086 if (ada_is_constrained_packed_array_type (arr_type))
3087 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3088
4c4b4cd2 3089 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3090 return (LONGEST) - which;
14f9c5c9
AS
3091
3092 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3093 type = TYPE_TARGET_TYPE (arr_type);
3094 else
3095 type = arr_type;
3096
bafffb51
JB
3097 if (TYPE_FIXED_INSTANCE (type))
3098 {
3099 /* The array has already been fixed, so we do not need to
3100 check the parallel ___XA type again. That encoding has
3101 already been applied, so ignore it now. */
3102 index_type_desc = NULL;
3103 }
3104 else
3105 {
3106 index_type_desc = ada_find_parallel_type (type, "___XA");
3107 ada_fixup_array_indexes_type (index_type_desc);
3108 }
3109
262452ec 3110 if (index_type_desc != NULL)
28c85d6c
JB
3111 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3112 NULL);
262452ec 3113 else
8a48ac95
JB
3114 {
3115 struct type *elt_type = check_typedef (type);
3116
3117 for (i = 1; i < n; i++)
3118 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3119
3120 index_type = TYPE_INDEX_TYPE (elt_type);
3121 }
262452ec 3122
43bbcdc2
PH
3123 return
3124 (LONGEST) (which == 0
3125 ? ada_discrete_type_low_bound (index_type)
3126 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3127}
3128
3129/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3130 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3131 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3132 supplied by run-time quantities other than discriminants. */
14f9c5c9 3133
1eea4ebd 3134static LONGEST
4dc81987 3135ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3136{
eb479039
JB
3137 struct type *arr_type;
3138
3139 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3140 arr = value_ind (arr);
3141 arr_type = value_enclosing_type (arr);
14f9c5c9 3142
ad82864c
JB
3143 if (ada_is_constrained_packed_array_type (arr_type))
3144 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3145 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3146 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3147 else
1eea4ebd 3148 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3149}
3150
3151/* Given that arr is an array value, returns the length of the
3152 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3153 supplied by run-time quantities other than discriminants.
3154 Does not work for arrays indexed by enumeration types with representation
3155 clauses at the moment. */
14f9c5c9 3156
1eea4ebd 3157static LONGEST
d2e4a39e 3158ada_array_length (struct value *arr, int n)
14f9c5c9 3159{
aa715135
JG
3160 struct type *arr_type, *index_type;
3161 int low, high;
eb479039
JB
3162
3163 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3164 arr = value_ind (arr);
3165 arr_type = value_enclosing_type (arr);
14f9c5c9 3166
ad82864c
JB
3167 if (ada_is_constrained_packed_array_type (arr_type))
3168 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3169
4c4b4cd2 3170 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3171 {
3172 low = ada_array_bound_from_type (arr_type, n, 0);
3173 high = ada_array_bound_from_type (arr_type, n, 1);
3174 }
14f9c5c9 3175 else
aa715135
JG
3176 {
3177 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3178 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3179 }
3180
f168693b 3181 arr_type = check_typedef (arr_type);
7150d33c 3182 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3183 if (index_type != NULL)
3184 {
3185 struct type *base_type;
3186 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3187 base_type = TYPE_TARGET_TYPE (index_type);
3188 else
3189 base_type = index_type;
3190
3191 low = pos_atr (value_from_longest (base_type, low));
3192 high = pos_atr (value_from_longest (base_type, high));
3193 }
3194 return high - low + 1;
4c4b4cd2
PH
3195}
3196
3197/* An empty array whose type is that of ARR_TYPE (an array type),
3198 with bounds LOW to LOW-1. */
3199
3200static struct value *
3201empty_array (struct type *arr_type, int low)
3202{
b0dd7688 3203 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3204 struct type *index_type
3205 = create_static_range_type
3206 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3207 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3208
0b5d8877 3209 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3210}
14f9c5c9 3211\f
d2e4a39e 3212
4c4b4cd2 3213 /* Name resolution */
14f9c5c9 3214
4c4b4cd2
PH
3215/* The "decoded" name for the user-definable Ada operator corresponding
3216 to OP. */
14f9c5c9 3217
d2e4a39e 3218static const char *
4c4b4cd2 3219ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3220{
3221 int i;
3222
4c4b4cd2 3223 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3224 {
3225 if (ada_opname_table[i].op == op)
4c4b4cd2 3226 return ada_opname_table[i].decoded;
14f9c5c9 3227 }
323e0a4a 3228 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3229}
3230
3231
4c4b4cd2
PH
3232/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3233 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3234 undefined namespace) and converts operators that are
3235 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3236 non-null, it provides a preferred result type [at the moment, only
3237 type void has any effect---causing procedures to be preferred over
3238 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3239 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3240
4c4b4cd2 3241static void
e9d9f57e 3242resolve (expression_up *expp, int void_context_p)
14f9c5c9 3243{
30b15541
UW
3244 struct type *context_type = NULL;
3245 int pc = 0;
3246
3247 if (void_context_p)
3248 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3249
3250 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3251}
3252
4c4b4cd2
PH
3253/* Resolve the operator of the subexpression beginning at
3254 position *POS of *EXPP. "Resolving" consists of replacing
3255 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3256 with their resolutions, replacing built-in operators with
3257 function calls to user-defined operators, where appropriate, and,
3258 when DEPROCEDURE_P is non-zero, converting function-valued variables
3259 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3260 are as in ada_resolve, above. */
14f9c5c9 3261
d2e4a39e 3262static struct value *
e9d9f57e 3263resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
76a01679 3264 struct type *context_type)
14f9c5c9
AS
3265{
3266 int pc = *pos;
3267 int i;
4c4b4cd2 3268 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3269 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3270 struct value **argvec; /* Vector of operand types (alloca'ed). */
3271 int nargs; /* Number of operands. */
52ce6436 3272 int oplen;
ec6a20c2 3273 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
14f9c5c9
AS
3274
3275 argvec = NULL;
3276 nargs = 0;
e9d9f57e 3277 exp = expp->get ();
14f9c5c9 3278
52ce6436
PH
3279 /* Pass one: resolve operands, saving their types and updating *pos,
3280 if needed. */
14f9c5c9
AS
3281 switch (op)
3282 {
4c4b4cd2
PH
3283 case OP_FUNCALL:
3284 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3285 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3286 *pos += 7;
4c4b4cd2
PH
3287 else
3288 {
3289 *pos += 3;
3290 resolve_subexp (expp, pos, 0, NULL);
3291 }
3292 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3293 break;
3294
14f9c5c9 3295 case UNOP_ADDR:
4c4b4cd2
PH
3296 *pos += 1;
3297 resolve_subexp (expp, pos, 0, NULL);
3298 break;
3299
52ce6436
PH
3300 case UNOP_QUAL:
3301 *pos += 3;
17466c1a 3302 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3303 break;
3304
52ce6436 3305 case OP_ATR_MODULUS:
4c4b4cd2
PH
3306 case OP_ATR_SIZE:
3307 case OP_ATR_TAG:
4c4b4cd2
PH
3308 case OP_ATR_FIRST:
3309 case OP_ATR_LAST:
3310 case OP_ATR_LENGTH:
3311 case OP_ATR_POS:
3312 case OP_ATR_VAL:
4c4b4cd2
PH
3313 case OP_ATR_MIN:
3314 case OP_ATR_MAX:
52ce6436
PH
3315 case TERNOP_IN_RANGE:
3316 case BINOP_IN_BOUNDS:
3317 case UNOP_IN_RANGE:
3318 case OP_AGGREGATE:
3319 case OP_OTHERS:
3320 case OP_CHOICES:
3321 case OP_POSITIONAL:
3322 case OP_DISCRETE_RANGE:
3323 case OP_NAME:
3324 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3325 *pos += oplen;
14f9c5c9
AS
3326 break;
3327
3328 case BINOP_ASSIGN:
3329 {
4c4b4cd2
PH
3330 struct value *arg1;
3331
3332 *pos += 1;
3333 arg1 = resolve_subexp (expp, pos, 0, NULL);
3334 if (arg1 == NULL)
3335 resolve_subexp (expp, pos, 1, NULL);
3336 else
df407dfe 3337 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3338 break;
14f9c5c9
AS
3339 }
3340
4c4b4cd2 3341 case UNOP_CAST:
4c4b4cd2
PH
3342 *pos += 3;
3343 nargs = 1;
3344 break;
14f9c5c9 3345
4c4b4cd2
PH
3346 case BINOP_ADD:
3347 case BINOP_SUB:
3348 case BINOP_MUL:
3349 case BINOP_DIV:
3350 case BINOP_REM:
3351 case BINOP_MOD:
3352 case BINOP_EXP:
3353 case BINOP_CONCAT:
3354 case BINOP_LOGICAL_AND:
3355 case BINOP_LOGICAL_OR:
3356 case BINOP_BITWISE_AND:
3357 case BINOP_BITWISE_IOR:
3358 case BINOP_BITWISE_XOR:
14f9c5c9 3359
4c4b4cd2
PH
3360 case BINOP_EQUAL:
3361 case BINOP_NOTEQUAL:
3362 case BINOP_LESS:
3363 case BINOP_GTR:
3364 case BINOP_LEQ:
3365 case BINOP_GEQ:
14f9c5c9 3366
4c4b4cd2
PH
3367 case BINOP_REPEAT:
3368 case BINOP_SUBSCRIPT:
3369 case BINOP_COMMA:
40c8aaa9
JB
3370 *pos += 1;
3371 nargs = 2;
3372 break;
14f9c5c9 3373
4c4b4cd2
PH
3374 case UNOP_NEG:
3375 case UNOP_PLUS:
3376 case UNOP_LOGICAL_NOT:
3377 case UNOP_ABS:
3378 case UNOP_IND:
3379 *pos += 1;
3380 nargs = 1;
3381 break;
14f9c5c9 3382
4c4b4cd2 3383 case OP_LONG:
edd079d9 3384 case OP_FLOAT:
4c4b4cd2 3385 case OP_VAR_VALUE:
74ea4be4 3386 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3387 *pos += 4;
3388 break;
14f9c5c9 3389
4c4b4cd2
PH
3390 case OP_TYPE:
3391 case OP_BOOL:
3392 case OP_LAST:
4c4b4cd2
PH
3393 case OP_INTERNALVAR:
3394 *pos += 3;
3395 break;
14f9c5c9 3396
4c4b4cd2
PH
3397 case UNOP_MEMVAL:
3398 *pos += 3;
3399 nargs = 1;
3400 break;
3401
67f3407f
DJ
3402 case OP_REGISTER:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 break;
3405
4c4b4cd2
PH
3406 case STRUCTOP_STRUCT:
3407 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3408 nargs = 1;
3409 break;
3410
4c4b4cd2 3411 case TERNOP_SLICE:
4c4b4cd2
PH
3412 *pos += 1;
3413 nargs = 3;
3414 break;
3415
52ce6436 3416 case OP_STRING:
14f9c5c9 3417 break;
4c4b4cd2
PH
3418
3419 default:
323e0a4a 3420 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3421 }
3422
8d749320 3423 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3424 for (i = 0; i < nargs; i += 1)
3425 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3426 argvec[i] = NULL;
e9d9f57e 3427 exp = expp->get ();
4c4b4cd2
PH
3428
3429 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3430 switch (op)
3431 {
3432 default:
3433 break;
3434
14f9c5c9 3435 case OP_VAR_VALUE:
4c4b4cd2 3436 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3437 {
d12307c1 3438 struct block_symbol *candidates;
76a01679
JB
3439 int n_candidates;
3440
3441 n_candidates =
3442 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3443 (exp->elts[pc + 2].symbol),
3444 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3445 &candidates);
ec6a20c2 3446 make_cleanup (xfree, candidates);
76a01679
JB
3447
3448 if (n_candidates > 1)
3449 {
3450 /* Types tend to get re-introduced locally, so if there
3451 are any local symbols that are not types, first filter
3452 out all types. */
3453 int j;
3454 for (j = 0; j < n_candidates; j += 1)
d12307c1 3455 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3456 {
3457 case LOC_REGISTER:
3458 case LOC_ARG:
3459 case LOC_REF_ARG:
76a01679
JB
3460 case LOC_REGPARM_ADDR:
3461 case LOC_LOCAL:
76a01679 3462 case LOC_COMPUTED:
76a01679
JB
3463 goto FoundNonType;
3464 default:
3465 break;
3466 }
3467 FoundNonType:
3468 if (j < n_candidates)
3469 {
3470 j = 0;
3471 while (j < n_candidates)
3472 {
d12307c1 3473 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3474 {
3475 candidates[j] = candidates[n_candidates - 1];
3476 n_candidates -= 1;
3477 }
3478 else
3479 j += 1;
3480 }
3481 }
3482 }
3483
3484 if (n_candidates == 0)
323e0a4a 3485 error (_("No definition found for %s"),
76a01679
JB
3486 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3487 else if (n_candidates == 1)
3488 i = 0;
3489 else if (deprocedure_p
3490 && !is_nonfunction (candidates, n_candidates))
3491 {
06d5cf63
JB
3492 i = ada_resolve_function
3493 (candidates, n_candidates, NULL, 0,
3494 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3495 context_type);
76a01679 3496 if (i < 0)
323e0a4a 3497 error (_("Could not find a match for %s"),
76a01679
JB
3498 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3499 }
3500 else
3501 {
323e0a4a 3502 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3503 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3504 user_select_syms (candidates, n_candidates, 1);
3505 i = 0;
3506 }
3507
3508 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3509 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3510 if (innermost_block == NULL
3511 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3512 innermost_block = candidates[i].block;
3513 }
3514
3515 if (deprocedure_p
3516 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3517 == TYPE_CODE_FUNC))
3518 {
3519 replace_operator_with_call (expp, pc, 0, 0,
3520 exp->elts[pc + 2].symbol,
3521 exp->elts[pc + 1].block);
e9d9f57e 3522 exp = expp->get ();
76a01679 3523 }
14f9c5c9
AS
3524 break;
3525
3526 case OP_FUNCALL:
3527 {
4c4b4cd2 3528 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3529 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3530 {
d12307c1 3531 struct block_symbol *candidates;
4c4b4cd2
PH
3532 int n_candidates;
3533
3534 n_candidates =
76a01679
JB
3535 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3536 (exp->elts[pc + 5].symbol),
3537 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3538 &candidates);
ec6a20c2
JB
3539 make_cleanup (xfree, candidates);
3540
4c4b4cd2
PH
3541 if (n_candidates == 1)
3542 i = 0;
3543 else
3544 {
06d5cf63
JB
3545 i = ada_resolve_function
3546 (candidates, n_candidates,
3547 argvec, nargs,
3548 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3549 context_type);
4c4b4cd2 3550 if (i < 0)
323e0a4a 3551 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3552 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3553 }
3554
3555 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3556 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3557 if (innermost_block == NULL
3558 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3559 innermost_block = candidates[i].block;
3560 }
14f9c5c9
AS
3561 }
3562 break;
3563 case BINOP_ADD:
3564 case BINOP_SUB:
3565 case BINOP_MUL:
3566 case BINOP_DIV:
3567 case BINOP_REM:
3568 case BINOP_MOD:
3569 case BINOP_CONCAT:
3570 case BINOP_BITWISE_AND:
3571 case BINOP_BITWISE_IOR:
3572 case BINOP_BITWISE_XOR:
3573 case BINOP_EQUAL:
3574 case BINOP_NOTEQUAL:
3575 case BINOP_LESS:
3576 case BINOP_GTR:
3577 case BINOP_LEQ:
3578 case BINOP_GEQ:
3579 case BINOP_EXP:
3580 case UNOP_NEG:
3581 case UNOP_PLUS:
3582 case UNOP_LOGICAL_NOT:
3583 case UNOP_ABS:
3584 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3585 {
d12307c1 3586 struct block_symbol *candidates;
4c4b4cd2
PH
3587 int n_candidates;
3588
3589 n_candidates =
b5ec771e 3590 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3591 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3592 &candidates);
ec6a20c2
JB
3593 make_cleanup (xfree, candidates);
3594
4c4b4cd2 3595 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3596 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3597 if (i < 0)
3598 break;
3599
d12307c1
PMR
3600 replace_operator_with_call (expp, pc, nargs, 1,
3601 candidates[i].symbol,
3602 candidates[i].block);
e9d9f57e 3603 exp = expp->get ();
4c4b4cd2 3604 }
14f9c5c9 3605 break;
4c4b4cd2
PH
3606
3607 case OP_TYPE:
b3dbf008 3608 case OP_REGISTER:
ec6a20c2 3609 do_cleanups (old_chain);
4c4b4cd2 3610 return NULL;
14f9c5c9
AS
3611 }
3612
3613 *pos = pc;
ec6a20c2 3614 do_cleanups (old_chain);
ced9779b
JB
3615 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3616 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3617 exp->elts[pc + 1].objfile,
3618 exp->elts[pc + 2].msymbol);
3619 else
3620 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3621}
3622
3623/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3624 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3625 a non-pointer. */
14f9c5c9 3626/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3627 liberal. */
14f9c5c9
AS
3628
3629static int
4dc81987 3630ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3631{
61ee279c
PH
3632 ftype = ada_check_typedef (ftype);
3633 atype = ada_check_typedef (atype);
14f9c5c9
AS
3634
3635 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3636 ftype = TYPE_TARGET_TYPE (ftype);
3637 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3638 atype = TYPE_TARGET_TYPE (atype);
3639
d2e4a39e 3640 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3641 {
3642 default:
5b3d5b7d 3643 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3644 case TYPE_CODE_PTR:
3645 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3646 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3647 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3648 else
1265e4aa
JB
3649 return (may_deref
3650 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3651 case TYPE_CODE_INT:
3652 case TYPE_CODE_ENUM:
3653 case TYPE_CODE_RANGE:
3654 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3655 {
3656 case TYPE_CODE_INT:
3657 case TYPE_CODE_ENUM:
3658 case TYPE_CODE_RANGE:
3659 return 1;
3660 default:
3661 return 0;
3662 }
14f9c5c9
AS
3663
3664 case TYPE_CODE_ARRAY:
d2e4a39e 3665 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3666 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3667
3668 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3669 if (ada_is_array_descriptor_type (ftype))
3670 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3671 || ada_is_array_descriptor_type (atype));
14f9c5c9 3672 else
4c4b4cd2
PH
3673 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3674 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3675
3676 case TYPE_CODE_UNION:
3677 case TYPE_CODE_FLT:
3678 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3679 }
3680}
3681
3682/* Return non-zero if the formals of FUNC "sufficiently match" the
3683 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3684 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3685 argument function. */
14f9c5c9
AS
3686
3687static int
d2e4a39e 3688ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3689{
3690 int i;
d2e4a39e 3691 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3692
1265e4aa
JB
3693 if (SYMBOL_CLASS (func) == LOC_CONST
3694 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3695 return (n_actuals == 0);
3696 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3697 return 0;
3698
3699 if (TYPE_NFIELDS (func_type) != n_actuals)
3700 return 0;
3701
3702 for (i = 0; i < n_actuals; i += 1)
3703 {
4c4b4cd2 3704 if (actuals[i] == NULL)
76a01679
JB
3705 return 0;
3706 else
3707 {
5b4ee69b
MS
3708 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3709 i));
df407dfe 3710 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3711
76a01679
JB
3712 if (!ada_type_match (ftype, atype, 1))
3713 return 0;
3714 }
14f9c5c9
AS
3715 }
3716 return 1;
3717}
3718
3719/* False iff function type FUNC_TYPE definitely does not produce a value
3720 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3721 FUNC_TYPE is not a valid function type with a non-null return type
3722 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3723
3724static int
d2e4a39e 3725return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3726{
d2e4a39e 3727 struct type *return_type;
14f9c5c9
AS
3728
3729 if (func_type == NULL)
3730 return 1;
3731
4c4b4cd2 3732 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3733 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3734 else
18af8284 3735 return_type = get_base_type (func_type);
14f9c5c9
AS
3736 if (return_type == NULL)
3737 return 1;
3738
18af8284 3739 context_type = get_base_type (context_type);
14f9c5c9
AS
3740
3741 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3742 return context_type == NULL || return_type == context_type;
3743 else if (context_type == NULL)
3744 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3745 else
3746 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3747}
3748
3749
4c4b4cd2 3750/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3751 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3752 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3753 that returns that type, then eliminate matches that don't. If
3754 CONTEXT_TYPE is void and there is at least one match that does not
3755 return void, eliminate all matches that do.
3756
14f9c5c9
AS
3757 Asks the user if there is more than one match remaining. Returns -1
3758 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3759 solely for messages. May re-arrange and modify SYMS in
3760 the process; the index returned is for the modified vector. */
14f9c5c9 3761
4c4b4cd2 3762static int
d12307c1 3763ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3764 int nsyms, struct value **args, int nargs,
3765 const char *name, struct type *context_type)
14f9c5c9 3766{
30b15541 3767 int fallback;
14f9c5c9 3768 int k;
4c4b4cd2 3769 int m; /* Number of hits */
14f9c5c9 3770
d2e4a39e 3771 m = 0;
30b15541
UW
3772 /* In the first pass of the loop, we only accept functions matching
3773 context_type. If none are found, we add a second pass of the loop
3774 where every function is accepted. */
3775 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3776 {
3777 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3778 {
d12307c1 3779 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3780
d12307c1 3781 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3782 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3783 {
3784 syms[m] = syms[k];
3785 m += 1;
3786 }
3787 }
14f9c5c9
AS
3788 }
3789
dc5c8746
PMR
3790 /* If we got multiple matches, ask the user which one to use. Don't do this
3791 interactive thing during completion, though, as the purpose of the
3792 completion is providing a list of all possible matches. Prompting the
3793 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3794 if (m == 0)
3795 return -1;
dc5c8746 3796 else if (m > 1 && !parse_completion)
14f9c5c9 3797 {
323e0a4a 3798 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3799 user_select_syms (syms, m, 1);
14f9c5c9
AS
3800 return 0;
3801 }
3802 return 0;
3803}
3804
4c4b4cd2
PH
3805/* Returns true (non-zero) iff decoded name N0 should appear before N1
3806 in a listing of choices during disambiguation (see sort_choices, below).
3807 The idea is that overloadings of a subprogram name from the
3808 same package should sort in their source order. We settle for ordering
3809 such symbols by their trailing number (__N or $N). */
3810
14f9c5c9 3811static int
0d5cff50 3812encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3813{
3814 if (N1 == NULL)
3815 return 0;
3816 else if (N0 == NULL)
3817 return 1;
3818 else
3819 {
3820 int k0, k1;
5b4ee69b 3821
d2e4a39e 3822 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3823 ;
d2e4a39e 3824 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3825 ;
d2e4a39e 3826 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3827 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3828 {
3829 int n0, n1;
5b4ee69b 3830
4c4b4cd2
PH
3831 n0 = k0;
3832 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3833 n0 -= 1;
3834 n1 = k1;
3835 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3836 n1 -= 1;
3837 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3838 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3839 }
14f9c5c9
AS
3840 return (strcmp (N0, N1) < 0);
3841 }
3842}
d2e4a39e 3843
4c4b4cd2
PH
3844/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3845 encoded names. */
3846
d2e4a39e 3847static void
d12307c1 3848sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3849{
4c4b4cd2 3850 int i;
5b4ee69b 3851
d2e4a39e 3852 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3853 {
d12307c1 3854 struct block_symbol sym = syms[i];
14f9c5c9
AS
3855 int j;
3856
d2e4a39e 3857 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3858 {
d12307c1
PMR
3859 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3860 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3861 break;
3862 syms[j + 1] = syms[j];
3863 }
d2e4a39e 3864 syms[j + 1] = sym;
14f9c5c9
AS
3865 }
3866}
3867
d72413e6
PMR
3868/* Whether GDB should display formals and return types for functions in the
3869 overloads selection menu. */
3870static int print_signatures = 1;
3871
3872/* Print the signature for SYM on STREAM according to the FLAGS options. For
3873 all but functions, the signature is just the name of the symbol. For
3874 functions, this is the name of the function, the list of types for formals
3875 and the return type (if any). */
3876
3877static void
3878ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3879 const struct type_print_options *flags)
3880{
3881 struct type *type = SYMBOL_TYPE (sym);
3882
3883 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3884 if (!print_signatures
3885 || type == NULL
3886 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3887 return;
3888
3889 if (TYPE_NFIELDS (type) > 0)
3890 {
3891 int i;
3892
3893 fprintf_filtered (stream, " (");
3894 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3895 {
3896 if (i > 0)
3897 fprintf_filtered (stream, "; ");
3898 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3899 flags);
3900 }
3901 fprintf_filtered (stream, ")");
3902 }
3903 if (TYPE_TARGET_TYPE (type) != NULL
3904 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3905 {
3906 fprintf_filtered (stream, " return ");
3907 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3908 }
3909}
3910
4c4b4cd2
PH
3911/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3912 by asking the user (if necessary), returning the number selected,
3913 and setting the first elements of SYMS items. Error if no symbols
3914 selected. */
14f9c5c9
AS
3915
3916/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3917 to be re-integrated one of these days. */
14f9c5c9
AS
3918
3919int
d12307c1 3920user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3921{
3922 int i;
8d749320 3923 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3924 int n_chosen;
3925 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3926 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3927
3928 if (max_results < 1)
323e0a4a 3929 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3930 if (nsyms <= 1)
3931 return nsyms;
3932
717d2f5a
JB
3933 if (select_mode == multiple_symbols_cancel)
3934 error (_("\
3935canceled because the command is ambiguous\n\
3936See set/show multiple-symbol."));
3937
3938 /* If select_mode is "all", then return all possible symbols.
3939 Only do that if more than one symbol can be selected, of course.
3940 Otherwise, display the menu as usual. */
3941 if (select_mode == multiple_symbols_all && max_results > 1)
3942 return nsyms;
3943
323e0a4a 3944 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3945 if (max_results > 1)
323e0a4a 3946 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3947
4c4b4cd2 3948 sort_choices (syms, nsyms);
14f9c5c9
AS
3949
3950 for (i = 0; i < nsyms; i += 1)
3951 {
d12307c1 3952 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3953 continue;
3954
d12307c1 3955 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3956 {
76a01679 3957 struct symtab_and_line sal =
d12307c1 3958 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3959
d72413e6
PMR
3960 printf_unfiltered ("[%d] ", i + first_choice);
3961 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3962 &type_print_raw_options);
323e0a4a 3963 if (sal.symtab == NULL)
d72413e6 3964 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3965 sal.line);
3966 else
d72413e6 3967 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3968 symtab_to_filename_for_display (sal.symtab),
3969 sal.line);
4c4b4cd2
PH
3970 continue;
3971 }
d2e4a39e 3972 else
4c4b4cd2
PH
3973 {
3974 int is_enumeral =
d12307c1
PMR
3975 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3976 && SYMBOL_TYPE (syms[i].symbol) != NULL
3977 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3978 struct symtab *symtab = NULL;
3979
d12307c1
PMR
3980 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3981 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3982
d12307c1 3983 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3984 {
3985 printf_unfiltered ("[%d] ", i + first_choice);
3986 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3987 &type_print_raw_options);
3988 printf_unfiltered (_(" at %s:%d\n"),
3989 symtab_to_filename_for_display (symtab),
3990 SYMBOL_LINE (syms[i].symbol));
3991 }
76a01679 3992 else if (is_enumeral
d12307c1 3993 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3994 {
a3f17187 3995 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3996 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3997 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3998 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3999 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 4000 }
d72413e6
PMR
4001 else
4002 {
4003 printf_unfiltered ("[%d] ", i + first_choice);
4004 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4005 &type_print_raw_options);
4006
4007 if (symtab != NULL)
4008 printf_unfiltered (is_enumeral
4009 ? _(" in %s (enumeral)\n")
4010 : _(" at %s:?\n"),
4011 symtab_to_filename_for_display (symtab));
4012 else
4013 printf_unfiltered (is_enumeral
4014 ? _(" (enumeral)\n")
4015 : _(" at ?\n"));
4016 }
4c4b4cd2 4017 }
14f9c5c9 4018 }
d2e4a39e 4019
14f9c5c9 4020 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4021 "overload-choice");
14f9c5c9
AS
4022
4023 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4024 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4025
4026 return n_chosen;
4027}
4028
4029/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4030 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4031 order in CHOICES[0 .. N-1], and return N.
4032
4033 The user types choices as a sequence of numbers on one line
4034 separated by blanks, encoding them as follows:
4035
4c4b4cd2 4036 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4037 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4038 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4039
4c4b4cd2 4040 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4041
4042 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4043 prompts (for use with the -f switch). */
14f9c5c9
AS
4044
4045int
d2e4a39e 4046get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4047 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4048{
d2e4a39e 4049 char *args;
a121b7c1 4050 const char *prompt;
14f9c5c9
AS
4051 int n_chosen;
4052 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4053
14f9c5c9
AS
4054 prompt = getenv ("PS2");
4055 if (prompt == NULL)
0bcd0149 4056 prompt = "> ";
14f9c5c9 4057
0bcd0149 4058 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4059
14f9c5c9 4060 if (args == NULL)
323e0a4a 4061 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4062
4063 n_chosen = 0;
76a01679 4064
4c4b4cd2
PH
4065 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4066 order, as given in args. Choices are validated. */
14f9c5c9
AS
4067 while (1)
4068 {
d2e4a39e 4069 char *args2;
14f9c5c9
AS
4070 int choice, j;
4071
0fcd72ba 4072 args = skip_spaces (args);
14f9c5c9 4073 if (*args == '\0' && n_chosen == 0)
323e0a4a 4074 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4075 else if (*args == '\0')
4c4b4cd2 4076 break;
14f9c5c9
AS
4077
4078 choice = strtol (args, &args2, 10);
d2e4a39e 4079 if (args == args2 || choice < 0
4c4b4cd2 4080 || choice > n_choices + first_choice - 1)
323e0a4a 4081 error (_("Argument must be choice number"));
14f9c5c9
AS
4082 args = args2;
4083
d2e4a39e 4084 if (choice == 0)
323e0a4a 4085 error (_("cancelled"));
14f9c5c9
AS
4086
4087 if (choice < first_choice)
4c4b4cd2
PH
4088 {
4089 n_chosen = n_choices;
4090 for (j = 0; j < n_choices; j += 1)
4091 choices[j] = j;
4092 break;
4093 }
14f9c5c9
AS
4094 choice -= first_choice;
4095
d2e4a39e 4096 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4097 {
4098 }
14f9c5c9
AS
4099
4100 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4101 {
4102 int k;
5b4ee69b 4103
4c4b4cd2
PH
4104 for (k = n_chosen - 1; k > j; k -= 1)
4105 choices[k + 1] = choices[k];
4106 choices[j + 1] = choice;
4107 n_chosen += 1;
4108 }
14f9c5c9
AS
4109 }
4110
4111 if (n_chosen > max_results)
323e0a4a 4112 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4113
14f9c5c9
AS
4114 return n_chosen;
4115}
4116
4c4b4cd2
PH
4117/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4118 on the function identified by SYM and BLOCK, and taking NARGS
4119 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4120
4121static void
e9d9f57e 4122replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4123 int oplen, struct symbol *sym,
270140bd 4124 const struct block *block)
14f9c5c9
AS
4125{
4126 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4127 symbol, -oplen for operator being replaced). */
d2e4a39e 4128 struct expression *newexp = (struct expression *)
8c1a34e7 4129 xzalloc (sizeof (struct expression)
4c4b4cd2 4130 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4131 struct expression *exp = expp->get ();
14f9c5c9
AS
4132
4133 newexp->nelts = exp->nelts + 7 - oplen;
4134 newexp->language_defn = exp->language_defn;
3489610d 4135 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4136 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4137 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4138 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4139
4140 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4141 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4142
4143 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4144 newexp->elts[pc + 4].block = block;
4145 newexp->elts[pc + 5].symbol = sym;
4146
e9d9f57e 4147 expp->reset (newexp);
d2e4a39e 4148}
14f9c5c9
AS
4149
4150/* Type-class predicates */
4151
4c4b4cd2
PH
4152/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4153 or FLOAT). */
14f9c5c9
AS
4154
4155static int
d2e4a39e 4156numeric_type_p (struct type *type)
14f9c5c9
AS
4157{
4158 if (type == NULL)
4159 return 0;
d2e4a39e
AS
4160 else
4161 {
4162 switch (TYPE_CODE (type))
4c4b4cd2
PH
4163 {
4164 case TYPE_CODE_INT:
4165 case TYPE_CODE_FLT:
4166 return 1;
4167 case TYPE_CODE_RANGE:
4168 return (type == TYPE_TARGET_TYPE (type)
4169 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4170 default:
4171 return 0;
4172 }
d2e4a39e 4173 }
14f9c5c9
AS
4174}
4175
4c4b4cd2 4176/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4177
4178static int
d2e4a39e 4179integer_type_p (struct type *type)
14f9c5c9
AS
4180{
4181 if (type == NULL)
4182 return 0;
d2e4a39e
AS
4183 else
4184 {
4185 switch (TYPE_CODE (type))
4c4b4cd2
PH
4186 {
4187 case TYPE_CODE_INT:
4188 return 1;
4189 case TYPE_CODE_RANGE:
4190 return (type == TYPE_TARGET_TYPE (type)
4191 || integer_type_p (TYPE_TARGET_TYPE (type)));
4192 default:
4193 return 0;
4194 }
d2e4a39e 4195 }
14f9c5c9
AS
4196}
4197
4c4b4cd2 4198/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4199
4200static int
d2e4a39e 4201scalar_type_p (struct type *type)
14f9c5c9
AS
4202{
4203 if (type == NULL)
4204 return 0;
d2e4a39e
AS
4205 else
4206 {
4207 switch (TYPE_CODE (type))
4c4b4cd2
PH
4208 {
4209 case TYPE_CODE_INT:
4210 case TYPE_CODE_RANGE:
4211 case TYPE_CODE_ENUM:
4212 case TYPE_CODE_FLT:
4213 return 1;
4214 default:
4215 return 0;
4216 }
d2e4a39e 4217 }
14f9c5c9
AS
4218}
4219
4c4b4cd2 4220/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4221
4222static int
d2e4a39e 4223discrete_type_p (struct type *type)
14f9c5c9
AS
4224{
4225 if (type == NULL)
4226 return 0;
d2e4a39e
AS
4227 else
4228 {
4229 switch (TYPE_CODE (type))
4c4b4cd2
PH
4230 {
4231 case TYPE_CODE_INT:
4232 case TYPE_CODE_RANGE:
4233 case TYPE_CODE_ENUM:
872f0337 4234 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4235 return 1;
4236 default:
4237 return 0;
4238 }
d2e4a39e 4239 }
14f9c5c9
AS
4240}
4241
4c4b4cd2
PH
4242/* Returns non-zero if OP with operands in the vector ARGS could be
4243 a user-defined function. Errs on the side of pre-defined operators
4244 (i.e., result 0). */
14f9c5c9
AS
4245
4246static int
d2e4a39e 4247possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4248{
76a01679 4249 struct type *type0 =
df407dfe 4250 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4251 struct type *type1 =
df407dfe 4252 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4253
4c4b4cd2
PH
4254 if (type0 == NULL)
4255 return 0;
4256
14f9c5c9
AS
4257 switch (op)
4258 {
4259 default:
4260 return 0;
4261
4262 case BINOP_ADD:
4263 case BINOP_SUB:
4264 case BINOP_MUL:
4265 case BINOP_DIV:
d2e4a39e 4266 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4267
4268 case BINOP_REM:
4269 case BINOP_MOD:
4270 case BINOP_BITWISE_AND:
4271 case BINOP_BITWISE_IOR:
4272 case BINOP_BITWISE_XOR:
d2e4a39e 4273 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4274
4275 case BINOP_EQUAL:
4276 case BINOP_NOTEQUAL:
4277 case BINOP_LESS:
4278 case BINOP_GTR:
4279 case BINOP_LEQ:
4280 case BINOP_GEQ:
d2e4a39e 4281 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4282
4283 case BINOP_CONCAT:
ee90b9ab 4284 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4285
4286 case BINOP_EXP:
d2e4a39e 4287 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4288
4289 case UNOP_NEG:
4290 case UNOP_PLUS:
4291 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4292 case UNOP_ABS:
4293 return (!numeric_type_p (type0));
14f9c5c9
AS
4294
4295 }
4296}
4297\f
4c4b4cd2 4298 /* Renaming */
14f9c5c9 4299
aeb5907d
JB
4300/* NOTES:
4301
4302 1. In the following, we assume that a renaming type's name may
4303 have an ___XD suffix. It would be nice if this went away at some
4304 point.
4305 2. We handle both the (old) purely type-based representation of
4306 renamings and the (new) variable-based encoding. At some point,
4307 it is devoutly to be hoped that the former goes away
4308 (FIXME: hilfinger-2007-07-09).
4309 3. Subprogram renamings are not implemented, although the XRS
4310 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4311
4312/* If SYM encodes a renaming,
4313
4314 <renaming> renames <renamed entity>,
4315
4316 sets *LEN to the length of the renamed entity's name,
4317 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4318 the string describing the subcomponent selected from the renamed
0963b4bd 4319 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4320 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4321 are undefined). Otherwise, returns a value indicating the category
4322 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4323 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4324 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4325 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4326 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4327 may be NULL, in which case they are not assigned.
4328
4329 [Currently, however, GCC does not generate subprogram renamings.] */
4330
4331enum ada_renaming_category
4332ada_parse_renaming (struct symbol *sym,
4333 const char **renamed_entity, int *len,
4334 const char **renaming_expr)
4335{
4336 enum ada_renaming_category kind;
4337 const char *info;
4338 const char *suffix;
4339
4340 if (sym == NULL)
4341 return ADA_NOT_RENAMING;
4342 switch (SYMBOL_CLASS (sym))
14f9c5c9 4343 {
aeb5907d
JB
4344 default:
4345 return ADA_NOT_RENAMING;
4346 case LOC_TYPEDEF:
4347 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4348 renamed_entity, len, renaming_expr);
4349 case LOC_LOCAL:
4350 case LOC_STATIC:
4351 case LOC_COMPUTED:
4352 case LOC_OPTIMIZED_OUT:
4353 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4354 if (info == NULL)
4355 return ADA_NOT_RENAMING;
4356 switch (info[5])
4357 {
4358 case '_':
4359 kind = ADA_OBJECT_RENAMING;
4360 info += 6;
4361 break;
4362 case 'E':
4363 kind = ADA_EXCEPTION_RENAMING;
4364 info += 7;
4365 break;
4366 case 'P':
4367 kind = ADA_PACKAGE_RENAMING;
4368 info += 7;
4369 break;
4370 case 'S':
4371 kind = ADA_SUBPROGRAM_RENAMING;
4372 info += 7;
4373 break;
4374 default:
4375 return ADA_NOT_RENAMING;
4376 }
14f9c5c9 4377 }
4c4b4cd2 4378
aeb5907d
JB
4379 if (renamed_entity != NULL)
4380 *renamed_entity = info;
4381 suffix = strstr (info, "___XE");
4382 if (suffix == NULL || suffix == info)
4383 return ADA_NOT_RENAMING;
4384 if (len != NULL)
4385 *len = strlen (info) - strlen (suffix);
4386 suffix += 5;
4387 if (renaming_expr != NULL)
4388 *renaming_expr = suffix;
4389 return kind;
4390}
4391
4392/* Assuming TYPE encodes a renaming according to the old encoding in
4393 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4394 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4395 ADA_NOT_RENAMING otherwise. */
4396static enum ada_renaming_category
4397parse_old_style_renaming (struct type *type,
4398 const char **renamed_entity, int *len,
4399 const char **renaming_expr)
4400{
4401 enum ada_renaming_category kind;
4402 const char *name;
4403 const char *info;
4404 const char *suffix;
14f9c5c9 4405
aeb5907d
JB
4406 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4407 || TYPE_NFIELDS (type) != 1)
4408 return ADA_NOT_RENAMING;
14f9c5c9 4409
aeb5907d
JB
4410 name = type_name_no_tag (type);
4411 if (name == NULL)
4412 return ADA_NOT_RENAMING;
4413
4414 name = strstr (name, "___XR");
4415 if (name == NULL)
4416 return ADA_NOT_RENAMING;
4417 switch (name[5])
4418 {
4419 case '\0':
4420 case '_':
4421 kind = ADA_OBJECT_RENAMING;
4422 break;
4423 case 'E':
4424 kind = ADA_EXCEPTION_RENAMING;
4425 break;
4426 case 'P':
4427 kind = ADA_PACKAGE_RENAMING;
4428 break;
4429 case 'S':
4430 kind = ADA_SUBPROGRAM_RENAMING;
4431 break;
4432 default:
4433 return ADA_NOT_RENAMING;
4434 }
14f9c5c9 4435
aeb5907d
JB
4436 info = TYPE_FIELD_NAME (type, 0);
4437 if (info == NULL)
4438 return ADA_NOT_RENAMING;
4439 if (renamed_entity != NULL)
4440 *renamed_entity = info;
4441 suffix = strstr (info, "___XE");
4442 if (renaming_expr != NULL)
4443 *renaming_expr = suffix + 5;
4444 if (suffix == NULL || suffix == info)
4445 return ADA_NOT_RENAMING;
4446 if (len != NULL)
4447 *len = suffix - info;
4448 return kind;
a5ee536b
JB
4449}
4450
4451/* Compute the value of the given RENAMING_SYM, which is expected to
4452 be a symbol encoding a renaming expression. BLOCK is the block
4453 used to evaluate the renaming. */
52ce6436 4454
a5ee536b
JB
4455static struct value *
4456ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4457 const struct block *block)
a5ee536b 4458{
bbc13ae3 4459 const char *sym_name;
a5ee536b 4460
bbc13ae3 4461 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4462 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4463 return evaluate_expression (expr.get ());
a5ee536b 4464}
14f9c5c9 4465\f
d2e4a39e 4466
4c4b4cd2 4467 /* Evaluation: Function Calls */
14f9c5c9 4468
4c4b4cd2 4469/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4470 lvalues, and otherwise has the side-effect of allocating memory
4471 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4472
d2e4a39e 4473static struct value *
40bc484c 4474ensure_lval (struct value *val)
14f9c5c9 4475{
40bc484c
JB
4476 if (VALUE_LVAL (val) == not_lval
4477 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4478 {
df407dfe 4479 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4480 const CORE_ADDR addr =
4481 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4482
a84a8a0d 4483 VALUE_LVAL (val) = lval_memory;
1a088441 4484 set_value_address (val, addr);
40bc484c 4485 write_memory (addr, value_contents (val), len);
c3e5cd34 4486 }
14f9c5c9
AS
4487
4488 return val;
4489}
4490
4491/* Return the value ACTUAL, converted to be an appropriate value for a
4492 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4493 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4494 values not residing in memory, updating it as needed. */
14f9c5c9 4495
a93c0eb6 4496struct value *
40bc484c 4497ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4498{
df407dfe 4499 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4500 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4501 struct type *formal_target =
4502 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4503 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4504 struct type *actual_target =
4505 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4506 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4507
4c4b4cd2 4508 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4509 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4510 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4511 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4512 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4513 {
a84a8a0d 4514 struct value *result;
5b4ee69b 4515
14f9c5c9 4516 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4517 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4518 result = desc_data (actual);
cb923fcc 4519 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4520 {
4521 if (VALUE_LVAL (actual) != lval_memory)
4522 {
4523 struct value *val;
5b4ee69b 4524
df407dfe 4525 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4526 val = allocate_value (actual_type);
990a07ab 4527 memcpy ((char *) value_contents_raw (val),
0fd88904 4528 (char *) value_contents (actual),
4c4b4cd2 4529 TYPE_LENGTH (actual_type));
40bc484c 4530 actual = ensure_lval (val);
4c4b4cd2 4531 }
a84a8a0d 4532 result = value_addr (actual);
4c4b4cd2 4533 }
a84a8a0d
JB
4534 else
4535 return actual;
b1af9e97 4536 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4537 }
4538 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4539 return ada_value_ind (actual);
8344af1e
JB
4540 else if (ada_is_aligner_type (formal_type))
4541 {
4542 /* We need to turn this parameter into an aligner type
4543 as well. */
4544 struct value *aligner = allocate_value (formal_type);
4545 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4546
4547 value_assign_to_component (aligner, component, actual);
4548 return aligner;
4549 }
14f9c5c9
AS
4550
4551 return actual;
4552}
4553
438c98a1
JB
4554/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4555 type TYPE. This is usually an inefficient no-op except on some targets
4556 (such as AVR) where the representation of a pointer and an address
4557 differs. */
4558
4559static CORE_ADDR
4560value_pointer (struct value *value, struct type *type)
4561{
4562 struct gdbarch *gdbarch = get_type_arch (type);
4563 unsigned len = TYPE_LENGTH (type);
224c3ddb 4564 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4565 CORE_ADDR addr;
4566
4567 addr = value_address (value);
4568 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4569 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4570 return addr;
4571}
4572
14f9c5c9 4573
4c4b4cd2
PH
4574/* Push a descriptor of type TYPE for array value ARR on the stack at
4575 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4576 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4577 to-descriptor type rather than a descriptor type), a struct value *
4578 representing a pointer to this descriptor. */
14f9c5c9 4579
d2e4a39e 4580static struct value *
40bc484c 4581make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4582{
d2e4a39e
AS
4583 struct type *bounds_type = desc_bounds_type (type);
4584 struct type *desc_type = desc_base_type (type);
4585 struct value *descriptor = allocate_value (desc_type);
4586 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4587 int i;
d2e4a39e 4588
0963b4bd
MS
4589 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4590 i > 0; i -= 1)
14f9c5c9 4591 {
19f220c3
JK
4592 modify_field (value_type (bounds), value_contents_writeable (bounds),
4593 ada_array_bound (arr, i, 0),
4594 desc_bound_bitpos (bounds_type, i, 0),
4595 desc_bound_bitsize (bounds_type, i, 0));
4596 modify_field (value_type (bounds), value_contents_writeable (bounds),
4597 ada_array_bound (arr, i, 1),
4598 desc_bound_bitpos (bounds_type, i, 1),
4599 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4600 }
d2e4a39e 4601
40bc484c 4602 bounds = ensure_lval (bounds);
d2e4a39e 4603
19f220c3
JK
4604 modify_field (value_type (descriptor),
4605 value_contents_writeable (descriptor),
4606 value_pointer (ensure_lval (arr),
4607 TYPE_FIELD_TYPE (desc_type, 0)),
4608 fat_pntr_data_bitpos (desc_type),
4609 fat_pntr_data_bitsize (desc_type));
4610
4611 modify_field (value_type (descriptor),
4612 value_contents_writeable (descriptor),
4613 value_pointer (bounds,
4614 TYPE_FIELD_TYPE (desc_type, 1)),
4615 fat_pntr_bounds_bitpos (desc_type),
4616 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4617
40bc484c 4618 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4619
4620 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4621 return value_addr (descriptor);
4622 else
4623 return descriptor;
4624}
14f9c5c9 4625\f
3d9434b5
JB
4626 /* Symbol Cache Module */
4627
3d9434b5 4628/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4629 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4630 on the type of entity being printed, the cache can make it as much
4631 as an order of magnitude faster than without it.
4632
4633 The descriptive type DWARF extension has significantly reduced
4634 the need for this cache, at least when DWARF is being used. However,
4635 even in this case, some expensive name-based symbol searches are still
4636 sometimes necessary - to find an XVZ variable, mostly. */
4637
ee01b665 4638/* Initialize the contents of SYM_CACHE. */
3d9434b5 4639
ee01b665
JB
4640static void
4641ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4642{
4643 obstack_init (&sym_cache->cache_space);
4644 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4645}
3d9434b5 4646
ee01b665
JB
4647/* Free the memory used by SYM_CACHE. */
4648
4649static void
4650ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4651{
ee01b665
JB
4652 obstack_free (&sym_cache->cache_space, NULL);
4653 xfree (sym_cache);
4654}
3d9434b5 4655
ee01b665
JB
4656/* Return the symbol cache associated to the given program space PSPACE.
4657 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4658
ee01b665
JB
4659static struct ada_symbol_cache *
4660ada_get_symbol_cache (struct program_space *pspace)
4661{
4662 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4663
66c168ae 4664 if (pspace_data->sym_cache == NULL)
ee01b665 4665 {
66c168ae
JB
4666 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4667 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4668 }
4669
66c168ae 4670 return pspace_data->sym_cache;
ee01b665 4671}
3d9434b5
JB
4672
4673/* Clear all entries from the symbol cache. */
4674
4675static void
4676ada_clear_symbol_cache (void)
4677{
ee01b665
JB
4678 struct ada_symbol_cache *sym_cache
4679 = ada_get_symbol_cache (current_program_space);
4680
4681 obstack_free (&sym_cache->cache_space, NULL);
4682 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4683}
4684
fe978cb0 4685/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4686 Return it if found, or NULL otherwise. */
4687
4688static struct cache_entry **
fe978cb0 4689find_entry (const char *name, domain_enum domain)
3d9434b5 4690{
ee01b665
JB
4691 struct ada_symbol_cache *sym_cache
4692 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4693 int h = msymbol_hash (name) % HASH_SIZE;
4694 struct cache_entry **e;
4695
ee01b665 4696 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4697 {
fe978cb0 4698 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4699 return e;
4700 }
4701 return NULL;
4702}
4703
fe978cb0 4704/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4705 Return 1 if found, 0 otherwise.
4706
4707 If an entry was found and SYM is not NULL, set *SYM to the entry's
4708 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4709
96d887e8 4710static int
fe978cb0 4711lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4712 struct symbol **sym, const struct block **block)
96d887e8 4713{
fe978cb0 4714 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4715
4716 if (e == NULL)
4717 return 0;
4718 if (sym != NULL)
4719 *sym = (*e)->sym;
4720 if (block != NULL)
4721 *block = (*e)->block;
4722 return 1;
96d887e8
PH
4723}
4724
3d9434b5 4725/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4726 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4727
96d887e8 4728static void
fe978cb0 4729cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4730 const struct block *block)
96d887e8 4731{
ee01b665
JB
4732 struct ada_symbol_cache *sym_cache
4733 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4734 int h;
4735 char *copy;
4736 struct cache_entry *e;
4737
1994afbf
DE
4738 /* Symbols for builtin types don't have a block.
4739 For now don't cache such symbols. */
4740 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4741 return;
4742
3d9434b5
JB
4743 /* If the symbol is a local symbol, then do not cache it, as a search
4744 for that symbol depends on the context. To determine whether
4745 the symbol is local or not, we check the block where we found it
4746 against the global and static blocks of its associated symtab. */
4747 if (sym
08be3fe3 4748 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4749 GLOBAL_BLOCK) != block
08be3fe3 4750 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4751 STATIC_BLOCK) != block)
3d9434b5
JB
4752 return;
4753
4754 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4755 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4756 sizeof (*e));
4757 e->next = sym_cache->root[h];
4758 sym_cache->root[h] = e;
224c3ddb
SM
4759 e->name = copy
4760 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4761 strcpy (copy, name);
4762 e->sym = sym;
fe978cb0 4763 e->domain = domain;
3d9434b5 4764 e->block = block;
96d887e8 4765}
4c4b4cd2
PH
4766\f
4767 /* Symbol Lookup */
4768
b5ec771e
PA
4769/* Return the symbol name match type that should be used used when
4770 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4771
4772 LOOKUP_NAME is expected to be a symbol name after transformation
4773 for Ada lookups (see ada_name_for_lookup). */
4774
b5ec771e
PA
4775static symbol_name_match_type
4776name_match_type_from_name (const char *lookup_name)
c0431670 4777{
b5ec771e
PA
4778 return (strstr (lookup_name, "__") == NULL
4779 ? symbol_name_match_type::WILD
4780 : symbol_name_match_type::FULL);
c0431670
JB
4781}
4782
4c4b4cd2
PH
4783/* Return the result of a standard (literal, C-like) lookup of NAME in
4784 given DOMAIN, visible from lexical block BLOCK. */
4785
4786static struct symbol *
4787standard_lookup (const char *name, const struct block *block,
4788 domain_enum domain)
4789{
acbd605d 4790 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4791 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4792
d12307c1
PMR
4793 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4794 return sym.symbol;
2570f2b7 4795 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4796 cache_symbol (name, domain, sym.symbol, sym.block);
4797 return sym.symbol;
4c4b4cd2
PH
4798}
4799
4800
4801/* Non-zero iff there is at least one non-function/non-enumeral symbol
4802 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4803 since they contend in overloading in the same way. */
4804static int
d12307c1 4805is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4806{
4807 int i;
4808
4809 for (i = 0; i < n; i += 1)
d12307c1
PMR
4810 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4811 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4812 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4813 return 1;
4814
4815 return 0;
4816}
4817
4818/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4819 struct types. Otherwise, they may not. */
14f9c5c9
AS
4820
4821static int
d2e4a39e 4822equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4823{
d2e4a39e 4824 if (type0 == type1)
14f9c5c9 4825 return 1;
d2e4a39e 4826 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4827 || TYPE_CODE (type0) != TYPE_CODE (type1))
4828 return 0;
d2e4a39e 4829 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4830 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4831 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4832 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4833 return 1;
d2e4a39e 4834
14f9c5c9
AS
4835 return 0;
4836}
4837
4838/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4839 no more defined than that of SYM1. */
14f9c5c9
AS
4840
4841static int
d2e4a39e 4842lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4843{
4844 if (sym0 == sym1)
4845 return 1;
176620f1 4846 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4847 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4848 return 0;
4849
d2e4a39e 4850 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4851 {
4852 case LOC_UNDEF:
4853 return 1;
4854 case LOC_TYPEDEF:
4855 {
4c4b4cd2
PH
4856 struct type *type0 = SYMBOL_TYPE (sym0);
4857 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4858 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4859 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4860 int len0 = strlen (name0);
5b4ee69b 4861
4c4b4cd2
PH
4862 return
4863 TYPE_CODE (type0) == TYPE_CODE (type1)
4864 && (equiv_types (type0, type1)
4865 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4866 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4867 }
4868 case LOC_CONST:
4869 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4870 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4871 default:
4872 return 0;
14f9c5c9
AS
4873 }
4874}
4875
d12307c1 4876/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4877 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4878
4879static void
76a01679
JB
4880add_defn_to_vec (struct obstack *obstackp,
4881 struct symbol *sym,
f0c5f9b2 4882 const struct block *block)
14f9c5c9
AS
4883{
4884 int i;
d12307c1 4885 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4886
529cad9c
PH
4887 /* Do not try to complete stub types, as the debugger is probably
4888 already scanning all symbols matching a certain name at the
4889 time when this function is called. Trying to replace the stub
4890 type by its associated full type will cause us to restart a scan
4891 which may lead to an infinite recursion. Instead, the client
4892 collecting the matching symbols will end up collecting several
4893 matches, with at least one of them complete. It can then filter
4894 out the stub ones if needed. */
4895
4c4b4cd2
PH
4896 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4897 {
d12307c1 4898 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4899 return;
d12307c1 4900 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4901 {
d12307c1 4902 prevDefns[i].symbol = sym;
4c4b4cd2 4903 prevDefns[i].block = block;
4c4b4cd2 4904 return;
76a01679 4905 }
4c4b4cd2
PH
4906 }
4907
4908 {
d12307c1 4909 struct block_symbol info;
4c4b4cd2 4910
d12307c1 4911 info.symbol = sym;
4c4b4cd2 4912 info.block = block;
d12307c1 4913 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4914 }
4915}
4916
d12307c1
PMR
4917/* Number of block_symbol structures currently collected in current vector in
4918 OBSTACKP. */
4c4b4cd2 4919
76a01679
JB
4920static int
4921num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4922{
d12307c1 4923 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4924}
4925
d12307c1
PMR
4926/* Vector of block_symbol structures currently collected in current vector in
4927 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4928
d12307c1 4929static struct block_symbol *
4c4b4cd2
PH
4930defns_collected (struct obstack *obstackp, int finish)
4931{
4932 if (finish)
224c3ddb 4933 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4934 else
d12307c1 4935 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4936}
4937
7c7b6655
TT
4938/* Return a bound minimal symbol matching NAME according to Ada
4939 decoding rules. Returns an invalid symbol if there is no such
4940 minimal symbol. Names prefixed with "standard__" are handled
4941 specially: "standard__" is first stripped off, and only static and
4942 global symbols are searched. */
4c4b4cd2 4943
7c7b6655 4944struct bound_minimal_symbol
96d887e8 4945ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4946{
7c7b6655 4947 struct bound_minimal_symbol result;
4c4b4cd2 4948 struct objfile *objfile;
96d887e8 4949 struct minimal_symbol *msymbol;
4c4b4cd2 4950
7c7b6655
TT
4951 memset (&result, 0, sizeof (result));
4952
b5ec771e
PA
4953 symbol_name_match_type match_type = name_match_type_from_name (name);
4954 lookup_name_info lookup_name (name, match_type);
4955
4956 symbol_name_matcher_ftype *match_name
4957 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4958
96d887e8
PH
4959 ALL_MSYMBOLS (objfile, msymbol)
4960 {
b5ec771e 4961 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4962 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4963 {
4964 result.minsym = msymbol;
4965 result.objfile = objfile;
4966 break;
4967 }
96d887e8 4968 }
4c4b4cd2 4969
7c7b6655 4970 return result;
96d887e8 4971}
4c4b4cd2 4972
96d887e8
PH
4973/* For all subprograms that statically enclose the subprogram of the
4974 selected frame, add symbols matching identifier NAME in DOMAIN
4975 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4976 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4977 with a wildcard prefix. */
4c4b4cd2 4978
96d887e8
PH
4979static void
4980add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4981 const lookup_name_info &lookup_name,
4982 domain_enum domain)
96d887e8 4983{
96d887e8 4984}
14f9c5c9 4985
96d887e8
PH
4986/* True if TYPE is definitely an artificial type supplied to a symbol
4987 for which no debugging information was given in the symbol file. */
14f9c5c9 4988
96d887e8
PH
4989static int
4990is_nondebugging_type (struct type *type)
4991{
0d5cff50 4992 const char *name = ada_type_name (type);
5b4ee69b 4993
96d887e8
PH
4994 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4995}
4c4b4cd2 4996
8f17729f
JB
4997/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4998 that are deemed "identical" for practical purposes.
4999
5000 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5001 types and that their number of enumerals is identical (in other
5002 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5003
5004static int
5005ada_identical_enum_types_p (struct type *type1, struct type *type2)
5006{
5007 int i;
5008
5009 /* The heuristic we use here is fairly conservative. We consider
5010 that 2 enumerate types are identical if they have the same
5011 number of enumerals and that all enumerals have the same
5012 underlying value and name. */
5013
5014 /* All enums in the type should have an identical underlying value. */
5015 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5016 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5017 return 0;
5018
5019 /* All enumerals should also have the same name (modulo any numerical
5020 suffix). */
5021 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5022 {
0d5cff50
DE
5023 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5024 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5025 int len_1 = strlen (name_1);
5026 int len_2 = strlen (name_2);
5027
5028 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5029 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5030 if (len_1 != len_2
5031 || strncmp (TYPE_FIELD_NAME (type1, i),
5032 TYPE_FIELD_NAME (type2, i),
5033 len_1) != 0)
5034 return 0;
5035 }
5036
5037 return 1;
5038}
5039
5040/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5041 that are deemed "identical" for practical purposes. Sometimes,
5042 enumerals are not strictly identical, but their types are so similar
5043 that they can be considered identical.
5044
5045 For instance, consider the following code:
5046
5047 type Color is (Black, Red, Green, Blue, White);
5048 type RGB_Color is new Color range Red .. Blue;
5049
5050 Type RGB_Color is a subrange of an implicit type which is a copy
5051 of type Color. If we call that implicit type RGB_ColorB ("B" is
5052 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5053 As a result, when an expression references any of the enumeral
5054 by name (Eg. "print green"), the expression is technically
5055 ambiguous and the user should be asked to disambiguate. But
5056 doing so would only hinder the user, since it wouldn't matter
5057 what choice he makes, the outcome would always be the same.
5058 So, for practical purposes, we consider them as the same. */
5059
5060static int
d12307c1 5061symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5062{
5063 int i;
5064
5065 /* Before performing a thorough comparison check of each type,
5066 we perform a series of inexpensive checks. We expect that these
5067 checks will quickly fail in the vast majority of cases, and thus
5068 help prevent the unnecessary use of a more expensive comparison.
5069 Said comparison also expects us to make some of these checks
5070 (see ada_identical_enum_types_p). */
5071
5072 /* Quick check: All symbols should have an enum type. */
5073 for (i = 0; i < nsyms; i++)
d12307c1 5074 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5075 return 0;
5076
5077 /* Quick check: They should all have the same value. */
5078 for (i = 1; i < nsyms; i++)
d12307c1 5079 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5080 return 0;
5081
5082 /* Quick check: They should all have the same number of enumerals. */
5083 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5084 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5085 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5086 return 0;
5087
5088 /* All the sanity checks passed, so we might have a set of
5089 identical enumeration types. Perform a more complete
5090 comparison of the type of each symbol. */
5091 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5092 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5093 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5094 return 0;
5095
5096 return 1;
5097}
5098
96d887e8
PH
5099/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5100 duplicate other symbols in the list (The only case I know of where
5101 this happens is when object files containing stabs-in-ecoff are
5102 linked with files containing ordinary ecoff debugging symbols (or no
5103 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5104 Returns the number of items in the modified list. */
4c4b4cd2 5105
96d887e8 5106static int
d12307c1 5107remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5108{
5109 int i, j;
4c4b4cd2 5110
8f17729f
JB
5111 /* We should never be called with less than 2 symbols, as there
5112 cannot be any extra symbol in that case. But it's easy to
5113 handle, since we have nothing to do in that case. */
5114 if (nsyms < 2)
5115 return nsyms;
5116
96d887e8
PH
5117 i = 0;
5118 while (i < nsyms)
5119 {
a35ddb44 5120 int remove_p = 0;
339c13b6
JB
5121
5122 /* If two symbols have the same name and one of them is a stub type,
5123 the get rid of the stub. */
5124
d12307c1
PMR
5125 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5126 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5127 {
5128 for (j = 0; j < nsyms; j++)
5129 {
5130 if (j != i
d12307c1
PMR
5131 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5132 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5133 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5134 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5135 remove_p = 1;
339c13b6
JB
5136 }
5137 }
5138
5139 /* Two symbols with the same name, same class and same address
5140 should be identical. */
5141
d12307c1
PMR
5142 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5143 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5144 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5145 {
5146 for (j = 0; j < nsyms; j += 1)
5147 {
5148 if (i != j
d12307c1
PMR
5149 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5150 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5151 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5152 && SYMBOL_CLASS (syms[i].symbol)
5153 == SYMBOL_CLASS (syms[j].symbol)
5154 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5155 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5156 remove_p = 1;
4c4b4cd2 5157 }
4c4b4cd2 5158 }
339c13b6 5159
a35ddb44 5160 if (remove_p)
339c13b6
JB
5161 {
5162 for (j = i + 1; j < nsyms; j += 1)
5163 syms[j - 1] = syms[j];
5164 nsyms -= 1;
5165 }
5166
96d887e8 5167 i += 1;
14f9c5c9 5168 }
8f17729f
JB
5169
5170 /* If all the remaining symbols are identical enumerals, then
5171 just keep the first one and discard the rest.
5172
5173 Unlike what we did previously, we do not discard any entry
5174 unless they are ALL identical. This is because the symbol
5175 comparison is not a strict comparison, but rather a practical
5176 comparison. If all symbols are considered identical, then
5177 we can just go ahead and use the first one and discard the rest.
5178 But if we cannot reduce the list to a single element, we have
5179 to ask the user to disambiguate anyways. And if we have to
5180 present a multiple-choice menu, it's less confusing if the list
5181 isn't missing some choices that were identical and yet distinct. */
5182 if (symbols_are_identical_enums (syms, nsyms))
5183 nsyms = 1;
5184
96d887e8 5185 return nsyms;
14f9c5c9
AS
5186}
5187
96d887e8
PH
5188/* Given a type that corresponds to a renaming entity, use the type name
5189 to extract the scope (package name or function name, fully qualified,
5190 and following the GNAT encoding convention) where this renaming has been
5191 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5192
96d887e8
PH
5193static char *
5194xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5195{
96d887e8 5196 /* The renaming types adhere to the following convention:
0963b4bd 5197 <scope>__<rename>___<XR extension>.
96d887e8
PH
5198 So, to extract the scope, we search for the "___XR" extension,
5199 and then backtrack until we find the first "__". */
76a01679 5200
96d887e8 5201 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5202 const char *suffix = strstr (name, "___XR");
5203 const char *last;
96d887e8
PH
5204 int scope_len;
5205 char *scope;
14f9c5c9 5206
96d887e8
PH
5207 /* Now, backtrack a bit until we find the first "__". Start looking
5208 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5209
96d887e8
PH
5210 for (last = suffix - 3; last > name; last--)
5211 if (last[0] == '_' && last[1] == '_')
5212 break;
76a01679 5213
96d887e8 5214 /* Make a copy of scope and return it. */
14f9c5c9 5215
96d887e8
PH
5216 scope_len = last - name;
5217 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5218
96d887e8
PH
5219 strncpy (scope, name, scope_len);
5220 scope[scope_len] = '\0';
4c4b4cd2 5221
96d887e8 5222 return scope;
4c4b4cd2
PH
5223}
5224
96d887e8 5225/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5226
96d887e8
PH
5227static int
5228is_package_name (const char *name)
4c4b4cd2 5229{
96d887e8
PH
5230 /* Here, We take advantage of the fact that no symbols are generated
5231 for packages, while symbols are generated for each function.
5232 So the condition for NAME represent a package becomes equivalent
5233 to NAME not existing in our list of symbols. There is only one
5234 small complication with library-level functions (see below). */
4c4b4cd2 5235
96d887e8 5236 char *fun_name;
76a01679 5237
96d887e8
PH
5238 /* If it is a function that has not been defined at library level,
5239 then we should be able to look it up in the symbols. */
5240 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5241 return 0;
14f9c5c9 5242
96d887e8
PH
5243 /* Library-level function names start with "_ada_". See if function
5244 "_ada_" followed by NAME can be found. */
14f9c5c9 5245
96d887e8 5246 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5247 functions names cannot contain "__" in them. */
96d887e8
PH
5248 if (strstr (name, "__") != NULL)
5249 return 0;
4c4b4cd2 5250
b435e160 5251 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5252
96d887e8
PH
5253 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5254}
14f9c5c9 5255
96d887e8 5256/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5257 not visible from FUNCTION_NAME. */
14f9c5c9 5258
96d887e8 5259static int
0d5cff50 5260old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5261{
aeb5907d 5262 char *scope;
1509e573 5263 struct cleanup *old_chain;
aeb5907d
JB
5264
5265 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5266 return 0;
5267
5268 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5269 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5270
96d887e8
PH
5271 /* If the rename has been defined in a package, then it is visible. */
5272 if (is_package_name (scope))
1509e573
JB
5273 {
5274 do_cleanups (old_chain);
5275 return 0;
5276 }
14f9c5c9 5277
96d887e8
PH
5278 /* Check that the rename is in the current function scope by checking
5279 that its name starts with SCOPE. */
76a01679 5280
96d887e8
PH
5281 /* If the function name starts with "_ada_", it means that it is
5282 a library-level function. Strip this prefix before doing the
5283 comparison, as the encoding for the renaming does not contain
5284 this prefix. */
61012eef 5285 if (startswith (function_name, "_ada_"))
96d887e8 5286 function_name += 5;
f26caa11 5287
1509e573 5288 {
61012eef 5289 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5290
5291 do_cleanups (old_chain);
5292 return is_invisible;
5293 }
f26caa11
PH
5294}
5295
aeb5907d
JB
5296/* Remove entries from SYMS that corresponds to a renaming entity that
5297 is not visible from the function associated with CURRENT_BLOCK or
5298 that is superfluous due to the presence of more specific renaming
5299 information. Places surviving symbols in the initial entries of
5300 SYMS and returns the number of surviving symbols.
96d887e8
PH
5301
5302 Rationale:
aeb5907d
JB
5303 First, in cases where an object renaming is implemented as a
5304 reference variable, GNAT may produce both the actual reference
5305 variable and the renaming encoding. In this case, we discard the
5306 latter.
5307
5308 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5309 entity. Unfortunately, STABS currently does not support the definition
5310 of types that are local to a given lexical block, so all renamings types
5311 are emitted at library level. As a consequence, if an application
5312 contains two renaming entities using the same name, and a user tries to
5313 print the value of one of these entities, the result of the ada symbol
5314 lookup will also contain the wrong renaming type.
f26caa11 5315
96d887e8
PH
5316 This function partially covers for this limitation by attempting to
5317 remove from the SYMS list renaming symbols that should be visible
5318 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5319 method with the current information available. The implementation
5320 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5321
5322 - When the user tries to print a rename in a function while there
5323 is another rename entity defined in a package: Normally, the
5324 rename in the function has precedence over the rename in the
5325 package, so the latter should be removed from the list. This is
5326 currently not the case.
5327
5328 - This function will incorrectly remove valid renames if
5329 the CURRENT_BLOCK corresponds to a function which symbol name
5330 has been changed by an "Export" pragma. As a consequence,
5331 the user will be unable to print such rename entities. */
4c4b4cd2 5332
14f9c5c9 5333static int
d12307c1 5334remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5335 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5336{
5337 struct symbol *current_function;
0d5cff50 5338 const char *current_function_name;
4c4b4cd2 5339 int i;
aeb5907d
JB
5340 int is_new_style_renaming;
5341
5342 /* If there is both a renaming foo___XR... encoded as a variable and
5343 a simple variable foo in the same block, discard the latter.
0963b4bd 5344 First, zero out such symbols, then compress. */
aeb5907d
JB
5345 is_new_style_renaming = 0;
5346 for (i = 0; i < nsyms; i += 1)
5347 {
d12307c1 5348 struct symbol *sym = syms[i].symbol;
270140bd 5349 const struct block *block = syms[i].block;
aeb5907d
JB
5350 const char *name;
5351 const char *suffix;
5352
5353 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5354 continue;
5355 name = SYMBOL_LINKAGE_NAME (sym);
5356 suffix = strstr (name, "___XR");
5357
5358 if (suffix != NULL)
5359 {
5360 int name_len = suffix - name;
5361 int j;
5b4ee69b 5362
aeb5907d
JB
5363 is_new_style_renaming = 1;
5364 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5365 if (i != j && syms[j].symbol != NULL
5366 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5367 name_len) == 0
5368 && block == syms[j].block)
d12307c1 5369 syms[j].symbol = NULL;
aeb5907d
JB
5370 }
5371 }
5372 if (is_new_style_renaming)
5373 {
5374 int j, k;
5375
5376 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5377 if (syms[j].symbol != NULL)
aeb5907d
JB
5378 {
5379 syms[k] = syms[j];
5380 k += 1;
5381 }
5382 return k;
5383 }
4c4b4cd2
PH
5384
5385 /* Extract the function name associated to CURRENT_BLOCK.
5386 Abort if unable to do so. */
76a01679 5387
4c4b4cd2
PH
5388 if (current_block == NULL)
5389 return nsyms;
76a01679 5390
7f0df278 5391 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5392 if (current_function == NULL)
5393 return nsyms;
5394
5395 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5396 if (current_function_name == NULL)
5397 return nsyms;
5398
5399 /* Check each of the symbols, and remove it from the list if it is
5400 a type corresponding to a renaming that is out of the scope of
5401 the current block. */
5402
5403 i = 0;
5404 while (i < nsyms)
5405 {
d12307c1 5406 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5407 == ADA_OBJECT_RENAMING
d12307c1 5408 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5409 {
5410 int j;
5b4ee69b 5411
aeb5907d 5412 for (j = i + 1; j < nsyms; j += 1)
76a01679 5413 syms[j - 1] = syms[j];
4c4b4cd2
PH
5414 nsyms -= 1;
5415 }
5416 else
5417 i += 1;
5418 }
5419
5420 return nsyms;
5421}
5422
339c13b6
JB
5423/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5424 whose name and domain match NAME and DOMAIN respectively.
5425 If no match was found, then extend the search to "enclosing"
5426 routines (in other words, if we're inside a nested function,
5427 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5428 If WILD_MATCH_P is nonzero, perform the naming matching in
5429 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5430
5431 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5432
5433static void
b5ec771e
PA
5434ada_add_local_symbols (struct obstack *obstackp,
5435 const lookup_name_info &lookup_name,
5436 const struct block *block, domain_enum domain)
339c13b6
JB
5437{
5438 int block_depth = 0;
5439
5440 while (block != NULL)
5441 {
5442 block_depth += 1;
b5ec771e 5443 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5444
5445 /* If we found a non-function match, assume that's the one. */
5446 if (is_nonfunction (defns_collected (obstackp, 0),
5447 num_defns_collected (obstackp)))
5448 return;
5449
5450 block = BLOCK_SUPERBLOCK (block);
5451 }
5452
5453 /* If no luck so far, try to find NAME as a local symbol in some lexically
5454 enclosing subprogram. */
5455 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5456 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5457}
5458
ccefe4c4 5459/* An object of this type is used as the user_data argument when
40658b94 5460 calling the map_matching_symbols method. */
ccefe4c4 5461
40658b94 5462struct match_data
ccefe4c4 5463{
40658b94 5464 struct objfile *objfile;
ccefe4c4 5465 struct obstack *obstackp;
40658b94
PH
5466 struct symbol *arg_sym;
5467 int found_sym;
ccefe4c4
TT
5468};
5469
22cee43f 5470/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5471 to a list of symbols. DATA0 is a pointer to a struct match_data *
5472 containing the obstack that collects the symbol list, the file that SYM
5473 must come from, a flag indicating whether a non-argument symbol has
5474 been found in the current block, and the last argument symbol
5475 passed in SYM within the current block (if any). When SYM is null,
5476 marking the end of a block, the argument symbol is added if no
5477 other has been found. */
ccefe4c4 5478
40658b94
PH
5479static int
5480aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5481{
40658b94
PH
5482 struct match_data *data = (struct match_data *) data0;
5483
5484 if (sym == NULL)
5485 {
5486 if (!data->found_sym && data->arg_sym != NULL)
5487 add_defn_to_vec (data->obstackp,
5488 fixup_symbol_section (data->arg_sym, data->objfile),
5489 block);
5490 data->found_sym = 0;
5491 data->arg_sym = NULL;
5492 }
5493 else
5494 {
5495 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5496 return 0;
5497 else if (SYMBOL_IS_ARGUMENT (sym))
5498 data->arg_sym = sym;
5499 else
5500 {
5501 data->found_sym = 1;
5502 add_defn_to_vec (data->obstackp,
5503 fixup_symbol_section (sym, data->objfile),
5504 block);
5505 }
5506 }
5507 return 0;
5508}
5509
b5ec771e
PA
5510/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5511 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5512 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5513
5514static int
5515ada_add_block_renamings (struct obstack *obstackp,
5516 const struct block *block,
b5ec771e
PA
5517 const lookup_name_info &lookup_name,
5518 domain_enum domain)
22cee43f
PMR
5519{
5520 struct using_direct *renaming;
5521 int defns_mark = num_defns_collected (obstackp);
5522
b5ec771e
PA
5523 symbol_name_matcher_ftype *name_match
5524 = ada_get_symbol_name_matcher (lookup_name);
5525
22cee43f
PMR
5526 for (renaming = block_using (block);
5527 renaming != NULL;
5528 renaming = renaming->next)
5529 {
5530 const char *r_name;
22cee43f
PMR
5531
5532 /* Avoid infinite recursions: skip this renaming if we are actually
5533 already traversing it.
5534
5535 Currently, symbol lookup in Ada don't use the namespace machinery from
5536 C++/Fortran support: skip namespace imports that use them. */
5537 if (renaming->searched
5538 || (renaming->import_src != NULL
5539 && renaming->import_src[0] != '\0')
5540 || (renaming->import_dest != NULL
5541 && renaming->import_dest[0] != '\0'))
5542 continue;
5543 renaming->searched = 1;
5544
5545 /* TODO: here, we perform another name-based symbol lookup, which can
5546 pull its own multiple overloads. In theory, we should be able to do
5547 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5548 not a simple name. But in order to do this, we would need to enhance
5549 the DWARF reader to associate a symbol to this renaming, instead of a
5550 name. So, for now, we do something simpler: re-use the C++/Fortran
5551 namespace machinery. */
5552 r_name = (renaming->alias != NULL
5553 ? renaming->alias
5554 : renaming->declaration);
b5ec771e
PA
5555 if (name_match (r_name, lookup_name, NULL))
5556 {
5557 lookup_name_info decl_lookup_name (renaming->declaration,
5558 lookup_name.match_type ());
5559 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5560 1, NULL);
5561 }
22cee43f
PMR
5562 renaming->searched = 0;
5563 }
5564 return num_defns_collected (obstackp) != defns_mark;
5565}
5566
db230ce3
JB
5567/* Implements compare_names, but only applying the comparision using
5568 the given CASING. */
5b4ee69b 5569
40658b94 5570static int
db230ce3
JB
5571compare_names_with_case (const char *string1, const char *string2,
5572 enum case_sensitivity casing)
40658b94
PH
5573{
5574 while (*string1 != '\0' && *string2 != '\0')
5575 {
db230ce3
JB
5576 char c1, c2;
5577
40658b94
PH
5578 if (isspace (*string1) || isspace (*string2))
5579 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5580
5581 if (casing == case_sensitive_off)
5582 {
5583 c1 = tolower (*string1);
5584 c2 = tolower (*string2);
5585 }
5586 else
5587 {
5588 c1 = *string1;
5589 c2 = *string2;
5590 }
5591 if (c1 != c2)
40658b94 5592 break;
db230ce3 5593
40658b94
PH
5594 string1 += 1;
5595 string2 += 1;
5596 }
db230ce3 5597
40658b94
PH
5598 switch (*string1)
5599 {
5600 case '(':
5601 return strcmp_iw_ordered (string1, string2);
5602 case '_':
5603 if (*string2 == '\0')
5604 {
052874e8 5605 if (is_name_suffix (string1))
40658b94
PH
5606 return 0;
5607 else
1a1d5513 5608 return 1;
40658b94 5609 }
dbb8534f 5610 /* FALLTHROUGH */
40658b94
PH
5611 default:
5612 if (*string2 == '(')
5613 return strcmp_iw_ordered (string1, string2);
5614 else
db230ce3
JB
5615 {
5616 if (casing == case_sensitive_off)
5617 return tolower (*string1) - tolower (*string2);
5618 else
5619 return *string1 - *string2;
5620 }
40658b94 5621 }
ccefe4c4
TT
5622}
5623
db230ce3
JB
5624/* Compare STRING1 to STRING2, with results as for strcmp.
5625 Compatible with strcmp_iw_ordered in that...
5626
5627 strcmp_iw_ordered (STRING1, STRING2) <= 0
5628
5629 ... implies...
5630
5631 compare_names (STRING1, STRING2) <= 0
5632
5633 (they may differ as to what symbols compare equal). */
5634
5635static int
5636compare_names (const char *string1, const char *string2)
5637{
5638 int result;
5639
5640 /* Similar to what strcmp_iw_ordered does, we need to perform
5641 a case-insensitive comparison first, and only resort to
5642 a second, case-sensitive, comparison if the first one was
5643 not sufficient to differentiate the two strings. */
5644
5645 result = compare_names_with_case (string1, string2, case_sensitive_off);
5646 if (result == 0)
5647 result = compare_names_with_case (string1, string2, case_sensitive_on);
5648
5649 return result;
5650}
5651
b5ec771e
PA
5652/* Convenience function to get at the Ada encoded lookup name for
5653 LOOKUP_NAME, as a C string. */
5654
5655static const char *
5656ada_lookup_name (const lookup_name_info &lookup_name)
5657{
5658 return lookup_name.ada ().lookup_name ().c_str ();
5659}
5660
339c13b6 5661/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5662 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5663 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5664 symbols otherwise. */
339c13b6
JB
5665
5666static void
b5ec771e
PA
5667add_nonlocal_symbols (struct obstack *obstackp,
5668 const lookup_name_info &lookup_name,
5669 domain_enum domain, int global)
339c13b6
JB
5670{
5671 struct objfile *objfile;
22cee43f 5672 struct compunit_symtab *cu;
40658b94 5673 struct match_data data;
339c13b6 5674
6475f2fe 5675 memset (&data, 0, sizeof data);
ccefe4c4 5676 data.obstackp = obstackp;
339c13b6 5677
b5ec771e
PA
5678 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5679
ccefe4c4 5680 ALL_OBJFILES (objfile)
40658b94
PH
5681 {
5682 data.objfile = objfile;
5683
5684 if (is_wild_match)
b5ec771e
PA
5685 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5686 domain, global,
4186eb54 5687 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5688 symbol_name_match_type::WILD,
5689 NULL);
40658b94 5690 else
b5ec771e
PA
5691 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5692 domain, global,
4186eb54 5693 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5694 symbol_name_match_type::FULL,
5695 compare_names);
22cee43f
PMR
5696
5697 ALL_OBJFILE_COMPUNITS (objfile, cu)
5698 {
5699 const struct block *global_block
5700 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5701
b5ec771e
PA
5702 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5703 domain))
22cee43f
PMR
5704 data.found_sym = 1;
5705 }
40658b94
PH
5706 }
5707
5708 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5709 {
b5ec771e
PA
5710 const char *name = ada_lookup_name (lookup_name);
5711 std::string name1 = std::string ("<_ada_") + name + '>';
5712
40658b94
PH
5713 ALL_OBJFILES (objfile)
5714 {
40658b94 5715 data.objfile = objfile;
b5ec771e
PA
5716 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5717 domain, global,
0963b4bd
MS
5718 aux_add_nonlocal_symbols,
5719 &data,
b5ec771e
PA
5720 symbol_name_match_type::FULL,
5721 compare_names);
40658b94
PH
5722 }
5723 }
339c13b6
JB
5724}
5725
b5ec771e
PA
5726/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5727 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5728 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5729
22cee43f
PMR
5730 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5731 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5732 is the one match returned (no other matches in that or
d9680e73 5733 enclosing blocks is returned). If there are any matches in or
22cee43f 5734 surrounding BLOCK, then these alone are returned.
4eeaa230 5735
b5ec771e
PA
5736 Names prefixed with "standard__" are handled specially:
5737 "standard__" is first stripped off (by the lookup_name
5738 constructor), and only static and global symbols are searched.
14f9c5c9 5739
22cee43f
PMR
5740 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5741 to lookup global symbols. */
5742
5743static void
5744ada_add_all_symbols (struct obstack *obstackp,
5745 const struct block *block,
b5ec771e 5746 const lookup_name_info &lookup_name,
22cee43f
PMR
5747 domain_enum domain,
5748 int full_search,
5749 int *made_global_lookup_p)
14f9c5c9
AS
5750{
5751 struct symbol *sym;
14f9c5c9 5752
22cee43f
PMR
5753 if (made_global_lookup_p)
5754 *made_global_lookup_p = 0;
339c13b6
JB
5755
5756 /* Special case: If the user specifies a symbol name inside package
5757 Standard, do a non-wild matching of the symbol name without
5758 the "standard__" prefix. This was primarily introduced in order
5759 to allow the user to specifically access the standard exceptions
5760 using, for instance, Standard.Constraint_Error when Constraint_Error
5761 is ambiguous (due to the user defining its own Constraint_Error
5762 entity inside its program). */
b5ec771e
PA
5763 if (lookup_name.ada ().standard_p ())
5764 block = NULL;
4c4b4cd2 5765
339c13b6 5766 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5767
4eeaa230
DE
5768 if (block != NULL)
5769 {
5770 if (full_search)
b5ec771e 5771 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5772 else
5773 {
5774 /* In the !full_search case we're are being called by
5775 ada_iterate_over_symbols, and we don't want to search
5776 superblocks. */
b5ec771e 5777 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5778 }
22cee43f
PMR
5779 if (num_defns_collected (obstackp) > 0 || !full_search)
5780 return;
4eeaa230 5781 }
d2e4a39e 5782
339c13b6
JB
5783 /* No non-global symbols found. Check our cache to see if we have
5784 already performed this search before. If we have, then return
5785 the same result. */
5786
b5ec771e
PA
5787 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5788 domain, &sym, &block))
4c4b4cd2
PH
5789 {
5790 if (sym != NULL)
b5ec771e 5791 add_defn_to_vec (obstackp, sym, block);
22cee43f 5792 return;
4c4b4cd2 5793 }
14f9c5c9 5794
22cee43f
PMR
5795 if (made_global_lookup_p)
5796 *made_global_lookup_p = 1;
b1eedac9 5797
339c13b6
JB
5798 /* Search symbols from all global blocks. */
5799
b5ec771e 5800 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5801
4c4b4cd2 5802 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5803 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5804
22cee43f 5805 if (num_defns_collected (obstackp) == 0)
b5ec771e 5806 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5807}
5808
b5ec771e
PA
5809/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5810 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5811 matches.
ec6a20c2 5812 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
22cee43f 5813 indicating the symbols found and the blocks and symbol tables (if
ec6a20c2
JB
5814 any) in which they were found. This vector should be freed when
5815 no longer useful.
22cee43f
PMR
5816
5817 When full_search is non-zero, any non-function/non-enumeral
5818 symbol match within the nest of blocks whose innermost member is BLOCK,
5819 is the one match returned (no other matches in that or
5820 enclosing blocks is returned). If there are any matches in or
5821 surrounding BLOCK, then these alone are returned.
5822
5823 Names prefixed with "standard__" are handled specially: "standard__"
5824 is first stripped off, and only static and global symbols are searched. */
5825
5826static int
b5ec771e
PA
5827ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5828 const struct block *block,
22cee43f
PMR
5829 domain_enum domain,
5830 struct block_symbol **results,
5831 int full_search)
5832{
22cee43f
PMR
5833 int syms_from_global_search;
5834 int ndefns;
ec6a20c2
JB
5835 int results_size;
5836 auto_obstack obstack;
22cee43f 5837
ec6a20c2 5838 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5839 domain, full_search, &syms_from_global_search);
14f9c5c9 5840
ec6a20c2
JB
5841 ndefns = num_defns_collected (&obstack);
5842
5843 results_size = obstack_object_size (&obstack);
5844 *results = (struct block_symbol *) malloc (results_size);
5845 memcpy (*results, defns_collected (&obstack, 1), results_size);
4c4b4cd2
PH
5846
5847 ndefns = remove_extra_symbols (*results, ndefns);
5848
b1eedac9 5849 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5850 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5851
b1eedac9 5852 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5853 cache_symbol (ada_lookup_name (lookup_name), domain,
5854 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5855
22cee43f 5856 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
ec6a20c2 5857
14f9c5c9
AS
5858 return ndefns;
5859}
5860
b5ec771e 5861/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
4eeaa230 5862 in global scopes, returning the number of matches, and setting *RESULTS
ec6a20c2
JB
5863 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5864 vector should be freed when no longer useful.
5865
4eeaa230
DE
5866 See ada_lookup_symbol_list_worker for further details. */
5867
5868int
b5ec771e 5869ada_lookup_symbol_list (const char *name, const struct block *block,
d12307c1 5870 domain_enum domain, struct block_symbol **results)
4eeaa230 5871{
b5ec771e
PA
5872 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5873 lookup_name_info lookup_name (name, name_match_type);
5874
5875 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5876}
5877
5878/* Implementation of the la_iterate_over_symbols method. */
5879
5880static void
14bc53a8 5881ada_iterate_over_symbols
b5ec771e
PA
5882 (const struct block *block, const lookup_name_info &name,
5883 domain_enum domain,
14bc53a8 5884 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5885{
5886 int ndefs, i;
d12307c1 5887 struct block_symbol *results;
ec6a20c2 5888 struct cleanup *old_chain;
4eeaa230
DE
5889
5890 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2
JB
5891 old_chain = make_cleanup (xfree, results);
5892
4eeaa230
DE
5893 for (i = 0; i < ndefs; ++i)
5894 {
14bc53a8 5895 if (!callback (results[i].symbol))
4eeaa230
DE
5896 break;
5897 }
ec6a20c2
JB
5898
5899 do_cleanups (old_chain);
4eeaa230
DE
5900}
5901
4e5c77fe
JB
5902/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5903 to 1, but choosing the first symbol found if there are multiple
5904 choices.
5905
5e2336be
JB
5906 The result is stored in *INFO, which must be non-NULL.
5907 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5908
5909void
5910ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5911 domain_enum domain,
d12307c1 5912 struct block_symbol *info)
14f9c5c9 5913{
b5ec771e
PA
5914 /* Since we already have an encoded name, wrap it in '<>' to force a
5915 verbatim match. Otherwise, if the name happens to not look like
5916 an encoded name (because it doesn't include a "__"),
5917 ada_lookup_name_info would re-encode/fold it again, and that
5918 would e.g., incorrectly lowercase object renaming names like
5919 "R28b" -> "r28b". */
5920 std::string verbatim = std::string ("<") + name + '>';
5921
5e2336be 5922 gdb_assert (info != NULL);
f98fc17b 5923 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5924}
aeb5907d
JB
5925
5926/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5927 scope and in global scopes, or NULL if none. NAME is folded and
5928 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5929 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5930 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5931
d12307c1 5932struct block_symbol
aeb5907d 5933ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5934 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5935{
5936 if (is_a_field_of_this != NULL)
5937 *is_a_field_of_this = 0;
5938
f98fc17b
PA
5939 struct block_symbol *candidates;
5940 int n_candidates;
5941 struct cleanup *old_chain;
5942
5943 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5944 old_chain = make_cleanup (xfree, candidates);
5945
5946 if (n_candidates == 0)
5947 {
5948 do_cleanups (old_chain);
5949 return {};
5950 }
5951
5952 block_symbol info = candidates[0];
5953 info.symbol = fixup_symbol_section (info.symbol, NULL);
5954
5955 do_cleanups (old_chain);
5956
d12307c1 5957 return info;
4c4b4cd2 5958}
14f9c5c9 5959
d12307c1 5960static struct block_symbol
f606139a
DE
5961ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5962 const char *name,
76a01679 5963 const struct block *block,
21b556f4 5964 const domain_enum domain)
4c4b4cd2 5965{
d12307c1 5966 struct block_symbol sym;
04dccad0
JB
5967
5968 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5969 if (sym.symbol != NULL)
04dccad0
JB
5970 return sym;
5971
5972 /* If we haven't found a match at this point, try the primitive
5973 types. In other languages, this search is performed before
5974 searching for global symbols in order to short-circuit that
5975 global-symbol search if it happens that the name corresponds
5976 to a primitive type. But we cannot do the same in Ada, because
5977 it is perfectly legitimate for a program to declare a type which
5978 has the same name as a standard type. If looking up a type in
5979 that situation, we have traditionally ignored the primitive type
5980 in favor of user-defined types. This is why, unlike most other
5981 languages, we search the primitive types this late and only after
5982 having searched the global symbols without success. */
5983
5984 if (domain == VAR_DOMAIN)
5985 {
5986 struct gdbarch *gdbarch;
5987
5988 if (block == NULL)
5989 gdbarch = target_gdbarch ();
5990 else
5991 gdbarch = block_gdbarch (block);
d12307c1
PMR
5992 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5993 if (sym.symbol != NULL)
04dccad0
JB
5994 return sym;
5995 }
5996
d12307c1 5997 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5998}
5999
6000
4c4b4cd2
PH
6001/* True iff STR is a possible encoded suffix of a normal Ada name
6002 that is to be ignored for matching purposes. Suffixes of parallel
6003 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 6004 are given by any of the regular expressions:
4c4b4cd2 6005
babe1480
JB
6006 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
6007 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 6008 TKB [subprogram suffix for task bodies]
babe1480 6009 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 6010 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
6011
6012 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6013 match is performed. This sequence is used to differentiate homonyms,
6014 is an optional part of a valid name suffix. */
4c4b4cd2 6015
14f9c5c9 6016static int
d2e4a39e 6017is_name_suffix (const char *str)
14f9c5c9
AS
6018{
6019 int k;
4c4b4cd2
PH
6020 const char *matching;
6021 const int len = strlen (str);
6022
babe1480
JB
6023 /* Skip optional leading __[0-9]+. */
6024
4c4b4cd2
PH
6025 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6026 {
babe1480
JB
6027 str += 3;
6028 while (isdigit (str[0]))
6029 str += 1;
4c4b4cd2 6030 }
babe1480
JB
6031
6032 /* [.$][0-9]+ */
4c4b4cd2 6033
babe1480 6034 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6035 {
babe1480 6036 matching = str + 1;
4c4b4cd2
PH
6037 while (isdigit (matching[0]))
6038 matching += 1;
6039 if (matching[0] == '\0')
6040 return 1;
6041 }
6042
6043 /* ___[0-9]+ */
babe1480 6044
4c4b4cd2
PH
6045 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6046 {
6047 matching = str + 3;
6048 while (isdigit (matching[0]))
6049 matching += 1;
6050 if (matching[0] == '\0')
6051 return 1;
6052 }
6053
9ac7f98e
JB
6054 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6055
6056 if (strcmp (str, "TKB") == 0)
6057 return 1;
6058
529cad9c
PH
6059#if 0
6060 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6061 with a N at the end. Unfortunately, the compiler uses the same
6062 convention for other internal types it creates. So treating
529cad9c 6063 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6064 some regressions. For instance, consider the case of an enumerated
6065 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6066 name ends with N.
6067 Having a single character like this as a suffix carrying some
0963b4bd 6068 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6069 to be something like "_N" instead. In the meantime, do not do
6070 the following check. */
6071 /* Protected Object Subprograms */
6072 if (len == 1 && str [0] == 'N')
6073 return 1;
6074#endif
6075
6076 /* _E[0-9]+[bs]$ */
6077 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6078 {
6079 matching = str + 3;
6080 while (isdigit (matching[0]))
6081 matching += 1;
6082 if ((matching[0] == 'b' || matching[0] == 's')
6083 && matching [1] == '\0')
6084 return 1;
6085 }
6086
4c4b4cd2
PH
6087 /* ??? We should not modify STR directly, as we are doing below. This
6088 is fine in this case, but may become problematic later if we find
6089 that this alternative did not work, and want to try matching
6090 another one from the begining of STR. Since we modified it, we
6091 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6092 if (str[0] == 'X')
6093 {
6094 str += 1;
d2e4a39e 6095 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6096 {
6097 if (str[0] != 'n' && str[0] != 'b')
6098 return 0;
6099 str += 1;
6100 }
14f9c5c9 6101 }
babe1480 6102
14f9c5c9
AS
6103 if (str[0] == '\000')
6104 return 1;
babe1480 6105
d2e4a39e 6106 if (str[0] == '_')
14f9c5c9
AS
6107 {
6108 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6109 return 0;
d2e4a39e 6110 if (str[2] == '_')
4c4b4cd2 6111 {
61ee279c
PH
6112 if (strcmp (str + 3, "JM") == 0)
6113 return 1;
6114 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6115 the LJM suffix in favor of the JM one. But we will
6116 still accept LJM as a valid suffix for a reasonable
6117 amount of time, just to allow ourselves to debug programs
6118 compiled using an older version of GNAT. */
4c4b4cd2
PH
6119 if (strcmp (str + 3, "LJM") == 0)
6120 return 1;
6121 if (str[3] != 'X')
6122 return 0;
1265e4aa
JB
6123 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6124 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6125 return 1;
6126 if (str[4] == 'R' && str[5] != 'T')
6127 return 1;
6128 return 0;
6129 }
6130 if (!isdigit (str[2]))
6131 return 0;
6132 for (k = 3; str[k] != '\0'; k += 1)
6133 if (!isdigit (str[k]) && str[k] != '_')
6134 return 0;
14f9c5c9
AS
6135 return 1;
6136 }
4c4b4cd2 6137 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6138 {
4c4b4cd2
PH
6139 for (k = 2; str[k] != '\0'; k += 1)
6140 if (!isdigit (str[k]) && str[k] != '_')
6141 return 0;
14f9c5c9
AS
6142 return 1;
6143 }
6144 return 0;
6145}
d2e4a39e 6146
aeb5907d
JB
6147/* Return non-zero if the string starting at NAME and ending before
6148 NAME_END contains no capital letters. */
529cad9c
PH
6149
6150static int
6151is_valid_name_for_wild_match (const char *name0)
6152{
6153 const char *decoded_name = ada_decode (name0);
6154 int i;
6155
5823c3ef
JB
6156 /* If the decoded name starts with an angle bracket, it means that
6157 NAME0 does not follow the GNAT encoding format. It should then
6158 not be allowed as a possible wild match. */
6159 if (decoded_name[0] == '<')
6160 return 0;
6161
529cad9c
PH
6162 for (i=0; decoded_name[i] != '\0'; i++)
6163 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6164 return 0;
6165
6166 return 1;
6167}
6168
73589123
PH
6169/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6170 that could start a simple name. Assumes that *NAMEP points into
6171 the string beginning at NAME0. */
4c4b4cd2 6172
14f9c5c9 6173static int
73589123 6174advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6175{
73589123 6176 const char *name = *namep;
5b4ee69b 6177
5823c3ef 6178 while (1)
14f9c5c9 6179 {
aa27d0b3 6180 int t0, t1;
73589123
PH
6181
6182 t0 = *name;
6183 if (t0 == '_')
6184 {
6185 t1 = name[1];
6186 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6187 {
6188 name += 1;
61012eef 6189 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6190 break;
6191 else
6192 name += 1;
6193 }
aa27d0b3
JB
6194 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6195 || name[2] == target0))
73589123
PH
6196 {
6197 name += 2;
6198 break;
6199 }
6200 else
6201 return 0;
6202 }
6203 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6204 name += 1;
6205 else
5823c3ef 6206 return 0;
73589123
PH
6207 }
6208
6209 *namep = name;
6210 return 1;
6211}
6212
b5ec771e
PA
6213/* Return true iff NAME encodes a name of the form prefix.PATN.
6214 Ignores any informational suffixes of NAME (i.e., for which
6215 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6216 simple name. */
73589123 6217
b5ec771e 6218static bool
73589123
PH
6219wild_match (const char *name, const char *patn)
6220{
22e048c9 6221 const char *p;
73589123
PH
6222 const char *name0 = name;
6223
6224 while (1)
6225 {
6226 const char *match = name;
6227
6228 if (*name == *patn)
6229 {
6230 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6231 if (*p != *name)
6232 break;
6233 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6234 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6235
6236 if (name[-1] == '_')
6237 name -= 1;
6238 }
6239 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6240 return false;
96d887e8 6241 }
96d887e8
PH
6242}
6243
b5ec771e
PA
6244/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6245 any trailing suffixes that encode debugging information or leading
6246 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6247 information that is ignored). */
40658b94 6248
b5ec771e 6249static bool
c4d840bd
PH
6250full_match (const char *sym_name, const char *search_name)
6251{
b5ec771e
PA
6252 size_t search_name_len = strlen (search_name);
6253
6254 if (strncmp (sym_name, search_name, search_name_len) == 0
6255 && is_name_suffix (sym_name + search_name_len))
6256 return true;
6257
6258 if (startswith (sym_name, "_ada_")
6259 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6260 && is_name_suffix (sym_name + search_name_len + 5))
6261 return true;
c4d840bd 6262
b5ec771e
PA
6263 return false;
6264}
c4d840bd 6265
b5ec771e
PA
6266/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6267 *defn_symbols, updating the list of symbols in OBSTACKP (if
6268 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6269
6270static void
6271ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6272 const struct block *block,
6273 const lookup_name_info &lookup_name,
6274 domain_enum domain, struct objfile *objfile)
96d887e8 6275{
8157b174 6276 struct block_iterator iter;
96d887e8
PH
6277 /* A matching argument symbol, if any. */
6278 struct symbol *arg_sym;
6279 /* Set true when we find a matching non-argument symbol. */
6280 int found_sym;
6281 struct symbol *sym;
6282
6283 arg_sym = NULL;
6284 found_sym = 0;
b5ec771e
PA
6285 for (sym = block_iter_match_first (block, lookup_name, &iter);
6286 sym != NULL;
6287 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6288 {
b5ec771e
PA
6289 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6290 SYMBOL_DOMAIN (sym), domain))
6291 {
6292 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6293 {
6294 if (SYMBOL_IS_ARGUMENT (sym))
6295 arg_sym = sym;
6296 else
6297 {
6298 found_sym = 1;
6299 add_defn_to_vec (obstackp,
6300 fixup_symbol_section (sym, objfile),
6301 block);
6302 }
6303 }
6304 }
96d887e8
PH
6305 }
6306
22cee43f
PMR
6307 /* Handle renamings. */
6308
b5ec771e 6309 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6310 found_sym = 1;
6311
96d887e8
PH
6312 if (!found_sym && arg_sym != NULL)
6313 {
76a01679
JB
6314 add_defn_to_vec (obstackp,
6315 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6316 block);
96d887e8
PH
6317 }
6318
b5ec771e 6319 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6320 {
6321 arg_sym = NULL;
6322 found_sym = 0;
b5ec771e
PA
6323 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6324 const char *name = ada_lookup_name.c_str ();
6325 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6326
6327 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6328 {
4186eb54
KS
6329 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6330 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6331 {
6332 int cmp;
6333
6334 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6335 if (cmp == 0)
6336 {
61012eef 6337 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6338 if (cmp == 0)
6339 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6340 name_len);
6341 }
6342
6343 if (cmp == 0
6344 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6345 {
2a2d4dc3
AS
6346 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6347 {
6348 if (SYMBOL_IS_ARGUMENT (sym))
6349 arg_sym = sym;
6350 else
6351 {
6352 found_sym = 1;
6353 add_defn_to_vec (obstackp,
6354 fixup_symbol_section (sym, objfile),
6355 block);
6356 }
6357 }
76a01679
JB
6358 }
6359 }
76a01679 6360 }
96d887e8
PH
6361
6362 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6363 They aren't parameters, right? */
6364 if (!found_sym && arg_sym != NULL)
6365 {
6366 add_defn_to_vec (obstackp,
76a01679 6367 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6368 block);
96d887e8
PH
6369 }
6370 }
6371}
6372\f
41d27058
JB
6373
6374 /* Symbol Completion */
6375
b5ec771e 6376/* See symtab.h. */
41d27058 6377
b5ec771e
PA
6378bool
6379ada_lookup_name_info::matches
6380 (const char *sym_name,
6381 symbol_name_match_type match_type,
a207cff2 6382 completion_match_result *comp_match_res) const
41d27058 6383{
b5ec771e
PA
6384 bool match = false;
6385 const char *text = m_encoded_name.c_str ();
6386 size_t text_len = m_encoded_name.size ();
41d27058
JB
6387
6388 /* First, test against the fully qualified name of the symbol. */
6389
6390 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6391 match = true;
41d27058 6392
b5ec771e 6393 if (match && !m_encoded_p)
41d27058
JB
6394 {
6395 /* One needed check before declaring a positive match is to verify
6396 that iff we are doing a verbatim match, the decoded version
6397 of the symbol name starts with '<'. Otherwise, this symbol name
6398 is not a suitable completion. */
6399 const char *sym_name_copy = sym_name;
b5ec771e 6400 bool has_angle_bracket;
41d27058
JB
6401
6402 sym_name = ada_decode (sym_name);
6403 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6404 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6405 sym_name = sym_name_copy;
6406 }
6407
b5ec771e 6408 if (match && !m_verbatim_p)
41d27058
JB
6409 {
6410 /* When doing non-verbatim match, another check that needs to
6411 be done is to verify that the potentially matching symbol name
6412 does not include capital letters, because the ada-mode would
6413 not be able to understand these symbol names without the
6414 angle bracket notation. */
6415 const char *tmp;
6416
6417 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6418 if (*tmp != '\0')
b5ec771e 6419 match = false;
41d27058
JB
6420 }
6421
6422 /* Second: Try wild matching... */
6423
b5ec771e 6424 if (!match && m_wild_match_p)
41d27058
JB
6425 {
6426 /* Since we are doing wild matching, this means that TEXT
6427 may represent an unqualified symbol name. We therefore must
6428 also compare TEXT against the unqualified name of the symbol. */
6429 sym_name = ada_unqualified_name (ada_decode (sym_name));
6430
6431 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6432 match = true;
41d27058
JB
6433 }
6434
b5ec771e 6435 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6436
6437 if (!match)
b5ec771e 6438 return false;
41d27058 6439
a207cff2 6440 if (comp_match_res != NULL)
b5ec771e 6441 {
a207cff2 6442 std::string &match_str = comp_match_res->match.storage ();
41d27058 6443
b5ec771e 6444 if (!m_encoded_p)
a207cff2 6445 match_str = ada_decode (sym_name);
b5ec771e
PA
6446 else
6447 {
6448 if (m_verbatim_p)
6449 match_str = add_angle_brackets (sym_name);
6450 else
6451 match_str = sym_name;
41d27058 6452
b5ec771e 6453 }
a207cff2
PA
6454
6455 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6456 }
6457
b5ec771e 6458 return true;
41d27058
JB
6459}
6460
b5ec771e 6461/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6462 WORD is the entire command on which completion is made. */
41d27058 6463
eb3ff9a5
PA
6464static void
6465ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6466 complete_symbol_mode mode,
b5ec771e
PA
6467 symbol_name_match_type name_match_type,
6468 const char *text, const char *word,
eb3ff9a5 6469 enum type_code code)
41d27058 6470{
41d27058 6471 struct symbol *sym;
43f3e411 6472 struct compunit_symtab *s;
41d27058
JB
6473 struct minimal_symbol *msymbol;
6474 struct objfile *objfile;
3977b71f 6475 const struct block *b, *surrounding_static_block = 0;
8157b174 6476 struct block_iterator iter;
b8fea896 6477 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6478
2f68a895
TT
6479 gdb_assert (code == TYPE_CODE_UNDEF);
6480
1b026119 6481 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6482
6483 /* First, look at the partial symtab symbols. */
14bc53a8 6484 expand_symtabs_matching (NULL,
b5ec771e
PA
6485 lookup_name,
6486 NULL,
14bc53a8
PA
6487 NULL,
6488 ALL_DOMAIN);
41d27058
JB
6489
6490 /* At this point scan through the misc symbol vectors and add each
6491 symbol you find to the list. Eventually we want to ignore
6492 anything that isn't a text symbol (everything else will be
6493 handled by the psymtab code above). */
6494
6495 ALL_MSYMBOLS (objfile, msymbol)
6496 {
6497 QUIT;
b5ec771e 6498
f9d67a22
PA
6499 if (completion_skip_symbol (mode, msymbol))
6500 continue;
6501
b5ec771e
PA
6502 completion_list_add_name (tracker,
6503 MSYMBOL_LANGUAGE (msymbol),
6504 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6505 lookup_name, text, word);
41d27058
JB
6506 }
6507
6508 /* Search upwards from currently selected frame (so that we can
6509 complete on local vars. */
6510
6511 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6512 {
6513 if (!BLOCK_SUPERBLOCK (b))
6514 surrounding_static_block = b; /* For elmin of dups */
6515
6516 ALL_BLOCK_SYMBOLS (b, iter, sym)
6517 {
f9d67a22
PA
6518 if (completion_skip_symbol (mode, sym))
6519 continue;
6520
b5ec771e
PA
6521 completion_list_add_name (tracker,
6522 SYMBOL_LANGUAGE (sym),
6523 SYMBOL_LINKAGE_NAME (sym),
1b026119 6524 lookup_name, text, word);
41d27058
JB
6525 }
6526 }
6527
6528 /* Go through the symtabs and check the externs and statics for
43f3e411 6529 symbols which match. */
41d27058 6530
43f3e411 6531 ALL_COMPUNITS (objfile, s)
41d27058
JB
6532 {
6533 QUIT;
43f3e411 6534 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6535 ALL_BLOCK_SYMBOLS (b, iter, sym)
6536 {
f9d67a22
PA
6537 if (completion_skip_symbol (mode, sym))
6538 continue;
6539
b5ec771e
PA
6540 completion_list_add_name (tracker,
6541 SYMBOL_LANGUAGE (sym),
6542 SYMBOL_LINKAGE_NAME (sym),
1b026119 6543 lookup_name, text, word);
41d27058
JB
6544 }
6545 }
6546
43f3e411 6547 ALL_COMPUNITS (objfile, s)
41d27058
JB
6548 {
6549 QUIT;
43f3e411 6550 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6551 /* Don't do this block twice. */
6552 if (b == surrounding_static_block)
6553 continue;
6554 ALL_BLOCK_SYMBOLS (b, iter, sym)
6555 {
f9d67a22
PA
6556 if (completion_skip_symbol (mode, sym))
6557 continue;
6558
b5ec771e
PA
6559 completion_list_add_name (tracker,
6560 SYMBOL_LANGUAGE (sym),
6561 SYMBOL_LINKAGE_NAME (sym),
1b026119 6562 lookup_name, text, word);
41d27058
JB
6563 }
6564 }
6565
b8fea896 6566 do_cleanups (old_chain);
41d27058
JB
6567}
6568
963a6417 6569 /* Field Access */
96d887e8 6570
73fb9985
JB
6571/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6572 for tagged types. */
6573
6574static int
6575ada_is_dispatch_table_ptr_type (struct type *type)
6576{
0d5cff50 6577 const char *name;
73fb9985
JB
6578
6579 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6580 return 0;
6581
6582 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6583 if (name == NULL)
6584 return 0;
6585
6586 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6587}
6588
ac4a2da4
JG
6589/* Return non-zero if TYPE is an interface tag. */
6590
6591static int
6592ada_is_interface_tag (struct type *type)
6593{
6594 const char *name = TYPE_NAME (type);
6595
6596 if (name == NULL)
6597 return 0;
6598
6599 return (strcmp (name, "ada__tags__interface_tag") == 0);
6600}
6601
963a6417
PH
6602/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6603 to be invisible to users. */
96d887e8 6604
963a6417
PH
6605int
6606ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6607{
963a6417
PH
6608 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6609 return 1;
ffde82bf 6610
73fb9985
JB
6611 /* Check the name of that field. */
6612 {
6613 const char *name = TYPE_FIELD_NAME (type, field_num);
6614
6615 /* Anonymous field names should not be printed.
6616 brobecker/2007-02-20: I don't think this can actually happen
6617 but we don't want to print the value of annonymous fields anyway. */
6618 if (name == NULL)
6619 return 1;
6620
ffde82bf
JB
6621 /* Normally, fields whose name start with an underscore ("_")
6622 are fields that have been internally generated by the compiler,
6623 and thus should not be printed. The "_parent" field is special,
6624 however: This is a field internally generated by the compiler
6625 for tagged types, and it contains the components inherited from
6626 the parent type. This field should not be printed as is, but
6627 should not be ignored either. */
61012eef 6628 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6629 return 1;
6630 }
6631
ac4a2da4
JG
6632 /* If this is the dispatch table of a tagged type or an interface tag,
6633 then ignore. */
73fb9985 6634 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6635 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6636 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6637 return 1;
6638
6639 /* Not a special field, so it should not be ignored. */
6640 return 0;
963a6417 6641}
96d887e8 6642
963a6417 6643/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6644 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6645
963a6417
PH
6646int
6647ada_is_tagged_type (struct type *type, int refok)
6648{
988f6b3d 6649 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6650}
96d887e8 6651
963a6417 6652/* True iff TYPE represents the type of X'Tag */
96d887e8 6653
963a6417
PH
6654int
6655ada_is_tag_type (struct type *type)
6656{
460efde1
JB
6657 type = ada_check_typedef (type);
6658
963a6417
PH
6659 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6660 return 0;
6661 else
96d887e8 6662 {
963a6417 6663 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6664
963a6417
PH
6665 return (name != NULL
6666 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6667 }
96d887e8
PH
6668}
6669
963a6417 6670/* The type of the tag on VAL. */
76a01679 6671
963a6417
PH
6672struct type *
6673ada_tag_type (struct value *val)
96d887e8 6674{
988f6b3d 6675 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6676}
96d887e8 6677
b50d69b5
JG
6678/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6679 retired at Ada 05). */
6680
6681static int
6682is_ada95_tag (struct value *tag)
6683{
6684 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6685}
6686
963a6417 6687/* The value of the tag on VAL. */
96d887e8 6688
963a6417
PH
6689struct value *
6690ada_value_tag (struct value *val)
6691{
03ee6b2e 6692 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6693}
6694
963a6417
PH
6695/* The value of the tag on the object of type TYPE whose contents are
6696 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6697 ADDRESS. */
96d887e8 6698
963a6417 6699static struct value *
10a2c479 6700value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6701 const gdb_byte *valaddr,
963a6417 6702 CORE_ADDR address)
96d887e8 6703{
b5385fc0 6704 int tag_byte_offset;
963a6417 6705 struct type *tag_type;
5b4ee69b 6706
963a6417 6707 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6708 NULL, NULL, NULL))
96d887e8 6709 {
fc1a4b47 6710 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6711 ? NULL
6712 : valaddr + tag_byte_offset);
963a6417 6713 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6714
963a6417 6715 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6716 }
963a6417
PH
6717 return NULL;
6718}
96d887e8 6719
963a6417
PH
6720static struct type *
6721type_from_tag (struct value *tag)
6722{
6723 const char *type_name = ada_tag_name (tag);
5b4ee69b 6724
963a6417
PH
6725 if (type_name != NULL)
6726 return ada_find_any_type (ada_encode (type_name));
6727 return NULL;
6728}
96d887e8 6729
b50d69b5
JG
6730/* Given a value OBJ of a tagged type, return a value of this
6731 type at the base address of the object. The base address, as
6732 defined in Ada.Tags, it is the address of the primary tag of
6733 the object, and therefore where the field values of its full
6734 view can be fetched. */
6735
6736struct value *
6737ada_tag_value_at_base_address (struct value *obj)
6738{
b50d69b5
JG
6739 struct value *val;
6740 LONGEST offset_to_top = 0;
6741 struct type *ptr_type, *obj_type;
6742 struct value *tag;
6743 CORE_ADDR base_address;
6744
6745 obj_type = value_type (obj);
6746
6747 /* It is the responsability of the caller to deref pointers. */
6748
6749 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6750 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6751 return obj;
6752
6753 tag = ada_value_tag (obj);
6754 if (!tag)
6755 return obj;
6756
6757 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6758
6759 if (is_ada95_tag (tag))
6760 return obj;
6761
08f49010
XR
6762 ptr_type = language_lookup_primitive_type
6763 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6764 ptr_type = lookup_pointer_type (ptr_type);
6765 val = value_cast (ptr_type, tag);
6766 if (!val)
6767 return obj;
6768
6769 /* It is perfectly possible that an exception be raised while
6770 trying to determine the base address, just like for the tag;
6771 see ada_tag_name for more details. We do not print the error
6772 message for the same reason. */
6773
492d29ea 6774 TRY
b50d69b5
JG
6775 {
6776 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6777 }
6778
492d29ea
PA
6779 CATCH (e, RETURN_MASK_ERROR)
6780 {
6781 return obj;
6782 }
6783 END_CATCH
b50d69b5
JG
6784
6785 /* If offset is null, nothing to do. */
6786
6787 if (offset_to_top == 0)
6788 return obj;
6789
6790 /* -1 is a special case in Ada.Tags; however, what should be done
6791 is not quite clear from the documentation. So do nothing for
6792 now. */
6793
6794 if (offset_to_top == -1)
6795 return obj;
6796
08f49010
XR
6797 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6798 from the base address. This was however incompatible with
6799 C++ dispatch table: C++ uses a *negative* value to *add*
6800 to the base address. Ada's convention has therefore been
6801 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6802 use the same convention. Here, we support both cases by
6803 checking the sign of OFFSET_TO_TOP. */
6804
6805 if (offset_to_top > 0)
6806 offset_to_top = -offset_to_top;
6807
6808 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6809 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6810
6811 /* Make sure that we have a proper tag at the new address.
6812 Otherwise, offset_to_top is bogus (which can happen when
6813 the object is not initialized yet). */
6814
6815 if (!tag)
6816 return obj;
6817
6818 obj_type = type_from_tag (tag);
6819
6820 if (!obj_type)
6821 return obj;
6822
6823 return value_from_contents_and_address (obj_type, NULL, base_address);
6824}
6825
1b611343
JB
6826/* Return the "ada__tags__type_specific_data" type. */
6827
6828static struct type *
6829ada_get_tsd_type (struct inferior *inf)
963a6417 6830{
1b611343 6831 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6832
1b611343
JB
6833 if (data->tsd_type == 0)
6834 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6835 return data->tsd_type;
6836}
529cad9c 6837
1b611343
JB
6838/* Return the TSD (type-specific data) associated to the given TAG.
6839 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6840
1b611343 6841 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6842
1b611343
JB
6843static struct value *
6844ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6845{
4c4b4cd2 6846 struct value *val;
1b611343 6847 struct type *type;
5b4ee69b 6848
1b611343
JB
6849 /* First option: The TSD is simply stored as a field of our TAG.
6850 Only older versions of GNAT would use this format, but we have
6851 to test it first, because there are no visible markers for
6852 the current approach except the absence of that field. */
529cad9c 6853
1b611343
JB
6854 val = ada_value_struct_elt (tag, "tsd", 1);
6855 if (val)
6856 return val;
e802dbe0 6857
1b611343
JB
6858 /* Try the second representation for the dispatch table (in which
6859 there is no explicit 'tsd' field in the referent of the tag pointer,
6860 and instead the tsd pointer is stored just before the dispatch
6861 table. */
e802dbe0 6862
1b611343
JB
6863 type = ada_get_tsd_type (current_inferior());
6864 if (type == NULL)
6865 return NULL;
6866 type = lookup_pointer_type (lookup_pointer_type (type));
6867 val = value_cast (type, tag);
6868 if (val == NULL)
6869 return NULL;
6870 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6871}
6872
1b611343
JB
6873/* Given the TSD of a tag (type-specific data), return a string
6874 containing the name of the associated type.
6875
6876 The returned value is good until the next call. May return NULL
6877 if we are unable to determine the tag name. */
6878
6879static char *
6880ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6881{
529cad9c
PH
6882 static char name[1024];
6883 char *p;
1b611343 6884 struct value *val;
529cad9c 6885
1b611343 6886 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6887 if (val == NULL)
1b611343 6888 return NULL;
4c4b4cd2
PH
6889 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6890 for (p = name; *p != '\0'; p += 1)
6891 if (isalpha (*p))
6892 *p = tolower (*p);
1b611343 6893 return name;
4c4b4cd2
PH
6894}
6895
6896/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6897 a C string.
6898
6899 Return NULL if the TAG is not an Ada tag, or if we were unable to
6900 determine the name of that tag. The result is good until the next
6901 call. */
4c4b4cd2
PH
6902
6903const char *
6904ada_tag_name (struct value *tag)
6905{
1b611343 6906 char *name = NULL;
5b4ee69b 6907
df407dfe 6908 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6909 return NULL;
1b611343
JB
6910
6911 /* It is perfectly possible that an exception be raised while trying
6912 to determine the TAG's name, even under normal circumstances:
6913 The associated variable may be uninitialized or corrupted, for
6914 instance. We do not let any exception propagate past this point.
6915 instead we return NULL.
6916
6917 We also do not print the error message either (which often is very
6918 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6919 the caller print a more meaningful message if necessary. */
492d29ea 6920 TRY
1b611343
JB
6921 {
6922 struct value *tsd = ada_get_tsd_from_tag (tag);
6923
6924 if (tsd != NULL)
6925 name = ada_tag_name_from_tsd (tsd);
6926 }
492d29ea
PA
6927 CATCH (e, RETURN_MASK_ERROR)
6928 {
6929 }
6930 END_CATCH
1b611343
JB
6931
6932 return name;
4c4b4cd2
PH
6933}
6934
6935/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6936
d2e4a39e 6937struct type *
ebf56fd3 6938ada_parent_type (struct type *type)
14f9c5c9
AS
6939{
6940 int i;
6941
61ee279c 6942 type = ada_check_typedef (type);
14f9c5c9
AS
6943
6944 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6945 return NULL;
6946
6947 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6948 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6949 {
6950 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6951
6952 /* If the _parent field is a pointer, then dereference it. */
6953 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6954 parent_type = TYPE_TARGET_TYPE (parent_type);
6955 /* If there is a parallel XVS type, get the actual base type. */
6956 parent_type = ada_get_base_type (parent_type);
6957
6958 return ada_check_typedef (parent_type);
6959 }
14f9c5c9
AS
6960
6961 return NULL;
6962}
6963
4c4b4cd2
PH
6964/* True iff field number FIELD_NUM of structure type TYPE contains the
6965 parent-type (inherited) fields of a derived type. Assumes TYPE is
6966 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6967
6968int
ebf56fd3 6969ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6970{
61ee279c 6971 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6972
4c4b4cd2 6973 return (name != NULL
61012eef
GB
6974 && (startswith (name, "PARENT")
6975 || startswith (name, "_parent")));
14f9c5c9
AS
6976}
6977
4c4b4cd2 6978/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6979 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6980 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6981 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6982 structures. */
14f9c5c9
AS
6983
6984int
ebf56fd3 6985ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6986{
d2e4a39e 6987 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6988
dddc0e16
JB
6989 if (name != NULL && strcmp (name, "RETVAL") == 0)
6990 {
6991 /* This happens in functions with "out" or "in out" parameters
6992 which are passed by copy. For such functions, GNAT describes
6993 the function's return type as being a struct where the return
6994 value is in a field called RETVAL, and where the other "out"
6995 or "in out" parameters are fields of that struct. This is not
6996 a wrapper. */
6997 return 0;
6998 }
6999
d2e4a39e 7000 return (name != NULL
61012eef 7001 && (startswith (name, "PARENT")
4c4b4cd2 7002 || strcmp (name, "REP") == 0
61012eef 7003 || startswith (name, "_parent")
4c4b4cd2 7004 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
7005}
7006
4c4b4cd2
PH
7007/* True iff field number FIELD_NUM of structure or union type TYPE
7008 is a variant wrapper. Assumes TYPE is a structure type with at least
7009 FIELD_NUM+1 fields. */
14f9c5c9
AS
7010
7011int
ebf56fd3 7012ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7013{
d2e4a39e 7014 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7015
14f9c5c9 7016 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7017 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7018 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7019 == TYPE_CODE_UNION)));
14f9c5c9
AS
7020}
7021
7022/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7023 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7024 returns the type of the controlling discriminant for the variant.
7025 May return NULL if the type could not be found. */
14f9c5c9 7026
d2e4a39e 7027struct type *
ebf56fd3 7028ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7029{
a121b7c1 7030 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7031
988f6b3d 7032 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7033}
7034
4c4b4cd2 7035/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7036 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7037 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7038
7039int
ebf56fd3 7040ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7041{
d2e4a39e 7042 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7043
14f9c5c9
AS
7044 return (name != NULL && name[0] == 'O');
7045}
7046
7047/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7048 returns the name of the discriminant controlling the variant.
7049 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7050
a121b7c1 7051const char *
ebf56fd3 7052ada_variant_discrim_name (struct type *type0)
14f9c5c9 7053{
d2e4a39e 7054 static char *result = NULL;
14f9c5c9 7055 static size_t result_len = 0;
d2e4a39e
AS
7056 struct type *type;
7057 const char *name;
7058 const char *discrim_end;
7059 const char *discrim_start;
14f9c5c9
AS
7060
7061 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7062 type = TYPE_TARGET_TYPE (type0);
7063 else
7064 type = type0;
7065
7066 name = ada_type_name (type);
7067
7068 if (name == NULL || name[0] == '\000')
7069 return "";
7070
7071 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7072 discrim_end -= 1)
7073 {
61012eef 7074 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7075 break;
14f9c5c9
AS
7076 }
7077 if (discrim_end == name)
7078 return "";
7079
d2e4a39e 7080 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7081 discrim_start -= 1)
7082 {
d2e4a39e 7083 if (discrim_start == name + 1)
4c4b4cd2 7084 return "";
76a01679 7085 if ((discrim_start > name + 3
61012eef 7086 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7087 || discrim_start[-1] == '.')
7088 break;
14f9c5c9
AS
7089 }
7090
7091 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7092 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7093 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7094 return result;
7095}
7096
4c4b4cd2
PH
7097/* Scan STR for a subtype-encoded number, beginning at position K.
7098 Put the position of the character just past the number scanned in
7099 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7100 Return 1 if there was a valid number at the given position, and 0
7101 otherwise. A "subtype-encoded" number consists of the absolute value
7102 in decimal, followed by the letter 'm' to indicate a negative number.
7103 Assumes 0m does not occur. */
14f9c5c9
AS
7104
7105int
d2e4a39e 7106ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7107{
7108 ULONGEST RU;
7109
d2e4a39e 7110 if (!isdigit (str[k]))
14f9c5c9
AS
7111 return 0;
7112
4c4b4cd2 7113 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7114 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7115 LONGEST. */
14f9c5c9
AS
7116 RU = 0;
7117 while (isdigit (str[k]))
7118 {
d2e4a39e 7119 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7120 k += 1;
7121 }
7122
d2e4a39e 7123 if (str[k] == 'm')
14f9c5c9
AS
7124 {
7125 if (R != NULL)
4c4b4cd2 7126 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7127 k += 1;
7128 }
7129 else if (R != NULL)
7130 *R = (LONGEST) RU;
7131
4c4b4cd2 7132 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7133 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7134 number representable as a LONGEST (although either would probably work
7135 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7136 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7137
7138 if (new_k != NULL)
7139 *new_k = k;
7140 return 1;
7141}
7142
4c4b4cd2
PH
7143/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7144 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7145 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7146
d2e4a39e 7147int
ebf56fd3 7148ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7149{
d2e4a39e 7150 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7151 int p;
7152
7153 p = 0;
7154 while (1)
7155 {
d2e4a39e 7156 switch (name[p])
4c4b4cd2
PH
7157 {
7158 case '\0':
7159 return 0;
7160 case 'S':
7161 {
7162 LONGEST W;
5b4ee69b 7163
4c4b4cd2
PH
7164 if (!ada_scan_number (name, p + 1, &W, &p))
7165 return 0;
7166 if (val == W)
7167 return 1;
7168 break;
7169 }
7170 case 'R':
7171 {
7172 LONGEST L, U;
5b4ee69b 7173
4c4b4cd2
PH
7174 if (!ada_scan_number (name, p + 1, &L, &p)
7175 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7176 return 0;
7177 if (val >= L && val <= U)
7178 return 1;
7179 break;
7180 }
7181 case 'O':
7182 return 1;
7183 default:
7184 return 0;
7185 }
7186 }
7187}
7188
0963b4bd 7189/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7190
7191/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7192 ARG_TYPE, extract and return the value of one of its (non-static)
7193 fields. FIELDNO says which field. Differs from value_primitive_field
7194 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7195
4c4b4cd2 7196static struct value *
d2e4a39e 7197ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7198 struct type *arg_type)
14f9c5c9 7199{
14f9c5c9
AS
7200 struct type *type;
7201
61ee279c 7202 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7203 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7204
4c4b4cd2 7205 /* Handle packed fields. */
14f9c5c9
AS
7206
7207 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7208 {
7209 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7210 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7211
0fd88904 7212 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7213 offset + bit_pos / 8,
7214 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7215 }
7216 else
7217 return value_primitive_field (arg1, offset, fieldno, arg_type);
7218}
7219
52ce6436
PH
7220/* Find field with name NAME in object of type TYPE. If found,
7221 set the following for each argument that is non-null:
7222 - *FIELD_TYPE_P to the field's type;
7223 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7224 an object of that type;
7225 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7226 - *BIT_SIZE_P to its size in bits if the field is packed, and
7227 0 otherwise;
7228 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7229 fields up to but not including the desired field, or by the total
7230 number of fields if not found. A NULL value of NAME never
7231 matches; the function just counts visible fields in this case.
7232
828d5846
XR
7233 Notice that we need to handle when a tagged record hierarchy
7234 has some components with the same name, like in this scenario:
7235
7236 type Top_T is tagged record
7237 N : Integer := 1;
7238 U : Integer := 974;
7239 A : Integer := 48;
7240 end record;
7241
7242 type Middle_T is new Top.Top_T with record
7243 N : Character := 'a';
7244 C : Integer := 3;
7245 end record;
7246
7247 type Bottom_T is new Middle.Middle_T with record
7248 N : Float := 4.0;
7249 C : Character := '5';
7250 X : Integer := 6;
7251 A : Character := 'J';
7252 end record;
7253
7254 Let's say we now have a variable declared and initialized as follow:
7255
7256 TC : Top_A := new Bottom_T;
7257
7258 And then we use this variable to call this function
7259
7260 procedure Assign (Obj: in out Top_T; TV : Integer);
7261
7262 as follow:
7263
7264 Assign (Top_T (B), 12);
7265
7266 Now, we're in the debugger, and we're inside that procedure
7267 then and we want to print the value of obj.c:
7268
7269 Usually, the tagged record or one of the parent type owns the
7270 component to print and there's no issue but in this particular
7271 case, what does it mean to ask for Obj.C? Since the actual
7272 type for object is type Bottom_T, it could mean two things: type
7273 component C from the Middle_T view, but also component C from
7274 Bottom_T. So in that "undefined" case, when the component is
7275 not found in the non-resolved type (which includes all the
7276 components of the parent type), then resolve it and see if we
7277 get better luck once expanded.
7278
7279 In the case of homonyms in the derived tagged type, we don't
7280 guaranty anything, and pick the one that's easiest for us
7281 to program.
7282
0963b4bd 7283 Returns 1 if found, 0 otherwise. */
52ce6436 7284
4c4b4cd2 7285static int
0d5cff50 7286find_struct_field (const char *name, struct type *type, int offset,
76a01679 7287 struct type **field_type_p,
52ce6436
PH
7288 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7289 int *index_p)
4c4b4cd2
PH
7290{
7291 int i;
828d5846 7292 int parent_offset = -1;
4c4b4cd2 7293
61ee279c 7294 type = ada_check_typedef (type);
76a01679 7295
52ce6436
PH
7296 if (field_type_p != NULL)
7297 *field_type_p = NULL;
7298 if (byte_offset_p != NULL)
d5d6fca5 7299 *byte_offset_p = 0;
52ce6436
PH
7300 if (bit_offset_p != NULL)
7301 *bit_offset_p = 0;
7302 if (bit_size_p != NULL)
7303 *bit_size_p = 0;
7304
7305 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7306 {
7307 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7308 int fld_offset = offset + bit_pos / 8;
0d5cff50 7309 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7310
4c4b4cd2
PH
7311 if (t_field_name == NULL)
7312 continue;
7313
828d5846
XR
7314 else if (ada_is_parent_field (type, i))
7315 {
7316 /* This is a field pointing us to the parent type of a tagged
7317 type. As hinted in this function's documentation, we give
7318 preference to fields in the current record first, so what
7319 we do here is just record the index of this field before
7320 we skip it. If it turns out we couldn't find our field
7321 in the current record, then we'll get back to it and search
7322 inside it whether the field might exist in the parent. */
7323
7324 parent_offset = i;
7325 continue;
7326 }
7327
52ce6436 7328 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7329 {
7330 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7331
52ce6436
PH
7332 if (field_type_p != NULL)
7333 *field_type_p = TYPE_FIELD_TYPE (type, i);
7334 if (byte_offset_p != NULL)
7335 *byte_offset_p = fld_offset;
7336 if (bit_offset_p != NULL)
7337 *bit_offset_p = bit_pos % 8;
7338 if (bit_size_p != NULL)
7339 *bit_size_p = bit_size;
76a01679
JB
7340 return 1;
7341 }
4c4b4cd2
PH
7342 else if (ada_is_wrapper_field (type, i))
7343 {
52ce6436
PH
7344 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7345 field_type_p, byte_offset_p, bit_offset_p,
7346 bit_size_p, index_p))
76a01679
JB
7347 return 1;
7348 }
4c4b4cd2
PH
7349 else if (ada_is_variant_part (type, i))
7350 {
52ce6436
PH
7351 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7352 fixed type?? */
4c4b4cd2 7353 int j;
52ce6436
PH
7354 struct type *field_type
7355 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7356
52ce6436 7357 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7358 {
76a01679
JB
7359 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7360 fld_offset
7361 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7362 field_type_p, byte_offset_p,
52ce6436 7363 bit_offset_p, bit_size_p, index_p))
76a01679 7364 return 1;
4c4b4cd2
PH
7365 }
7366 }
52ce6436
PH
7367 else if (index_p != NULL)
7368 *index_p += 1;
4c4b4cd2 7369 }
828d5846
XR
7370
7371 /* Field not found so far. If this is a tagged type which
7372 has a parent, try finding that field in the parent now. */
7373
7374 if (parent_offset != -1)
7375 {
7376 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7377 int fld_offset = offset + bit_pos / 8;
7378
7379 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7380 fld_offset, field_type_p, byte_offset_p,
7381 bit_offset_p, bit_size_p, index_p))
7382 return 1;
7383 }
7384
4c4b4cd2
PH
7385 return 0;
7386}
7387
0963b4bd 7388/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7389
52ce6436
PH
7390static int
7391num_visible_fields (struct type *type)
7392{
7393 int n;
5b4ee69b 7394
52ce6436
PH
7395 n = 0;
7396 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7397 return n;
7398}
14f9c5c9 7399
4c4b4cd2 7400/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7401 and search in it assuming it has (class) type TYPE.
7402 If found, return value, else return NULL.
7403
828d5846
XR
7404 Searches recursively through wrapper fields (e.g., '_parent').
7405
7406 In the case of homonyms in the tagged types, please refer to the
7407 long explanation in find_struct_field's function documentation. */
14f9c5c9 7408
4c4b4cd2 7409static struct value *
108d56a4 7410ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7411 struct type *type)
14f9c5c9
AS
7412{
7413 int i;
828d5846 7414 int parent_offset = -1;
14f9c5c9 7415
5b4ee69b 7416 type = ada_check_typedef (type);
52ce6436 7417 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7418 {
0d5cff50 7419 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7420
7421 if (t_field_name == NULL)
4c4b4cd2 7422 continue;
14f9c5c9 7423
828d5846
XR
7424 else if (ada_is_parent_field (type, i))
7425 {
7426 /* This is a field pointing us to the parent type of a tagged
7427 type. As hinted in this function's documentation, we give
7428 preference to fields in the current record first, so what
7429 we do here is just record the index of this field before
7430 we skip it. If it turns out we couldn't find our field
7431 in the current record, then we'll get back to it and search
7432 inside it whether the field might exist in the parent. */
7433
7434 parent_offset = i;
7435 continue;
7436 }
7437
14f9c5c9 7438 else if (field_name_match (t_field_name, name))
4c4b4cd2 7439 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7440
7441 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7442 {
0963b4bd 7443 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7444 ada_search_struct_field (name, arg,
7445 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7446 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7447
4c4b4cd2
PH
7448 if (v != NULL)
7449 return v;
7450 }
14f9c5c9
AS
7451
7452 else if (ada_is_variant_part (type, i))
4c4b4cd2 7453 {
0963b4bd 7454 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7455 int j;
5b4ee69b
MS
7456 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7457 i));
4c4b4cd2
PH
7458 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7459
52ce6436 7460 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7461 {
0963b4bd
MS
7462 struct value *v = ada_search_struct_field /* Force line
7463 break. */
06d5cf63
JB
7464 (name, arg,
7465 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7466 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7467
4c4b4cd2
PH
7468 if (v != NULL)
7469 return v;
7470 }
7471 }
14f9c5c9 7472 }
828d5846
XR
7473
7474 /* Field not found so far. If this is a tagged type which
7475 has a parent, try finding that field in the parent now. */
7476
7477 if (parent_offset != -1)
7478 {
7479 struct value *v = ada_search_struct_field (
7480 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7481 TYPE_FIELD_TYPE (type, parent_offset));
7482
7483 if (v != NULL)
7484 return v;
7485 }
7486
14f9c5c9
AS
7487 return NULL;
7488}
d2e4a39e 7489
52ce6436
PH
7490static struct value *ada_index_struct_field_1 (int *, struct value *,
7491 int, struct type *);
7492
7493
7494/* Return field #INDEX in ARG, where the index is that returned by
7495 * find_struct_field through its INDEX_P argument. Adjust the address
7496 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7497 * If found, return value, else return NULL. */
52ce6436
PH
7498
7499static struct value *
7500ada_index_struct_field (int index, struct value *arg, int offset,
7501 struct type *type)
7502{
7503 return ada_index_struct_field_1 (&index, arg, offset, type);
7504}
7505
7506
7507/* Auxiliary function for ada_index_struct_field. Like
7508 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7509 * *INDEX_P. */
52ce6436
PH
7510
7511static struct value *
7512ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7513 struct type *type)
7514{
7515 int i;
7516 type = ada_check_typedef (type);
7517
7518 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7519 {
7520 if (TYPE_FIELD_NAME (type, i) == NULL)
7521 continue;
7522 else if (ada_is_wrapper_field (type, i))
7523 {
0963b4bd 7524 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7525 ada_index_struct_field_1 (index_p, arg,
7526 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7527 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7528
52ce6436
PH
7529 if (v != NULL)
7530 return v;
7531 }
7532
7533 else if (ada_is_variant_part (type, i))
7534 {
7535 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7536 find_struct_field. */
52ce6436
PH
7537 error (_("Cannot assign this kind of variant record"));
7538 }
7539 else if (*index_p == 0)
7540 return ada_value_primitive_field (arg, offset, i, type);
7541 else
7542 *index_p -= 1;
7543 }
7544 return NULL;
7545}
7546
4c4b4cd2
PH
7547/* Given ARG, a value of type (pointer or reference to a)*
7548 structure/union, extract the component named NAME from the ultimate
7549 target structure/union and return it as a value with its
f5938064 7550 appropriate type.
14f9c5c9 7551
4c4b4cd2
PH
7552 The routine searches for NAME among all members of the structure itself
7553 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7554 (e.g., '_parent').
7555
03ee6b2e
PH
7556 If NO_ERR, then simply return NULL in case of error, rather than
7557 calling error. */
14f9c5c9 7558
d2e4a39e 7559struct value *
a121b7c1 7560ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7561{
4c4b4cd2 7562 struct type *t, *t1;
d2e4a39e 7563 struct value *v;
14f9c5c9 7564
4c4b4cd2 7565 v = NULL;
df407dfe 7566 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7567 if (TYPE_CODE (t) == TYPE_CODE_REF)
7568 {
7569 t1 = TYPE_TARGET_TYPE (t);
7570 if (t1 == NULL)
03ee6b2e 7571 goto BadValue;
61ee279c 7572 t1 = ada_check_typedef (t1);
4c4b4cd2 7573 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7574 {
994b9211 7575 arg = coerce_ref (arg);
76a01679
JB
7576 t = t1;
7577 }
4c4b4cd2 7578 }
14f9c5c9 7579
4c4b4cd2
PH
7580 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7581 {
7582 t1 = TYPE_TARGET_TYPE (t);
7583 if (t1 == NULL)
03ee6b2e 7584 goto BadValue;
61ee279c 7585 t1 = ada_check_typedef (t1);
4c4b4cd2 7586 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7587 {
7588 arg = value_ind (arg);
7589 t = t1;
7590 }
4c4b4cd2 7591 else
76a01679 7592 break;
4c4b4cd2 7593 }
14f9c5c9 7594
4c4b4cd2 7595 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7596 goto BadValue;
14f9c5c9 7597
4c4b4cd2
PH
7598 if (t1 == t)
7599 v = ada_search_struct_field (name, arg, 0, t);
7600 else
7601 {
7602 int bit_offset, bit_size, byte_offset;
7603 struct type *field_type;
7604 CORE_ADDR address;
7605
76a01679 7606 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7607 address = value_address (ada_value_ind (arg));
4c4b4cd2 7608 else
b50d69b5 7609 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7610
828d5846
XR
7611 /* Check to see if this is a tagged type. We also need to handle
7612 the case where the type is a reference to a tagged type, but
7613 we have to be careful to exclude pointers to tagged types.
7614 The latter should be shown as usual (as a pointer), whereas
7615 a reference should mostly be transparent to the user. */
7616
7617 if (ada_is_tagged_type (t1, 0)
7618 || (TYPE_CODE (t1) == TYPE_CODE_REF
7619 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7620 {
7621 /* We first try to find the searched field in the current type.
7622 If not found then let's look in the fixed type. */
7623
7624 if (!find_struct_field (name, t1, 0,
7625 &field_type, &byte_offset, &bit_offset,
7626 &bit_size, NULL))
7627 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7628 address, NULL, 1);
7629 }
7630 else
7631 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7632 address, NULL, 1);
7633
76a01679
JB
7634 if (find_struct_field (name, t1, 0,
7635 &field_type, &byte_offset, &bit_offset,
52ce6436 7636 &bit_size, NULL))
76a01679
JB
7637 {
7638 if (bit_size != 0)
7639 {
714e53ab
PH
7640 if (TYPE_CODE (t) == TYPE_CODE_REF)
7641 arg = ada_coerce_ref (arg);
7642 else
7643 arg = ada_value_ind (arg);
76a01679
JB
7644 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7645 bit_offset, bit_size,
7646 field_type);
7647 }
7648 else
f5938064 7649 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7650 }
7651 }
7652
03ee6b2e
PH
7653 if (v != NULL || no_err)
7654 return v;
7655 else
323e0a4a 7656 error (_("There is no member named %s."), name);
14f9c5c9 7657
03ee6b2e
PH
7658 BadValue:
7659 if (no_err)
7660 return NULL;
7661 else
0963b4bd
MS
7662 error (_("Attempt to extract a component of "
7663 "a value that is not a record."));
14f9c5c9
AS
7664}
7665
3b4de39c 7666/* Return a string representation of type TYPE. */
99bbb428 7667
3b4de39c 7668static std::string
99bbb428
PA
7669type_as_string (struct type *type)
7670{
d7e74731 7671 string_file tmp_stream;
99bbb428 7672
d7e74731 7673 type_print (type, "", &tmp_stream, -1);
99bbb428 7674
d7e74731 7675 return std::move (tmp_stream.string ());
99bbb428
PA
7676}
7677
14f9c5c9 7678/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7679 If DISPP is non-null, add its byte displacement from the beginning of a
7680 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7681 work for packed fields).
7682
7683 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7684 followed by "___".
14f9c5c9 7685
0963b4bd 7686 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7687 be a (pointer or reference)+ to a struct or union, and the
7688 ultimate target type will be searched.
14f9c5c9
AS
7689
7690 Looks recursively into variant clauses and parent types.
7691
828d5846
XR
7692 In the case of homonyms in the tagged types, please refer to the
7693 long explanation in find_struct_field's function documentation.
7694
4c4b4cd2
PH
7695 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7696 TYPE is not a type of the right kind. */
14f9c5c9 7697
4c4b4cd2 7698static struct type *
a121b7c1 7699ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7700 int noerr)
14f9c5c9
AS
7701{
7702 int i;
828d5846 7703 int parent_offset = -1;
14f9c5c9
AS
7704
7705 if (name == NULL)
7706 goto BadName;
7707
76a01679 7708 if (refok && type != NULL)
4c4b4cd2
PH
7709 while (1)
7710 {
61ee279c 7711 type = ada_check_typedef (type);
76a01679
JB
7712 if (TYPE_CODE (type) != TYPE_CODE_PTR
7713 && TYPE_CODE (type) != TYPE_CODE_REF)
7714 break;
7715 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7716 }
14f9c5c9 7717
76a01679 7718 if (type == NULL
1265e4aa
JB
7719 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7720 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7721 {
4c4b4cd2 7722 if (noerr)
76a01679 7723 return NULL;
99bbb428 7724
3b4de39c
PA
7725 error (_("Type %s is not a structure or union type"),
7726 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7727 }
7728
7729 type = to_static_fixed_type (type);
7730
7731 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7732 {
0d5cff50 7733 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7734 struct type *t;
d2e4a39e 7735
14f9c5c9 7736 if (t_field_name == NULL)
4c4b4cd2 7737 continue;
14f9c5c9 7738
828d5846
XR
7739 else if (ada_is_parent_field (type, i))
7740 {
7741 /* This is a field pointing us to the parent type of a tagged
7742 type. As hinted in this function's documentation, we give
7743 preference to fields in the current record first, so what
7744 we do here is just record the index of this field before
7745 we skip it. If it turns out we couldn't find our field
7746 in the current record, then we'll get back to it and search
7747 inside it whether the field might exist in the parent. */
7748
7749 parent_offset = i;
7750 continue;
7751 }
7752
14f9c5c9 7753 else if (field_name_match (t_field_name, name))
988f6b3d 7754 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7755
7756 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7757 {
4c4b4cd2 7758 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7759 0, 1);
4c4b4cd2 7760 if (t != NULL)
988f6b3d 7761 return t;
4c4b4cd2 7762 }
14f9c5c9
AS
7763
7764 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7765 {
7766 int j;
5b4ee69b
MS
7767 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7768 i));
4c4b4cd2
PH
7769
7770 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7771 {
b1f33ddd
JB
7772 /* FIXME pnh 2008/01/26: We check for a field that is
7773 NOT wrapped in a struct, since the compiler sometimes
7774 generates these for unchecked variant types. Revisit
0963b4bd 7775 if the compiler changes this practice. */
0d5cff50 7776 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7777
b1f33ddd
JB
7778 if (v_field_name != NULL
7779 && field_name_match (v_field_name, name))
460efde1 7780 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7781 else
0963b4bd
MS
7782 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7783 j),
988f6b3d 7784 name, 0, 1);
b1f33ddd 7785
4c4b4cd2 7786 if (t != NULL)
988f6b3d 7787 return t;
4c4b4cd2
PH
7788 }
7789 }
14f9c5c9
AS
7790
7791 }
7792
828d5846
XR
7793 /* Field not found so far. If this is a tagged type which
7794 has a parent, try finding that field in the parent now. */
7795
7796 if (parent_offset != -1)
7797 {
7798 struct type *t;
7799
7800 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7801 name, 0, 1);
7802 if (t != NULL)
7803 return t;
7804 }
7805
14f9c5c9 7806BadName:
d2e4a39e 7807 if (!noerr)
14f9c5c9 7808 {
2b2798cc 7809 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7810
7811 error (_("Type %s has no component named %s"),
3b4de39c 7812 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7813 }
7814
7815 return NULL;
7816}
7817
b1f33ddd
JB
7818/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7819 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7820 represents an unchecked union (that is, the variant part of a
0963b4bd 7821 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7822
7823static int
7824is_unchecked_variant (struct type *var_type, struct type *outer_type)
7825{
a121b7c1 7826 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7827
988f6b3d 7828 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7829}
7830
7831
14f9c5c9
AS
7832/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7833 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7834 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7835 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7836
d2e4a39e 7837int
ebf56fd3 7838ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7839 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7840{
7841 int others_clause;
7842 int i;
a121b7c1 7843 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7844 struct value *outer;
7845 struct value *discrim;
14f9c5c9
AS
7846 LONGEST discrim_val;
7847
012370f6
TT
7848 /* Using plain value_from_contents_and_address here causes problems
7849 because we will end up trying to resolve a type that is currently
7850 being constructed. */
7851 outer = value_from_contents_and_address_unresolved (outer_type,
7852 outer_valaddr, 0);
0c281816
JB
7853 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7854 if (discrim == NULL)
14f9c5c9 7855 return -1;
0c281816 7856 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7857
7858 others_clause = -1;
7859 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7860 {
7861 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7862 others_clause = i;
14f9c5c9 7863 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7864 return i;
14f9c5c9
AS
7865 }
7866
7867 return others_clause;
7868}
d2e4a39e 7869\f
14f9c5c9
AS
7870
7871
4c4b4cd2 7872 /* Dynamic-Sized Records */
14f9c5c9
AS
7873
7874/* Strategy: The type ostensibly attached to a value with dynamic size
7875 (i.e., a size that is not statically recorded in the debugging
7876 data) does not accurately reflect the size or layout of the value.
7877 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7878 conventional types that are constructed on the fly. */
14f9c5c9
AS
7879
7880/* There is a subtle and tricky problem here. In general, we cannot
7881 determine the size of dynamic records without its data. However,
7882 the 'struct value' data structure, which GDB uses to represent
7883 quantities in the inferior process (the target), requires the size
7884 of the type at the time of its allocation in order to reserve space
7885 for GDB's internal copy of the data. That's why the
7886 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7887 rather than struct value*s.
14f9c5c9
AS
7888
7889 However, GDB's internal history variables ($1, $2, etc.) are
7890 struct value*s containing internal copies of the data that are not, in
7891 general, the same as the data at their corresponding addresses in
7892 the target. Fortunately, the types we give to these values are all
7893 conventional, fixed-size types (as per the strategy described
7894 above), so that we don't usually have to perform the
7895 'to_fixed_xxx_type' conversions to look at their values.
7896 Unfortunately, there is one exception: if one of the internal
7897 history variables is an array whose elements are unconstrained
7898 records, then we will need to create distinct fixed types for each
7899 element selected. */
7900
7901/* The upshot of all of this is that many routines take a (type, host
7902 address, target address) triple as arguments to represent a value.
7903 The host address, if non-null, is supposed to contain an internal
7904 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7905 target at the target address. */
14f9c5c9
AS
7906
7907/* Assuming that VAL0 represents a pointer value, the result of
7908 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7909 dynamic-sized types. */
14f9c5c9 7910
d2e4a39e
AS
7911struct value *
7912ada_value_ind (struct value *val0)
14f9c5c9 7913{
c48db5ca 7914 struct value *val = value_ind (val0);
5b4ee69b 7915
b50d69b5
JG
7916 if (ada_is_tagged_type (value_type (val), 0))
7917 val = ada_tag_value_at_base_address (val);
7918
4c4b4cd2 7919 return ada_to_fixed_value (val);
14f9c5c9
AS
7920}
7921
7922/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7923 qualifiers on VAL0. */
7924
d2e4a39e
AS
7925static struct value *
7926ada_coerce_ref (struct value *val0)
7927{
df407dfe 7928 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7929 {
7930 struct value *val = val0;
5b4ee69b 7931
994b9211 7932 val = coerce_ref (val);
b50d69b5
JG
7933
7934 if (ada_is_tagged_type (value_type (val), 0))
7935 val = ada_tag_value_at_base_address (val);
7936
4c4b4cd2 7937 return ada_to_fixed_value (val);
d2e4a39e
AS
7938 }
7939 else
14f9c5c9
AS
7940 return val0;
7941}
7942
7943/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7944 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7945
7946static unsigned int
ebf56fd3 7947align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7948{
7949 return (off + alignment - 1) & ~(alignment - 1);
7950}
7951
4c4b4cd2 7952/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7953
7954static unsigned int
ebf56fd3 7955field_alignment (struct type *type, int f)
14f9c5c9 7956{
d2e4a39e 7957 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7958 int len;
14f9c5c9
AS
7959 int align_offset;
7960
64a1bf19
JB
7961 /* The field name should never be null, unless the debugging information
7962 is somehow malformed. In this case, we assume the field does not
7963 require any alignment. */
7964 if (name == NULL)
7965 return 1;
7966
7967 len = strlen (name);
7968
4c4b4cd2
PH
7969 if (!isdigit (name[len - 1]))
7970 return 1;
14f9c5c9 7971
d2e4a39e 7972 if (isdigit (name[len - 2]))
14f9c5c9
AS
7973 align_offset = len - 2;
7974 else
7975 align_offset = len - 1;
7976
61012eef 7977 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7978 return TARGET_CHAR_BIT;
7979
4c4b4cd2
PH
7980 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7981}
7982
852dff6c 7983/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7984
852dff6c
JB
7985static struct symbol *
7986ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7987{
7988 struct symbol *sym;
7989
7990 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7991 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7992 return sym;
7993
4186eb54
KS
7994 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7995 return sym;
14f9c5c9
AS
7996}
7997
dddfab26
UW
7998/* Find a type named NAME. Ignores ambiguity. This routine will look
7999 solely for types defined by debug info, it will not search the GDB
8000 primitive types. */
4c4b4cd2 8001
852dff6c 8002static struct type *
ebf56fd3 8003ada_find_any_type (const char *name)
14f9c5c9 8004{
852dff6c 8005 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 8006
14f9c5c9 8007 if (sym != NULL)
dddfab26 8008 return SYMBOL_TYPE (sym);
14f9c5c9 8009
dddfab26 8010 return NULL;
14f9c5c9
AS
8011}
8012
739593e0
JB
8013/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8014 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8015 symbol, in which case it is returned. Otherwise, this looks for
8016 symbols whose name is that of NAME_SYM suffixed with "___XR".
8017 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
8018
8019struct symbol *
270140bd 8020ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 8021{
739593e0 8022 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
8023 struct symbol *sym;
8024
739593e0
JB
8025 if (strstr (name, "___XR") != NULL)
8026 return name_sym;
8027
aeb5907d
JB
8028 sym = find_old_style_renaming_symbol (name, block);
8029
8030 if (sym != NULL)
8031 return sym;
8032
0963b4bd 8033 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 8034 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
8035 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8036 return sym;
8037 else
8038 return NULL;
8039}
8040
8041static struct symbol *
270140bd 8042find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 8043{
7f0df278 8044 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8045 char *rename;
8046
8047 if (function_sym != NULL)
8048 {
8049 /* If the symbol is defined inside a function, NAME is not fully
8050 qualified. This means we need to prepend the function name
8051 as well as adding the ``___XR'' suffix to build the name of
8052 the associated renaming symbol. */
0d5cff50 8053 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8054 /* Function names sometimes contain suffixes used
8055 for instance to qualify nested subprograms. When building
8056 the XR type name, we need to make sure that this suffix is
8057 not included. So do not include any suffix in the function
8058 name length below. */
69fadcdf 8059 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8060 const int rename_len = function_name_len + 2 /* "__" */
8061 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8062
529cad9c 8063 /* Strip the suffix if necessary. */
69fadcdf
JB
8064 ada_remove_trailing_digits (function_name, &function_name_len);
8065 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8066 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8067
4c4b4cd2
PH
8068 /* Library-level functions are a special case, as GNAT adds
8069 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8070 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8071 have this prefix, so we need to skip this prefix if present. */
8072 if (function_name_len > 5 /* "_ada_" */
8073 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8074 {
8075 function_name += 5;
8076 function_name_len -= 5;
8077 }
4c4b4cd2
PH
8078
8079 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8080 strncpy (rename, function_name, function_name_len);
8081 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8082 "__%s___XR", name);
4c4b4cd2
PH
8083 }
8084 else
8085 {
8086 const int rename_len = strlen (name) + 6;
5b4ee69b 8087
4c4b4cd2 8088 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8089 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8090 }
8091
852dff6c 8092 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8093}
8094
14f9c5c9 8095/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8096 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8097 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8098 otherwise return 0. */
8099
14f9c5c9 8100int
d2e4a39e 8101ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8102{
8103 if (type1 == NULL)
8104 return 1;
8105 else if (type0 == NULL)
8106 return 0;
8107 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8108 return 1;
8109 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8110 return 0;
4c4b4cd2
PH
8111 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8112 return 1;
ad82864c 8113 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8114 return 1;
4c4b4cd2
PH
8115 else if (ada_is_array_descriptor_type (type0)
8116 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8117 return 1;
aeb5907d
JB
8118 else
8119 {
8120 const char *type0_name = type_name_no_tag (type0);
8121 const char *type1_name = type_name_no_tag (type1);
8122
8123 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8124 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8125 return 1;
8126 }
14f9c5c9
AS
8127 return 0;
8128}
8129
8130/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
8131 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8132
0d5cff50 8133const char *
d2e4a39e 8134ada_type_name (struct type *type)
14f9c5c9 8135{
d2e4a39e 8136 if (type == NULL)
14f9c5c9
AS
8137 return NULL;
8138 else if (TYPE_NAME (type) != NULL)
8139 return TYPE_NAME (type);
8140 else
8141 return TYPE_TAG_NAME (type);
8142}
8143
b4ba55a1
JB
8144/* Search the list of "descriptive" types associated to TYPE for a type
8145 whose name is NAME. */
8146
8147static struct type *
8148find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8149{
931e5bc3 8150 struct type *result, *tmp;
b4ba55a1 8151
c6044dd1
JB
8152 if (ada_ignore_descriptive_types_p)
8153 return NULL;
8154
b4ba55a1
JB
8155 /* If there no descriptive-type info, then there is no parallel type
8156 to be found. */
8157 if (!HAVE_GNAT_AUX_INFO (type))
8158 return NULL;
8159
8160 result = TYPE_DESCRIPTIVE_TYPE (type);
8161 while (result != NULL)
8162 {
0d5cff50 8163 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8164
8165 if (result_name == NULL)
8166 {
8167 warning (_("unexpected null name on descriptive type"));
8168 return NULL;
8169 }
8170
8171 /* If the names match, stop. */
8172 if (strcmp (result_name, name) == 0)
8173 break;
8174
8175 /* Otherwise, look at the next item on the list, if any. */
8176 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8177 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8178 else
8179 tmp = NULL;
8180
8181 /* If not found either, try after having resolved the typedef. */
8182 if (tmp != NULL)
8183 result = tmp;
b4ba55a1 8184 else
931e5bc3 8185 {
f168693b 8186 result = check_typedef (result);
931e5bc3
JG
8187 if (HAVE_GNAT_AUX_INFO (result))
8188 result = TYPE_DESCRIPTIVE_TYPE (result);
8189 else
8190 result = NULL;
8191 }
b4ba55a1
JB
8192 }
8193
8194 /* If we didn't find a match, see whether this is a packed array. With
8195 older compilers, the descriptive type information is either absent or
8196 irrelevant when it comes to packed arrays so the above lookup fails.
8197 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8198 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8199 return ada_find_any_type (name);
8200
8201 return result;
8202}
8203
8204/* Find a parallel type to TYPE with the specified NAME, using the
8205 descriptive type taken from the debugging information, if available,
8206 and otherwise using the (slower) name-based method. */
8207
8208static struct type *
8209ada_find_parallel_type_with_name (struct type *type, const char *name)
8210{
8211 struct type *result = NULL;
8212
8213 if (HAVE_GNAT_AUX_INFO (type))
8214 result = find_parallel_type_by_descriptive_type (type, name);
8215 else
8216 result = ada_find_any_type (name);
8217
8218 return result;
8219}
8220
8221/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8222 SUFFIX to the name of TYPE. */
14f9c5c9 8223
d2e4a39e 8224struct type *
ebf56fd3 8225ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8226{
0d5cff50 8227 char *name;
fe978cb0 8228 const char *type_name = ada_type_name (type);
14f9c5c9 8229 int len;
d2e4a39e 8230
fe978cb0 8231 if (type_name == NULL)
14f9c5c9
AS
8232 return NULL;
8233
fe978cb0 8234 len = strlen (type_name);
14f9c5c9 8235
b4ba55a1 8236 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8237
fe978cb0 8238 strcpy (name, type_name);
14f9c5c9
AS
8239 strcpy (name + len, suffix);
8240
b4ba55a1 8241 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8242}
8243
14f9c5c9 8244/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8245 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8246
d2e4a39e
AS
8247static struct type *
8248dynamic_template_type (struct type *type)
14f9c5c9 8249{
61ee279c 8250 type = ada_check_typedef (type);
14f9c5c9
AS
8251
8252 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8253 || ada_type_name (type) == NULL)
14f9c5c9 8254 return NULL;
d2e4a39e 8255 else
14f9c5c9
AS
8256 {
8257 int len = strlen (ada_type_name (type));
5b4ee69b 8258
4c4b4cd2
PH
8259 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8260 return type;
14f9c5c9 8261 else
4c4b4cd2 8262 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8263 }
8264}
8265
8266/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8267 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8268
d2e4a39e
AS
8269static int
8270is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8271{
8272 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8273
d2e4a39e 8274 return name != NULL
14f9c5c9
AS
8275 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8276 && strstr (name, "___XVL") != NULL;
8277}
8278
4c4b4cd2
PH
8279/* The index of the variant field of TYPE, or -1 if TYPE does not
8280 represent a variant record type. */
14f9c5c9 8281
d2e4a39e 8282static int
4c4b4cd2 8283variant_field_index (struct type *type)
14f9c5c9
AS
8284{
8285 int f;
8286
4c4b4cd2
PH
8287 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8288 return -1;
8289
8290 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8291 {
8292 if (ada_is_variant_part (type, f))
8293 return f;
8294 }
8295 return -1;
14f9c5c9
AS
8296}
8297
4c4b4cd2
PH
8298/* A record type with no fields. */
8299
d2e4a39e 8300static struct type *
fe978cb0 8301empty_record (struct type *templ)
14f9c5c9 8302{
fe978cb0 8303 struct type *type = alloc_type_copy (templ);
5b4ee69b 8304
14f9c5c9
AS
8305 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8306 TYPE_NFIELDS (type) = 0;
8307 TYPE_FIELDS (type) = NULL;
b1f33ddd 8308 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8309 TYPE_NAME (type) = "<empty>";
8310 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8311 TYPE_LENGTH (type) = 0;
8312 return type;
8313}
8314
8315/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8316 the value of type TYPE at VALADDR or ADDRESS (see comments at
8317 the beginning of this section) VAL according to GNAT conventions.
8318 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8319 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8320 an outer-level type (i.e., as opposed to a branch of a variant.) A
8321 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8322 of the variant.
14f9c5c9 8323
4c4b4cd2
PH
8324 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8325 length are not statically known are discarded. As a consequence,
8326 VALADDR, ADDRESS and DVAL0 are ignored.
8327
8328 NOTE: Limitations: For now, we assume that dynamic fields and
8329 variants occupy whole numbers of bytes. However, they need not be
8330 byte-aligned. */
8331
8332struct type *
10a2c479 8333ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8334 const gdb_byte *valaddr,
4c4b4cd2
PH
8335 CORE_ADDR address, struct value *dval0,
8336 int keep_dynamic_fields)
14f9c5c9 8337{
d2e4a39e
AS
8338 struct value *mark = value_mark ();
8339 struct value *dval;
8340 struct type *rtype;
14f9c5c9 8341 int nfields, bit_len;
4c4b4cd2 8342 int variant_field;
14f9c5c9 8343 long off;
d94e4f4f 8344 int fld_bit_len;
14f9c5c9
AS
8345 int f;
8346
4c4b4cd2
PH
8347 /* Compute the number of fields in this record type that are going
8348 to be processed: unless keep_dynamic_fields, this includes only
8349 fields whose position and length are static will be processed. */
8350 if (keep_dynamic_fields)
8351 nfields = TYPE_NFIELDS (type);
8352 else
8353 {
8354 nfields = 0;
76a01679 8355 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8356 && !ada_is_variant_part (type, nfields)
8357 && !is_dynamic_field (type, nfields))
8358 nfields++;
8359 }
8360
e9bb382b 8361 rtype = alloc_type_copy (type);
14f9c5c9
AS
8362 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8363 INIT_CPLUS_SPECIFIC (rtype);
8364 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8365 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8366 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8367 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8368 TYPE_NAME (rtype) = ada_type_name (type);
8369 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8370 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8371
d2e4a39e
AS
8372 off = 0;
8373 bit_len = 0;
4c4b4cd2
PH
8374 variant_field = -1;
8375
14f9c5c9
AS
8376 for (f = 0; f < nfields; f += 1)
8377 {
6c038f32
PH
8378 off = align_value (off, field_alignment (type, f))
8379 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8380 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8381 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8382
d2e4a39e 8383 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8384 {
8385 variant_field = f;
d94e4f4f 8386 fld_bit_len = 0;
4c4b4cd2 8387 }
14f9c5c9 8388 else if (is_dynamic_field (type, f))
4c4b4cd2 8389 {
284614f0
JB
8390 const gdb_byte *field_valaddr = valaddr;
8391 CORE_ADDR field_address = address;
8392 struct type *field_type =
8393 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8394
4c4b4cd2 8395 if (dval0 == NULL)
b5304971
JG
8396 {
8397 /* rtype's length is computed based on the run-time
8398 value of discriminants. If the discriminants are not
8399 initialized, the type size may be completely bogus and
0963b4bd 8400 GDB may fail to allocate a value for it. So check the
b5304971 8401 size first before creating the value. */
c1b5a1a6 8402 ada_ensure_varsize_limit (rtype);
012370f6
TT
8403 /* Using plain value_from_contents_and_address here
8404 causes problems because we will end up trying to
8405 resolve a type that is currently being
8406 constructed. */
8407 dval = value_from_contents_and_address_unresolved (rtype,
8408 valaddr,
8409 address);
9f1f738a 8410 rtype = value_type (dval);
b5304971 8411 }
4c4b4cd2
PH
8412 else
8413 dval = dval0;
8414
284614f0
JB
8415 /* If the type referenced by this field is an aligner type, we need
8416 to unwrap that aligner type, because its size might not be set.
8417 Keeping the aligner type would cause us to compute the wrong
8418 size for this field, impacting the offset of the all the fields
8419 that follow this one. */
8420 if (ada_is_aligner_type (field_type))
8421 {
8422 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8423
8424 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8425 field_address = cond_offset_target (field_address, field_offset);
8426 field_type = ada_aligned_type (field_type);
8427 }
8428
8429 field_valaddr = cond_offset_host (field_valaddr,
8430 off / TARGET_CHAR_BIT);
8431 field_address = cond_offset_target (field_address,
8432 off / TARGET_CHAR_BIT);
8433
8434 /* Get the fixed type of the field. Note that, in this case,
8435 we do not want to get the real type out of the tag: if
8436 the current field is the parent part of a tagged record,
8437 we will get the tag of the object. Clearly wrong: the real
8438 type of the parent is not the real type of the child. We
8439 would end up in an infinite loop. */
8440 field_type = ada_get_base_type (field_type);
8441 field_type = ada_to_fixed_type (field_type, field_valaddr,
8442 field_address, dval, 0);
27f2a97b
JB
8443 /* If the field size is already larger than the maximum
8444 object size, then the record itself will necessarily
8445 be larger than the maximum object size. We need to make
8446 this check now, because the size might be so ridiculously
8447 large (due to an uninitialized variable in the inferior)
8448 that it would cause an overflow when adding it to the
8449 record size. */
c1b5a1a6 8450 ada_ensure_varsize_limit (field_type);
284614f0
JB
8451
8452 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8453 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8454 /* The multiplication can potentially overflow. But because
8455 the field length has been size-checked just above, and
8456 assuming that the maximum size is a reasonable value,
8457 an overflow should not happen in practice. So rather than
8458 adding overflow recovery code to this already complex code,
8459 we just assume that it's not going to happen. */
d94e4f4f 8460 fld_bit_len =
4c4b4cd2
PH
8461 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8462 }
14f9c5c9 8463 else
4c4b4cd2 8464 {
5ded5331
JB
8465 /* Note: If this field's type is a typedef, it is important
8466 to preserve the typedef layer.
8467
8468 Otherwise, we might be transforming a typedef to a fat
8469 pointer (encoding a pointer to an unconstrained array),
8470 into a basic fat pointer (encoding an unconstrained
8471 array). As both types are implemented using the same
8472 structure, the typedef is the only clue which allows us
8473 to distinguish between the two options. Stripping it
8474 would prevent us from printing this field appropriately. */
8475 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8476 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8477 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8478 fld_bit_len =
4c4b4cd2
PH
8479 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8480 else
5ded5331
JB
8481 {
8482 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8483
8484 /* We need to be careful of typedefs when computing
8485 the length of our field. If this is a typedef,
8486 get the length of the target type, not the length
8487 of the typedef. */
8488 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8489 field_type = ada_typedef_target_type (field_type);
8490
8491 fld_bit_len =
8492 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8493 }
4c4b4cd2 8494 }
14f9c5c9 8495 if (off + fld_bit_len > bit_len)
4c4b4cd2 8496 bit_len = off + fld_bit_len;
d94e4f4f 8497 off += fld_bit_len;
4c4b4cd2
PH
8498 TYPE_LENGTH (rtype) =
8499 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8500 }
4c4b4cd2
PH
8501
8502 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8503 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8504 the record. This can happen in the presence of representation
8505 clauses. */
8506 if (variant_field >= 0)
8507 {
8508 struct type *branch_type;
8509
8510 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8511
8512 if (dval0 == NULL)
9f1f738a 8513 {
012370f6
TT
8514 /* Using plain value_from_contents_and_address here causes
8515 problems because we will end up trying to resolve a type
8516 that is currently being constructed. */
8517 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8518 address);
9f1f738a
SA
8519 rtype = value_type (dval);
8520 }
4c4b4cd2
PH
8521 else
8522 dval = dval0;
8523
8524 branch_type =
8525 to_fixed_variant_branch_type
8526 (TYPE_FIELD_TYPE (type, variant_field),
8527 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8528 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8529 if (branch_type == NULL)
8530 {
8531 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8532 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8533 TYPE_NFIELDS (rtype) -= 1;
8534 }
8535 else
8536 {
8537 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8538 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8539 fld_bit_len =
8540 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8541 TARGET_CHAR_BIT;
8542 if (off + fld_bit_len > bit_len)
8543 bit_len = off + fld_bit_len;
8544 TYPE_LENGTH (rtype) =
8545 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8546 }
8547 }
8548
714e53ab
PH
8549 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8550 should contain the alignment of that record, which should be a strictly
8551 positive value. If null or negative, then something is wrong, most
8552 probably in the debug info. In that case, we don't round up the size
0963b4bd 8553 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8554 the current RTYPE length might be good enough for our purposes. */
8555 if (TYPE_LENGTH (type) <= 0)
8556 {
323e0a4a
AC
8557 if (TYPE_NAME (rtype))
8558 warning (_("Invalid type size for `%s' detected: %d."),
8559 TYPE_NAME (rtype), TYPE_LENGTH (type));
8560 else
8561 warning (_("Invalid type size for <unnamed> detected: %d."),
8562 TYPE_LENGTH (type));
714e53ab
PH
8563 }
8564 else
8565 {
8566 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8567 TYPE_LENGTH (type));
8568 }
14f9c5c9
AS
8569
8570 value_free_to_mark (mark);
d2e4a39e 8571 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8572 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8573 return rtype;
8574}
8575
4c4b4cd2
PH
8576/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8577 of 1. */
14f9c5c9 8578
d2e4a39e 8579static struct type *
fc1a4b47 8580template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8581 CORE_ADDR address, struct value *dval0)
8582{
8583 return ada_template_to_fixed_record_type_1 (type, valaddr,
8584 address, dval0, 1);
8585}
8586
8587/* An ordinary record type in which ___XVL-convention fields and
8588 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8589 static approximations, containing all possible fields. Uses
8590 no runtime values. Useless for use in values, but that's OK,
8591 since the results are used only for type determinations. Works on both
8592 structs and unions. Representation note: to save space, we memorize
8593 the result of this function in the TYPE_TARGET_TYPE of the
8594 template type. */
8595
8596static struct type *
8597template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8598{
8599 struct type *type;
8600 int nfields;
8601 int f;
8602
9e195661
PMR
8603 /* No need no do anything if the input type is already fixed. */
8604 if (TYPE_FIXED_INSTANCE (type0))
8605 return type0;
8606
8607 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8608 if (TYPE_TARGET_TYPE (type0) != NULL)
8609 return TYPE_TARGET_TYPE (type0);
8610
9e195661 8611 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8612 type = type0;
9e195661
PMR
8613 nfields = TYPE_NFIELDS (type0);
8614
8615 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8616 recompute all over next time. */
8617 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8618
8619 for (f = 0; f < nfields; f += 1)
8620 {
460efde1 8621 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8622 struct type *new_type;
14f9c5c9 8623
4c4b4cd2 8624 if (is_dynamic_field (type0, f))
460efde1
JB
8625 {
8626 field_type = ada_check_typedef (field_type);
8627 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8628 }
14f9c5c9 8629 else
f192137b 8630 new_type = static_unwrap_type (field_type);
9e195661
PMR
8631
8632 if (new_type != field_type)
8633 {
8634 /* Clone TYPE0 only the first time we get a new field type. */
8635 if (type == type0)
8636 {
8637 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8638 TYPE_CODE (type) = TYPE_CODE (type0);
8639 INIT_CPLUS_SPECIFIC (type);
8640 TYPE_NFIELDS (type) = nfields;
8641 TYPE_FIELDS (type) = (struct field *)
8642 TYPE_ALLOC (type, nfields * sizeof (struct field));
8643 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8644 sizeof (struct field) * nfields);
8645 TYPE_NAME (type) = ada_type_name (type0);
8646 TYPE_TAG_NAME (type) = NULL;
8647 TYPE_FIXED_INSTANCE (type) = 1;
8648 TYPE_LENGTH (type) = 0;
8649 }
8650 TYPE_FIELD_TYPE (type, f) = new_type;
8651 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8652 }
14f9c5c9 8653 }
9e195661 8654
14f9c5c9
AS
8655 return type;
8656}
8657
4c4b4cd2 8658/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8659 whose address in memory is ADDRESS, returns a revision of TYPE,
8660 which should be a non-dynamic-sized record, in which the variant
8661 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8662 for discriminant values in DVAL0, which can be NULL if the record
8663 contains the necessary discriminant values. */
8664
d2e4a39e 8665static struct type *
fc1a4b47 8666to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8667 CORE_ADDR address, struct value *dval0)
14f9c5c9 8668{
d2e4a39e 8669 struct value *mark = value_mark ();
4c4b4cd2 8670 struct value *dval;
d2e4a39e 8671 struct type *rtype;
14f9c5c9
AS
8672 struct type *branch_type;
8673 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8674 int variant_field = variant_field_index (type);
14f9c5c9 8675
4c4b4cd2 8676 if (variant_field == -1)
14f9c5c9
AS
8677 return type;
8678
4c4b4cd2 8679 if (dval0 == NULL)
9f1f738a
SA
8680 {
8681 dval = value_from_contents_and_address (type, valaddr, address);
8682 type = value_type (dval);
8683 }
4c4b4cd2
PH
8684 else
8685 dval = dval0;
8686
e9bb382b 8687 rtype = alloc_type_copy (type);
14f9c5c9 8688 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8689 INIT_CPLUS_SPECIFIC (rtype);
8690 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8691 TYPE_FIELDS (rtype) =
8692 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8693 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8694 sizeof (struct field) * nfields);
14f9c5c9
AS
8695 TYPE_NAME (rtype) = ada_type_name (type);
8696 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8697 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8698 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8699
4c4b4cd2
PH
8700 branch_type = to_fixed_variant_branch_type
8701 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8702 cond_offset_host (valaddr,
4c4b4cd2
PH
8703 TYPE_FIELD_BITPOS (type, variant_field)
8704 / TARGET_CHAR_BIT),
d2e4a39e 8705 cond_offset_target (address,
4c4b4cd2
PH
8706 TYPE_FIELD_BITPOS (type, variant_field)
8707 / TARGET_CHAR_BIT), dval);
d2e4a39e 8708 if (branch_type == NULL)
14f9c5c9 8709 {
4c4b4cd2 8710 int f;
5b4ee69b 8711
4c4b4cd2
PH
8712 for (f = variant_field + 1; f < nfields; f += 1)
8713 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8714 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8715 }
8716 else
8717 {
4c4b4cd2
PH
8718 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8719 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8720 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8721 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8722 }
4c4b4cd2 8723 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8724
4c4b4cd2 8725 value_free_to_mark (mark);
14f9c5c9
AS
8726 return rtype;
8727}
8728
8729/* An ordinary record type (with fixed-length fields) that describes
8730 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8731 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8732 should be in DVAL, a record value; it may be NULL if the object
8733 at ADDR itself contains any necessary discriminant values.
8734 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8735 values from the record are needed. Except in the case that DVAL,
8736 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8737 unchecked) is replaced by a particular branch of the variant.
8738
8739 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8740 is questionable and may be removed. It can arise during the
8741 processing of an unconstrained-array-of-record type where all the
8742 variant branches have exactly the same size. This is because in
8743 such cases, the compiler does not bother to use the XVS convention
8744 when encoding the record. I am currently dubious of this
8745 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8746
d2e4a39e 8747static struct type *
fc1a4b47 8748to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8749 CORE_ADDR address, struct value *dval)
14f9c5c9 8750{
d2e4a39e 8751 struct type *templ_type;
14f9c5c9 8752
876cecd0 8753 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8754 return type0;
8755
d2e4a39e 8756 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8757
8758 if (templ_type != NULL)
8759 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8760 else if (variant_field_index (type0) >= 0)
8761 {
8762 if (dval == NULL && valaddr == NULL && address == 0)
8763 return type0;
8764 return to_record_with_fixed_variant_part (type0, valaddr, address,
8765 dval);
8766 }
14f9c5c9
AS
8767 else
8768 {
876cecd0 8769 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8770 return type0;
8771 }
8772
8773}
8774
8775/* An ordinary record type (with fixed-length fields) that describes
8776 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8777 union type. Any necessary discriminants' values should be in DVAL,
8778 a record value. That is, this routine selects the appropriate
8779 branch of the union at ADDR according to the discriminant value
b1f33ddd 8780 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8781 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8782
d2e4a39e 8783static struct type *
fc1a4b47 8784to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8785 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8786{
8787 int which;
d2e4a39e
AS
8788 struct type *templ_type;
8789 struct type *var_type;
14f9c5c9
AS
8790
8791 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8792 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8793 else
14f9c5c9
AS
8794 var_type = var_type0;
8795
8796 templ_type = ada_find_parallel_type (var_type, "___XVU");
8797
8798 if (templ_type != NULL)
8799 var_type = templ_type;
8800
b1f33ddd
JB
8801 if (is_unchecked_variant (var_type, value_type (dval)))
8802 return var_type0;
d2e4a39e
AS
8803 which =
8804 ada_which_variant_applies (var_type,
0fd88904 8805 value_type (dval), value_contents (dval));
14f9c5c9
AS
8806
8807 if (which < 0)
e9bb382b 8808 return empty_record (var_type);
14f9c5c9 8809 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8810 return to_fixed_record_type
d2e4a39e
AS
8811 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8812 valaddr, address, dval);
4c4b4cd2 8813 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8814 return
8815 to_fixed_record_type
8816 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8817 else
8818 return TYPE_FIELD_TYPE (var_type, which);
8819}
8820
8908fca5
JB
8821/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8822 ENCODING_TYPE, a type following the GNAT conventions for discrete
8823 type encodings, only carries redundant information. */
8824
8825static int
8826ada_is_redundant_range_encoding (struct type *range_type,
8827 struct type *encoding_type)
8828{
108d56a4 8829 const char *bounds_str;
8908fca5
JB
8830 int n;
8831 LONGEST lo, hi;
8832
8833 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8834
005e2509
JB
8835 if (TYPE_CODE (get_base_type (range_type))
8836 != TYPE_CODE (get_base_type (encoding_type)))
8837 {
8838 /* The compiler probably used a simple base type to describe
8839 the range type instead of the range's actual base type,
8840 expecting us to get the real base type from the encoding
8841 anyway. In this situation, the encoding cannot be ignored
8842 as redundant. */
8843 return 0;
8844 }
8845
8908fca5
JB
8846 if (is_dynamic_type (range_type))
8847 return 0;
8848
8849 if (TYPE_NAME (encoding_type) == NULL)
8850 return 0;
8851
8852 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8853 if (bounds_str == NULL)
8854 return 0;
8855
8856 n = 8; /* Skip "___XDLU_". */
8857 if (!ada_scan_number (bounds_str, n, &lo, &n))
8858 return 0;
8859 if (TYPE_LOW_BOUND (range_type) != lo)
8860 return 0;
8861
8862 n += 2; /* Skip the "__" separator between the two bounds. */
8863 if (!ada_scan_number (bounds_str, n, &hi, &n))
8864 return 0;
8865 if (TYPE_HIGH_BOUND (range_type) != hi)
8866 return 0;
8867
8868 return 1;
8869}
8870
8871/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8872 a type following the GNAT encoding for describing array type
8873 indices, only carries redundant information. */
8874
8875static int
8876ada_is_redundant_index_type_desc (struct type *array_type,
8877 struct type *desc_type)
8878{
8879 struct type *this_layer = check_typedef (array_type);
8880 int i;
8881
8882 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8883 {
8884 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8885 TYPE_FIELD_TYPE (desc_type, i)))
8886 return 0;
8887 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8888 }
8889
8890 return 1;
8891}
8892
14f9c5c9
AS
8893/* Assuming that TYPE0 is an array type describing the type of a value
8894 at ADDR, and that DVAL describes a record containing any
8895 discriminants used in TYPE0, returns a type for the value that
8896 contains no dynamic components (that is, no components whose sizes
8897 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8898 true, gives an error message if the resulting type's size is over
4c4b4cd2 8899 varsize_limit. */
14f9c5c9 8900
d2e4a39e
AS
8901static struct type *
8902to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8903 int ignore_too_big)
14f9c5c9 8904{
d2e4a39e
AS
8905 struct type *index_type_desc;
8906 struct type *result;
ad82864c 8907 int constrained_packed_array_p;
931e5bc3 8908 static const char *xa_suffix = "___XA";
14f9c5c9 8909
b0dd7688 8910 type0 = ada_check_typedef (type0);
284614f0 8911 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8912 return type0;
14f9c5c9 8913
ad82864c
JB
8914 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8915 if (constrained_packed_array_p)
8916 type0 = decode_constrained_packed_array_type (type0);
284614f0 8917
931e5bc3
JG
8918 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8919
8920 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8921 encoding suffixed with 'P' may still be generated. If so,
8922 it should be used to find the XA type. */
8923
8924 if (index_type_desc == NULL)
8925 {
1da0522e 8926 const char *type_name = ada_type_name (type0);
931e5bc3 8927
1da0522e 8928 if (type_name != NULL)
931e5bc3 8929 {
1da0522e 8930 const int len = strlen (type_name);
931e5bc3
JG
8931 char *name = (char *) alloca (len + strlen (xa_suffix));
8932
1da0522e 8933 if (type_name[len - 1] == 'P')
931e5bc3 8934 {
1da0522e 8935 strcpy (name, type_name);
931e5bc3
JG
8936 strcpy (name + len - 1, xa_suffix);
8937 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8938 }
8939 }
8940 }
8941
28c85d6c 8942 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8943 if (index_type_desc != NULL
8944 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8945 {
8946 /* Ignore this ___XA parallel type, as it does not bring any
8947 useful information. This allows us to avoid creating fixed
8948 versions of the array's index types, which would be identical
8949 to the original ones. This, in turn, can also help avoid
8950 the creation of fixed versions of the array itself. */
8951 index_type_desc = NULL;
8952 }
8953
14f9c5c9
AS
8954 if (index_type_desc == NULL)
8955 {
61ee279c 8956 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8957
14f9c5c9 8958 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8959 depend on the contents of the array in properly constructed
8960 debugging data. */
529cad9c
PH
8961 /* Create a fixed version of the array element type.
8962 We're not providing the address of an element here,
e1d5a0d2 8963 and thus the actual object value cannot be inspected to do
529cad9c
PH
8964 the conversion. This should not be a problem, since arrays of
8965 unconstrained objects are not allowed. In particular, all
8966 the elements of an array of a tagged type should all be of
8967 the same type specified in the debugging info. No need to
8968 consult the object tag. */
1ed6ede0 8969 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8970
284614f0
JB
8971 /* Make sure we always create a new array type when dealing with
8972 packed array types, since we're going to fix-up the array
8973 type length and element bitsize a little further down. */
ad82864c 8974 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8975 result = type0;
14f9c5c9 8976 else
e9bb382b 8977 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8978 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8979 }
8980 else
8981 {
8982 int i;
8983 struct type *elt_type0;
8984
8985 elt_type0 = type0;
8986 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8987 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8988
8989 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8990 depend on the contents of the array in properly constructed
8991 debugging data. */
529cad9c
PH
8992 /* Create a fixed version of the array element type.
8993 We're not providing the address of an element here,
e1d5a0d2 8994 and thus the actual object value cannot be inspected to do
529cad9c
PH
8995 the conversion. This should not be a problem, since arrays of
8996 unconstrained objects are not allowed. In particular, all
8997 the elements of an array of a tagged type should all be of
8998 the same type specified in the debugging info. No need to
8999 consult the object tag. */
1ed6ede0
JB
9000 result =
9001 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
9002
9003 elt_type0 = type0;
14f9c5c9 9004 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
9005 {
9006 struct type *range_type =
28c85d6c 9007 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 9008
e9bb382b 9009 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 9010 result, range_type);
1ce677a4 9011 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 9012 }
d2e4a39e 9013 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 9014 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
9015 }
9016
2e6fda7d
JB
9017 /* We want to preserve the type name. This can be useful when
9018 trying to get the type name of a value that has already been
9019 printed (for instance, if the user did "print VAR; whatis $". */
9020 TYPE_NAME (result) = TYPE_NAME (type0);
9021
ad82864c 9022 if (constrained_packed_array_p)
284614f0
JB
9023 {
9024 /* So far, the resulting type has been created as if the original
9025 type was a regular (non-packed) array type. As a result, the
9026 bitsize of the array elements needs to be set again, and the array
9027 length needs to be recomputed based on that bitsize. */
9028 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9029 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9030
9031 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9032 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9033 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9034 TYPE_LENGTH (result)++;
9035 }
9036
876cecd0 9037 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 9038 return result;
d2e4a39e 9039}
14f9c5c9
AS
9040
9041
9042/* A standard type (containing no dynamically sized components)
9043 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9044 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 9045 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
9046 ADDRESS or in VALADDR contains these discriminants.
9047
1ed6ede0
JB
9048 If CHECK_TAG is not null, in the case of tagged types, this function
9049 attempts to locate the object's tag and use it to compute the actual
9050 type. However, when ADDRESS is null, we cannot use it to determine the
9051 location of the tag, and therefore compute the tagged type's actual type.
9052 So we return the tagged type without consulting the tag. */
529cad9c 9053
f192137b
JB
9054static struct type *
9055ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9056 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9057{
61ee279c 9058 type = ada_check_typedef (type);
d2e4a39e
AS
9059 switch (TYPE_CODE (type))
9060 {
9061 default:
14f9c5c9 9062 return type;
d2e4a39e 9063 case TYPE_CODE_STRUCT:
4c4b4cd2 9064 {
76a01679 9065 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9066 struct type *fixed_record_type =
9067 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9068
529cad9c
PH
9069 /* If STATIC_TYPE is a tagged type and we know the object's address,
9070 then we can determine its tag, and compute the object's actual
0963b4bd 9071 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9072 type (the parent part of the record may have dynamic fields
9073 and the way the location of _tag is expressed may depend on
9074 them). */
529cad9c 9075
1ed6ede0 9076 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9077 {
b50d69b5
JG
9078 struct value *tag =
9079 value_tag_from_contents_and_address
9080 (fixed_record_type,
9081 valaddr,
9082 address);
9083 struct type *real_type = type_from_tag (tag);
9084 struct value *obj =
9085 value_from_contents_and_address (fixed_record_type,
9086 valaddr,
9087 address);
9f1f738a 9088 fixed_record_type = value_type (obj);
76a01679 9089 if (real_type != NULL)
b50d69b5
JG
9090 return to_fixed_record_type
9091 (real_type, NULL,
9092 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9093 }
4af88198
JB
9094
9095 /* Check to see if there is a parallel ___XVZ variable.
9096 If there is, then it provides the actual size of our type. */
9097 else if (ada_type_name (fixed_record_type) != NULL)
9098 {
0d5cff50 9099 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9100 char *xvz_name
9101 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9102 bool xvz_found = false;
4af88198
JB
9103 LONGEST size;
9104
88c15c34 9105 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
eccab96d
JB
9106 TRY
9107 {
9108 xvz_found = get_int_var_value (xvz_name, size);
9109 }
9110 CATCH (except, RETURN_MASK_ERROR)
9111 {
9112 /* We found the variable, but somehow failed to read
9113 its value. Rethrow the same error, but with a little
9114 bit more information, to help the user understand
9115 what went wrong (Eg: the variable might have been
9116 optimized out). */
9117 throw_error (except.error,
9118 _("unable to read value of %s (%s)"),
9119 xvz_name, except.message);
9120 }
9121 END_CATCH
9122
9123 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9124 {
9125 fixed_record_type = copy_type (fixed_record_type);
9126 TYPE_LENGTH (fixed_record_type) = size;
9127
9128 /* The FIXED_RECORD_TYPE may have be a stub. We have
9129 observed this when the debugging info is STABS, and
9130 apparently it is something that is hard to fix.
9131
9132 In practice, we don't need the actual type definition
9133 at all, because the presence of the XVZ variable allows us
9134 to assume that there must be a XVS type as well, which we
9135 should be able to use later, when we need the actual type
9136 definition.
9137
9138 In the meantime, pretend that the "fixed" type we are
9139 returning is NOT a stub, because this can cause trouble
9140 when using this type to create new types targeting it.
9141 Indeed, the associated creation routines often check
9142 whether the target type is a stub and will try to replace
0963b4bd 9143 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9144 might cause the new type to have the wrong size too.
9145 Consider the case of an array, for instance, where the size
9146 of the array is computed from the number of elements in
9147 our array multiplied by the size of its element. */
9148 TYPE_STUB (fixed_record_type) = 0;
9149 }
9150 }
1ed6ede0 9151 return fixed_record_type;
4c4b4cd2 9152 }
d2e4a39e 9153 case TYPE_CODE_ARRAY:
4c4b4cd2 9154 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9155 case TYPE_CODE_UNION:
9156 if (dval == NULL)
4c4b4cd2 9157 return type;
d2e4a39e 9158 else
4c4b4cd2 9159 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9160 }
14f9c5c9
AS
9161}
9162
f192137b
JB
9163/* The same as ada_to_fixed_type_1, except that it preserves the type
9164 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9165
9166 The typedef layer needs be preserved in order to differentiate between
9167 arrays and array pointers when both types are implemented using the same
9168 fat pointer. In the array pointer case, the pointer is encoded as
9169 a typedef of the pointer type. For instance, considering:
9170
9171 type String_Access is access String;
9172 S1 : String_Access := null;
9173
9174 To the debugger, S1 is defined as a typedef of type String. But
9175 to the user, it is a pointer. So if the user tries to print S1,
9176 we should not dereference the array, but print the array address
9177 instead.
9178
9179 If we didn't preserve the typedef layer, we would lose the fact that
9180 the type is to be presented as a pointer (needs de-reference before
9181 being printed). And we would also use the source-level type name. */
f192137b
JB
9182
9183struct type *
9184ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9185 CORE_ADDR address, struct value *dval, int check_tag)
9186
9187{
9188 struct type *fixed_type =
9189 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9190
96dbd2c1
JB
9191 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9192 then preserve the typedef layer.
9193
9194 Implementation note: We can only check the main-type portion of
9195 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9196 from TYPE now returns a type that has the same instance flags
9197 as TYPE. For instance, if TYPE is a "typedef const", and its
9198 target type is a "struct", then the typedef elimination will return
9199 a "const" version of the target type. See check_typedef for more
9200 details about how the typedef layer elimination is done.
9201
9202 brobecker/2010-11-19: It seems to me that the only case where it is
9203 useful to preserve the typedef layer is when dealing with fat pointers.
9204 Perhaps, we could add a check for that and preserve the typedef layer
9205 only in that situation. But this seems unecessary so far, probably
9206 because we call check_typedef/ada_check_typedef pretty much everywhere.
9207 */
f192137b 9208 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9209 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9210 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9211 return type;
9212
9213 return fixed_type;
9214}
9215
14f9c5c9 9216/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9217 TYPE0, but based on no runtime data. */
14f9c5c9 9218
d2e4a39e
AS
9219static struct type *
9220to_static_fixed_type (struct type *type0)
14f9c5c9 9221{
d2e4a39e 9222 struct type *type;
14f9c5c9
AS
9223
9224 if (type0 == NULL)
9225 return NULL;
9226
876cecd0 9227 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9228 return type0;
9229
61ee279c 9230 type0 = ada_check_typedef (type0);
d2e4a39e 9231
14f9c5c9
AS
9232 switch (TYPE_CODE (type0))
9233 {
9234 default:
9235 return type0;
9236 case TYPE_CODE_STRUCT:
9237 type = dynamic_template_type (type0);
d2e4a39e 9238 if (type != NULL)
4c4b4cd2
PH
9239 return template_to_static_fixed_type (type);
9240 else
9241 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9242 case TYPE_CODE_UNION:
9243 type = ada_find_parallel_type (type0, "___XVU");
9244 if (type != NULL)
4c4b4cd2
PH
9245 return template_to_static_fixed_type (type);
9246 else
9247 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9248 }
9249}
9250
4c4b4cd2
PH
9251/* A static approximation of TYPE with all type wrappers removed. */
9252
d2e4a39e
AS
9253static struct type *
9254static_unwrap_type (struct type *type)
14f9c5c9
AS
9255{
9256 if (ada_is_aligner_type (type))
9257 {
61ee279c 9258 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9259 if (ada_type_name (type1) == NULL)
4c4b4cd2 9260 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9261
9262 return static_unwrap_type (type1);
9263 }
d2e4a39e 9264 else
14f9c5c9 9265 {
d2e4a39e 9266 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9267
d2e4a39e 9268 if (raw_real_type == type)
4c4b4cd2 9269 return type;
14f9c5c9 9270 else
4c4b4cd2 9271 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9272 }
9273}
9274
9275/* In some cases, incomplete and private types require
4c4b4cd2 9276 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9277 type Foo;
9278 type FooP is access Foo;
9279 V: FooP;
9280 type Foo is array ...;
4c4b4cd2 9281 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9282 cross-references to such types, we instead substitute for FooP a
9283 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9284 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9285
9286/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9287 exists, otherwise TYPE. */
9288
d2e4a39e 9289struct type *
61ee279c 9290ada_check_typedef (struct type *type)
14f9c5c9 9291{
727e3d2e
JB
9292 if (type == NULL)
9293 return NULL;
9294
720d1a40
JB
9295 /* If our type is a typedef type of a fat pointer, then we're done.
9296 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9297 what allows us to distinguish between fat pointers that represent
9298 array types, and fat pointers that represent array access types
9299 (in both cases, the compiler implements them as fat pointers). */
9300 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9301 && is_thick_pntr (ada_typedef_target_type (type)))
9302 return type;
9303
f168693b 9304 type = check_typedef (type);
14f9c5c9 9305 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9306 || !TYPE_STUB (type)
14f9c5c9
AS
9307 || TYPE_TAG_NAME (type) == NULL)
9308 return type;
d2e4a39e 9309 else
14f9c5c9 9310 {
0d5cff50 9311 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9312 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9313
05e522ef
JB
9314 if (type1 == NULL)
9315 return type;
9316
9317 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9318 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9319 types, only for the typedef-to-array types). If that's the case,
9320 strip the typedef layer. */
9321 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9322 type1 = ada_check_typedef (type1);
9323
9324 return type1;
14f9c5c9
AS
9325 }
9326}
9327
9328/* A value representing the data at VALADDR/ADDRESS as described by
9329 type TYPE0, but with a standard (static-sized) type that correctly
9330 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9331 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9332 creation of struct values]. */
14f9c5c9 9333
4c4b4cd2
PH
9334static struct value *
9335ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9336 struct value *val0)
14f9c5c9 9337{
1ed6ede0 9338 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9339
14f9c5c9
AS
9340 if (type == type0 && val0 != NULL)
9341 return val0;
cc0e770c
JB
9342
9343 if (VALUE_LVAL (val0) != lval_memory)
9344 {
9345 /* Our value does not live in memory; it could be a convenience
9346 variable, for instance. Create a not_lval value using val0's
9347 contents. */
9348 return value_from_contents (type, value_contents (val0));
9349 }
9350
9351 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9352}
9353
9354/* A value representing VAL, but with a standard (static-sized) type
9355 that correctly describes it. Does not necessarily create a new
9356 value. */
9357
0c3acc09 9358struct value *
4c4b4cd2
PH
9359ada_to_fixed_value (struct value *val)
9360{
c48db5ca
JB
9361 val = unwrap_value (val);
9362 val = ada_to_fixed_value_create (value_type (val),
9363 value_address (val),
9364 val);
9365 return val;
14f9c5c9 9366}
d2e4a39e 9367\f
14f9c5c9 9368
14f9c5c9
AS
9369/* Attributes */
9370
4c4b4cd2
PH
9371/* Table mapping attribute numbers to names.
9372 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9373
d2e4a39e 9374static const char *attribute_names[] = {
14f9c5c9
AS
9375 "<?>",
9376
d2e4a39e 9377 "first",
14f9c5c9
AS
9378 "last",
9379 "length",
9380 "image",
14f9c5c9
AS
9381 "max",
9382 "min",
4c4b4cd2
PH
9383 "modulus",
9384 "pos",
9385 "size",
9386 "tag",
14f9c5c9 9387 "val",
14f9c5c9
AS
9388 0
9389};
9390
d2e4a39e 9391const char *
4c4b4cd2 9392ada_attribute_name (enum exp_opcode n)
14f9c5c9 9393{
4c4b4cd2
PH
9394 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9395 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9396 else
9397 return attribute_names[0];
9398}
9399
4c4b4cd2 9400/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9401
4c4b4cd2
PH
9402static LONGEST
9403pos_atr (struct value *arg)
14f9c5c9 9404{
24209737
PH
9405 struct value *val = coerce_ref (arg);
9406 struct type *type = value_type (val);
aa715135 9407 LONGEST result;
14f9c5c9 9408
d2e4a39e 9409 if (!discrete_type_p (type))
323e0a4a 9410 error (_("'POS only defined on discrete types"));
14f9c5c9 9411
aa715135
JG
9412 if (!discrete_position (type, value_as_long (val), &result))
9413 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9414
aa715135 9415 return result;
4c4b4cd2
PH
9416}
9417
9418static struct value *
3cb382c9 9419value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9420{
3cb382c9 9421 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9422}
9423
4c4b4cd2 9424/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9425
d2e4a39e
AS
9426static struct value *
9427value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9428{
d2e4a39e 9429 if (!discrete_type_p (type))
323e0a4a 9430 error (_("'VAL only defined on discrete types"));
df407dfe 9431 if (!integer_type_p (value_type (arg)))
323e0a4a 9432 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9433
9434 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9435 {
9436 long pos = value_as_long (arg);
5b4ee69b 9437
14f9c5c9 9438 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9439 error (_("argument to 'VAL out of range"));
14e75d8e 9440 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9441 }
9442 else
9443 return value_from_longest (type, value_as_long (arg));
9444}
14f9c5c9 9445\f
d2e4a39e 9446
4c4b4cd2 9447 /* Evaluation */
14f9c5c9 9448
4c4b4cd2
PH
9449/* True if TYPE appears to be an Ada character type.
9450 [At the moment, this is true only for Character and Wide_Character;
9451 It is a heuristic test that could stand improvement]. */
14f9c5c9 9452
d2e4a39e
AS
9453int
9454ada_is_character_type (struct type *type)
14f9c5c9 9455{
7b9f71f2
JB
9456 const char *name;
9457
9458 /* If the type code says it's a character, then assume it really is,
9459 and don't check any further. */
9460 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9461 return 1;
9462
9463 /* Otherwise, assume it's a character type iff it is a discrete type
9464 with a known character type name. */
9465 name = ada_type_name (type);
9466 return (name != NULL
9467 && (TYPE_CODE (type) == TYPE_CODE_INT
9468 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9469 && (strcmp (name, "character") == 0
9470 || strcmp (name, "wide_character") == 0
5a517ebd 9471 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9472 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9473}
9474
4c4b4cd2 9475/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9476
9477int
ebf56fd3 9478ada_is_string_type (struct type *type)
14f9c5c9 9479{
61ee279c 9480 type = ada_check_typedef (type);
d2e4a39e 9481 if (type != NULL
14f9c5c9 9482 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9483 && (ada_is_simple_array_type (type)
9484 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9485 && ada_array_arity (type) == 1)
9486 {
9487 struct type *elttype = ada_array_element_type (type, 1);
9488
9489 return ada_is_character_type (elttype);
9490 }
d2e4a39e 9491 else
14f9c5c9
AS
9492 return 0;
9493}
9494
5bf03f13
JB
9495/* The compiler sometimes provides a parallel XVS type for a given
9496 PAD type. Normally, it is safe to follow the PAD type directly,
9497 but older versions of the compiler have a bug that causes the offset
9498 of its "F" field to be wrong. Following that field in that case
9499 would lead to incorrect results, but this can be worked around
9500 by ignoring the PAD type and using the associated XVS type instead.
9501
9502 Set to True if the debugger should trust the contents of PAD types.
9503 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9504static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9505
9506/* True if TYPE is a struct type introduced by the compiler to force the
9507 alignment of a value. Such types have a single field with a
4c4b4cd2 9508 distinctive name. */
14f9c5c9
AS
9509
9510int
ebf56fd3 9511ada_is_aligner_type (struct type *type)
14f9c5c9 9512{
61ee279c 9513 type = ada_check_typedef (type);
714e53ab 9514
5bf03f13 9515 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9516 return 0;
9517
14f9c5c9 9518 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9519 && TYPE_NFIELDS (type) == 1
9520 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9521}
9522
9523/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9524 the parallel type. */
14f9c5c9 9525
d2e4a39e
AS
9526struct type *
9527ada_get_base_type (struct type *raw_type)
14f9c5c9 9528{
d2e4a39e
AS
9529 struct type *real_type_namer;
9530 struct type *raw_real_type;
14f9c5c9
AS
9531
9532 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9533 return raw_type;
9534
284614f0
JB
9535 if (ada_is_aligner_type (raw_type))
9536 /* The encoding specifies that we should always use the aligner type.
9537 So, even if this aligner type has an associated XVS type, we should
9538 simply ignore it.
9539
9540 According to the compiler gurus, an XVS type parallel to an aligner
9541 type may exist because of a stabs limitation. In stabs, aligner
9542 types are empty because the field has a variable-sized type, and
9543 thus cannot actually be used as an aligner type. As a result,
9544 we need the associated parallel XVS type to decode the type.
9545 Since the policy in the compiler is to not change the internal
9546 representation based on the debugging info format, we sometimes
9547 end up having a redundant XVS type parallel to the aligner type. */
9548 return raw_type;
9549
14f9c5c9 9550 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9551 if (real_type_namer == NULL
14f9c5c9
AS
9552 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9553 || TYPE_NFIELDS (real_type_namer) != 1)
9554 return raw_type;
9555
f80d3ff2
JB
9556 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9557 {
9558 /* This is an older encoding form where the base type needs to be
9559 looked up by name. We prefer the newer enconding because it is
9560 more efficient. */
9561 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9562 if (raw_real_type == NULL)
9563 return raw_type;
9564 else
9565 return raw_real_type;
9566 }
9567
9568 /* The field in our XVS type is a reference to the base type. */
9569 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9570}
14f9c5c9 9571
4c4b4cd2 9572/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9573
d2e4a39e
AS
9574struct type *
9575ada_aligned_type (struct type *type)
14f9c5c9
AS
9576{
9577 if (ada_is_aligner_type (type))
9578 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9579 else
9580 return ada_get_base_type (type);
9581}
9582
9583
9584/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9585 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9586
fc1a4b47
AC
9587const gdb_byte *
9588ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9589{
d2e4a39e 9590 if (ada_is_aligner_type (type))
14f9c5c9 9591 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9592 valaddr +
9593 TYPE_FIELD_BITPOS (type,
9594 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9595 else
9596 return valaddr;
9597}
9598
4c4b4cd2
PH
9599
9600
14f9c5c9 9601/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9602 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9603const char *
9604ada_enum_name (const char *name)
14f9c5c9 9605{
4c4b4cd2
PH
9606 static char *result;
9607 static size_t result_len = 0;
e6a959d6 9608 const char *tmp;
14f9c5c9 9609
4c4b4cd2
PH
9610 /* First, unqualify the enumeration name:
9611 1. Search for the last '.' character. If we find one, then skip
177b42fe 9612 all the preceding characters, the unqualified name starts
76a01679 9613 right after that dot.
4c4b4cd2 9614 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9615 translates dots into "__". Search forward for double underscores,
9616 but stop searching when we hit an overloading suffix, which is
9617 of the form "__" followed by digits. */
4c4b4cd2 9618
c3e5cd34
PH
9619 tmp = strrchr (name, '.');
9620 if (tmp != NULL)
4c4b4cd2
PH
9621 name = tmp + 1;
9622 else
14f9c5c9 9623 {
4c4b4cd2
PH
9624 while ((tmp = strstr (name, "__")) != NULL)
9625 {
9626 if (isdigit (tmp[2]))
9627 break;
9628 else
9629 name = tmp + 2;
9630 }
14f9c5c9
AS
9631 }
9632
9633 if (name[0] == 'Q')
9634 {
14f9c5c9 9635 int v;
5b4ee69b 9636
14f9c5c9 9637 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9638 {
9639 if (sscanf (name + 2, "%x", &v) != 1)
9640 return name;
9641 }
14f9c5c9 9642 else
4c4b4cd2 9643 return name;
14f9c5c9 9644
4c4b4cd2 9645 GROW_VECT (result, result_len, 16);
14f9c5c9 9646 if (isascii (v) && isprint (v))
88c15c34 9647 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9648 else if (name[1] == 'U')
88c15c34 9649 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9650 else
88c15c34 9651 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9652
9653 return result;
9654 }
d2e4a39e 9655 else
4c4b4cd2 9656 {
c3e5cd34
PH
9657 tmp = strstr (name, "__");
9658 if (tmp == NULL)
9659 tmp = strstr (name, "$");
9660 if (tmp != NULL)
4c4b4cd2
PH
9661 {
9662 GROW_VECT (result, result_len, tmp - name + 1);
9663 strncpy (result, name, tmp - name);
9664 result[tmp - name] = '\0';
9665 return result;
9666 }
9667
9668 return name;
9669 }
14f9c5c9
AS
9670}
9671
14f9c5c9
AS
9672/* Evaluate the subexpression of EXP starting at *POS as for
9673 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9674 expression. */
14f9c5c9 9675
d2e4a39e
AS
9676static struct value *
9677evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9678{
4b27a620 9679 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9680}
9681
9682/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9683 value it wraps. */
14f9c5c9 9684
d2e4a39e
AS
9685static struct value *
9686unwrap_value (struct value *val)
14f9c5c9 9687{
df407dfe 9688 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9689
14f9c5c9
AS
9690 if (ada_is_aligner_type (type))
9691 {
de4d072f 9692 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9693 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9694
14f9c5c9 9695 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9696 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9697
9698 return unwrap_value (v);
9699 }
d2e4a39e 9700 else
14f9c5c9 9701 {
d2e4a39e 9702 struct type *raw_real_type =
61ee279c 9703 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9704
5bf03f13
JB
9705 /* If there is no parallel XVS or XVE type, then the value is
9706 already unwrapped. Return it without further modification. */
9707 if ((type == raw_real_type)
9708 && ada_find_parallel_type (type, "___XVE") == NULL)
9709 return val;
14f9c5c9 9710
d2e4a39e 9711 return
4c4b4cd2
PH
9712 coerce_unspec_val_to_type
9713 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9714 value_address (val),
1ed6ede0 9715 NULL, 1));
14f9c5c9
AS
9716 }
9717}
d2e4a39e
AS
9718
9719static struct value *
50eff16b 9720cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9721{
50eff16b
UW
9722 struct value *scale = ada_scaling_factor (value_type (arg));
9723 arg = value_cast (value_type (scale), arg);
14f9c5c9 9724
50eff16b
UW
9725 arg = value_binop (arg, scale, BINOP_MUL);
9726 return value_cast (type, arg);
14f9c5c9
AS
9727}
9728
d2e4a39e 9729static struct value *
50eff16b 9730cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9731{
50eff16b
UW
9732 if (type == value_type (arg))
9733 return arg;
5b4ee69b 9734
50eff16b
UW
9735 struct value *scale = ada_scaling_factor (type);
9736 if (ada_is_fixed_point_type (value_type (arg)))
9737 arg = cast_from_fixed (value_type (scale), arg);
9738 else
9739 arg = value_cast (value_type (scale), arg);
9740
9741 arg = value_binop (arg, scale, BINOP_DIV);
9742 return value_cast (type, arg);
14f9c5c9
AS
9743}
9744
d99dcf51
JB
9745/* Given two array types T1 and T2, return nonzero iff both arrays
9746 contain the same number of elements. */
9747
9748static int
9749ada_same_array_size_p (struct type *t1, struct type *t2)
9750{
9751 LONGEST lo1, hi1, lo2, hi2;
9752
9753 /* Get the array bounds in order to verify that the size of
9754 the two arrays match. */
9755 if (!get_array_bounds (t1, &lo1, &hi1)
9756 || !get_array_bounds (t2, &lo2, &hi2))
9757 error (_("unable to determine array bounds"));
9758
9759 /* To make things easier for size comparison, normalize a bit
9760 the case of empty arrays by making sure that the difference
9761 between upper bound and lower bound is always -1. */
9762 if (lo1 > hi1)
9763 hi1 = lo1 - 1;
9764 if (lo2 > hi2)
9765 hi2 = lo2 - 1;
9766
9767 return (hi1 - lo1 == hi2 - lo2);
9768}
9769
9770/* Assuming that VAL is an array of integrals, and TYPE represents
9771 an array with the same number of elements, but with wider integral
9772 elements, return an array "casted" to TYPE. In practice, this
9773 means that the returned array is built by casting each element
9774 of the original array into TYPE's (wider) element type. */
9775
9776static struct value *
9777ada_promote_array_of_integrals (struct type *type, struct value *val)
9778{
9779 struct type *elt_type = TYPE_TARGET_TYPE (type);
9780 LONGEST lo, hi;
9781 struct value *res;
9782 LONGEST i;
9783
9784 /* Verify that both val and type are arrays of scalars, and
9785 that the size of val's elements is smaller than the size
9786 of type's element. */
9787 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9788 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9789 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9790 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9791 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9792 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9793
9794 if (!get_array_bounds (type, &lo, &hi))
9795 error (_("unable to determine array bounds"));
9796
9797 res = allocate_value (type);
9798
9799 /* Promote each array element. */
9800 for (i = 0; i < hi - lo + 1; i++)
9801 {
9802 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9803
9804 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9805 value_contents_all (elt), TYPE_LENGTH (elt_type));
9806 }
9807
9808 return res;
9809}
9810
4c4b4cd2
PH
9811/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9812 return the converted value. */
9813
d2e4a39e
AS
9814static struct value *
9815coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9816{
df407dfe 9817 struct type *type2 = value_type (val);
5b4ee69b 9818
14f9c5c9
AS
9819 if (type == type2)
9820 return val;
9821
61ee279c
PH
9822 type2 = ada_check_typedef (type2);
9823 type = ada_check_typedef (type);
14f9c5c9 9824
d2e4a39e
AS
9825 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9826 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9827 {
9828 val = ada_value_ind (val);
df407dfe 9829 type2 = value_type (val);
14f9c5c9
AS
9830 }
9831
d2e4a39e 9832 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9833 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9834 {
d99dcf51
JB
9835 if (!ada_same_array_size_p (type, type2))
9836 error (_("cannot assign arrays of different length"));
9837
9838 if (is_integral_type (TYPE_TARGET_TYPE (type))
9839 && is_integral_type (TYPE_TARGET_TYPE (type2))
9840 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9841 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9842 {
9843 /* Allow implicit promotion of the array elements to
9844 a wider type. */
9845 return ada_promote_array_of_integrals (type, val);
9846 }
9847
9848 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9849 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9850 error (_("Incompatible types in assignment"));
04624583 9851 deprecated_set_value_type (val, type);
14f9c5c9 9852 }
d2e4a39e 9853 return val;
14f9c5c9
AS
9854}
9855
4c4b4cd2
PH
9856static struct value *
9857ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9858{
9859 struct value *val;
9860 struct type *type1, *type2;
9861 LONGEST v, v1, v2;
9862
994b9211
AC
9863 arg1 = coerce_ref (arg1);
9864 arg2 = coerce_ref (arg2);
18af8284
JB
9865 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9866 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9867
76a01679
JB
9868 if (TYPE_CODE (type1) != TYPE_CODE_INT
9869 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9870 return value_binop (arg1, arg2, op);
9871
76a01679 9872 switch (op)
4c4b4cd2
PH
9873 {
9874 case BINOP_MOD:
9875 case BINOP_DIV:
9876 case BINOP_REM:
9877 break;
9878 default:
9879 return value_binop (arg1, arg2, op);
9880 }
9881
9882 v2 = value_as_long (arg2);
9883 if (v2 == 0)
323e0a4a 9884 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9885
9886 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9887 return value_binop (arg1, arg2, op);
9888
9889 v1 = value_as_long (arg1);
9890 switch (op)
9891 {
9892 case BINOP_DIV:
9893 v = v1 / v2;
76a01679
JB
9894 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9895 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9896 break;
9897 case BINOP_REM:
9898 v = v1 % v2;
76a01679
JB
9899 if (v * v1 < 0)
9900 v -= v2;
4c4b4cd2
PH
9901 break;
9902 default:
9903 /* Should not reach this point. */
9904 v = 0;
9905 }
9906
9907 val = allocate_value (type1);
990a07ab 9908 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9909 TYPE_LENGTH (value_type (val)),
9910 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9911 return val;
9912}
9913
9914static int
9915ada_value_equal (struct value *arg1, struct value *arg2)
9916{
df407dfe
AC
9917 if (ada_is_direct_array_type (value_type (arg1))
9918 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9919 {
79e8fcaa
JB
9920 struct type *arg1_type, *arg2_type;
9921
f58b38bf
JB
9922 /* Automatically dereference any array reference before
9923 we attempt to perform the comparison. */
9924 arg1 = ada_coerce_ref (arg1);
9925 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9926
4c4b4cd2
PH
9927 arg1 = ada_coerce_to_simple_array (arg1);
9928 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9929
9930 arg1_type = ada_check_typedef (value_type (arg1));
9931 arg2_type = ada_check_typedef (value_type (arg2));
9932
9933 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9934 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9935 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9936 /* FIXME: The following works only for types whose
76a01679
JB
9937 representations use all bits (no padding or undefined bits)
9938 and do not have user-defined equality. */
79e8fcaa
JB
9939 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9940 && memcmp (value_contents (arg1), value_contents (arg2),
9941 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9942 }
9943 return value_equal (arg1, arg2);
9944}
9945
52ce6436
PH
9946/* Total number of component associations in the aggregate starting at
9947 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9948 OP_AGGREGATE. */
52ce6436
PH
9949
9950static int
9951num_component_specs (struct expression *exp, int pc)
9952{
9953 int n, m, i;
5b4ee69b 9954
52ce6436
PH
9955 m = exp->elts[pc + 1].longconst;
9956 pc += 3;
9957 n = 0;
9958 for (i = 0; i < m; i += 1)
9959 {
9960 switch (exp->elts[pc].opcode)
9961 {
9962 default:
9963 n += 1;
9964 break;
9965 case OP_CHOICES:
9966 n += exp->elts[pc + 1].longconst;
9967 break;
9968 }
9969 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9970 }
9971 return n;
9972}
9973
9974/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9975 component of LHS (a simple array or a record), updating *POS past
9976 the expression, assuming that LHS is contained in CONTAINER. Does
9977 not modify the inferior's memory, nor does it modify LHS (unless
9978 LHS == CONTAINER). */
9979
9980static void
9981assign_component (struct value *container, struct value *lhs, LONGEST index,
9982 struct expression *exp, int *pos)
9983{
9984 struct value *mark = value_mark ();
9985 struct value *elt;
0e2da9f0 9986 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9987
0e2da9f0 9988 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9989 {
22601c15
UW
9990 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9991 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9992
52ce6436
PH
9993 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9994 }
9995 else
9996 {
9997 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9998 elt = ada_to_fixed_value (elt);
52ce6436
PH
9999 }
10000
10001 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10002 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
10003 else
10004 value_assign_to_component (container, elt,
10005 ada_evaluate_subexp (NULL, exp, pos,
10006 EVAL_NORMAL));
10007
10008 value_free_to_mark (mark);
10009}
10010
10011/* Assuming that LHS represents an lvalue having a record or array
10012 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10013 of that aggregate's value to LHS, advancing *POS past the
10014 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10015 lvalue containing LHS (possibly LHS itself). Does not modify
10016 the inferior's memory, nor does it modify the contents of
0963b4bd 10017 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
10018
10019static struct value *
10020assign_aggregate (struct value *container,
10021 struct value *lhs, struct expression *exp,
10022 int *pos, enum noside noside)
10023{
10024 struct type *lhs_type;
10025 int n = exp->elts[*pos+1].longconst;
10026 LONGEST low_index, high_index;
10027 int num_specs;
10028 LONGEST *indices;
10029 int max_indices, num_indices;
52ce6436 10030 int i;
52ce6436
PH
10031
10032 *pos += 3;
10033 if (noside != EVAL_NORMAL)
10034 {
52ce6436
PH
10035 for (i = 0; i < n; i += 1)
10036 ada_evaluate_subexp (NULL, exp, pos, noside);
10037 return container;
10038 }
10039
10040 container = ada_coerce_ref (container);
10041 if (ada_is_direct_array_type (value_type (container)))
10042 container = ada_coerce_to_simple_array (container);
10043 lhs = ada_coerce_ref (lhs);
10044 if (!deprecated_value_modifiable (lhs))
10045 error (_("Left operand of assignment is not a modifiable lvalue."));
10046
0e2da9f0 10047 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10048 if (ada_is_direct_array_type (lhs_type))
10049 {
10050 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 10051 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10052 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10053 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10054 }
10055 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10056 {
10057 low_index = 0;
10058 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10059 }
10060 else
10061 error (_("Left-hand side must be array or record."));
10062
10063 num_specs = num_component_specs (exp, *pos - 3);
10064 max_indices = 4 * num_specs + 4;
8d749320 10065 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10066 indices[0] = indices[1] = low_index - 1;
10067 indices[2] = indices[3] = high_index + 1;
10068 num_indices = 4;
10069
10070 for (i = 0; i < n; i += 1)
10071 {
10072 switch (exp->elts[*pos].opcode)
10073 {
1fbf5ada
JB
10074 case OP_CHOICES:
10075 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10076 &num_indices, max_indices,
10077 low_index, high_index);
10078 break;
10079 case OP_POSITIONAL:
10080 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10081 &num_indices, max_indices,
10082 low_index, high_index);
1fbf5ada
JB
10083 break;
10084 case OP_OTHERS:
10085 if (i != n-1)
10086 error (_("Misplaced 'others' clause"));
10087 aggregate_assign_others (container, lhs, exp, pos, indices,
10088 num_indices, low_index, high_index);
10089 break;
10090 default:
10091 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10092 }
10093 }
10094
10095 return container;
10096}
10097
10098/* Assign into the component of LHS indexed by the OP_POSITIONAL
10099 construct at *POS, updating *POS past the construct, given that
10100 the positions are relative to lower bound LOW, where HIGH is the
10101 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10102 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10103 assign_aggregate. */
52ce6436
PH
10104static void
10105aggregate_assign_positional (struct value *container,
10106 struct value *lhs, struct expression *exp,
10107 int *pos, LONGEST *indices, int *num_indices,
10108 int max_indices, LONGEST low, LONGEST high)
10109{
10110 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10111
10112 if (ind - 1 == high)
e1d5a0d2 10113 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10114 if (ind <= high)
10115 {
10116 add_component_interval (ind, ind, indices, num_indices, max_indices);
10117 *pos += 3;
10118 assign_component (container, lhs, ind, exp, pos);
10119 }
10120 else
10121 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10122}
10123
10124/* Assign into the components of LHS indexed by the OP_CHOICES
10125 construct at *POS, updating *POS past the construct, given that
10126 the allowable indices are LOW..HIGH. Record the indices assigned
10127 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10128 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10129static void
10130aggregate_assign_from_choices (struct value *container,
10131 struct value *lhs, struct expression *exp,
10132 int *pos, LONGEST *indices, int *num_indices,
10133 int max_indices, LONGEST low, LONGEST high)
10134{
10135 int j;
10136 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10137 int choice_pos, expr_pc;
10138 int is_array = ada_is_direct_array_type (value_type (lhs));
10139
10140 choice_pos = *pos += 3;
10141
10142 for (j = 0; j < n_choices; j += 1)
10143 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10144 expr_pc = *pos;
10145 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10146
10147 for (j = 0; j < n_choices; j += 1)
10148 {
10149 LONGEST lower, upper;
10150 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10151
52ce6436
PH
10152 if (op == OP_DISCRETE_RANGE)
10153 {
10154 choice_pos += 1;
10155 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10156 EVAL_NORMAL));
10157 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10158 EVAL_NORMAL));
10159 }
10160 else if (is_array)
10161 {
10162 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10163 EVAL_NORMAL));
10164 upper = lower;
10165 }
10166 else
10167 {
10168 int ind;
0d5cff50 10169 const char *name;
5b4ee69b 10170
52ce6436
PH
10171 switch (op)
10172 {
10173 case OP_NAME:
10174 name = &exp->elts[choice_pos + 2].string;
10175 break;
10176 case OP_VAR_VALUE:
10177 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10178 break;
10179 default:
10180 error (_("Invalid record component association."));
10181 }
10182 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10183 ind = 0;
10184 if (! find_struct_field (name, value_type (lhs), 0,
10185 NULL, NULL, NULL, NULL, &ind))
10186 error (_("Unknown component name: %s."), name);
10187 lower = upper = ind;
10188 }
10189
10190 if (lower <= upper && (lower < low || upper > high))
10191 error (_("Index in component association out of bounds."));
10192
10193 add_component_interval (lower, upper, indices, num_indices,
10194 max_indices);
10195 while (lower <= upper)
10196 {
10197 int pos1;
5b4ee69b 10198
52ce6436
PH
10199 pos1 = expr_pc;
10200 assign_component (container, lhs, lower, exp, &pos1);
10201 lower += 1;
10202 }
10203 }
10204}
10205
10206/* Assign the value of the expression in the OP_OTHERS construct in
10207 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10208 have not been previously assigned. The index intervals already assigned
10209 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10210 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10211static void
10212aggregate_assign_others (struct value *container,
10213 struct value *lhs, struct expression *exp,
10214 int *pos, LONGEST *indices, int num_indices,
10215 LONGEST low, LONGEST high)
10216{
10217 int i;
5ce64950 10218 int expr_pc = *pos + 1;
52ce6436
PH
10219
10220 for (i = 0; i < num_indices - 2; i += 2)
10221 {
10222 LONGEST ind;
5b4ee69b 10223
52ce6436
PH
10224 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10225 {
5ce64950 10226 int localpos;
5b4ee69b 10227
5ce64950
MS
10228 localpos = expr_pc;
10229 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10230 }
10231 }
10232 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10233}
10234
10235/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10236 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10237 modifying *SIZE as needed. It is an error if *SIZE exceeds
10238 MAX_SIZE. The resulting intervals do not overlap. */
10239static void
10240add_component_interval (LONGEST low, LONGEST high,
10241 LONGEST* indices, int *size, int max_size)
10242{
10243 int i, j;
5b4ee69b 10244
52ce6436
PH
10245 for (i = 0; i < *size; i += 2) {
10246 if (high >= indices[i] && low <= indices[i + 1])
10247 {
10248 int kh;
5b4ee69b 10249
52ce6436
PH
10250 for (kh = i + 2; kh < *size; kh += 2)
10251 if (high < indices[kh])
10252 break;
10253 if (low < indices[i])
10254 indices[i] = low;
10255 indices[i + 1] = indices[kh - 1];
10256 if (high > indices[i + 1])
10257 indices[i + 1] = high;
10258 memcpy (indices + i + 2, indices + kh, *size - kh);
10259 *size -= kh - i - 2;
10260 return;
10261 }
10262 else if (high < indices[i])
10263 break;
10264 }
10265
10266 if (*size == max_size)
10267 error (_("Internal error: miscounted aggregate components."));
10268 *size += 2;
10269 for (j = *size-1; j >= i+2; j -= 1)
10270 indices[j] = indices[j - 2];
10271 indices[i] = low;
10272 indices[i + 1] = high;
10273}
10274
6e48bd2c
JB
10275/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10276 is different. */
10277
10278static struct value *
b7e22850 10279ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10280{
10281 if (type == ada_check_typedef (value_type (arg2)))
10282 return arg2;
10283
10284 if (ada_is_fixed_point_type (type))
10285 return (cast_to_fixed (type, arg2));
10286
10287 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10288 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10289
10290 return value_cast (type, arg2);
10291}
10292
284614f0
JB
10293/* Evaluating Ada expressions, and printing their result.
10294 ------------------------------------------------------
10295
21649b50
JB
10296 1. Introduction:
10297 ----------------
10298
284614f0
JB
10299 We usually evaluate an Ada expression in order to print its value.
10300 We also evaluate an expression in order to print its type, which
10301 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10302 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10303 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10304 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10305 similar.
10306
10307 Evaluating expressions is a little more complicated for Ada entities
10308 than it is for entities in languages such as C. The main reason for
10309 this is that Ada provides types whose definition might be dynamic.
10310 One example of such types is variant records. Or another example
10311 would be an array whose bounds can only be known at run time.
10312
10313 The following description is a general guide as to what should be
10314 done (and what should NOT be done) in order to evaluate an expression
10315 involving such types, and when. This does not cover how the semantic
10316 information is encoded by GNAT as this is covered separatly. For the
10317 document used as the reference for the GNAT encoding, see exp_dbug.ads
10318 in the GNAT sources.
10319
10320 Ideally, we should embed each part of this description next to its
10321 associated code. Unfortunately, the amount of code is so vast right
10322 now that it's hard to see whether the code handling a particular
10323 situation might be duplicated or not. One day, when the code is
10324 cleaned up, this guide might become redundant with the comments
10325 inserted in the code, and we might want to remove it.
10326
21649b50
JB
10327 2. ``Fixing'' an Entity, the Simple Case:
10328 -----------------------------------------
10329
284614f0
JB
10330 When evaluating Ada expressions, the tricky issue is that they may
10331 reference entities whose type contents and size are not statically
10332 known. Consider for instance a variant record:
10333
10334 type Rec (Empty : Boolean := True) is record
10335 case Empty is
10336 when True => null;
10337 when False => Value : Integer;
10338 end case;
10339 end record;
10340 Yes : Rec := (Empty => False, Value => 1);
10341 No : Rec := (empty => True);
10342
10343 The size and contents of that record depends on the value of the
10344 descriminant (Rec.Empty). At this point, neither the debugging
10345 information nor the associated type structure in GDB are able to
10346 express such dynamic types. So what the debugger does is to create
10347 "fixed" versions of the type that applies to the specific object.
10348 We also informally refer to this opperation as "fixing" an object,
10349 which means creating its associated fixed type.
10350
10351 Example: when printing the value of variable "Yes" above, its fixed
10352 type would look like this:
10353
10354 type Rec is record
10355 Empty : Boolean;
10356 Value : Integer;
10357 end record;
10358
10359 On the other hand, if we printed the value of "No", its fixed type
10360 would become:
10361
10362 type Rec is record
10363 Empty : Boolean;
10364 end record;
10365
10366 Things become a little more complicated when trying to fix an entity
10367 with a dynamic type that directly contains another dynamic type,
10368 such as an array of variant records, for instance. There are
10369 two possible cases: Arrays, and records.
10370
21649b50
JB
10371 3. ``Fixing'' Arrays:
10372 ---------------------
10373
10374 The type structure in GDB describes an array in terms of its bounds,
10375 and the type of its elements. By design, all elements in the array
10376 have the same type and we cannot represent an array of variant elements
10377 using the current type structure in GDB. When fixing an array,
10378 we cannot fix the array element, as we would potentially need one
10379 fixed type per element of the array. As a result, the best we can do
10380 when fixing an array is to produce an array whose bounds and size
10381 are correct (allowing us to read it from memory), but without having
10382 touched its element type. Fixing each element will be done later,
10383 when (if) necessary.
10384
10385 Arrays are a little simpler to handle than records, because the same
10386 amount of memory is allocated for each element of the array, even if
1b536f04 10387 the amount of space actually used by each element differs from element
21649b50 10388 to element. Consider for instance the following array of type Rec:
284614f0
JB
10389
10390 type Rec_Array is array (1 .. 2) of Rec;
10391
1b536f04
JB
10392 The actual amount of memory occupied by each element might be different
10393 from element to element, depending on the value of their discriminant.
21649b50 10394 But the amount of space reserved for each element in the array remains
1b536f04 10395 fixed regardless. So we simply need to compute that size using
21649b50
JB
10396 the debugging information available, from which we can then determine
10397 the array size (we multiply the number of elements of the array by
10398 the size of each element).
10399
10400 The simplest case is when we have an array of a constrained element
10401 type. For instance, consider the following type declarations:
10402
10403 type Bounded_String (Max_Size : Integer) is
10404 Length : Integer;
10405 Buffer : String (1 .. Max_Size);
10406 end record;
10407 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10408
10409 In this case, the compiler describes the array as an array of
10410 variable-size elements (identified by its XVS suffix) for which
10411 the size can be read in the parallel XVZ variable.
10412
10413 In the case of an array of an unconstrained element type, the compiler
10414 wraps the array element inside a private PAD type. This type should not
10415 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10416 that we also use the adjective "aligner" in our code to designate
10417 these wrapper types.
10418
1b536f04 10419 In some cases, the size allocated for each element is statically
21649b50
JB
10420 known. In that case, the PAD type already has the correct size,
10421 and the array element should remain unfixed.
10422
10423 But there are cases when this size is not statically known.
10424 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10425
10426 type Dynamic is array (1 .. Five) of Integer;
10427 type Wrapper (Has_Length : Boolean := False) is record
10428 Data : Dynamic;
10429 case Has_Length is
10430 when True => Length : Integer;
10431 when False => null;
10432 end case;
10433 end record;
10434 type Wrapper_Array is array (1 .. 2) of Wrapper;
10435
10436 Hello : Wrapper_Array := (others => (Has_Length => True,
10437 Data => (others => 17),
10438 Length => 1));
10439
10440
10441 The debugging info would describe variable Hello as being an
10442 array of a PAD type. The size of that PAD type is not statically
10443 known, but can be determined using a parallel XVZ variable.
10444 In that case, a copy of the PAD type with the correct size should
10445 be used for the fixed array.
10446
21649b50
JB
10447 3. ``Fixing'' record type objects:
10448 ----------------------------------
10449
10450 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10451 record types. In this case, in order to compute the associated
10452 fixed type, we need to determine the size and offset of each of
10453 its components. This, in turn, requires us to compute the fixed
10454 type of each of these components.
10455
10456 Consider for instance the example:
10457
10458 type Bounded_String (Max_Size : Natural) is record
10459 Str : String (1 .. Max_Size);
10460 Length : Natural;
10461 end record;
10462 My_String : Bounded_String (Max_Size => 10);
10463
10464 In that case, the position of field "Length" depends on the size
10465 of field Str, which itself depends on the value of the Max_Size
21649b50 10466 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10467 we need to fix the type of field Str. Therefore, fixing a variant
10468 record requires us to fix each of its components.
10469
10470 However, if a component does not have a dynamic size, the component
10471 should not be fixed. In particular, fields that use a PAD type
10472 should not fixed. Here is an example where this might happen
10473 (assuming type Rec above):
10474
10475 type Container (Big : Boolean) is record
10476 First : Rec;
10477 After : Integer;
10478 case Big is
10479 when True => Another : Integer;
10480 when False => null;
10481 end case;
10482 end record;
10483 My_Container : Container := (Big => False,
10484 First => (Empty => True),
10485 After => 42);
10486
10487 In that example, the compiler creates a PAD type for component First,
10488 whose size is constant, and then positions the component After just
10489 right after it. The offset of component After is therefore constant
10490 in this case.
10491
10492 The debugger computes the position of each field based on an algorithm
10493 that uses, among other things, the actual position and size of the field
21649b50
JB
10494 preceding it. Let's now imagine that the user is trying to print
10495 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10496 end up computing the offset of field After based on the size of the
10497 fixed version of field First. And since in our example First has
10498 only one actual field, the size of the fixed type is actually smaller
10499 than the amount of space allocated to that field, and thus we would
10500 compute the wrong offset of field After.
10501
21649b50
JB
10502 To make things more complicated, we need to watch out for dynamic
10503 components of variant records (identified by the ___XVL suffix in
10504 the component name). Even if the target type is a PAD type, the size
10505 of that type might not be statically known. So the PAD type needs
10506 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10507 we might end up with the wrong size for our component. This can be
10508 observed with the following type declarations:
284614f0
JB
10509
10510 type Octal is new Integer range 0 .. 7;
10511 type Octal_Array is array (Positive range <>) of Octal;
10512 pragma Pack (Octal_Array);
10513
10514 type Octal_Buffer (Size : Positive) is record
10515 Buffer : Octal_Array (1 .. Size);
10516 Length : Integer;
10517 end record;
10518
10519 In that case, Buffer is a PAD type whose size is unset and needs
10520 to be computed by fixing the unwrapped type.
10521
21649b50
JB
10522 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10523 ----------------------------------------------------------
10524
10525 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10526 thus far, be actually fixed?
10527
10528 The answer is: Only when referencing that element. For instance
10529 when selecting one component of a record, this specific component
10530 should be fixed at that point in time. Or when printing the value
10531 of a record, each component should be fixed before its value gets
10532 printed. Similarly for arrays, the element of the array should be
10533 fixed when printing each element of the array, or when extracting
10534 one element out of that array. On the other hand, fixing should
10535 not be performed on the elements when taking a slice of an array!
10536
31432a67 10537 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10538 size of each field is that we end up also miscomputing the size
10539 of the containing type. This can have adverse results when computing
10540 the value of an entity. GDB fetches the value of an entity based
10541 on the size of its type, and thus a wrong size causes GDB to fetch
10542 the wrong amount of memory. In the case where the computed size is
10543 too small, GDB fetches too little data to print the value of our
31432a67 10544 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10545 past the buffer containing the data =:-o. */
10546
ced9779b
JB
10547/* Evaluate a subexpression of EXP, at index *POS, and return a value
10548 for that subexpression cast to TO_TYPE. Advance *POS over the
10549 subexpression. */
10550
10551static value *
10552ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10553 enum noside noside, struct type *to_type)
10554{
10555 int pc = *pos;
10556
10557 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10558 || exp->elts[pc].opcode == OP_VAR_VALUE)
10559 {
10560 (*pos) += 4;
10561
10562 value *val;
10563 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10564 {
10565 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10566 return value_zero (to_type, not_lval);
10567
10568 val = evaluate_var_msym_value (noside,
10569 exp->elts[pc + 1].objfile,
10570 exp->elts[pc + 2].msymbol);
10571 }
10572 else
10573 val = evaluate_var_value (noside,
10574 exp->elts[pc + 1].block,
10575 exp->elts[pc + 2].symbol);
10576
10577 if (noside == EVAL_SKIP)
10578 return eval_skip_value (exp);
10579
10580 val = ada_value_cast (to_type, val);
10581
10582 /* Follow the Ada language semantics that do not allow taking
10583 an address of the result of a cast (view conversion in Ada). */
10584 if (VALUE_LVAL (val) == lval_memory)
10585 {
10586 if (value_lazy (val))
10587 value_fetch_lazy (val);
10588 VALUE_LVAL (val) = not_lval;
10589 }
10590 return val;
10591 }
10592
10593 value *val = evaluate_subexp (to_type, exp, pos, noside);
10594 if (noside == EVAL_SKIP)
10595 return eval_skip_value (exp);
10596 return ada_value_cast (to_type, val);
10597}
10598
284614f0
JB
10599/* Implement the evaluate_exp routine in the exp_descriptor structure
10600 for the Ada language. */
10601
52ce6436 10602static struct value *
ebf56fd3 10603ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10604 int *pos, enum noside noside)
14f9c5c9
AS
10605{
10606 enum exp_opcode op;
b5385fc0 10607 int tem;
14f9c5c9 10608 int pc;
5ec18f2b 10609 int preeval_pos;
14f9c5c9
AS
10610 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10611 struct type *type;
52ce6436 10612 int nargs, oplen;
d2e4a39e 10613 struct value **argvec;
14f9c5c9 10614
d2e4a39e
AS
10615 pc = *pos;
10616 *pos += 1;
14f9c5c9
AS
10617 op = exp->elts[pc].opcode;
10618
d2e4a39e 10619 switch (op)
14f9c5c9
AS
10620 {
10621 default:
10622 *pos -= 1;
6e48bd2c 10623 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10624
10625 if (noside == EVAL_NORMAL)
10626 arg1 = unwrap_value (arg1);
6e48bd2c 10627
edd079d9 10628 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10629 then we need to perform the conversion manually, because
10630 evaluate_subexp_standard doesn't do it. This conversion is
10631 necessary in Ada because the different kinds of float/fixed
10632 types in Ada have different representations.
10633
10634 Similarly, we need to perform the conversion from OP_LONG
10635 ourselves. */
edd079d9 10636 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10637 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10638
10639 return arg1;
4c4b4cd2
PH
10640
10641 case OP_STRING:
10642 {
76a01679 10643 struct value *result;
5b4ee69b 10644
76a01679
JB
10645 *pos -= 1;
10646 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10647 /* The result type will have code OP_STRING, bashed there from
10648 OP_ARRAY. Bash it back. */
df407dfe
AC
10649 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10650 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10651 return result;
4c4b4cd2 10652 }
14f9c5c9
AS
10653
10654 case UNOP_CAST:
10655 (*pos) += 2;
10656 type = exp->elts[pc + 1].type;
ced9779b 10657 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10658
4c4b4cd2
PH
10659 case UNOP_QUAL:
10660 (*pos) += 2;
10661 type = exp->elts[pc + 1].type;
10662 return ada_evaluate_subexp (type, exp, pos, noside);
10663
14f9c5c9
AS
10664 case BINOP_ASSIGN:
10665 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10666 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10667 {
10668 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10669 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10670 return arg1;
10671 return ada_value_assign (arg1, arg1);
10672 }
003f3813
JB
10673 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10674 except if the lhs of our assignment is a convenience variable.
10675 In the case of assigning to a convenience variable, the lhs
10676 should be exactly the result of the evaluation of the rhs. */
10677 type = value_type (arg1);
10678 if (VALUE_LVAL (arg1) == lval_internalvar)
10679 type = NULL;
10680 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10681 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10682 return arg1;
df407dfe
AC
10683 if (ada_is_fixed_point_type (value_type (arg1)))
10684 arg2 = cast_to_fixed (value_type (arg1), arg2);
10685 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10686 error
323e0a4a 10687 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10688 else
df407dfe 10689 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10690 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10691
10692 case BINOP_ADD:
10693 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10694 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10695 if (noside == EVAL_SKIP)
4c4b4cd2 10696 goto nosideret;
2ac8a782
JB
10697 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10698 return (value_from_longest
10699 (value_type (arg1),
10700 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10701 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10702 return (value_from_longest
10703 (value_type (arg2),
10704 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10705 if ((ada_is_fixed_point_type (value_type (arg1))
10706 || ada_is_fixed_point_type (value_type (arg2)))
10707 && value_type (arg1) != value_type (arg2))
323e0a4a 10708 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10709 /* Do the addition, and cast the result to the type of the first
10710 argument. We cannot cast the result to a reference type, so if
10711 ARG1 is a reference type, find its underlying type. */
10712 type = value_type (arg1);
10713 while (TYPE_CODE (type) == TYPE_CODE_REF)
10714 type = TYPE_TARGET_TYPE (type);
f44316fa 10715 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10716 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10717
10718 case BINOP_SUB:
10719 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10720 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10721 if (noside == EVAL_SKIP)
4c4b4cd2 10722 goto nosideret;
2ac8a782
JB
10723 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10724 return (value_from_longest
10725 (value_type (arg1),
10726 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10727 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10728 return (value_from_longest
10729 (value_type (arg2),
10730 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10731 if ((ada_is_fixed_point_type (value_type (arg1))
10732 || ada_is_fixed_point_type (value_type (arg2)))
10733 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10734 error (_("Operands of fixed-point subtraction "
10735 "must have the same type"));
b7789565
JB
10736 /* Do the substraction, and cast the result to the type of the first
10737 argument. We cannot cast the result to a reference type, so if
10738 ARG1 is a reference type, find its underlying type. */
10739 type = value_type (arg1);
10740 while (TYPE_CODE (type) == TYPE_CODE_REF)
10741 type = TYPE_TARGET_TYPE (type);
f44316fa 10742 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10743 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10744
10745 case BINOP_MUL:
10746 case BINOP_DIV:
e1578042
JB
10747 case BINOP_REM:
10748 case BINOP_MOD:
14f9c5c9
AS
10749 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10750 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10751 if (noside == EVAL_SKIP)
4c4b4cd2 10752 goto nosideret;
e1578042 10753 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10754 {
10755 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10756 return value_zero (value_type (arg1), not_lval);
10757 }
14f9c5c9 10758 else
4c4b4cd2 10759 {
a53b7a21 10760 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10761 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10762 arg1 = cast_from_fixed (type, arg1);
df407dfe 10763 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10764 arg2 = cast_from_fixed (type, arg2);
f44316fa 10765 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10766 return ada_value_binop (arg1, arg2, op);
10767 }
10768
4c4b4cd2
PH
10769 case BINOP_EQUAL:
10770 case BINOP_NOTEQUAL:
14f9c5c9 10771 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10772 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10773 if (noside == EVAL_SKIP)
76a01679 10774 goto nosideret;
4c4b4cd2 10775 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10776 tem = 0;
4c4b4cd2 10777 else
f44316fa
UW
10778 {
10779 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10780 tem = ada_value_equal (arg1, arg2);
10781 }
4c4b4cd2 10782 if (op == BINOP_NOTEQUAL)
76a01679 10783 tem = !tem;
fbb06eb1
UW
10784 type = language_bool_type (exp->language_defn, exp->gdbarch);
10785 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10786
10787 case UNOP_NEG:
10788 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10789 if (noside == EVAL_SKIP)
10790 goto nosideret;
df407dfe
AC
10791 else if (ada_is_fixed_point_type (value_type (arg1)))
10792 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10793 else
f44316fa
UW
10794 {
10795 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10796 return value_neg (arg1);
10797 }
4c4b4cd2 10798
2330c6c6
JB
10799 case BINOP_LOGICAL_AND:
10800 case BINOP_LOGICAL_OR:
10801 case UNOP_LOGICAL_NOT:
000d5124
JB
10802 {
10803 struct value *val;
10804
10805 *pos -= 1;
10806 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10807 type = language_bool_type (exp->language_defn, exp->gdbarch);
10808 return value_cast (type, val);
000d5124 10809 }
2330c6c6
JB
10810
10811 case BINOP_BITWISE_AND:
10812 case BINOP_BITWISE_IOR:
10813 case BINOP_BITWISE_XOR:
000d5124
JB
10814 {
10815 struct value *val;
10816
10817 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10818 *pos = pc;
10819 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10820
10821 return value_cast (value_type (arg1), val);
10822 }
2330c6c6 10823
14f9c5c9
AS
10824 case OP_VAR_VALUE:
10825 *pos -= 1;
6799def4 10826
14f9c5c9 10827 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10828 {
10829 *pos += 4;
10830 goto nosideret;
10831 }
da5c522f
JB
10832
10833 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10834 /* Only encountered when an unresolved symbol occurs in a
10835 context other than a function call, in which case, it is
52ce6436 10836 invalid. */
323e0a4a 10837 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10838 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10839
10840 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10841 {
0c1f74cf 10842 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10843 /* Check to see if this is a tagged type. We also need to handle
10844 the case where the type is a reference to a tagged type, but
10845 we have to be careful to exclude pointers to tagged types.
10846 The latter should be shown as usual (as a pointer), whereas
10847 a reference should mostly be transparent to the user. */
10848 if (ada_is_tagged_type (type, 0)
023db19c 10849 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10850 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10851 {
10852 /* Tagged types are a little special in the fact that the real
10853 type is dynamic and can only be determined by inspecting the
10854 object's tag. This means that we need to get the object's
10855 value first (EVAL_NORMAL) and then extract the actual object
10856 type from its tag.
10857
10858 Note that we cannot skip the final step where we extract
10859 the object type from its tag, because the EVAL_NORMAL phase
10860 results in dynamic components being resolved into fixed ones.
10861 This can cause problems when trying to print the type
10862 description of tagged types whose parent has a dynamic size:
10863 We use the type name of the "_parent" component in order
10864 to print the name of the ancestor type in the type description.
10865 If that component had a dynamic size, the resolution into
10866 a fixed type would result in the loss of that type name,
10867 thus preventing us from printing the name of the ancestor
10868 type in the type description. */
10869 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10870
10871 if (TYPE_CODE (type) != TYPE_CODE_REF)
10872 {
10873 struct type *actual_type;
10874
10875 actual_type = type_from_tag (ada_value_tag (arg1));
10876 if (actual_type == NULL)
10877 /* If, for some reason, we were unable to determine
10878 the actual type from the tag, then use the static
10879 approximation that we just computed as a fallback.
10880 This can happen if the debugging information is
10881 incomplete, for instance. */
10882 actual_type = type;
10883 return value_zero (actual_type, not_lval);
10884 }
10885 else
10886 {
10887 /* In the case of a ref, ada_coerce_ref takes care
10888 of determining the actual type. But the evaluation
10889 should return a ref as it should be valid to ask
10890 for its address; so rebuild a ref after coerce. */
10891 arg1 = ada_coerce_ref (arg1);
a65cfae5 10892 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10893 }
10894 }
0c1f74cf 10895
84754697
JB
10896 /* Records and unions for which GNAT encodings have been
10897 generated need to be statically fixed as well.
10898 Otherwise, non-static fixing produces a type where
10899 all dynamic properties are removed, which prevents "ptype"
10900 from being able to completely describe the type.
10901 For instance, a case statement in a variant record would be
10902 replaced by the relevant components based on the actual
10903 value of the discriminants. */
10904 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10905 && dynamic_template_type (type) != NULL)
10906 || (TYPE_CODE (type) == TYPE_CODE_UNION
10907 && ada_find_parallel_type (type, "___XVU") != NULL))
10908 {
10909 *pos += 4;
10910 return value_zero (to_static_fixed_type (type), not_lval);
10911 }
4c4b4cd2 10912 }
da5c522f
JB
10913
10914 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10915 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10916
10917 case OP_FUNCALL:
10918 (*pos) += 2;
10919
10920 /* Allocate arg vector, including space for the function to be
10921 called in argvec[0] and a terminating NULL. */
10922 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10923 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10924
10925 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10926 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10927 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10928 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10929 else
10930 {
10931 for (tem = 0; tem <= nargs; tem += 1)
10932 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10933 argvec[tem] = 0;
10934
10935 if (noside == EVAL_SKIP)
10936 goto nosideret;
10937 }
10938
ad82864c
JB
10939 if (ada_is_constrained_packed_array_type
10940 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10941 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10942 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10943 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10944 /* This is a packed array that has already been fixed, and
10945 therefore already coerced to a simple array. Nothing further
10946 to do. */
10947 ;
e6c2c623
PMR
10948 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10949 {
10950 /* Make sure we dereference references so that all the code below
10951 feels like it's really handling the referenced value. Wrapping
10952 types (for alignment) may be there, so make sure we strip them as
10953 well. */
10954 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10955 }
10956 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10957 && VALUE_LVAL (argvec[0]) == lval_memory)
10958 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10959
df407dfe 10960 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10961
10962 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10963 them. So, if this is an array typedef (encoding use for array
10964 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10965 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10966 type = ada_typedef_target_type (type);
10967
4c4b4cd2
PH
10968 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10969 {
61ee279c 10970 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10971 {
10972 case TYPE_CODE_FUNC:
61ee279c 10973 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10974 break;
10975 case TYPE_CODE_ARRAY:
10976 break;
10977 case TYPE_CODE_STRUCT:
10978 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10979 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10980 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10981 break;
10982 default:
323e0a4a 10983 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10984 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10985 break;
10986 }
10987 }
10988
10989 switch (TYPE_CODE (type))
10990 {
10991 case TYPE_CODE_FUNC:
10992 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10993 {
7022349d
PA
10994 if (TYPE_TARGET_TYPE (type) == NULL)
10995 error_call_unknown_return_type (NULL);
10996 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10997 }
7022349d 10998 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10999 case TYPE_CODE_INTERNAL_FUNCTION:
11000 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11001 /* We don't know anything about what the internal
11002 function might return, but we have to return
11003 something. */
11004 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11005 not_lval);
11006 else
11007 return call_internal_function (exp->gdbarch, exp->language_defn,
11008 argvec[0], nargs, argvec + 1);
11009
4c4b4cd2
PH
11010 case TYPE_CODE_STRUCT:
11011 {
11012 int arity;
11013
4c4b4cd2
PH
11014 arity = ada_array_arity (type);
11015 type = ada_array_element_type (type, nargs);
11016 if (type == NULL)
323e0a4a 11017 error (_("cannot subscript or call a record"));
4c4b4cd2 11018 if (arity != nargs)
323e0a4a 11019 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 11020 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 11021 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11022 return
11023 unwrap_value (ada_value_subscript
11024 (argvec[0], nargs, argvec + 1));
11025 }
11026 case TYPE_CODE_ARRAY:
11027 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11028 {
11029 type = ada_array_element_type (type, nargs);
11030 if (type == NULL)
323e0a4a 11031 error (_("element type of array unknown"));
4c4b4cd2 11032 else
0a07e705 11033 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11034 }
11035 return
11036 unwrap_value (ada_value_subscript
11037 (ada_coerce_to_simple_array (argvec[0]),
11038 nargs, argvec + 1));
11039 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
11040 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11041 {
deede10c 11042 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
11043 type = ada_array_element_type (type, nargs);
11044 if (type == NULL)
323e0a4a 11045 error (_("element type of array unknown"));
4c4b4cd2 11046 else
0a07e705 11047 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11048 }
11049 return
deede10c
JB
11050 unwrap_value (ada_value_ptr_subscript (argvec[0],
11051 nargs, argvec + 1));
4c4b4cd2
PH
11052
11053 default:
e1d5a0d2
PH
11054 error (_("Attempt to index or call something other than an "
11055 "array or function"));
4c4b4cd2
PH
11056 }
11057
11058 case TERNOP_SLICE:
11059 {
11060 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11061 struct value *low_bound_val =
11062 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11063 struct value *high_bound_val =
11064 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11065 LONGEST low_bound;
11066 LONGEST high_bound;
5b4ee69b 11067
994b9211
AC
11068 low_bound_val = coerce_ref (low_bound_val);
11069 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11070 low_bound = value_as_long (low_bound_val);
11071 high_bound = value_as_long (high_bound_val);
963a6417 11072
4c4b4cd2
PH
11073 if (noside == EVAL_SKIP)
11074 goto nosideret;
11075
4c4b4cd2
PH
11076 /* If this is a reference to an aligner type, then remove all
11077 the aligners. */
df407dfe
AC
11078 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11079 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11080 TYPE_TARGET_TYPE (value_type (array)) =
11081 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11082
ad82864c 11083 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11084 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11085
11086 /* If this is a reference to an array or an array lvalue,
11087 convert to a pointer. */
df407dfe
AC
11088 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11089 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11090 && VALUE_LVAL (array) == lval_memory))
11091 array = value_addr (array);
11092
1265e4aa 11093 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11094 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11095 (value_type (array))))
0b5d8877 11096 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
11097
11098 array = ada_coerce_to_simple_array_ptr (array);
11099
714e53ab
PH
11100 /* If we have more than one level of pointer indirection,
11101 dereference the value until we get only one level. */
df407dfe
AC
11102 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11103 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11104 == TYPE_CODE_PTR))
11105 array = value_ind (array);
11106
11107 /* Make sure we really do have an array type before going further,
11108 to avoid a SEGV when trying to get the index type or the target
11109 type later down the road if the debug info generated by
11110 the compiler is incorrect or incomplete. */
df407dfe 11111 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11112 error (_("cannot take slice of non-array"));
714e53ab 11113
828292f2
JB
11114 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11115 == TYPE_CODE_PTR)
4c4b4cd2 11116 {
828292f2
JB
11117 struct type *type0 = ada_check_typedef (value_type (array));
11118
0b5d8877 11119 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 11120 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
11121 else
11122 {
11123 struct type *arr_type0 =
828292f2 11124 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11125
f5938064
JG
11126 return ada_value_slice_from_ptr (array, arr_type0,
11127 longest_to_int (low_bound),
11128 longest_to_int (high_bound));
4c4b4cd2
PH
11129 }
11130 }
11131 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11132 return array;
11133 else if (high_bound < low_bound)
df407dfe 11134 return empty_array (value_type (array), low_bound);
4c4b4cd2 11135 else
529cad9c
PH
11136 return ada_value_slice (array, longest_to_int (low_bound),
11137 longest_to_int (high_bound));
4c4b4cd2 11138 }
14f9c5c9 11139
4c4b4cd2
PH
11140 case UNOP_IN_RANGE:
11141 (*pos) += 2;
11142 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11143 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11144
14f9c5c9 11145 if (noside == EVAL_SKIP)
4c4b4cd2 11146 goto nosideret;
14f9c5c9 11147
4c4b4cd2
PH
11148 switch (TYPE_CODE (type))
11149 {
11150 default:
e1d5a0d2
PH
11151 lim_warning (_("Membership test incompletely implemented; "
11152 "always returns true"));
fbb06eb1
UW
11153 type = language_bool_type (exp->language_defn, exp->gdbarch);
11154 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11155
11156 case TYPE_CODE_RANGE:
030b4912
UW
11157 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11158 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11159 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11160 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11161 type = language_bool_type (exp->language_defn, exp->gdbarch);
11162 return
11163 value_from_longest (type,
4c4b4cd2
PH
11164 (value_less (arg1, arg3)
11165 || value_equal (arg1, arg3))
11166 && (value_less (arg2, arg1)
11167 || value_equal (arg2, arg1)));
11168 }
11169
11170 case BINOP_IN_BOUNDS:
14f9c5c9 11171 (*pos) += 2;
4c4b4cd2
PH
11172 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11173 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11174
4c4b4cd2
PH
11175 if (noside == EVAL_SKIP)
11176 goto nosideret;
14f9c5c9 11177
4c4b4cd2 11178 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11179 {
11180 type = language_bool_type (exp->language_defn, exp->gdbarch);
11181 return value_zero (type, not_lval);
11182 }
14f9c5c9 11183
4c4b4cd2 11184 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11185
1eea4ebd
UW
11186 type = ada_index_type (value_type (arg2), tem, "range");
11187 if (!type)
11188 type = value_type (arg1);
14f9c5c9 11189
1eea4ebd
UW
11190 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11191 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11192
f44316fa
UW
11193 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11194 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11195 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11196 return
fbb06eb1 11197 value_from_longest (type,
4c4b4cd2
PH
11198 (value_less (arg1, arg3)
11199 || value_equal (arg1, arg3))
11200 && (value_less (arg2, arg1)
11201 || value_equal (arg2, arg1)));
11202
11203 case TERNOP_IN_RANGE:
11204 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11205 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11206 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11207
11208 if (noside == EVAL_SKIP)
11209 goto nosideret;
11210
f44316fa
UW
11211 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11212 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11213 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11214 return
fbb06eb1 11215 value_from_longest (type,
4c4b4cd2
PH
11216 (value_less (arg1, arg3)
11217 || value_equal (arg1, arg3))
11218 && (value_less (arg2, arg1)
11219 || value_equal (arg2, arg1)));
11220
11221 case OP_ATR_FIRST:
11222 case OP_ATR_LAST:
11223 case OP_ATR_LENGTH:
11224 {
76a01679 11225 struct type *type_arg;
5b4ee69b 11226
76a01679
JB
11227 if (exp->elts[*pos].opcode == OP_TYPE)
11228 {
11229 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11230 arg1 = NULL;
5bc23cb3 11231 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11232 }
11233 else
11234 {
11235 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11236 type_arg = NULL;
11237 }
11238
11239 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11240 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11241 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11242 *pos += 4;
11243
11244 if (noside == EVAL_SKIP)
11245 goto nosideret;
11246
11247 if (type_arg == NULL)
11248 {
11249 arg1 = ada_coerce_ref (arg1);
11250
ad82864c 11251 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11252 arg1 = ada_coerce_to_simple_array (arg1);
11253
aa4fb036 11254 if (op == OP_ATR_LENGTH)
1eea4ebd 11255 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11256 else
11257 {
11258 type = ada_index_type (value_type (arg1), tem,
11259 ada_attribute_name (op));
11260 if (type == NULL)
11261 type = builtin_type (exp->gdbarch)->builtin_int;
11262 }
76a01679
JB
11263
11264 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11265 return allocate_value (type);
76a01679
JB
11266
11267 switch (op)
11268 {
11269 default: /* Should never happen. */
323e0a4a 11270 error (_("unexpected attribute encountered"));
76a01679 11271 case OP_ATR_FIRST:
1eea4ebd
UW
11272 return value_from_longest
11273 (type, ada_array_bound (arg1, tem, 0));
76a01679 11274 case OP_ATR_LAST:
1eea4ebd
UW
11275 return value_from_longest
11276 (type, ada_array_bound (arg1, tem, 1));
76a01679 11277 case OP_ATR_LENGTH:
1eea4ebd
UW
11278 return value_from_longest
11279 (type, ada_array_length (arg1, tem));
76a01679
JB
11280 }
11281 }
11282 else if (discrete_type_p (type_arg))
11283 {
11284 struct type *range_type;
0d5cff50 11285 const char *name = ada_type_name (type_arg);
5b4ee69b 11286
76a01679
JB
11287 range_type = NULL;
11288 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11289 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11290 if (range_type == NULL)
11291 range_type = type_arg;
11292 switch (op)
11293 {
11294 default:
323e0a4a 11295 error (_("unexpected attribute encountered"));
76a01679 11296 case OP_ATR_FIRST:
690cc4eb 11297 return value_from_longest
43bbcdc2 11298 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11299 case OP_ATR_LAST:
690cc4eb 11300 return value_from_longest
43bbcdc2 11301 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11302 case OP_ATR_LENGTH:
323e0a4a 11303 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11304 }
11305 }
11306 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11307 error (_("unimplemented type attribute"));
76a01679
JB
11308 else
11309 {
11310 LONGEST low, high;
11311
ad82864c
JB
11312 if (ada_is_constrained_packed_array_type (type_arg))
11313 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11314
aa4fb036 11315 if (op == OP_ATR_LENGTH)
1eea4ebd 11316 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11317 else
11318 {
11319 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11320 if (type == NULL)
11321 type = builtin_type (exp->gdbarch)->builtin_int;
11322 }
1eea4ebd 11323
76a01679
JB
11324 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11325 return allocate_value (type);
11326
11327 switch (op)
11328 {
11329 default:
323e0a4a 11330 error (_("unexpected attribute encountered"));
76a01679 11331 case OP_ATR_FIRST:
1eea4ebd 11332 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11333 return value_from_longest (type, low);
11334 case OP_ATR_LAST:
1eea4ebd 11335 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11336 return value_from_longest (type, high);
11337 case OP_ATR_LENGTH:
1eea4ebd
UW
11338 low = ada_array_bound_from_type (type_arg, tem, 0);
11339 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11340 return value_from_longest (type, high - low + 1);
11341 }
11342 }
14f9c5c9
AS
11343 }
11344
4c4b4cd2
PH
11345 case OP_ATR_TAG:
11346 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11347 if (noside == EVAL_SKIP)
76a01679 11348 goto nosideret;
4c4b4cd2
PH
11349
11350 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11351 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11352
11353 return ada_value_tag (arg1);
11354
11355 case OP_ATR_MIN:
11356 case OP_ATR_MAX:
11357 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11358 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11359 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11360 if (noside == EVAL_SKIP)
76a01679 11361 goto nosideret;
d2e4a39e 11362 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11363 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11364 else
f44316fa
UW
11365 {
11366 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11367 return value_binop (arg1, arg2,
11368 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11369 }
14f9c5c9 11370
4c4b4cd2
PH
11371 case OP_ATR_MODULUS:
11372 {
31dedfee 11373 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11374
5b4ee69b 11375 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11376 if (noside == EVAL_SKIP)
11377 goto nosideret;
4c4b4cd2 11378
76a01679 11379 if (!ada_is_modular_type (type_arg))
323e0a4a 11380 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11381
76a01679
JB
11382 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11383 ada_modulus (type_arg));
4c4b4cd2
PH
11384 }
11385
11386
11387 case OP_ATR_POS:
11388 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11389 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11390 if (noside == EVAL_SKIP)
76a01679 11391 goto nosideret;
3cb382c9
UW
11392 type = builtin_type (exp->gdbarch)->builtin_int;
11393 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11394 return value_zero (type, not_lval);
14f9c5c9 11395 else
3cb382c9 11396 return value_pos_atr (type, arg1);
14f9c5c9 11397
4c4b4cd2
PH
11398 case OP_ATR_SIZE:
11399 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11400 type = value_type (arg1);
11401
11402 /* If the argument is a reference, then dereference its type, since
11403 the user is really asking for the size of the actual object,
11404 not the size of the pointer. */
11405 if (TYPE_CODE (type) == TYPE_CODE_REF)
11406 type = TYPE_TARGET_TYPE (type);
11407
4c4b4cd2 11408 if (noside == EVAL_SKIP)
76a01679 11409 goto nosideret;
4c4b4cd2 11410 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11411 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11412 else
22601c15 11413 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11414 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11415
11416 case OP_ATR_VAL:
11417 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11418 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11419 type = exp->elts[pc + 2].type;
14f9c5c9 11420 if (noside == EVAL_SKIP)
76a01679 11421 goto nosideret;
4c4b4cd2 11422 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11423 return value_zero (type, not_lval);
4c4b4cd2 11424 else
76a01679 11425 return value_val_atr (type, arg1);
4c4b4cd2
PH
11426
11427 case BINOP_EXP:
11428 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11429 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11430 if (noside == EVAL_SKIP)
11431 goto nosideret;
11432 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11433 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11434 else
f44316fa
UW
11435 {
11436 /* For integer exponentiation operations,
11437 only promote the first argument. */
11438 if (is_integral_type (value_type (arg2)))
11439 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11440 else
11441 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11442
11443 return value_binop (arg1, arg2, op);
11444 }
4c4b4cd2
PH
11445
11446 case UNOP_PLUS:
11447 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11448 if (noside == EVAL_SKIP)
11449 goto nosideret;
11450 else
11451 return arg1;
11452
11453 case UNOP_ABS:
11454 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11455 if (noside == EVAL_SKIP)
11456 goto nosideret;
f44316fa 11457 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11458 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11459 return value_neg (arg1);
14f9c5c9 11460 else
4c4b4cd2 11461 return arg1;
14f9c5c9
AS
11462
11463 case UNOP_IND:
5ec18f2b 11464 preeval_pos = *pos;
6b0d7253 11465 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11466 if (noside == EVAL_SKIP)
4c4b4cd2 11467 goto nosideret;
df407dfe 11468 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11469 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11470 {
11471 if (ada_is_array_descriptor_type (type))
11472 /* GDB allows dereferencing GNAT array descriptors. */
11473 {
11474 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11475
4c4b4cd2 11476 if (arrType == NULL)
323e0a4a 11477 error (_("Attempt to dereference null array pointer."));
00a4c844 11478 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11479 }
11480 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11481 || TYPE_CODE (type) == TYPE_CODE_REF
11482 /* In C you can dereference an array to get the 1st elt. */
11483 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11484 {
5ec18f2b
JG
11485 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11486 only be determined by inspecting the object's tag.
11487 This means that we need to evaluate completely the
11488 expression in order to get its type. */
11489
023db19c
JB
11490 if ((TYPE_CODE (type) == TYPE_CODE_REF
11491 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11492 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11493 {
11494 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11495 EVAL_NORMAL);
11496 type = value_type (ada_value_ind (arg1));
11497 }
11498 else
11499 {
11500 type = to_static_fixed_type
11501 (ada_aligned_type
11502 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11503 }
c1b5a1a6 11504 ada_ensure_varsize_limit (type);
714e53ab
PH
11505 return value_zero (type, lval_memory);
11506 }
4c4b4cd2 11507 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11508 {
11509 /* GDB allows dereferencing an int. */
11510 if (expect_type == NULL)
11511 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11512 lval_memory);
11513 else
11514 {
11515 expect_type =
11516 to_static_fixed_type (ada_aligned_type (expect_type));
11517 return value_zero (expect_type, lval_memory);
11518 }
11519 }
4c4b4cd2 11520 else
323e0a4a 11521 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11522 }
0963b4bd 11523 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11524 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11525
96967637
JB
11526 if (TYPE_CODE (type) == TYPE_CODE_INT)
11527 /* GDB allows dereferencing an int. If we were given
11528 the expect_type, then use that as the target type.
11529 Otherwise, assume that the target type is an int. */
11530 {
11531 if (expect_type != NULL)
11532 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11533 arg1));
11534 else
11535 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11536 (CORE_ADDR) value_as_address (arg1));
11537 }
6b0d7253 11538
4c4b4cd2
PH
11539 if (ada_is_array_descriptor_type (type))
11540 /* GDB allows dereferencing GNAT array descriptors. */
11541 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11542 else
4c4b4cd2 11543 return ada_value_ind (arg1);
14f9c5c9
AS
11544
11545 case STRUCTOP_STRUCT:
11546 tem = longest_to_int (exp->elts[pc + 1].longconst);
11547 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11548 preeval_pos = *pos;
14f9c5c9
AS
11549 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11550 if (noside == EVAL_SKIP)
4c4b4cd2 11551 goto nosideret;
14f9c5c9 11552 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11553 {
df407dfe 11554 struct type *type1 = value_type (arg1);
5b4ee69b 11555
76a01679
JB
11556 if (ada_is_tagged_type (type1, 1))
11557 {
11558 type = ada_lookup_struct_elt_type (type1,
11559 &exp->elts[pc + 2].string,
988f6b3d 11560 1, 1);
5ec18f2b
JG
11561
11562 /* If the field is not found, check if it exists in the
11563 extension of this object's type. This means that we
11564 need to evaluate completely the expression. */
11565
76a01679 11566 if (type == NULL)
5ec18f2b
JG
11567 {
11568 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11569 EVAL_NORMAL);
11570 arg1 = ada_value_struct_elt (arg1,
11571 &exp->elts[pc + 2].string,
11572 0);
11573 arg1 = unwrap_value (arg1);
11574 type = value_type (ada_to_fixed_value (arg1));
11575 }
76a01679
JB
11576 }
11577 else
11578 type =
11579 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11580 0);
76a01679
JB
11581
11582 return value_zero (ada_aligned_type (type), lval_memory);
11583 }
14f9c5c9 11584 else
a579cd9a
MW
11585 {
11586 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11587 arg1 = unwrap_value (arg1);
11588 return ada_to_fixed_value (arg1);
11589 }
284614f0 11590
14f9c5c9 11591 case OP_TYPE:
4c4b4cd2
PH
11592 /* The value is not supposed to be used. This is here to make it
11593 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11594 (*pos) += 2;
11595 if (noside == EVAL_SKIP)
4c4b4cd2 11596 goto nosideret;
14f9c5c9 11597 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11598 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11599 else
323e0a4a 11600 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11601
11602 case OP_AGGREGATE:
11603 case OP_CHOICES:
11604 case OP_OTHERS:
11605 case OP_DISCRETE_RANGE:
11606 case OP_POSITIONAL:
11607 case OP_NAME:
11608 if (noside == EVAL_NORMAL)
11609 switch (op)
11610 {
11611 case OP_NAME:
11612 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11613 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11614 case OP_AGGREGATE:
11615 error (_("Aggregates only allowed on the right of an assignment"));
11616 default:
0963b4bd
MS
11617 internal_error (__FILE__, __LINE__,
11618 _("aggregate apparently mangled"));
52ce6436
PH
11619 }
11620
11621 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11622 *pos += oplen - 1;
11623 for (tem = 0; tem < nargs; tem += 1)
11624 ada_evaluate_subexp (NULL, exp, pos, noside);
11625 goto nosideret;
14f9c5c9
AS
11626 }
11627
11628nosideret:
ced9779b 11629 return eval_skip_value (exp);
14f9c5c9 11630}
14f9c5c9 11631\f
d2e4a39e 11632
4c4b4cd2 11633 /* Fixed point */
14f9c5c9
AS
11634
11635/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11636 type name that encodes the 'small and 'delta information.
4c4b4cd2 11637 Otherwise, return NULL. */
14f9c5c9 11638
d2e4a39e 11639static const char *
ebf56fd3 11640fixed_type_info (struct type *type)
14f9c5c9 11641{
d2e4a39e 11642 const char *name = ada_type_name (type);
14f9c5c9
AS
11643 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11644
d2e4a39e
AS
11645 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11646 {
14f9c5c9 11647 const char *tail = strstr (name, "___XF_");
5b4ee69b 11648
14f9c5c9 11649 if (tail == NULL)
4c4b4cd2 11650 return NULL;
d2e4a39e 11651 else
4c4b4cd2 11652 return tail + 5;
14f9c5c9
AS
11653 }
11654 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11655 return fixed_type_info (TYPE_TARGET_TYPE (type));
11656 else
11657 return NULL;
11658}
11659
4c4b4cd2 11660/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11661
11662int
ebf56fd3 11663ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11664{
11665 return fixed_type_info (type) != NULL;
11666}
11667
4c4b4cd2
PH
11668/* Return non-zero iff TYPE represents a System.Address type. */
11669
11670int
11671ada_is_system_address_type (struct type *type)
11672{
11673 return (TYPE_NAME (type)
11674 && strcmp (TYPE_NAME (type), "system__address") == 0);
11675}
11676
14f9c5c9 11677/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11678 type, return the target floating-point type to be used to represent
11679 of this type during internal computation. */
11680
11681static struct type *
11682ada_scaling_type (struct type *type)
11683{
11684 return builtin_type (get_type_arch (type))->builtin_long_double;
11685}
11686
11687/* Assuming that TYPE is the representation of an Ada fixed-point
11688 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11689 delta cannot be determined. */
14f9c5c9 11690
50eff16b 11691struct value *
ebf56fd3 11692ada_delta (struct type *type)
14f9c5c9
AS
11693{
11694 const char *encoding = fixed_type_info (type);
50eff16b
UW
11695 struct type *scale_type = ada_scaling_type (type);
11696
11697 long long num, den;
11698
11699 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11700 return nullptr;
d2e4a39e 11701 else
50eff16b
UW
11702 return value_binop (value_from_longest (scale_type, num),
11703 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11704}
11705
11706/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11707 factor ('SMALL value) associated with the type. */
14f9c5c9 11708
50eff16b
UW
11709struct value *
11710ada_scaling_factor (struct type *type)
14f9c5c9
AS
11711{
11712 const char *encoding = fixed_type_info (type);
50eff16b
UW
11713 struct type *scale_type = ada_scaling_type (type);
11714
11715 long long num0, den0, num1, den1;
14f9c5c9 11716 int n;
d2e4a39e 11717
50eff16b 11718 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11719 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11720
11721 if (n < 2)
50eff16b 11722 return value_from_longest (scale_type, 1);
14f9c5c9 11723 else if (n == 4)
50eff16b
UW
11724 return value_binop (value_from_longest (scale_type, num1),
11725 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11726 else
50eff16b
UW
11727 return value_binop (value_from_longest (scale_type, num0),
11728 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11729}
11730
14f9c5c9 11731\f
d2e4a39e 11732
4c4b4cd2 11733 /* Range types */
14f9c5c9
AS
11734
11735/* Scan STR beginning at position K for a discriminant name, and
11736 return the value of that discriminant field of DVAL in *PX. If
11737 PNEW_K is not null, put the position of the character beyond the
11738 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11739 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11740
11741static int
108d56a4 11742scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11743 int *pnew_k)
14f9c5c9
AS
11744{
11745 static char *bound_buffer = NULL;
11746 static size_t bound_buffer_len = 0;
5da1a4d3 11747 const char *pstart, *pend, *bound;
d2e4a39e 11748 struct value *bound_val;
14f9c5c9
AS
11749
11750 if (dval == NULL || str == NULL || str[k] == '\0')
11751 return 0;
11752
5da1a4d3
SM
11753 pstart = str + k;
11754 pend = strstr (pstart, "__");
14f9c5c9
AS
11755 if (pend == NULL)
11756 {
5da1a4d3 11757 bound = pstart;
14f9c5c9
AS
11758 k += strlen (bound);
11759 }
d2e4a39e 11760 else
14f9c5c9 11761 {
5da1a4d3
SM
11762 int len = pend - pstart;
11763
11764 /* Strip __ and beyond. */
11765 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11766 strncpy (bound_buffer, pstart, len);
11767 bound_buffer[len] = '\0';
11768
14f9c5c9 11769 bound = bound_buffer;
d2e4a39e 11770 k = pend - str;
14f9c5c9 11771 }
d2e4a39e 11772
df407dfe 11773 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11774 if (bound_val == NULL)
11775 return 0;
11776
11777 *px = value_as_long (bound_val);
11778 if (pnew_k != NULL)
11779 *pnew_k = k;
11780 return 1;
11781}
11782
11783/* Value of variable named NAME in the current environment. If
11784 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11785 otherwise causes an error with message ERR_MSG. */
11786
d2e4a39e 11787static struct value *
edb0c9cb 11788get_var_value (const char *name, const char *err_msg)
14f9c5c9 11789{
b5ec771e 11790 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11791
b5ec771e
PA
11792 struct block_symbol *syms;
11793 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11794 get_selected_block (0),
11795 VAR_DOMAIN, &syms, 1);
ec6a20c2 11796 struct cleanup *old_chain = make_cleanup (xfree, syms);
14f9c5c9
AS
11797
11798 if (nsyms != 1)
11799 {
ec6a20c2 11800 do_cleanups (old_chain);
14f9c5c9 11801 if (err_msg == NULL)
4c4b4cd2 11802 return 0;
14f9c5c9 11803 else
8a3fe4f8 11804 error (("%s"), err_msg);
14f9c5c9
AS
11805 }
11806
ec6a20c2
JB
11807 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11808 do_cleanups (old_chain);
11809 return result;
14f9c5c9 11810}
d2e4a39e 11811
edb0c9cb
PA
11812/* Value of integer variable named NAME in the current environment.
11813 If no such variable is found, returns false. Otherwise, sets VALUE
11814 to the variable's value and returns true. */
4c4b4cd2 11815
edb0c9cb
PA
11816bool
11817get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11818{
4c4b4cd2 11819 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11820
14f9c5c9 11821 if (var_val == 0)
edb0c9cb
PA
11822 return false;
11823
11824 value = value_as_long (var_val);
11825 return true;
14f9c5c9 11826}
d2e4a39e 11827
14f9c5c9
AS
11828
11829/* Return a range type whose base type is that of the range type named
11830 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11831 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11832 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11833 corresponding range type from debug information; fall back to using it
11834 if symbol lookup fails. If a new type must be created, allocate it
11835 like ORIG_TYPE was. The bounds information, in general, is encoded
11836 in NAME, the base type given in the named range type. */
14f9c5c9 11837
d2e4a39e 11838static struct type *
28c85d6c 11839to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11840{
0d5cff50 11841 const char *name;
14f9c5c9 11842 struct type *base_type;
108d56a4 11843 const char *subtype_info;
14f9c5c9 11844
28c85d6c
JB
11845 gdb_assert (raw_type != NULL);
11846 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11847
1ce677a4 11848 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11849 base_type = TYPE_TARGET_TYPE (raw_type);
11850 else
11851 base_type = raw_type;
11852
28c85d6c 11853 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11854 subtype_info = strstr (name, "___XD");
11855 if (subtype_info == NULL)
690cc4eb 11856 {
43bbcdc2
PH
11857 LONGEST L = ada_discrete_type_low_bound (raw_type);
11858 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11859
690cc4eb
PH
11860 if (L < INT_MIN || U > INT_MAX)
11861 return raw_type;
11862 else
0c9c3474
SA
11863 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11864 L, U);
690cc4eb 11865 }
14f9c5c9
AS
11866 else
11867 {
11868 static char *name_buf = NULL;
11869 static size_t name_len = 0;
11870 int prefix_len = subtype_info - name;
11871 LONGEST L, U;
11872 struct type *type;
108d56a4 11873 const char *bounds_str;
14f9c5c9
AS
11874 int n;
11875
11876 GROW_VECT (name_buf, name_len, prefix_len + 5);
11877 strncpy (name_buf, name, prefix_len);
11878 name_buf[prefix_len] = '\0';
11879
11880 subtype_info += 5;
11881 bounds_str = strchr (subtype_info, '_');
11882 n = 1;
11883
d2e4a39e 11884 if (*subtype_info == 'L')
4c4b4cd2
PH
11885 {
11886 if (!ada_scan_number (bounds_str, n, &L, &n)
11887 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11888 return raw_type;
11889 if (bounds_str[n] == '_')
11890 n += 2;
0963b4bd 11891 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11892 n += 1;
11893 subtype_info += 1;
11894 }
d2e4a39e 11895 else
4c4b4cd2 11896 {
4c4b4cd2 11897 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11898 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11899 {
323e0a4a 11900 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11901 L = 1;
11902 }
11903 }
14f9c5c9 11904
d2e4a39e 11905 if (*subtype_info == 'U')
4c4b4cd2
PH
11906 {
11907 if (!ada_scan_number (bounds_str, n, &U, &n)
11908 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11909 return raw_type;
11910 }
d2e4a39e 11911 else
4c4b4cd2 11912 {
4c4b4cd2 11913 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11914 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11915 {
323e0a4a 11916 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11917 U = L;
11918 }
11919 }
14f9c5c9 11920
0c9c3474
SA
11921 type = create_static_range_type (alloc_type_copy (raw_type),
11922 base_type, L, U);
f5a91472
JB
11923 /* create_static_range_type alters the resulting type's length
11924 to match the size of the base_type, which is not what we want.
11925 Set it back to the original range type's length. */
11926 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11927 TYPE_NAME (type) = name;
14f9c5c9
AS
11928 return type;
11929 }
11930}
11931
4c4b4cd2
PH
11932/* True iff NAME is the name of a range type. */
11933
14f9c5c9 11934int
d2e4a39e 11935ada_is_range_type_name (const char *name)
14f9c5c9
AS
11936{
11937 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11938}
14f9c5c9 11939\f
d2e4a39e 11940
4c4b4cd2
PH
11941 /* Modular types */
11942
11943/* True iff TYPE is an Ada modular type. */
14f9c5c9 11944
14f9c5c9 11945int
d2e4a39e 11946ada_is_modular_type (struct type *type)
14f9c5c9 11947{
18af8284 11948 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11949
11950 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11951 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11952 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11953}
11954
4c4b4cd2
PH
11955/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11956
61ee279c 11957ULONGEST
0056e4d5 11958ada_modulus (struct type *type)
14f9c5c9 11959{
43bbcdc2 11960 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11961}
d2e4a39e 11962\f
f7f9143b
JB
11963
11964/* Ada exception catchpoint support:
11965 ---------------------------------
11966
11967 We support 3 kinds of exception catchpoints:
11968 . catchpoints on Ada exceptions
11969 . catchpoints on unhandled Ada exceptions
11970 . catchpoints on failed assertions
11971
11972 Exceptions raised during failed assertions, or unhandled exceptions
11973 could perfectly be caught with the general catchpoint on Ada exceptions.
11974 However, we can easily differentiate these two special cases, and having
11975 the option to distinguish these two cases from the rest can be useful
11976 to zero-in on certain situations.
11977
11978 Exception catchpoints are a specialized form of breakpoint,
11979 since they rely on inserting breakpoints inside known routines
11980 of the GNAT runtime. The implementation therefore uses a standard
11981 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11982 of breakpoint_ops.
11983
0259addd
JB
11984 Support in the runtime for exception catchpoints have been changed
11985 a few times already, and these changes affect the implementation
11986 of these catchpoints. In order to be able to support several
11987 variants of the runtime, we use a sniffer that will determine
28010a5d 11988 the runtime variant used by the program being debugged. */
f7f9143b 11989
82eacd52
JB
11990/* Ada's standard exceptions.
11991
11992 The Ada 83 standard also defined Numeric_Error. But there so many
11993 situations where it was unclear from the Ada 83 Reference Manual
11994 (RM) whether Constraint_Error or Numeric_Error should be raised,
11995 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11996 Interpretation saying that anytime the RM says that Numeric_Error
11997 should be raised, the implementation may raise Constraint_Error.
11998 Ada 95 went one step further and pretty much removed Numeric_Error
11999 from the list of standard exceptions (it made it a renaming of
12000 Constraint_Error, to help preserve compatibility when compiling
12001 an Ada83 compiler). As such, we do not include Numeric_Error from
12002 this list of standard exceptions. */
3d0b0fa3 12003
a121b7c1 12004static const char *standard_exc[] = {
3d0b0fa3
JB
12005 "constraint_error",
12006 "program_error",
12007 "storage_error",
12008 "tasking_error"
12009};
12010
0259addd
JB
12011typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
12012
12013/* A structure that describes how to support exception catchpoints
12014 for a given executable. */
12015
12016struct exception_support_info
12017{
12018 /* The name of the symbol to break on in order to insert
12019 a catchpoint on exceptions. */
12020 const char *catch_exception_sym;
12021
12022 /* The name of the symbol to break on in order to insert
12023 a catchpoint on unhandled exceptions. */
12024 const char *catch_exception_unhandled_sym;
12025
12026 /* The name of the symbol to break on in order to insert
12027 a catchpoint on failed assertions. */
12028 const char *catch_assert_sym;
12029
9f757bf7
XR
12030 /* The name of the symbol to break on in order to insert
12031 a catchpoint on exception handling. */
12032 const char *catch_handlers_sym;
12033
0259addd
JB
12034 /* Assuming that the inferior just triggered an unhandled exception
12035 catchpoint, this function is responsible for returning the address
12036 in inferior memory where the name of that exception is stored.
12037 Return zero if the address could not be computed. */
12038 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12039};
12040
12041static CORE_ADDR ada_unhandled_exception_name_addr (void);
12042static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12043
12044/* The following exception support info structure describes how to
12045 implement exception catchpoints with the latest version of the
12046 Ada runtime (as of 2007-03-06). */
12047
12048static const struct exception_support_info default_exception_support_info =
12049{
12050 "__gnat_debug_raise_exception", /* catch_exception_sym */
12051 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12052 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 12053 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12054 ada_unhandled_exception_name_addr
12055};
12056
12057/* The following exception support info structure describes how to
12058 implement exception catchpoints with a slightly older version
12059 of the Ada runtime. */
12060
12061static const struct exception_support_info exception_support_info_fallback =
12062{
12063 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12064 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12065 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12066 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12067 ada_unhandled_exception_name_addr_from_raise
12068};
12069
f17011e0
JB
12070/* Return nonzero if we can detect the exception support routines
12071 described in EINFO.
12072
12073 This function errors out if an abnormal situation is detected
12074 (for instance, if we find the exception support routines, but
12075 that support is found to be incomplete). */
12076
12077static int
12078ada_has_this_exception_support (const struct exception_support_info *einfo)
12079{
12080 struct symbol *sym;
12081
12082 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12083 that should be compiled with debugging information. As a result, we
12084 expect to find that symbol in the symtabs. */
12085
12086 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12087 if (sym == NULL)
a6af7abe
JB
12088 {
12089 /* Perhaps we did not find our symbol because the Ada runtime was
12090 compiled without debugging info, or simply stripped of it.
12091 It happens on some GNU/Linux distributions for instance, where
12092 users have to install a separate debug package in order to get
12093 the runtime's debugging info. In that situation, let the user
12094 know why we cannot insert an Ada exception catchpoint.
12095
12096 Note: Just for the purpose of inserting our Ada exception
12097 catchpoint, we could rely purely on the associated minimal symbol.
12098 But we would be operating in degraded mode anyway, since we are
12099 still lacking the debugging info needed later on to extract
12100 the name of the exception being raised (this name is printed in
12101 the catchpoint message, and is also used when trying to catch
12102 a specific exception). We do not handle this case for now. */
3b7344d5 12103 struct bound_minimal_symbol msym
1c8e84b0
JB
12104 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12105
3b7344d5 12106 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12107 error (_("Your Ada runtime appears to be missing some debugging "
12108 "information.\nCannot insert Ada exception catchpoint "
12109 "in this configuration."));
12110
12111 return 0;
12112 }
f17011e0
JB
12113
12114 /* Make sure that the symbol we found corresponds to a function. */
12115
12116 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12117 error (_("Symbol \"%s\" is not a function (class = %d)"),
12118 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12119
12120 return 1;
12121}
12122
0259addd
JB
12123/* Inspect the Ada runtime and determine which exception info structure
12124 should be used to provide support for exception catchpoints.
12125
3eecfa55
JB
12126 This function will always set the per-inferior exception_info,
12127 or raise an error. */
0259addd
JB
12128
12129static void
12130ada_exception_support_info_sniffer (void)
12131{
3eecfa55 12132 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12133
12134 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12135 if (data->exception_info != NULL)
0259addd
JB
12136 return;
12137
12138 /* Check the latest (default) exception support info. */
f17011e0 12139 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12140 {
3eecfa55 12141 data->exception_info = &default_exception_support_info;
0259addd
JB
12142 return;
12143 }
12144
12145 /* Try our fallback exception suport info. */
f17011e0 12146 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12147 {
3eecfa55 12148 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12149 return;
12150 }
12151
12152 /* Sometimes, it is normal for us to not be able to find the routine
12153 we are looking for. This happens when the program is linked with
12154 the shared version of the GNAT runtime, and the program has not been
12155 started yet. Inform the user of these two possible causes if
12156 applicable. */
12157
ccefe4c4 12158 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12159 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12160
12161 /* If the symbol does not exist, then check that the program is
12162 already started, to make sure that shared libraries have been
12163 loaded. If it is not started, this may mean that the symbol is
12164 in a shared library. */
12165
12166 if (ptid_get_pid (inferior_ptid) == 0)
12167 error (_("Unable to insert catchpoint. Try to start the program first."));
12168
12169 /* At this point, we know that we are debugging an Ada program and
12170 that the inferior has been started, but we still are not able to
0963b4bd 12171 find the run-time symbols. That can mean that we are in
0259addd
JB
12172 configurable run time mode, or that a-except as been optimized
12173 out by the linker... In any case, at this point it is not worth
12174 supporting this feature. */
12175
7dda8cff 12176 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12177}
12178
f7f9143b
JB
12179/* True iff FRAME is very likely to be that of a function that is
12180 part of the runtime system. This is all very heuristic, but is
12181 intended to be used as advice as to what frames are uninteresting
12182 to most users. */
12183
12184static int
12185is_known_support_routine (struct frame_info *frame)
12186{
692465f1 12187 enum language func_lang;
f7f9143b 12188 int i;
f35a17b5 12189 const char *fullname;
f7f9143b 12190
4ed6b5be
JB
12191 /* If this code does not have any debugging information (no symtab),
12192 This cannot be any user code. */
f7f9143b 12193
51abb421 12194 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12195 if (sal.symtab == NULL)
12196 return 1;
12197
4ed6b5be
JB
12198 /* If there is a symtab, but the associated source file cannot be
12199 located, then assume this is not user code: Selecting a frame
12200 for which we cannot display the code would not be very helpful
12201 for the user. This should also take care of case such as VxWorks
12202 where the kernel has some debugging info provided for a few units. */
f7f9143b 12203
f35a17b5
JK
12204 fullname = symtab_to_fullname (sal.symtab);
12205 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12206 return 1;
12207
4ed6b5be
JB
12208 /* Check the unit filename againt the Ada runtime file naming.
12209 We also check the name of the objfile against the name of some
12210 known system libraries that sometimes come with debugging info
12211 too. */
12212
f7f9143b
JB
12213 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12214 {
12215 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12216 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12217 return 1;
eb822aa6
DE
12218 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12219 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12220 return 1;
f7f9143b
JB
12221 }
12222
4ed6b5be 12223 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12224
c6dc63a1
TT
12225 gdb::unique_xmalloc_ptr<char> func_name
12226 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12227 if (func_name == NULL)
12228 return 1;
12229
12230 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12231 {
12232 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12233 if (re_exec (func_name.get ()))
12234 return 1;
f7f9143b
JB
12235 }
12236
12237 return 0;
12238}
12239
12240/* Find the first frame that contains debugging information and that is not
12241 part of the Ada run-time, starting from FI and moving upward. */
12242
0ef643c8 12243void
f7f9143b
JB
12244ada_find_printable_frame (struct frame_info *fi)
12245{
12246 for (; fi != NULL; fi = get_prev_frame (fi))
12247 {
12248 if (!is_known_support_routine (fi))
12249 {
12250 select_frame (fi);
12251 break;
12252 }
12253 }
12254
12255}
12256
12257/* Assuming that the inferior just triggered an unhandled exception
12258 catchpoint, return the address in inferior memory where the name
12259 of the exception is stored.
12260
12261 Return zero if the address could not be computed. */
12262
12263static CORE_ADDR
12264ada_unhandled_exception_name_addr (void)
0259addd
JB
12265{
12266 return parse_and_eval_address ("e.full_name");
12267}
12268
12269/* Same as ada_unhandled_exception_name_addr, except that this function
12270 should be used when the inferior uses an older version of the runtime,
12271 where the exception name needs to be extracted from a specific frame
12272 several frames up in the callstack. */
12273
12274static CORE_ADDR
12275ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12276{
12277 int frame_level;
12278 struct frame_info *fi;
3eecfa55 12279 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12280
12281 /* To determine the name of this exception, we need to select
12282 the frame corresponding to RAISE_SYM_NAME. This frame is
12283 at least 3 levels up, so we simply skip the first 3 frames
12284 without checking the name of their associated function. */
12285 fi = get_current_frame ();
12286 for (frame_level = 0; frame_level < 3; frame_level += 1)
12287 if (fi != NULL)
12288 fi = get_prev_frame (fi);
12289
12290 while (fi != NULL)
12291 {
692465f1
JB
12292 enum language func_lang;
12293
c6dc63a1
TT
12294 gdb::unique_xmalloc_ptr<char> func_name
12295 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12296 if (func_name != NULL)
12297 {
c6dc63a1 12298 if (strcmp (func_name.get (),
55b87a52
KS
12299 data->exception_info->catch_exception_sym) == 0)
12300 break; /* We found the frame we were looking for... */
12301 fi = get_prev_frame (fi);
12302 }
f7f9143b
JB
12303 }
12304
12305 if (fi == NULL)
12306 return 0;
12307
12308 select_frame (fi);
12309 return parse_and_eval_address ("id.full_name");
12310}
12311
12312/* Assuming the inferior just triggered an Ada exception catchpoint
12313 (of any type), return the address in inferior memory where the name
12314 of the exception is stored, if applicable.
12315
45db7c09
PA
12316 Assumes the selected frame is the current frame.
12317
f7f9143b
JB
12318 Return zero if the address could not be computed, or if not relevant. */
12319
12320static CORE_ADDR
761269c8 12321ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12322 struct breakpoint *b)
12323{
3eecfa55
JB
12324 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12325
f7f9143b
JB
12326 switch (ex)
12327 {
761269c8 12328 case ada_catch_exception:
f7f9143b
JB
12329 return (parse_and_eval_address ("e.full_name"));
12330 break;
12331
761269c8 12332 case ada_catch_exception_unhandled:
3eecfa55 12333 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12334 break;
9f757bf7
XR
12335
12336 case ada_catch_handlers:
12337 return 0; /* The runtimes does not provide access to the exception
12338 name. */
12339 break;
12340
761269c8 12341 case ada_catch_assert:
f7f9143b
JB
12342 return 0; /* Exception name is not relevant in this case. */
12343 break;
12344
12345 default:
12346 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12347 break;
12348 }
12349
12350 return 0; /* Should never be reached. */
12351}
12352
e547c119
JB
12353/* Assuming the inferior is stopped at an exception catchpoint,
12354 return the message which was associated to the exception, if
12355 available. Return NULL if the message could not be retrieved.
12356
12357 The caller must xfree the string after use.
12358
12359 Note: The exception message can be associated to an exception
12360 either through the use of the Raise_Exception function, or
12361 more simply (Ada 2005 and later), via:
12362
12363 raise Exception_Name with "exception message";
12364
12365 */
12366
12367static char *
12368ada_exception_message_1 (void)
12369{
12370 struct value *e_msg_val;
12371 char *e_msg = NULL;
12372 int e_msg_len;
12373 struct cleanup *cleanups;
12374
12375 /* For runtimes that support this feature, the exception message
12376 is passed as an unbounded string argument called "message". */
12377 e_msg_val = parse_and_eval ("message");
12378 if (e_msg_val == NULL)
12379 return NULL; /* Exception message not supported. */
12380
12381 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12382 gdb_assert (e_msg_val != NULL);
12383 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12384
12385 /* If the message string is empty, then treat it as if there was
12386 no exception message. */
12387 if (e_msg_len <= 0)
12388 return NULL;
12389
12390 e_msg = (char *) xmalloc (e_msg_len + 1);
12391 cleanups = make_cleanup (xfree, e_msg);
12392 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12393 e_msg[e_msg_len] = '\0';
12394
12395 discard_cleanups (cleanups);
12396 return e_msg;
12397}
12398
12399/* Same as ada_exception_message_1, except that all exceptions are
12400 contained here (returning NULL instead). */
12401
12402static char *
12403ada_exception_message (void)
12404{
12405 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12406
12407 TRY
12408 {
12409 e_msg = ada_exception_message_1 ();
12410 }
12411 CATCH (e, RETURN_MASK_ERROR)
12412 {
12413 e_msg = NULL;
12414 }
12415 END_CATCH
12416
12417 return e_msg;
12418}
12419
f7f9143b
JB
12420/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12421 any error that ada_exception_name_addr_1 might cause to be thrown.
12422 When an error is intercepted, a warning with the error message is printed,
12423 and zero is returned. */
12424
12425static CORE_ADDR
761269c8 12426ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12427 struct breakpoint *b)
12428{
f7f9143b
JB
12429 CORE_ADDR result = 0;
12430
492d29ea 12431 TRY
f7f9143b
JB
12432 {
12433 result = ada_exception_name_addr_1 (ex, b);
12434 }
12435
492d29ea 12436 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12437 {
12438 warning (_("failed to get exception name: %s"), e.message);
12439 return 0;
12440 }
492d29ea 12441 END_CATCH
f7f9143b
JB
12442
12443 return result;
12444}
12445
9f757bf7
XR
12446static char *ada_exception_catchpoint_cond_string
12447 (const char *excep_string,
12448 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12449
12450/* Ada catchpoints.
12451
12452 In the case of catchpoints on Ada exceptions, the catchpoint will
12453 stop the target on every exception the program throws. When a user
12454 specifies the name of a specific exception, we translate this
12455 request into a condition expression (in text form), and then parse
12456 it into an expression stored in each of the catchpoint's locations.
12457 We then use this condition to check whether the exception that was
12458 raised is the one the user is interested in. If not, then the
12459 target is resumed again. We store the name of the requested
12460 exception, in order to be able to re-set the condition expression
12461 when symbols change. */
12462
12463/* An instance of this type is used to represent an Ada catchpoint
5625a286 12464 breakpoint location. */
28010a5d 12465
5625a286 12466class ada_catchpoint_location : public bp_location
28010a5d 12467{
5625a286
PA
12468public:
12469 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12470 : bp_location (ops, owner)
12471 {}
28010a5d
PA
12472
12473 /* The condition that checks whether the exception that was raised
12474 is the specific exception the user specified on catchpoint
12475 creation. */
4d01a485 12476 expression_up excep_cond_expr;
28010a5d
PA
12477};
12478
12479/* Implement the DTOR method in the bp_location_ops structure for all
12480 Ada exception catchpoint kinds. */
12481
12482static void
12483ada_catchpoint_location_dtor (struct bp_location *bl)
12484{
12485 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12486
4d01a485 12487 al->excep_cond_expr.reset ();
28010a5d
PA
12488}
12489
12490/* The vtable to be used in Ada catchpoint locations. */
12491
12492static const struct bp_location_ops ada_catchpoint_location_ops =
12493{
12494 ada_catchpoint_location_dtor
12495};
12496
c1fc2657 12497/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12498
c1fc2657 12499struct ada_catchpoint : public breakpoint
28010a5d 12500{
c1fc2657 12501 ~ada_catchpoint () override;
28010a5d
PA
12502
12503 /* The name of the specific exception the user specified. */
12504 char *excep_string;
12505};
12506
12507/* Parse the exception condition string in the context of each of the
12508 catchpoint's locations, and store them for later evaluation. */
12509
12510static void
9f757bf7
XR
12511create_excep_cond_exprs (struct ada_catchpoint *c,
12512 enum ada_exception_catchpoint_kind ex)
28010a5d
PA
12513{
12514 struct cleanup *old_chain;
12515 struct bp_location *bl;
12516 char *cond_string;
12517
12518 /* Nothing to do if there's no specific exception to catch. */
12519 if (c->excep_string == NULL)
12520 return;
12521
12522 /* Same if there are no locations... */
c1fc2657 12523 if (c->loc == NULL)
28010a5d
PA
12524 return;
12525
12526 /* Compute the condition expression in text form, from the specific
12527 expection we want to catch. */
9f757bf7 12528 cond_string = ada_exception_catchpoint_cond_string (c->excep_string, ex);
28010a5d
PA
12529 old_chain = make_cleanup (xfree, cond_string);
12530
12531 /* Iterate over all the catchpoint's locations, and parse an
12532 expression for each. */
c1fc2657 12533 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12534 {
12535 struct ada_catchpoint_location *ada_loc
12536 = (struct ada_catchpoint_location *) bl;
4d01a485 12537 expression_up exp;
28010a5d
PA
12538
12539 if (!bl->shlib_disabled)
12540 {
bbc13ae3 12541 const char *s;
28010a5d
PA
12542
12543 s = cond_string;
492d29ea 12544 TRY
28010a5d 12545 {
036e657b
JB
12546 exp = parse_exp_1 (&s, bl->address,
12547 block_for_pc (bl->address),
12548 0);
28010a5d 12549 }
492d29ea 12550 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12551 {
12552 warning (_("failed to reevaluate internal exception condition "
12553 "for catchpoint %d: %s"),
c1fc2657 12554 c->number, e.message);
849f2b52 12555 }
492d29ea 12556 END_CATCH
28010a5d
PA
12557 }
12558
b22e99fd 12559 ada_loc->excep_cond_expr = std::move (exp);
28010a5d
PA
12560 }
12561
12562 do_cleanups (old_chain);
12563}
12564
c1fc2657 12565/* ada_catchpoint destructor. */
28010a5d 12566
c1fc2657 12567ada_catchpoint::~ada_catchpoint ()
28010a5d 12568{
c1fc2657 12569 xfree (this->excep_string);
28010a5d
PA
12570}
12571
12572/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12573 structure for all exception catchpoint kinds. */
12574
12575static struct bp_location *
761269c8 12576allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12577 struct breakpoint *self)
12578{
5625a286 12579 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12580}
12581
12582/* Implement the RE_SET method in the breakpoint_ops structure for all
12583 exception catchpoint kinds. */
12584
12585static void
761269c8 12586re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12587{
12588 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12589
12590 /* Call the base class's method. This updates the catchpoint's
12591 locations. */
2060206e 12592 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12593
12594 /* Reparse the exception conditional expressions. One for each
12595 location. */
9f757bf7 12596 create_excep_cond_exprs (c, ex);
28010a5d
PA
12597}
12598
12599/* Returns true if we should stop for this breakpoint hit. If the
12600 user specified a specific exception, we only want to cause a stop
12601 if the program thrown that exception. */
12602
12603static int
12604should_stop_exception (const struct bp_location *bl)
12605{
12606 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12607 const struct ada_catchpoint_location *ada_loc
12608 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12609 int stop;
12610
12611 /* With no specific exception, should always stop. */
12612 if (c->excep_string == NULL)
12613 return 1;
12614
12615 if (ada_loc->excep_cond_expr == NULL)
12616 {
12617 /* We will have a NULL expression if back when we were creating
12618 the expressions, this location's had failed to parse. */
12619 return 1;
12620 }
12621
12622 stop = 1;
492d29ea 12623 TRY
28010a5d
PA
12624 {
12625 struct value *mark;
12626
12627 mark = value_mark ();
4d01a485 12628 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12629 value_free_to_mark (mark);
12630 }
492d29ea
PA
12631 CATCH (ex, RETURN_MASK_ALL)
12632 {
12633 exception_fprintf (gdb_stderr, ex,
12634 _("Error in testing exception condition:\n"));
12635 }
12636 END_CATCH
12637
28010a5d
PA
12638 return stop;
12639}
12640
12641/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12642 for all exception catchpoint kinds. */
12643
12644static void
761269c8 12645check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12646{
12647 bs->stop = should_stop_exception (bs->bp_location_at);
12648}
12649
f7f9143b
JB
12650/* Implement the PRINT_IT method in the breakpoint_ops structure
12651 for all exception catchpoint kinds. */
12652
12653static enum print_stop_action
761269c8 12654print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12655{
79a45e25 12656 struct ui_out *uiout = current_uiout;
348d480f 12657 struct breakpoint *b = bs->breakpoint_at;
e547c119 12658 char *exception_message;
348d480f 12659
956a9fb9 12660 annotate_catchpoint (b->number);
f7f9143b 12661
112e8700 12662 if (uiout->is_mi_like_p ())
f7f9143b 12663 {
112e8700 12664 uiout->field_string ("reason",
956a9fb9 12665 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12666 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12667 }
12668
112e8700
SM
12669 uiout->text (b->disposition == disp_del
12670 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12671 uiout->field_int ("bkptno", b->number);
12672 uiout->text (", ");
f7f9143b 12673
45db7c09
PA
12674 /* ada_exception_name_addr relies on the selected frame being the
12675 current frame. Need to do this here because this function may be
12676 called more than once when printing a stop, and below, we'll
12677 select the first frame past the Ada run-time (see
12678 ada_find_printable_frame). */
12679 select_frame (get_current_frame ());
12680
f7f9143b
JB
12681 switch (ex)
12682 {
761269c8
JB
12683 case ada_catch_exception:
12684 case ada_catch_exception_unhandled:
9f757bf7 12685 case ada_catch_handlers:
956a9fb9
JB
12686 {
12687 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12688 char exception_name[256];
12689
12690 if (addr != 0)
12691 {
c714b426
PA
12692 read_memory (addr, (gdb_byte *) exception_name,
12693 sizeof (exception_name) - 1);
956a9fb9
JB
12694 exception_name [sizeof (exception_name) - 1] = '\0';
12695 }
12696 else
12697 {
12698 /* For some reason, we were unable to read the exception
12699 name. This could happen if the Runtime was compiled
12700 without debugging info, for instance. In that case,
12701 just replace the exception name by the generic string
12702 "exception" - it will read as "an exception" in the
12703 notification we are about to print. */
967cff16 12704 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12705 }
12706 /* In the case of unhandled exception breakpoints, we print
12707 the exception name as "unhandled EXCEPTION_NAME", to make
12708 it clearer to the user which kind of catchpoint just got
12709 hit. We used ui_out_text to make sure that this extra
12710 info does not pollute the exception name in the MI case. */
761269c8 12711 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12712 uiout->text ("unhandled ");
12713 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12714 }
12715 break;
761269c8 12716 case ada_catch_assert:
956a9fb9
JB
12717 /* In this case, the name of the exception is not really
12718 important. Just print "failed assertion" to make it clearer
12719 that his program just hit an assertion-failure catchpoint.
12720 We used ui_out_text because this info does not belong in
12721 the MI output. */
112e8700 12722 uiout->text ("failed assertion");
956a9fb9 12723 break;
f7f9143b 12724 }
e547c119
JB
12725
12726 exception_message = ada_exception_message ();
12727 if (exception_message != NULL)
12728 {
12729 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12730
12731 uiout->text (" (");
12732 uiout->field_string ("exception-message", exception_message);
12733 uiout->text (")");
12734
12735 do_cleanups (cleanups);
12736 }
12737
112e8700 12738 uiout->text (" at ");
956a9fb9 12739 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12740
12741 return PRINT_SRC_AND_LOC;
12742}
12743
12744/* Implement the PRINT_ONE method in the breakpoint_ops structure
12745 for all exception catchpoint kinds. */
12746
12747static void
761269c8 12748print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12749 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12750{
79a45e25 12751 struct ui_out *uiout = current_uiout;
28010a5d 12752 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12753 struct value_print_options opts;
12754
12755 get_user_print_options (&opts);
12756 if (opts.addressprint)
f7f9143b
JB
12757 {
12758 annotate_field (4);
112e8700 12759 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12760 }
12761
12762 annotate_field (5);
a6d9a66e 12763 *last_loc = b->loc;
f7f9143b
JB
12764 switch (ex)
12765 {
761269c8 12766 case ada_catch_exception:
28010a5d 12767 if (c->excep_string != NULL)
f7f9143b 12768 {
28010a5d
PA
12769 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12770
112e8700 12771 uiout->field_string ("what", msg);
f7f9143b
JB
12772 xfree (msg);
12773 }
12774 else
112e8700 12775 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12776
12777 break;
12778
761269c8 12779 case ada_catch_exception_unhandled:
112e8700 12780 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12781 break;
12782
9f757bf7
XR
12783 case ada_catch_handlers:
12784 if (c->excep_string != NULL)
12785 {
12786 uiout->field_fmt ("what",
12787 _("`%s' Ada exception handlers"),
12788 c->excep_string);
12789 }
12790 else
12791 uiout->field_string ("what", "all Ada exceptions handlers");
12792 break;
12793
761269c8 12794 case ada_catch_assert:
112e8700 12795 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12796 break;
12797
12798 default:
12799 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12800 break;
12801 }
12802}
12803
12804/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12805 for all exception catchpoint kinds. */
12806
12807static void
761269c8 12808print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12809 struct breakpoint *b)
12810{
28010a5d 12811 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12812 struct ui_out *uiout = current_uiout;
28010a5d 12813
112e8700 12814 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12815 : _("Catchpoint "));
112e8700
SM
12816 uiout->field_int ("bkptno", b->number);
12817 uiout->text (": ");
00eb2c4a 12818
f7f9143b
JB
12819 switch (ex)
12820 {
761269c8 12821 case ada_catch_exception:
28010a5d 12822 if (c->excep_string != NULL)
00eb2c4a
JB
12823 {
12824 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12825 struct cleanup *old_chain = make_cleanup (xfree, info);
12826
112e8700 12827 uiout->text (info);
00eb2c4a
JB
12828 do_cleanups (old_chain);
12829 }
f7f9143b 12830 else
112e8700 12831 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12832 break;
12833
761269c8 12834 case ada_catch_exception_unhandled:
112e8700 12835 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12836 break;
9f757bf7
XR
12837
12838 case ada_catch_handlers:
12839 if (c->excep_string != NULL)
12840 {
12841 std::string info
12842 = string_printf (_("`%s' Ada exception handlers"),
12843 c->excep_string);
12844 uiout->text (info.c_str ());
12845 }
12846 else
12847 uiout->text (_("all Ada exceptions handlers"));
12848 break;
12849
761269c8 12850 case ada_catch_assert:
112e8700 12851 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12852 break;
12853
12854 default:
12855 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12856 break;
12857 }
12858}
12859
6149aea9
PA
12860/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12861 for all exception catchpoint kinds. */
12862
12863static void
761269c8 12864print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12865 struct breakpoint *b, struct ui_file *fp)
12866{
28010a5d
PA
12867 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12868
6149aea9
PA
12869 switch (ex)
12870 {
761269c8 12871 case ada_catch_exception:
6149aea9 12872 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12873 if (c->excep_string != NULL)
12874 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12875 break;
12876
761269c8 12877 case ada_catch_exception_unhandled:
78076abc 12878 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12879 break;
12880
9f757bf7
XR
12881 case ada_catch_handlers:
12882 fprintf_filtered (fp, "catch handlers");
12883 break;
12884
761269c8 12885 case ada_catch_assert:
6149aea9
PA
12886 fprintf_filtered (fp, "catch assert");
12887 break;
12888
12889 default:
12890 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12891 }
d9b3f62e 12892 print_recreate_thread (b, fp);
6149aea9
PA
12893}
12894
f7f9143b
JB
12895/* Virtual table for "catch exception" breakpoints. */
12896
28010a5d
PA
12897static struct bp_location *
12898allocate_location_catch_exception (struct breakpoint *self)
12899{
761269c8 12900 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12901}
12902
12903static void
12904re_set_catch_exception (struct breakpoint *b)
12905{
761269c8 12906 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12907}
12908
12909static void
12910check_status_catch_exception (bpstat bs)
12911{
761269c8 12912 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12913}
12914
f7f9143b 12915static enum print_stop_action
348d480f 12916print_it_catch_exception (bpstat bs)
f7f9143b 12917{
761269c8 12918 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12919}
12920
12921static void
a6d9a66e 12922print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12923{
761269c8 12924 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12925}
12926
12927static void
12928print_mention_catch_exception (struct breakpoint *b)
12929{
761269c8 12930 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12931}
12932
6149aea9
PA
12933static void
12934print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12935{
761269c8 12936 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12937}
12938
2060206e 12939static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12940
12941/* Virtual table for "catch exception unhandled" breakpoints. */
12942
28010a5d
PA
12943static struct bp_location *
12944allocate_location_catch_exception_unhandled (struct breakpoint *self)
12945{
761269c8 12946 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12947}
12948
12949static void
12950re_set_catch_exception_unhandled (struct breakpoint *b)
12951{
761269c8 12952 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12953}
12954
12955static void
12956check_status_catch_exception_unhandled (bpstat bs)
12957{
761269c8 12958 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12959}
12960
f7f9143b 12961static enum print_stop_action
348d480f 12962print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12963{
761269c8 12964 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12965}
12966
12967static void
a6d9a66e
UW
12968print_one_catch_exception_unhandled (struct breakpoint *b,
12969 struct bp_location **last_loc)
f7f9143b 12970{
761269c8 12971 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12972}
12973
12974static void
12975print_mention_catch_exception_unhandled (struct breakpoint *b)
12976{
761269c8 12977 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12978}
12979
6149aea9
PA
12980static void
12981print_recreate_catch_exception_unhandled (struct breakpoint *b,
12982 struct ui_file *fp)
12983{
761269c8 12984 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12985}
12986
2060206e 12987static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12988
12989/* Virtual table for "catch assert" breakpoints. */
12990
28010a5d
PA
12991static struct bp_location *
12992allocate_location_catch_assert (struct breakpoint *self)
12993{
761269c8 12994 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12995}
12996
12997static void
12998re_set_catch_assert (struct breakpoint *b)
12999{
761269c8 13000 re_set_exception (ada_catch_assert, b);
28010a5d
PA
13001}
13002
13003static void
13004check_status_catch_assert (bpstat bs)
13005{
761269c8 13006 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
13007}
13008
f7f9143b 13009static enum print_stop_action
348d480f 13010print_it_catch_assert (bpstat bs)
f7f9143b 13011{
761269c8 13012 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
13013}
13014
13015static void
a6d9a66e 13016print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 13017{
761269c8 13018 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
13019}
13020
13021static void
13022print_mention_catch_assert (struct breakpoint *b)
13023{
761269c8 13024 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
13025}
13026
6149aea9
PA
13027static void
13028print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
13029{
761269c8 13030 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
13031}
13032
2060206e 13033static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 13034
9f757bf7
XR
13035/* Virtual table for "catch handlers" breakpoints. */
13036
13037static struct bp_location *
13038allocate_location_catch_handlers (struct breakpoint *self)
13039{
13040 return allocate_location_exception (ada_catch_handlers, self);
13041}
13042
13043static void
13044re_set_catch_handlers (struct breakpoint *b)
13045{
13046 re_set_exception (ada_catch_handlers, b);
13047}
13048
13049static void
13050check_status_catch_handlers (bpstat bs)
13051{
13052 check_status_exception (ada_catch_handlers, bs);
13053}
13054
13055static enum print_stop_action
13056print_it_catch_handlers (bpstat bs)
13057{
13058 return print_it_exception (ada_catch_handlers, bs);
13059}
13060
13061static void
13062print_one_catch_handlers (struct breakpoint *b,
13063 struct bp_location **last_loc)
13064{
13065 print_one_exception (ada_catch_handlers, b, last_loc);
13066}
13067
13068static void
13069print_mention_catch_handlers (struct breakpoint *b)
13070{
13071 print_mention_exception (ada_catch_handlers, b);
13072}
13073
13074static void
13075print_recreate_catch_handlers (struct breakpoint *b,
13076 struct ui_file *fp)
13077{
13078 print_recreate_exception (ada_catch_handlers, b, fp);
13079}
13080
13081static struct breakpoint_ops catch_handlers_breakpoint_ops;
13082
f7f9143b
JB
13083/* Return a newly allocated copy of the first space-separated token
13084 in ARGSP, and then adjust ARGSP to point immediately after that
13085 token.
13086
13087 Return NULL if ARGPS does not contain any more tokens. */
13088
13089static char *
a121b7c1 13090ada_get_next_arg (const char **argsp)
f7f9143b 13091{
a121b7c1
PA
13092 const char *args = *argsp;
13093 const char *end;
f7f9143b
JB
13094 char *result;
13095
f1735a53 13096 args = skip_spaces (args);
f7f9143b
JB
13097 if (args[0] == '\0')
13098 return NULL; /* No more arguments. */
13099
13100 /* Find the end of the current argument. */
13101
f1735a53 13102 end = skip_to_space (args);
f7f9143b
JB
13103
13104 /* Adjust ARGSP to point to the start of the next argument. */
13105
13106 *argsp = end;
13107
13108 /* Make a copy of the current argument and return it. */
13109
224c3ddb 13110 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
13111 strncpy (result, args, end - args);
13112 result[end - args] = '\0';
13113
13114 return result;
13115}
13116
13117/* Split the arguments specified in a "catch exception" command.
13118 Set EX to the appropriate catchpoint type.
28010a5d 13119 Set EXCEP_STRING to the name of the specific exception if
5845583d 13120 specified by the user.
9f757bf7
XR
13121 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13122 "catch handlers" command. False otherwise.
5845583d
JB
13123 If a condition is found at the end of the arguments, the condition
13124 expression is stored in COND_STRING (memory must be deallocated
13125 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
13126
13127static void
a121b7c1 13128catch_ada_exception_command_split (const char *args,
9f757bf7 13129 bool is_catch_handlers_cmd,
761269c8 13130 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
13131 char **excep_string,
13132 char **cond_string)
f7f9143b
JB
13133{
13134 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
13135 char *exception_name;
5845583d 13136 char *cond = NULL;
f7f9143b
JB
13137
13138 exception_name = ada_get_next_arg (&args);
5845583d
JB
13139 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
13140 {
13141 /* This is not an exception name; this is the start of a condition
13142 expression for a catchpoint on all exceptions. So, "un-get"
13143 this token, and set exception_name to NULL. */
13144 xfree (exception_name);
13145 exception_name = NULL;
13146 args -= 2;
13147 }
f7f9143b
JB
13148 make_cleanup (xfree, exception_name);
13149
5845583d 13150 /* Check to see if we have a condition. */
f7f9143b 13151
f1735a53 13152 args = skip_spaces (args);
61012eef 13153 if (startswith (args, "if")
5845583d
JB
13154 && (isspace (args[2]) || args[2] == '\0'))
13155 {
13156 args += 2;
f1735a53 13157 args = skip_spaces (args);
5845583d
JB
13158
13159 if (args[0] == '\0')
13160 error (_("Condition missing after `if' keyword"));
13161 cond = xstrdup (args);
13162 make_cleanup (xfree, cond);
13163
13164 args += strlen (args);
13165 }
13166
13167 /* Check that we do not have any more arguments. Anything else
13168 is unexpected. */
f7f9143b
JB
13169
13170 if (args[0] != '\0')
13171 error (_("Junk at end of expression"));
13172
13173 discard_cleanups (old_chain);
13174
9f757bf7
XR
13175 if (is_catch_handlers_cmd)
13176 {
13177 /* Catch handling of exceptions. */
13178 *ex = ada_catch_handlers;
13179 *excep_string = exception_name;
13180 }
13181 else if (exception_name == NULL)
f7f9143b
JB
13182 {
13183 /* Catch all exceptions. */
761269c8 13184 *ex = ada_catch_exception;
28010a5d 13185 *excep_string = NULL;
f7f9143b
JB
13186 }
13187 else if (strcmp (exception_name, "unhandled") == 0)
13188 {
13189 /* Catch unhandled exceptions. */
761269c8 13190 *ex = ada_catch_exception_unhandled;
28010a5d 13191 *excep_string = NULL;
f7f9143b
JB
13192 }
13193 else
13194 {
13195 /* Catch a specific exception. */
761269c8 13196 *ex = ada_catch_exception;
28010a5d 13197 *excep_string = exception_name;
f7f9143b 13198 }
5845583d 13199 *cond_string = cond;
f7f9143b
JB
13200}
13201
13202/* Return the name of the symbol on which we should break in order to
13203 implement a catchpoint of the EX kind. */
13204
13205static const char *
761269c8 13206ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13207{
3eecfa55
JB
13208 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13209
13210 gdb_assert (data->exception_info != NULL);
0259addd 13211
f7f9143b
JB
13212 switch (ex)
13213 {
761269c8 13214 case ada_catch_exception:
3eecfa55 13215 return (data->exception_info->catch_exception_sym);
f7f9143b 13216 break;
761269c8 13217 case ada_catch_exception_unhandled:
3eecfa55 13218 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13219 break;
761269c8 13220 case ada_catch_assert:
3eecfa55 13221 return (data->exception_info->catch_assert_sym);
f7f9143b 13222 break;
9f757bf7
XR
13223 case ada_catch_handlers:
13224 return (data->exception_info->catch_handlers_sym);
13225 break;
f7f9143b
JB
13226 default:
13227 internal_error (__FILE__, __LINE__,
13228 _("unexpected catchpoint kind (%d)"), ex);
13229 }
13230}
13231
13232/* Return the breakpoint ops "virtual table" used for catchpoints
13233 of the EX kind. */
13234
c0a91b2b 13235static const struct breakpoint_ops *
761269c8 13236ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13237{
13238 switch (ex)
13239 {
761269c8 13240 case ada_catch_exception:
f7f9143b
JB
13241 return (&catch_exception_breakpoint_ops);
13242 break;
761269c8 13243 case ada_catch_exception_unhandled:
f7f9143b
JB
13244 return (&catch_exception_unhandled_breakpoint_ops);
13245 break;
761269c8 13246 case ada_catch_assert:
f7f9143b
JB
13247 return (&catch_assert_breakpoint_ops);
13248 break;
9f757bf7
XR
13249 case ada_catch_handlers:
13250 return (&catch_handlers_breakpoint_ops);
13251 break;
f7f9143b
JB
13252 default:
13253 internal_error (__FILE__, __LINE__,
13254 _("unexpected catchpoint kind (%d)"), ex);
13255 }
13256}
13257
13258/* Return the condition that will be used to match the current exception
13259 being raised with the exception that the user wants to catch. This
13260 assumes that this condition is used when the inferior just triggered
13261 an exception catchpoint.
9f757bf7 13262 EX: the type of catchpoints used for catching Ada exceptions.
f7f9143b
JB
13263
13264 The string returned is a newly allocated string that needs to be
13265 deallocated later. */
13266
13267static char *
9f757bf7
XR
13268ada_exception_catchpoint_cond_string (const char *excep_string,
13269 enum ada_exception_catchpoint_kind ex)
f7f9143b 13270{
3d0b0fa3 13271 int i;
9f757bf7
XR
13272 bool is_standard_exc = false;
13273 const char *actual_exc_expr;
13274 char *ref_exc_expr;
13275
13276 if (ex == ada_catch_handlers)
13277 {
13278 /* For exception handlers catchpoints, the condition string does
13279 not use the same parameter as for the other exceptions. */
13280 actual_exc_expr = ("long_integer (GNAT_GCC_exception_Access"
13281 "(gcc_exception).all.occurrence.id)");
13282 }
13283 else
13284 actual_exc_expr = "long_integer (e)";
3d0b0fa3 13285
0963b4bd 13286 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13287 runtime units that have been compiled without debugging info; if
28010a5d 13288 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13289 exception (e.g. "constraint_error") then, during the evaluation
13290 of the condition expression, the symbol lookup on this name would
0963b4bd 13291 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13292 may then be set only on user-defined exceptions which have the
13293 same not-fully-qualified name (e.g. my_package.constraint_error).
13294
13295 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13296 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13297 exception constraint_error" is rewritten into "catch exception
13298 standard.constraint_error".
13299
13300 If an exception named contraint_error is defined in another package of
13301 the inferior program, then the only way to specify this exception as a
13302 breakpoint condition is to use its fully-qualified named:
13303 e.g. my_package.constraint_error. */
13304
13305 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13306 {
28010a5d 13307 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13308 {
9f757bf7
XR
13309 is_standard_exc = true;
13310 break;
3d0b0fa3
JB
13311 }
13312 }
9f757bf7
XR
13313
13314 if (is_standard_exc)
13315 ref_exc_expr = xstrprintf ("long_integer (&standard.%s)", excep_string);
13316 else
13317 ref_exc_expr = xstrprintf ("long_integer (&%s)", excep_string);
13318
13319 char *result = xstrprintf ("%s = %s", actual_exc_expr, ref_exc_expr);
13320 xfree (ref_exc_expr);
13321 return result;
f7f9143b
JB
13322}
13323
13324/* Return the symtab_and_line that should be used to insert an exception
13325 catchpoint of the TYPE kind.
13326
28010a5d
PA
13327 EXCEP_STRING should contain the name of a specific exception that
13328 the catchpoint should catch, or NULL otherwise.
f7f9143b 13329
28010a5d
PA
13330 ADDR_STRING returns the name of the function where the real
13331 breakpoint that implements the catchpoints is set, depending on the
13332 type of catchpoint we need to create. */
f7f9143b
JB
13333
13334static struct symtab_and_line
761269c8 13335ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
f2fc3015 13336 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13337{
13338 const char *sym_name;
13339 struct symbol *sym;
f7f9143b 13340
0259addd
JB
13341 /* First, find out which exception support info to use. */
13342 ada_exception_support_info_sniffer ();
13343
13344 /* Then lookup the function on which we will break in order to catch
f7f9143b 13345 the Ada exceptions requested by the user. */
f7f9143b
JB
13346 sym_name = ada_exception_sym_name (ex);
13347 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13348
f17011e0
JB
13349 /* We can assume that SYM is not NULL at this stage. If the symbol
13350 did not exist, ada_exception_support_info_sniffer would have
13351 raised an exception.
f7f9143b 13352
f17011e0
JB
13353 Also, ada_exception_support_info_sniffer should have already
13354 verified that SYM is a function symbol. */
13355 gdb_assert (sym != NULL);
13356 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
13357
13358 /* Set ADDR_STRING. */
f7f9143b
JB
13359 *addr_string = xstrdup (sym_name);
13360
f7f9143b 13361 /* Set OPS. */
4b9eee8c 13362 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13363
f17011e0 13364 return find_function_start_sal (sym, 1);
f7f9143b
JB
13365}
13366
b4a5b78b 13367/* Create an Ada exception catchpoint.
f7f9143b 13368
b4a5b78b 13369 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13370
2df4d1d5
JB
13371 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13372 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13373 of the exception to which this catchpoint applies. When not NULL,
13374 the string must be allocated on the heap, and its deallocation
13375 is no longer the responsibility of the caller.
13376
13377 COND_STRING, if not NULL, is the catchpoint condition. This string
13378 must be allocated on the heap, and its deallocation is no longer
13379 the responsibility of the caller.
f7f9143b 13380
b4a5b78b
JB
13381 TEMPFLAG, if nonzero, means that the underlying breakpoint
13382 should be temporary.
28010a5d 13383
b4a5b78b 13384 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13385
349774ef 13386void
28010a5d 13387create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13388 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13389 char *excep_string,
5845583d 13390 char *cond_string,
28010a5d 13391 int tempflag,
349774ef 13392 int disabled,
28010a5d
PA
13393 int from_tty)
13394{
f2fc3015 13395 const char *addr_string = NULL;
b4a5b78b
JB
13396 const struct breakpoint_ops *ops = NULL;
13397 struct symtab_and_line sal
13398 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 13399
b270e6f9
TT
13400 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13401 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13402 ops, tempflag, disabled, from_tty);
28010a5d 13403 c->excep_string = excep_string;
9f757bf7 13404 create_excep_cond_exprs (c.get (), ex_kind);
5845583d 13405 if (cond_string != NULL)
b270e6f9
TT
13406 set_breakpoint_condition (c.get (), cond_string, from_tty);
13407 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13408}
13409
9ac4176b
PA
13410/* Implement the "catch exception" command. */
13411
13412static void
eb4c3f4a 13413catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13414 struct cmd_list_element *command)
13415{
a121b7c1 13416 const char *arg = arg_entry;
9ac4176b
PA
13417 struct gdbarch *gdbarch = get_current_arch ();
13418 int tempflag;
761269c8 13419 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13420 char *excep_string = NULL;
5845583d 13421 char *cond_string = NULL;
9ac4176b
PA
13422
13423 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13424
13425 if (!arg)
13426 arg = "";
9f757bf7
XR
13427 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13428 &cond_string);
13429 create_ada_exception_catchpoint (gdbarch, ex_kind,
13430 excep_string, cond_string,
13431 tempflag, 1 /* enabled */,
13432 from_tty);
13433}
13434
13435/* Implement the "catch handlers" command. */
13436
13437static void
13438catch_ada_handlers_command (const char *arg_entry, int from_tty,
13439 struct cmd_list_element *command)
13440{
13441 const char *arg = arg_entry;
13442 struct gdbarch *gdbarch = get_current_arch ();
13443 int tempflag;
13444 enum ada_exception_catchpoint_kind ex_kind;
13445 char *excep_string = NULL;
13446 char *cond_string = NULL;
13447
13448 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13449
13450 if (!arg)
13451 arg = "";
13452 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
b4a5b78b
JB
13453 &cond_string);
13454 create_ada_exception_catchpoint (gdbarch, ex_kind,
13455 excep_string, cond_string,
349774ef
JB
13456 tempflag, 1 /* enabled */,
13457 from_tty);
9ac4176b
PA
13458}
13459
b4a5b78b 13460/* Split the arguments specified in a "catch assert" command.
5845583d 13461
b4a5b78b
JB
13462 ARGS contains the command's arguments (or the empty string if
13463 no arguments were passed).
5845583d
JB
13464
13465 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13466 (the memory needs to be deallocated after use). */
5845583d 13467
b4a5b78b 13468static void
a121b7c1 13469catch_ada_assert_command_split (const char *args, char **cond_string)
f7f9143b 13470{
f1735a53 13471 args = skip_spaces (args);
f7f9143b 13472
5845583d 13473 /* Check whether a condition was provided. */
61012eef 13474 if (startswith (args, "if")
5845583d 13475 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13476 {
5845583d 13477 args += 2;
f1735a53 13478 args = skip_spaces (args);
5845583d
JB
13479 if (args[0] == '\0')
13480 error (_("condition missing after `if' keyword"));
13481 *cond_string = xstrdup (args);
f7f9143b
JB
13482 }
13483
5845583d
JB
13484 /* Otherwise, there should be no other argument at the end of
13485 the command. */
13486 else if (args[0] != '\0')
13487 error (_("Junk at end of arguments."));
f7f9143b
JB
13488}
13489
9ac4176b
PA
13490/* Implement the "catch assert" command. */
13491
13492static void
eb4c3f4a 13493catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13494 struct cmd_list_element *command)
13495{
a121b7c1 13496 const char *arg = arg_entry;
9ac4176b
PA
13497 struct gdbarch *gdbarch = get_current_arch ();
13498 int tempflag;
5845583d 13499 char *cond_string = NULL;
9ac4176b
PA
13500
13501 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13502
13503 if (!arg)
13504 arg = "";
b4a5b78b 13505 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13506 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13507 NULL, cond_string,
349774ef
JB
13508 tempflag, 1 /* enabled */,
13509 from_tty);
9ac4176b 13510}
778865d3
JB
13511
13512/* Return non-zero if the symbol SYM is an Ada exception object. */
13513
13514static int
13515ada_is_exception_sym (struct symbol *sym)
13516{
13517 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13518
13519 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13520 && SYMBOL_CLASS (sym) != LOC_BLOCK
13521 && SYMBOL_CLASS (sym) != LOC_CONST
13522 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13523 && type_name != NULL && strcmp (type_name, "exception") == 0);
13524}
13525
13526/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13527 Ada exception object. This matches all exceptions except the ones
13528 defined by the Ada language. */
13529
13530static int
13531ada_is_non_standard_exception_sym (struct symbol *sym)
13532{
13533 int i;
13534
13535 if (!ada_is_exception_sym (sym))
13536 return 0;
13537
13538 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13539 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13540 return 0; /* A standard exception. */
13541
13542 /* Numeric_Error is also a standard exception, so exclude it.
13543 See the STANDARD_EXC description for more details as to why
13544 this exception is not listed in that array. */
13545 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13546 return 0;
13547
13548 return 1;
13549}
13550
ab816a27 13551/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13552 objects.
13553
13554 The comparison is determined first by exception name, and then
13555 by exception address. */
13556
ab816a27 13557bool
cc536b21 13558ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13559{
778865d3
JB
13560 int result;
13561
ab816a27
TT
13562 result = strcmp (name, other.name);
13563 if (result < 0)
13564 return true;
13565 if (result == 0 && addr < other.addr)
13566 return true;
13567 return false;
13568}
778865d3 13569
ab816a27 13570bool
cc536b21 13571ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13572{
13573 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13574}
13575
13576/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13577 routine, but keeping the first SKIP elements untouched.
13578
13579 All duplicates are also removed. */
13580
13581static void
ab816a27 13582sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13583 int skip)
13584{
ab816a27
TT
13585 std::sort (exceptions->begin () + skip, exceptions->end ());
13586 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13587 exceptions->end ());
778865d3
JB
13588}
13589
778865d3
JB
13590/* Add all exceptions defined by the Ada standard whose name match
13591 a regular expression.
13592
13593 If PREG is not NULL, then this regexp_t object is used to
13594 perform the symbol name matching. Otherwise, no name-based
13595 filtering is performed.
13596
13597 EXCEPTIONS is a vector of exceptions to which matching exceptions
13598 gets pushed. */
13599
13600static void
2d7cc5c7 13601ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13602 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13603{
13604 int i;
13605
13606 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13607 {
13608 if (preg == NULL
2d7cc5c7 13609 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13610 {
13611 struct bound_minimal_symbol msymbol
13612 = ada_lookup_simple_minsym (standard_exc[i]);
13613
13614 if (msymbol.minsym != NULL)
13615 {
13616 struct ada_exc_info info
77e371c0 13617 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13618
ab816a27 13619 exceptions->push_back (info);
778865d3
JB
13620 }
13621 }
13622 }
13623}
13624
13625/* Add all Ada exceptions defined locally and accessible from the given
13626 FRAME.
13627
13628 If PREG is not NULL, then this regexp_t object is used to
13629 perform the symbol name matching. Otherwise, no name-based
13630 filtering is performed.
13631
13632 EXCEPTIONS is a vector of exceptions to which matching exceptions
13633 gets pushed. */
13634
13635static void
2d7cc5c7
PA
13636ada_add_exceptions_from_frame (compiled_regex *preg,
13637 struct frame_info *frame,
ab816a27 13638 std::vector<ada_exc_info> *exceptions)
778865d3 13639{
3977b71f 13640 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13641
13642 while (block != 0)
13643 {
13644 struct block_iterator iter;
13645 struct symbol *sym;
13646
13647 ALL_BLOCK_SYMBOLS (block, iter, sym)
13648 {
13649 switch (SYMBOL_CLASS (sym))
13650 {
13651 case LOC_TYPEDEF:
13652 case LOC_BLOCK:
13653 case LOC_CONST:
13654 break;
13655 default:
13656 if (ada_is_exception_sym (sym))
13657 {
13658 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13659 SYMBOL_VALUE_ADDRESS (sym)};
13660
ab816a27 13661 exceptions->push_back (info);
778865d3
JB
13662 }
13663 }
13664 }
13665 if (BLOCK_FUNCTION (block) != NULL)
13666 break;
13667 block = BLOCK_SUPERBLOCK (block);
13668 }
13669}
13670
14bc53a8
PA
13671/* Return true if NAME matches PREG or if PREG is NULL. */
13672
13673static bool
2d7cc5c7 13674name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13675{
13676 return (preg == NULL
2d7cc5c7 13677 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13678}
13679
778865d3
JB
13680/* Add all exceptions defined globally whose name name match
13681 a regular expression, excluding standard exceptions.
13682
13683 The reason we exclude standard exceptions is that they need
13684 to be handled separately: Standard exceptions are defined inside
13685 a runtime unit which is normally not compiled with debugging info,
13686 and thus usually do not show up in our symbol search. However,
13687 if the unit was in fact built with debugging info, we need to
13688 exclude them because they would duplicate the entry we found
13689 during the special loop that specifically searches for those
13690 standard exceptions.
13691
13692 If PREG is not NULL, then this regexp_t object is used to
13693 perform the symbol name matching. Otherwise, no name-based
13694 filtering is performed.
13695
13696 EXCEPTIONS is a vector of exceptions to which matching exceptions
13697 gets pushed. */
13698
13699static void
2d7cc5c7 13700ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13701 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13702{
13703 struct objfile *objfile;
43f3e411 13704 struct compunit_symtab *s;
778865d3 13705
14bc53a8
PA
13706 /* In Ada, the symbol "search name" is a linkage name, whereas the
13707 regular expression used to do the matching refers to the natural
13708 name. So match against the decoded name. */
13709 expand_symtabs_matching (NULL,
b5ec771e 13710 lookup_name_info::match_any (),
14bc53a8
PA
13711 [&] (const char *search_name)
13712 {
13713 const char *decoded = ada_decode (search_name);
13714 return name_matches_regex (decoded, preg);
13715 },
13716 NULL,
13717 VARIABLES_DOMAIN);
778865d3 13718
43f3e411 13719 ALL_COMPUNITS (objfile, s)
778865d3 13720 {
43f3e411 13721 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13722 int i;
13723
13724 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13725 {
13726 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13727 struct block_iterator iter;
13728 struct symbol *sym;
13729
13730 ALL_BLOCK_SYMBOLS (b, iter, sym)
13731 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13732 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13733 {
13734 struct ada_exc_info info
13735 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13736
ab816a27 13737 exceptions->push_back (info);
778865d3
JB
13738 }
13739 }
13740 }
13741}
13742
13743/* Implements ada_exceptions_list with the regular expression passed
13744 as a regex_t, rather than a string.
13745
13746 If not NULL, PREG is used to filter out exceptions whose names
13747 do not match. Otherwise, all exceptions are listed. */
13748
ab816a27 13749static std::vector<ada_exc_info>
2d7cc5c7 13750ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13751{
ab816a27 13752 std::vector<ada_exc_info> result;
778865d3
JB
13753 int prev_len;
13754
13755 /* First, list the known standard exceptions. These exceptions
13756 need to be handled separately, as they are usually defined in
13757 runtime units that have been compiled without debugging info. */
13758
13759 ada_add_standard_exceptions (preg, &result);
13760
13761 /* Next, find all exceptions whose scope is local and accessible
13762 from the currently selected frame. */
13763
13764 if (has_stack_frames ())
13765 {
ab816a27 13766 prev_len = result.size ();
778865d3
JB
13767 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13768 &result);
ab816a27 13769 if (result.size () > prev_len)
778865d3
JB
13770 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13771 }
13772
13773 /* Add all exceptions whose scope is global. */
13774
ab816a27 13775 prev_len = result.size ();
778865d3 13776 ada_add_global_exceptions (preg, &result);
ab816a27 13777 if (result.size () > prev_len)
778865d3
JB
13778 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13779
778865d3
JB
13780 return result;
13781}
13782
13783/* Return a vector of ada_exc_info.
13784
13785 If REGEXP is NULL, all exceptions are included in the result.
13786 Otherwise, it should contain a valid regular expression,
13787 and only the exceptions whose names match that regular expression
13788 are included in the result.
13789
13790 The exceptions are sorted in the following order:
13791 - Standard exceptions (defined by the Ada language), in
13792 alphabetical order;
13793 - Exceptions only visible from the current frame, in
13794 alphabetical order;
13795 - Exceptions whose scope is global, in alphabetical order. */
13796
ab816a27 13797std::vector<ada_exc_info>
778865d3
JB
13798ada_exceptions_list (const char *regexp)
13799{
2d7cc5c7
PA
13800 if (regexp == NULL)
13801 return ada_exceptions_list_1 (NULL);
778865d3 13802
2d7cc5c7
PA
13803 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13804 return ada_exceptions_list_1 (&reg);
778865d3
JB
13805}
13806
13807/* Implement the "info exceptions" command. */
13808
13809static void
1d12d88f 13810info_exceptions_command (const char *regexp, int from_tty)
778865d3 13811{
778865d3 13812 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13813
ab816a27 13814 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13815
13816 if (regexp != NULL)
13817 printf_filtered
13818 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13819 else
13820 printf_filtered (_("All defined Ada exceptions:\n"));
13821
ab816a27
TT
13822 for (const ada_exc_info &info : exceptions)
13823 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13824}
13825
4c4b4cd2
PH
13826 /* Operators */
13827/* Information about operators given special treatment in functions
13828 below. */
13829/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13830
13831#define ADA_OPERATORS \
13832 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13833 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13834 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13835 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13836 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13837 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13838 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13839 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13840 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13841 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13842 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13843 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13844 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13845 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13846 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13847 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13848 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13849 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13850 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13851
13852static void
554794dc
SDJ
13853ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13854 int *argsp)
4c4b4cd2
PH
13855{
13856 switch (exp->elts[pc - 1].opcode)
13857 {
76a01679 13858 default:
4c4b4cd2
PH
13859 operator_length_standard (exp, pc, oplenp, argsp);
13860 break;
13861
13862#define OP_DEFN(op, len, args, binop) \
13863 case op: *oplenp = len; *argsp = args; break;
13864 ADA_OPERATORS;
13865#undef OP_DEFN
52ce6436
PH
13866
13867 case OP_AGGREGATE:
13868 *oplenp = 3;
13869 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13870 break;
13871
13872 case OP_CHOICES:
13873 *oplenp = 3;
13874 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13875 break;
4c4b4cd2
PH
13876 }
13877}
13878
c0201579
JK
13879/* Implementation of the exp_descriptor method operator_check. */
13880
13881static int
13882ada_operator_check (struct expression *exp, int pos,
13883 int (*objfile_func) (struct objfile *objfile, void *data),
13884 void *data)
13885{
13886 const union exp_element *const elts = exp->elts;
13887 struct type *type = NULL;
13888
13889 switch (elts[pos].opcode)
13890 {
13891 case UNOP_IN_RANGE:
13892 case UNOP_QUAL:
13893 type = elts[pos + 1].type;
13894 break;
13895
13896 default:
13897 return operator_check_standard (exp, pos, objfile_func, data);
13898 }
13899
13900 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13901
13902 if (type && TYPE_OBJFILE (type)
13903 && (*objfile_func) (TYPE_OBJFILE (type), data))
13904 return 1;
13905
13906 return 0;
13907}
13908
a121b7c1 13909static const char *
4c4b4cd2
PH
13910ada_op_name (enum exp_opcode opcode)
13911{
13912 switch (opcode)
13913 {
76a01679 13914 default:
4c4b4cd2 13915 return op_name_standard (opcode);
52ce6436 13916
4c4b4cd2
PH
13917#define OP_DEFN(op, len, args, binop) case op: return #op;
13918 ADA_OPERATORS;
13919#undef OP_DEFN
52ce6436
PH
13920
13921 case OP_AGGREGATE:
13922 return "OP_AGGREGATE";
13923 case OP_CHOICES:
13924 return "OP_CHOICES";
13925 case OP_NAME:
13926 return "OP_NAME";
4c4b4cd2
PH
13927 }
13928}
13929
13930/* As for operator_length, but assumes PC is pointing at the first
13931 element of the operator, and gives meaningful results only for the
52ce6436 13932 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13933
13934static void
76a01679
JB
13935ada_forward_operator_length (struct expression *exp, int pc,
13936 int *oplenp, int *argsp)
4c4b4cd2 13937{
76a01679 13938 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13939 {
13940 default:
13941 *oplenp = *argsp = 0;
13942 break;
52ce6436 13943
4c4b4cd2
PH
13944#define OP_DEFN(op, len, args, binop) \
13945 case op: *oplenp = len; *argsp = args; break;
13946 ADA_OPERATORS;
13947#undef OP_DEFN
52ce6436
PH
13948
13949 case OP_AGGREGATE:
13950 *oplenp = 3;
13951 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13952 break;
13953
13954 case OP_CHOICES:
13955 *oplenp = 3;
13956 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13957 break;
13958
13959 case OP_STRING:
13960 case OP_NAME:
13961 {
13962 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13963
52ce6436
PH
13964 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13965 *argsp = 0;
13966 break;
13967 }
4c4b4cd2
PH
13968 }
13969}
13970
13971static int
13972ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13973{
13974 enum exp_opcode op = exp->elts[elt].opcode;
13975 int oplen, nargs;
13976 int pc = elt;
13977 int i;
76a01679 13978
4c4b4cd2
PH
13979 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13980
76a01679 13981 switch (op)
4c4b4cd2 13982 {
76a01679 13983 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13984 case OP_ATR_FIRST:
13985 case OP_ATR_LAST:
13986 case OP_ATR_LENGTH:
13987 case OP_ATR_IMAGE:
13988 case OP_ATR_MAX:
13989 case OP_ATR_MIN:
13990 case OP_ATR_MODULUS:
13991 case OP_ATR_POS:
13992 case OP_ATR_SIZE:
13993 case OP_ATR_TAG:
13994 case OP_ATR_VAL:
13995 break;
13996
13997 case UNOP_IN_RANGE:
13998 case UNOP_QUAL:
323e0a4a
AC
13999 /* XXX: gdb_sprint_host_address, type_sprint */
14000 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
14001 gdb_print_host_address (exp->elts[pc + 1].type, stream);
14002 fprintf_filtered (stream, " (");
14003 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
14004 fprintf_filtered (stream, ")");
14005 break;
14006 case BINOP_IN_BOUNDS:
52ce6436
PH
14007 fprintf_filtered (stream, " (%d)",
14008 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
14009 break;
14010 case TERNOP_IN_RANGE:
14011 break;
14012
52ce6436
PH
14013 case OP_AGGREGATE:
14014 case OP_OTHERS:
14015 case OP_DISCRETE_RANGE:
14016 case OP_POSITIONAL:
14017 case OP_CHOICES:
14018 break;
14019
14020 case OP_NAME:
14021 case OP_STRING:
14022 {
14023 char *name = &exp->elts[elt + 2].string;
14024 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 14025
52ce6436
PH
14026 fprintf_filtered (stream, "Text: `%.*s'", len, name);
14027 break;
14028 }
14029
4c4b4cd2
PH
14030 default:
14031 return dump_subexp_body_standard (exp, stream, elt);
14032 }
14033
14034 elt += oplen;
14035 for (i = 0; i < nargs; i += 1)
14036 elt = dump_subexp (exp, stream, elt);
14037
14038 return elt;
14039}
14040
14041/* The Ada extension of print_subexp (q.v.). */
14042
76a01679
JB
14043static void
14044ada_print_subexp (struct expression *exp, int *pos,
14045 struct ui_file *stream, enum precedence prec)
4c4b4cd2 14046{
52ce6436 14047 int oplen, nargs, i;
4c4b4cd2
PH
14048 int pc = *pos;
14049 enum exp_opcode op = exp->elts[pc].opcode;
14050
14051 ada_forward_operator_length (exp, pc, &oplen, &nargs);
14052
52ce6436 14053 *pos += oplen;
4c4b4cd2
PH
14054 switch (op)
14055 {
14056 default:
52ce6436 14057 *pos -= oplen;
4c4b4cd2
PH
14058 print_subexp_standard (exp, pos, stream, prec);
14059 return;
14060
14061 case OP_VAR_VALUE:
4c4b4cd2
PH
14062 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
14063 return;
14064
14065 case BINOP_IN_BOUNDS:
323e0a4a 14066 /* XXX: sprint_subexp */
4c4b4cd2 14067 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14068 fputs_filtered (" in ", stream);
4c4b4cd2 14069 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14070 fputs_filtered ("'range", stream);
4c4b4cd2 14071 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
14072 fprintf_filtered (stream, "(%ld)",
14073 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
14074 return;
14075
14076 case TERNOP_IN_RANGE:
4c4b4cd2 14077 if (prec >= PREC_EQUAL)
76a01679 14078 fputs_filtered ("(", stream);
323e0a4a 14079 /* XXX: sprint_subexp */
4c4b4cd2 14080 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14081 fputs_filtered (" in ", stream);
4c4b4cd2
PH
14082 print_subexp (exp, pos, stream, PREC_EQUAL);
14083 fputs_filtered (" .. ", stream);
14084 print_subexp (exp, pos, stream, PREC_EQUAL);
14085 if (prec >= PREC_EQUAL)
76a01679
JB
14086 fputs_filtered (")", stream);
14087 return;
4c4b4cd2
PH
14088
14089 case OP_ATR_FIRST:
14090 case OP_ATR_LAST:
14091 case OP_ATR_LENGTH:
14092 case OP_ATR_IMAGE:
14093 case OP_ATR_MAX:
14094 case OP_ATR_MIN:
14095 case OP_ATR_MODULUS:
14096 case OP_ATR_POS:
14097 case OP_ATR_SIZE:
14098 case OP_ATR_TAG:
14099 case OP_ATR_VAL:
4c4b4cd2 14100 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
14101 {
14102 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
14103 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14104 &type_print_raw_options);
76a01679
JB
14105 *pos += 3;
14106 }
4c4b4cd2 14107 else
76a01679 14108 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
14109 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14110 if (nargs > 1)
76a01679
JB
14111 {
14112 int tem;
5b4ee69b 14113
76a01679
JB
14114 for (tem = 1; tem < nargs; tem += 1)
14115 {
14116 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14117 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14118 }
14119 fputs_filtered (")", stream);
14120 }
4c4b4cd2 14121 return;
14f9c5c9 14122
4c4b4cd2 14123 case UNOP_QUAL:
4c4b4cd2
PH
14124 type_print (exp->elts[pc + 1].type, "", stream, 0);
14125 fputs_filtered ("'(", stream);
14126 print_subexp (exp, pos, stream, PREC_PREFIX);
14127 fputs_filtered (")", stream);
14128 return;
14f9c5c9 14129
4c4b4cd2 14130 case UNOP_IN_RANGE:
323e0a4a 14131 /* XXX: sprint_subexp */
4c4b4cd2 14132 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14133 fputs_filtered (" in ", stream);
79d43c61
TT
14134 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14135 &type_print_raw_options);
4c4b4cd2 14136 return;
52ce6436
PH
14137
14138 case OP_DISCRETE_RANGE:
14139 print_subexp (exp, pos, stream, PREC_SUFFIX);
14140 fputs_filtered ("..", stream);
14141 print_subexp (exp, pos, stream, PREC_SUFFIX);
14142 return;
14143
14144 case OP_OTHERS:
14145 fputs_filtered ("others => ", stream);
14146 print_subexp (exp, pos, stream, PREC_SUFFIX);
14147 return;
14148
14149 case OP_CHOICES:
14150 for (i = 0; i < nargs-1; i += 1)
14151 {
14152 if (i > 0)
14153 fputs_filtered ("|", stream);
14154 print_subexp (exp, pos, stream, PREC_SUFFIX);
14155 }
14156 fputs_filtered (" => ", stream);
14157 print_subexp (exp, pos, stream, PREC_SUFFIX);
14158 return;
14159
14160 case OP_POSITIONAL:
14161 print_subexp (exp, pos, stream, PREC_SUFFIX);
14162 return;
14163
14164 case OP_AGGREGATE:
14165 fputs_filtered ("(", stream);
14166 for (i = 0; i < nargs; i += 1)
14167 {
14168 if (i > 0)
14169 fputs_filtered (", ", stream);
14170 print_subexp (exp, pos, stream, PREC_SUFFIX);
14171 }
14172 fputs_filtered (")", stream);
14173 return;
4c4b4cd2
PH
14174 }
14175}
14f9c5c9
AS
14176
14177/* Table mapping opcodes into strings for printing operators
14178 and precedences of the operators. */
14179
d2e4a39e
AS
14180static const struct op_print ada_op_print_tab[] = {
14181 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14182 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14183 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14184 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14185 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14186 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14187 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14188 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14189 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14190 {">=", BINOP_GEQ, PREC_ORDER, 0},
14191 {">", BINOP_GTR, PREC_ORDER, 0},
14192 {"<", BINOP_LESS, PREC_ORDER, 0},
14193 {">>", BINOP_RSH, PREC_SHIFT, 0},
14194 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14195 {"+", BINOP_ADD, PREC_ADD, 0},
14196 {"-", BINOP_SUB, PREC_ADD, 0},
14197 {"&", BINOP_CONCAT, PREC_ADD, 0},
14198 {"*", BINOP_MUL, PREC_MUL, 0},
14199 {"/", BINOP_DIV, PREC_MUL, 0},
14200 {"rem", BINOP_REM, PREC_MUL, 0},
14201 {"mod", BINOP_MOD, PREC_MUL, 0},
14202 {"**", BINOP_EXP, PREC_REPEAT, 0},
14203 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14204 {"-", UNOP_NEG, PREC_PREFIX, 0},
14205 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14206 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14207 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14208 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14209 {".all", UNOP_IND, PREC_SUFFIX, 1},
14210 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14211 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14212 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14213};
14214\f
72d5681a
PH
14215enum ada_primitive_types {
14216 ada_primitive_type_int,
14217 ada_primitive_type_long,
14218 ada_primitive_type_short,
14219 ada_primitive_type_char,
14220 ada_primitive_type_float,
14221 ada_primitive_type_double,
14222 ada_primitive_type_void,
14223 ada_primitive_type_long_long,
14224 ada_primitive_type_long_double,
14225 ada_primitive_type_natural,
14226 ada_primitive_type_positive,
14227 ada_primitive_type_system_address,
08f49010 14228 ada_primitive_type_storage_offset,
72d5681a
PH
14229 nr_ada_primitive_types
14230};
6c038f32
PH
14231
14232static void
d4a9a881 14233ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14234 struct language_arch_info *lai)
14235{
d4a9a881 14236 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14237
72d5681a 14238 lai->primitive_type_vector
d4a9a881 14239 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14240 struct type *);
e9bb382b
UW
14241
14242 lai->primitive_type_vector [ada_primitive_type_int]
14243 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14244 0, "integer");
14245 lai->primitive_type_vector [ada_primitive_type_long]
14246 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14247 0, "long_integer");
14248 lai->primitive_type_vector [ada_primitive_type_short]
14249 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14250 0, "short_integer");
14251 lai->string_char_type
14252 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14253 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14254 lai->primitive_type_vector [ada_primitive_type_float]
14255 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14256 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14257 lai->primitive_type_vector [ada_primitive_type_double]
14258 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14259 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14260 lai->primitive_type_vector [ada_primitive_type_long_long]
14261 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14262 0, "long_long_integer");
14263 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14264 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14265 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14266 lai->primitive_type_vector [ada_primitive_type_natural]
14267 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14268 0, "natural");
14269 lai->primitive_type_vector [ada_primitive_type_positive]
14270 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14271 0, "positive");
14272 lai->primitive_type_vector [ada_primitive_type_void]
14273 = builtin->builtin_void;
14274
14275 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14276 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14277 "void"));
72d5681a
PH
14278 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14279 = "system__address";
fbb06eb1 14280
08f49010
XR
14281 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14282 type. This is a signed integral type whose size is the same as
14283 the size of addresses. */
14284 {
14285 unsigned int addr_length = TYPE_LENGTH
14286 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14287
14288 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14289 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14290 "storage_offset");
14291 }
14292
47e729a8 14293 lai->bool_type_symbol = NULL;
fbb06eb1 14294 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14295}
6c038f32
PH
14296\f
14297 /* Language vector */
14298
14299/* Not really used, but needed in the ada_language_defn. */
14300
14301static void
6c7a06a3 14302emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14303{
6c7a06a3 14304 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14305}
14306
14307static int
410a0ff2 14308parse (struct parser_state *ps)
6c038f32
PH
14309{
14310 warnings_issued = 0;
410a0ff2 14311 return ada_parse (ps);
6c038f32
PH
14312}
14313
14314static const struct exp_descriptor ada_exp_descriptor = {
14315 ada_print_subexp,
14316 ada_operator_length,
c0201579 14317 ada_operator_check,
6c038f32
PH
14318 ada_op_name,
14319 ada_dump_subexp_body,
14320 ada_evaluate_subexp
14321};
14322
b5ec771e
PA
14323/* symbol_name_matcher_ftype adapter for wild_match. */
14324
14325static bool
14326do_wild_match (const char *symbol_search_name,
14327 const lookup_name_info &lookup_name,
a207cff2 14328 completion_match_result *comp_match_res)
b5ec771e
PA
14329{
14330 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14331}
14332
14333/* symbol_name_matcher_ftype adapter for full_match. */
14334
14335static bool
14336do_full_match (const char *symbol_search_name,
14337 const lookup_name_info &lookup_name,
a207cff2 14338 completion_match_result *comp_match_res)
b5ec771e
PA
14339{
14340 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14341}
14342
14343/* Build the Ada lookup name for LOOKUP_NAME. */
14344
14345ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14346{
14347 const std::string &user_name = lookup_name.name ();
14348
14349 if (user_name[0] == '<')
14350 {
14351 if (user_name.back () == '>')
14352 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14353 else
14354 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14355 m_encoded_p = true;
14356 m_verbatim_p = true;
14357 m_wild_match_p = false;
14358 m_standard_p = false;
14359 }
14360 else
14361 {
14362 m_verbatim_p = false;
14363
14364 m_encoded_p = user_name.find ("__") != std::string::npos;
14365
14366 if (!m_encoded_p)
14367 {
14368 const char *folded = ada_fold_name (user_name.c_str ());
14369 const char *encoded = ada_encode_1 (folded, false);
14370 if (encoded != NULL)
14371 m_encoded_name = encoded;
14372 else
14373 m_encoded_name = user_name;
14374 }
14375 else
14376 m_encoded_name = user_name;
14377
14378 /* Handle the 'package Standard' special case. See description
14379 of m_standard_p. */
14380 if (startswith (m_encoded_name.c_str (), "standard__"))
14381 {
14382 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14383 m_standard_p = true;
14384 }
14385 else
14386 m_standard_p = false;
74ccd7f5 14387
b5ec771e
PA
14388 /* If the name contains a ".", then the user is entering a fully
14389 qualified entity name, and the match must not be done in wild
14390 mode. Similarly, if the user wants to complete what looks
14391 like an encoded name, the match must not be done in wild
14392 mode. Also, in the standard__ special case always do
14393 non-wild matching. */
14394 m_wild_match_p
14395 = (lookup_name.match_type () != symbol_name_match_type::FULL
14396 && !m_encoded_p
14397 && !m_standard_p
14398 && user_name.find ('.') == std::string::npos);
14399 }
14400}
14401
14402/* symbol_name_matcher_ftype method for Ada. This only handles
14403 completion mode. */
14404
14405static bool
14406ada_symbol_name_matches (const char *symbol_search_name,
14407 const lookup_name_info &lookup_name,
a207cff2 14408 completion_match_result *comp_match_res)
74ccd7f5 14409{
b5ec771e
PA
14410 return lookup_name.ada ().matches (symbol_search_name,
14411 lookup_name.match_type (),
a207cff2 14412 comp_match_res);
b5ec771e
PA
14413}
14414
de63c46b
PA
14415/* A name matcher that matches the symbol name exactly, with
14416 strcmp. */
14417
14418static bool
14419literal_symbol_name_matcher (const char *symbol_search_name,
14420 const lookup_name_info &lookup_name,
14421 completion_match_result *comp_match_res)
14422{
14423 const std::string &name = lookup_name.name ();
14424
14425 int cmp = (lookup_name.completion_mode ()
14426 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14427 : strcmp (symbol_search_name, name.c_str ()));
14428 if (cmp == 0)
14429 {
14430 if (comp_match_res != NULL)
14431 comp_match_res->set_match (symbol_search_name);
14432 return true;
14433 }
14434 else
14435 return false;
14436}
14437
b5ec771e
PA
14438/* Implement the "la_get_symbol_name_matcher" language_defn method for
14439 Ada. */
14440
14441static symbol_name_matcher_ftype *
14442ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14443{
de63c46b
PA
14444 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14445 return literal_symbol_name_matcher;
14446
b5ec771e
PA
14447 if (lookup_name.completion_mode ())
14448 return ada_symbol_name_matches;
74ccd7f5 14449 else
b5ec771e
PA
14450 {
14451 if (lookup_name.ada ().wild_match_p ())
14452 return do_wild_match;
14453 else
14454 return do_full_match;
14455 }
74ccd7f5
JB
14456}
14457
a5ee536b
JB
14458/* Implement the "la_read_var_value" language_defn method for Ada. */
14459
14460static struct value *
63e43d3a
PMR
14461ada_read_var_value (struct symbol *var, const struct block *var_block,
14462 struct frame_info *frame)
a5ee536b 14463{
3977b71f 14464 const struct block *frame_block = NULL;
a5ee536b
JB
14465 struct symbol *renaming_sym = NULL;
14466
14467 /* The only case where default_read_var_value is not sufficient
14468 is when VAR is a renaming... */
14469 if (frame)
14470 frame_block = get_frame_block (frame, NULL);
14471 if (frame_block)
14472 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14473 if (renaming_sym != NULL)
14474 return ada_read_renaming_var_value (renaming_sym, frame_block);
14475
14476 /* This is a typical case where we expect the default_read_var_value
14477 function to work. */
63e43d3a 14478 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14479}
14480
56618e20
TT
14481static const char *ada_extensions[] =
14482{
14483 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14484};
14485
47e77640 14486extern const struct language_defn ada_language_defn = {
6c038f32 14487 "ada", /* Language name */
6abde28f 14488 "Ada",
6c038f32 14489 language_ada,
6c038f32 14490 range_check_off,
6c038f32
PH
14491 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14492 that's not quite what this means. */
6c038f32 14493 array_row_major,
9a044a89 14494 macro_expansion_no,
56618e20 14495 ada_extensions,
6c038f32
PH
14496 &ada_exp_descriptor,
14497 parse,
b3f11165 14498 ada_yyerror,
6c038f32
PH
14499 resolve,
14500 ada_printchar, /* Print a character constant */
14501 ada_printstr, /* Function to print string constant */
14502 emit_char, /* Function to print single char (not used) */
6c038f32 14503 ada_print_type, /* Print a type using appropriate syntax */
be942545 14504 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14505 ada_val_print, /* Print a value using appropriate syntax */
14506 ada_value_print, /* Print a top-level value */
a5ee536b 14507 ada_read_var_value, /* la_read_var_value */
6c038f32 14508 NULL, /* Language specific skip_trampoline */
2b2d9e11 14509 NULL, /* name_of_this */
6c038f32
PH
14510 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14511 basic_lookup_transparent_type, /* lookup_transparent_type */
14512 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14513 ada_sniff_from_mangled_name,
0963b4bd
MS
14514 NULL, /* Language specific
14515 class_name_from_physname */
6c038f32
PH
14516 ada_op_print_tab, /* expression operators for printing */
14517 0, /* c-style arrays */
14518 1, /* String lower bound */
6c038f32 14519 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14520 ada_collect_symbol_completion_matches,
72d5681a 14521 ada_language_arch_info,
e79af960 14522 ada_print_array_index,
41f1b697 14523 default_pass_by_reference,
ae6a3a4c 14524 c_get_string,
43cc5389 14525 c_watch_location_expression,
b5ec771e 14526 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14527 ada_iterate_over_symbols,
5ffa0793 14528 default_search_name_hash,
a53b64ea 14529 &ada_varobj_ops,
bb2ec1b3
TT
14530 NULL,
14531 NULL,
6c038f32
PH
14532 LANG_MAGIC
14533};
14534
5bf03f13
JB
14535/* Command-list for the "set/show ada" prefix command. */
14536static struct cmd_list_element *set_ada_list;
14537static struct cmd_list_element *show_ada_list;
14538
14539/* Implement the "set ada" prefix command. */
14540
14541static void
981a3fb3 14542set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14543{
14544 printf_unfiltered (_(\
14545"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14546 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14547}
14548
14549/* Implement the "show ada" prefix command. */
14550
14551static void
981a3fb3 14552show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14553{
14554 cmd_show_list (show_ada_list, from_tty, "");
14555}
14556
2060206e
PA
14557static void
14558initialize_ada_catchpoint_ops (void)
14559{
14560 struct breakpoint_ops *ops;
14561
14562 initialize_breakpoint_ops ();
14563
14564 ops = &catch_exception_breakpoint_ops;
14565 *ops = bkpt_breakpoint_ops;
2060206e
PA
14566 ops->allocate_location = allocate_location_catch_exception;
14567 ops->re_set = re_set_catch_exception;
14568 ops->check_status = check_status_catch_exception;
14569 ops->print_it = print_it_catch_exception;
14570 ops->print_one = print_one_catch_exception;
14571 ops->print_mention = print_mention_catch_exception;
14572 ops->print_recreate = print_recreate_catch_exception;
14573
14574 ops = &catch_exception_unhandled_breakpoint_ops;
14575 *ops = bkpt_breakpoint_ops;
2060206e
PA
14576 ops->allocate_location = allocate_location_catch_exception_unhandled;
14577 ops->re_set = re_set_catch_exception_unhandled;
14578 ops->check_status = check_status_catch_exception_unhandled;
14579 ops->print_it = print_it_catch_exception_unhandled;
14580 ops->print_one = print_one_catch_exception_unhandled;
14581 ops->print_mention = print_mention_catch_exception_unhandled;
14582 ops->print_recreate = print_recreate_catch_exception_unhandled;
14583
14584 ops = &catch_assert_breakpoint_ops;
14585 *ops = bkpt_breakpoint_ops;
2060206e
PA
14586 ops->allocate_location = allocate_location_catch_assert;
14587 ops->re_set = re_set_catch_assert;
14588 ops->check_status = check_status_catch_assert;
14589 ops->print_it = print_it_catch_assert;
14590 ops->print_one = print_one_catch_assert;
14591 ops->print_mention = print_mention_catch_assert;
14592 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14593
14594 ops = &catch_handlers_breakpoint_ops;
14595 *ops = bkpt_breakpoint_ops;
14596 ops->allocate_location = allocate_location_catch_handlers;
14597 ops->re_set = re_set_catch_handlers;
14598 ops->check_status = check_status_catch_handlers;
14599 ops->print_it = print_it_catch_handlers;
14600 ops->print_one = print_one_catch_handlers;
14601 ops->print_mention = print_mention_catch_handlers;
14602 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14603}
14604
3d9434b5
JB
14605/* This module's 'new_objfile' observer. */
14606
14607static void
14608ada_new_objfile_observer (struct objfile *objfile)
14609{
14610 ada_clear_symbol_cache ();
14611}
14612
14613/* This module's 'free_objfile' observer. */
14614
14615static void
14616ada_free_objfile_observer (struct objfile *objfile)
14617{
14618 ada_clear_symbol_cache ();
14619}
14620
d2e4a39e 14621void
6c038f32 14622_initialize_ada_language (void)
14f9c5c9 14623{
2060206e
PA
14624 initialize_ada_catchpoint_ops ();
14625
5bf03f13
JB
14626 add_prefix_cmd ("ada", no_class, set_ada_command,
14627 _("Prefix command for changing Ada-specfic settings"),
14628 &set_ada_list, "set ada ", 0, &setlist);
14629
14630 add_prefix_cmd ("ada", no_class, show_ada_command,
14631 _("Generic command for showing Ada-specific settings."),
14632 &show_ada_list, "show ada ", 0, &showlist);
14633
14634 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14635 &trust_pad_over_xvs, _("\
14636Enable or disable an optimization trusting PAD types over XVS types"), _("\
14637Show whether an optimization trusting PAD types over XVS types is activated"),
14638 _("\
14639This is related to the encoding used by the GNAT compiler. The debugger\n\
14640should normally trust the contents of PAD types, but certain older versions\n\
14641of GNAT have a bug that sometimes causes the information in the PAD type\n\
14642to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14643work around this bug. It is always safe to turn this option \"off\", but\n\
14644this incurs a slight performance penalty, so it is recommended to NOT change\n\
14645this option to \"off\" unless necessary."),
14646 NULL, NULL, &set_ada_list, &show_ada_list);
14647
d72413e6
PMR
14648 add_setshow_boolean_cmd ("print-signatures", class_vars,
14649 &print_signatures, _("\
14650Enable or disable the output of formal and return types for functions in the \
14651overloads selection menu"), _("\
14652Show whether the output of formal and return types for functions in the \
14653overloads selection menu is activated"),
14654 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14655
9ac4176b
PA
14656 add_catch_command ("exception", _("\
14657Catch Ada exceptions, when raised.\n\
14658With an argument, catch only exceptions with the given name."),
14659 catch_ada_exception_command,
14660 NULL,
14661 CATCH_PERMANENT,
14662 CATCH_TEMPORARY);
9f757bf7
XR
14663
14664 add_catch_command ("handlers", _("\
14665Catch Ada exceptions, when handled.\n\
14666With an argument, catch only exceptions with the given name."),
14667 catch_ada_handlers_command,
14668 NULL,
14669 CATCH_PERMANENT,
14670 CATCH_TEMPORARY);
9ac4176b
PA
14671 add_catch_command ("assert", _("\
14672Catch failed Ada assertions, when raised.\n\
14673With an argument, catch only exceptions with the given name."),
14674 catch_assert_command,
14675 NULL,
14676 CATCH_PERMANENT,
14677 CATCH_TEMPORARY);
14678
6c038f32 14679 varsize_limit = 65536;
6c038f32 14680
778865d3
JB
14681 add_info ("exceptions", info_exceptions_command,
14682 _("\
14683List all Ada exception names.\n\
14684If a regular expression is passed as an argument, only those matching\n\
14685the regular expression are listed."));
14686
c6044dd1
JB
14687 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14688 _("Set Ada maintenance-related variables."),
14689 &maint_set_ada_cmdlist, "maintenance set ada ",
14690 0/*allow-unknown*/, &maintenance_set_cmdlist);
14691
14692 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14693 _("Show Ada maintenance-related variables"),
14694 &maint_show_ada_cmdlist, "maintenance show ada ",
14695 0/*allow-unknown*/, &maintenance_show_cmdlist);
14696
14697 add_setshow_boolean_cmd
14698 ("ignore-descriptive-types", class_maintenance,
14699 &ada_ignore_descriptive_types_p,
14700 _("Set whether descriptive types generated by GNAT should be ignored."),
14701 _("Show whether descriptive types generated by GNAT should be ignored."),
14702 _("\
14703When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14704DWARF attribute."),
14705 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14706
6c038f32
PH
14707 decoded_names_store = htab_create_alloc
14708 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14709 NULL, xcalloc, xfree);
6b69afc4 14710
3d9434b5
JB
14711 /* The ada-lang observers. */
14712 observer_attach_new_objfile (ada_new_objfile_observer);
14713 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14714 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14715
14716 /* Setup various context-specific data. */
e802dbe0 14717 ada_inferior_data
8e260fc0 14718 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14719 ada_pspace_data_handle
14720 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14721}
This page took 2.568401 seconds and 4 git commands to generate.