symtab.h (SYMTAB_BLOCKVECTOR): Renamed from BLOCKVECTOR. All uses updated.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
14f9c5c9 56
ccefe4c4 57#include "psymtab.h"
40bc484c 58#include "value.h"
956a9fb9 59#include "mi/mi-common.h"
9ac4176b 60#include "arch-utils.h"
0fcd72ba 61#include "cli/cli-utils.h"
ccefe4c4 62
4c4b4cd2 63/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 64 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
d2e4a39e 71static struct type *desc_base_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct type *desc_bounds_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct value *desc_bounds (struct value *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 80
556bdfd4 81static struct type *desc_data_target_type (struct type *);
14f9c5c9 82
d2e4a39e 83static struct value *desc_data (struct value *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static struct type *desc_index_type (struct type *, int);
14f9c5c9 96
d2e4a39e 97static int desc_arity (struct type *);
14f9c5c9 98
d2e4a39e 99static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 100
d2e4a39e 101static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 102
40658b94
PH
103static int full_match (const char *, const char *);
104
40bc484c 105static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 106
4c4b4cd2 107static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 108 const struct block *, const char *,
2570f2b7 109 domain_enum, struct objfile *, int);
14f9c5c9 110
4c4b4cd2 111static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 112
76a01679 113static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 114 const struct block *);
14f9c5c9 115
4c4b4cd2
PH
116static int num_defns_collected (struct obstack *);
117
118static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 119
4c4b4cd2 120static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 121 struct type *);
14f9c5c9 122
d2e4a39e 123static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 124 struct symbol *, const struct block *);
14f9c5c9 125
d2e4a39e 126static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 127
4c4b4cd2
PH
128static char *ada_op_name (enum exp_opcode);
129
130static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 131
d2e4a39e 132static int numeric_type_p (struct type *);
14f9c5c9 133
d2e4a39e 134static int integer_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int scalar_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int discrete_type_p (struct type *);
14f9c5c9 139
aeb5907d
JB
140static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 146 const struct block *);
aeb5907d 147
4c4b4cd2 148static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 149 int, int, int *);
4c4b4cd2 150
d2e4a39e 151static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 152
b4ba55a1
JB
153static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
d2e4a39e 156static int is_dynamic_field (struct type *, int);
14f9c5c9 157
10a2c479 158static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 159 const gdb_byte *,
4c4b4cd2
PH
160 CORE_ADDR, struct value *);
161
162static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 163
28c85d6c 164static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 165
d2e4a39e 166static struct type *to_static_fixed_type (struct type *);
f192137b 167static struct type *static_unwrap_type (struct type *type);
14f9c5c9 168
d2e4a39e 169static struct value *unwrap_value (struct value *);
14f9c5c9 170
ad82864c 171static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 172
ad82864c 173static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 174
ad82864c
JB
175static long decode_packed_array_bitsize (struct type *);
176
177static struct value *decode_constrained_packed_array (struct value *);
178
179static int ada_is_packed_array_type (struct type *);
180
181static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 182
d2e4a39e 183static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 184 struct value **);
14f9c5c9 185
50810684 186static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 187
4c4b4cd2
PH
188static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
14f9c5c9 190
d2e4a39e 191static struct value *get_var_value (char *, char *);
14f9c5c9 192
d2e4a39e 193static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 194
d2e4a39e 195static int equiv_types (struct type *, struct type *);
14f9c5c9 196
d2e4a39e 197static int is_name_suffix (const char *);
14f9c5c9 198
73589123
PH
199static int advance_wild_match (const char **, const char *, int);
200
201static int wild_match (const char *, const char *);
14f9c5c9 202
d2e4a39e 203static struct value *ada_coerce_ref (struct value *);
14f9c5c9 204
4c4b4cd2
PH
205static LONGEST pos_atr (struct value *);
206
3cb382c9 207static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 208
d2e4a39e 209static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
14f9c5c9 213
4c4b4cd2
PH
214static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
0d5cff50 220static int find_struct_field (const char *, struct type *, int,
52ce6436 221 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
222
223static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
4c4b4cd2
PH
226static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
4c4b4cd2
PH
230static int ada_is_direct_array_type (struct type *);
231
72d5681a
PH
232static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
714e53ab
PH
234
235static void check_size (const struct type *);
52ce6436
PH
236
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
241 struct expression *,
242 int *, enum noside);
52ce6436
PH
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
852dff6c
JB
268
269static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
270\f
271
ee01b665
JB
272/* The result of a symbol lookup to be stored in our symbol cache. */
273
274struct cache_entry
275{
276 /* The name used to perform the lookup. */
277 const char *name;
278 /* The namespace used during the lookup. */
279 domain_enum namespace;
280 /* The symbol returned by the lookup, or NULL if no matching symbol
281 was found. */
282 struct symbol *sym;
283 /* The block where the symbol was found, or NULL if no matching
284 symbol was found. */
285 const struct block *block;
286 /* A pointer to the next entry with the same hash. */
287 struct cache_entry *next;
288};
289
290/* The Ada symbol cache, used to store the result of Ada-mode symbol
291 lookups in the course of executing the user's commands.
292
293 The cache is implemented using a simple, fixed-sized hash.
294 The size is fixed on the grounds that there are not likely to be
295 all that many symbols looked up during any given session, regardless
296 of the size of the symbol table. If we decide to go to a resizable
297 table, let's just use the stuff from libiberty instead. */
298
299#define HASH_SIZE 1009
300
301struct ada_symbol_cache
302{
303 /* An obstack used to store the entries in our cache. */
304 struct obstack cache_space;
305
306 /* The root of the hash table used to implement our symbol cache. */
307 struct cache_entry *root[HASH_SIZE];
308};
309
310static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 311
4c4b4cd2 312/* Maximum-sized dynamic type. */
14f9c5c9
AS
313static unsigned int varsize_limit;
314
4c4b4cd2
PH
315/* FIXME: brobecker/2003-09-17: No longer a const because it is
316 returned by a function that does not return a const char *. */
317static char *ada_completer_word_break_characters =
318#ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320#else
14f9c5c9 321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 322#endif
14f9c5c9 323
4c4b4cd2 324/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 325static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 326 = "__gnat_ada_main_program_name";
14f9c5c9 327
4c4b4cd2
PH
328/* Limit on the number of warnings to raise per expression evaluation. */
329static int warning_limit = 2;
330
331/* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333static int warnings_issued = 0;
334
335static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337};
338
339static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341};
342
343/* Space for allocating results of ada_lookup_symbol_list. */
344static struct obstack symbol_list_obstack;
345
c6044dd1
JB
346/* Maintenance-related settings for this module. */
347
348static struct cmd_list_element *maint_set_ada_cmdlist;
349static struct cmd_list_element *maint_show_ada_cmdlist;
350
351/* Implement the "maintenance set ada" (prefix) command. */
352
353static void
354maint_set_ada_cmd (char *args, int from_tty)
355{
635c7e8a
TT
356 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
357 gdb_stdout);
c6044dd1
JB
358}
359
360/* Implement the "maintenance show ada" (prefix) command. */
361
362static void
363maint_show_ada_cmd (char *args, int from_tty)
364{
365 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
366}
367
368/* The "maintenance ada set/show ignore-descriptive-type" value. */
369
370static int ada_ignore_descriptive_types_p = 0;
371
e802dbe0
JB
372 /* Inferior-specific data. */
373
374/* Per-inferior data for this module. */
375
376struct ada_inferior_data
377{
378 /* The ada__tags__type_specific_data type, which is used when decoding
379 tagged types. With older versions of GNAT, this type was directly
380 accessible through a component ("tsd") in the object tag. But this
381 is no longer the case, so we cache it for each inferior. */
382 struct type *tsd_type;
3eecfa55
JB
383
384 /* The exception_support_info data. This data is used to determine
385 how to implement support for Ada exception catchpoints in a given
386 inferior. */
387 const struct exception_support_info *exception_info;
e802dbe0
JB
388};
389
390/* Our key to this module's inferior data. */
391static const struct inferior_data *ada_inferior_data;
392
393/* A cleanup routine for our inferior data. */
394static void
395ada_inferior_data_cleanup (struct inferior *inf, void *arg)
396{
397 struct ada_inferior_data *data;
398
399 data = inferior_data (inf, ada_inferior_data);
400 if (data != NULL)
401 xfree (data);
402}
403
404/* Return our inferior data for the given inferior (INF).
405
406 This function always returns a valid pointer to an allocated
407 ada_inferior_data structure. If INF's inferior data has not
408 been previously set, this functions creates a new one with all
409 fields set to zero, sets INF's inferior to it, and then returns
410 a pointer to that newly allocated ada_inferior_data. */
411
412static struct ada_inferior_data *
413get_ada_inferior_data (struct inferior *inf)
414{
415 struct ada_inferior_data *data;
416
417 data = inferior_data (inf, ada_inferior_data);
418 if (data == NULL)
419 {
41bf6aca 420 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
421 set_inferior_data (inf, ada_inferior_data, data);
422 }
423
424 return data;
425}
426
427/* Perform all necessary cleanups regarding our module's inferior data
428 that is required after the inferior INF just exited. */
429
430static void
431ada_inferior_exit (struct inferior *inf)
432{
433 ada_inferior_data_cleanup (inf, NULL);
434 set_inferior_data (inf, ada_inferior_data, NULL);
435}
436
ee01b665
JB
437
438 /* program-space-specific data. */
439
440/* This module's per-program-space data. */
441struct ada_pspace_data
442{
443 /* The Ada symbol cache. */
444 struct ada_symbol_cache *sym_cache;
445};
446
447/* Key to our per-program-space data. */
448static const struct program_space_data *ada_pspace_data_handle;
449
450/* Return this module's data for the given program space (PSPACE).
451 If not is found, add a zero'ed one now.
452
453 This function always returns a valid object. */
454
455static struct ada_pspace_data *
456get_ada_pspace_data (struct program_space *pspace)
457{
458 struct ada_pspace_data *data;
459
460 data = program_space_data (pspace, ada_pspace_data_handle);
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468}
469
470/* The cleanup callback for this module's per-program-space data. */
471
472static void
473ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474{
475 struct ada_pspace_data *pspace_data = data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480}
481
4c4b4cd2
PH
482 /* Utilities */
483
720d1a40 484/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 485 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511static struct type *
512ada_typedef_target_type (struct type *type)
513{
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517}
518
41d27058
JB
519/* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523static const char *
524ada_unqualified_name (const char *decoded_name)
525{
526 const char *result = strrchr (decoded_name, '.');
527
528 if (result != NULL)
529 result++; /* Skip the dot... */
530 else
531 result = decoded_name;
532
533 return result;
534}
535
536/* Return a string starting with '<', followed by STR, and '>'.
537 The result is good until the next call. */
538
539static char *
540add_angle_brackets (const char *str)
541{
542 static char *result = NULL;
543
544 xfree (result);
88c15c34 545 result = xstrprintf ("<%s>", str);
41d27058
JB
546 return result;
547}
96d887e8 548
4c4b4cd2
PH
549static char *
550ada_get_gdb_completer_word_break_characters (void)
551{
552 return ada_completer_word_break_characters;
553}
554
e79af960
JB
555/* Print an array element index using the Ada syntax. */
556
557static void
558ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 559 const struct value_print_options *options)
e79af960 560{
79a45b7d 561 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
562 fprintf_filtered (stream, " => ");
563}
564
f27cf670 565/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 566 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 567 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 568
f27cf670
AS
569void *
570grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 571{
d2e4a39e
AS
572 if (*size < min_size)
573 {
574 *size *= 2;
575 if (*size < min_size)
4c4b4cd2 576 *size = min_size;
f27cf670 577 vect = xrealloc (vect, *size * element_size);
d2e4a39e 578 }
f27cf670 579 return vect;
14f9c5c9
AS
580}
581
582/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 583 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
584
585static int
ebf56fd3 586field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
587{
588 int len = strlen (target);
5b4ee69b 589
d2e4a39e 590 return
4c4b4cd2
PH
591 (strncmp (field_name, target, len) == 0
592 && (field_name[len] == '\0'
593 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
594 && strcmp (field_name + strlen (field_name) - 6,
595 "___XVN") != 0)));
14f9c5c9
AS
596}
597
598
872c8b51
JB
599/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
600 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
601 and return its index. This function also handles fields whose name
602 have ___ suffixes because the compiler sometimes alters their name
603 by adding such a suffix to represent fields with certain constraints.
604 If the field could not be found, return a negative number if
605 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
606
607int
608ada_get_field_index (const struct type *type, const char *field_name,
609 int maybe_missing)
610{
611 int fieldno;
872c8b51
JB
612 struct type *struct_type = check_typedef ((struct type *) type);
613
614 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
615 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
616 return fieldno;
617
618 if (!maybe_missing)
323e0a4a 619 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 620 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
621
622 return -1;
623}
624
625/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
626
627int
d2e4a39e 628ada_name_prefix_len (const char *name)
14f9c5c9
AS
629{
630 if (name == NULL)
631 return 0;
d2e4a39e 632 else
14f9c5c9 633 {
d2e4a39e 634 const char *p = strstr (name, "___");
5b4ee69b 635
14f9c5c9 636 if (p == NULL)
4c4b4cd2 637 return strlen (name);
14f9c5c9 638 else
4c4b4cd2 639 return p - name;
14f9c5c9
AS
640 }
641}
642
4c4b4cd2
PH
643/* Return non-zero if SUFFIX is a suffix of STR.
644 Return zero if STR is null. */
645
14f9c5c9 646static int
d2e4a39e 647is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
648{
649 int len1, len2;
5b4ee69b 650
14f9c5c9
AS
651 if (str == NULL)
652 return 0;
653 len1 = strlen (str);
654 len2 = strlen (suffix);
4c4b4cd2 655 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
656}
657
4c4b4cd2
PH
658/* The contents of value VAL, treated as a value of type TYPE. The
659 result is an lval in memory if VAL is. */
14f9c5c9 660
d2e4a39e 661static struct value *
4c4b4cd2 662coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 663{
61ee279c 664 type = ada_check_typedef (type);
df407dfe 665 if (value_type (val) == type)
4c4b4cd2 666 return val;
d2e4a39e 667 else
14f9c5c9 668 {
4c4b4cd2
PH
669 struct value *result;
670
671 /* Make sure that the object size is not unreasonable before
672 trying to allocate some memory for it. */
714e53ab 673 check_size (type);
4c4b4cd2 674
41e8491f
JK
675 if (value_lazy (val)
676 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
677 result = allocate_value_lazy (type);
678 else
679 {
680 result = allocate_value (type);
9a0dc9e3 681 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 682 }
74bcbdf3 683 set_value_component_location (result, val);
9bbda503
AC
684 set_value_bitsize (result, value_bitsize (val));
685 set_value_bitpos (result, value_bitpos (val));
42ae5230 686 set_value_address (result, value_address (val));
14f9c5c9
AS
687 return result;
688 }
689}
690
fc1a4b47
AC
691static const gdb_byte *
692cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
693{
694 if (valaddr == NULL)
695 return NULL;
696 else
697 return valaddr + offset;
698}
699
700static CORE_ADDR
ebf56fd3 701cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
702{
703 if (address == 0)
704 return 0;
d2e4a39e 705 else
14f9c5c9
AS
706 return address + offset;
707}
708
4c4b4cd2
PH
709/* Issue a warning (as for the definition of warning in utils.c, but
710 with exactly one argument rather than ...), unless the limit on the
711 number of warnings has passed during the evaluation of the current
712 expression. */
a2249542 713
77109804
AC
714/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
715 provided by "complaint". */
a0b31db1 716static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 717
14f9c5c9 718static void
a2249542 719lim_warning (const char *format, ...)
14f9c5c9 720{
a2249542 721 va_list args;
a2249542 722
5b4ee69b 723 va_start (args, format);
4c4b4cd2
PH
724 warnings_issued += 1;
725 if (warnings_issued <= warning_limit)
a2249542
MK
726 vwarning (format, args);
727
728 va_end (args);
4c4b4cd2
PH
729}
730
714e53ab
PH
731/* Issue an error if the size of an object of type T is unreasonable,
732 i.e. if it would be a bad idea to allocate a value of this type in
733 GDB. */
734
735static void
736check_size (const struct type *type)
737{
738 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 739 error (_("object size is larger than varsize-limit"));
714e53ab
PH
740}
741
0963b4bd 742/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 743static LONGEST
c3e5cd34 744max_of_size (int size)
4c4b4cd2 745{
76a01679 746 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 747
76a01679 748 return top_bit | (top_bit - 1);
4c4b4cd2
PH
749}
750
0963b4bd 751/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 752static LONGEST
c3e5cd34 753min_of_size (int size)
4c4b4cd2 754{
c3e5cd34 755 return -max_of_size (size) - 1;
4c4b4cd2
PH
756}
757
0963b4bd 758/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 759static ULONGEST
c3e5cd34 760umax_of_size (int size)
4c4b4cd2 761{
76a01679 762 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 763
76a01679 764 return top_bit | (top_bit - 1);
4c4b4cd2
PH
765}
766
0963b4bd 767/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
768static LONGEST
769max_of_type (struct type *t)
4c4b4cd2 770{
c3e5cd34
PH
771 if (TYPE_UNSIGNED (t))
772 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
773 else
774 return max_of_size (TYPE_LENGTH (t));
775}
776
0963b4bd 777/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
778static LONGEST
779min_of_type (struct type *t)
780{
781 if (TYPE_UNSIGNED (t))
782 return 0;
783 else
784 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
785}
786
787/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
788LONGEST
789ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 790{
8739bc53 791 type = resolve_dynamic_type (type, 0);
76a01679 792 switch (TYPE_CODE (type))
4c4b4cd2
PH
793 {
794 case TYPE_CODE_RANGE:
690cc4eb 795 return TYPE_HIGH_BOUND (type);
4c4b4cd2 796 case TYPE_CODE_ENUM:
14e75d8e 797 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
798 case TYPE_CODE_BOOL:
799 return 1;
800 case TYPE_CODE_CHAR:
76a01679 801 case TYPE_CODE_INT:
690cc4eb 802 return max_of_type (type);
4c4b4cd2 803 default:
43bbcdc2 804 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
805 }
806}
807
14e75d8e 808/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
809LONGEST
810ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 811{
8739bc53 812 type = resolve_dynamic_type (type, 0);
76a01679 813 switch (TYPE_CODE (type))
4c4b4cd2
PH
814 {
815 case TYPE_CODE_RANGE:
690cc4eb 816 return TYPE_LOW_BOUND (type);
4c4b4cd2 817 case TYPE_CODE_ENUM:
14e75d8e 818 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
819 case TYPE_CODE_BOOL:
820 return 0;
821 case TYPE_CODE_CHAR:
76a01679 822 case TYPE_CODE_INT:
690cc4eb 823 return min_of_type (type);
4c4b4cd2 824 default:
43bbcdc2 825 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
826 }
827}
828
829/* The identity on non-range types. For range types, the underlying
76a01679 830 non-range scalar type. */
4c4b4cd2
PH
831
832static struct type *
18af8284 833get_base_type (struct type *type)
4c4b4cd2
PH
834{
835 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
836 {
76a01679
JB
837 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
838 return type;
4c4b4cd2
PH
839 type = TYPE_TARGET_TYPE (type);
840 }
841 return type;
14f9c5c9 842}
41246937
JB
843
844/* Return a decoded version of the given VALUE. This means returning
845 a value whose type is obtained by applying all the GNAT-specific
846 encondings, making the resulting type a static but standard description
847 of the initial type. */
848
849struct value *
850ada_get_decoded_value (struct value *value)
851{
852 struct type *type = ada_check_typedef (value_type (value));
853
854 if (ada_is_array_descriptor_type (type)
855 || (ada_is_constrained_packed_array_type (type)
856 && TYPE_CODE (type) != TYPE_CODE_PTR))
857 {
858 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
859 value = ada_coerce_to_simple_array_ptr (value);
860 else
861 value = ada_coerce_to_simple_array (value);
862 }
863 else
864 value = ada_to_fixed_value (value);
865
866 return value;
867}
868
869/* Same as ada_get_decoded_value, but with the given TYPE.
870 Because there is no associated actual value for this type,
871 the resulting type might be a best-effort approximation in
872 the case of dynamic types. */
873
874struct type *
875ada_get_decoded_type (struct type *type)
876{
877 type = to_static_fixed_type (type);
878 if (ada_is_constrained_packed_array_type (type))
879 type = ada_coerce_to_simple_array_type (type);
880 return type;
881}
882
4c4b4cd2 883\f
76a01679 884
4c4b4cd2 885 /* Language Selection */
14f9c5c9
AS
886
887/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 888 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 889
14f9c5c9 890enum language
ccefe4c4 891ada_update_initial_language (enum language lang)
14f9c5c9 892{
d2e4a39e 893 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 894 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 895 return language_ada;
14f9c5c9
AS
896
897 return lang;
898}
96d887e8
PH
899
900/* If the main procedure is written in Ada, then return its name.
901 The result is good until the next call. Return NULL if the main
902 procedure doesn't appear to be in Ada. */
903
904char *
905ada_main_name (void)
906{
3b7344d5 907 struct bound_minimal_symbol msym;
f9bc20b9 908 static char *main_program_name = NULL;
6c038f32 909
96d887e8
PH
910 /* For Ada, the name of the main procedure is stored in a specific
911 string constant, generated by the binder. Look for that symbol,
912 extract its address, and then read that string. If we didn't find
913 that string, then most probably the main procedure is not written
914 in Ada. */
915 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
916
3b7344d5 917 if (msym.minsym != NULL)
96d887e8 918 {
f9bc20b9
JB
919 CORE_ADDR main_program_name_addr;
920 int err_code;
921
77e371c0 922 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 923 if (main_program_name_addr == 0)
323e0a4a 924 error (_("Invalid address for Ada main program name."));
96d887e8 925
f9bc20b9
JB
926 xfree (main_program_name);
927 target_read_string (main_program_name_addr, &main_program_name,
928 1024, &err_code);
929
930 if (err_code != 0)
931 return NULL;
96d887e8
PH
932 return main_program_name;
933 }
934
935 /* The main procedure doesn't seem to be in Ada. */
936 return NULL;
937}
14f9c5c9 938\f
4c4b4cd2 939 /* Symbols */
d2e4a39e 940
4c4b4cd2
PH
941/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
942 of NULLs. */
14f9c5c9 943
d2e4a39e
AS
944const struct ada_opname_map ada_opname_table[] = {
945 {"Oadd", "\"+\"", BINOP_ADD},
946 {"Osubtract", "\"-\"", BINOP_SUB},
947 {"Omultiply", "\"*\"", BINOP_MUL},
948 {"Odivide", "\"/\"", BINOP_DIV},
949 {"Omod", "\"mod\"", BINOP_MOD},
950 {"Orem", "\"rem\"", BINOP_REM},
951 {"Oexpon", "\"**\"", BINOP_EXP},
952 {"Olt", "\"<\"", BINOP_LESS},
953 {"Ole", "\"<=\"", BINOP_LEQ},
954 {"Ogt", "\">\"", BINOP_GTR},
955 {"Oge", "\">=\"", BINOP_GEQ},
956 {"Oeq", "\"=\"", BINOP_EQUAL},
957 {"One", "\"/=\"", BINOP_NOTEQUAL},
958 {"Oand", "\"and\"", BINOP_BITWISE_AND},
959 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
960 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
961 {"Oconcat", "\"&\"", BINOP_CONCAT},
962 {"Oabs", "\"abs\"", UNOP_ABS},
963 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
964 {"Oadd", "\"+\"", UNOP_PLUS},
965 {"Osubtract", "\"-\"", UNOP_NEG},
966 {NULL, NULL}
14f9c5c9
AS
967};
968
4c4b4cd2
PH
969/* The "encoded" form of DECODED, according to GNAT conventions.
970 The result is valid until the next call to ada_encode. */
971
14f9c5c9 972char *
4c4b4cd2 973ada_encode (const char *decoded)
14f9c5c9 974{
4c4b4cd2
PH
975 static char *encoding_buffer = NULL;
976 static size_t encoding_buffer_size = 0;
d2e4a39e 977 const char *p;
14f9c5c9 978 int k;
d2e4a39e 979
4c4b4cd2 980 if (decoded == NULL)
14f9c5c9
AS
981 return NULL;
982
4c4b4cd2
PH
983 GROW_VECT (encoding_buffer, encoding_buffer_size,
984 2 * strlen (decoded) + 10);
14f9c5c9
AS
985
986 k = 0;
4c4b4cd2 987 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 988 {
cdc7bb92 989 if (*p == '.')
4c4b4cd2
PH
990 {
991 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
992 k += 2;
993 }
14f9c5c9 994 else if (*p == '"')
4c4b4cd2
PH
995 {
996 const struct ada_opname_map *mapping;
997
998 for (mapping = ada_opname_table;
1265e4aa
JB
999 mapping->encoded != NULL
1000 && strncmp (mapping->decoded, p,
1001 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
1002 ;
1003 if (mapping->encoded == NULL)
323e0a4a 1004 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1005 strcpy (encoding_buffer + k, mapping->encoded);
1006 k += strlen (mapping->encoded);
1007 break;
1008 }
d2e4a39e 1009 else
4c4b4cd2
PH
1010 {
1011 encoding_buffer[k] = *p;
1012 k += 1;
1013 }
14f9c5c9
AS
1014 }
1015
4c4b4cd2
PH
1016 encoding_buffer[k] = '\0';
1017 return encoding_buffer;
14f9c5c9
AS
1018}
1019
1020/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1021 quotes, unfolded, but with the quotes stripped away. Result good
1022 to next call. */
1023
d2e4a39e
AS
1024char *
1025ada_fold_name (const char *name)
14f9c5c9 1026{
d2e4a39e 1027 static char *fold_buffer = NULL;
14f9c5c9
AS
1028 static size_t fold_buffer_size = 0;
1029
1030 int len = strlen (name);
d2e4a39e 1031 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1032
1033 if (name[0] == '\'')
1034 {
d2e4a39e
AS
1035 strncpy (fold_buffer, name + 1, len - 2);
1036 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1037 }
1038 else
1039 {
1040 int i;
5b4ee69b 1041
14f9c5c9 1042 for (i = 0; i <= len; i += 1)
4c4b4cd2 1043 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1044 }
1045
1046 return fold_buffer;
1047}
1048
529cad9c
PH
1049/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1050
1051static int
1052is_lower_alphanum (const char c)
1053{
1054 return (isdigit (c) || (isalpha (c) && islower (c)));
1055}
1056
c90092fe
JB
1057/* ENCODED is the linkage name of a symbol and LEN contains its length.
1058 This function saves in LEN the length of that same symbol name but
1059 without either of these suffixes:
29480c32
JB
1060 . .{DIGIT}+
1061 . ${DIGIT}+
1062 . ___{DIGIT}+
1063 . __{DIGIT}+.
c90092fe 1064
29480c32
JB
1065 These are suffixes introduced by the compiler for entities such as
1066 nested subprogram for instance, in order to avoid name clashes.
1067 They do not serve any purpose for the debugger. */
1068
1069static void
1070ada_remove_trailing_digits (const char *encoded, int *len)
1071{
1072 if (*len > 1 && isdigit (encoded[*len - 1]))
1073 {
1074 int i = *len - 2;
5b4ee69b 1075
29480c32
JB
1076 while (i > 0 && isdigit (encoded[i]))
1077 i--;
1078 if (i >= 0 && encoded[i] == '.')
1079 *len = i;
1080 else if (i >= 0 && encoded[i] == '$')
1081 *len = i;
1082 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1083 *len = i - 2;
1084 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1085 *len = i - 1;
1086 }
1087}
1088
1089/* Remove the suffix introduced by the compiler for protected object
1090 subprograms. */
1091
1092static void
1093ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1094{
1095 /* Remove trailing N. */
1096
1097 /* Protected entry subprograms are broken into two
1098 separate subprograms: The first one is unprotected, and has
1099 a 'N' suffix; the second is the protected version, and has
0963b4bd 1100 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1101 the protection. Since the P subprograms are internally generated,
1102 we leave these names undecoded, giving the user a clue that this
1103 entity is internal. */
1104
1105 if (*len > 1
1106 && encoded[*len - 1] == 'N'
1107 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1108 *len = *len - 1;
1109}
1110
69fadcdf
JB
1111/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1112
1113static void
1114ada_remove_Xbn_suffix (const char *encoded, int *len)
1115{
1116 int i = *len - 1;
1117
1118 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1119 i--;
1120
1121 if (encoded[i] != 'X')
1122 return;
1123
1124 if (i == 0)
1125 return;
1126
1127 if (isalnum (encoded[i-1]))
1128 *len = i;
1129}
1130
29480c32
JB
1131/* If ENCODED follows the GNAT entity encoding conventions, then return
1132 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1133 replaced by ENCODED.
14f9c5c9 1134
4c4b4cd2 1135 The resulting string is valid until the next call of ada_decode.
29480c32 1136 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1137 is returned. */
1138
1139const char *
1140ada_decode (const char *encoded)
14f9c5c9
AS
1141{
1142 int i, j;
1143 int len0;
d2e4a39e 1144 const char *p;
4c4b4cd2 1145 char *decoded;
14f9c5c9 1146 int at_start_name;
4c4b4cd2
PH
1147 static char *decoding_buffer = NULL;
1148 static size_t decoding_buffer_size = 0;
d2e4a39e 1149
29480c32
JB
1150 /* The name of the Ada main procedure starts with "_ada_".
1151 This prefix is not part of the decoded name, so skip this part
1152 if we see this prefix. */
4c4b4cd2
PH
1153 if (strncmp (encoded, "_ada_", 5) == 0)
1154 encoded += 5;
14f9c5c9 1155
29480c32
JB
1156 /* If the name starts with '_', then it is not a properly encoded
1157 name, so do not attempt to decode it. Similarly, if the name
1158 starts with '<', the name should not be decoded. */
4c4b4cd2 1159 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1160 goto Suppress;
1161
4c4b4cd2 1162 len0 = strlen (encoded);
4c4b4cd2 1163
29480c32
JB
1164 ada_remove_trailing_digits (encoded, &len0);
1165 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1166
4c4b4cd2
PH
1167 /* Remove the ___X.* suffix if present. Do not forget to verify that
1168 the suffix is located before the current "end" of ENCODED. We want
1169 to avoid re-matching parts of ENCODED that have previously been
1170 marked as discarded (by decrementing LEN0). */
1171 p = strstr (encoded, "___");
1172 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1173 {
1174 if (p[3] == 'X')
4c4b4cd2 1175 len0 = p - encoded;
14f9c5c9 1176 else
4c4b4cd2 1177 goto Suppress;
14f9c5c9 1178 }
4c4b4cd2 1179
29480c32
JB
1180 /* Remove any trailing TKB suffix. It tells us that this symbol
1181 is for the body of a task, but that information does not actually
1182 appear in the decoded name. */
1183
4c4b4cd2 1184 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1185 len0 -= 3;
76a01679 1186
a10967fa
JB
1187 /* Remove any trailing TB suffix. The TB suffix is slightly different
1188 from the TKB suffix because it is used for non-anonymous task
1189 bodies. */
1190
1191 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1192 len0 -= 2;
1193
29480c32
JB
1194 /* Remove trailing "B" suffixes. */
1195 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1196
4c4b4cd2 1197 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1198 len0 -= 1;
1199
4c4b4cd2 1200 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1201
4c4b4cd2
PH
1202 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1203 decoded = decoding_buffer;
14f9c5c9 1204
29480c32
JB
1205 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1206
4c4b4cd2 1207 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1208 {
4c4b4cd2
PH
1209 i = len0 - 2;
1210 while ((i >= 0 && isdigit (encoded[i]))
1211 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1212 i -= 1;
1213 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1214 len0 = i - 1;
1215 else if (encoded[i] == '$')
1216 len0 = i;
d2e4a39e 1217 }
14f9c5c9 1218
29480c32
JB
1219 /* The first few characters that are not alphabetic are not part
1220 of any encoding we use, so we can copy them over verbatim. */
1221
4c4b4cd2
PH
1222 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1223 decoded[j] = encoded[i];
14f9c5c9
AS
1224
1225 at_start_name = 1;
1226 while (i < len0)
1227 {
29480c32 1228 /* Is this a symbol function? */
4c4b4cd2
PH
1229 if (at_start_name && encoded[i] == 'O')
1230 {
1231 int k;
5b4ee69b 1232
4c4b4cd2
PH
1233 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1234 {
1235 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1236 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1237 op_len - 1) == 0)
1238 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1239 {
1240 strcpy (decoded + j, ada_opname_table[k].decoded);
1241 at_start_name = 0;
1242 i += op_len;
1243 j += strlen (ada_opname_table[k].decoded);
1244 break;
1245 }
1246 }
1247 if (ada_opname_table[k].encoded != NULL)
1248 continue;
1249 }
14f9c5c9
AS
1250 at_start_name = 0;
1251
529cad9c
PH
1252 /* Replace "TK__" with "__", which will eventually be translated
1253 into "." (just below). */
1254
4c4b4cd2
PH
1255 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1256 i += 2;
529cad9c 1257
29480c32
JB
1258 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1259 be translated into "." (just below). These are internal names
1260 generated for anonymous blocks inside which our symbol is nested. */
1261
1262 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1263 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1264 && isdigit (encoded [i+4]))
1265 {
1266 int k = i + 5;
1267
1268 while (k < len0 && isdigit (encoded[k]))
1269 k++; /* Skip any extra digit. */
1270
1271 /* Double-check that the "__B_{DIGITS}+" sequence we found
1272 is indeed followed by "__". */
1273 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1274 i = k;
1275 }
1276
529cad9c
PH
1277 /* Remove _E{DIGITS}+[sb] */
1278
1279 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1280 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1281 one implements the actual entry code, and has a suffix following
1282 the convention above; the second one implements the barrier and
1283 uses the same convention as above, except that the 'E' is replaced
1284 by a 'B'.
1285
1286 Just as above, we do not decode the name of barrier functions
1287 to give the user a clue that the code he is debugging has been
1288 internally generated. */
1289
1290 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1291 && isdigit (encoded[i+2]))
1292 {
1293 int k = i + 3;
1294
1295 while (k < len0 && isdigit (encoded[k]))
1296 k++;
1297
1298 if (k < len0
1299 && (encoded[k] == 'b' || encoded[k] == 's'))
1300 {
1301 k++;
1302 /* Just as an extra precaution, make sure that if this
1303 suffix is followed by anything else, it is a '_'.
1304 Otherwise, we matched this sequence by accident. */
1305 if (k == len0
1306 || (k < len0 && encoded[k] == '_'))
1307 i = k;
1308 }
1309 }
1310
1311 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1312 the GNAT front-end in protected object subprograms. */
1313
1314 if (i < len0 + 3
1315 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1316 {
1317 /* Backtrack a bit up until we reach either the begining of
1318 the encoded name, or "__". Make sure that we only find
1319 digits or lowercase characters. */
1320 const char *ptr = encoded + i - 1;
1321
1322 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1323 ptr--;
1324 if (ptr < encoded
1325 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1326 i++;
1327 }
1328
4c4b4cd2
PH
1329 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1330 {
29480c32
JB
1331 /* This is a X[bn]* sequence not separated from the previous
1332 part of the name with a non-alpha-numeric character (in other
1333 words, immediately following an alpha-numeric character), then
1334 verify that it is placed at the end of the encoded name. If
1335 not, then the encoding is not valid and we should abort the
1336 decoding. Otherwise, just skip it, it is used in body-nested
1337 package names. */
4c4b4cd2
PH
1338 do
1339 i += 1;
1340 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1341 if (i < len0)
1342 goto Suppress;
1343 }
cdc7bb92 1344 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1345 {
29480c32 1346 /* Replace '__' by '.'. */
4c4b4cd2
PH
1347 decoded[j] = '.';
1348 at_start_name = 1;
1349 i += 2;
1350 j += 1;
1351 }
14f9c5c9 1352 else
4c4b4cd2 1353 {
29480c32
JB
1354 /* It's a character part of the decoded name, so just copy it
1355 over. */
4c4b4cd2
PH
1356 decoded[j] = encoded[i];
1357 i += 1;
1358 j += 1;
1359 }
14f9c5c9 1360 }
4c4b4cd2 1361 decoded[j] = '\000';
14f9c5c9 1362
29480c32
JB
1363 /* Decoded names should never contain any uppercase character.
1364 Double-check this, and abort the decoding if we find one. */
1365
4c4b4cd2
PH
1366 for (i = 0; decoded[i] != '\0'; i += 1)
1367 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1368 goto Suppress;
1369
4c4b4cd2
PH
1370 if (strcmp (decoded, encoded) == 0)
1371 return encoded;
1372 else
1373 return decoded;
14f9c5c9
AS
1374
1375Suppress:
4c4b4cd2
PH
1376 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1377 decoded = decoding_buffer;
1378 if (encoded[0] == '<')
1379 strcpy (decoded, encoded);
14f9c5c9 1380 else
88c15c34 1381 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1382 return decoded;
1383
1384}
1385
1386/* Table for keeping permanent unique copies of decoded names. Once
1387 allocated, names in this table are never released. While this is a
1388 storage leak, it should not be significant unless there are massive
1389 changes in the set of decoded names in successive versions of a
1390 symbol table loaded during a single session. */
1391static struct htab *decoded_names_store;
1392
1393/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1394 in the language-specific part of GSYMBOL, if it has not been
1395 previously computed. Tries to save the decoded name in the same
1396 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1397 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1398 GSYMBOL).
4c4b4cd2
PH
1399 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1400 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1401 when a decoded name is cached in it. */
4c4b4cd2 1402
45e6c716 1403const char *
f85f34ed 1404ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1405{
f85f34ed
TT
1406 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1407 const char **resultp =
1408 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1409
f85f34ed 1410 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1411 {
1412 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1413 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1414
f85f34ed 1415 gsymbol->ada_mangled = 1;
5b4ee69b 1416
f85f34ed
TT
1417 if (obstack != NULL)
1418 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1419 else
76a01679 1420 {
f85f34ed
TT
1421 /* Sometimes, we can't find a corresponding objfile, in
1422 which case, we put the result on the heap. Since we only
1423 decode when needed, we hope this usually does not cause a
1424 significant memory leak (FIXME). */
1425
76a01679
JB
1426 char **slot = (char **) htab_find_slot (decoded_names_store,
1427 decoded, INSERT);
5b4ee69b 1428
76a01679
JB
1429 if (*slot == NULL)
1430 *slot = xstrdup (decoded);
1431 *resultp = *slot;
1432 }
4c4b4cd2 1433 }
14f9c5c9 1434
4c4b4cd2
PH
1435 return *resultp;
1436}
76a01679 1437
2c0b251b 1438static char *
76a01679 1439ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1440{
1441 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1442}
1443
1444/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1445 suffixes that encode debugging information or leading _ada_ on
1446 SYM_NAME (see is_name_suffix commentary for the debugging
1447 information that is ignored). If WILD, then NAME need only match a
1448 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1449 either argument is NULL. */
14f9c5c9 1450
2c0b251b 1451static int
40658b94 1452match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1453{
1454 if (sym_name == NULL || name == NULL)
1455 return 0;
1456 else if (wild)
73589123 1457 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1458 else
1459 {
1460 int len_name = strlen (name);
5b4ee69b 1461
4c4b4cd2
PH
1462 return (strncmp (sym_name, name, len_name) == 0
1463 && is_name_suffix (sym_name + len_name))
1464 || (strncmp (sym_name, "_ada_", 5) == 0
1465 && strncmp (sym_name + 5, name, len_name) == 0
1466 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1467 }
14f9c5c9 1468}
14f9c5c9 1469\f
d2e4a39e 1470
4c4b4cd2 1471 /* Arrays */
14f9c5c9 1472
28c85d6c
JB
1473/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1474 generated by the GNAT compiler to describe the index type used
1475 for each dimension of an array, check whether it follows the latest
1476 known encoding. If not, fix it up to conform to the latest encoding.
1477 Otherwise, do nothing. This function also does nothing if
1478 INDEX_DESC_TYPE is NULL.
1479
1480 The GNAT encoding used to describle the array index type evolved a bit.
1481 Initially, the information would be provided through the name of each
1482 field of the structure type only, while the type of these fields was
1483 described as unspecified and irrelevant. The debugger was then expected
1484 to perform a global type lookup using the name of that field in order
1485 to get access to the full index type description. Because these global
1486 lookups can be very expensive, the encoding was later enhanced to make
1487 the global lookup unnecessary by defining the field type as being
1488 the full index type description.
1489
1490 The purpose of this routine is to allow us to support older versions
1491 of the compiler by detecting the use of the older encoding, and by
1492 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1493 we essentially replace each field's meaningless type by the associated
1494 index subtype). */
1495
1496void
1497ada_fixup_array_indexes_type (struct type *index_desc_type)
1498{
1499 int i;
1500
1501 if (index_desc_type == NULL)
1502 return;
1503 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1504
1505 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1506 to check one field only, no need to check them all). If not, return
1507 now.
1508
1509 If our INDEX_DESC_TYPE was generated using the older encoding,
1510 the field type should be a meaningless integer type whose name
1511 is not equal to the field name. */
1512 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1513 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1514 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1515 return;
1516
1517 /* Fixup each field of INDEX_DESC_TYPE. */
1518 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1519 {
0d5cff50 1520 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1521 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1522
1523 if (raw_type)
1524 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1525 }
1526}
1527
4c4b4cd2 1528/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1529
d2e4a39e
AS
1530static char *bound_name[] = {
1531 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1532 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1533};
1534
1535/* Maximum number of array dimensions we are prepared to handle. */
1536
4c4b4cd2 1537#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1538
14f9c5c9 1539
4c4b4cd2
PH
1540/* The desc_* routines return primitive portions of array descriptors
1541 (fat pointers). */
14f9c5c9
AS
1542
1543/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1544 level of indirection, if needed. */
1545
d2e4a39e
AS
1546static struct type *
1547desc_base_type (struct type *type)
14f9c5c9
AS
1548{
1549 if (type == NULL)
1550 return NULL;
61ee279c 1551 type = ada_check_typedef (type);
720d1a40
JB
1552 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1553 type = ada_typedef_target_type (type);
1554
1265e4aa
JB
1555 if (type != NULL
1556 && (TYPE_CODE (type) == TYPE_CODE_PTR
1557 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1558 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1559 else
1560 return type;
1561}
1562
4c4b4cd2
PH
1563/* True iff TYPE indicates a "thin" array pointer type. */
1564
14f9c5c9 1565static int
d2e4a39e 1566is_thin_pntr (struct type *type)
14f9c5c9 1567{
d2e4a39e 1568 return
14f9c5c9
AS
1569 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1570 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1571}
1572
4c4b4cd2
PH
1573/* The descriptor type for thin pointer type TYPE. */
1574
d2e4a39e
AS
1575static struct type *
1576thin_descriptor_type (struct type *type)
14f9c5c9 1577{
d2e4a39e 1578 struct type *base_type = desc_base_type (type);
5b4ee69b 1579
14f9c5c9
AS
1580 if (base_type == NULL)
1581 return NULL;
1582 if (is_suffix (ada_type_name (base_type), "___XVE"))
1583 return base_type;
d2e4a39e 1584 else
14f9c5c9 1585 {
d2e4a39e 1586 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1587
14f9c5c9 1588 if (alt_type == NULL)
4c4b4cd2 1589 return base_type;
14f9c5c9 1590 else
4c4b4cd2 1591 return alt_type;
14f9c5c9
AS
1592 }
1593}
1594
4c4b4cd2
PH
1595/* A pointer to the array data for thin-pointer value VAL. */
1596
d2e4a39e
AS
1597static struct value *
1598thin_data_pntr (struct value *val)
14f9c5c9 1599{
828292f2 1600 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1601 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1602
556bdfd4
UW
1603 data_type = lookup_pointer_type (data_type);
1604
14f9c5c9 1605 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1606 return value_cast (data_type, value_copy (val));
d2e4a39e 1607 else
42ae5230 1608 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1609}
1610
4c4b4cd2
PH
1611/* True iff TYPE indicates a "thick" array pointer type. */
1612
14f9c5c9 1613static int
d2e4a39e 1614is_thick_pntr (struct type *type)
14f9c5c9
AS
1615{
1616 type = desc_base_type (type);
1617 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1618 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1619}
1620
4c4b4cd2
PH
1621/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1622 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1623
d2e4a39e
AS
1624static struct type *
1625desc_bounds_type (struct type *type)
14f9c5c9 1626{
d2e4a39e 1627 struct type *r;
14f9c5c9
AS
1628
1629 type = desc_base_type (type);
1630
1631 if (type == NULL)
1632 return NULL;
1633 else if (is_thin_pntr (type))
1634 {
1635 type = thin_descriptor_type (type);
1636 if (type == NULL)
4c4b4cd2 1637 return NULL;
14f9c5c9
AS
1638 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1639 if (r != NULL)
61ee279c 1640 return ada_check_typedef (r);
14f9c5c9
AS
1641 }
1642 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1643 {
1644 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1645 if (r != NULL)
61ee279c 1646 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1647 }
1648 return NULL;
1649}
1650
1651/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1652 one, a pointer to its bounds data. Otherwise NULL. */
1653
d2e4a39e
AS
1654static struct value *
1655desc_bounds (struct value *arr)
14f9c5c9 1656{
df407dfe 1657 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1658
d2e4a39e 1659 if (is_thin_pntr (type))
14f9c5c9 1660 {
d2e4a39e 1661 struct type *bounds_type =
4c4b4cd2 1662 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1663 LONGEST addr;
1664
4cdfadb1 1665 if (bounds_type == NULL)
323e0a4a 1666 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1667
1668 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1669 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1670 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1671 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1672 addr = value_as_long (arr);
d2e4a39e 1673 else
42ae5230 1674 addr = value_address (arr);
14f9c5c9 1675
d2e4a39e 1676 return
4c4b4cd2
PH
1677 value_from_longest (lookup_pointer_type (bounds_type),
1678 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1679 }
1680
1681 else if (is_thick_pntr (type))
05e522ef
JB
1682 {
1683 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1684 _("Bad GNAT array descriptor"));
1685 struct type *p_bounds_type = value_type (p_bounds);
1686
1687 if (p_bounds_type
1688 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1689 {
1690 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1691
1692 if (TYPE_STUB (target_type))
1693 p_bounds = value_cast (lookup_pointer_type
1694 (ada_check_typedef (target_type)),
1695 p_bounds);
1696 }
1697 else
1698 error (_("Bad GNAT array descriptor"));
1699
1700 return p_bounds;
1701 }
14f9c5c9
AS
1702 else
1703 return NULL;
1704}
1705
4c4b4cd2
PH
1706/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1707 position of the field containing the address of the bounds data. */
1708
14f9c5c9 1709static int
d2e4a39e 1710fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1711{
1712 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1713}
1714
1715/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1716 size of the field containing the address of the bounds data. */
1717
14f9c5c9 1718static int
d2e4a39e 1719fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1720{
1721 type = desc_base_type (type);
1722
d2e4a39e 1723 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1724 return TYPE_FIELD_BITSIZE (type, 1);
1725 else
61ee279c 1726 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1727}
1728
4c4b4cd2 1729/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1730 pointer to one, the type of its array data (a array-with-no-bounds type);
1731 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1732 data. */
4c4b4cd2 1733
d2e4a39e 1734static struct type *
556bdfd4 1735desc_data_target_type (struct type *type)
14f9c5c9
AS
1736{
1737 type = desc_base_type (type);
1738
4c4b4cd2 1739 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1740 if (is_thin_pntr (type))
556bdfd4 1741 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1742 else if (is_thick_pntr (type))
556bdfd4
UW
1743 {
1744 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1745
1746 if (data_type
1747 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1748 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1749 }
1750
1751 return NULL;
14f9c5c9
AS
1752}
1753
1754/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1755 its array data. */
4c4b4cd2 1756
d2e4a39e
AS
1757static struct value *
1758desc_data (struct value *arr)
14f9c5c9 1759{
df407dfe 1760 struct type *type = value_type (arr);
5b4ee69b 1761
14f9c5c9
AS
1762 if (is_thin_pntr (type))
1763 return thin_data_pntr (arr);
1764 else if (is_thick_pntr (type))
d2e4a39e 1765 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1766 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1767 else
1768 return NULL;
1769}
1770
1771
1772/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1773 position of the field containing the address of the data. */
1774
14f9c5c9 1775static int
d2e4a39e 1776fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1777{
1778 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1779}
1780
1781/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1782 size of the field containing the address of the data. */
1783
14f9c5c9 1784static int
d2e4a39e 1785fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1786{
1787 type = desc_base_type (type);
1788
1789 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1790 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1791 else
14f9c5c9
AS
1792 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1793}
1794
4c4b4cd2 1795/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1796 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1797 bound, if WHICH is 1. The first bound is I=1. */
1798
d2e4a39e
AS
1799static struct value *
1800desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1801{
d2e4a39e 1802 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1803 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1804}
1805
1806/* If BOUNDS is an array-bounds structure type, return the bit position
1807 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
14f9c5c9 1810static int
d2e4a39e 1811desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1812{
d2e4a39e 1813 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1814}
1815
1816/* If BOUNDS is an array-bounds structure type, return the bit field size
1817 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1818 bound, if WHICH is 1. The first bound is I=1. */
1819
76a01679 1820static int
d2e4a39e 1821desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1822{
1823 type = desc_base_type (type);
1824
d2e4a39e
AS
1825 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1826 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1827 else
1828 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1829}
1830
1831/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1832 Ith bound (numbering from 1). Otherwise, NULL. */
1833
d2e4a39e
AS
1834static struct type *
1835desc_index_type (struct type *type, int i)
14f9c5c9
AS
1836{
1837 type = desc_base_type (type);
1838
1839 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1840 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1841 else
14f9c5c9
AS
1842 return NULL;
1843}
1844
4c4b4cd2
PH
1845/* The number of index positions in the array-bounds type TYPE.
1846 Return 0 if TYPE is NULL. */
1847
14f9c5c9 1848static int
d2e4a39e 1849desc_arity (struct type *type)
14f9c5c9
AS
1850{
1851 type = desc_base_type (type);
1852
1853 if (type != NULL)
1854 return TYPE_NFIELDS (type) / 2;
1855 return 0;
1856}
1857
4c4b4cd2
PH
1858/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1859 an array descriptor type (representing an unconstrained array
1860 type). */
1861
76a01679
JB
1862static int
1863ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1864{
1865 if (type == NULL)
1866 return 0;
61ee279c 1867 type = ada_check_typedef (type);
4c4b4cd2 1868 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1869 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1870}
1871
52ce6436 1872/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1873 * to one. */
52ce6436 1874
2c0b251b 1875static int
52ce6436
PH
1876ada_is_array_type (struct type *type)
1877{
1878 while (type != NULL
1879 && (TYPE_CODE (type) == TYPE_CODE_PTR
1880 || TYPE_CODE (type) == TYPE_CODE_REF))
1881 type = TYPE_TARGET_TYPE (type);
1882 return ada_is_direct_array_type (type);
1883}
1884
4c4b4cd2 1885/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1886
14f9c5c9 1887int
4c4b4cd2 1888ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1889{
1890 if (type == NULL)
1891 return 0;
61ee279c 1892 type = ada_check_typedef (type);
14f9c5c9 1893 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1894 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1895 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1896 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1897}
1898
4c4b4cd2
PH
1899/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1900
14f9c5c9 1901int
4c4b4cd2 1902ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1903{
556bdfd4 1904 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1905
1906 if (type == NULL)
1907 return 0;
61ee279c 1908 type = ada_check_typedef (type);
556bdfd4
UW
1909 return (data_type != NULL
1910 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1911 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1912}
1913
1914/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1915 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1916 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1917 is still needed. */
1918
14f9c5c9 1919int
ebf56fd3 1920ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1921{
d2e4a39e 1922 return
14f9c5c9
AS
1923 type != NULL
1924 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1925 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1926 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1927 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1928}
1929
1930
4c4b4cd2 1931/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1932 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1933 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1934 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1935 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1936 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1937 a descriptor. */
d2e4a39e
AS
1938struct type *
1939ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1940{
ad82864c
JB
1941 if (ada_is_constrained_packed_array_type (value_type (arr)))
1942 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1943
df407dfe
AC
1944 if (!ada_is_array_descriptor_type (value_type (arr)))
1945 return value_type (arr);
d2e4a39e
AS
1946
1947 if (!bounds)
ad82864c
JB
1948 {
1949 struct type *array_type =
1950 ada_check_typedef (desc_data_target_type (value_type (arr)));
1951
1952 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1953 TYPE_FIELD_BITSIZE (array_type, 0) =
1954 decode_packed_array_bitsize (value_type (arr));
1955
1956 return array_type;
1957 }
14f9c5c9
AS
1958 else
1959 {
d2e4a39e 1960 struct type *elt_type;
14f9c5c9 1961 int arity;
d2e4a39e 1962 struct value *descriptor;
14f9c5c9 1963
df407dfe
AC
1964 elt_type = ada_array_element_type (value_type (arr), -1);
1965 arity = ada_array_arity (value_type (arr));
14f9c5c9 1966
d2e4a39e 1967 if (elt_type == NULL || arity == 0)
df407dfe 1968 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1969
1970 descriptor = desc_bounds (arr);
d2e4a39e 1971 if (value_as_long (descriptor) == 0)
4c4b4cd2 1972 return NULL;
d2e4a39e 1973 while (arity > 0)
4c4b4cd2 1974 {
e9bb382b
UW
1975 struct type *range_type = alloc_type_copy (value_type (arr));
1976 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1977 struct value *low = desc_one_bound (descriptor, arity, 0);
1978 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1979
5b4ee69b 1980 arity -= 1;
0c9c3474
SA
1981 create_static_range_type (range_type, value_type (low),
1982 longest_to_int (value_as_long (low)),
1983 longest_to_int (value_as_long (high)));
4c4b4cd2 1984 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1985
1986 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1987 {
1988 /* We need to store the element packed bitsize, as well as
1989 recompute the array size, because it was previously
1990 computed based on the unpacked element size. */
1991 LONGEST lo = value_as_long (low);
1992 LONGEST hi = value_as_long (high);
1993
1994 TYPE_FIELD_BITSIZE (elt_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996 /* If the array has no element, then the size is already
1997 zero, and does not need to be recomputed. */
1998 if (lo < hi)
1999 {
2000 int array_bitsize =
2001 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2002
2003 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2004 }
2005 }
4c4b4cd2 2006 }
14f9c5c9
AS
2007
2008 return lookup_pointer_type (elt_type);
2009 }
2010}
2011
2012/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2013 Otherwise, returns either a standard GDB array with bounds set
2014 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2015 GDB array. Returns NULL if ARR is a null fat pointer. */
2016
d2e4a39e
AS
2017struct value *
2018ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2019{
df407dfe 2020 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2021 {
d2e4a39e 2022 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2023
14f9c5c9 2024 if (arrType == NULL)
4c4b4cd2 2025 return NULL;
14f9c5c9
AS
2026 return value_cast (arrType, value_copy (desc_data (arr)));
2027 }
ad82864c
JB
2028 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2029 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2030 else
2031 return arr;
2032}
2033
2034/* If ARR does not represent an array, returns ARR unchanged.
2035 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2036 be ARR itself if it already is in the proper form). */
2037
720d1a40 2038struct value *
d2e4a39e 2039ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2040{
df407dfe 2041 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2042 {
d2e4a39e 2043 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2044
14f9c5c9 2045 if (arrVal == NULL)
323e0a4a 2046 error (_("Bounds unavailable for null array pointer."));
529cad9c 2047 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2048 return value_ind (arrVal);
2049 }
ad82864c
JB
2050 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2051 return decode_constrained_packed_array (arr);
d2e4a39e 2052 else
14f9c5c9
AS
2053 return arr;
2054}
2055
2056/* If TYPE represents a GNAT array type, return it translated to an
2057 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2058 packing). For other types, is the identity. */
2059
d2e4a39e
AS
2060struct type *
2061ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2062{
ad82864c
JB
2063 if (ada_is_constrained_packed_array_type (type))
2064 return decode_constrained_packed_array_type (type);
17280b9f
UW
2065
2066 if (ada_is_array_descriptor_type (type))
556bdfd4 2067 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2068
2069 return type;
14f9c5c9
AS
2070}
2071
4c4b4cd2
PH
2072/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2073
ad82864c
JB
2074static int
2075ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2076{
2077 if (type == NULL)
2078 return 0;
4c4b4cd2 2079 type = desc_base_type (type);
61ee279c 2080 type = ada_check_typedef (type);
d2e4a39e 2081 return
14f9c5c9
AS
2082 ada_type_name (type) != NULL
2083 && strstr (ada_type_name (type), "___XP") != NULL;
2084}
2085
ad82864c
JB
2086/* Non-zero iff TYPE represents a standard GNAT constrained
2087 packed-array type. */
2088
2089int
2090ada_is_constrained_packed_array_type (struct type *type)
2091{
2092 return ada_is_packed_array_type (type)
2093 && !ada_is_array_descriptor_type (type);
2094}
2095
2096/* Non-zero iff TYPE represents an array descriptor for a
2097 unconstrained packed-array type. */
2098
2099static int
2100ada_is_unconstrained_packed_array_type (struct type *type)
2101{
2102 return ada_is_packed_array_type (type)
2103 && ada_is_array_descriptor_type (type);
2104}
2105
2106/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2107 return the size of its elements in bits. */
2108
2109static long
2110decode_packed_array_bitsize (struct type *type)
2111{
0d5cff50
DE
2112 const char *raw_name;
2113 const char *tail;
ad82864c
JB
2114 long bits;
2115
720d1a40
JB
2116 /* Access to arrays implemented as fat pointers are encoded as a typedef
2117 of the fat pointer type. We need the name of the fat pointer type
2118 to do the decoding, so strip the typedef layer. */
2119 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2120 type = ada_typedef_target_type (type);
2121
2122 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2123 if (!raw_name)
2124 raw_name = ada_type_name (desc_base_type (type));
2125
2126 if (!raw_name)
2127 return 0;
2128
2129 tail = strstr (raw_name, "___XP");
720d1a40 2130 gdb_assert (tail != NULL);
ad82864c
JB
2131
2132 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2133 {
2134 lim_warning
2135 (_("could not understand bit size information on packed array"));
2136 return 0;
2137 }
2138
2139 return bits;
2140}
2141
14f9c5c9
AS
2142/* Given that TYPE is a standard GDB array type with all bounds filled
2143 in, and that the element size of its ultimate scalar constituents
2144 (that is, either its elements, or, if it is an array of arrays, its
2145 elements' elements, etc.) is *ELT_BITS, return an identical type,
2146 but with the bit sizes of its elements (and those of any
2147 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2148 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2149 in bits. */
2150
d2e4a39e 2151static struct type *
ad82864c 2152constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2153{
d2e4a39e
AS
2154 struct type *new_elt_type;
2155 struct type *new_type;
99b1c762
JB
2156 struct type *index_type_desc;
2157 struct type *index_type;
14f9c5c9
AS
2158 LONGEST low_bound, high_bound;
2159
61ee279c 2160 type = ada_check_typedef (type);
14f9c5c9
AS
2161 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2162 return type;
2163
99b1c762
JB
2164 index_type_desc = ada_find_parallel_type (type, "___XA");
2165 if (index_type_desc)
2166 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2167 NULL);
2168 else
2169 index_type = TYPE_INDEX_TYPE (type);
2170
e9bb382b 2171 new_type = alloc_type_copy (type);
ad82864c
JB
2172 new_elt_type =
2173 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2174 elt_bits);
99b1c762 2175 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2176 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2177 TYPE_NAME (new_type) = ada_type_name (type);
2178
99b1c762 2179 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2180 low_bound = high_bound = 0;
2181 if (high_bound < low_bound)
2182 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2183 else
14f9c5c9
AS
2184 {
2185 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2186 TYPE_LENGTH (new_type) =
4c4b4cd2 2187 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2188 }
2189
876cecd0 2190 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2191 return new_type;
2192}
2193
ad82864c
JB
2194/* The array type encoded by TYPE, where
2195 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2196
d2e4a39e 2197static struct type *
ad82864c 2198decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2199{
0d5cff50 2200 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2201 char *name;
0d5cff50 2202 const char *tail;
d2e4a39e 2203 struct type *shadow_type;
14f9c5c9 2204 long bits;
14f9c5c9 2205
727e3d2e
JB
2206 if (!raw_name)
2207 raw_name = ada_type_name (desc_base_type (type));
2208
2209 if (!raw_name)
2210 return NULL;
2211
2212 name = (char *) alloca (strlen (raw_name) + 1);
2213 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2214 type = desc_base_type (type);
2215
14f9c5c9
AS
2216 memcpy (name, raw_name, tail - raw_name);
2217 name[tail - raw_name] = '\000';
2218
b4ba55a1
JB
2219 shadow_type = ada_find_parallel_type_with_name (type, name);
2220
2221 if (shadow_type == NULL)
14f9c5c9 2222 {
323e0a4a 2223 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2224 return NULL;
2225 }
cb249c71 2226 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2227
2228 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2229 {
0963b4bd
MS
2230 lim_warning (_("could not understand bounds "
2231 "information on packed array"));
14f9c5c9
AS
2232 return NULL;
2233 }
d2e4a39e 2234
ad82864c
JB
2235 bits = decode_packed_array_bitsize (type);
2236 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2237}
2238
ad82864c
JB
2239/* Given that ARR is a struct value *indicating a GNAT constrained packed
2240 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2241 standard GDB array type except that the BITSIZEs of the array
2242 target types are set to the number of bits in each element, and the
4c4b4cd2 2243 type length is set appropriately. */
14f9c5c9 2244
d2e4a39e 2245static struct value *
ad82864c 2246decode_constrained_packed_array (struct value *arr)
14f9c5c9 2247{
4c4b4cd2 2248 struct type *type;
14f9c5c9 2249
11aa919a
PMR
2250 /* If our value is a pointer, then dereference it. Likewise if
2251 the value is a reference. Make sure that this operation does not
2252 cause the target type to be fixed, as this would indirectly cause
2253 this array to be decoded. The rest of the routine assumes that
2254 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2255 and "value_ind" routines to perform the dereferencing, as opposed
2256 to using "ada_coerce_ref" or "ada_value_ind". */
2257 arr = coerce_ref (arr);
828292f2 2258 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2259 arr = value_ind (arr);
4c4b4cd2 2260
ad82864c 2261 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2262 if (type == NULL)
2263 {
323e0a4a 2264 error (_("can't unpack array"));
14f9c5c9
AS
2265 return NULL;
2266 }
61ee279c 2267
50810684 2268 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2269 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2270 {
2271 /* This is a (right-justified) modular type representing a packed
2272 array with no wrapper. In order to interpret the value through
2273 the (left-justified) packed array type we just built, we must
2274 first left-justify it. */
2275 int bit_size, bit_pos;
2276 ULONGEST mod;
2277
df407dfe 2278 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2279 bit_size = 0;
2280 while (mod > 0)
2281 {
2282 bit_size += 1;
2283 mod >>= 1;
2284 }
df407dfe 2285 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2286 arr = ada_value_primitive_packed_val (arr, NULL,
2287 bit_pos / HOST_CHAR_BIT,
2288 bit_pos % HOST_CHAR_BIT,
2289 bit_size,
2290 type);
2291 }
2292
4c4b4cd2 2293 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2294}
2295
2296
2297/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2298 given in IND. ARR must be a simple array. */
14f9c5c9 2299
d2e4a39e
AS
2300static struct value *
2301value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2302{
2303 int i;
2304 int bits, elt_off, bit_off;
2305 long elt_total_bit_offset;
d2e4a39e
AS
2306 struct type *elt_type;
2307 struct value *v;
14f9c5c9
AS
2308
2309 bits = 0;
2310 elt_total_bit_offset = 0;
df407dfe 2311 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2312 for (i = 0; i < arity; i += 1)
14f9c5c9 2313 {
d2e4a39e 2314 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2315 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2316 error
0963b4bd
MS
2317 (_("attempt to do packed indexing of "
2318 "something other than a packed array"));
14f9c5c9 2319 else
4c4b4cd2
PH
2320 {
2321 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2322 LONGEST lowerbound, upperbound;
2323 LONGEST idx;
2324
2325 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2326 {
323e0a4a 2327 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2328 lowerbound = upperbound = 0;
2329 }
2330
3cb382c9 2331 idx = pos_atr (ind[i]);
4c4b4cd2 2332 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2333 lim_warning (_("packed array index %ld out of bounds"),
2334 (long) idx);
4c4b4cd2
PH
2335 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2336 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2337 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2338 }
14f9c5c9
AS
2339 }
2340 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2341 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2342
2343 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2344 bits, elt_type);
14f9c5c9
AS
2345 return v;
2346}
2347
4c4b4cd2 2348/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2349
2350static int
d2e4a39e 2351has_negatives (struct type *type)
14f9c5c9 2352{
d2e4a39e
AS
2353 switch (TYPE_CODE (type))
2354 {
2355 default:
2356 return 0;
2357 case TYPE_CODE_INT:
2358 return !TYPE_UNSIGNED (type);
2359 case TYPE_CODE_RANGE:
2360 return TYPE_LOW_BOUND (type) < 0;
2361 }
14f9c5c9 2362}
d2e4a39e 2363
14f9c5c9
AS
2364
2365/* Create a new value of type TYPE from the contents of OBJ starting
2366 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2367 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2368 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2369 VALADDR is ignored unless OBJ is NULL, in which case,
2370 VALADDR+OFFSET must address the start of storage containing the
2371 packed value. The value returned in this case is never an lval.
2372 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2373
d2e4a39e 2374struct value *
fc1a4b47 2375ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2376 long offset, int bit_offset, int bit_size,
4c4b4cd2 2377 struct type *type)
14f9c5c9 2378{
d2e4a39e 2379 struct value *v;
4c4b4cd2
PH
2380 int src, /* Index into the source area */
2381 targ, /* Index into the target area */
2382 srcBitsLeft, /* Number of source bits left to move */
2383 nsrc, ntarg, /* Number of source and target bytes */
2384 unusedLS, /* Number of bits in next significant
2385 byte of source that are unused */
2386 accumSize; /* Number of meaningful bits in accum */
2387 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2388 unsigned char *unpacked;
4c4b4cd2 2389 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2390 unsigned char sign;
2391 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2392 /* Transmit bytes from least to most significant; delta is the direction
2393 the indices move. */
50810684 2394 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2395
61ee279c 2396 type = ada_check_typedef (type);
14f9c5c9
AS
2397
2398 if (obj == NULL)
2399 {
2400 v = allocate_value (type);
d2e4a39e 2401 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2402 }
9214ee5f 2403 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2404 {
53ba8333 2405 v = value_at (type, value_address (obj));
9f1f738a 2406 type = value_type (v);
d2e4a39e 2407 bytes = (unsigned char *) alloca (len);
53ba8333 2408 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2409 }
d2e4a39e 2410 else
14f9c5c9
AS
2411 {
2412 v = allocate_value (type);
0fd88904 2413 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2414 }
d2e4a39e
AS
2415
2416 if (obj != NULL)
14f9c5c9 2417 {
53ba8333 2418 long new_offset = offset;
5b4ee69b 2419
74bcbdf3 2420 set_value_component_location (v, obj);
9bbda503
AC
2421 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2422 set_value_bitsize (v, bit_size);
df407dfe 2423 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2424 {
53ba8333 2425 ++new_offset;
9bbda503 2426 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2427 }
53ba8333
JB
2428 set_value_offset (v, new_offset);
2429
2430 /* Also set the parent value. This is needed when trying to
2431 assign a new value (in inferior memory). */
2432 set_value_parent (v, obj);
14f9c5c9
AS
2433 }
2434 else
9bbda503 2435 set_value_bitsize (v, bit_size);
0fd88904 2436 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2437
2438 srcBitsLeft = bit_size;
2439 nsrc = len;
2440 ntarg = TYPE_LENGTH (type);
2441 sign = 0;
2442 if (bit_size == 0)
2443 {
2444 memset (unpacked, 0, TYPE_LENGTH (type));
2445 return v;
2446 }
50810684 2447 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2448 {
d2e4a39e 2449 src = len - 1;
1265e4aa
JB
2450 if (has_negatives (type)
2451 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2452 sign = ~0;
d2e4a39e
AS
2453
2454 unusedLS =
4c4b4cd2
PH
2455 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2456 % HOST_CHAR_BIT;
14f9c5c9
AS
2457
2458 switch (TYPE_CODE (type))
4c4b4cd2
PH
2459 {
2460 case TYPE_CODE_ARRAY:
2461 case TYPE_CODE_UNION:
2462 case TYPE_CODE_STRUCT:
2463 /* Non-scalar values must be aligned at a byte boundary... */
2464 accumSize =
2465 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2466 /* ... And are placed at the beginning (most-significant) bytes
2467 of the target. */
529cad9c 2468 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2469 ntarg = targ + 1;
4c4b4cd2
PH
2470 break;
2471 default:
2472 accumSize = 0;
2473 targ = TYPE_LENGTH (type) - 1;
2474 break;
2475 }
14f9c5c9 2476 }
d2e4a39e 2477 else
14f9c5c9
AS
2478 {
2479 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2480
2481 src = targ = 0;
2482 unusedLS = bit_offset;
2483 accumSize = 0;
2484
d2e4a39e 2485 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2486 sign = ~0;
14f9c5c9 2487 }
d2e4a39e 2488
14f9c5c9
AS
2489 accum = 0;
2490 while (nsrc > 0)
2491 {
2492 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2493 part of the value. */
d2e4a39e 2494 unsigned int unusedMSMask =
4c4b4cd2
PH
2495 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2496 1;
2497 /* Sign-extend bits for this byte. */
14f9c5c9 2498 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2499
d2e4a39e 2500 accum |=
4c4b4cd2 2501 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2502 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2503 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2504 {
2505 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2506 accumSize -= HOST_CHAR_BIT;
2507 accum >>= HOST_CHAR_BIT;
2508 ntarg -= 1;
2509 targ += delta;
2510 }
14f9c5c9
AS
2511 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2512 unusedLS = 0;
2513 nsrc -= 1;
2514 src += delta;
2515 }
2516 while (ntarg > 0)
2517 {
2518 accum |= sign << accumSize;
2519 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
2522 ntarg -= 1;
2523 targ += delta;
2524 }
2525
2526 return v;
2527}
d2e4a39e 2528
14f9c5c9
AS
2529/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2530 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2531 not overlap. */
14f9c5c9 2532static void
fc1a4b47 2533move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2534 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2535{
2536 unsigned int accum, mask;
2537 int accum_bits, chunk_size;
2538
2539 target += targ_offset / HOST_CHAR_BIT;
2540 targ_offset %= HOST_CHAR_BIT;
2541 source += src_offset / HOST_CHAR_BIT;
2542 src_offset %= HOST_CHAR_BIT;
50810684 2543 if (bits_big_endian_p)
14f9c5c9
AS
2544 {
2545 accum = (unsigned char) *source;
2546 source += 1;
2547 accum_bits = HOST_CHAR_BIT - src_offset;
2548
d2e4a39e 2549 while (n > 0)
4c4b4cd2
PH
2550 {
2551 int unused_right;
5b4ee69b 2552
4c4b4cd2
PH
2553 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2554 accum_bits += HOST_CHAR_BIT;
2555 source += 1;
2556 chunk_size = HOST_CHAR_BIT - targ_offset;
2557 if (chunk_size > n)
2558 chunk_size = n;
2559 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2560 mask = ((1 << chunk_size) - 1) << unused_right;
2561 *target =
2562 (*target & ~mask)
2563 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2564 n -= chunk_size;
2565 accum_bits -= chunk_size;
2566 target += 1;
2567 targ_offset = 0;
2568 }
14f9c5c9
AS
2569 }
2570 else
2571 {
2572 accum = (unsigned char) *source >> src_offset;
2573 source += 1;
2574 accum_bits = HOST_CHAR_BIT - src_offset;
2575
d2e4a39e 2576 while (n > 0)
4c4b4cd2
PH
2577 {
2578 accum = accum + ((unsigned char) *source << accum_bits);
2579 accum_bits += HOST_CHAR_BIT;
2580 source += 1;
2581 chunk_size = HOST_CHAR_BIT - targ_offset;
2582 if (chunk_size > n)
2583 chunk_size = n;
2584 mask = ((1 << chunk_size) - 1) << targ_offset;
2585 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2586 n -= chunk_size;
2587 accum_bits -= chunk_size;
2588 accum >>= chunk_size;
2589 target += 1;
2590 targ_offset = 0;
2591 }
14f9c5c9
AS
2592 }
2593}
2594
14f9c5c9
AS
2595/* Store the contents of FROMVAL into the location of TOVAL.
2596 Return a new value with the location of TOVAL and contents of
2597 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2598 floating-point or non-scalar types. */
14f9c5c9 2599
d2e4a39e
AS
2600static struct value *
2601ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2602{
df407dfe
AC
2603 struct type *type = value_type (toval);
2604 int bits = value_bitsize (toval);
14f9c5c9 2605
52ce6436
PH
2606 toval = ada_coerce_ref (toval);
2607 fromval = ada_coerce_ref (fromval);
2608
2609 if (ada_is_direct_array_type (value_type (toval)))
2610 toval = ada_coerce_to_simple_array (toval);
2611 if (ada_is_direct_array_type (value_type (fromval)))
2612 fromval = ada_coerce_to_simple_array (fromval);
2613
88e3b34b 2614 if (!deprecated_value_modifiable (toval))
323e0a4a 2615 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2616
d2e4a39e 2617 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2618 && bits > 0
d2e4a39e 2619 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2620 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2621 {
df407dfe
AC
2622 int len = (value_bitpos (toval)
2623 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2624 int from_size;
948f8e3d 2625 gdb_byte *buffer = alloca (len);
d2e4a39e 2626 struct value *val;
42ae5230 2627 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2628
2629 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2630 fromval = value_cast (type, fromval);
14f9c5c9 2631
52ce6436 2632 read_memory (to_addr, buffer, len);
aced2898
PH
2633 from_size = value_bitsize (fromval);
2634 if (from_size == 0)
2635 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2636 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2637 move_bits (buffer, value_bitpos (toval),
50810684 2638 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2639 else
50810684
UW
2640 move_bits (buffer, value_bitpos (toval),
2641 value_contents (fromval), 0, bits, 0);
972daa01 2642 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2643
14f9c5c9 2644 val = value_copy (toval);
0fd88904 2645 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2646 TYPE_LENGTH (type));
04624583 2647 deprecated_set_value_type (val, type);
d2e4a39e 2648
14f9c5c9
AS
2649 return val;
2650 }
2651
2652 return value_assign (toval, fromval);
2653}
2654
2655
52ce6436
PH
2656/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2657 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2658 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2659 * COMPONENT, and not the inferior's memory. The current contents
2660 * of COMPONENT are ignored. */
2661static void
2662value_assign_to_component (struct value *container, struct value *component,
2663 struct value *val)
2664{
2665 LONGEST offset_in_container =
42ae5230 2666 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2667 int bit_offset_in_container =
2668 value_bitpos (component) - value_bitpos (container);
2669 int bits;
2670
2671 val = value_cast (value_type (component), val);
2672
2673 if (value_bitsize (component) == 0)
2674 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2675 else
2676 bits = value_bitsize (component);
2677
50810684 2678 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2679 move_bits (value_contents_writeable (container) + offset_in_container,
2680 value_bitpos (container) + bit_offset_in_container,
2681 value_contents (val),
2682 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2683 bits, 1);
52ce6436
PH
2684 else
2685 move_bits (value_contents_writeable (container) + offset_in_container,
2686 value_bitpos (container) + bit_offset_in_container,
50810684 2687 value_contents (val), 0, bits, 0);
52ce6436
PH
2688}
2689
4c4b4cd2
PH
2690/* The value of the element of array ARR at the ARITY indices given in IND.
2691 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2692 thereto. */
2693
d2e4a39e
AS
2694struct value *
2695ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2696{
2697 int k;
d2e4a39e
AS
2698 struct value *elt;
2699 struct type *elt_type;
14f9c5c9
AS
2700
2701 elt = ada_coerce_to_simple_array (arr);
2702
df407dfe 2703 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2704 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2705 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2706 return value_subscript_packed (elt, arity, ind);
2707
2708 for (k = 0; k < arity; k += 1)
2709 {
2710 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2711 error (_("too many subscripts (%d expected)"), k);
2497b498 2712 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2713 }
2714 return elt;
2715}
2716
deede10c
JB
2717/* Assuming ARR is a pointer to a GDB array, the value of the element
2718 of *ARR at the ARITY indices given in IND.
2719 Does not read the entire array into memory. */
14f9c5c9 2720
2c0b251b 2721static struct value *
deede10c 2722ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2723{
2724 int k;
deede10c
JB
2725 struct type *type
2726 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
14f9c5c9
AS
2727
2728 for (k = 0; k < arity; k += 1)
2729 {
2730 LONGEST lwb, upb;
14f9c5c9
AS
2731
2732 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2733 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2734 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2735 value_copy (arr));
14f9c5c9 2736 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2737 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2738 type = TYPE_TARGET_TYPE (type);
2739 }
2740
2741 return value_ind (arr);
2742}
2743
0b5d8877 2744/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2745 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2746 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2747 per Ada rules. */
0b5d8877 2748static struct value *
f5938064
JG
2749ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2750 int low, int high)
0b5d8877 2751{
b0dd7688 2752 struct type *type0 = ada_check_typedef (type);
6c038f32 2753 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2754 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2755 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2756 struct type *index_type
2757 = create_static_range_type (NULL,
2758 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2759 low, high);
6c038f32 2760 struct type *slice_type =
b0dd7688 2761 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2762
f5938064 2763 return value_at_lazy (slice_type, base);
0b5d8877
PH
2764}
2765
2766
2767static struct value *
2768ada_value_slice (struct value *array, int low, int high)
2769{
b0dd7688 2770 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2771 struct type *index_type
2772 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2773 struct type *slice_type =
0b5d8877 2774 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2775
6c038f32 2776 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2777}
2778
14f9c5c9
AS
2779/* If type is a record type in the form of a standard GNAT array
2780 descriptor, returns the number of dimensions for type. If arr is a
2781 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2782 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2783
2784int
d2e4a39e 2785ada_array_arity (struct type *type)
14f9c5c9
AS
2786{
2787 int arity;
2788
2789 if (type == NULL)
2790 return 0;
2791
2792 type = desc_base_type (type);
2793
2794 arity = 0;
d2e4a39e 2795 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2796 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2797 else
2798 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2799 {
4c4b4cd2 2800 arity += 1;
61ee279c 2801 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2802 }
d2e4a39e 2803
14f9c5c9
AS
2804 return arity;
2805}
2806
2807/* If TYPE is a record type in the form of a standard GNAT array
2808 descriptor or a simple array type, returns the element type for
2809 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2810 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2811
d2e4a39e
AS
2812struct type *
2813ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2814{
2815 type = desc_base_type (type);
2816
d2e4a39e 2817 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2818 {
2819 int k;
d2e4a39e 2820 struct type *p_array_type;
14f9c5c9 2821
556bdfd4 2822 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2823
2824 k = ada_array_arity (type);
2825 if (k == 0)
4c4b4cd2 2826 return NULL;
d2e4a39e 2827
4c4b4cd2 2828 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2829 if (nindices >= 0 && k > nindices)
4c4b4cd2 2830 k = nindices;
d2e4a39e 2831 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2832 {
61ee279c 2833 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2834 k -= 1;
2835 }
14f9c5c9
AS
2836 return p_array_type;
2837 }
2838 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2839 {
2840 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2841 {
2842 type = TYPE_TARGET_TYPE (type);
2843 nindices -= 1;
2844 }
14f9c5c9
AS
2845 return type;
2846 }
2847
2848 return NULL;
2849}
2850
4c4b4cd2 2851/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2852 Does not examine memory. Throws an error if N is invalid or TYPE
2853 is not an array type. NAME is the name of the Ada attribute being
2854 evaluated ('range, 'first, 'last, or 'length); it is used in building
2855 the error message. */
14f9c5c9 2856
1eea4ebd
UW
2857static struct type *
2858ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2859{
4c4b4cd2
PH
2860 struct type *result_type;
2861
14f9c5c9
AS
2862 type = desc_base_type (type);
2863
1eea4ebd
UW
2864 if (n < 0 || n > ada_array_arity (type))
2865 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2866
4c4b4cd2 2867 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2868 {
2869 int i;
2870
2871 for (i = 1; i < n; i += 1)
4c4b4cd2 2872 type = TYPE_TARGET_TYPE (type);
262452ec 2873 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2874 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2875 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2876 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2877 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2878 result_type = NULL;
14f9c5c9 2879 }
d2e4a39e 2880 else
1eea4ebd
UW
2881 {
2882 result_type = desc_index_type (desc_bounds_type (type), n);
2883 if (result_type == NULL)
2884 error (_("attempt to take bound of something that is not an array"));
2885 }
2886
2887 return result_type;
14f9c5c9
AS
2888}
2889
2890/* Given that arr is an array type, returns the lower bound of the
2891 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2892 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2893 array-descriptor type. It works for other arrays with bounds supplied
2894 by run-time quantities other than discriminants. */
14f9c5c9 2895
abb68b3e 2896static LONGEST
fb5e3d5c 2897ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2898{
8a48ac95 2899 struct type *type, *index_type_desc, *index_type;
1ce677a4 2900 int i;
262452ec
JK
2901
2902 gdb_assert (which == 0 || which == 1);
14f9c5c9 2903
ad82864c
JB
2904 if (ada_is_constrained_packed_array_type (arr_type))
2905 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2906
4c4b4cd2 2907 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2908 return (LONGEST) - which;
14f9c5c9
AS
2909
2910 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2911 type = TYPE_TARGET_TYPE (arr_type);
2912 else
2913 type = arr_type;
2914
2915 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2916 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2917 if (index_type_desc != NULL)
28c85d6c
JB
2918 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2919 NULL);
262452ec 2920 else
8a48ac95
JB
2921 {
2922 struct type *elt_type = check_typedef (type);
2923
2924 for (i = 1; i < n; i++)
2925 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2926
2927 index_type = TYPE_INDEX_TYPE (elt_type);
2928 }
262452ec 2929
43bbcdc2
PH
2930 return
2931 (LONGEST) (which == 0
2932 ? ada_discrete_type_low_bound (index_type)
2933 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2934}
2935
2936/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2937 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2938 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2939 supplied by run-time quantities other than discriminants. */
14f9c5c9 2940
1eea4ebd 2941static LONGEST
4dc81987 2942ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2943{
eb479039
JB
2944 struct type *arr_type;
2945
2946 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2947 arr = value_ind (arr);
2948 arr_type = value_enclosing_type (arr);
14f9c5c9 2949
ad82864c
JB
2950 if (ada_is_constrained_packed_array_type (arr_type))
2951 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2952 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2953 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2954 else
1eea4ebd 2955 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2956}
2957
2958/* Given that arr is an array value, returns the length of the
2959 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2960 supplied by run-time quantities other than discriminants.
2961 Does not work for arrays indexed by enumeration types with representation
2962 clauses at the moment. */
14f9c5c9 2963
1eea4ebd 2964static LONGEST
d2e4a39e 2965ada_array_length (struct value *arr, int n)
14f9c5c9 2966{
eb479039
JB
2967 struct type *arr_type;
2968
2969 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2970 arr = value_ind (arr);
2971 arr_type = value_enclosing_type (arr);
14f9c5c9 2972
ad82864c
JB
2973 if (ada_is_constrained_packed_array_type (arr_type))
2974 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2975
4c4b4cd2 2976 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2977 return (ada_array_bound_from_type (arr_type, n, 1)
2978 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2979 else
1eea4ebd
UW
2980 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2981 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2982}
2983
2984/* An empty array whose type is that of ARR_TYPE (an array type),
2985 with bounds LOW to LOW-1. */
2986
2987static struct value *
2988empty_array (struct type *arr_type, int low)
2989{
b0dd7688 2990 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
2991 struct type *index_type
2992 = create_static_range_type
2993 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 2994 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2995
0b5d8877 2996 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2997}
14f9c5c9 2998\f
d2e4a39e 2999
4c4b4cd2 3000 /* Name resolution */
14f9c5c9 3001
4c4b4cd2
PH
3002/* The "decoded" name for the user-definable Ada operator corresponding
3003 to OP. */
14f9c5c9 3004
d2e4a39e 3005static const char *
4c4b4cd2 3006ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3007{
3008 int i;
3009
4c4b4cd2 3010 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3011 {
3012 if (ada_opname_table[i].op == op)
4c4b4cd2 3013 return ada_opname_table[i].decoded;
14f9c5c9 3014 }
323e0a4a 3015 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3016}
3017
3018
4c4b4cd2
PH
3019/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3020 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3021 undefined namespace) and converts operators that are
3022 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3023 non-null, it provides a preferred result type [at the moment, only
3024 type void has any effect---causing procedures to be preferred over
3025 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3026 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3027
4c4b4cd2
PH
3028static void
3029resolve (struct expression **expp, int void_context_p)
14f9c5c9 3030{
30b15541
UW
3031 struct type *context_type = NULL;
3032 int pc = 0;
3033
3034 if (void_context_p)
3035 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3036
3037 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3038}
3039
4c4b4cd2
PH
3040/* Resolve the operator of the subexpression beginning at
3041 position *POS of *EXPP. "Resolving" consists of replacing
3042 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3043 with their resolutions, replacing built-in operators with
3044 function calls to user-defined operators, where appropriate, and,
3045 when DEPROCEDURE_P is non-zero, converting function-valued variables
3046 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3047 are as in ada_resolve, above. */
14f9c5c9 3048
d2e4a39e 3049static struct value *
4c4b4cd2 3050resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3051 struct type *context_type)
14f9c5c9
AS
3052{
3053 int pc = *pos;
3054 int i;
4c4b4cd2 3055 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3056 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3057 struct value **argvec; /* Vector of operand types (alloca'ed). */
3058 int nargs; /* Number of operands. */
52ce6436 3059 int oplen;
14f9c5c9
AS
3060
3061 argvec = NULL;
3062 nargs = 0;
3063 exp = *expp;
3064
52ce6436
PH
3065 /* Pass one: resolve operands, saving their types and updating *pos,
3066 if needed. */
14f9c5c9
AS
3067 switch (op)
3068 {
4c4b4cd2
PH
3069 case OP_FUNCALL:
3070 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3071 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3072 *pos += 7;
4c4b4cd2
PH
3073 else
3074 {
3075 *pos += 3;
3076 resolve_subexp (expp, pos, 0, NULL);
3077 }
3078 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3079 break;
3080
14f9c5c9 3081 case UNOP_ADDR:
4c4b4cd2
PH
3082 *pos += 1;
3083 resolve_subexp (expp, pos, 0, NULL);
3084 break;
3085
52ce6436
PH
3086 case UNOP_QUAL:
3087 *pos += 3;
17466c1a 3088 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3089 break;
3090
52ce6436 3091 case OP_ATR_MODULUS:
4c4b4cd2
PH
3092 case OP_ATR_SIZE:
3093 case OP_ATR_TAG:
4c4b4cd2
PH
3094 case OP_ATR_FIRST:
3095 case OP_ATR_LAST:
3096 case OP_ATR_LENGTH:
3097 case OP_ATR_POS:
3098 case OP_ATR_VAL:
4c4b4cd2
PH
3099 case OP_ATR_MIN:
3100 case OP_ATR_MAX:
52ce6436
PH
3101 case TERNOP_IN_RANGE:
3102 case BINOP_IN_BOUNDS:
3103 case UNOP_IN_RANGE:
3104 case OP_AGGREGATE:
3105 case OP_OTHERS:
3106 case OP_CHOICES:
3107 case OP_POSITIONAL:
3108 case OP_DISCRETE_RANGE:
3109 case OP_NAME:
3110 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3111 *pos += oplen;
14f9c5c9
AS
3112 break;
3113
3114 case BINOP_ASSIGN:
3115 {
4c4b4cd2
PH
3116 struct value *arg1;
3117
3118 *pos += 1;
3119 arg1 = resolve_subexp (expp, pos, 0, NULL);
3120 if (arg1 == NULL)
3121 resolve_subexp (expp, pos, 1, NULL);
3122 else
df407dfe 3123 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3124 break;
14f9c5c9
AS
3125 }
3126
4c4b4cd2 3127 case UNOP_CAST:
4c4b4cd2
PH
3128 *pos += 3;
3129 nargs = 1;
3130 break;
14f9c5c9 3131
4c4b4cd2
PH
3132 case BINOP_ADD:
3133 case BINOP_SUB:
3134 case BINOP_MUL:
3135 case BINOP_DIV:
3136 case BINOP_REM:
3137 case BINOP_MOD:
3138 case BINOP_EXP:
3139 case BINOP_CONCAT:
3140 case BINOP_LOGICAL_AND:
3141 case BINOP_LOGICAL_OR:
3142 case BINOP_BITWISE_AND:
3143 case BINOP_BITWISE_IOR:
3144 case BINOP_BITWISE_XOR:
14f9c5c9 3145
4c4b4cd2
PH
3146 case BINOP_EQUAL:
3147 case BINOP_NOTEQUAL:
3148 case BINOP_LESS:
3149 case BINOP_GTR:
3150 case BINOP_LEQ:
3151 case BINOP_GEQ:
14f9c5c9 3152
4c4b4cd2
PH
3153 case BINOP_REPEAT:
3154 case BINOP_SUBSCRIPT:
3155 case BINOP_COMMA:
40c8aaa9
JB
3156 *pos += 1;
3157 nargs = 2;
3158 break;
14f9c5c9 3159
4c4b4cd2
PH
3160 case UNOP_NEG:
3161 case UNOP_PLUS:
3162 case UNOP_LOGICAL_NOT:
3163 case UNOP_ABS:
3164 case UNOP_IND:
3165 *pos += 1;
3166 nargs = 1;
3167 break;
14f9c5c9 3168
4c4b4cd2
PH
3169 case OP_LONG:
3170 case OP_DOUBLE:
3171 case OP_VAR_VALUE:
3172 *pos += 4;
3173 break;
14f9c5c9 3174
4c4b4cd2
PH
3175 case OP_TYPE:
3176 case OP_BOOL:
3177 case OP_LAST:
4c4b4cd2
PH
3178 case OP_INTERNALVAR:
3179 *pos += 3;
3180 break;
14f9c5c9 3181
4c4b4cd2
PH
3182 case UNOP_MEMVAL:
3183 *pos += 3;
3184 nargs = 1;
3185 break;
3186
67f3407f
DJ
3187 case OP_REGISTER:
3188 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3189 break;
3190
4c4b4cd2
PH
3191 case STRUCTOP_STRUCT:
3192 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3193 nargs = 1;
3194 break;
3195
4c4b4cd2 3196 case TERNOP_SLICE:
4c4b4cd2
PH
3197 *pos += 1;
3198 nargs = 3;
3199 break;
3200
52ce6436 3201 case OP_STRING:
14f9c5c9 3202 break;
4c4b4cd2
PH
3203
3204 default:
323e0a4a 3205 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3206 }
3207
76a01679 3208 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3209 for (i = 0; i < nargs; i += 1)
3210 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3211 argvec[i] = NULL;
3212 exp = *expp;
3213
3214 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3215 switch (op)
3216 {
3217 default:
3218 break;
3219
14f9c5c9 3220 case OP_VAR_VALUE:
4c4b4cd2 3221 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3222 {
3223 struct ada_symbol_info *candidates;
3224 int n_candidates;
3225
3226 n_candidates =
3227 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3228 (exp->elts[pc + 2].symbol),
3229 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3230 &candidates);
76a01679
JB
3231
3232 if (n_candidates > 1)
3233 {
3234 /* Types tend to get re-introduced locally, so if there
3235 are any local symbols that are not types, first filter
3236 out all types. */
3237 int j;
3238 for (j = 0; j < n_candidates; j += 1)
3239 switch (SYMBOL_CLASS (candidates[j].sym))
3240 {
3241 case LOC_REGISTER:
3242 case LOC_ARG:
3243 case LOC_REF_ARG:
76a01679
JB
3244 case LOC_REGPARM_ADDR:
3245 case LOC_LOCAL:
76a01679 3246 case LOC_COMPUTED:
76a01679
JB
3247 goto FoundNonType;
3248 default:
3249 break;
3250 }
3251 FoundNonType:
3252 if (j < n_candidates)
3253 {
3254 j = 0;
3255 while (j < n_candidates)
3256 {
3257 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3258 {
3259 candidates[j] = candidates[n_candidates - 1];
3260 n_candidates -= 1;
3261 }
3262 else
3263 j += 1;
3264 }
3265 }
3266 }
3267
3268 if (n_candidates == 0)
323e0a4a 3269 error (_("No definition found for %s"),
76a01679
JB
3270 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3271 else if (n_candidates == 1)
3272 i = 0;
3273 else if (deprocedure_p
3274 && !is_nonfunction (candidates, n_candidates))
3275 {
06d5cf63
JB
3276 i = ada_resolve_function
3277 (candidates, n_candidates, NULL, 0,
3278 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3279 context_type);
76a01679 3280 if (i < 0)
323e0a4a 3281 error (_("Could not find a match for %s"),
76a01679
JB
3282 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3283 }
3284 else
3285 {
323e0a4a 3286 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3287 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3288 user_select_syms (candidates, n_candidates, 1);
3289 i = 0;
3290 }
3291
3292 exp->elts[pc + 1].block = candidates[i].block;
3293 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3294 if (innermost_block == NULL
3295 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3296 innermost_block = candidates[i].block;
3297 }
3298
3299 if (deprocedure_p
3300 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3301 == TYPE_CODE_FUNC))
3302 {
3303 replace_operator_with_call (expp, pc, 0, 0,
3304 exp->elts[pc + 2].symbol,
3305 exp->elts[pc + 1].block);
3306 exp = *expp;
3307 }
14f9c5c9
AS
3308 break;
3309
3310 case OP_FUNCALL:
3311 {
4c4b4cd2 3312 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3313 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3314 {
3315 struct ada_symbol_info *candidates;
3316 int n_candidates;
3317
3318 n_candidates =
76a01679
JB
3319 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3320 (exp->elts[pc + 5].symbol),
3321 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3322 &candidates);
4c4b4cd2
PH
3323 if (n_candidates == 1)
3324 i = 0;
3325 else
3326 {
06d5cf63
JB
3327 i = ada_resolve_function
3328 (candidates, n_candidates,
3329 argvec, nargs,
3330 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3331 context_type);
4c4b4cd2 3332 if (i < 0)
323e0a4a 3333 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3334 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3335 }
3336
3337 exp->elts[pc + 4].block = candidates[i].block;
3338 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3339 if (innermost_block == NULL
3340 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3341 innermost_block = candidates[i].block;
3342 }
14f9c5c9
AS
3343 }
3344 break;
3345 case BINOP_ADD:
3346 case BINOP_SUB:
3347 case BINOP_MUL:
3348 case BINOP_DIV:
3349 case BINOP_REM:
3350 case BINOP_MOD:
3351 case BINOP_CONCAT:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3355 case BINOP_EQUAL:
3356 case BINOP_NOTEQUAL:
3357 case BINOP_LESS:
3358 case BINOP_GTR:
3359 case BINOP_LEQ:
3360 case BINOP_GEQ:
3361 case BINOP_EXP:
3362 case UNOP_NEG:
3363 case UNOP_PLUS:
3364 case UNOP_LOGICAL_NOT:
3365 case UNOP_ABS:
3366 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3367 {
3368 struct ada_symbol_info *candidates;
3369 int n_candidates;
3370
3371 n_candidates =
3372 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3373 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3374 &candidates);
4c4b4cd2 3375 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3376 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3377 if (i < 0)
3378 break;
3379
76a01679
JB
3380 replace_operator_with_call (expp, pc, nargs, 1,
3381 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3382 exp = *expp;
3383 }
14f9c5c9 3384 break;
4c4b4cd2
PH
3385
3386 case OP_TYPE:
b3dbf008 3387 case OP_REGISTER:
4c4b4cd2 3388 return NULL;
14f9c5c9
AS
3389 }
3390
3391 *pos = pc;
3392 return evaluate_subexp_type (exp, pos);
3393}
3394
3395/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3396 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3397 a non-pointer. */
14f9c5c9 3398/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3399 liberal. */
14f9c5c9
AS
3400
3401static int
4dc81987 3402ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3403{
61ee279c
PH
3404 ftype = ada_check_typedef (ftype);
3405 atype = ada_check_typedef (atype);
14f9c5c9
AS
3406
3407 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3408 ftype = TYPE_TARGET_TYPE (ftype);
3409 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3410 atype = TYPE_TARGET_TYPE (atype);
3411
d2e4a39e 3412 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3413 {
3414 default:
5b3d5b7d 3415 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3416 case TYPE_CODE_PTR:
3417 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3418 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3419 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3420 else
1265e4aa
JB
3421 return (may_deref
3422 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3423 case TYPE_CODE_INT:
3424 case TYPE_CODE_ENUM:
3425 case TYPE_CODE_RANGE:
3426 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3427 {
3428 case TYPE_CODE_INT:
3429 case TYPE_CODE_ENUM:
3430 case TYPE_CODE_RANGE:
3431 return 1;
3432 default:
3433 return 0;
3434 }
14f9c5c9
AS
3435
3436 case TYPE_CODE_ARRAY:
d2e4a39e 3437 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3438 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3439
3440 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3441 if (ada_is_array_descriptor_type (ftype))
3442 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3443 || ada_is_array_descriptor_type (atype));
14f9c5c9 3444 else
4c4b4cd2
PH
3445 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3446 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3447
3448 case TYPE_CODE_UNION:
3449 case TYPE_CODE_FLT:
3450 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3451 }
3452}
3453
3454/* Return non-zero if the formals of FUNC "sufficiently match" the
3455 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3456 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3457 argument function. */
14f9c5c9
AS
3458
3459static int
d2e4a39e 3460ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3461{
3462 int i;
d2e4a39e 3463 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3464
1265e4aa
JB
3465 if (SYMBOL_CLASS (func) == LOC_CONST
3466 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3467 return (n_actuals == 0);
3468 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3469 return 0;
3470
3471 if (TYPE_NFIELDS (func_type) != n_actuals)
3472 return 0;
3473
3474 for (i = 0; i < n_actuals; i += 1)
3475 {
4c4b4cd2 3476 if (actuals[i] == NULL)
76a01679
JB
3477 return 0;
3478 else
3479 {
5b4ee69b
MS
3480 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3481 i));
df407dfe 3482 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3483
76a01679
JB
3484 if (!ada_type_match (ftype, atype, 1))
3485 return 0;
3486 }
14f9c5c9
AS
3487 }
3488 return 1;
3489}
3490
3491/* False iff function type FUNC_TYPE definitely does not produce a value
3492 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3493 FUNC_TYPE is not a valid function type with a non-null return type
3494 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3495
3496static int
d2e4a39e 3497return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3498{
d2e4a39e 3499 struct type *return_type;
14f9c5c9
AS
3500
3501 if (func_type == NULL)
3502 return 1;
3503
4c4b4cd2 3504 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3505 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3506 else
18af8284 3507 return_type = get_base_type (func_type);
14f9c5c9
AS
3508 if (return_type == NULL)
3509 return 1;
3510
18af8284 3511 context_type = get_base_type (context_type);
14f9c5c9
AS
3512
3513 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3514 return context_type == NULL || return_type == context_type;
3515 else if (context_type == NULL)
3516 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3517 else
3518 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3519}
3520
3521
4c4b4cd2 3522/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3523 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3524 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3525 that returns that type, then eliminate matches that don't. If
3526 CONTEXT_TYPE is void and there is at least one match that does not
3527 return void, eliminate all matches that do.
3528
14f9c5c9
AS
3529 Asks the user if there is more than one match remaining. Returns -1
3530 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3531 solely for messages. May re-arrange and modify SYMS in
3532 the process; the index returned is for the modified vector. */
14f9c5c9 3533
4c4b4cd2
PH
3534static int
3535ada_resolve_function (struct ada_symbol_info syms[],
3536 int nsyms, struct value **args, int nargs,
3537 const char *name, struct type *context_type)
14f9c5c9 3538{
30b15541 3539 int fallback;
14f9c5c9 3540 int k;
4c4b4cd2 3541 int m; /* Number of hits */
14f9c5c9 3542
d2e4a39e 3543 m = 0;
30b15541
UW
3544 /* In the first pass of the loop, we only accept functions matching
3545 context_type. If none are found, we add a second pass of the loop
3546 where every function is accepted. */
3547 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3548 {
3549 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3550 {
61ee279c 3551 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3552
3553 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3554 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3555 {
3556 syms[m] = syms[k];
3557 m += 1;
3558 }
3559 }
14f9c5c9
AS
3560 }
3561
3562 if (m == 0)
3563 return -1;
3564 else if (m > 1)
3565 {
323e0a4a 3566 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3567 user_select_syms (syms, m, 1);
14f9c5c9
AS
3568 return 0;
3569 }
3570 return 0;
3571}
3572
4c4b4cd2
PH
3573/* Returns true (non-zero) iff decoded name N0 should appear before N1
3574 in a listing of choices during disambiguation (see sort_choices, below).
3575 The idea is that overloadings of a subprogram name from the
3576 same package should sort in their source order. We settle for ordering
3577 such symbols by their trailing number (__N or $N). */
3578
14f9c5c9 3579static int
0d5cff50 3580encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3581{
3582 if (N1 == NULL)
3583 return 0;
3584 else if (N0 == NULL)
3585 return 1;
3586 else
3587 {
3588 int k0, k1;
5b4ee69b 3589
d2e4a39e 3590 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3591 ;
d2e4a39e 3592 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3593 ;
d2e4a39e 3594 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3595 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3596 {
3597 int n0, n1;
5b4ee69b 3598
4c4b4cd2
PH
3599 n0 = k0;
3600 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3601 n0 -= 1;
3602 n1 = k1;
3603 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3604 n1 -= 1;
3605 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3606 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3607 }
14f9c5c9
AS
3608 return (strcmp (N0, N1) < 0);
3609 }
3610}
d2e4a39e 3611
4c4b4cd2
PH
3612/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3613 encoded names. */
3614
d2e4a39e 3615static void
4c4b4cd2 3616sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3617{
4c4b4cd2 3618 int i;
5b4ee69b 3619
d2e4a39e 3620 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3621 {
4c4b4cd2 3622 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3623 int j;
3624
d2e4a39e 3625 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3626 {
3627 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3628 SYMBOL_LINKAGE_NAME (sym.sym)))
3629 break;
3630 syms[j + 1] = syms[j];
3631 }
d2e4a39e 3632 syms[j + 1] = sym;
14f9c5c9
AS
3633 }
3634}
3635
4c4b4cd2
PH
3636/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3637 by asking the user (if necessary), returning the number selected,
3638 and setting the first elements of SYMS items. Error if no symbols
3639 selected. */
14f9c5c9
AS
3640
3641/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3642 to be re-integrated one of these days. */
14f9c5c9
AS
3643
3644int
4c4b4cd2 3645user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3646{
3647 int i;
d2e4a39e 3648 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3649 int n_chosen;
3650 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3651 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3652
3653 if (max_results < 1)
323e0a4a 3654 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3655 if (nsyms <= 1)
3656 return nsyms;
3657
717d2f5a
JB
3658 if (select_mode == multiple_symbols_cancel)
3659 error (_("\
3660canceled because the command is ambiguous\n\
3661See set/show multiple-symbol."));
3662
3663 /* If select_mode is "all", then return all possible symbols.
3664 Only do that if more than one symbol can be selected, of course.
3665 Otherwise, display the menu as usual. */
3666 if (select_mode == multiple_symbols_all && max_results > 1)
3667 return nsyms;
3668
323e0a4a 3669 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3670 if (max_results > 1)
323e0a4a 3671 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3672
4c4b4cd2 3673 sort_choices (syms, nsyms);
14f9c5c9
AS
3674
3675 for (i = 0; i < nsyms; i += 1)
3676 {
4c4b4cd2
PH
3677 if (syms[i].sym == NULL)
3678 continue;
3679
3680 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3681 {
76a01679
JB
3682 struct symtab_and_line sal =
3683 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3684
323e0a4a
AC
3685 if (sal.symtab == NULL)
3686 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3687 i + first_choice,
3688 SYMBOL_PRINT_NAME (syms[i].sym),
3689 sal.line);
3690 else
3691 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3692 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3693 symtab_to_filename_for_display (sal.symtab),
3694 sal.line);
4c4b4cd2
PH
3695 continue;
3696 }
d2e4a39e 3697 else
4c4b4cd2
PH
3698 {
3699 int is_enumeral =
3700 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3701 && SYMBOL_TYPE (syms[i].sym) != NULL
3702 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3703 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3704
3705 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3706 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3707 i + first_choice,
3708 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3709 symtab_to_filename_for_display (symtab),
3710 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3711 else if (is_enumeral
3712 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3713 {
a3f17187 3714 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3715 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3716 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3717 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3718 SYMBOL_PRINT_NAME (syms[i].sym));
3719 }
3720 else if (symtab != NULL)
3721 printf_unfiltered (is_enumeral
323e0a4a
AC
3722 ? _("[%d] %s in %s (enumeral)\n")
3723 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3724 i + first_choice,
3725 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3726 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3727 else
3728 printf_unfiltered (is_enumeral
323e0a4a
AC
3729 ? _("[%d] %s (enumeral)\n")
3730 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3731 i + first_choice,
3732 SYMBOL_PRINT_NAME (syms[i].sym));
3733 }
14f9c5c9 3734 }
d2e4a39e 3735
14f9c5c9 3736 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3737 "overload-choice");
14f9c5c9
AS
3738
3739 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3740 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3741
3742 return n_chosen;
3743}
3744
3745/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3746 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3747 order in CHOICES[0 .. N-1], and return N.
3748
3749 The user types choices as a sequence of numbers on one line
3750 separated by blanks, encoding them as follows:
3751
4c4b4cd2 3752 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3753 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3754 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3755
4c4b4cd2 3756 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3757
3758 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3759 prompts (for use with the -f switch). */
14f9c5c9
AS
3760
3761int
d2e4a39e 3762get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3763 int is_all_choice, char *annotation_suffix)
14f9c5c9 3764{
d2e4a39e 3765 char *args;
0bcd0149 3766 char *prompt;
14f9c5c9
AS
3767 int n_chosen;
3768 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3769
14f9c5c9
AS
3770 prompt = getenv ("PS2");
3771 if (prompt == NULL)
0bcd0149 3772 prompt = "> ";
14f9c5c9 3773
0bcd0149 3774 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3775
14f9c5c9 3776 if (args == NULL)
323e0a4a 3777 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3778
3779 n_chosen = 0;
76a01679 3780
4c4b4cd2
PH
3781 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3782 order, as given in args. Choices are validated. */
14f9c5c9
AS
3783 while (1)
3784 {
d2e4a39e 3785 char *args2;
14f9c5c9
AS
3786 int choice, j;
3787
0fcd72ba 3788 args = skip_spaces (args);
14f9c5c9 3789 if (*args == '\0' && n_chosen == 0)
323e0a4a 3790 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3791 else if (*args == '\0')
4c4b4cd2 3792 break;
14f9c5c9
AS
3793
3794 choice = strtol (args, &args2, 10);
d2e4a39e 3795 if (args == args2 || choice < 0
4c4b4cd2 3796 || choice > n_choices + first_choice - 1)
323e0a4a 3797 error (_("Argument must be choice number"));
14f9c5c9
AS
3798 args = args2;
3799
d2e4a39e 3800 if (choice == 0)
323e0a4a 3801 error (_("cancelled"));
14f9c5c9
AS
3802
3803 if (choice < first_choice)
4c4b4cd2
PH
3804 {
3805 n_chosen = n_choices;
3806 for (j = 0; j < n_choices; j += 1)
3807 choices[j] = j;
3808 break;
3809 }
14f9c5c9
AS
3810 choice -= first_choice;
3811
d2e4a39e 3812 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3813 {
3814 }
14f9c5c9
AS
3815
3816 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3817 {
3818 int k;
5b4ee69b 3819
4c4b4cd2
PH
3820 for (k = n_chosen - 1; k > j; k -= 1)
3821 choices[k + 1] = choices[k];
3822 choices[j + 1] = choice;
3823 n_chosen += 1;
3824 }
14f9c5c9
AS
3825 }
3826
3827 if (n_chosen > max_results)
323e0a4a 3828 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3829
14f9c5c9
AS
3830 return n_chosen;
3831}
3832
4c4b4cd2
PH
3833/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3834 on the function identified by SYM and BLOCK, and taking NARGS
3835 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3836
3837static void
d2e4a39e 3838replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3839 int oplen, struct symbol *sym,
270140bd 3840 const struct block *block)
14f9c5c9
AS
3841{
3842 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3843 symbol, -oplen for operator being replaced). */
d2e4a39e 3844 struct expression *newexp = (struct expression *)
8c1a34e7 3845 xzalloc (sizeof (struct expression)
4c4b4cd2 3846 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3847 struct expression *exp = *expp;
14f9c5c9
AS
3848
3849 newexp->nelts = exp->nelts + 7 - oplen;
3850 newexp->language_defn = exp->language_defn;
3489610d 3851 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3852 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3853 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3854 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3855
3856 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3857 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3858
3859 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3860 newexp->elts[pc + 4].block = block;
3861 newexp->elts[pc + 5].symbol = sym;
3862
3863 *expp = newexp;
aacb1f0a 3864 xfree (exp);
d2e4a39e 3865}
14f9c5c9
AS
3866
3867/* Type-class predicates */
3868
4c4b4cd2
PH
3869/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3870 or FLOAT). */
14f9c5c9
AS
3871
3872static int
d2e4a39e 3873numeric_type_p (struct type *type)
14f9c5c9
AS
3874{
3875 if (type == NULL)
3876 return 0;
d2e4a39e
AS
3877 else
3878 {
3879 switch (TYPE_CODE (type))
4c4b4cd2
PH
3880 {
3881 case TYPE_CODE_INT:
3882 case TYPE_CODE_FLT:
3883 return 1;
3884 case TYPE_CODE_RANGE:
3885 return (type == TYPE_TARGET_TYPE (type)
3886 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3887 default:
3888 return 0;
3889 }
d2e4a39e 3890 }
14f9c5c9
AS
3891}
3892
4c4b4cd2 3893/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3894
3895static int
d2e4a39e 3896integer_type_p (struct type *type)
14f9c5c9
AS
3897{
3898 if (type == NULL)
3899 return 0;
d2e4a39e
AS
3900 else
3901 {
3902 switch (TYPE_CODE (type))
4c4b4cd2
PH
3903 {
3904 case TYPE_CODE_INT:
3905 return 1;
3906 case TYPE_CODE_RANGE:
3907 return (type == TYPE_TARGET_TYPE (type)
3908 || integer_type_p (TYPE_TARGET_TYPE (type)));
3909 default:
3910 return 0;
3911 }
d2e4a39e 3912 }
14f9c5c9
AS
3913}
3914
4c4b4cd2 3915/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3916
3917static int
d2e4a39e 3918scalar_type_p (struct type *type)
14f9c5c9
AS
3919{
3920 if (type == NULL)
3921 return 0;
d2e4a39e
AS
3922 else
3923 {
3924 switch (TYPE_CODE (type))
4c4b4cd2
PH
3925 {
3926 case TYPE_CODE_INT:
3927 case TYPE_CODE_RANGE:
3928 case TYPE_CODE_ENUM:
3929 case TYPE_CODE_FLT:
3930 return 1;
3931 default:
3932 return 0;
3933 }
d2e4a39e 3934 }
14f9c5c9
AS
3935}
3936
4c4b4cd2 3937/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3938
3939static int
d2e4a39e 3940discrete_type_p (struct type *type)
14f9c5c9
AS
3941{
3942 if (type == NULL)
3943 return 0;
d2e4a39e
AS
3944 else
3945 {
3946 switch (TYPE_CODE (type))
4c4b4cd2
PH
3947 {
3948 case TYPE_CODE_INT:
3949 case TYPE_CODE_RANGE:
3950 case TYPE_CODE_ENUM:
872f0337 3951 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3952 return 1;
3953 default:
3954 return 0;
3955 }
d2e4a39e 3956 }
14f9c5c9
AS
3957}
3958
4c4b4cd2
PH
3959/* Returns non-zero if OP with operands in the vector ARGS could be
3960 a user-defined function. Errs on the side of pre-defined operators
3961 (i.e., result 0). */
14f9c5c9
AS
3962
3963static int
d2e4a39e 3964possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3965{
76a01679 3966 struct type *type0 =
df407dfe 3967 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3968 struct type *type1 =
df407dfe 3969 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3970
4c4b4cd2
PH
3971 if (type0 == NULL)
3972 return 0;
3973
14f9c5c9
AS
3974 switch (op)
3975 {
3976 default:
3977 return 0;
3978
3979 case BINOP_ADD:
3980 case BINOP_SUB:
3981 case BINOP_MUL:
3982 case BINOP_DIV:
d2e4a39e 3983 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3984
3985 case BINOP_REM:
3986 case BINOP_MOD:
3987 case BINOP_BITWISE_AND:
3988 case BINOP_BITWISE_IOR:
3989 case BINOP_BITWISE_XOR:
d2e4a39e 3990 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3991
3992 case BINOP_EQUAL:
3993 case BINOP_NOTEQUAL:
3994 case BINOP_LESS:
3995 case BINOP_GTR:
3996 case BINOP_LEQ:
3997 case BINOP_GEQ:
d2e4a39e 3998 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3999
4000 case BINOP_CONCAT:
ee90b9ab 4001 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4002
4003 case BINOP_EXP:
d2e4a39e 4004 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4005
4006 case UNOP_NEG:
4007 case UNOP_PLUS:
4008 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4009 case UNOP_ABS:
4010 return (!numeric_type_p (type0));
14f9c5c9
AS
4011
4012 }
4013}
4014\f
4c4b4cd2 4015 /* Renaming */
14f9c5c9 4016
aeb5907d
JB
4017/* NOTES:
4018
4019 1. In the following, we assume that a renaming type's name may
4020 have an ___XD suffix. It would be nice if this went away at some
4021 point.
4022 2. We handle both the (old) purely type-based representation of
4023 renamings and the (new) variable-based encoding. At some point,
4024 it is devoutly to be hoped that the former goes away
4025 (FIXME: hilfinger-2007-07-09).
4026 3. Subprogram renamings are not implemented, although the XRS
4027 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4028
4029/* If SYM encodes a renaming,
4030
4031 <renaming> renames <renamed entity>,
4032
4033 sets *LEN to the length of the renamed entity's name,
4034 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4035 the string describing the subcomponent selected from the renamed
0963b4bd 4036 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4037 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4038 are undefined). Otherwise, returns a value indicating the category
4039 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4040 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4041 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4042 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4043 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4044 may be NULL, in which case they are not assigned.
4045
4046 [Currently, however, GCC does not generate subprogram renamings.] */
4047
4048enum ada_renaming_category
4049ada_parse_renaming (struct symbol *sym,
4050 const char **renamed_entity, int *len,
4051 const char **renaming_expr)
4052{
4053 enum ada_renaming_category kind;
4054 const char *info;
4055 const char *suffix;
4056
4057 if (sym == NULL)
4058 return ADA_NOT_RENAMING;
4059 switch (SYMBOL_CLASS (sym))
14f9c5c9 4060 {
aeb5907d
JB
4061 default:
4062 return ADA_NOT_RENAMING;
4063 case LOC_TYPEDEF:
4064 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4065 renamed_entity, len, renaming_expr);
4066 case LOC_LOCAL:
4067 case LOC_STATIC:
4068 case LOC_COMPUTED:
4069 case LOC_OPTIMIZED_OUT:
4070 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4071 if (info == NULL)
4072 return ADA_NOT_RENAMING;
4073 switch (info[5])
4074 {
4075 case '_':
4076 kind = ADA_OBJECT_RENAMING;
4077 info += 6;
4078 break;
4079 case 'E':
4080 kind = ADA_EXCEPTION_RENAMING;
4081 info += 7;
4082 break;
4083 case 'P':
4084 kind = ADA_PACKAGE_RENAMING;
4085 info += 7;
4086 break;
4087 case 'S':
4088 kind = ADA_SUBPROGRAM_RENAMING;
4089 info += 7;
4090 break;
4091 default:
4092 return ADA_NOT_RENAMING;
4093 }
14f9c5c9 4094 }
4c4b4cd2 4095
aeb5907d
JB
4096 if (renamed_entity != NULL)
4097 *renamed_entity = info;
4098 suffix = strstr (info, "___XE");
4099 if (suffix == NULL || suffix == info)
4100 return ADA_NOT_RENAMING;
4101 if (len != NULL)
4102 *len = strlen (info) - strlen (suffix);
4103 suffix += 5;
4104 if (renaming_expr != NULL)
4105 *renaming_expr = suffix;
4106 return kind;
4107}
4108
4109/* Assuming TYPE encodes a renaming according to the old encoding in
4110 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4111 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4112 ADA_NOT_RENAMING otherwise. */
4113static enum ada_renaming_category
4114parse_old_style_renaming (struct type *type,
4115 const char **renamed_entity, int *len,
4116 const char **renaming_expr)
4117{
4118 enum ada_renaming_category kind;
4119 const char *name;
4120 const char *info;
4121 const char *suffix;
14f9c5c9 4122
aeb5907d
JB
4123 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4124 || TYPE_NFIELDS (type) != 1)
4125 return ADA_NOT_RENAMING;
14f9c5c9 4126
aeb5907d
JB
4127 name = type_name_no_tag (type);
4128 if (name == NULL)
4129 return ADA_NOT_RENAMING;
4130
4131 name = strstr (name, "___XR");
4132 if (name == NULL)
4133 return ADA_NOT_RENAMING;
4134 switch (name[5])
4135 {
4136 case '\0':
4137 case '_':
4138 kind = ADA_OBJECT_RENAMING;
4139 break;
4140 case 'E':
4141 kind = ADA_EXCEPTION_RENAMING;
4142 break;
4143 case 'P':
4144 kind = ADA_PACKAGE_RENAMING;
4145 break;
4146 case 'S':
4147 kind = ADA_SUBPROGRAM_RENAMING;
4148 break;
4149 default:
4150 return ADA_NOT_RENAMING;
4151 }
14f9c5c9 4152
aeb5907d
JB
4153 info = TYPE_FIELD_NAME (type, 0);
4154 if (info == NULL)
4155 return ADA_NOT_RENAMING;
4156 if (renamed_entity != NULL)
4157 *renamed_entity = info;
4158 suffix = strstr (info, "___XE");
4159 if (renaming_expr != NULL)
4160 *renaming_expr = suffix + 5;
4161 if (suffix == NULL || suffix == info)
4162 return ADA_NOT_RENAMING;
4163 if (len != NULL)
4164 *len = suffix - info;
4165 return kind;
a5ee536b
JB
4166}
4167
4168/* Compute the value of the given RENAMING_SYM, which is expected to
4169 be a symbol encoding a renaming expression. BLOCK is the block
4170 used to evaluate the renaming. */
52ce6436 4171
a5ee536b
JB
4172static struct value *
4173ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4174 const struct block *block)
a5ee536b 4175{
bbc13ae3 4176 const char *sym_name;
a5ee536b
JB
4177 struct expression *expr;
4178 struct value *value;
4179 struct cleanup *old_chain = NULL;
4180
bbc13ae3 4181 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4182 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4183 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4184 value = evaluate_expression (expr);
4185
4186 do_cleanups (old_chain);
4187 return value;
4188}
14f9c5c9 4189\f
d2e4a39e 4190
4c4b4cd2 4191 /* Evaluation: Function Calls */
14f9c5c9 4192
4c4b4cd2 4193/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4194 lvalues, and otherwise has the side-effect of allocating memory
4195 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4196
d2e4a39e 4197static struct value *
40bc484c 4198ensure_lval (struct value *val)
14f9c5c9 4199{
40bc484c
JB
4200 if (VALUE_LVAL (val) == not_lval
4201 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4202 {
df407dfe 4203 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4204 const CORE_ADDR addr =
4205 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4206
40bc484c 4207 set_value_address (val, addr);
a84a8a0d 4208 VALUE_LVAL (val) = lval_memory;
40bc484c 4209 write_memory (addr, value_contents (val), len);
c3e5cd34 4210 }
14f9c5c9
AS
4211
4212 return val;
4213}
4214
4215/* Return the value ACTUAL, converted to be an appropriate value for a
4216 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4217 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4218 values not residing in memory, updating it as needed. */
14f9c5c9 4219
a93c0eb6 4220struct value *
40bc484c 4221ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4222{
df407dfe 4223 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4224 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4225 struct type *formal_target =
4226 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4227 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4228 struct type *actual_target =
4229 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4230 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4231
4c4b4cd2 4232 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4233 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4234 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4235 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4236 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4237 {
a84a8a0d 4238 struct value *result;
5b4ee69b 4239
14f9c5c9 4240 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4241 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4242 result = desc_data (actual);
14f9c5c9 4243 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4244 {
4245 if (VALUE_LVAL (actual) != lval_memory)
4246 {
4247 struct value *val;
5b4ee69b 4248
df407dfe 4249 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4250 val = allocate_value (actual_type);
990a07ab 4251 memcpy ((char *) value_contents_raw (val),
0fd88904 4252 (char *) value_contents (actual),
4c4b4cd2 4253 TYPE_LENGTH (actual_type));
40bc484c 4254 actual = ensure_lval (val);
4c4b4cd2 4255 }
a84a8a0d 4256 result = value_addr (actual);
4c4b4cd2 4257 }
a84a8a0d
JB
4258 else
4259 return actual;
b1af9e97 4260 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4261 }
4262 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4263 return ada_value_ind (actual);
4264
4265 return actual;
4266}
4267
438c98a1
JB
4268/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4269 type TYPE. This is usually an inefficient no-op except on some targets
4270 (such as AVR) where the representation of a pointer and an address
4271 differs. */
4272
4273static CORE_ADDR
4274value_pointer (struct value *value, struct type *type)
4275{
4276 struct gdbarch *gdbarch = get_type_arch (type);
4277 unsigned len = TYPE_LENGTH (type);
4278 gdb_byte *buf = alloca (len);
4279 CORE_ADDR addr;
4280
4281 addr = value_address (value);
4282 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4283 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4284 return addr;
4285}
4286
14f9c5c9 4287
4c4b4cd2
PH
4288/* Push a descriptor of type TYPE for array value ARR on the stack at
4289 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4290 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4291 to-descriptor type rather than a descriptor type), a struct value *
4292 representing a pointer to this descriptor. */
14f9c5c9 4293
d2e4a39e 4294static struct value *
40bc484c 4295make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4296{
d2e4a39e
AS
4297 struct type *bounds_type = desc_bounds_type (type);
4298 struct type *desc_type = desc_base_type (type);
4299 struct value *descriptor = allocate_value (desc_type);
4300 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4301 int i;
d2e4a39e 4302
0963b4bd
MS
4303 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4304 i > 0; i -= 1)
14f9c5c9 4305 {
19f220c3
JK
4306 modify_field (value_type (bounds), value_contents_writeable (bounds),
4307 ada_array_bound (arr, i, 0),
4308 desc_bound_bitpos (bounds_type, i, 0),
4309 desc_bound_bitsize (bounds_type, i, 0));
4310 modify_field (value_type (bounds), value_contents_writeable (bounds),
4311 ada_array_bound (arr, i, 1),
4312 desc_bound_bitpos (bounds_type, i, 1),
4313 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4314 }
d2e4a39e 4315
40bc484c 4316 bounds = ensure_lval (bounds);
d2e4a39e 4317
19f220c3
JK
4318 modify_field (value_type (descriptor),
4319 value_contents_writeable (descriptor),
4320 value_pointer (ensure_lval (arr),
4321 TYPE_FIELD_TYPE (desc_type, 0)),
4322 fat_pntr_data_bitpos (desc_type),
4323 fat_pntr_data_bitsize (desc_type));
4324
4325 modify_field (value_type (descriptor),
4326 value_contents_writeable (descriptor),
4327 value_pointer (bounds,
4328 TYPE_FIELD_TYPE (desc_type, 1)),
4329 fat_pntr_bounds_bitpos (desc_type),
4330 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4331
40bc484c 4332 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4333
4334 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4335 return value_addr (descriptor);
4336 else
4337 return descriptor;
4338}
14f9c5c9 4339\f
3d9434b5
JB
4340 /* Symbol Cache Module */
4341
3d9434b5 4342/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4343 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4344 on the type of entity being printed, the cache can make it as much
4345 as an order of magnitude faster than without it.
4346
4347 The descriptive type DWARF extension has significantly reduced
4348 the need for this cache, at least when DWARF is being used. However,
4349 even in this case, some expensive name-based symbol searches are still
4350 sometimes necessary - to find an XVZ variable, mostly. */
4351
ee01b665 4352/* Initialize the contents of SYM_CACHE. */
3d9434b5 4353
ee01b665
JB
4354static void
4355ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4356{
4357 obstack_init (&sym_cache->cache_space);
4358 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4359}
3d9434b5 4360
ee01b665
JB
4361/* Free the memory used by SYM_CACHE. */
4362
4363static void
4364ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4365{
ee01b665
JB
4366 obstack_free (&sym_cache->cache_space, NULL);
4367 xfree (sym_cache);
4368}
3d9434b5 4369
ee01b665
JB
4370/* Return the symbol cache associated to the given program space PSPACE.
4371 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4372
ee01b665
JB
4373static struct ada_symbol_cache *
4374ada_get_symbol_cache (struct program_space *pspace)
4375{
4376 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4377 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4378
4379 if (sym_cache == NULL)
4380 {
4381 sym_cache = XCNEW (struct ada_symbol_cache);
4382 ada_init_symbol_cache (sym_cache);
4383 }
4384
4385 return sym_cache;
4386}
3d9434b5
JB
4387
4388/* Clear all entries from the symbol cache. */
4389
4390static void
4391ada_clear_symbol_cache (void)
4392{
ee01b665
JB
4393 struct ada_symbol_cache *sym_cache
4394 = ada_get_symbol_cache (current_program_space);
4395
4396 obstack_free (&sym_cache->cache_space, NULL);
4397 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4398}
4399
4400/* Search our cache for an entry matching NAME and NAMESPACE.
4401 Return it if found, or NULL otherwise. */
4402
4403static struct cache_entry **
4404find_entry (const char *name, domain_enum namespace)
4405{
ee01b665
JB
4406 struct ada_symbol_cache *sym_cache
4407 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4408 int h = msymbol_hash (name) % HASH_SIZE;
4409 struct cache_entry **e;
4410
ee01b665 4411 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5
JB
4412 {
4413 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4414 return e;
4415 }
4416 return NULL;
4417}
4418
4419/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4420 Return 1 if found, 0 otherwise.
4421
4422 If an entry was found and SYM is not NULL, set *SYM to the entry's
4423 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4424
96d887e8
PH
4425static int
4426lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4427 struct symbol **sym, const struct block **block)
96d887e8 4428{
3d9434b5
JB
4429 struct cache_entry **e = find_entry (name, namespace);
4430
4431 if (e == NULL)
4432 return 0;
4433 if (sym != NULL)
4434 *sym = (*e)->sym;
4435 if (block != NULL)
4436 *block = (*e)->block;
4437 return 1;
96d887e8
PH
4438}
4439
3d9434b5
JB
4440/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4441 in domain NAMESPACE, save this result in our symbol cache. */
4442
96d887e8
PH
4443static void
4444cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4445 const struct block *block)
96d887e8 4446{
ee01b665
JB
4447 struct ada_symbol_cache *sym_cache
4448 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4449 int h;
4450 char *copy;
4451 struct cache_entry *e;
4452
4453 /* If the symbol is a local symbol, then do not cache it, as a search
4454 for that symbol depends on the context. To determine whether
4455 the symbol is local or not, we check the block where we found it
4456 against the global and static blocks of its associated symtab. */
4457 if (sym
439247b6
DE
4458 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (sym->symtab),
4459 GLOBAL_BLOCK) != block
4460 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (sym->symtab),
4461 STATIC_BLOCK) != block)
3d9434b5
JB
4462 return;
4463
4464 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4465 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4466 sizeof (*e));
4467 e->next = sym_cache->root[h];
4468 sym_cache->root[h] = e;
4469 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4470 strcpy (copy, name);
4471 e->sym = sym;
4472 e->namespace = namespace;
4473 e->block = block;
96d887e8 4474}
4c4b4cd2
PH
4475\f
4476 /* Symbol Lookup */
4477
c0431670
JB
4478/* Return nonzero if wild matching should be used when searching for
4479 all symbols matching LOOKUP_NAME.
4480
4481 LOOKUP_NAME is expected to be a symbol name after transformation
4482 for Ada lookups (see ada_name_for_lookup). */
4483
4484static int
4485should_use_wild_match (const char *lookup_name)
4486{
4487 return (strstr (lookup_name, "__") == NULL);
4488}
4489
4c4b4cd2
PH
4490/* Return the result of a standard (literal, C-like) lookup of NAME in
4491 given DOMAIN, visible from lexical block BLOCK. */
4492
4493static struct symbol *
4494standard_lookup (const char *name, const struct block *block,
4495 domain_enum domain)
4496{
acbd605d
MGD
4497 /* Initialize it just to avoid a GCC false warning. */
4498 struct symbol *sym = NULL;
4c4b4cd2 4499
2570f2b7 4500 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4501 return sym;
2570f2b7
UW
4502 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4503 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4504 return sym;
4505}
4506
4507
4508/* Non-zero iff there is at least one non-function/non-enumeral symbol
4509 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4510 since they contend in overloading in the same way. */
4511static int
4512is_nonfunction (struct ada_symbol_info syms[], int n)
4513{
4514 int i;
4515
4516 for (i = 0; i < n; i += 1)
4517 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4518 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4519 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4520 return 1;
4521
4522 return 0;
4523}
4524
4525/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4526 struct types. Otherwise, they may not. */
14f9c5c9
AS
4527
4528static int
d2e4a39e 4529equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4530{
d2e4a39e 4531 if (type0 == type1)
14f9c5c9 4532 return 1;
d2e4a39e 4533 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4534 || TYPE_CODE (type0) != TYPE_CODE (type1))
4535 return 0;
d2e4a39e 4536 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4537 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4538 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4539 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4540 return 1;
d2e4a39e 4541
14f9c5c9
AS
4542 return 0;
4543}
4544
4545/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4546 no more defined than that of SYM1. */
14f9c5c9
AS
4547
4548static int
d2e4a39e 4549lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4550{
4551 if (sym0 == sym1)
4552 return 1;
176620f1 4553 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4554 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4555 return 0;
4556
d2e4a39e 4557 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4558 {
4559 case LOC_UNDEF:
4560 return 1;
4561 case LOC_TYPEDEF:
4562 {
4c4b4cd2
PH
4563 struct type *type0 = SYMBOL_TYPE (sym0);
4564 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4565 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4566 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4567 int len0 = strlen (name0);
5b4ee69b 4568
4c4b4cd2
PH
4569 return
4570 TYPE_CODE (type0) == TYPE_CODE (type1)
4571 && (equiv_types (type0, type1)
4572 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4573 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4574 }
4575 case LOC_CONST:
4576 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4577 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4578 default:
4579 return 0;
14f9c5c9
AS
4580 }
4581}
4582
4c4b4cd2
PH
4583/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4584 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4585
4586static void
76a01679
JB
4587add_defn_to_vec (struct obstack *obstackp,
4588 struct symbol *sym,
f0c5f9b2 4589 const struct block *block)
14f9c5c9
AS
4590{
4591 int i;
4c4b4cd2 4592 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4593
529cad9c
PH
4594 /* Do not try to complete stub types, as the debugger is probably
4595 already scanning all symbols matching a certain name at the
4596 time when this function is called. Trying to replace the stub
4597 type by its associated full type will cause us to restart a scan
4598 which may lead to an infinite recursion. Instead, the client
4599 collecting the matching symbols will end up collecting several
4600 matches, with at least one of them complete. It can then filter
4601 out the stub ones if needed. */
4602
4c4b4cd2
PH
4603 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4604 {
4605 if (lesseq_defined_than (sym, prevDefns[i].sym))
4606 return;
4607 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4608 {
4609 prevDefns[i].sym = sym;
4610 prevDefns[i].block = block;
4c4b4cd2 4611 return;
76a01679 4612 }
4c4b4cd2
PH
4613 }
4614
4615 {
4616 struct ada_symbol_info info;
4617
4618 info.sym = sym;
4619 info.block = block;
4c4b4cd2
PH
4620 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4621 }
4622}
4623
4624/* Number of ada_symbol_info structures currently collected in
4625 current vector in *OBSTACKP. */
4626
76a01679
JB
4627static int
4628num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4629{
4630 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4631}
4632
4633/* Vector of ada_symbol_info structures currently collected in current
4634 vector in *OBSTACKP. If FINISH, close off the vector and return
4635 its final address. */
4636
76a01679 4637static struct ada_symbol_info *
4c4b4cd2
PH
4638defns_collected (struct obstack *obstackp, int finish)
4639{
4640 if (finish)
4641 return obstack_finish (obstackp);
4642 else
4643 return (struct ada_symbol_info *) obstack_base (obstackp);
4644}
4645
7c7b6655
TT
4646/* Return a bound minimal symbol matching NAME according to Ada
4647 decoding rules. Returns an invalid symbol if there is no such
4648 minimal symbol. Names prefixed with "standard__" are handled
4649 specially: "standard__" is first stripped off, and only static and
4650 global symbols are searched. */
4c4b4cd2 4651
7c7b6655 4652struct bound_minimal_symbol
96d887e8 4653ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4654{
7c7b6655 4655 struct bound_minimal_symbol result;
4c4b4cd2 4656 struct objfile *objfile;
96d887e8 4657 struct minimal_symbol *msymbol;
dc4024cd 4658 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4659
7c7b6655
TT
4660 memset (&result, 0, sizeof (result));
4661
c0431670
JB
4662 /* Special case: If the user specifies a symbol name inside package
4663 Standard, do a non-wild matching of the symbol name without
4664 the "standard__" prefix. This was primarily introduced in order
4665 to allow the user to specifically access the standard exceptions
4666 using, for instance, Standard.Constraint_Error when Constraint_Error
4667 is ambiguous (due to the user defining its own Constraint_Error
4668 entity inside its program). */
96d887e8 4669 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4670 name += sizeof ("standard__") - 1;
4c4b4cd2 4671
96d887e8
PH
4672 ALL_MSYMBOLS (objfile, msymbol)
4673 {
efd66ac6 4674 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4675 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4676 {
4677 result.minsym = msymbol;
4678 result.objfile = objfile;
4679 break;
4680 }
96d887e8 4681 }
4c4b4cd2 4682
7c7b6655 4683 return result;
96d887e8 4684}
4c4b4cd2 4685
96d887e8
PH
4686/* For all subprograms that statically enclose the subprogram of the
4687 selected frame, add symbols matching identifier NAME in DOMAIN
4688 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4689 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4690 with a wildcard prefix. */
4c4b4cd2 4691
96d887e8
PH
4692static void
4693add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4694 const char *name, domain_enum namespace,
48b78332 4695 int wild_match_p)
96d887e8 4696{
96d887e8 4697}
14f9c5c9 4698
96d887e8
PH
4699/* True if TYPE is definitely an artificial type supplied to a symbol
4700 for which no debugging information was given in the symbol file. */
14f9c5c9 4701
96d887e8
PH
4702static int
4703is_nondebugging_type (struct type *type)
4704{
0d5cff50 4705 const char *name = ada_type_name (type);
5b4ee69b 4706
96d887e8
PH
4707 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4708}
4c4b4cd2 4709
8f17729f
JB
4710/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4711 that are deemed "identical" for practical purposes.
4712
4713 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4714 types and that their number of enumerals is identical (in other
4715 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4716
4717static int
4718ada_identical_enum_types_p (struct type *type1, struct type *type2)
4719{
4720 int i;
4721
4722 /* The heuristic we use here is fairly conservative. We consider
4723 that 2 enumerate types are identical if they have the same
4724 number of enumerals and that all enumerals have the same
4725 underlying value and name. */
4726
4727 /* All enums in the type should have an identical underlying value. */
4728 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4729 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4730 return 0;
4731
4732 /* All enumerals should also have the same name (modulo any numerical
4733 suffix). */
4734 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4735 {
0d5cff50
DE
4736 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4737 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4738 int len_1 = strlen (name_1);
4739 int len_2 = strlen (name_2);
4740
4741 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4742 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4743 if (len_1 != len_2
4744 || strncmp (TYPE_FIELD_NAME (type1, i),
4745 TYPE_FIELD_NAME (type2, i),
4746 len_1) != 0)
4747 return 0;
4748 }
4749
4750 return 1;
4751}
4752
4753/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4754 that are deemed "identical" for practical purposes. Sometimes,
4755 enumerals are not strictly identical, but their types are so similar
4756 that they can be considered identical.
4757
4758 For instance, consider the following code:
4759
4760 type Color is (Black, Red, Green, Blue, White);
4761 type RGB_Color is new Color range Red .. Blue;
4762
4763 Type RGB_Color is a subrange of an implicit type which is a copy
4764 of type Color. If we call that implicit type RGB_ColorB ("B" is
4765 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4766 As a result, when an expression references any of the enumeral
4767 by name (Eg. "print green"), the expression is technically
4768 ambiguous and the user should be asked to disambiguate. But
4769 doing so would only hinder the user, since it wouldn't matter
4770 what choice he makes, the outcome would always be the same.
4771 So, for practical purposes, we consider them as the same. */
4772
4773static int
4774symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4775{
4776 int i;
4777
4778 /* Before performing a thorough comparison check of each type,
4779 we perform a series of inexpensive checks. We expect that these
4780 checks will quickly fail in the vast majority of cases, and thus
4781 help prevent the unnecessary use of a more expensive comparison.
4782 Said comparison also expects us to make some of these checks
4783 (see ada_identical_enum_types_p). */
4784
4785 /* Quick check: All symbols should have an enum type. */
4786 for (i = 0; i < nsyms; i++)
4787 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4788 return 0;
4789
4790 /* Quick check: They should all have the same value. */
4791 for (i = 1; i < nsyms; i++)
4792 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4793 return 0;
4794
4795 /* Quick check: They should all have the same number of enumerals. */
4796 for (i = 1; i < nsyms; i++)
4797 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4798 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4799 return 0;
4800
4801 /* All the sanity checks passed, so we might have a set of
4802 identical enumeration types. Perform a more complete
4803 comparison of the type of each symbol. */
4804 for (i = 1; i < nsyms; i++)
4805 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4806 SYMBOL_TYPE (syms[0].sym)))
4807 return 0;
4808
4809 return 1;
4810}
4811
96d887e8
PH
4812/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4813 duplicate other symbols in the list (The only case I know of where
4814 this happens is when object files containing stabs-in-ecoff are
4815 linked with files containing ordinary ecoff debugging symbols (or no
4816 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4817 Returns the number of items in the modified list. */
4c4b4cd2 4818
96d887e8
PH
4819static int
4820remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4821{
4822 int i, j;
4c4b4cd2 4823
8f17729f
JB
4824 /* We should never be called with less than 2 symbols, as there
4825 cannot be any extra symbol in that case. But it's easy to
4826 handle, since we have nothing to do in that case. */
4827 if (nsyms < 2)
4828 return nsyms;
4829
96d887e8
PH
4830 i = 0;
4831 while (i < nsyms)
4832 {
a35ddb44 4833 int remove_p = 0;
339c13b6
JB
4834
4835 /* If two symbols have the same name and one of them is a stub type,
4836 the get rid of the stub. */
4837
4838 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4839 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4840 {
4841 for (j = 0; j < nsyms; j++)
4842 {
4843 if (j != i
4844 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4845 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4846 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4847 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4848 remove_p = 1;
339c13b6
JB
4849 }
4850 }
4851
4852 /* Two symbols with the same name, same class and same address
4853 should be identical. */
4854
4855 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4856 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4857 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4858 {
4859 for (j = 0; j < nsyms; j += 1)
4860 {
4861 if (i != j
4862 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4863 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4864 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4865 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4866 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4867 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4868 remove_p = 1;
4c4b4cd2 4869 }
4c4b4cd2 4870 }
339c13b6 4871
a35ddb44 4872 if (remove_p)
339c13b6
JB
4873 {
4874 for (j = i + 1; j < nsyms; j += 1)
4875 syms[j - 1] = syms[j];
4876 nsyms -= 1;
4877 }
4878
96d887e8 4879 i += 1;
14f9c5c9 4880 }
8f17729f
JB
4881
4882 /* If all the remaining symbols are identical enumerals, then
4883 just keep the first one and discard the rest.
4884
4885 Unlike what we did previously, we do not discard any entry
4886 unless they are ALL identical. This is because the symbol
4887 comparison is not a strict comparison, but rather a practical
4888 comparison. If all symbols are considered identical, then
4889 we can just go ahead and use the first one and discard the rest.
4890 But if we cannot reduce the list to a single element, we have
4891 to ask the user to disambiguate anyways. And if we have to
4892 present a multiple-choice menu, it's less confusing if the list
4893 isn't missing some choices that were identical and yet distinct. */
4894 if (symbols_are_identical_enums (syms, nsyms))
4895 nsyms = 1;
4896
96d887e8 4897 return nsyms;
14f9c5c9
AS
4898}
4899
96d887e8
PH
4900/* Given a type that corresponds to a renaming entity, use the type name
4901 to extract the scope (package name or function name, fully qualified,
4902 and following the GNAT encoding convention) where this renaming has been
4903 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4904
96d887e8
PH
4905static char *
4906xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4907{
96d887e8 4908 /* The renaming types adhere to the following convention:
0963b4bd 4909 <scope>__<rename>___<XR extension>.
96d887e8
PH
4910 So, to extract the scope, we search for the "___XR" extension,
4911 and then backtrack until we find the first "__". */
76a01679 4912
96d887e8
PH
4913 const char *name = type_name_no_tag (renaming_type);
4914 char *suffix = strstr (name, "___XR");
4915 char *last;
4916 int scope_len;
4917 char *scope;
14f9c5c9 4918
96d887e8
PH
4919 /* Now, backtrack a bit until we find the first "__". Start looking
4920 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4921
96d887e8
PH
4922 for (last = suffix - 3; last > name; last--)
4923 if (last[0] == '_' && last[1] == '_')
4924 break;
76a01679 4925
96d887e8 4926 /* Make a copy of scope and return it. */
14f9c5c9 4927
96d887e8
PH
4928 scope_len = last - name;
4929 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4930
96d887e8
PH
4931 strncpy (scope, name, scope_len);
4932 scope[scope_len] = '\0';
4c4b4cd2 4933
96d887e8 4934 return scope;
4c4b4cd2
PH
4935}
4936
96d887e8 4937/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4938
96d887e8
PH
4939static int
4940is_package_name (const char *name)
4c4b4cd2 4941{
96d887e8
PH
4942 /* Here, We take advantage of the fact that no symbols are generated
4943 for packages, while symbols are generated for each function.
4944 So the condition for NAME represent a package becomes equivalent
4945 to NAME not existing in our list of symbols. There is only one
4946 small complication with library-level functions (see below). */
4c4b4cd2 4947
96d887e8 4948 char *fun_name;
76a01679 4949
96d887e8
PH
4950 /* If it is a function that has not been defined at library level,
4951 then we should be able to look it up in the symbols. */
4952 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4953 return 0;
14f9c5c9 4954
96d887e8
PH
4955 /* Library-level function names start with "_ada_". See if function
4956 "_ada_" followed by NAME can be found. */
14f9c5c9 4957
96d887e8 4958 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4959 functions names cannot contain "__" in them. */
96d887e8
PH
4960 if (strstr (name, "__") != NULL)
4961 return 0;
4c4b4cd2 4962
b435e160 4963 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4964
96d887e8
PH
4965 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4966}
14f9c5c9 4967
96d887e8 4968/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4969 not visible from FUNCTION_NAME. */
14f9c5c9 4970
96d887e8 4971static int
0d5cff50 4972old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4973{
aeb5907d 4974 char *scope;
1509e573 4975 struct cleanup *old_chain;
aeb5907d
JB
4976
4977 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4978 return 0;
4979
4980 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 4981 old_chain = make_cleanup (xfree, scope);
14f9c5c9 4982
96d887e8
PH
4983 /* If the rename has been defined in a package, then it is visible. */
4984 if (is_package_name (scope))
1509e573
JB
4985 {
4986 do_cleanups (old_chain);
4987 return 0;
4988 }
14f9c5c9 4989
96d887e8
PH
4990 /* Check that the rename is in the current function scope by checking
4991 that its name starts with SCOPE. */
76a01679 4992
96d887e8
PH
4993 /* If the function name starts with "_ada_", it means that it is
4994 a library-level function. Strip this prefix before doing the
4995 comparison, as the encoding for the renaming does not contain
4996 this prefix. */
4997 if (strncmp (function_name, "_ada_", 5) == 0)
4998 function_name += 5;
f26caa11 4999
1509e573
JB
5000 {
5001 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5002
5003 do_cleanups (old_chain);
5004 return is_invisible;
5005 }
f26caa11
PH
5006}
5007
aeb5907d
JB
5008/* Remove entries from SYMS that corresponds to a renaming entity that
5009 is not visible from the function associated with CURRENT_BLOCK or
5010 that is superfluous due to the presence of more specific renaming
5011 information. Places surviving symbols in the initial entries of
5012 SYMS and returns the number of surviving symbols.
96d887e8
PH
5013
5014 Rationale:
aeb5907d
JB
5015 First, in cases where an object renaming is implemented as a
5016 reference variable, GNAT may produce both the actual reference
5017 variable and the renaming encoding. In this case, we discard the
5018 latter.
5019
5020 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5021 entity. Unfortunately, STABS currently does not support the definition
5022 of types that are local to a given lexical block, so all renamings types
5023 are emitted at library level. As a consequence, if an application
5024 contains two renaming entities using the same name, and a user tries to
5025 print the value of one of these entities, the result of the ada symbol
5026 lookup will also contain the wrong renaming type.
f26caa11 5027
96d887e8
PH
5028 This function partially covers for this limitation by attempting to
5029 remove from the SYMS list renaming symbols that should be visible
5030 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5031 method with the current information available. The implementation
5032 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5033
5034 - When the user tries to print a rename in a function while there
5035 is another rename entity defined in a package: Normally, the
5036 rename in the function has precedence over the rename in the
5037 package, so the latter should be removed from the list. This is
5038 currently not the case.
5039
5040 - This function will incorrectly remove valid renames if
5041 the CURRENT_BLOCK corresponds to a function which symbol name
5042 has been changed by an "Export" pragma. As a consequence,
5043 the user will be unable to print such rename entities. */
4c4b4cd2 5044
14f9c5c9 5045static int
aeb5907d
JB
5046remove_irrelevant_renamings (struct ada_symbol_info *syms,
5047 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5048{
5049 struct symbol *current_function;
0d5cff50 5050 const char *current_function_name;
4c4b4cd2 5051 int i;
aeb5907d
JB
5052 int is_new_style_renaming;
5053
5054 /* If there is both a renaming foo___XR... encoded as a variable and
5055 a simple variable foo in the same block, discard the latter.
0963b4bd 5056 First, zero out such symbols, then compress. */
aeb5907d
JB
5057 is_new_style_renaming = 0;
5058 for (i = 0; i < nsyms; i += 1)
5059 {
5060 struct symbol *sym = syms[i].sym;
270140bd 5061 const struct block *block = syms[i].block;
aeb5907d
JB
5062 const char *name;
5063 const char *suffix;
5064
5065 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5066 continue;
5067 name = SYMBOL_LINKAGE_NAME (sym);
5068 suffix = strstr (name, "___XR");
5069
5070 if (suffix != NULL)
5071 {
5072 int name_len = suffix - name;
5073 int j;
5b4ee69b 5074
aeb5907d
JB
5075 is_new_style_renaming = 1;
5076 for (j = 0; j < nsyms; j += 1)
5077 if (i != j && syms[j].sym != NULL
5078 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5079 name_len) == 0
5080 && block == syms[j].block)
5081 syms[j].sym = NULL;
5082 }
5083 }
5084 if (is_new_style_renaming)
5085 {
5086 int j, k;
5087
5088 for (j = k = 0; j < nsyms; j += 1)
5089 if (syms[j].sym != NULL)
5090 {
5091 syms[k] = syms[j];
5092 k += 1;
5093 }
5094 return k;
5095 }
4c4b4cd2
PH
5096
5097 /* Extract the function name associated to CURRENT_BLOCK.
5098 Abort if unable to do so. */
76a01679 5099
4c4b4cd2
PH
5100 if (current_block == NULL)
5101 return nsyms;
76a01679 5102
7f0df278 5103 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5104 if (current_function == NULL)
5105 return nsyms;
5106
5107 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5108 if (current_function_name == NULL)
5109 return nsyms;
5110
5111 /* Check each of the symbols, and remove it from the list if it is
5112 a type corresponding to a renaming that is out of the scope of
5113 the current block. */
5114
5115 i = 0;
5116 while (i < nsyms)
5117 {
aeb5907d
JB
5118 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5119 == ADA_OBJECT_RENAMING
5120 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5121 {
5122 int j;
5b4ee69b 5123
aeb5907d 5124 for (j = i + 1; j < nsyms; j += 1)
76a01679 5125 syms[j - 1] = syms[j];
4c4b4cd2
PH
5126 nsyms -= 1;
5127 }
5128 else
5129 i += 1;
5130 }
5131
5132 return nsyms;
5133}
5134
339c13b6
JB
5135/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5136 whose name and domain match NAME and DOMAIN respectively.
5137 If no match was found, then extend the search to "enclosing"
5138 routines (in other words, if we're inside a nested function,
5139 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5140 If WILD_MATCH_P is nonzero, perform the naming matching in
5141 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5142
5143 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5144
5145static void
5146ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5147 const struct block *block, domain_enum domain,
d0a8ab18 5148 int wild_match_p)
339c13b6
JB
5149{
5150 int block_depth = 0;
5151
5152 while (block != NULL)
5153 {
5154 block_depth += 1;
d0a8ab18
JB
5155 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5156 wild_match_p);
339c13b6
JB
5157
5158 /* If we found a non-function match, assume that's the one. */
5159 if (is_nonfunction (defns_collected (obstackp, 0),
5160 num_defns_collected (obstackp)))
5161 return;
5162
5163 block = BLOCK_SUPERBLOCK (block);
5164 }
5165
5166 /* If no luck so far, try to find NAME as a local symbol in some lexically
5167 enclosing subprogram. */
5168 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5169 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5170}
5171
ccefe4c4 5172/* An object of this type is used as the user_data argument when
40658b94 5173 calling the map_matching_symbols method. */
ccefe4c4 5174
40658b94 5175struct match_data
ccefe4c4 5176{
40658b94 5177 struct objfile *objfile;
ccefe4c4 5178 struct obstack *obstackp;
40658b94
PH
5179 struct symbol *arg_sym;
5180 int found_sym;
ccefe4c4
TT
5181};
5182
40658b94
PH
5183/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5184 to a list of symbols. DATA0 is a pointer to a struct match_data *
5185 containing the obstack that collects the symbol list, the file that SYM
5186 must come from, a flag indicating whether a non-argument symbol has
5187 been found in the current block, and the last argument symbol
5188 passed in SYM within the current block (if any). When SYM is null,
5189 marking the end of a block, the argument symbol is added if no
5190 other has been found. */
ccefe4c4 5191
40658b94
PH
5192static int
5193aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5194{
40658b94
PH
5195 struct match_data *data = (struct match_data *) data0;
5196
5197 if (sym == NULL)
5198 {
5199 if (!data->found_sym && data->arg_sym != NULL)
5200 add_defn_to_vec (data->obstackp,
5201 fixup_symbol_section (data->arg_sym, data->objfile),
5202 block);
5203 data->found_sym = 0;
5204 data->arg_sym = NULL;
5205 }
5206 else
5207 {
5208 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5209 return 0;
5210 else if (SYMBOL_IS_ARGUMENT (sym))
5211 data->arg_sym = sym;
5212 else
5213 {
5214 data->found_sym = 1;
5215 add_defn_to_vec (data->obstackp,
5216 fixup_symbol_section (sym, data->objfile),
5217 block);
5218 }
5219 }
5220 return 0;
5221}
5222
db230ce3
JB
5223/* Implements compare_names, but only applying the comparision using
5224 the given CASING. */
5b4ee69b 5225
40658b94 5226static int
db230ce3
JB
5227compare_names_with_case (const char *string1, const char *string2,
5228 enum case_sensitivity casing)
40658b94
PH
5229{
5230 while (*string1 != '\0' && *string2 != '\0')
5231 {
db230ce3
JB
5232 char c1, c2;
5233
40658b94
PH
5234 if (isspace (*string1) || isspace (*string2))
5235 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5236
5237 if (casing == case_sensitive_off)
5238 {
5239 c1 = tolower (*string1);
5240 c2 = tolower (*string2);
5241 }
5242 else
5243 {
5244 c1 = *string1;
5245 c2 = *string2;
5246 }
5247 if (c1 != c2)
40658b94 5248 break;
db230ce3 5249
40658b94
PH
5250 string1 += 1;
5251 string2 += 1;
5252 }
db230ce3 5253
40658b94
PH
5254 switch (*string1)
5255 {
5256 case '(':
5257 return strcmp_iw_ordered (string1, string2);
5258 case '_':
5259 if (*string2 == '\0')
5260 {
052874e8 5261 if (is_name_suffix (string1))
40658b94
PH
5262 return 0;
5263 else
1a1d5513 5264 return 1;
40658b94 5265 }
dbb8534f 5266 /* FALLTHROUGH */
40658b94
PH
5267 default:
5268 if (*string2 == '(')
5269 return strcmp_iw_ordered (string1, string2);
5270 else
db230ce3
JB
5271 {
5272 if (casing == case_sensitive_off)
5273 return tolower (*string1) - tolower (*string2);
5274 else
5275 return *string1 - *string2;
5276 }
40658b94 5277 }
ccefe4c4
TT
5278}
5279
db230ce3
JB
5280/* Compare STRING1 to STRING2, with results as for strcmp.
5281 Compatible with strcmp_iw_ordered in that...
5282
5283 strcmp_iw_ordered (STRING1, STRING2) <= 0
5284
5285 ... implies...
5286
5287 compare_names (STRING1, STRING2) <= 0
5288
5289 (they may differ as to what symbols compare equal). */
5290
5291static int
5292compare_names (const char *string1, const char *string2)
5293{
5294 int result;
5295
5296 /* Similar to what strcmp_iw_ordered does, we need to perform
5297 a case-insensitive comparison first, and only resort to
5298 a second, case-sensitive, comparison if the first one was
5299 not sufficient to differentiate the two strings. */
5300
5301 result = compare_names_with_case (string1, string2, case_sensitive_off);
5302 if (result == 0)
5303 result = compare_names_with_case (string1, string2, case_sensitive_on);
5304
5305 return result;
5306}
5307
339c13b6
JB
5308/* Add to OBSTACKP all non-local symbols whose name and domain match
5309 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5310 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5311
5312static void
40658b94
PH
5313add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5314 domain_enum domain, int global,
5315 int is_wild_match)
339c13b6
JB
5316{
5317 struct objfile *objfile;
40658b94 5318 struct match_data data;
339c13b6 5319
6475f2fe 5320 memset (&data, 0, sizeof data);
ccefe4c4 5321 data.obstackp = obstackp;
339c13b6 5322
ccefe4c4 5323 ALL_OBJFILES (objfile)
40658b94
PH
5324 {
5325 data.objfile = objfile;
5326
5327 if (is_wild_match)
4186eb54
KS
5328 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5329 aux_add_nonlocal_symbols, &data,
5330 wild_match, NULL);
40658b94 5331 else
4186eb54
KS
5332 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5333 aux_add_nonlocal_symbols, &data,
5334 full_match, compare_names);
40658b94
PH
5335 }
5336
5337 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5338 {
5339 ALL_OBJFILES (objfile)
5340 {
5341 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5342 strcpy (name1, "_ada_");
5343 strcpy (name1 + sizeof ("_ada_") - 1, name);
5344 data.objfile = objfile;
ade7ed9e
DE
5345 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5346 global,
0963b4bd
MS
5347 aux_add_nonlocal_symbols,
5348 &data,
40658b94
PH
5349 full_match, compare_names);
5350 }
5351 }
339c13b6
JB
5352}
5353
4eeaa230
DE
5354/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5355 non-zero, enclosing scope and in global scopes, returning the number of
5356 matches.
9f88c959 5357 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5358 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5359 any) in which they were found. This vector is transient---good only to
5360 the next call of ada_lookup_symbol_list.
5361
5362 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5363 symbol match within the nest of blocks whose innermost member is BLOCK0,
5364 is the one match returned (no other matches in that or
d9680e73 5365 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5366 surrounding BLOCK0, then these alone are returned.
5367
9f88c959 5368 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5369 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5370
4eeaa230
DE
5371static int
5372ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5373 domain_enum namespace,
5374 struct ada_symbol_info **results,
5375 int full_search)
14f9c5c9
AS
5376{
5377 struct symbol *sym;
f0c5f9b2 5378 const struct block *block;
4c4b4cd2 5379 const char *name;
82ccd55e 5380 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5381 int cacheIfUnique;
4c4b4cd2 5382 int ndefns;
14f9c5c9 5383
4c4b4cd2
PH
5384 obstack_free (&symbol_list_obstack, NULL);
5385 obstack_init (&symbol_list_obstack);
14f9c5c9 5386
14f9c5c9
AS
5387 cacheIfUnique = 0;
5388
5389 /* Search specified block and its superiors. */
5390
4c4b4cd2 5391 name = name0;
f0c5f9b2 5392 block = block0;
339c13b6
JB
5393
5394 /* Special case: If the user specifies a symbol name inside package
5395 Standard, do a non-wild matching of the symbol name without
5396 the "standard__" prefix. This was primarily introduced in order
5397 to allow the user to specifically access the standard exceptions
5398 using, for instance, Standard.Constraint_Error when Constraint_Error
5399 is ambiguous (due to the user defining its own Constraint_Error
5400 entity inside its program). */
4c4b4cd2
PH
5401 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5402 {
4c4b4cd2
PH
5403 block = NULL;
5404 name = name0 + sizeof ("standard__") - 1;
5405 }
5406
339c13b6 5407 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5408
4eeaa230
DE
5409 if (block != NULL)
5410 {
5411 if (full_search)
5412 {
5413 ada_add_local_symbols (&symbol_list_obstack, name, block,
5414 namespace, wild_match_p);
5415 }
5416 else
5417 {
5418 /* In the !full_search case we're are being called by
5419 ada_iterate_over_symbols, and we don't want to search
5420 superblocks. */
5421 ada_add_block_symbols (&symbol_list_obstack, block, name,
5422 namespace, NULL, wild_match_p);
5423 }
5424 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5425 goto done;
5426 }
d2e4a39e 5427
339c13b6
JB
5428 /* No non-global symbols found. Check our cache to see if we have
5429 already performed this search before. If we have, then return
5430 the same result. */
5431
14f9c5c9 5432 cacheIfUnique = 1;
2570f2b7 5433 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5434 {
5435 if (sym != NULL)
2570f2b7 5436 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5437 goto done;
5438 }
14f9c5c9 5439
339c13b6
JB
5440 /* Search symbols from all global blocks. */
5441
40658b94 5442 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5443 wild_match_p);
d2e4a39e 5444
4c4b4cd2 5445 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5446 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5447
4c4b4cd2 5448 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5449 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5450 wild_match_p);
14f9c5c9 5451
4c4b4cd2
PH
5452done:
5453 ndefns = num_defns_collected (&symbol_list_obstack);
5454 *results = defns_collected (&symbol_list_obstack, 1);
5455
5456 ndefns = remove_extra_symbols (*results, ndefns);
5457
2ad01556 5458 if (ndefns == 0 && full_search)
2570f2b7 5459 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5460
2ad01556 5461 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5462 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5463
aeb5907d 5464 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5465
14f9c5c9
AS
5466 return ndefns;
5467}
5468
4eeaa230
DE
5469/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5470 in global scopes, returning the number of matches, and setting *RESULTS
5471 to a vector of (SYM,BLOCK) tuples.
5472 See ada_lookup_symbol_list_worker for further details. */
5473
5474int
5475ada_lookup_symbol_list (const char *name0, const struct block *block0,
5476 domain_enum domain, struct ada_symbol_info **results)
5477{
5478 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5479}
5480
5481/* Implementation of the la_iterate_over_symbols method. */
5482
5483static void
5484ada_iterate_over_symbols (const struct block *block,
5485 const char *name, domain_enum domain,
5486 symbol_found_callback_ftype *callback,
5487 void *data)
5488{
5489 int ndefs, i;
5490 struct ada_symbol_info *results;
5491
5492 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5493 for (i = 0; i < ndefs; ++i)
5494 {
5495 if (! (*callback) (results[i].sym, data))
5496 break;
5497 }
5498}
5499
f8eba3c6
TT
5500/* If NAME is the name of an entity, return a string that should
5501 be used to look that entity up in Ada units. This string should
5502 be deallocated after use using xfree.
5503
5504 NAME can have any form that the "break" or "print" commands might
5505 recognize. In other words, it does not have to be the "natural"
5506 name, or the "encoded" name. */
5507
5508char *
5509ada_name_for_lookup (const char *name)
5510{
5511 char *canon;
5512 int nlen = strlen (name);
5513
5514 if (name[0] == '<' && name[nlen - 1] == '>')
5515 {
5516 canon = xmalloc (nlen - 1);
5517 memcpy (canon, name + 1, nlen - 2);
5518 canon[nlen - 2] = '\0';
5519 }
5520 else
5521 canon = xstrdup (ada_encode (ada_fold_name (name)));
5522 return canon;
5523}
5524
4e5c77fe
JB
5525/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5526 to 1, but choosing the first symbol found if there are multiple
5527 choices.
5528
5e2336be
JB
5529 The result is stored in *INFO, which must be non-NULL.
5530 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5531
5532void
5533ada_lookup_encoded_symbol (const char *name, const struct block *block,
5534 domain_enum namespace,
5e2336be 5535 struct ada_symbol_info *info)
14f9c5c9 5536{
4c4b4cd2 5537 struct ada_symbol_info *candidates;
14f9c5c9
AS
5538 int n_candidates;
5539
5e2336be
JB
5540 gdb_assert (info != NULL);
5541 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5542
4eeaa230 5543 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5544 if (n_candidates == 0)
4e5c77fe 5545 return;
4c4b4cd2 5546
5e2336be
JB
5547 *info = candidates[0];
5548 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5549}
aeb5907d
JB
5550
5551/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5552 scope and in global scopes, or NULL if none. NAME is folded and
5553 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5554 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5555 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5556
aeb5907d
JB
5557struct symbol *
5558ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5559 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5560{
5e2336be 5561 struct ada_symbol_info info;
4e5c77fe 5562
aeb5907d
JB
5563 if (is_a_field_of_this != NULL)
5564 *is_a_field_of_this = 0;
5565
4e5c77fe 5566 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5567 block0, namespace, &info);
5568 return info.sym;
4c4b4cd2 5569}
14f9c5c9 5570
4c4b4cd2
PH
5571static struct symbol *
5572ada_lookup_symbol_nonlocal (const char *name,
76a01679 5573 const struct block *block,
21b556f4 5574 const domain_enum domain)
4c4b4cd2 5575{
94af9270 5576 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5577}
5578
5579
4c4b4cd2
PH
5580/* True iff STR is a possible encoded suffix of a normal Ada name
5581 that is to be ignored for matching purposes. Suffixes of parallel
5582 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5583 are given by any of the regular expressions:
4c4b4cd2 5584
babe1480
JB
5585 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5586 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5587 TKB [subprogram suffix for task bodies]
babe1480 5588 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5589 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5590
5591 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5592 match is performed. This sequence is used to differentiate homonyms,
5593 is an optional part of a valid name suffix. */
4c4b4cd2 5594
14f9c5c9 5595static int
d2e4a39e 5596is_name_suffix (const char *str)
14f9c5c9
AS
5597{
5598 int k;
4c4b4cd2
PH
5599 const char *matching;
5600 const int len = strlen (str);
5601
babe1480
JB
5602 /* Skip optional leading __[0-9]+. */
5603
4c4b4cd2
PH
5604 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5605 {
babe1480
JB
5606 str += 3;
5607 while (isdigit (str[0]))
5608 str += 1;
4c4b4cd2 5609 }
babe1480
JB
5610
5611 /* [.$][0-9]+ */
4c4b4cd2 5612
babe1480 5613 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5614 {
babe1480 5615 matching = str + 1;
4c4b4cd2
PH
5616 while (isdigit (matching[0]))
5617 matching += 1;
5618 if (matching[0] == '\0')
5619 return 1;
5620 }
5621
5622 /* ___[0-9]+ */
babe1480 5623
4c4b4cd2
PH
5624 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5625 {
5626 matching = str + 3;
5627 while (isdigit (matching[0]))
5628 matching += 1;
5629 if (matching[0] == '\0')
5630 return 1;
5631 }
5632
9ac7f98e
JB
5633 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5634
5635 if (strcmp (str, "TKB") == 0)
5636 return 1;
5637
529cad9c
PH
5638#if 0
5639 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5640 with a N at the end. Unfortunately, the compiler uses the same
5641 convention for other internal types it creates. So treating
529cad9c 5642 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5643 some regressions. For instance, consider the case of an enumerated
5644 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5645 name ends with N.
5646 Having a single character like this as a suffix carrying some
0963b4bd 5647 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5648 to be something like "_N" instead. In the meantime, do not do
5649 the following check. */
5650 /* Protected Object Subprograms */
5651 if (len == 1 && str [0] == 'N')
5652 return 1;
5653#endif
5654
5655 /* _E[0-9]+[bs]$ */
5656 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5657 {
5658 matching = str + 3;
5659 while (isdigit (matching[0]))
5660 matching += 1;
5661 if ((matching[0] == 'b' || matching[0] == 's')
5662 && matching [1] == '\0')
5663 return 1;
5664 }
5665
4c4b4cd2
PH
5666 /* ??? We should not modify STR directly, as we are doing below. This
5667 is fine in this case, but may become problematic later if we find
5668 that this alternative did not work, and want to try matching
5669 another one from the begining of STR. Since we modified it, we
5670 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5671 if (str[0] == 'X')
5672 {
5673 str += 1;
d2e4a39e 5674 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5675 {
5676 if (str[0] != 'n' && str[0] != 'b')
5677 return 0;
5678 str += 1;
5679 }
14f9c5c9 5680 }
babe1480 5681
14f9c5c9
AS
5682 if (str[0] == '\000')
5683 return 1;
babe1480 5684
d2e4a39e 5685 if (str[0] == '_')
14f9c5c9
AS
5686 {
5687 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5688 return 0;
d2e4a39e 5689 if (str[2] == '_')
4c4b4cd2 5690 {
61ee279c
PH
5691 if (strcmp (str + 3, "JM") == 0)
5692 return 1;
5693 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5694 the LJM suffix in favor of the JM one. But we will
5695 still accept LJM as a valid suffix for a reasonable
5696 amount of time, just to allow ourselves to debug programs
5697 compiled using an older version of GNAT. */
4c4b4cd2
PH
5698 if (strcmp (str + 3, "LJM") == 0)
5699 return 1;
5700 if (str[3] != 'X')
5701 return 0;
1265e4aa
JB
5702 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5703 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5704 return 1;
5705 if (str[4] == 'R' && str[5] != 'T')
5706 return 1;
5707 return 0;
5708 }
5709 if (!isdigit (str[2]))
5710 return 0;
5711 for (k = 3; str[k] != '\0'; k += 1)
5712 if (!isdigit (str[k]) && str[k] != '_')
5713 return 0;
14f9c5c9
AS
5714 return 1;
5715 }
4c4b4cd2 5716 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5717 {
4c4b4cd2
PH
5718 for (k = 2; str[k] != '\0'; k += 1)
5719 if (!isdigit (str[k]) && str[k] != '_')
5720 return 0;
14f9c5c9
AS
5721 return 1;
5722 }
5723 return 0;
5724}
d2e4a39e 5725
aeb5907d
JB
5726/* Return non-zero if the string starting at NAME and ending before
5727 NAME_END contains no capital letters. */
529cad9c
PH
5728
5729static int
5730is_valid_name_for_wild_match (const char *name0)
5731{
5732 const char *decoded_name = ada_decode (name0);
5733 int i;
5734
5823c3ef
JB
5735 /* If the decoded name starts with an angle bracket, it means that
5736 NAME0 does not follow the GNAT encoding format. It should then
5737 not be allowed as a possible wild match. */
5738 if (decoded_name[0] == '<')
5739 return 0;
5740
529cad9c
PH
5741 for (i=0; decoded_name[i] != '\0'; i++)
5742 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5743 return 0;
5744
5745 return 1;
5746}
5747
73589123
PH
5748/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5749 that could start a simple name. Assumes that *NAMEP points into
5750 the string beginning at NAME0. */
4c4b4cd2 5751
14f9c5c9 5752static int
73589123 5753advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5754{
73589123 5755 const char *name = *namep;
5b4ee69b 5756
5823c3ef 5757 while (1)
14f9c5c9 5758 {
aa27d0b3 5759 int t0, t1;
73589123
PH
5760
5761 t0 = *name;
5762 if (t0 == '_')
5763 {
5764 t1 = name[1];
5765 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5766 {
5767 name += 1;
5768 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5769 break;
5770 else
5771 name += 1;
5772 }
aa27d0b3
JB
5773 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5774 || name[2] == target0))
73589123
PH
5775 {
5776 name += 2;
5777 break;
5778 }
5779 else
5780 return 0;
5781 }
5782 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5783 name += 1;
5784 else
5823c3ef 5785 return 0;
73589123
PH
5786 }
5787
5788 *namep = name;
5789 return 1;
5790}
5791
5792/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5793 informational suffixes of NAME (i.e., for which is_name_suffix is
5794 true). Assumes that PATN is a lower-cased Ada simple name. */
5795
5796static int
5797wild_match (const char *name, const char *patn)
5798{
22e048c9 5799 const char *p;
73589123
PH
5800 const char *name0 = name;
5801
5802 while (1)
5803 {
5804 const char *match = name;
5805
5806 if (*name == *patn)
5807 {
5808 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5809 if (*p != *name)
5810 break;
5811 if (*p == '\0' && is_name_suffix (name))
5812 return match != name0 && !is_valid_name_for_wild_match (name0);
5813
5814 if (name[-1] == '_')
5815 name -= 1;
5816 }
5817 if (!advance_wild_match (&name, name0, *patn))
5818 return 1;
96d887e8 5819 }
96d887e8
PH
5820}
5821
40658b94
PH
5822/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5823 informational suffix. */
5824
c4d840bd
PH
5825static int
5826full_match (const char *sym_name, const char *search_name)
5827{
40658b94 5828 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5829}
5830
5831
96d887e8
PH
5832/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5833 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5834 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5835 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5836
5837static void
5838ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5839 const struct block *block, const char *name,
96d887e8 5840 domain_enum domain, struct objfile *objfile,
2570f2b7 5841 int wild)
96d887e8 5842{
8157b174 5843 struct block_iterator iter;
96d887e8
PH
5844 int name_len = strlen (name);
5845 /* A matching argument symbol, if any. */
5846 struct symbol *arg_sym;
5847 /* Set true when we find a matching non-argument symbol. */
5848 int found_sym;
5849 struct symbol *sym;
5850
5851 arg_sym = NULL;
5852 found_sym = 0;
5853 if (wild)
5854 {
8157b174
TT
5855 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5856 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5857 {
4186eb54
KS
5858 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5859 SYMBOL_DOMAIN (sym), domain)
73589123 5860 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5861 {
2a2d4dc3
AS
5862 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5863 continue;
5864 else if (SYMBOL_IS_ARGUMENT (sym))
5865 arg_sym = sym;
5866 else
5867 {
76a01679
JB
5868 found_sym = 1;
5869 add_defn_to_vec (obstackp,
5870 fixup_symbol_section (sym, objfile),
2570f2b7 5871 block);
76a01679
JB
5872 }
5873 }
5874 }
96d887e8
PH
5875 }
5876 else
5877 {
8157b174
TT
5878 for (sym = block_iter_match_first (block, name, full_match, &iter);
5879 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5880 {
4186eb54
KS
5881 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5882 SYMBOL_DOMAIN (sym), domain))
76a01679 5883 {
c4d840bd
PH
5884 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5885 {
5886 if (SYMBOL_IS_ARGUMENT (sym))
5887 arg_sym = sym;
5888 else
2a2d4dc3 5889 {
c4d840bd
PH
5890 found_sym = 1;
5891 add_defn_to_vec (obstackp,
5892 fixup_symbol_section (sym, objfile),
5893 block);
2a2d4dc3 5894 }
c4d840bd 5895 }
76a01679
JB
5896 }
5897 }
96d887e8
PH
5898 }
5899
5900 if (!found_sym && arg_sym != NULL)
5901 {
76a01679
JB
5902 add_defn_to_vec (obstackp,
5903 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5904 block);
96d887e8
PH
5905 }
5906
5907 if (!wild)
5908 {
5909 arg_sym = NULL;
5910 found_sym = 0;
5911
5912 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5913 {
4186eb54
KS
5914 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5915 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5916 {
5917 int cmp;
5918
5919 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5920 if (cmp == 0)
5921 {
5922 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5923 if (cmp == 0)
5924 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5925 name_len);
5926 }
5927
5928 if (cmp == 0
5929 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5930 {
2a2d4dc3
AS
5931 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5932 {
5933 if (SYMBOL_IS_ARGUMENT (sym))
5934 arg_sym = sym;
5935 else
5936 {
5937 found_sym = 1;
5938 add_defn_to_vec (obstackp,
5939 fixup_symbol_section (sym, objfile),
5940 block);
5941 }
5942 }
76a01679
JB
5943 }
5944 }
76a01679 5945 }
96d887e8
PH
5946
5947 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5948 They aren't parameters, right? */
5949 if (!found_sym && arg_sym != NULL)
5950 {
5951 add_defn_to_vec (obstackp,
76a01679 5952 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5953 block);
96d887e8
PH
5954 }
5955 }
5956}
5957\f
41d27058
JB
5958
5959 /* Symbol Completion */
5960
5961/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5962 name in a form that's appropriate for the completion. The result
5963 does not need to be deallocated, but is only good until the next call.
5964
5965 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5966 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5967 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5968 in its encoded form. */
5969
5970static const char *
5971symbol_completion_match (const char *sym_name,
5972 const char *text, int text_len,
6ea35997 5973 int wild_match_p, int encoded_p)
41d27058 5974{
41d27058
JB
5975 const int verbatim_match = (text[0] == '<');
5976 int match = 0;
5977
5978 if (verbatim_match)
5979 {
5980 /* Strip the leading angle bracket. */
5981 text = text + 1;
5982 text_len--;
5983 }
5984
5985 /* First, test against the fully qualified name of the symbol. */
5986
5987 if (strncmp (sym_name, text, text_len) == 0)
5988 match = 1;
5989
6ea35997 5990 if (match && !encoded_p)
41d27058
JB
5991 {
5992 /* One needed check before declaring a positive match is to verify
5993 that iff we are doing a verbatim match, the decoded version
5994 of the symbol name starts with '<'. Otherwise, this symbol name
5995 is not a suitable completion. */
5996 const char *sym_name_copy = sym_name;
5997 int has_angle_bracket;
5998
5999 sym_name = ada_decode (sym_name);
6000 has_angle_bracket = (sym_name[0] == '<');
6001 match = (has_angle_bracket == verbatim_match);
6002 sym_name = sym_name_copy;
6003 }
6004
6005 if (match && !verbatim_match)
6006 {
6007 /* When doing non-verbatim match, another check that needs to
6008 be done is to verify that the potentially matching symbol name
6009 does not include capital letters, because the ada-mode would
6010 not be able to understand these symbol names without the
6011 angle bracket notation. */
6012 const char *tmp;
6013
6014 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6015 if (*tmp != '\0')
6016 match = 0;
6017 }
6018
6019 /* Second: Try wild matching... */
6020
e701b3c0 6021 if (!match && wild_match_p)
41d27058
JB
6022 {
6023 /* Since we are doing wild matching, this means that TEXT
6024 may represent an unqualified symbol name. We therefore must
6025 also compare TEXT against the unqualified name of the symbol. */
6026 sym_name = ada_unqualified_name (ada_decode (sym_name));
6027
6028 if (strncmp (sym_name, text, text_len) == 0)
6029 match = 1;
6030 }
6031
6032 /* Finally: If we found a mach, prepare the result to return. */
6033
6034 if (!match)
6035 return NULL;
6036
6037 if (verbatim_match)
6038 sym_name = add_angle_brackets (sym_name);
6039
6ea35997 6040 if (!encoded_p)
41d27058
JB
6041 sym_name = ada_decode (sym_name);
6042
6043 return sym_name;
6044}
6045
6046/* A companion function to ada_make_symbol_completion_list().
6047 Check if SYM_NAME represents a symbol which name would be suitable
6048 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6049 it is appended at the end of the given string vector SV.
6050
6051 ORIG_TEXT is the string original string from the user command
6052 that needs to be completed. WORD is the entire command on which
6053 completion should be performed. These two parameters are used to
6054 determine which part of the symbol name should be added to the
6055 completion vector.
c0af1706 6056 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6057 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6058 encoded formed (in which case the completion should also be
6059 encoded). */
6060
6061static void
d6565258 6062symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6063 const char *sym_name,
6064 const char *text, int text_len,
6065 const char *orig_text, const char *word,
cb8e9b97 6066 int wild_match_p, int encoded_p)
41d27058
JB
6067{
6068 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6069 wild_match_p, encoded_p);
41d27058
JB
6070 char *completion;
6071
6072 if (match == NULL)
6073 return;
6074
6075 /* We found a match, so add the appropriate completion to the given
6076 string vector. */
6077
6078 if (word == orig_text)
6079 {
6080 completion = xmalloc (strlen (match) + 5);
6081 strcpy (completion, match);
6082 }
6083 else if (word > orig_text)
6084 {
6085 /* Return some portion of sym_name. */
6086 completion = xmalloc (strlen (match) + 5);
6087 strcpy (completion, match + (word - orig_text));
6088 }
6089 else
6090 {
6091 /* Return some of ORIG_TEXT plus sym_name. */
6092 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6093 strncpy (completion, word, orig_text - word);
6094 completion[orig_text - word] = '\0';
6095 strcat (completion, match);
6096 }
6097
d6565258 6098 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6099}
6100
ccefe4c4 6101/* An object of this type is passed as the user_data argument to the
bb4142cf 6102 expand_symtabs_matching method. */
ccefe4c4
TT
6103struct add_partial_datum
6104{
6105 VEC(char_ptr) **completions;
6f937416 6106 const char *text;
ccefe4c4 6107 int text_len;
6f937416
PA
6108 const char *text0;
6109 const char *word;
ccefe4c4
TT
6110 int wild_match;
6111 int encoded;
6112};
6113
bb4142cf
DE
6114/* A callback for expand_symtabs_matching. */
6115
7b08b9eb 6116static int
bb4142cf 6117ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6118{
6119 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6120
6121 return symbol_completion_match (name, data->text, data->text_len,
6122 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6123}
6124
49c4e619
TT
6125/* Return a list of possible symbol names completing TEXT0. WORD is
6126 the entire command on which completion is made. */
41d27058 6127
49c4e619 6128static VEC (char_ptr) *
6f937416
PA
6129ada_make_symbol_completion_list (const char *text0, const char *word,
6130 enum type_code code)
41d27058
JB
6131{
6132 char *text;
6133 int text_len;
b1ed564a
JB
6134 int wild_match_p;
6135 int encoded_p;
2ba95b9b 6136 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
6137 struct symbol *sym;
6138 struct symtab *s;
41d27058
JB
6139 struct minimal_symbol *msymbol;
6140 struct objfile *objfile;
3977b71f 6141 const struct block *b, *surrounding_static_block = 0;
41d27058 6142 int i;
8157b174 6143 struct block_iterator iter;
b8fea896 6144 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6145
2f68a895
TT
6146 gdb_assert (code == TYPE_CODE_UNDEF);
6147
41d27058
JB
6148 if (text0[0] == '<')
6149 {
6150 text = xstrdup (text0);
6151 make_cleanup (xfree, text);
6152 text_len = strlen (text);
b1ed564a
JB
6153 wild_match_p = 0;
6154 encoded_p = 1;
41d27058
JB
6155 }
6156 else
6157 {
6158 text = xstrdup (ada_encode (text0));
6159 make_cleanup (xfree, text);
6160 text_len = strlen (text);
6161 for (i = 0; i < text_len; i++)
6162 text[i] = tolower (text[i]);
6163
b1ed564a 6164 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6165 /* If the name contains a ".", then the user is entering a fully
6166 qualified entity name, and the match must not be done in wild
6167 mode. Similarly, if the user wants to complete what looks like
6168 an encoded name, the match must not be done in wild mode. */
b1ed564a 6169 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6170 }
6171
6172 /* First, look at the partial symtab symbols. */
41d27058 6173 {
ccefe4c4
TT
6174 struct add_partial_datum data;
6175
6176 data.completions = &completions;
6177 data.text = text;
6178 data.text_len = text_len;
6179 data.text0 = text0;
6180 data.word = word;
b1ed564a
JB
6181 data.wild_match = wild_match_p;
6182 data.encoded = encoded_p;
bb4142cf
DE
6183 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6184 &data);
41d27058
JB
6185 }
6186
6187 /* At this point scan through the misc symbol vectors and add each
6188 symbol you find to the list. Eventually we want to ignore
6189 anything that isn't a text symbol (everything else will be
6190 handled by the psymtab code above). */
6191
6192 ALL_MSYMBOLS (objfile, msymbol)
6193 {
6194 QUIT;
efd66ac6 6195 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6196 text, text_len, text0, word, wild_match_p,
6197 encoded_p);
41d27058
JB
6198 }
6199
6200 /* Search upwards from currently selected frame (so that we can
6201 complete on local vars. */
6202
6203 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6204 {
6205 if (!BLOCK_SUPERBLOCK (b))
6206 surrounding_static_block = b; /* For elmin of dups */
6207
6208 ALL_BLOCK_SYMBOLS (b, iter, sym)
6209 {
d6565258 6210 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6211 text, text_len, text0, word,
b1ed564a 6212 wild_match_p, encoded_p);
41d27058
JB
6213 }
6214 }
6215
6216 /* Go through the symtabs and check the externs and statics for
2dd2cd1c
DE
6217 symbols which match.
6218 Non-primary symtabs share the block vector with their primary symtabs
6219 so we use ALL_PRIMARY_SYMTABS here instead of ALL_SYMTABS. */
41d27058 6220
2dd2cd1c 6221 ALL_PRIMARY_SYMTABS (objfile, s)
41d27058
JB
6222 {
6223 QUIT;
439247b6 6224 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6225 ALL_BLOCK_SYMBOLS (b, iter, sym)
6226 {
d6565258 6227 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6228 text, text_len, text0, word,
b1ed564a 6229 wild_match_p, encoded_p);
41d27058
JB
6230 }
6231 }
6232
2dd2cd1c 6233 ALL_PRIMARY_SYMTABS (objfile, s)
41d27058
JB
6234 {
6235 QUIT;
439247b6 6236 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6237 /* Don't do this block twice. */
6238 if (b == surrounding_static_block)
6239 continue;
6240 ALL_BLOCK_SYMBOLS (b, iter, sym)
6241 {
d6565258 6242 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6243 text, text_len, text0, word,
b1ed564a 6244 wild_match_p, encoded_p);
41d27058
JB
6245 }
6246 }
6247
b8fea896 6248 do_cleanups (old_chain);
49c4e619 6249 return completions;
41d27058
JB
6250}
6251
963a6417 6252 /* Field Access */
96d887e8 6253
73fb9985
JB
6254/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6255 for tagged types. */
6256
6257static int
6258ada_is_dispatch_table_ptr_type (struct type *type)
6259{
0d5cff50 6260 const char *name;
73fb9985
JB
6261
6262 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6263 return 0;
6264
6265 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6266 if (name == NULL)
6267 return 0;
6268
6269 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6270}
6271
ac4a2da4
JG
6272/* Return non-zero if TYPE is an interface tag. */
6273
6274static int
6275ada_is_interface_tag (struct type *type)
6276{
6277 const char *name = TYPE_NAME (type);
6278
6279 if (name == NULL)
6280 return 0;
6281
6282 return (strcmp (name, "ada__tags__interface_tag") == 0);
6283}
6284
963a6417
PH
6285/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6286 to be invisible to users. */
96d887e8 6287
963a6417
PH
6288int
6289ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6290{
963a6417
PH
6291 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6292 return 1;
ffde82bf 6293
73fb9985
JB
6294 /* Check the name of that field. */
6295 {
6296 const char *name = TYPE_FIELD_NAME (type, field_num);
6297
6298 /* Anonymous field names should not be printed.
6299 brobecker/2007-02-20: I don't think this can actually happen
6300 but we don't want to print the value of annonymous fields anyway. */
6301 if (name == NULL)
6302 return 1;
6303
ffde82bf
JB
6304 /* Normally, fields whose name start with an underscore ("_")
6305 are fields that have been internally generated by the compiler,
6306 and thus should not be printed. The "_parent" field is special,
6307 however: This is a field internally generated by the compiler
6308 for tagged types, and it contains the components inherited from
6309 the parent type. This field should not be printed as is, but
6310 should not be ignored either. */
73fb9985
JB
6311 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6312 return 1;
6313 }
6314
ac4a2da4
JG
6315 /* If this is the dispatch table of a tagged type or an interface tag,
6316 then ignore. */
73fb9985 6317 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6318 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6319 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6320 return 1;
6321
6322 /* Not a special field, so it should not be ignored. */
6323 return 0;
963a6417 6324}
96d887e8 6325
963a6417 6326/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6327 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6328
963a6417
PH
6329int
6330ada_is_tagged_type (struct type *type, int refok)
6331{
6332 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6333}
96d887e8 6334
963a6417 6335/* True iff TYPE represents the type of X'Tag */
96d887e8 6336
963a6417
PH
6337int
6338ada_is_tag_type (struct type *type)
6339{
6340 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6341 return 0;
6342 else
96d887e8 6343 {
963a6417 6344 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6345
963a6417
PH
6346 return (name != NULL
6347 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6348 }
96d887e8
PH
6349}
6350
963a6417 6351/* The type of the tag on VAL. */
76a01679 6352
963a6417
PH
6353struct type *
6354ada_tag_type (struct value *val)
96d887e8 6355{
df407dfe 6356 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6357}
96d887e8 6358
b50d69b5
JG
6359/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6360 retired at Ada 05). */
6361
6362static int
6363is_ada95_tag (struct value *tag)
6364{
6365 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6366}
6367
963a6417 6368/* The value of the tag on VAL. */
96d887e8 6369
963a6417
PH
6370struct value *
6371ada_value_tag (struct value *val)
6372{
03ee6b2e 6373 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6374}
6375
963a6417
PH
6376/* The value of the tag on the object of type TYPE whose contents are
6377 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6378 ADDRESS. */
96d887e8 6379
963a6417 6380static struct value *
10a2c479 6381value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6382 const gdb_byte *valaddr,
963a6417 6383 CORE_ADDR address)
96d887e8 6384{
b5385fc0 6385 int tag_byte_offset;
963a6417 6386 struct type *tag_type;
5b4ee69b 6387
963a6417 6388 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6389 NULL, NULL, NULL))
96d887e8 6390 {
fc1a4b47 6391 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6392 ? NULL
6393 : valaddr + tag_byte_offset);
963a6417 6394 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6395
963a6417 6396 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6397 }
963a6417
PH
6398 return NULL;
6399}
96d887e8 6400
963a6417
PH
6401static struct type *
6402type_from_tag (struct value *tag)
6403{
6404 const char *type_name = ada_tag_name (tag);
5b4ee69b 6405
963a6417
PH
6406 if (type_name != NULL)
6407 return ada_find_any_type (ada_encode (type_name));
6408 return NULL;
6409}
96d887e8 6410
b50d69b5
JG
6411/* Given a value OBJ of a tagged type, return a value of this
6412 type at the base address of the object. The base address, as
6413 defined in Ada.Tags, it is the address of the primary tag of
6414 the object, and therefore where the field values of its full
6415 view can be fetched. */
6416
6417struct value *
6418ada_tag_value_at_base_address (struct value *obj)
6419{
6420 volatile struct gdb_exception e;
6421 struct value *val;
6422 LONGEST offset_to_top = 0;
6423 struct type *ptr_type, *obj_type;
6424 struct value *tag;
6425 CORE_ADDR base_address;
6426
6427 obj_type = value_type (obj);
6428
6429 /* It is the responsability of the caller to deref pointers. */
6430
6431 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6432 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6433 return obj;
6434
6435 tag = ada_value_tag (obj);
6436 if (!tag)
6437 return obj;
6438
6439 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6440
6441 if (is_ada95_tag (tag))
6442 return obj;
6443
6444 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6445 ptr_type = lookup_pointer_type (ptr_type);
6446 val = value_cast (ptr_type, tag);
6447 if (!val)
6448 return obj;
6449
6450 /* It is perfectly possible that an exception be raised while
6451 trying to determine the base address, just like for the tag;
6452 see ada_tag_name for more details. We do not print the error
6453 message for the same reason. */
6454
6455 TRY_CATCH (e, RETURN_MASK_ERROR)
6456 {
6457 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6458 }
6459
6460 if (e.reason < 0)
6461 return obj;
6462
6463 /* If offset is null, nothing to do. */
6464
6465 if (offset_to_top == 0)
6466 return obj;
6467
6468 /* -1 is a special case in Ada.Tags; however, what should be done
6469 is not quite clear from the documentation. So do nothing for
6470 now. */
6471
6472 if (offset_to_top == -1)
6473 return obj;
6474
6475 base_address = value_address (obj) - offset_to_top;
6476 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6477
6478 /* Make sure that we have a proper tag at the new address.
6479 Otherwise, offset_to_top is bogus (which can happen when
6480 the object is not initialized yet). */
6481
6482 if (!tag)
6483 return obj;
6484
6485 obj_type = type_from_tag (tag);
6486
6487 if (!obj_type)
6488 return obj;
6489
6490 return value_from_contents_and_address (obj_type, NULL, base_address);
6491}
6492
1b611343
JB
6493/* Return the "ada__tags__type_specific_data" type. */
6494
6495static struct type *
6496ada_get_tsd_type (struct inferior *inf)
963a6417 6497{
1b611343 6498 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6499
1b611343
JB
6500 if (data->tsd_type == 0)
6501 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6502 return data->tsd_type;
6503}
529cad9c 6504
1b611343
JB
6505/* Return the TSD (type-specific data) associated to the given TAG.
6506 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6507
1b611343 6508 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6509
1b611343
JB
6510static struct value *
6511ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6512{
4c4b4cd2 6513 struct value *val;
1b611343 6514 struct type *type;
5b4ee69b 6515
1b611343
JB
6516 /* First option: The TSD is simply stored as a field of our TAG.
6517 Only older versions of GNAT would use this format, but we have
6518 to test it first, because there are no visible markers for
6519 the current approach except the absence of that field. */
529cad9c 6520
1b611343
JB
6521 val = ada_value_struct_elt (tag, "tsd", 1);
6522 if (val)
6523 return val;
e802dbe0 6524
1b611343
JB
6525 /* Try the second representation for the dispatch table (in which
6526 there is no explicit 'tsd' field in the referent of the tag pointer,
6527 and instead the tsd pointer is stored just before the dispatch
6528 table. */
e802dbe0 6529
1b611343
JB
6530 type = ada_get_tsd_type (current_inferior());
6531 if (type == NULL)
6532 return NULL;
6533 type = lookup_pointer_type (lookup_pointer_type (type));
6534 val = value_cast (type, tag);
6535 if (val == NULL)
6536 return NULL;
6537 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6538}
6539
1b611343
JB
6540/* Given the TSD of a tag (type-specific data), return a string
6541 containing the name of the associated type.
6542
6543 The returned value is good until the next call. May return NULL
6544 if we are unable to determine the tag name. */
6545
6546static char *
6547ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6548{
529cad9c
PH
6549 static char name[1024];
6550 char *p;
1b611343 6551 struct value *val;
529cad9c 6552
1b611343 6553 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6554 if (val == NULL)
1b611343 6555 return NULL;
4c4b4cd2
PH
6556 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6557 for (p = name; *p != '\0'; p += 1)
6558 if (isalpha (*p))
6559 *p = tolower (*p);
1b611343 6560 return name;
4c4b4cd2
PH
6561}
6562
6563/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6564 a C string.
6565
6566 Return NULL if the TAG is not an Ada tag, or if we were unable to
6567 determine the name of that tag. The result is good until the next
6568 call. */
4c4b4cd2
PH
6569
6570const char *
6571ada_tag_name (struct value *tag)
6572{
1b611343
JB
6573 volatile struct gdb_exception e;
6574 char *name = NULL;
5b4ee69b 6575
df407dfe 6576 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6577 return NULL;
1b611343
JB
6578
6579 /* It is perfectly possible that an exception be raised while trying
6580 to determine the TAG's name, even under normal circumstances:
6581 The associated variable may be uninitialized or corrupted, for
6582 instance. We do not let any exception propagate past this point.
6583 instead we return NULL.
6584
6585 We also do not print the error message either (which often is very
6586 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6587 the caller print a more meaningful message if necessary. */
6588 TRY_CATCH (e, RETURN_MASK_ERROR)
6589 {
6590 struct value *tsd = ada_get_tsd_from_tag (tag);
6591
6592 if (tsd != NULL)
6593 name = ada_tag_name_from_tsd (tsd);
6594 }
6595
6596 return name;
4c4b4cd2
PH
6597}
6598
6599/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6600
d2e4a39e 6601struct type *
ebf56fd3 6602ada_parent_type (struct type *type)
14f9c5c9
AS
6603{
6604 int i;
6605
61ee279c 6606 type = ada_check_typedef (type);
14f9c5c9
AS
6607
6608 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6609 return NULL;
6610
6611 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6612 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6613 {
6614 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6615
6616 /* If the _parent field is a pointer, then dereference it. */
6617 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6618 parent_type = TYPE_TARGET_TYPE (parent_type);
6619 /* If there is a parallel XVS type, get the actual base type. */
6620 parent_type = ada_get_base_type (parent_type);
6621
6622 return ada_check_typedef (parent_type);
6623 }
14f9c5c9
AS
6624
6625 return NULL;
6626}
6627
4c4b4cd2
PH
6628/* True iff field number FIELD_NUM of structure type TYPE contains the
6629 parent-type (inherited) fields of a derived type. Assumes TYPE is
6630 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6631
6632int
ebf56fd3 6633ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6634{
61ee279c 6635 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6636
4c4b4cd2
PH
6637 return (name != NULL
6638 && (strncmp (name, "PARENT", 6) == 0
6639 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6640}
6641
4c4b4cd2 6642/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6643 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6644 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6645 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6646 structures. */
14f9c5c9
AS
6647
6648int
ebf56fd3 6649ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6650{
d2e4a39e 6651 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6652
d2e4a39e 6653 return (name != NULL
4c4b4cd2
PH
6654 && (strncmp (name, "PARENT", 6) == 0
6655 || strcmp (name, "REP") == 0
6656 || strncmp (name, "_parent", 7) == 0
6657 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6658}
6659
4c4b4cd2
PH
6660/* True iff field number FIELD_NUM of structure or union type TYPE
6661 is a variant wrapper. Assumes TYPE is a structure type with at least
6662 FIELD_NUM+1 fields. */
14f9c5c9
AS
6663
6664int
ebf56fd3 6665ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6666{
d2e4a39e 6667 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6668
14f9c5c9 6669 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6670 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6671 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6672 == TYPE_CODE_UNION)));
14f9c5c9
AS
6673}
6674
6675/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6676 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6677 returns the type of the controlling discriminant for the variant.
6678 May return NULL if the type could not be found. */
14f9c5c9 6679
d2e4a39e 6680struct type *
ebf56fd3 6681ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6682{
d2e4a39e 6683 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6684
7c964f07 6685 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6686}
6687
4c4b4cd2 6688/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6689 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6690 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6691
6692int
ebf56fd3 6693ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6694{
d2e4a39e 6695 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6696
14f9c5c9
AS
6697 return (name != NULL && name[0] == 'O');
6698}
6699
6700/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6701 returns the name of the discriminant controlling the variant.
6702 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6703
d2e4a39e 6704char *
ebf56fd3 6705ada_variant_discrim_name (struct type *type0)
14f9c5c9 6706{
d2e4a39e 6707 static char *result = NULL;
14f9c5c9 6708 static size_t result_len = 0;
d2e4a39e
AS
6709 struct type *type;
6710 const char *name;
6711 const char *discrim_end;
6712 const char *discrim_start;
14f9c5c9
AS
6713
6714 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6715 type = TYPE_TARGET_TYPE (type0);
6716 else
6717 type = type0;
6718
6719 name = ada_type_name (type);
6720
6721 if (name == NULL || name[0] == '\000')
6722 return "";
6723
6724 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6725 discrim_end -= 1)
6726 {
4c4b4cd2
PH
6727 if (strncmp (discrim_end, "___XVN", 6) == 0)
6728 break;
14f9c5c9
AS
6729 }
6730 if (discrim_end == name)
6731 return "";
6732
d2e4a39e 6733 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6734 discrim_start -= 1)
6735 {
d2e4a39e 6736 if (discrim_start == name + 1)
4c4b4cd2 6737 return "";
76a01679 6738 if ((discrim_start > name + 3
4c4b4cd2
PH
6739 && strncmp (discrim_start - 3, "___", 3) == 0)
6740 || discrim_start[-1] == '.')
6741 break;
14f9c5c9
AS
6742 }
6743
6744 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6745 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6746 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6747 return result;
6748}
6749
4c4b4cd2
PH
6750/* Scan STR for a subtype-encoded number, beginning at position K.
6751 Put the position of the character just past the number scanned in
6752 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6753 Return 1 if there was a valid number at the given position, and 0
6754 otherwise. A "subtype-encoded" number consists of the absolute value
6755 in decimal, followed by the letter 'm' to indicate a negative number.
6756 Assumes 0m does not occur. */
14f9c5c9
AS
6757
6758int
d2e4a39e 6759ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6760{
6761 ULONGEST RU;
6762
d2e4a39e 6763 if (!isdigit (str[k]))
14f9c5c9
AS
6764 return 0;
6765
4c4b4cd2 6766 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6767 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6768 LONGEST. */
14f9c5c9
AS
6769 RU = 0;
6770 while (isdigit (str[k]))
6771 {
d2e4a39e 6772 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6773 k += 1;
6774 }
6775
d2e4a39e 6776 if (str[k] == 'm')
14f9c5c9
AS
6777 {
6778 if (R != NULL)
4c4b4cd2 6779 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6780 k += 1;
6781 }
6782 else if (R != NULL)
6783 *R = (LONGEST) RU;
6784
4c4b4cd2 6785 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6786 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6787 number representable as a LONGEST (although either would probably work
6788 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6789 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6790
6791 if (new_k != NULL)
6792 *new_k = k;
6793 return 1;
6794}
6795
4c4b4cd2
PH
6796/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6797 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6798 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6799
d2e4a39e 6800int
ebf56fd3 6801ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6802{
d2e4a39e 6803 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6804 int p;
6805
6806 p = 0;
6807 while (1)
6808 {
d2e4a39e 6809 switch (name[p])
4c4b4cd2
PH
6810 {
6811 case '\0':
6812 return 0;
6813 case 'S':
6814 {
6815 LONGEST W;
5b4ee69b 6816
4c4b4cd2
PH
6817 if (!ada_scan_number (name, p + 1, &W, &p))
6818 return 0;
6819 if (val == W)
6820 return 1;
6821 break;
6822 }
6823 case 'R':
6824 {
6825 LONGEST L, U;
5b4ee69b 6826
4c4b4cd2
PH
6827 if (!ada_scan_number (name, p + 1, &L, &p)
6828 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6829 return 0;
6830 if (val >= L && val <= U)
6831 return 1;
6832 break;
6833 }
6834 case 'O':
6835 return 1;
6836 default:
6837 return 0;
6838 }
6839 }
6840}
6841
0963b4bd 6842/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6843
6844/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6845 ARG_TYPE, extract and return the value of one of its (non-static)
6846 fields. FIELDNO says which field. Differs from value_primitive_field
6847 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6848
4c4b4cd2 6849static struct value *
d2e4a39e 6850ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6851 struct type *arg_type)
14f9c5c9 6852{
14f9c5c9
AS
6853 struct type *type;
6854
61ee279c 6855 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6856 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6857
4c4b4cd2 6858 /* Handle packed fields. */
14f9c5c9
AS
6859
6860 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6861 {
6862 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6863 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6864
0fd88904 6865 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6866 offset + bit_pos / 8,
6867 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6868 }
6869 else
6870 return value_primitive_field (arg1, offset, fieldno, arg_type);
6871}
6872
52ce6436
PH
6873/* Find field with name NAME in object of type TYPE. If found,
6874 set the following for each argument that is non-null:
6875 - *FIELD_TYPE_P to the field's type;
6876 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6877 an object of that type;
6878 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6879 - *BIT_SIZE_P to its size in bits if the field is packed, and
6880 0 otherwise;
6881 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6882 fields up to but not including the desired field, or by the total
6883 number of fields if not found. A NULL value of NAME never
6884 matches; the function just counts visible fields in this case.
6885
0963b4bd 6886 Returns 1 if found, 0 otherwise. */
52ce6436 6887
4c4b4cd2 6888static int
0d5cff50 6889find_struct_field (const char *name, struct type *type, int offset,
76a01679 6890 struct type **field_type_p,
52ce6436
PH
6891 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6892 int *index_p)
4c4b4cd2
PH
6893{
6894 int i;
6895
61ee279c 6896 type = ada_check_typedef (type);
76a01679 6897
52ce6436
PH
6898 if (field_type_p != NULL)
6899 *field_type_p = NULL;
6900 if (byte_offset_p != NULL)
d5d6fca5 6901 *byte_offset_p = 0;
52ce6436
PH
6902 if (bit_offset_p != NULL)
6903 *bit_offset_p = 0;
6904 if (bit_size_p != NULL)
6905 *bit_size_p = 0;
6906
6907 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6908 {
6909 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6910 int fld_offset = offset + bit_pos / 8;
0d5cff50 6911 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6912
4c4b4cd2
PH
6913 if (t_field_name == NULL)
6914 continue;
6915
52ce6436 6916 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6917 {
6918 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6919
52ce6436
PH
6920 if (field_type_p != NULL)
6921 *field_type_p = TYPE_FIELD_TYPE (type, i);
6922 if (byte_offset_p != NULL)
6923 *byte_offset_p = fld_offset;
6924 if (bit_offset_p != NULL)
6925 *bit_offset_p = bit_pos % 8;
6926 if (bit_size_p != NULL)
6927 *bit_size_p = bit_size;
76a01679
JB
6928 return 1;
6929 }
4c4b4cd2
PH
6930 else if (ada_is_wrapper_field (type, i))
6931 {
52ce6436
PH
6932 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6933 field_type_p, byte_offset_p, bit_offset_p,
6934 bit_size_p, index_p))
76a01679
JB
6935 return 1;
6936 }
4c4b4cd2
PH
6937 else if (ada_is_variant_part (type, i))
6938 {
52ce6436
PH
6939 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6940 fixed type?? */
4c4b4cd2 6941 int j;
52ce6436
PH
6942 struct type *field_type
6943 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6944
52ce6436 6945 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6946 {
76a01679
JB
6947 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6948 fld_offset
6949 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6950 field_type_p, byte_offset_p,
52ce6436 6951 bit_offset_p, bit_size_p, index_p))
76a01679 6952 return 1;
4c4b4cd2
PH
6953 }
6954 }
52ce6436
PH
6955 else if (index_p != NULL)
6956 *index_p += 1;
4c4b4cd2
PH
6957 }
6958 return 0;
6959}
6960
0963b4bd 6961/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6962
52ce6436
PH
6963static int
6964num_visible_fields (struct type *type)
6965{
6966 int n;
5b4ee69b 6967
52ce6436
PH
6968 n = 0;
6969 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6970 return n;
6971}
14f9c5c9 6972
4c4b4cd2 6973/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6974 and search in it assuming it has (class) type TYPE.
6975 If found, return value, else return NULL.
6976
4c4b4cd2 6977 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6978
4c4b4cd2 6979static struct value *
d2e4a39e 6980ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6981 struct type *type)
14f9c5c9
AS
6982{
6983 int i;
14f9c5c9 6984
5b4ee69b 6985 type = ada_check_typedef (type);
52ce6436 6986 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6987 {
0d5cff50 6988 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6989
6990 if (t_field_name == NULL)
4c4b4cd2 6991 continue;
14f9c5c9
AS
6992
6993 else if (field_name_match (t_field_name, name))
4c4b4cd2 6994 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6995
6996 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6997 {
0963b4bd 6998 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6999 ada_search_struct_field (name, arg,
7000 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7001 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7002
4c4b4cd2
PH
7003 if (v != NULL)
7004 return v;
7005 }
14f9c5c9
AS
7006
7007 else if (ada_is_variant_part (type, i))
4c4b4cd2 7008 {
0963b4bd 7009 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7010 int j;
5b4ee69b
MS
7011 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7012 i));
4c4b4cd2
PH
7013 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7014
52ce6436 7015 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7016 {
0963b4bd
MS
7017 struct value *v = ada_search_struct_field /* Force line
7018 break. */
06d5cf63
JB
7019 (name, arg,
7020 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7021 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7022
4c4b4cd2
PH
7023 if (v != NULL)
7024 return v;
7025 }
7026 }
14f9c5c9
AS
7027 }
7028 return NULL;
7029}
d2e4a39e 7030
52ce6436
PH
7031static struct value *ada_index_struct_field_1 (int *, struct value *,
7032 int, struct type *);
7033
7034
7035/* Return field #INDEX in ARG, where the index is that returned by
7036 * find_struct_field through its INDEX_P argument. Adjust the address
7037 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7038 * If found, return value, else return NULL. */
52ce6436
PH
7039
7040static struct value *
7041ada_index_struct_field (int index, struct value *arg, int offset,
7042 struct type *type)
7043{
7044 return ada_index_struct_field_1 (&index, arg, offset, type);
7045}
7046
7047
7048/* Auxiliary function for ada_index_struct_field. Like
7049 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7050 * *INDEX_P. */
52ce6436
PH
7051
7052static struct value *
7053ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7054 struct type *type)
7055{
7056 int i;
7057 type = ada_check_typedef (type);
7058
7059 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7060 {
7061 if (TYPE_FIELD_NAME (type, i) == NULL)
7062 continue;
7063 else if (ada_is_wrapper_field (type, i))
7064 {
0963b4bd 7065 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7066 ada_index_struct_field_1 (index_p, arg,
7067 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7068 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7069
52ce6436
PH
7070 if (v != NULL)
7071 return v;
7072 }
7073
7074 else if (ada_is_variant_part (type, i))
7075 {
7076 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7077 find_struct_field. */
52ce6436
PH
7078 error (_("Cannot assign this kind of variant record"));
7079 }
7080 else if (*index_p == 0)
7081 return ada_value_primitive_field (arg, offset, i, type);
7082 else
7083 *index_p -= 1;
7084 }
7085 return NULL;
7086}
7087
4c4b4cd2
PH
7088/* Given ARG, a value of type (pointer or reference to a)*
7089 structure/union, extract the component named NAME from the ultimate
7090 target structure/union and return it as a value with its
f5938064 7091 appropriate type.
14f9c5c9 7092
4c4b4cd2
PH
7093 The routine searches for NAME among all members of the structure itself
7094 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7095 (e.g., '_parent').
7096
03ee6b2e
PH
7097 If NO_ERR, then simply return NULL in case of error, rather than
7098 calling error. */
14f9c5c9 7099
d2e4a39e 7100struct value *
03ee6b2e 7101ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7102{
4c4b4cd2 7103 struct type *t, *t1;
d2e4a39e 7104 struct value *v;
14f9c5c9 7105
4c4b4cd2 7106 v = NULL;
df407dfe 7107 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7108 if (TYPE_CODE (t) == TYPE_CODE_REF)
7109 {
7110 t1 = TYPE_TARGET_TYPE (t);
7111 if (t1 == NULL)
03ee6b2e 7112 goto BadValue;
61ee279c 7113 t1 = ada_check_typedef (t1);
4c4b4cd2 7114 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7115 {
994b9211 7116 arg = coerce_ref (arg);
76a01679
JB
7117 t = t1;
7118 }
4c4b4cd2 7119 }
14f9c5c9 7120
4c4b4cd2
PH
7121 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7122 {
7123 t1 = TYPE_TARGET_TYPE (t);
7124 if (t1 == NULL)
03ee6b2e 7125 goto BadValue;
61ee279c 7126 t1 = ada_check_typedef (t1);
4c4b4cd2 7127 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7128 {
7129 arg = value_ind (arg);
7130 t = t1;
7131 }
4c4b4cd2 7132 else
76a01679 7133 break;
4c4b4cd2 7134 }
14f9c5c9 7135
4c4b4cd2 7136 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7137 goto BadValue;
14f9c5c9 7138
4c4b4cd2
PH
7139 if (t1 == t)
7140 v = ada_search_struct_field (name, arg, 0, t);
7141 else
7142 {
7143 int bit_offset, bit_size, byte_offset;
7144 struct type *field_type;
7145 CORE_ADDR address;
7146
76a01679 7147 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7148 address = value_address (ada_value_ind (arg));
4c4b4cd2 7149 else
b50d69b5 7150 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7151
1ed6ede0 7152 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7153 if (find_struct_field (name, t1, 0,
7154 &field_type, &byte_offset, &bit_offset,
52ce6436 7155 &bit_size, NULL))
76a01679
JB
7156 {
7157 if (bit_size != 0)
7158 {
714e53ab
PH
7159 if (TYPE_CODE (t) == TYPE_CODE_REF)
7160 arg = ada_coerce_ref (arg);
7161 else
7162 arg = ada_value_ind (arg);
76a01679
JB
7163 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7164 bit_offset, bit_size,
7165 field_type);
7166 }
7167 else
f5938064 7168 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7169 }
7170 }
7171
03ee6b2e
PH
7172 if (v != NULL || no_err)
7173 return v;
7174 else
323e0a4a 7175 error (_("There is no member named %s."), name);
14f9c5c9 7176
03ee6b2e
PH
7177 BadValue:
7178 if (no_err)
7179 return NULL;
7180 else
0963b4bd
MS
7181 error (_("Attempt to extract a component of "
7182 "a value that is not a record."));
14f9c5c9
AS
7183}
7184
7185/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7186 If DISPP is non-null, add its byte displacement from the beginning of a
7187 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7188 work for packed fields).
7189
7190 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7191 followed by "___".
14f9c5c9 7192
0963b4bd 7193 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7194 be a (pointer or reference)+ to a struct or union, and the
7195 ultimate target type will be searched.
14f9c5c9
AS
7196
7197 Looks recursively into variant clauses and parent types.
7198
4c4b4cd2
PH
7199 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7200 TYPE is not a type of the right kind. */
14f9c5c9 7201
4c4b4cd2 7202static struct type *
76a01679
JB
7203ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7204 int noerr, int *dispp)
14f9c5c9
AS
7205{
7206 int i;
7207
7208 if (name == NULL)
7209 goto BadName;
7210
76a01679 7211 if (refok && type != NULL)
4c4b4cd2
PH
7212 while (1)
7213 {
61ee279c 7214 type = ada_check_typedef (type);
76a01679
JB
7215 if (TYPE_CODE (type) != TYPE_CODE_PTR
7216 && TYPE_CODE (type) != TYPE_CODE_REF)
7217 break;
7218 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7219 }
14f9c5c9 7220
76a01679 7221 if (type == NULL
1265e4aa
JB
7222 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7223 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7224 {
4c4b4cd2 7225 if (noerr)
76a01679 7226 return NULL;
4c4b4cd2 7227 else
76a01679
JB
7228 {
7229 target_terminal_ours ();
7230 gdb_flush (gdb_stdout);
323e0a4a
AC
7231 if (type == NULL)
7232 error (_("Type (null) is not a structure or union type"));
7233 else
7234 {
7235 /* XXX: type_sprint */
7236 fprintf_unfiltered (gdb_stderr, _("Type "));
7237 type_print (type, "", gdb_stderr, -1);
7238 error (_(" is not a structure or union type"));
7239 }
76a01679 7240 }
14f9c5c9
AS
7241 }
7242
7243 type = to_static_fixed_type (type);
7244
7245 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7246 {
0d5cff50 7247 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7248 struct type *t;
7249 int disp;
d2e4a39e 7250
14f9c5c9 7251 if (t_field_name == NULL)
4c4b4cd2 7252 continue;
14f9c5c9
AS
7253
7254 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7255 {
7256 if (dispp != NULL)
7257 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7258 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7259 }
14f9c5c9
AS
7260
7261 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7262 {
7263 disp = 0;
7264 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7265 0, 1, &disp);
7266 if (t != NULL)
7267 {
7268 if (dispp != NULL)
7269 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7270 return t;
7271 }
7272 }
14f9c5c9
AS
7273
7274 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7275 {
7276 int j;
5b4ee69b
MS
7277 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7278 i));
4c4b4cd2
PH
7279
7280 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7281 {
b1f33ddd
JB
7282 /* FIXME pnh 2008/01/26: We check for a field that is
7283 NOT wrapped in a struct, since the compiler sometimes
7284 generates these for unchecked variant types. Revisit
0963b4bd 7285 if the compiler changes this practice. */
0d5cff50 7286 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7287 disp = 0;
b1f33ddd
JB
7288 if (v_field_name != NULL
7289 && field_name_match (v_field_name, name))
7290 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7291 else
0963b4bd
MS
7292 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7293 j),
b1f33ddd
JB
7294 name, 0, 1, &disp);
7295
4c4b4cd2
PH
7296 if (t != NULL)
7297 {
7298 if (dispp != NULL)
7299 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7300 return t;
7301 }
7302 }
7303 }
14f9c5c9
AS
7304
7305 }
7306
7307BadName:
d2e4a39e 7308 if (!noerr)
14f9c5c9
AS
7309 {
7310 target_terminal_ours ();
7311 gdb_flush (gdb_stdout);
323e0a4a
AC
7312 if (name == NULL)
7313 {
7314 /* XXX: type_sprint */
7315 fprintf_unfiltered (gdb_stderr, _("Type "));
7316 type_print (type, "", gdb_stderr, -1);
7317 error (_(" has no component named <null>"));
7318 }
7319 else
7320 {
7321 /* XXX: type_sprint */
7322 fprintf_unfiltered (gdb_stderr, _("Type "));
7323 type_print (type, "", gdb_stderr, -1);
7324 error (_(" has no component named %s"), name);
7325 }
14f9c5c9
AS
7326 }
7327
7328 return NULL;
7329}
7330
b1f33ddd
JB
7331/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7332 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7333 represents an unchecked union (that is, the variant part of a
0963b4bd 7334 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7335
7336static int
7337is_unchecked_variant (struct type *var_type, struct type *outer_type)
7338{
7339 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7340
b1f33ddd
JB
7341 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7342 == NULL);
7343}
7344
7345
14f9c5c9
AS
7346/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7347 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7348 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7349 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7350
d2e4a39e 7351int
ebf56fd3 7352ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7353 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7354{
7355 int others_clause;
7356 int i;
d2e4a39e 7357 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7358 struct value *outer;
7359 struct value *discrim;
14f9c5c9
AS
7360 LONGEST discrim_val;
7361
012370f6
TT
7362 /* Using plain value_from_contents_and_address here causes problems
7363 because we will end up trying to resolve a type that is currently
7364 being constructed. */
7365 outer = value_from_contents_and_address_unresolved (outer_type,
7366 outer_valaddr, 0);
0c281816
JB
7367 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7368 if (discrim == NULL)
14f9c5c9 7369 return -1;
0c281816 7370 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7371
7372 others_clause = -1;
7373 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7374 {
7375 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7376 others_clause = i;
14f9c5c9 7377 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7378 return i;
14f9c5c9
AS
7379 }
7380
7381 return others_clause;
7382}
d2e4a39e 7383\f
14f9c5c9
AS
7384
7385
4c4b4cd2 7386 /* Dynamic-Sized Records */
14f9c5c9
AS
7387
7388/* Strategy: The type ostensibly attached to a value with dynamic size
7389 (i.e., a size that is not statically recorded in the debugging
7390 data) does not accurately reflect the size or layout of the value.
7391 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7392 conventional types that are constructed on the fly. */
14f9c5c9
AS
7393
7394/* There is a subtle and tricky problem here. In general, we cannot
7395 determine the size of dynamic records without its data. However,
7396 the 'struct value' data structure, which GDB uses to represent
7397 quantities in the inferior process (the target), requires the size
7398 of the type at the time of its allocation in order to reserve space
7399 for GDB's internal copy of the data. That's why the
7400 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7401 rather than struct value*s.
14f9c5c9
AS
7402
7403 However, GDB's internal history variables ($1, $2, etc.) are
7404 struct value*s containing internal copies of the data that are not, in
7405 general, the same as the data at their corresponding addresses in
7406 the target. Fortunately, the types we give to these values are all
7407 conventional, fixed-size types (as per the strategy described
7408 above), so that we don't usually have to perform the
7409 'to_fixed_xxx_type' conversions to look at their values.
7410 Unfortunately, there is one exception: if one of the internal
7411 history variables is an array whose elements are unconstrained
7412 records, then we will need to create distinct fixed types for each
7413 element selected. */
7414
7415/* The upshot of all of this is that many routines take a (type, host
7416 address, target address) triple as arguments to represent a value.
7417 The host address, if non-null, is supposed to contain an internal
7418 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7419 target at the target address. */
14f9c5c9
AS
7420
7421/* Assuming that VAL0 represents a pointer value, the result of
7422 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7423 dynamic-sized types. */
14f9c5c9 7424
d2e4a39e
AS
7425struct value *
7426ada_value_ind (struct value *val0)
14f9c5c9 7427{
c48db5ca 7428 struct value *val = value_ind (val0);
5b4ee69b 7429
b50d69b5
JG
7430 if (ada_is_tagged_type (value_type (val), 0))
7431 val = ada_tag_value_at_base_address (val);
7432
4c4b4cd2 7433 return ada_to_fixed_value (val);
14f9c5c9
AS
7434}
7435
7436/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7437 qualifiers on VAL0. */
7438
d2e4a39e
AS
7439static struct value *
7440ada_coerce_ref (struct value *val0)
7441{
df407dfe 7442 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7443 {
7444 struct value *val = val0;
5b4ee69b 7445
994b9211 7446 val = coerce_ref (val);
b50d69b5
JG
7447
7448 if (ada_is_tagged_type (value_type (val), 0))
7449 val = ada_tag_value_at_base_address (val);
7450
4c4b4cd2 7451 return ada_to_fixed_value (val);
d2e4a39e
AS
7452 }
7453 else
14f9c5c9
AS
7454 return val0;
7455}
7456
7457/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7458 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7459
7460static unsigned int
ebf56fd3 7461align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7462{
7463 return (off + alignment - 1) & ~(alignment - 1);
7464}
7465
4c4b4cd2 7466/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7467
7468static unsigned int
ebf56fd3 7469field_alignment (struct type *type, int f)
14f9c5c9 7470{
d2e4a39e 7471 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7472 int len;
14f9c5c9
AS
7473 int align_offset;
7474
64a1bf19
JB
7475 /* The field name should never be null, unless the debugging information
7476 is somehow malformed. In this case, we assume the field does not
7477 require any alignment. */
7478 if (name == NULL)
7479 return 1;
7480
7481 len = strlen (name);
7482
4c4b4cd2
PH
7483 if (!isdigit (name[len - 1]))
7484 return 1;
14f9c5c9 7485
d2e4a39e 7486 if (isdigit (name[len - 2]))
14f9c5c9
AS
7487 align_offset = len - 2;
7488 else
7489 align_offset = len - 1;
7490
4c4b4cd2 7491 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7492 return TARGET_CHAR_BIT;
7493
4c4b4cd2
PH
7494 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7495}
7496
852dff6c 7497/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7498
852dff6c
JB
7499static struct symbol *
7500ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7501{
7502 struct symbol *sym;
7503
7504 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7505 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7506 return sym;
7507
4186eb54
KS
7508 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7509 return sym;
14f9c5c9
AS
7510}
7511
dddfab26
UW
7512/* Find a type named NAME. Ignores ambiguity. This routine will look
7513 solely for types defined by debug info, it will not search the GDB
7514 primitive types. */
4c4b4cd2 7515
852dff6c 7516static struct type *
ebf56fd3 7517ada_find_any_type (const char *name)
14f9c5c9 7518{
852dff6c 7519 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7520
14f9c5c9 7521 if (sym != NULL)
dddfab26 7522 return SYMBOL_TYPE (sym);
14f9c5c9 7523
dddfab26 7524 return NULL;
14f9c5c9
AS
7525}
7526
739593e0
JB
7527/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7528 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7529 symbol, in which case it is returned. Otherwise, this looks for
7530 symbols whose name is that of NAME_SYM suffixed with "___XR".
7531 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7532
7533struct symbol *
270140bd 7534ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7535{
739593e0 7536 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7537 struct symbol *sym;
7538
739593e0
JB
7539 if (strstr (name, "___XR") != NULL)
7540 return name_sym;
7541
aeb5907d
JB
7542 sym = find_old_style_renaming_symbol (name, block);
7543
7544 if (sym != NULL)
7545 return sym;
7546
0963b4bd 7547 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7548 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7549 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7550 return sym;
7551 else
7552 return NULL;
7553}
7554
7555static struct symbol *
270140bd 7556find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7557{
7f0df278 7558 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7559 char *rename;
7560
7561 if (function_sym != NULL)
7562 {
7563 /* If the symbol is defined inside a function, NAME is not fully
7564 qualified. This means we need to prepend the function name
7565 as well as adding the ``___XR'' suffix to build the name of
7566 the associated renaming symbol. */
0d5cff50 7567 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7568 /* Function names sometimes contain suffixes used
7569 for instance to qualify nested subprograms. When building
7570 the XR type name, we need to make sure that this suffix is
7571 not included. So do not include any suffix in the function
7572 name length below. */
69fadcdf 7573 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7574 const int rename_len = function_name_len + 2 /* "__" */
7575 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7576
529cad9c 7577 /* Strip the suffix if necessary. */
69fadcdf
JB
7578 ada_remove_trailing_digits (function_name, &function_name_len);
7579 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7580 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7581
4c4b4cd2
PH
7582 /* Library-level functions are a special case, as GNAT adds
7583 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7584 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7585 have this prefix, so we need to skip this prefix if present. */
7586 if (function_name_len > 5 /* "_ada_" */
7587 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7588 {
7589 function_name += 5;
7590 function_name_len -= 5;
7591 }
4c4b4cd2
PH
7592
7593 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7594 strncpy (rename, function_name, function_name_len);
7595 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7596 "__%s___XR", name);
4c4b4cd2
PH
7597 }
7598 else
7599 {
7600 const int rename_len = strlen (name) + 6;
5b4ee69b 7601
4c4b4cd2 7602 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7603 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7604 }
7605
852dff6c 7606 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7607}
7608
14f9c5c9 7609/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7610 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7611 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7612 otherwise return 0. */
7613
14f9c5c9 7614int
d2e4a39e 7615ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7616{
7617 if (type1 == NULL)
7618 return 1;
7619 else if (type0 == NULL)
7620 return 0;
7621 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7622 return 1;
7623 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7624 return 0;
4c4b4cd2
PH
7625 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7626 return 1;
ad82864c 7627 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7628 return 1;
4c4b4cd2
PH
7629 else if (ada_is_array_descriptor_type (type0)
7630 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7631 return 1;
aeb5907d
JB
7632 else
7633 {
7634 const char *type0_name = type_name_no_tag (type0);
7635 const char *type1_name = type_name_no_tag (type1);
7636
7637 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7638 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7639 return 1;
7640 }
14f9c5c9
AS
7641 return 0;
7642}
7643
7644/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7645 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7646
0d5cff50 7647const char *
d2e4a39e 7648ada_type_name (struct type *type)
14f9c5c9 7649{
d2e4a39e 7650 if (type == NULL)
14f9c5c9
AS
7651 return NULL;
7652 else if (TYPE_NAME (type) != NULL)
7653 return TYPE_NAME (type);
7654 else
7655 return TYPE_TAG_NAME (type);
7656}
7657
b4ba55a1
JB
7658/* Search the list of "descriptive" types associated to TYPE for a type
7659 whose name is NAME. */
7660
7661static struct type *
7662find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7663{
7664 struct type *result;
7665
c6044dd1
JB
7666 if (ada_ignore_descriptive_types_p)
7667 return NULL;
7668
b4ba55a1
JB
7669 /* If there no descriptive-type info, then there is no parallel type
7670 to be found. */
7671 if (!HAVE_GNAT_AUX_INFO (type))
7672 return NULL;
7673
7674 result = TYPE_DESCRIPTIVE_TYPE (type);
7675 while (result != NULL)
7676 {
0d5cff50 7677 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7678
7679 if (result_name == NULL)
7680 {
7681 warning (_("unexpected null name on descriptive type"));
7682 return NULL;
7683 }
7684
7685 /* If the names match, stop. */
7686 if (strcmp (result_name, name) == 0)
7687 break;
7688
7689 /* Otherwise, look at the next item on the list, if any. */
7690 if (HAVE_GNAT_AUX_INFO (result))
7691 result = TYPE_DESCRIPTIVE_TYPE (result);
7692 else
7693 result = NULL;
7694 }
7695
7696 /* If we didn't find a match, see whether this is a packed array. With
7697 older compilers, the descriptive type information is either absent or
7698 irrelevant when it comes to packed arrays so the above lookup fails.
7699 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7700 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7701 return ada_find_any_type (name);
7702
7703 return result;
7704}
7705
7706/* Find a parallel type to TYPE with the specified NAME, using the
7707 descriptive type taken from the debugging information, if available,
7708 and otherwise using the (slower) name-based method. */
7709
7710static struct type *
7711ada_find_parallel_type_with_name (struct type *type, const char *name)
7712{
7713 struct type *result = NULL;
7714
7715 if (HAVE_GNAT_AUX_INFO (type))
7716 result = find_parallel_type_by_descriptive_type (type, name);
7717 else
7718 result = ada_find_any_type (name);
7719
7720 return result;
7721}
7722
7723/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7724 SUFFIX to the name of TYPE. */
14f9c5c9 7725
d2e4a39e 7726struct type *
ebf56fd3 7727ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7728{
0d5cff50
DE
7729 char *name;
7730 const char *typename = ada_type_name (type);
14f9c5c9 7731 int len;
d2e4a39e 7732
14f9c5c9
AS
7733 if (typename == NULL)
7734 return NULL;
7735
7736 len = strlen (typename);
7737
b4ba55a1 7738 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7739
7740 strcpy (name, typename);
7741 strcpy (name + len, suffix);
7742
b4ba55a1 7743 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7744}
7745
14f9c5c9 7746/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7747 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7748
d2e4a39e
AS
7749static struct type *
7750dynamic_template_type (struct type *type)
14f9c5c9 7751{
61ee279c 7752 type = ada_check_typedef (type);
14f9c5c9
AS
7753
7754 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7755 || ada_type_name (type) == NULL)
14f9c5c9 7756 return NULL;
d2e4a39e 7757 else
14f9c5c9
AS
7758 {
7759 int len = strlen (ada_type_name (type));
5b4ee69b 7760
4c4b4cd2
PH
7761 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7762 return type;
14f9c5c9 7763 else
4c4b4cd2 7764 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7765 }
7766}
7767
7768/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7769 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7770
d2e4a39e
AS
7771static int
7772is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7773{
7774 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7775
d2e4a39e 7776 return name != NULL
14f9c5c9
AS
7777 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7778 && strstr (name, "___XVL") != NULL;
7779}
7780
4c4b4cd2
PH
7781/* The index of the variant field of TYPE, or -1 if TYPE does not
7782 represent a variant record type. */
14f9c5c9 7783
d2e4a39e 7784static int
4c4b4cd2 7785variant_field_index (struct type *type)
14f9c5c9
AS
7786{
7787 int f;
7788
4c4b4cd2
PH
7789 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7790 return -1;
7791
7792 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7793 {
7794 if (ada_is_variant_part (type, f))
7795 return f;
7796 }
7797 return -1;
14f9c5c9
AS
7798}
7799
4c4b4cd2
PH
7800/* A record type with no fields. */
7801
d2e4a39e 7802static struct type *
e9bb382b 7803empty_record (struct type *template)
14f9c5c9 7804{
e9bb382b 7805 struct type *type = alloc_type_copy (template);
5b4ee69b 7806
14f9c5c9
AS
7807 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7808 TYPE_NFIELDS (type) = 0;
7809 TYPE_FIELDS (type) = NULL;
b1f33ddd 7810 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7811 TYPE_NAME (type) = "<empty>";
7812 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7813 TYPE_LENGTH (type) = 0;
7814 return type;
7815}
7816
7817/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7818 the value of type TYPE at VALADDR or ADDRESS (see comments at
7819 the beginning of this section) VAL according to GNAT conventions.
7820 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7821 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7822 an outer-level type (i.e., as opposed to a branch of a variant.) A
7823 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7824 of the variant.
14f9c5c9 7825
4c4b4cd2
PH
7826 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7827 length are not statically known are discarded. As a consequence,
7828 VALADDR, ADDRESS and DVAL0 are ignored.
7829
7830 NOTE: Limitations: For now, we assume that dynamic fields and
7831 variants occupy whole numbers of bytes. However, they need not be
7832 byte-aligned. */
7833
7834struct type *
10a2c479 7835ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7836 const gdb_byte *valaddr,
4c4b4cd2
PH
7837 CORE_ADDR address, struct value *dval0,
7838 int keep_dynamic_fields)
14f9c5c9 7839{
d2e4a39e
AS
7840 struct value *mark = value_mark ();
7841 struct value *dval;
7842 struct type *rtype;
14f9c5c9 7843 int nfields, bit_len;
4c4b4cd2 7844 int variant_field;
14f9c5c9 7845 long off;
d94e4f4f 7846 int fld_bit_len;
14f9c5c9
AS
7847 int f;
7848
4c4b4cd2
PH
7849 /* Compute the number of fields in this record type that are going
7850 to be processed: unless keep_dynamic_fields, this includes only
7851 fields whose position and length are static will be processed. */
7852 if (keep_dynamic_fields)
7853 nfields = TYPE_NFIELDS (type);
7854 else
7855 {
7856 nfields = 0;
76a01679 7857 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7858 && !ada_is_variant_part (type, nfields)
7859 && !is_dynamic_field (type, nfields))
7860 nfields++;
7861 }
7862
e9bb382b 7863 rtype = alloc_type_copy (type);
14f9c5c9
AS
7864 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7865 INIT_CPLUS_SPECIFIC (rtype);
7866 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7867 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7868 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7869 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7870 TYPE_NAME (rtype) = ada_type_name (type);
7871 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7872 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7873
d2e4a39e
AS
7874 off = 0;
7875 bit_len = 0;
4c4b4cd2
PH
7876 variant_field = -1;
7877
14f9c5c9
AS
7878 for (f = 0; f < nfields; f += 1)
7879 {
6c038f32
PH
7880 off = align_value (off, field_alignment (type, f))
7881 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7882 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7883 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7884
d2e4a39e 7885 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7886 {
7887 variant_field = f;
d94e4f4f 7888 fld_bit_len = 0;
4c4b4cd2 7889 }
14f9c5c9 7890 else if (is_dynamic_field (type, f))
4c4b4cd2 7891 {
284614f0
JB
7892 const gdb_byte *field_valaddr = valaddr;
7893 CORE_ADDR field_address = address;
7894 struct type *field_type =
7895 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7896
4c4b4cd2 7897 if (dval0 == NULL)
b5304971
JG
7898 {
7899 /* rtype's length is computed based on the run-time
7900 value of discriminants. If the discriminants are not
7901 initialized, the type size may be completely bogus and
0963b4bd 7902 GDB may fail to allocate a value for it. So check the
b5304971
JG
7903 size first before creating the value. */
7904 check_size (rtype);
012370f6
TT
7905 /* Using plain value_from_contents_and_address here
7906 causes problems because we will end up trying to
7907 resolve a type that is currently being
7908 constructed. */
7909 dval = value_from_contents_and_address_unresolved (rtype,
7910 valaddr,
7911 address);
9f1f738a 7912 rtype = value_type (dval);
b5304971 7913 }
4c4b4cd2
PH
7914 else
7915 dval = dval0;
7916
284614f0
JB
7917 /* If the type referenced by this field is an aligner type, we need
7918 to unwrap that aligner type, because its size might not be set.
7919 Keeping the aligner type would cause us to compute the wrong
7920 size for this field, impacting the offset of the all the fields
7921 that follow this one. */
7922 if (ada_is_aligner_type (field_type))
7923 {
7924 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7925
7926 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7927 field_address = cond_offset_target (field_address, field_offset);
7928 field_type = ada_aligned_type (field_type);
7929 }
7930
7931 field_valaddr = cond_offset_host (field_valaddr,
7932 off / TARGET_CHAR_BIT);
7933 field_address = cond_offset_target (field_address,
7934 off / TARGET_CHAR_BIT);
7935
7936 /* Get the fixed type of the field. Note that, in this case,
7937 we do not want to get the real type out of the tag: if
7938 the current field is the parent part of a tagged record,
7939 we will get the tag of the object. Clearly wrong: the real
7940 type of the parent is not the real type of the child. We
7941 would end up in an infinite loop. */
7942 field_type = ada_get_base_type (field_type);
7943 field_type = ada_to_fixed_type (field_type, field_valaddr,
7944 field_address, dval, 0);
27f2a97b
JB
7945 /* If the field size is already larger than the maximum
7946 object size, then the record itself will necessarily
7947 be larger than the maximum object size. We need to make
7948 this check now, because the size might be so ridiculously
7949 large (due to an uninitialized variable in the inferior)
7950 that it would cause an overflow when adding it to the
7951 record size. */
7952 check_size (field_type);
284614f0
JB
7953
7954 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7955 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7956 /* The multiplication can potentially overflow. But because
7957 the field length has been size-checked just above, and
7958 assuming that the maximum size is a reasonable value,
7959 an overflow should not happen in practice. So rather than
7960 adding overflow recovery code to this already complex code,
7961 we just assume that it's not going to happen. */
d94e4f4f 7962 fld_bit_len =
4c4b4cd2
PH
7963 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7964 }
14f9c5c9 7965 else
4c4b4cd2 7966 {
5ded5331
JB
7967 /* Note: If this field's type is a typedef, it is important
7968 to preserve the typedef layer.
7969
7970 Otherwise, we might be transforming a typedef to a fat
7971 pointer (encoding a pointer to an unconstrained array),
7972 into a basic fat pointer (encoding an unconstrained
7973 array). As both types are implemented using the same
7974 structure, the typedef is the only clue which allows us
7975 to distinguish between the two options. Stripping it
7976 would prevent us from printing this field appropriately. */
7977 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7978 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7979 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7980 fld_bit_len =
4c4b4cd2
PH
7981 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7982 else
5ded5331
JB
7983 {
7984 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7985
7986 /* We need to be careful of typedefs when computing
7987 the length of our field. If this is a typedef,
7988 get the length of the target type, not the length
7989 of the typedef. */
7990 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7991 field_type = ada_typedef_target_type (field_type);
7992
7993 fld_bit_len =
7994 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7995 }
4c4b4cd2 7996 }
14f9c5c9 7997 if (off + fld_bit_len > bit_len)
4c4b4cd2 7998 bit_len = off + fld_bit_len;
d94e4f4f 7999 off += fld_bit_len;
4c4b4cd2
PH
8000 TYPE_LENGTH (rtype) =
8001 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8002 }
4c4b4cd2
PH
8003
8004 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8005 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8006 the record. This can happen in the presence of representation
8007 clauses. */
8008 if (variant_field >= 0)
8009 {
8010 struct type *branch_type;
8011
8012 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8013
8014 if (dval0 == NULL)
9f1f738a 8015 {
012370f6
TT
8016 /* Using plain value_from_contents_and_address here causes
8017 problems because we will end up trying to resolve a type
8018 that is currently being constructed. */
8019 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8020 address);
9f1f738a
SA
8021 rtype = value_type (dval);
8022 }
4c4b4cd2
PH
8023 else
8024 dval = dval0;
8025
8026 branch_type =
8027 to_fixed_variant_branch_type
8028 (TYPE_FIELD_TYPE (type, variant_field),
8029 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8030 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8031 if (branch_type == NULL)
8032 {
8033 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8034 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8035 TYPE_NFIELDS (rtype) -= 1;
8036 }
8037 else
8038 {
8039 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8040 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8041 fld_bit_len =
8042 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8043 TARGET_CHAR_BIT;
8044 if (off + fld_bit_len > bit_len)
8045 bit_len = off + fld_bit_len;
8046 TYPE_LENGTH (rtype) =
8047 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8048 }
8049 }
8050
714e53ab
PH
8051 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8052 should contain the alignment of that record, which should be a strictly
8053 positive value. If null or negative, then something is wrong, most
8054 probably in the debug info. In that case, we don't round up the size
0963b4bd 8055 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8056 the current RTYPE length might be good enough for our purposes. */
8057 if (TYPE_LENGTH (type) <= 0)
8058 {
323e0a4a
AC
8059 if (TYPE_NAME (rtype))
8060 warning (_("Invalid type size for `%s' detected: %d."),
8061 TYPE_NAME (rtype), TYPE_LENGTH (type));
8062 else
8063 warning (_("Invalid type size for <unnamed> detected: %d."),
8064 TYPE_LENGTH (type));
714e53ab
PH
8065 }
8066 else
8067 {
8068 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8069 TYPE_LENGTH (type));
8070 }
14f9c5c9
AS
8071
8072 value_free_to_mark (mark);
d2e4a39e 8073 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8074 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8075 return rtype;
8076}
8077
4c4b4cd2
PH
8078/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8079 of 1. */
14f9c5c9 8080
d2e4a39e 8081static struct type *
fc1a4b47 8082template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8083 CORE_ADDR address, struct value *dval0)
8084{
8085 return ada_template_to_fixed_record_type_1 (type, valaddr,
8086 address, dval0, 1);
8087}
8088
8089/* An ordinary record type in which ___XVL-convention fields and
8090 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8091 static approximations, containing all possible fields. Uses
8092 no runtime values. Useless for use in values, but that's OK,
8093 since the results are used only for type determinations. Works on both
8094 structs and unions. Representation note: to save space, we memorize
8095 the result of this function in the TYPE_TARGET_TYPE of the
8096 template type. */
8097
8098static struct type *
8099template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8100{
8101 struct type *type;
8102 int nfields;
8103 int f;
8104
4c4b4cd2
PH
8105 if (TYPE_TARGET_TYPE (type0) != NULL)
8106 return TYPE_TARGET_TYPE (type0);
8107
8108 nfields = TYPE_NFIELDS (type0);
8109 type = type0;
14f9c5c9
AS
8110
8111 for (f = 0; f < nfields; f += 1)
8112 {
61ee279c 8113 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 8114 struct type *new_type;
14f9c5c9 8115
4c4b4cd2
PH
8116 if (is_dynamic_field (type0, f))
8117 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 8118 else
f192137b 8119 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8120 if (type == type0 && new_type != field_type)
8121 {
e9bb382b 8122 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8123 TYPE_CODE (type) = TYPE_CODE (type0);
8124 INIT_CPLUS_SPECIFIC (type);
8125 TYPE_NFIELDS (type) = nfields;
8126 TYPE_FIELDS (type) = (struct field *)
8127 TYPE_ALLOC (type, nfields * sizeof (struct field));
8128 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8129 sizeof (struct field) * nfields);
8130 TYPE_NAME (type) = ada_type_name (type0);
8131 TYPE_TAG_NAME (type) = NULL;
876cecd0 8132 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8133 TYPE_LENGTH (type) = 0;
8134 }
8135 TYPE_FIELD_TYPE (type, f) = new_type;
8136 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8137 }
14f9c5c9
AS
8138 return type;
8139}
8140
4c4b4cd2 8141/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8142 whose address in memory is ADDRESS, returns a revision of TYPE,
8143 which should be a non-dynamic-sized record, in which the variant
8144 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8145 for discriminant values in DVAL0, which can be NULL if the record
8146 contains the necessary discriminant values. */
8147
d2e4a39e 8148static struct type *
fc1a4b47 8149to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8150 CORE_ADDR address, struct value *dval0)
14f9c5c9 8151{
d2e4a39e 8152 struct value *mark = value_mark ();
4c4b4cd2 8153 struct value *dval;
d2e4a39e 8154 struct type *rtype;
14f9c5c9
AS
8155 struct type *branch_type;
8156 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8157 int variant_field = variant_field_index (type);
14f9c5c9 8158
4c4b4cd2 8159 if (variant_field == -1)
14f9c5c9
AS
8160 return type;
8161
4c4b4cd2 8162 if (dval0 == NULL)
9f1f738a
SA
8163 {
8164 dval = value_from_contents_and_address (type, valaddr, address);
8165 type = value_type (dval);
8166 }
4c4b4cd2
PH
8167 else
8168 dval = dval0;
8169
e9bb382b 8170 rtype = alloc_type_copy (type);
14f9c5c9 8171 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8172 INIT_CPLUS_SPECIFIC (rtype);
8173 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8174 TYPE_FIELDS (rtype) =
8175 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8176 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8177 sizeof (struct field) * nfields);
14f9c5c9
AS
8178 TYPE_NAME (rtype) = ada_type_name (type);
8179 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8180 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8181 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8182
4c4b4cd2
PH
8183 branch_type = to_fixed_variant_branch_type
8184 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8185 cond_offset_host (valaddr,
4c4b4cd2
PH
8186 TYPE_FIELD_BITPOS (type, variant_field)
8187 / TARGET_CHAR_BIT),
d2e4a39e 8188 cond_offset_target (address,
4c4b4cd2
PH
8189 TYPE_FIELD_BITPOS (type, variant_field)
8190 / TARGET_CHAR_BIT), dval);
d2e4a39e 8191 if (branch_type == NULL)
14f9c5c9 8192 {
4c4b4cd2 8193 int f;
5b4ee69b 8194
4c4b4cd2
PH
8195 for (f = variant_field + 1; f < nfields; f += 1)
8196 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8197 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8198 }
8199 else
8200 {
4c4b4cd2
PH
8201 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8202 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8203 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8204 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8205 }
4c4b4cd2 8206 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8207
4c4b4cd2 8208 value_free_to_mark (mark);
14f9c5c9
AS
8209 return rtype;
8210}
8211
8212/* An ordinary record type (with fixed-length fields) that describes
8213 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8214 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8215 should be in DVAL, a record value; it may be NULL if the object
8216 at ADDR itself contains any necessary discriminant values.
8217 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8218 values from the record are needed. Except in the case that DVAL,
8219 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8220 unchecked) is replaced by a particular branch of the variant.
8221
8222 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8223 is questionable and may be removed. It can arise during the
8224 processing of an unconstrained-array-of-record type where all the
8225 variant branches have exactly the same size. This is because in
8226 such cases, the compiler does not bother to use the XVS convention
8227 when encoding the record. I am currently dubious of this
8228 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8229
d2e4a39e 8230static struct type *
fc1a4b47 8231to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8232 CORE_ADDR address, struct value *dval)
14f9c5c9 8233{
d2e4a39e 8234 struct type *templ_type;
14f9c5c9 8235
876cecd0 8236 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8237 return type0;
8238
d2e4a39e 8239 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8240
8241 if (templ_type != NULL)
8242 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8243 else if (variant_field_index (type0) >= 0)
8244 {
8245 if (dval == NULL && valaddr == NULL && address == 0)
8246 return type0;
8247 return to_record_with_fixed_variant_part (type0, valaddr, address,
8248 dval);
8249 }
14f9c5c9
AS
8250 else
8251 {
876cecd0 8252 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8253 return type0;
8254 }
8255
8256}
8257
8258/* An ordinary record type (with fixed-length fields) that describes
8259 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8260 union type. Any necessary discriminants' values should be in DVAL,
8261 a record value. That is, this routine selects the appropriate
8262 branch of the union at ADDR according to the discriminant value
b1f33ddd 8263 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8264 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8265
d2e4a39e 8266static struct type *
fc1a4b47 8267to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8268 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8269{
8270 int which;
d2e4a39e
AS
8271 struct type *templ_type;
8272 struct type *var_type;
14f9c5c9
AS
8273
8274 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8275 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8276 else
14f9c5c9
AS
8277 var_type = var_type0;
8278
8279 templ_type = ada_find_parallel_type (var_type, "___XVU");
8280
8281 if (templ_type != NULL)
8282 var_type = templ_type;
8283
b1f33ddd
JB
8284 if (is_unchecked_variant (var_type, value_type (dval)))
8285 return var_type0;
d2e4a39e
AS
8286 which =
8287 ada_which_variant_applies (var_type,
0fd88904 8288 value_type (dval), value_contents (dval));
14f9c5c9
AS
8289
8290 if (which < 0)
e9bb382b 8291 return empty_record (var_type);
14f9c5c9 8292 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8293 return to_fixed_record_type
d2e4a39e
AS
8294 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8295 valaddr, address, dval);
4c4b4cd2 8296 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8297 return
8298 to_fixed_record_type
8299 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8300 else
8301 return TYPE_FIELD_TYPE (var_type, which);
8302}
8303
8304/* Assuming that TYPE0 is an array type describing the type of a value
8305 at ADDR, and that DVAL describes a record containing any
8306 discriminants used in TYPE0, returns a type for the value that
8307 contains no dynamic components (that is, no components whose sizes
8308 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8309 true, gives an error message if the resulting type's size is over
4c4b4cd2 8310 varsize_limit. */
14f9c5c9 8311
d2e4a39e
AS
8312static struct type *
8313to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8314 int ignore_too_big)
14f9c5c9 8315{
d2e4a39e
AS
8316 struct type *index_type_desc;
8317 struct type *result;
ad82864c 8318 int constrained_packed_array_p;
14f9c5c9 8319
b0dd7688 8320 type0 = ada_check_typedef (type0);
284614f0 8321 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8322 return type0;
14f9c5c9 8323
ad82864c
JB
8324 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8325 if (constrained_packed_array_p)
8326 type0 = decode_constrained_packed_array_type (type0);
284614f0 8327
14f9c5c9 8328 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8329 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8330 if (index_type_desc == NULL)
8331 {
61ee279c 8332 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8333
14f9c5c9 8334 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8335 depend on the contents of the array in properly constructed
8336 debugging data. */
529cad9c
PH
8337 /* Create a fixed version of the array element type.
8338 We're not providing the address of an element here,
e1d5a0d2 8339 and thus the actual object value cannot be inspected to do
529cad9c
PH
8340 the conversion. This should not be a problem, since arrays of
8341 unconstrained objects are not allowed. In particular, all
8342 the elements of an array of a tagged type should all be of
8343 the same type specified in the debugging info. No need to
8344 consult the object tag. */
1ed6ede0 8345 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8346
284614f0
JB
8347 /* Make sure we always create a new array type when dealing with
8348 packed array types, since we're going to fix-up the array
8349 type length and element bitsize a little further down. */
ad82864c 8350 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8351 result = type0;
14f9c5c9 8352 else
e9bb382b 8353 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8354 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8355 }
8356 else
8357 {
8358 int i;
8359 struct type *elt_type0;
8360
8361 elt_type0 = type0;
8362 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8363 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8364
8365 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8366 depend on the contents of the array in properly constructed
8367 debugging data. */
529cad9c
PH
8368 /* Create a fixed version of the array element type.
8369 We're not providing the address of an element here,
e1d5a0d2 8370 and thus the actual object value cannot be inspected to do
529cad9c
PH
8371 the conversion. This should not be a problem, since arrays of
8372 unconstrained objects are not allowed. In particular, all
8373 the elements of an array of a tagged type should all be of
8374 the same type specified in the debugging info. No need to
8375 consult the object tag. */
1ed6ede0
JB
8376 result =
8377 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8378
8379 elt_type0 = type0;
14f9c5c9 8380 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8381 {
8382 struct type *range_type =
28c85d6c 8383 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8384
e9bb382b 8385 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8386 result, range_type);
1ce677a4 8387 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8388 }
d2e4a39e 8389 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8390 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8391 }
8392
2e6fda7d
JB
8393 /* We want to preserve the type name. This can be useful when
8394 trying to get the type name of a value that has already been
8395 printed (for instance, if the user did "print VAR; whatis $". */
8396 TYPE_NAME (result) = TYPE_NAME (type0);
8397
ad82864c 8398 if (constrained_packed_array_p)
284614f0
JB
8399 {
8400 /* So far, the resulting type has been created as if the original
8401 type was a regular (non-packed) array type. As a result, the
8402 bitsize of the array elements needs to be set again, and the array
8403 length needs to be recomputed based on that bitsize. */
8404 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8405 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8406
8407 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8408 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8409 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8410 TYPE_LENGTH (result)++;
8411 }
8412
876cecd0 8413 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8414 return result;
d2e4a39e 8415}
14f9c5c9
AS
8416
8417
8418/* A standard type (containing no dynamically sized components)
8419 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8420 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8421 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8422 ADDRESS or in VALADDR contains these discriminants.
8423
1ed6ede0
JB
8424 If CHECK_TAG is not null, in the case of tagged types, this function
8425 attempts to locate the object's tag and use it to compute the actual
8426 type. However, when ADDRESS is null, we cannot use it to determine the
8427 location of the tag, and therefore compute the tagged type's actual type.
8428 So we return the tagged type without consulting the tag. */
529cad9c 8429
f192137b
JB
8430static struct type *
8431ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8432 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8433{
61ee279c 8434 type = ada_check_typedef (type);
d2e4a39e
AS
8435 switch (TYPE_CODE (type))
8436 {
8437 default:
14f9c5c9 8438 return type;
d2e4a39e 8439 case TYPE_CODE_STRUCT:
4c4b4cd2 8440 {
76a01679 8441 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8442 struct type *fixed_record_type =
8443 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8444
529cad9c
PH
8445 /* If STATIC_TYPE is a tagged type and we know the object's address,
8446 then we can determine its tag, and compute the object's actual
0963b4bd 8447 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8448 type (the parent part of the record may have dynamic fields
8449 and the way the location of _tag is expressed may depend on
8450 them). */
529cad9c 8451
1ed6ede0 8452 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8453 {
b50d69b5
JG
8454 struct value *tag =
8455 value_tag_from_contents_and_address
8456 (fixed_record_type,
8457 valaddr,
8458 address);
8459 struct type *real_type = type_from_tag (tag);
8460 struct value *obj =
8461 value_from_contents_and_address (fixed_record_type,
8462 valaddr,
8463 address);
9f1f738a 8464 fixed_record_type = value_type (obj);
76a01679 8465 if (real_type != NULL)
b50d69b5
JG
8466 return to_fixed_record_type
8467 (real_type, NULL,
8468 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8469 }
4af88198
JB
8470
8471 /* Check to see if there is a parallel ___XVZ variable.
8472 If there is, then it provides the actual size of our type. */
8473 else if (ada_type_name (fixed_record_type) != NULL)
8474 {
0d5cff50 8475 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8476 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8477 int xvz_found = 0;
8478 LONGEST size;
8479
88c15c34 8480 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8481 size = get_int_var_value (xvz_name, &xvz_found);
8482 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8483 {
8484 fixed_record_type = copy_type (fixed_record_type);
8485 TYPE_LENGTH (fixed_record_type) = size;
8486
8487 /* The FIXED_RECORD_TYPE may have be a stub. We have
8488 observed this when the debugging info is STABS, and
8489 apparently it is something that is hard to fix.
8490
8491 In practice, we don't need the actual type definition
8492 at all, because the presence of the XVZ variable allows us
8493 to assume that there must be a XVS type as well, which we
8494 should be able to use later, when we need the actual type
8495 definition.
8496
8497 In the meantime, pretend that the "fixed" type we are
8498 returning is NOT a stub, because this can cause trouble
8499 when using this type to create new types targeting it.
8500 Indeed, the associated creation routines often check
8501 whether the target type is a stub and will try to replace
0963b4bd 8502 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8503 might cause the new type to have the wrong size too.
8504 Consider the case of an array, for instance, where the size
8505 of the array is computed from the number of elements in
8506 our array multiplied by the size of its element. */
8507 TYPE_STUB (fixed_record_type) = 0;
8508 }
8509 }
1ed6ede0 8510 return fixed_record_type;
4c4b4cd2 8511 }
d2e4a39e 8512 case TYPE_CODE_ARRAY:
4c4b4cd2 8513 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8514 case TYPE_CODE_UNION:
8515 if (dval == NULL)
4c4b4cd2 8516 return type;
d2e4a39e 8517 else
4c4b4cd2 8518 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8519 }
14f9c5c9
AS
8520}
8521
f192137b
JB
8522/* The same as ada_to_fixed_type_1, except that it preserves the type
8523 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8524
8525 The typedef layer needs be preserved in order to differentiate between
8526 arrays and array pointers when both types are implemented using the same
8527 fat pointer. In the array pointer case, the pointer is encoded as
8528 a typedef of the pointer type. For instance, considering:
8529
8530 type String_Access is access String;
8531 S1 : String_Access := null;
8532
8533 To the debugger, S1 is defined as a typedef of type String. But
8534 to the user, it is a pointer. So if the user tries to print S1,
8535 we should not dereference the array, but print the array address
8536 instead.
8537
8538 If we didn't preserve the typedef layer, we would lose the fact that
8539 the type is to be presented as a pointer (needs de-reference before
8540 being printed). And we would also use the source-level type name. */
f192137b
JB
8541
8542struct type *
8543ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8544 CORE_ADDR address, struct value *dval, int check_tag)
8545
8546{
8547 struct type *fixed_type =
8548 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8549
96dbd2c1
JB
8550 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8551 then preserve the typedef layer.
8552
8553 Implementation note: We can only check the main-type portion of
8554 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8555 from TYPE now returns a type that has the same instance flags
8556 as TYPE. For instance, if TYPE is a "typedef const", and its
8557 target type is a "struct", then the typedef elimination will return
8558 a "const" version of the target type. See check_typedef for more
8559 details about how the typedef layer elimination is done.
8560
8561 brobecker/2010-11-19: It seems to me that the only case where it is
8562 useful to preserve the typedef layer is when dealing with fat pointers.
8563 Perhaps, we could add a check for that and preserve the typedef layer
8564 only in that situation. But this seems unecessary so far, probably
8565 because we call check_typedef/ada_check_typedef pretty much everywhere.
8566 */
f192137b 8567 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8568 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8569 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8570 return type;
8571
8572 return fixed_type;
8573}
8574
14f9c5c9 8575/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8576 TYPE0, but based on no runtime data. */
14f9c5c9 8577
d2e4a39e
AS
8578static struct type *
8579to_static_fixed_type (struct type *type0)
14f9c5c9 8580{
d2e4a39e 8581 struct type *type;
14f9c5c9
AS
8582
8583 if (type0 == NULL)
8584 return NULL;
8585
876cecd0 8586 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8587 return type0;
8588
61ee279c 8589 type0 = ada_check_typedef (type0);
d2e4a39e 8590
14f9c5c9
AS
8591 switch (TYPE_CODE (type0))
8592 {
8593 default:
8594 return type0;
8595 case TYPE_CODE_STRUCT:
8596 type = dynamic_template_type (type0);
d2e4a39e 8597 if (type != NULL)
4c4b4cd2
PH
8598 return template_to_static_fixed_type (type);
8599 else
8600 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8601 case TYPE_CODE_UNION:
8602 type = ada_find_parallel_type (type0, "___XVU");
8603 if (type != NULL)
4c4b4cd2
PH
8604 return template_to_static_fixed_type (type);
8605 else
8606 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8607 }
8608}
8609
4c4b4cd2
PH
8610/* A static approximation of TYPE with all type wrappers removed. */
8611
d2e4a39e
AS
8612static struct type *
8613static_unwrap_type (struct type *type)
14f9c5c9
AS
8614{
8615 if (ada_is_aligner_type (type))
8616 {
61ee279c 8617 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8618 if (ada_type_name (type1) == NULL)
4c4b4cd2 8619 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8620
8621 return static_unwrap_type (type1);
8622 }
d2e4a39e 8623 else
14f9c5c9 8624 {
d2e4a39e 8625 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8626
d2e4a39e 8627 if (raw_real_type == type)
4c4b4cd2 8628 return type;
14f9c5c9 8629 else
4c4b4cd2 8630 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8631 }
8632}
8633
8634/* In some cases, incomplete and private types require
4c4b4cd2 8635 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8636 type Foo;
8637 type FooP is access Foo;
8638 V: FooP;
8639 type Foo is array ...;
4c4b4cd2 8640 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8641 cross-references to such types, we instead substitute for FooP a
8642 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8643 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8644
8645/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8646 exists, otherwise TYPE. */
8647
d2e4a39e 8648struct type *
61ee279c 8649ada_check_typedef (struct type *type)
14f9c5c9 8650{
727e3d2e
JB
8651 if (type == NULL)
8652 return NULL;
8653
720d1a40
JB
8654 /* If our type is a typedef type of a fat pointer, then we're done.
8655 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8656 what allows us to distinguish between fat pointers that represent
8657 array types, and fat pointers that represent array access types
8658 (in both cases, the compiler implements them as fat pointers). */
8659 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8660 && is_thick_pntr (ada_typedef_target_type (type)))
8661 return type;
8662
14f9c5c9
AS
8663 CHECK_TYPEDEF (type);
8664 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8665 || !TYPE_STUB (type)
14f9c5c9
AS
8666 || TYPE_TAG_NAME (type) == NULL)
8667 return type;
d2e4a39e 8668 else
14f9c5c9 8669 {
0d5cff50 8670 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8671 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8672
05e522ef
JB
8673 if (type1 == NULL)
8674 return type;
8675
8676 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8677 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8678 types, only for the typedef-to-array types). If that's the case,
8679 strip the typedef layer. */
8680 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8681 type1 = ada_check_typedef (type1);
8682
8683 return type1;
14f9c5c9
AS
8684 }
8685}
8686
8687/* A value representing the data at VALADDR/ADDRESS as described by
8688 type TYPE0, but with a standard (static-sized) type that correctly
8689 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8690 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8691 creation of struct values]. */
14f9c5c9 8692
4c4b4cd2
PH
8693static struct value *
8694ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8695 struct value *val0)
14f9c5c9 8696{
1ed6ede0 8697 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8698
14f9c5c9
AS
8699 if (type == type0 && val0 != NULL)
8700 return val0;
d2e4a39e 8701 else
4c4b4cd2
PH
8702 return value_from_contents_and_address (type, 0, address);
8703}
8704
8705/* A value representing VAL, but with a standard (static-sized) type
8706 that correctly describes it. Does not necessarily create a new
8707 value. */
8708
0c3acc09 8709struct value *
4c4b4cd2
PH
8710ada_to_fixed_value (struct value *val)
8711{
c48db5ca
JB
8712 val = unwrap_value (val);
8713 val = ada_to_fixed_value_create (value_type (val),
8714 value_address (val),
8715 val);
8716 return val;
14f9c5c9 8717}
d2e4a39e 8718\f
14f9c5c9 8719
14f9c5c9
AS
8720/* Attributes */
8721
4c4b4cd2
PH
8722/* Table mapping attribute numbers to names.
8723 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8724
d2e4a39e 8725static const char *attribute_names[] = {
14f9c5c9
AS
8726 "<?>",
8727
d2e4a39e 8728 "first",
14f9c5c9
AS
8729 "last",
8730 "length",
8731 "image",
14f9c5c9
AS
8732 "max",
8733 "min",
4c4b4cd2
PH
8734 "modulus",
8735 "pos",
8736 "size",
8737 "tag",
14f9c5c9 8738 "val",
14f9c5c9
AS
8739 0
8740};
8741
d2e4a39e 8742const char *
4c4b4cd2 8743ada_attribute_name (enum exp_opcode n)
14f9c5c9 8744{
4c4b4cd2
PH
8745 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8746 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8747 else
8748 return attribute_names[0];
8749}
8750
4c4b4cd2 8751/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8752
4c4b4cd2
PH
8753static LONGEST
8754pos_atr (struct value *arg)
14f9c5c9 8755{
24209737
PH
8756 struct value *val = coerce_ref (arg);
8757 struct type *type = value_type (val);
14f9c5c9 8758
d2e4a39e 8759 if (!discrete_type_p (type))
323e0a4a 8760 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8761
8762 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8763 {
8764 int i;
24209737 8765 LONGEST v = value_as_long (val);
14f9c5c9 8766
d2e4a39e 8767 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8768 {
14e75d8e 8769 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8770 return i;
8771 }
323e0a4a 8772 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8773 }
8774 else
24209737 8775 return value_as_long (val);
4c4b4cd2
PH
8776}
8777
8778static struct value *
3cb382c9 8779value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8780{
3cb382c9 8781 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8782}
8783
4c4b4cd2 8784/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8785
d2e4a39e
AS
8786static struct value *
8787value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8788{
d2e4a39e 8789 if (!discrete_type_p (type))
323e0a4a 8790 error (_("'VAL only defined on discrete types"));
df407dfe 8791 if (!integer_type_p (value_type (arg)))
323e0a4a 8792 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8793
8794 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8795 {
8796 long pos = value_as_long (arg);
5b4ee69b 8797
14f9c5c9 8798 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8799 error (_("argument to 'VAL out of range"));
14e75d8e 8800 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8801 }
8802 else
8803 return value_from_longest (type, value_as_long (arg));
8804}
14f9c5c9 8805\f
d2e4a39e 8806
4c4b4cd2 8807 /* Evaluation */
14f9c5c9 8808
4c4b4cd2
PH
8809/* True if TYPE appears to be an Ada character type.
8810 [At the moment, this is true only for Character and Wide_Character;
8811 It is a heuristic test that could stand improvement]. */
14f9c5c9 8812
d2e4a39e
AS
8813int
8814ada_is_character_type (struct type *type)
14f9c5c9 8815{
7b9f71f2
JB
8816 const char *name;
8817
8818 /* If the type code says it's a character, then assume it really is,
8819 and don't check any further. */
8820 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8821 return 1;
8822
8823 /* Otherwise, assume it's a character type iff it is a discrete type
8824 with a known character type name. */
8825 name = ada_type_name (type);
8826 return (name != NULL
8827 && (TYPE_CODE (type) == TYPE_CODE_INT
8828 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8829 && (strcmp (name, "character") == 0
8830 || strcmp (name, "wide_character") == 0
5a517ebd 8831 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8832 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8833}
8834
4c4b4cd2 8835/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8836
8837int
ebf56fd3 8838ada_is_string_type (struct type *type)
14f9c5c9 8839{
61ee279c 8840 type = ada_check_typedef (type);
d2e4a39e 8841 if (type != NULL
14f9c5c9 8842 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8843 && (ada_is_simple_array_type (type)
8844 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8845 && ada_array_arity (type) == 1)
8846 {
8847 struct type *elttype = ada_array_element_type (type, 1);
8848
8849 return ada_is_character_type (elttype);
8850 }
d2e4a39e 8851 else
14f9c5c9
AS
8852 return 0;
8853}
8854
5bf03f13
JB
8855/* The compiler sometimes provides a parallel XVS type for a given
8856 PAD type. Normally, it is safe to follow the PAD type directly,
8857 but older versions of the compiler have a bug that causes the offset
8858 of its "F" field to be wrong. Following that field in that case
8859 would lead to incorrect results, but this can be worked around
8860 by ignoring the PAD type and using the associated XVS type instead.
8861
8862 Set to True if the debugger should trust the contents of PAD types.
8863 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8864static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8865
8866/* True if TYPE is a struct type introduced by the compiler to force the
8867 alignment of a value. Such types have a single field with a
4c4b4cd2 8868 distinctive name. */
14f9c5c9
AS
8869
8870int
ebf56fd3 8871ada_is_aligner_type (struct type *type)
14f9c5c9 8872{
61ee279c 8873 type = ada_check_typedef (type);
714e53ab 8874
5bf03f13 8875 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8876 return 0;
8877
14f9c5c9 8878 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8879 && TYPE_NFIELDS (type) == 1
8880 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8881}
8882
8883/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8884 the parallel type. */
14f9c5c9 8885
d2e4a39e
AS
8886struct type *
8887ada_get_base_type (struct type *raw_type)
14f9c5c9 8888{
d2e4a39e
AS
8889 struct type *real_type_namer;
8890 struct type *raw_real_type;
14f9c5c9
AS
8891
8892 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8893 return raw_type;
8894
284614f0
JB
8895 if (ada_is_aligner_type (raw_type))
8896 /* The encoding specifies that we should always use the aligner type.
8897 So, even if this aligner type has an associated XVS type, we should
8898 simply ignore it.
8899
8900 According to the compiler gurus, an XVS type parallel to an aligner
8901 type may exist because of a stabs limitation. In stabs, aligner
8902 types are empty because the field has a variable-sized type, and
8903 thus cannot actually be used as an aligner type. As a result,
8904 we need the associated parallel XVS type to decode the type.
8905 Since the policy in the compiler is to not change the internal
8906 representation based on the debugging info format, we sometimes
8907 end up having a redundant XVS type parallel to the aligner type. */
8908 return raw_type;
8909
14f9c5c9 8910 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8911 if (real_type_namer == NULL
14f9c5c9
AS
8912 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8913 || TYPE_NFIELDS (real_type_namer) != 1)
8914 return raw_type;
8915
f80d3ff2
JB
8916 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8917 {
8918 /* This is an older encoding form where the base type needs to be
8919 looked up by name. We prefer the newer enconding because it is
8920 more efficient. */
8921 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8922 if (raw_real_type == NULL)
8923 return raw_type;
8924 else
8925 return raw_real_type;
8926 }
8927
8928 /* The field in our XVS type is a reference to the base type. */
8929 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8930}
14f9c5c9 8931
4c4b4cd2 8932/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8933
d2e4a39e
AS
8934struct type *
8935ada_aligned_type (struct type *type)
14f9c5c9
AS
8936{
8937 if (ada_is_aligner_type (type))
8938 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8939 else
8940 return ada_get_base_type (type);
8941}
8942
8943
8944/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8945 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8946
fc1a4b47
AC
8947const gdb_byte *
8948ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8949{
d2e4a39e 8950 if (ada_is_aligner_type (type))
14f9c5c9 8951 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8952 valaddr +
8953 TYPE_FIELD_BITPOS (type,
8954 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8955 else
8956 return valaddr;
8957}
8958
4c4b4cd2
PH
8959
8960
14f9c5c9 8961/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8962 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8963const char *
8964ada_enum_name (const char *name)
14f9c5c9 8965{
4c4b4cd2
PH
8966 static char *result;
8967 static size_t result_len = 0;
d2e4a39e 8968 char *tmp;
14f9c5c9 8969
4c4b4cd2
PH
8970 /* First, unqualify the enumeration name:
8971 1. Search for the last '.' character. If we find one, then skip
177b42fe 8972 all the preceding characters, the unqualified name starts
76a01679 8973 right after that dot.
4c4b4cd2 8974 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8975 translates dots into "__". Search forward for double underscores,
8976 but stop searching when we hit an overloading suffix, which is
8977 of the form "__" followed by digits. */
4c4b4cd2 8978
c3e5cd34
PH
8979 tmp = strrchr (name, '.');
8980 if (tmp != NULL)
4c4b4cd2
PH
8981 name = tmp + 1;
8982 else
14f9c5c9 8983 {
4c4b4cd2
PH
8984 while ((tmp = strstr (name, "__")) != NULL)
8985 {
8986 if (isdigit (tmp[2]))
8987 break;
8988 else
8989 name = tmp + 2;
8990 }
14f9c5c9
AS
8991 }
8992
8993 if (name[0] == 'Q')
8994 {
14f9c5c9 8995 int v;
5b4ee69b 8996
14f9c5c9 8997 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8998 {
8999 if (sscanf (name + 2, "%x", &v) != 1)
9000 return name;
9001 }
14f9c5c9 9002 else
4c4b4cd2 9003 return name;
14f9c5c9 9004
4c4b4cd2 9005 GROW_VECT (result, result_len, 16);
14f9c5c9 9006 if (isascii (v) && isprint (v))
88c15c34 9007 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9008 else if (name[1] == 'U')
88c15c34 9009 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9010 else
88c15c34 9011 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9012
9013 return result;
9014 }
d2e4a39e 9015 else
4c4b4cd2 9016 {
c3e5cd34
PH
9017 tmp = strstr (name, "__");
9018 if (tmp == NULL)
9019 tmp = strstr (name, "$");
9020 if (tmp != NULL)
4c4b4cd2
PH
9021 {
9022 GROW_VECT (result, result_len, tmp - name + 1);
9023 strncpy (result, name, tmp - name);
9024 result[tmp - name] = '\0';
9025 return result;
9026 }
9027
9028 return name;
9029 }
14f9c5c9
AS
9030}
9031
14f9c5c9
AS
9032/* Evaluate the subexpression of EXP starting at *POS as for
9033 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9034 expression. */
14f9c5c9 9035
d2e4a39e
AS
9036static struct value *
9037evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9038{
4b27a620 9039 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9040}
9041
9042/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9043 value it wraps. */
14f9c5c9 9044
d2e4a39e
AS
9045static struct value *
9046unwrap_value (struct value *val)
14f9c5c9 9047{
df407dfe 9048 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9049
14f9c5c9
AS
9050 if (ada_is_aligner_type (type))
9051 {
de4d072f 9052 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9053 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9054
14f9c5c9 9055 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9056 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9057
9058 return unwrap_value (v);
9059 }
d2e4a39e 9060 else
14f9c5c9 9061 {
d2e4a39e 9062 struct type *raw_real_type =
61ee279c 9063 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9064
5bf03f13
JB
9065 /* If there is no parallel XVS or XVE type, then the value is
9066 already unwrapped. Return it without further modification. */
9067 if ((type == raw_real_type)
9068 && ada_find_parallel_type (type, "___XVE") == NULL)
9069 return val;
14f9c5c9 9070
d2e4a39e 9071 return
4c4b4cd2
PH
9072 coerce_unspec_val_to_type
9073 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9074 value_address (val),
1ed6ede0 9075 NULL, 1));
14f9c5c9
AS
9076 }
9077}
d2e4a39e
AS
9078
9079static struct value *
9080cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9081{
9082 LONGEST val;
9083
df407dfe 9084 if (type == value_type (arg))
14f9c5c9 9085 return arg;
df407dfe 9086 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9087 val = ada_float_to_fixed (type,
df407dfe 9088 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9089 value_as_long (arg)));
d2e4a39e 9090 else
14f9c5c9 9091 {
a53b7a21 9092 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9093
14f9c5c9
AS
9094 val = ada_float_to_fixed (type, argd);
9095 }
9096
9097 return value_from_longest (type, val);
9098}
9099
d2e4a39e 9100static struct value *
a53b7a21 9101cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9102{
df407dfe 9103 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9104 value_as_long (arg));
5b4ee69b 9105
a53b7a21 9106 return value_from_double (type, val);
14f9c5c9
AS
9107}
9108
d99dcf51
JB
9109/* Given two array types T1 and T2, return nonzero iff both arrays
9110 contain the same number of elements. */
9111
9112static int
9113ada_same_array_size_p (struct type *t1, struct type *t2)
9114{
9115 LONGEST lo1, hi1, lo2, hi2;
9116
9117 /* Get the array bounds in order to verify that the size of
9118 the two arrays match. */
9119 if (!get_array_bounds (t1, &lo1, &hi1)
9120 || !get_array_bounds (t2, &lo2, &hi2))
9121 error (_("unable to determine array bounds"));
9122
9123 /* To make things easier for size comparison, normalize a bit
9124 the case of empty arrays by making sure that the difference
9125 between upper bound and lower bound is always -1. */
9126 if (lo1 > hi1)
9127 hi1 = lo1 - 1;
9128 if (lo2 > hi2)
9129 hi2 = lo2 - 1;
9130
9131 return (hi1 - lo1 == hi2 - lo2);
9132}
9133
9134/* Assuming that VAL is an array of integrals, and TYPE represents
9135 an array with the same number of elements, but with wider integral
9136 elements, return an array "casted" to TYPE. In practice, this
9137 means that the returned array is built by casting each element
9138 of the original array into TYPE's (wider) element type. */
9139
9140static struct value *
9141ada_promote_array_of_integrals (struct type *type, struct value *val)
9142{
9143 struct type *elt_type = TYPE_TARGET_TYPE (type);
9144 LONGEST lo, hi;
9145 struct value *res;
9146 LONGEST i;
9147
9148 /* Verify that both val and type are arrays of scalars, and
9149 that the size of val's elements is smaller than the size
9150 of type's element. */
9151 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9152 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9153 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9154 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9155 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9156 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9157
9158 if (!get_array_bounds (type, &lo, &hi))
9159 error (_("unable to determine array bounds"));
9160
9161 res = allocate_value (type);
9162
9163 /* Promote each array element. */
9164 for (i = 0; i < hi - lo + 1; i++)
9165 {
9166 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9167
9168 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9169 value_contents_all (elt), TYPE_LENGTH (elt_type));
9170 }
9171
9172 return res;
9173}
9174
4c4b4cd2
PH
9175/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9176 return the converted value. */
9177
d2e4a39e
AS
9178static struct value *
9179coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9180{
df407dfe 9181 struct type *type2 = value_type (val);
5b4ee69b 9182
14f9c5c9
AS
9183 if (type == type2)
9184 return val;
9185
61ee279c
PH
9186 type2 = ada_check_typedef (type2);
9187 type = ada_check_typedef (type);
14f9c5c9 9188
d2e4a39e
AS
9189 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9190 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9191 {
9192 val = ada_value_ind (val);
df407dfe 9193 type2 = value_type (val);
14f9c5c9
AS
9194 }
9195
d2e4a39e 9196 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9197 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9198 {
d99dcf51
JB
9199 if (!ada_same_array_size_p (type, type2))
9200 error (_("cannot assign arrays of different length"));
9201
9202 if (is_integral_type (TYPE_TARGET_TYPE (type))
9203 && is_integral_type (TYPE_TARGET_TYPE (type2))
9204 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9205 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9206 {
9207 /* Allow implicit promotion of the array elements to
9208 a wider type. */
9209 return ada_promote_array_of_integrals (type, val);
9210 }
9211
9212 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9213 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9214 error (_("Incompatible types in assignment"));
04624583 9215 deprecated_set_value_type (val, type);
14f9c5c9 9216 }
d2e4a39e 9217 return val;
14f9c5c9
AS
9218}
9219
4c4b4cd2
PH
9220static struct value *
9221ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9222{
9223 struct value *val;
9224 struct type *type1, *type2;
9225 LONGEST v, v1, v2;
9226
994b9211
AC
9227 arg1 = coerce_ref (arg1);
9228 arg2 = coerce_ref (arg2);
18af8284
JB
9229 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9230 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9231
76a01679
JB
9232 if (TYPE_CODE (type1) != TYPE_CODE_INT
9233 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9234 return value_binop (arg1, arg2, op);
9235
76a01679 9236 switch (op)
4c4b4cd2
PH
9237 {
9238 case BINOP_MOD:
9239 case BINOP_DIV:
9240 case BINOP_REM:
9241 break;
9242 default:
9243 return value_binop (arg1, arg2, op);
9244 }
9245
9246 v2 = value_as_long (arg2);
9247 if (v2 == 0)
323e0a4a 9248 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9249
9250 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9251 return value_binop (arg1, arg2, op);
9252
9253 v1 = value_as_long (arg1);
9254 switch (op)
9255 {
9256 case BINOP_DIV:
9257 v = v1 / v2;
76a01679
JB
9258 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9259 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9260 break;
9261 case BINOP_REM:
9262 v = v1 % v2;
76a01679
JB
9263 if (v * v1 < 0)
9264 v -= v2;
4c4b4cd2
PH
9265 break;
9266 default:
9267 /* Should not reach this point. */
9268 v = 0;
9269 }
9270
9271 val = allocate_value (type1);
990a07ab 9272 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9273 TYPE_LENGTH (value_type (val)),
9274 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9275 return val;
9276}
9277
9278static int
9279ada_value_equal (struct value *arg1, struct value *arg2)
9280{
df407dfe
AC
9281 if (ada_is_direct_array_type (value_type (arg1))
9282 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9283 {
f58b38bf
JB
9284 /* Automatically dereference any array reference before
9285 we attempt to perform the comparison. */
9286 arg1 = ada_coerce_ref (arg1);
9287 arg2 = ada_coerce_ref (arg2);
9288
4c4b4cd2
PH
9289 arg1 = ada_coerce_to_simple_array (arg1);
9290 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9291 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9292 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9293 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9294 /* FIXME: The following works only for types whose
76a01679
JB
9295 representations use all bits (no padding or undefined bits)
9296 and do not have user-defined equality. */
9297 return
df407dfe 9298 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9299 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9300 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9301 }
9302 return value_equal (arg1, arg2);
9303}
9304
52ce6436
PH
9305/* Total number of component associations in the aggregate starting at
9306 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9307 OP_AGGREGATE. */
52ce6436
PH
9308
9309static int
9310num_component_specs (struct expression *exp, int pc)
9311{
9312 int n, m, i;
5b4ee69b 9313
52ce6436
PH
9314 m = exp->elts[pc + 1].longconst;
9315 pc += 3;
9316 n = 0;
9317 for (i = 0; i < m; i += 1)
9318 {
9319 switch (exp->elts[pc].opcode)
9320 {
9321 default:
9322 n += 1;
9323 break;
9324 case OP_CHOICES:
9325 n += exp->elts[pc + 1].longconst;
9326 break;
9327 }
9328 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9329 }
9330 return n;
9331}
9332
9333/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9334 component of LHS (a simple array or a record), updating *POS past
9335 the expression, assuming that LHS is contained in CONTAINER. Does
9336 not modify the inferior's memory, nor does it modify LHS (unless
9337 LHS == CONTAINER). */
9338
9339static void
9340assign_component (struct value *container, struct value *lhs, LONGEST index,
9341 struct expression *exp, int *pos)
9342{
9343 struct value *mark = value_mark ();
9344 struct value *elt;
5b4ee69b 9345
52ce6436
PH
9346 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9347 {
22601c15
UW
9348 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9349 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9350
52ce6436
PH
9351 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9352 }
9353 else
9354 {
9355 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9356 elt = ada_to_fixed_value (elt);
52ce6436
PH
9357 }
9358
9359 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9360 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9361 else
9362 value_assign_to_component (container, elt,
9363 ada_evaluate_subexp (NULL, exp, pos,
9364 EVAL_NORMAL));
9365
9366 value_free_to_mark (mark);
9367}
9368
9369/* Assuming that LHS represents an lvalue having a record or array
9370 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9371 of that aggregate's value to LHS, advancing *POS past the
9372 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9373 lvalue containing LHS (possibly LHS itself). Does not modify
9374 the inferior's memory, nor does it modify the contents of
0963b4bd 9375 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9376
9377static struct value *
9378assign_aggregate (struct value *container,
9379 struct value *lhs, struct expression *exp,
9380 int *pos, enum noside noside)
9381{
9382 struct type *lhs_type;
9383 int n = exp->elts[*pos+1].longconst;
9384 LONGEST low_index, high_index;
9385 int num_specs;
9386 LONGEST *indices;
9387 int max_indices, num_indices;
52ce6436 9388 int i;
52ce6436
PH
9389
9390 *pos += 3;
9391 if (noside != EVAL_NORMAL)
9392 {
52ce6436
PH
9393 for (i = 0; i < n; i += 1)
9394 ada_evaluate_subexp (NULL, exp, pos, noside);
9395 return container;
9396 }
9397
9398 container = ada_coerce_ref (container);
9399 if (ada_is_direct_array_type (value_type (container)))
9400 container = ada_coerce_to_simple_array (container);
9401 lhs = ada_coerce_ref (lhs);
9402 if (!deprecated_value_modifiable (lhs))
9403 error (_("Left operand of assignment is not a modifiable lvalue."));
9404
9405 lhs_type = value_type (lhs);
9406 if (ada_is_direct_array_type (lhs_type))
9407 {
9408 lhs = ada_coerce_to_simple_array (lhs);
9409 lhs_type = value_type (lhs);
9410 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9411 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9412 }
9413 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9414 {
9415 low_index = 0;
9416 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9417 }
9418 else
9419 error (_("Left-hand side must be array or record."));
9420
9421 num_specs = num_component_specs (exp, *pos - 3);
9422 max_indices = 4 * num_specs + 4;
9423 indices = alloca (max_indices * sizeof (indices[0]));
9424 indices[0] = indices[1] = low_index - 1;
9425 indices[2] = indices[3] = high_index + 1;
9426 num_indices = 4;
9427
9428 for (i = 0; i < n; i += 1)
9429 {
9430 switch (exp->elts[*pos].opcode)
9431 {
1fbf5ada
JB
9432 case OP_CHOICES:
9433 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9434 &num_indices, max_indices,
9435 low_index, high_index);
9436 break;
9437 case OP_POSITIONAL:
9438 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9439 &num_indices, max_indices,
9440 low_index, high_index);
1fbf5ada
JB
9441 break;
9442 case OP_OTHERS:
9443 if (i != n-1)
9444 error (_("Misplaced 'others' clause"));
9445 aggregate_assign_others (container, lhs, exp, pos, indices,
9446 num_indices, low_index, high_index);
9447 break;
9448 default:
9449 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9450 }
9451 }
9452
9453 return container;
9454}
9455
9456/* Assign into the component of LHS indexed by the OP_POSITIONAL
9457 construct at *POS, updating *POS past the construct, given that
9458 the positions are relative to lower bound LOW, where HIGH is the
9459 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9460 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9461 assign_aggregate. */
52ce6436
PH
9462static void
9463aggregate_assign_positional (struct value *container,
9464 struct value *lhs, struct expression *exp,
9465 int *pos, LONGEST *indices, int *num_indices,
9466 int max_indices, LONGEST low, LONGEST high)
9467{
9468 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9469
9470 if (ind - 1 == high)
e1d5a0d2 9471 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9472 if (ind <= high)
9473 {
9474 add_component_interval (ind, ind, indices, num_indices, max_indices);
9475 *pos += 3;
9476 assign_component (container, lhs, ind, exp, pos);
9477 }
9478 else
9479 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9480}
9481
9482/* Assign into the components of LHS indexed by the OP_CHOICES
9483 construct at *POS, updating *POS past the construct, given that
9484 the allowable indices are LOW..HIGH. Record the indices assigned
9485 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9486 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9487static void
9488aggregate_assign_from_choices (struct value *container,
9489 struct value *lhs, struct expression *exp,
9490 int *pos, LONGEST *indices, int *num_indices,
9491 int max_indices, LONGEST low, LONGEST high)
9492{
9493 int j;
9494 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9495 int choice_pos, expr_pc;
9496 int is_array = ada_is_direct_array_type (value_type (lhs));
9497
9498 choice_pos = *pos += 3;
9499
9500 for (j = 0; j < n_choices; j += 1)
9501 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9502 expr_pc = *pos;
9503 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9504
9505 for (j = 0; j < n_choices; j += 1)
9506 {
9507 LONGEST lower, upper;
9508 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9509
52ce6436
PH
9510 if (op == OP_DISCRETE_RANGE)
9511 {
9512 choice_pos += 1;
9513 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9514 EVAL_NORMAL));
9515 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9516 EVAL_NORMAL));
9517 }
9518 else if (is_array)
9519 {
9520 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9521 EVAL_NORMAL));
9522 upper = lower;
9523 }
9524 else
9525 {
9526 int ind;
0d5cff50 9527 const char *name;
5b4ee69b 9528
52ce6436
PH
9529 switch (op)
9530 {
9531 case OP_NAME:
9532 name = &exp->elts[choice_pos + 2].string;
9533 break;
9534 case OP_VAR_VALUE:
9535 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9536 break;
9537 default:
9538 error (_("Invalid record component association."));
9539 }
9540 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9541 ind = 0;
9542 if (! find_struct_field (name, value_type (lhs), 0,
9543 NULL, NULL, NULL, NULL, &ind))
9544 error (_("Unknown component name: %s."), name);
9545 lower = upper = ind;
9546 }
9547
9548 if (lower <= upper && (lower < low || upper > high))
9549 error (_("Index in component association out of bounds."));
9550
9551 add_component_interval (lower, upper, indices, num_indices,
9552 max_indices);
9553 while (lower <= upper)
9554 {
9555 int pos1;
5b4ee69b 9556
52ce6436
PH
9557 pos1 = expr_pc;
9558 assign_component (container, lhs, lower, exp, &pos1);
9559 lower += 1;
9560 }
9561 }
9562}
9563
9564/* Assign the value of the expression in the OP_OTHERS construct in
9565 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9566 have not been previously assigned. The index intervals already assigned
9567 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9568 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9569static void
9570aggregate_assign_others (struct value *container,
9571 struct value *lhs, struct expression *exp,
9572 int *pos, LONGEST *indices, int num_indices,
9573 LONGEST low, LONGEST high)
9574{
9575 int i;
5ce64950 9576 int expr_pc = *pos + 1;
52ce6436
PH
9577
9578 for (i = 0; i < num_indices - 2; i += 2)
9579 {
9580 LONGEST ind;
5b4ee69b 9581
52ce6436
PH
9582 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9583 {
5ce64950 9584 int localpos;
5b4ee69b 9585
5ce64950
MS
9586 localpos = expr_pc;
9587 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9588 }
9589 }
9590 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9591}
9592
9593/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9594 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9595 modifying *SIZE as needed. It is an error if *SIZE exceeds
9596 MAX_SIZE. The resulting intervals do not overlap. */
9597static void
9598add_component_interval (LONGEST low, LONGEST high,
9599 LONGEST* indices, int *size, int max_size)
9600{
9601 int i, j;
5b4ee69b 9602
52ce6436
PH
9603 for (i = 0; i < *size; i += 2) {
9604 if (high >= indices[i] && low <= indices[i + 1])
9605 {
9606 int kh;
5b4ee69b 9607
52ce6436
PH
9608 for (kh = i + 2; kh < *size; kh += 2)
9609 if (high < indices[kh])
9610 break;
9611 if (low < indices[i])
9612 indices[i] = low;
9613 indices[i + 1] = indices[kh - 1];
9614 if (high > indices[i + 1])
9615 indices[i + 1] = high;
9616 memcpy (indices + i + 2, indices + kh, *size - kh);
9617 *size -= kh - i - 2;
9618 return;
9619 }
9620 else if (high < indices[i])
9621 break;
9622 }
9623
9624 if (*size == max_size)
9625 error (_("Internal error: miscounted aggregate components."));
9626 *size += 2;
9627 for (j = *size-1; j >= i+2; j -= 1)
9628 indices[j] = indices[j - 2];
9629 indices[i] = low;
9630 indices[i + 1] = high;
9631}
9632
6e48bd2c
JB
9633/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9634 is different. */
9635
9636static struct value *
9637ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9638{
9639 if (type == ada_check_typedef (value_type (arg2)))
9640 return arg2;
9641
9642 if (ada_is_fixed_point_type (type))
9643 return (cast_to_fixed (type, arg2));
9644
9645 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9646 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9647
9648 return value_cast (type, arg2);
9649}
9650
284614f0
JB
9651/* Evaluating Ada expressions, and printing their result.
9652 ------------------------------------------------------
9653
21649b50
JB
9654 1. Introduction:
9655 ----------------
9656
284614f0
JB
9657 We usually evaluate an Ada expression in order to print its value.
9658 We also evaluate an expression in order to print its type, which
9659 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9660 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9661 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9662 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9663 similar.
9664
9665 Evaluating expressions is a little more complicated for Ada entities
9666 than it is for entities in languages such as C. The main reason for
9667 this is that Ada provides types whose definition might be dynamic.
9668 One example of such types is variant records. Or another example
9669 would be an array whose bounds can only be known at run time.
9670
9671 The following description is a general guide as to what should be
9672 done (and what should NOT be done) in order to evaluate an expression
9673 involving such types, and when. This does not cover how the semantic
9674 information is encoded by GNAT as this is covered separatly. For the
9675 document used as the reference for the GNAT encoding, see exp_dbug.ads
9676 in the GNAT sources.
9677
9678 Ideally, we should embed each part of this description next to its
9679 associated code. Unfortunately, the amount of code is so vast right
9680 now that it's hard to see whether the code handling a particular
9681 situation might be duplicated or not. One day, when the code is
9682 cleaned up, this guide might become redundant with the comments
9683 inserted in the code, and we might want to remove it.
9684
21649b50
JB
9685 2. ``Fixing'' an Entity, the Simple Case:
9686 -----------------------------------------
9687
284614f0
JB
9688 When evaluating Ada expressions, the tricky issue is that they may
9689 reference entities whose type contents and size are not statically
9690 known. Consider for instance a variant record:
9691
9692 type Rec (Empty : Boolean := True) is record
9693 case Empty is
9694 when True => null;
9695 when False => Value : Integer;
9696 end case;
9697 end record;
9698 Yes : Rec := (Empty => False, Value => 1);
9699 No : Rec := (empty => True);
9700
9701 The size and contents of that record depends on the value of the
9702 descriminant (Rec.Empty). At this point, neither the debugging
9703 information nor the associated type structure in GDB are able to
9704 express such dynamic types. So what the debugger does is to create
9705 "fixed" versions of the type that applies to the specific object.
9706 We also informally refer to this opperation as "fixing" an object,
9707 which means creating its associated fixed type.
9708
9709 Example: when printing the value of variable "Yes" above, its fixed
9710 type would look like this:
9711
9712 type Rec is record
9713 Empty : Boolean;
9714 Value : Integer;
9715 end record;
9716
9717 On the other hand, if we printed the value of "No", its fixed type
9718 would become:
9719
9720 type Rec is record
9721 Empty : Boolean;
9722 end record;
9723
9724 Things become a little more complicated when trying to fix an entity
9725 with a dynamic type that directly contains another dynamic type,
9726 such as an array of variant records, for instance. There are
9727 two possible cases: Arrays, and records.
9728
21649b50
JB
9729 3. ``Fixing'' Arrays:
9730 ---------------------
9731
9732 The type structure in GDB describes an array in terms of its bounds,
9733 and the type of its elements. By design, all elements in the array
9734 have the same type and we cannot represent an array of variant elements
9735 using the current type structure in GDB. When fixing an array,
9736 we cannot fix the array element, as we would potentially need one
9737 fixed type per element of the array. As a result, the best we can do
9738 when fixing an array is to produce an array whose bounds and size
9739 are correct (allowing us to read it from memory), but without having
9740 touched its element type. Fixing each element will be done later,
9741 when (if) necessary.
9742
9743 Arrays are a little simpler to handle than records, because the same
9744 amount of memory is allocated for each element of the array, even if
1b536f04 9745 the amount of space actually used by each element differs from element
21649b50 9746 to element. Consider for instance the following array of type Rec:
284614f0
JB
9747
9748 type Rec_Array is array (1 .. 2) of Rec;
9749
1b536f04
JB
9750 The actual amount of memory occupied by each element might be different
9751 from element to element, depending on the value of their discriminant.
21649b50 9752 But the amount of space reserved for each element in the array remains
1b536f04 9753 fixed regardless. So we simply need to compute that size using
21649b50
JB
9754 the debugging information available, from which we can then determine
9755 the array size (we multiply the number of elements of the array by
9756 the size of each element).
9757
9758 The simplest case is when we have an array of a constrained element
9759 type. For instance, consider the following type declarations:
9760
9761 type Bounded_String (Max_Size : Integer) is
9762 Length : Integer;
9763 Buffer : String (1 .. Max_Size);
9764 end record;
9765 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9766
9767 In this case, the compiler describes the array as an array of
9768 variable-size elements (identified by its XVS suffix) for which
9769 the size can be read in the parallel XVZ variable.
9770
9771 In the case of an array of an unconstrained element type, the compiler
9772 wraps the array element inside a private PAD type. This type should not
9773 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9774 that we also use the adjective "aligner" in our code to designate
9775 these wrapper types.
9776
1b536f04 9777 In some cases, the size allocated for each element is statically
21649b50
JB
9778 known. In that case, the PAD type already has the correct size,
9779 and the array element should remain unfixed.
9780
9781 But there are cases when this size is not statically known.
9782 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9783
9784 type Dynamic is array (1 .. Five) of Integer;
9785 type Wrapper (Has_Length : Boolean := False) is record
9786 Data : Dynamic;
9787 case Has_Length is
9788 when True => Length : Integer;
9789 when False => null;
9790 end case;
9791 end record;
9792 type Wrapper_Array is array (1 .. 2) of Wrapper;
9793
9794 Hello : Wrapper_Array := (others => (Has_Length => True,
9795 Data => (others => 17),
9796 Length => 1));
9797
9798
9799 The debugging info would describe variable Hello as being an
9800 array of a PAD type. The size of that PAD type is not statically
9801 known, but can be determined using a parallel XVZ variable.
9802 In that case, a copy of the PAD type with the correct size should
9803 be used for the fixed array.
9804
21649b50
JB
9805 3. ``Fixing'' record type objects:
9806 ----------------------------------
9807
9808 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9809 record types. In this case, in order to compute the associated
9810 fixed type, we need to determine the size and offset of each of
9811 its components. This, in turn, requires us to compute the fixed
9812 type of each of these components.
9813
9814 Consider for instance the example:
9815
9816 type Bounded_String (Max_Size : Natural) is record
9817 Str : String (1 .. Max_Size);
9818 Length : Natural;
9819 end record;
9820 My_String : Bounded_String (Max_Size => 10);
9821
9822 In that case, the position of field "Length" depends on the size
9823 of field Str, which itself depends on the value of the Max_Size
21649b50 9824 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9825 we need to fix the type of field Str. Therefore, fixing a variant
9826 record requires us to fix each of its components.
9827
9828 However, if a component does not have a dynamic size, the component
9829 should not be fixed. In particular, fields that use a PAD type
9830 should not fixed. Here is an example where this might happen
9831 (assuming type Rec above):
9832
9833 type Container (Big : Boolean) is record
9834 First : Rec;
9835 After : Integer;
9836 case Big is
9837 when True => Another : Integer;
9838 when False => null;
9839 end case;
9840 end record;
9841 My_Container : Container := (Big => False,
9842 First => (Empty => True),
9843 After => 42);
9844
9845 In that example, the compiler creates a PAD type for component First,
9846 whose size is constant, and then positions the component After just
9847 right after it. The offset of component After is therefore constant
9848 in this case.
9849
9850 The debugger computes the position of each field based on an algorithm
9851 that uses, among other things, the actual position and size of the field
21649b50
JB
9852 preceding it. Let's now imagine that the user is trying to print
9853 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9854 end up computing the offset of field After based on the size of the
9855 fixed version of field First. And since in our example First has
9856 only one actual field, the size of the fixed type is actually smaller
9857 than the amount of space allocated to that field, and thus we would
9858 compute the wrong offset of field After.
9859
21649b50
JB
9860 To make things more complicated, we need to watch out for dynamic
9861 components of variant records (identified by the ___XVL suffix in
9862 the component name). Even if the target type is a PAD type, the size
9863 of that type might not be statically known. So the PAD type needs
9864 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9865 we might end up with the wrong size for our component. This can be
9866 observed with the following type declarations:
284614f0
JB
9867
9868 type Octal is new Integer range 0 .. 7;
9869 type Octal_Array is array (Positive range <>) of Octal;
9870 pragma Pack (Octal_Array);
9871
9872 type Octal_Buffer (Size : Positive) is record
9873 Buffer : Octal_Array (1 .. Size);
9874 Length : Integer;
9875 end record;
9876
9877 In that case, Buffer is a PAD type whose size is unset and needs
9878 to be computed by fixing the unwrapped type.
9879
21649b50
JB
9880 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9881 ----------------------------------------------------------
9882
9883 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9884 thus far, be actually fixed?
9885
9886 The answer is: Only when referencing that element. For instance
9887 when selecting one component of a record, this specific component
9888 should be fixed at that point in time. Or when printing the value
9889 of a record, each component should be fixed before its value gets
9890 printed. Similarly for arrays, the element of the array should be
9891 fixed when printing each element of the array, or when extracting
9892 one element out of that array. On the other hand, fixing should
9893 not be performed on the elements when taking a slice of an array!
9894
9895 Note that one of the side-effects of miscomputing the offset and
9896 size of each field is that we end up also miscomputing the size
9897 of the containing type. This can have adverse results when computing
9898 the value of an entity. GDB fetches the value of an entity based
9899 on the size of its type, and thus a wrong size causes GDB to fetch
9900 the wrong amount of memory. In the case where the computed size is
9901 too small, GDB fetches too little data to print the value of our
9902 entiry. Results in this case as unpredicatble, as we usually read
9903 past the buffer containing the data =:-o. */
9904
9905/* Implement the evaluate_exp routine in the exp_descriptor structure
9906 for the Ada language. */
9907
52ce6436 9908static struct value *
ebf56fd3 9909ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9910 int *pos, enum noside noside)
14f9c5c9
AS
9911{
9912 enum exp_opcode op;
b5385fc0 9913 int tem;
14f9c5c9 9914 int pc;
5ec18f2b 9915 int preeval_pos;
14f9c5c9
AS
9916 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9917 struct type *type;
52ce6436 9918 int nargs, oplen;
d2e4a39e 9919 struct value **argvec;
14f9c5c9 9920
d2e4a39e
AS
9921 pc = *pos;
9922 *pos += 1;
14f9c5c9
AS
9923 op = exp->elts[pc].opcode;
9924
d2e4a39e 9925 switch (op)
14f9c5c9
AS
9926 {
9927 default:
9928 *pos -= 1;
6e48bd2c 9929 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9930
9931 if (noside == EVAL_NORMAL)
9932 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9933
9934 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9935 then we need to perform the conversion manually, because
9936 evaluate_subexp_standard doesn't do it. This conversion is
9937 necessary in Ada because the different kinds of float/fixed
9938 types in Ada have different representations.
9939
9940 Similarly, we need to perform the conversion from OP_LONG
9941 ourselves. */
9942 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9943 arg1 = ada_value_cast (expect_type, arg1, noside);
9944
9945 return arg1;
4c4b4cd2
PH
9946
9947 case OP_STRING:
9948 {
76a01679 9949 struct value *result;
5b4ee69b 9950
76a01679
JB
9951 *pos -= 1;
9952 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9953 /* The result type will have code OP_STRING, bashed there from
9954 OP_ARRAY. Bash it back. */
df407dfe
AC
9955 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9956 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9957 return result;
4c4b4cd2 9958 }
14f9c5c9
AS
9959
9960 case UNOP_CAST:
9961 (*pos) += 2;
9962 type = exp->elts[pc + 1].type;
9963 arg1 = evaluate_subexp (type, exp, pos, noside);
9964 if (noside == EVAL_SKIP)
4c4b4cd2 9965 goto nosideret;
6e48bd2c 9966 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9967 return arg1;
9968
4c4b4cd2
PH
9969 case UNOP_QUAL:
9970 (*pos) += 2;
9971 type = exp->elts[pc + 1].type;
9972 return ada_evaluate_subexp (type, exp, pos, noside);
9973
14f9c5c9
AS
9974 case BINOP_ASSIGN:
9975 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9976 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9977 {
9978 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9979 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9980 return arg1;
9981 return ada_value_assign (arg1, arg1);
9982 }
003f3813
JB
9983 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9984 except if the lhs of our assignment is a convenience variable.
9985 In the case of assigning to a convenience variable, the lhs
9986 should be exactly the result of the evaluation of the rhs. */
9987 type = value_type (arg1);
9988 if (VALUE_LVAL (arg1) == lval_internalvar)
9989 type = NULL;
9990 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9991 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9992 return arg1;
df407dfe
AC
9993 if (ada_is_fixed_point_type (value_type (arg1)))
9994 arg2 = cast_to_fixed (value_type (arg1), arg2);
9995 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9996 error
323e0a4a 9997 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9998 else
df407dfe 9999 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10000 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10001
10002 case BINOP_ADD:
10003 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10004 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10005 if (noside == EVAL_SKIP)
4c4b4cd2 10006 goto nosideret;
2ac8a782
JB
10007 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10008 return (value_from_longest
10009 (value_type (arg1),
10010 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10011 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10012 return (value_from_longest
10013 (value_type (arg2),
10014 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10015 if ((ada_is_fixed_point_type (value_type (arg1))
10016 || ada_is_fixed_point_type (value_type (arg2)))
10017 && value_type (arg1) != value_type (arg2))
323e0a4a 10018 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10019 /* Do the addition, and cast the result to the type of the first
10020 argument. We cannot cast the result to a reference type, so if
10021 ARG1 is a reference type, find its underlying type. */
10022 type = value_type (arg1);
10023 while (TYPE_CODE (type) == TYPE_CODE_REF)
10024 type = TYPE_TARGET_TYPE (type);
f44316fa 10025 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10026 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10027
10028 case BINOP_SUB:
10029 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10030 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10031 if (noside == EVAL_SKIP)
4c4b4cd2 10032 goto nosideret;
2ac8a782
JB
10033 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10034 return (value_from_longest
10035 (value_type (arg1),
10036 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10037 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10038 return (value_from_longest
10039 (value_type (arg2),
10040 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10041 if ((ada_is_fixed_point_type (value_type (arg1))
10042 || ada_is_fixed_point_type (value_type (arg2)))
10043 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10044 error (_("Operands of fixed-point subtraction "
10045 "must have the same type"));
b7789565
JB
10046 /* Do the substraction, and cast the result to the type of the first
10047 argument. We cannot cast the result to a reference type, so if
10048 ARG1 is a reference type, find its underlying type. */
10049 type = value_type (arg1);
10050 while (TYPE_CODE (type) == TYPE_CODE_REF)
10051 type = TYPE_TARGET_TYPE (type);
f44316fa 10052 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10053 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10054
10055 case BINOP_MUL:
10056 case BINOP_DIV:
e1578042
JB
10057 case BINOP_REM:
10058 case BINOP_MOD:
14f9c5c9
AS
10059 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10060 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10061 if (noside == EVAL_SKIP)
4c4b4cd2 10062 goto nosideret;
e1578042 10063 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10064 {
10065 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10066 return value_zero (value_type (arg1), not_lval);
10067 }
14f9c5c9 10068 else
4c4b4cd2 10069 {
a53b7a21 10070 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10071 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10072 arg1 = cast_from_fixed (type, arg1);
df407dfe 10073 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10074 arg2 = cast_from_fixed (type, arg2);
f44316fa 10075 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10076 return ada_value_binop (arg1, arg2, op);
10077 }
10078
4c4b4cd2
PH
10079 case BINOP_EQUAL:
10080 case BINOP_NOTEQUAL:
14f9c5c9 10081 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10082 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10083 if (noside == EVAL_SKIP)
76a01679 10084 goto nosideret;
4c4b4cd2 10085 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10086 tem = 0;
4c4b4cd2 10087 else
f44316fa
UW
10088 {
10089 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10090 tem = ada_value_equal (arg1, arg2);
10091 }
4c4b4cd2 10092 if (op == BINOP_NOTEQUAL)
76a01679 10093 tem = !tem;
fbb06eb1
UW
10094 type = language_bool_type (exp->language_defn, exp->gdbarch);
10095 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10096
10097 case UNOP_NEG:
10098 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10099 if (noside == EVAL_SKIP)
10100 goto nosideret;
df407dfe
AC
10101 else if (ada_is_fixed_point_type (value_type (arg1)))
10102 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10103 else
f44316fa
UW
10104 {
10105 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10106 return value_neg (arg1);
10107 }
4c4b4cd2 10108
2330c6c6
JB
10109 case BINOP_LOGICAL_AND:
10110 case BINOP_LOGICAL_OR:
10111 case UNOP_LOGICAL_NOT:
000d5124
JB
10112 {
10113 struct value *val;
10114
10115 *pos -= 1;
10116 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10117 type = language_bool_type (exp->language_defn, exp->gdbarch);
10118 return value_cast (type, val);
000d5124 10119 }
2330c6c6
JB
10120
10121 case BINOP_BITWISE_AND:
10122 case BINOP_BITWISE_IOR:
10123 case BINOP_BITWISE_XOR:
000d5124
JB
10124 {
10125 struct value *val;
10126
10127 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10128 *pos = pc;
10129 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10130
10131 return value_cast (value_type (arg1), val);
10132 }
2330c6c6 10133
14f9c5c9
AS
10134 case OP_VAR_VALUE:
10135 *pos -= 1;
6799def4 10136
14f9c5c9 10137 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10138 {
10139 *pos += 4;
10140 goto nosideret;
10141 }
da5c522f
JB
10142
10143 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10144 /* Only encountered when an unresolved symbol occurs in a
10145 context other than a function call, in which case, it is
52ce6436 10146 invalid. */
323e0a4a 10147 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10148 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10149
10150 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10151 {
0c1f74cf 10152 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10153 /* Check to see if this is a tagged type. We also need to handle
10154 the case where the type is a reference to a tagged type, but
10155 we have to be careful to exclude pointers to tagged types.
10156 The latter should be shown as usual (as a pointer), whereas
10157 a reference should mostly be transparent to the user. */
10158 if (ada_is_tagged_type (type, 0)
023db19c 10159 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10160 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10161 {
10162 /* Tagged types are a little special in the fact that the real
10163 type is dynamic and can only be determined by inspecting the
10164 object's tag. This means that we need to get the object's
10165 value first (EVAL_NORMAL) and then extract the actual object
10166 type from its tag.
10167
10168 Note that we cannot skip the final step where we extract
10169 the object type from its tag, because the EVAL_NORMAL phase
10170 results in dynamic components being resolved into fixed ones.
10171 This can cause problems when trying to print the type
10172 description of tagged types whose parent has a dynamic size:
10173 We use the type name of the "_parent" component in order
10174 to print the name of the ancestor type in the type description.
10175 If that component had a dynamic size, the resolution into
10176 a fixed type would result in the loss of that type name,
10177 thus preventing us from printing the name of the ancestor
10178 type in the type description. */
10179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10180
10181 if (TYPE_CODE (type) != TYPE_CODE_REF)
10182 {
10183 struct type *actual_type;
10184
10185 actual_type = type_from_tag (ada_value_tag (arg1));
10186 if (actual_type == NULL)
10187 /* If, for some reason, we were unable to determine
10188 the actual type from the tag, then use the static
10189 approximation that we just computed as a fallback.
10190 This can happen if the debugging information is
10191 incomplete, for instance. */
10192 actual_type = type;
10193 return value_zero (actual_type, not_lval);
10194 }
10195 else
10196 {
10197 /* In the case of a ref, ada_coerce_ref takes care
10198 of determining the actual type. But the evaluation
10199 should return a ref as it should be valid to ask
10200 for its address; so rebuild a ref after coerce. */
10201 arg1 = ada_coerce_ref (arg1);
10202 return value_ref (arg1);
10203 }
10204 }
0c1f74cf 10205
84754697
JB
10206 /* Records and unions for which GNAT encodings have been
10207 generated need to be statically fixed as well.
10208 Otherwise, non-static fixing produces a type where
10209 all dynamic properties are removed, which prevents "ptype"
10210 from being able to completely describe the type.
10211 For instance, a case statement in a variant record would be
10212 replaced by the relevant components based on the actual
10213 value of the discriminants. */
10214 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10215 && dynamic_template_type (type) != NULL)
10216 || (TYPE_CODE (type) == TYPE_CODE_UNION
10217 && ada_find_parallel_type (type, "___XVU") != NULL))
10218 {
10219 *pos += 4;
10220 return value_zero (to_static_fixed_type (type), not_lval);
10221 }
4c4b4cd2 10222 }
da5c522f
JB
10223
10224 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10225 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10226
10227 case OP_FUNCALL:
10228 (*pos) += 2;
10229
10230 /* Allocate arg vector, including space for the function to be
10231 called in argvec[0] and a terminating NULL. */
10232 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10233 argvec =
10234 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10235
10236 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10237 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10238 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10239 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10240 else
10241 {
10242 for (tem = 0; tem <= nargs; tem += 1)
10243 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10244 argvec[tem] = 0;
10245
10246 if (noside == EVAL_SKIP)
10247 goto nosideret;
10248 }
10249
ad82864c
JB
10250 if (ada_is_constrained_packed_array_type
10251 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10252 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10253 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10254 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10255 /* This is a packed array that has already been fixed, and
10256 therefore already coerced to a simple array. Nothing further
10257 to do. */
10258 ;
df407dfe
AC
10259 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10260 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10261 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10262 argvec[0] = value_addr (argvec[0]);
10263
df407dfe 10264 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10265
10266 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10267 them. So, if this is an array typedef (encoding use for array
10268 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10269 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10270 type = ada_typedef_target_type (type);
10271
4c4b4cd2
PH
10272 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10273 {
61ee279c 10274 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10275 {
10276 case TYPE_CODE_FUNC:
61ee279c 10277 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10278 break;
10279 case TYPE_CODE_ARRAY:
10280 break;
10281 case TYPE_CODE_STRUCT:
10282 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10283 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10284 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10285 break;
10286 default:
323e0a4a 10287 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10288 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10289 break;
10290 }
10291 }
10292
10293 switch (TYPE_CODE (type))
10294 {
10295 case TYPE_CODE_FUNC:
10296 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10297 {
10298 struct type *rtype = TYPE_TARGET_TYPE (type);
10299
10300 if (TYPE_GNU_IFUNC (type))
10301 return allocate_value (TYPE_TARGET_TYPE (rtype));
10302 return allocate_value (rtype);
10303 }
4c4b4cd2 10304 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10305 case TYPE_CODE_INTERNAL_FUNCTION:
10306 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10307 /* We don't know anything about what the internal
10308 function might return, but we have to return
10309 something. */
10310 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10311 not_lval);
10312 else
10313 return call_internal_function (exp->gdbarch, exp->language_defn,
10314 argvec[0], nargs, argvec + 1);
10315
4c4b4cd2
PH
10316 case TYPE_CODE_STRUCT:
10317 {
10318 int arity;
10319
4c4b4cd2
PH
10320 arity = ada_array_arity (type);
10321 type = ada_array_element_type (type, nargs);
10322 if (type == NULL)
323e0a4a 10323 error (_("cannot subscript or call a record"));
4c4b4cd2 10324 if (arity != nargs)
323e0a4a 10325 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10326 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10327 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10328 return
10329 unwrap_value (ada_value_subscript
10330 (argvec[0], nargs, argvec + 1));
10331 }
10332 case TYPE_CODE_ARRAY:
10333 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10334 {
10335 type = ada_array_element_type (type, nargs);
10336 if (type == NULL)
323e0a4a 10337 error (_("element type of array unknown"));
4c4b4cd2 10338 else
0a07e705 10339 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10340 }
10341 return
10342 unwrap_value (ada_value_subscript
10343 (ada_coerce_to_simple_array (argvec[0]),
10344 nargs, argvec + 1));
10345 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10346 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10347 {
deede10c 10348 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10349 type = ada_array_element_type (type, nargs);
10350 if (type == NULL)
323e0a4a 10351 error (_("element type of array unknown"));
4c4b4cd2 10352 else
0a07e705 10353 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10354 }
10355 return
deede10c
JB
10356 unwrap_value (ada_value_ptr_subscript (argvec[0],
10357 nargs, argvec + 1));
4c4b4cd2
PH
10358
10359 default:
e1d5a0d2
PH
10360 error (_("Attempt to index or call something other than an "
10361 "array or function"));
4c4b4cd2
PH
10362 }
10363
10364 case TERNOP_SLICE:
10365 {
10366 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10367 struct value *low_bound_val =
10368 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10369 struct value *high_bound_val =
10370 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10371 LONGEST low_bound;
10372 LONGEST high_bound;
5b4ee69b 10373
994b9211
AC
10374 low_bound_val = coerce_ref (low_bound_val);
10375 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10376 low_bound = pos_atr (low_bound_val);
10377 high_bound = pos_atr (high_bound_val);
963a6417 10378
4c4b4cd2
PH
10379 if (noside == EVAL_SKIP)
10380 goto nosideret;
10381
4c4b4cd2
PH
10382 /* If this is a reference to an aligner type, then remove all
10383 the aligners. */
df407dfe
AC
10384 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10385 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10386 TYPE_TARGET_TYPE (value_type (array)) =
10387 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10388
ad82864c 10389 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10390 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10391
10392 /* If this is a reference to an array or an array lvalue,
10393 convert to a pointer. */
df407dfe
AC
10394 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10395 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10396 && VALUE_LVAL (array) == lval_memory))
10397 array = value_addr (array);
10398
1265e4aa 10399 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10400 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10401 (value_type (array))))
0b5d8877 10402 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10403
10404 array = ada_coerce_to_simple_array_ptr (array);
10405
714e53ab
PH
10406 /* If we have more than one level of pointer indirection,
10407 dereference the value until we get only one level. */
df407dfe
AC
10408 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10409 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10410 == TYPE_CODE_PTR))
10411 array = value_ind (array);
10412
10413 /* Make sure we really do have an array type before going further,
10414 to avoid a SEGV when trying to get the index type or the target
10415 type later down the road if the debug info generated by
10416 the compiler is incorrect or incomplete. */
df407dfe 10417 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10418 error (_("cannot take slice of non-array"));
714e53ab 10419
828292f2
JB
10420 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10421 == TYPE_CODE_PTR)
4c4b4cd2 10422 {
828292f2
JB
10423 struct type *type0 = ada_check_typedef (value_type (array));
10424
0b5d8877 10425 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10426 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10427 else
10428 {
10429 struct type *arr_type0 =
828292f2 10430 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10431
f5938064
JG
10432 return ada_value_slice_from_ptr (array, arr_type0,
10433 longest_to_int (low_bound),
10434 longest_to_int (high_bound));
4c4b4cd2
PH
10435 }
10436 }
10437 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10438 return array;
10439 else if (high_bound < low_bound)
df407dfe 10440 return empty_array (value_type (array), low_bound);
4c4b4cd2 10441 else
529cad9c
PH
10442 return ada_value_slice (array, longest_to_int (low_bound),
10443 longest_to_int (high_bound));
4c4b4cd2 10444 }
14f9c5c9 10445
4c4b4cd2
PH
10446 case UNOP_IN_RANGE:
10447 (*pos) += 2;
10448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10449 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10450
14f9c5c9 10451 if (noside == EVAL_SKIP)
4c4b4cd2 10452 goto nosideret;
14f9c5c9 10453
4c4b4cd2
PH
10454 switch (TYPE_CODE (type))
10455 {
10456 default:
e1d5a0d2
PH
10457 lim_warning (_("Membership test incompletely implemented; "
10458 "always returns true"));
fbb06eb1
UW
10459 type = language_bool_type (exp->language_defn, exp->gdbarch);
10460 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10461
10462 case TYPE_CODE_RANGE:
030b4912
UW
10463 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10464 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10465 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10466 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10467 type = language_bool_type (exp->language_defn, exp->gdbarch);
10468 return
10469 value_from_longest (type,
4c4b4cd2
PH
10470 (value_less (arg1, arg3)
10471 || value_equal (arg1, arg3))
10472 && (value_less (arg2, arg1)
10473 || value_equal (arg2, arg1)));
10474 }
10475
10476 case BINOP_IN_BOUNDS:
14f9c5c9 10477 (*pos) += 2;
4c4b4cd2
PH
10478 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10479 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10480
4c4b4cd2
PH
10481 if (noside == EVAL_SKIP)
10482 goto nosideret;
14f9c5c9 10483
4c4b4cd2 10484 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10485 {
10486 type = language_bool_type (exp->language_defn, exp->gdbarch);
10487 return value_zero (type, not_lval);
10488 }
14f9c5c9 10489
4c4b4cd2 10490 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10491
1eea4ebd
UW
10492 type = ada_index_type (value_type (arg2), tem, "range");
10493 if (!type)
10494 type = value_type (arg1);
14f9c5c9 10495
1eea4ebd
UW
10496 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10497 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10498
f44316fa
UW
10499 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10500 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10501 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10502 return
fbb06eb1 10503 value_from_longest (type,
4c4b4cd2
PH
10504 (value_less (arg1, arg3)
10505 || value_equal (arg1, arg3))
10506 && (value_less (arg2, arg1)
10507 || value_equal (arg2, arg1)));
10508
10509 case TERNOP_IN_RANGE:
10510 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10511 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10512 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10513
10514 if (noside == EVAL_SKIP)
10515 goto nosideret;
10516
f44316fa
UW
10517 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10518 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10519 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10520 return
fbb06eb1 10521 value_from_longest (type,
4c4b4cd2
PH
10522 (value_less (arg1, arg3)
10523 || value_equal (arg1, arg3))
10524 && (value_less (arg2, arg1)
10525 || value_equal (arg2, arg1)));
10526
10527 case OP_ATR_FIRST:
10528 case OP_ATR_LAST:
10529 case OP_ATR_LENGTH:
10530 {
76a01679 10531 struct type *type_arg;
5b4ee69b 10532
76a01679
JB
10533 if (exp->elts[*pos].opcode == OP_TYPE)
10534 {
10535 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10536 arg1 = NULL;
5bc23cb3 10537 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10538 }
10539 else
10540 {
10541 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10542 type_arg = NULL;
10543 }
10544
10545 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10546 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10547 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10548 *pos += 4;
10549
10550 if (noside == EVAL_SKIP)
10551 goto nosideret;
10552
10553 if (type_arg == NULL)
10554 {
10555 arg1 = ada_coerce_ref (arg1);
10556
ad82864c 10557 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10558 arg1 = ada_coerce_to_simple_array (arg1);
10559
aa4fb036 10560 if (op == OP_ATR_LENGTH)
1eea4ebd 10561 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10562 else
10563 {
10564 type = ada_index_type (value_type (arg1), tem,
10565 ada_attribute_name (op));
10566 if (type == NULL)
10567 type = builtin_type (exp->gdbarch)->builtin_int;
10568 }
76a01679
JB
10569
10570 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10571 return allocate_value (type);
76a01679
JB
10572
10573 switch (op)
10574 {
10575 default: /* Should never happen. */
323e0a4a 10576 error (_("unexpected attribute encountered"));
76a01679 10577 case OP_ATR_FIRST:
1eea4ebd
UW
10578 return value_from_longest
10579 (type, ada_array_bound (arg1, tem, 0));
76a01679 10580 case OP_ATR_LAST:
1eea4ebd
UW
10581 return value_from_longest
10582 (type, ada_array_bound (arg1, tem, 1));
76a01679 10583 case OP_ATR_LENGTH:
1eea4ebd
UW
10584 return value_from_longest
10585 (type, ada_array_length (arg1, tem));
76a01679
JB
10586 }
10587 }
10588 else if (discrete_type_p (type_arg))
10589 {
10590 struct type *range_type;
0d5cff50 10591 const char *name = ada_type_name (type_arg);
5b4ee69b 10592
76a01679
JB
10593 range_type = NULL;
10594 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10595 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10596 if (range_type == NULL)
10597 range_type = type_arg;
10598 switch (op)
10599 {
10600 default:
323e0a4a 10601 error (_("unexpected attribute encountered"));
76a01679 10602 case OP_ATR_FIRST:
690cc4eb 10603 return value_from_longest
43bbcdc2 10604 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10605 case OP_ATR_LAST:
690cc4eb 10606 return value_from_longest
43bbcdc2 10607 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10608 case OP_ATR_LENGTH:
323e0a4a 10609 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10610 }
10611 }
10612 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10613 error (_("unimplemented type attribute"));
76a01679
JB
10614 else
10615 {
10616 LONGEST low, high;
10617
ad82864c
JB
10618 if (ada_is_constrained_packed_array_type (type_arg))
10619 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10620
aa4fb036 10621 if (op == OP_ATR_LENGTH)
1eea4ebd 10622 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10623 else
10624 {
10625 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10626 if (type == NULL)
10627 type = builtin_type (exp->gdbarch)->builtin_int;
10628 }
1eea4ebd 10629
76a01679
JB
10630 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10631 return allocate_value (type);
10632
10633 switch (op)
10634 {
10635 default:
323e0a4a 10636 error (_("unexpected attribute encountered"));
76a01679 10637 case OP_ATR_FIRST:
1eea4ebd 10638 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10639 return value_from_longest (type, low);
10640 case OP_ATR_LAST:
1eea4ebd 10641 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10642 return value_from_longest (type, high);
10643 case OP_ATR_LENGTH:
1eea4ebd
UW
10644 low = ada_array_bound_from_type (type_arg, tem, 0);
10645 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10646 return value_from_longest (type, high - low + 1);
10647 }
10648 }
14f9c5c9
AS
10649 }
10650
4c4b4cd2
PH
10651 case OP_ATR_TAG:
10652 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10653 if (noside == EVAL_SKIP)
76a01679 10654 goto nosideret;
4c4b4cd2
PH
10655
10656 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10657 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10658
10659 return ada_value_tag (arg1);
10660
10661 case OP_ATR_MIN:
10662 case OP_ATR_MAX:
10663 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10664 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10665 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10666 if (noside == EVAL_SKIP)
76a01679 10667 goto nosideret;
d2e4a39e 10668 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10669 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10670 else
f44316fa
UW
10671 {
10672 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10673 return value_binop (arg1, arg2,
10674 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10675 }
14f9c5c9 10676
4c4b4cd2
PH
10677 case OP_ATR_MODULUS:
10678 {
31dedfee 10679 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10680
5b4ee69b 10681 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10682 if (noside == EVAL_SKIP)
10683 goto nosideret;
4c4b4cd2 10684
76a01679 10685 if (!ada_is_modular_type (type_arg))
323e0a4a 10686 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10687
76a01679
JB
10688 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10689 ada_modulus (type_arg));
4c4b4cd2
PH
10690 }
10691
10692
10693 case OP_ATR_POS:
10694 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10695 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10696 if (noside == EVAL_SKIP)
76a01679 10697 goto nosideret;
3cb382c9
UW
10698 type = builtin_type (exp->gdbarch)->builtin_int;
10699 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10700 return value_zero (type, not_lval);
14f9c5c9 10701 else
3cb382c9 10702 return value_pos_atr (type, arg1);
14f9c5c9 10703
4c4b4cd2
PH
10704 case OP_ATR_SIZE:
10705 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10706 type = value_type (arg1);
10707
10708 /* If the argument is a reference, then dereference its type, since
10709 the user is really asking for the size of the actual object,
10710 not the size of the pointer. */
10711 if (TYPE_CODE (type) == TYPE_CODE_REF)
10712 type = TYPE_TARGET_TYPE (type);
10713
4c4b4cd2 10714 if (noside == EVAL_SKIP)
76a01679 10715 goto nosideret;
4c4b4cd2 10716 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10717 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10718 else
22601c15 10719 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10720 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10721
10722 case OP_ATR_VAL:
10723 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10724 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10725 type = exp->elts[pc + 2].type;
14f9c5c9 10726 if (noside == EVAL_SKIP)
76a01679 10727 goto nosideret;
4c4b4cd2 10728 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10729 return value_zero (type, not_lval);
4c4b4cd2 10730 else
76a01679 10731 return value_val_atr (type, arg1);
4c4b4cd2
PH
10732
10733 case BINOP_EXP:
10734 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10735 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10736 if (noside == EVAL_SKIP)
10737 goto nosideret;
10738 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10739 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10740 else
f44316fa
UW
10741 {
10742 /* For integer exponentiation operations,
10743 only promote the first argument. */
10744 if (is_integral_type (value_type (arg2)))
10745 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10746 else
10747 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10748
10749 return value_binop (arg1, arg2, op);
10750 }
4c4b4cd2
PH
10751
10752 case UNOP_PLUS:
10753 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10754 if (noside == EVAL_SKIP)
10755 goto nosideret;
10756 else
10757 return arg1;
10758
10759 case UNOP_ABS:
10760 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10761 if (noside == EVAL_SKIP)
10762 goto nosideret;
f44316fa 10763 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10764 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10765 return value_neg (arg1);
14f9c5c9 10766 else
4c4b4cd2 10767 return arg1;
14f9c5c9
AS
10768
10769 case UNOP_IND:
5ec18f2b 10770 preeval_pos = *pos;
6b0d7253 10771 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10772 if (noside == EVAL_SKIP)
4c4b4cd2 10773 goto nosideret;
df407dfe 10774 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10775 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10776 {
10777 if (ada_is_array_descriptor_type (type))
10778 /* GDB allows dereferencing GNAT array descriptors. */
10779 {
10780 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10781
4c4b4cd2 10782 if (arrType == NULL)
323e0a4a 10783 error (_("Attempt to dereference null array pointer."));
00a4c844 10784 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10785 }
10786 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10787 || TYPE_CODE (type) == TYPE_CODE_REF
10788 /* In C you can dereference an array to get the 1st elt. */
10789 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10790 {
5ec18f2b
JG
10791 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10792 only be determined by inspecting the object's tag.
10793 This means that we need to evaluate completely the
10794 expression in order to get its type. */
10795
023db19c
JB
10796 if ((TYPE_CODE (type) == TYPE_CODE_REF
10797 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10798 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10799 {
10800 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10801 EVAL_NORMAL);
10802 type = value_type (ada_value_ind (arg1));
10803 }
10804 else
10805 {
10806 type = to_static_fixed_type
10807 (ada_aligned_type
10808 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10809 }
10810 check_size (type);
714e53ab
PH
10811 return value_zero (type, lval_memory);
10812 }
4c4b4cd2 10813 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10814 {
10815 /* GDB allows dereferencing an int. */
10816 if (expect_type == NULL)
10817 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10818 lval_memory);
10819 else
10820 {
10821 expect_type =
10822 to_static_fixed_type (ada_aligned_type (expect_type));
10823 return value_zero (expect_type, lval_memory);
10824 }
10825 }
4c4b4cd2 10826 else
323e0a4a 10827 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10828 }
0963b4bd 10829 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10830 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10831
96967637
JB
10832 if (TYPE_CODE (type) == TYPE_CODE_INT)
10833 /* GDB allows dereferencing an int. If we were given
10834 the expect_type, then use that as the target type.
10835 Otherwise, assume that the target type is an int. */
10836 {
10837 if (expect_type != NULL)
10838 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10839 arg1));
10840 else
10841 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10842 (CORE_ADDR) value_as_address (arg1));
10843 }
6b0d7253 10844
4c4b4cd2
PH
10845 if (ada_is_array_descriptor_type (type))
10846 /* GDB allows dereferencing GNAT array descriptors. */
10847 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10848 else
4c4b4cd2 10849 return ada_value_ind (arg1);
14f9c5c9
AS
10850
10851 case STRUCTOP_STRUCT:
10852 tem = longest_to_int (exp->elts[pc + 1].longconst);
10853 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 10854 preeval_pos = *pos;
14f9c5c9
AS
10855 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10856 if (noside == EVAL_SKIP)
4c4b4cd2 10857 goto nosideret;
14f9c5c9 10858 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10859 {
df407dfe 10860 struct type *type1 = value_type (arg1);
5b4ee69b 10861
76a01679
JB
10862 if (ada_is_tagged_type (type1, 1))
10863 {
10864 type = ada_lookup_struct_elt_type (type1,
10865 &exp->elts[pc + 2].string,
10866 1, 1, NULL);
5ec18f2b
JG
10867
10868 /* If the field is not found, check if it exists in the
10869 extension of this object's type. This means that we
10870 need to evaluate completely the expression. */
10871
76a01679 10872 if (type == NULL)
5ec18f2b
JG
10873 {
10874 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10875 EVAL_NORMAL);
10876 arg1 = ada_value_struct_elt (arg1,
10877 &exp->elts[pc + 2].string,
10878 0);
10879 arg1 = unwrap_value (arg1);
10880 type = value_type (ada_to_fixed_value (arg1));
10881 }
76a01679
JB
10882 }
10883 else
10884 type =
10885 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10886 0, NULL);
10887
10888 return value_zero (ada_aligned_type (type), lval_memory);
10889 }
14f9c5c9 10890 else
284614f0
JB
10891 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10892 arg1 = unwrap_value (arg1);
10893 return ada_to_fixed_value (arg1);
10894
14f9c5c9 10895 case OP_TYPE:
4c4b4cd2
PH
10896 /* The value is not supposed to be used. This is here to make it
10897 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10898 (*pos) += 2;
10899 if (noside == EVAL_SKIP)
4c4b4cd2 10900 goto nosideret;
14f9c5c9 10901 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10902 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10903 else
323e0a4a 10904 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10905
10906 case OP_AGGREGATE:
10907 case OP_CHOICES:
10908 case OP_OTHERS:
10909 case OP_DISCRETE_RANGE:
10910 case OP_POSITIONAL:
10911 case OP_NAME:
10912 if (noside == EVAL_NORMAL)
10913 switch (op)
10914 {
10915 case OP_NAME:
10916 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10917 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10918 case OP_AGGREGATE:
10919 error (_("Aggregates only allowed on the right of an assignment"));
10920 default:
0963b4bd
MS
10921 internal_error (__FILE__, __LINE__,
10922 _("aggregate apparently mangled"));
52ce6436
PH
10923 }
10924
10925 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10926 *pos += oplen - 1;
10927 for (tem = 0; tem < nargs; tem += 1)
10928 ada_evaluate_subexp (NULL, exp, pos, noside);
10929 goto nosideret;
14f9c5c9
AS
10930 }
10931
10932nosideret:
22601c15 10933 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10934}
14f9c5c9 10935\f
d2e4a39e 10936
4c4b4cd2 10937 /* Fixed point */
14f9c5c9
AS
10938
10939/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10940 type name that encodes the 'small and 'delta information.
4c4b4cd2 10941 Otherwise, return NULL. */
14f9c5c9 10942
d2e4a39e 10943static const char *
ebf56fd3 10944fixed_type_info (struct type *type)
14f9c5c9 10945{
d2e4a39e 10946 const char *name = ada_type_name (type);
14f9c5c9
AS
10947 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10948
d2e4a39e
AS
10949 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10950 {
14f9c5c9 10951 const char *tail = strstr (name, "___XF_");
5b4ee69b 10952
14f9c5c9 10953 if (tail == NULL)
4c4b4cd2 10954 return NULL;
d2e4a39e 10955 else
4c4b4cd2 10956 return tail + 5;
14f9c5c9
AS
10957 }
10958 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10959 return fixed_type_info (TYPE_TARGET_TYPE (type));
10960 else
10961 return NULL;
10962}
10963
4c4b4cd2 10964/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10965
10966int
ebf56fd3 10967ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10968{
10969 return fixed_type_info (type) != NULL;
10970}
10971
4c4b4cd2
PH
10972/* Return non-zero iff TYPE represents a System.Address type. */
10973
10974int
10975ada_is_system_address_type (struct type *type)
10976{
10977 return (TYPE_NAME (type)
10978 && strcmp (TYPE_NAME (type), "system__address") == 0);
10979}
10980
14f9c5c9
AS
10981/* Assuming that TYPE is the representation of an Ada fixed-point
10982 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10983 delta cannot be determined. */
14f9c5c9
AS
10984
10985DOUBLEST
ebf56fd3 10986ada_delta (struct type *type)
14f9c5c9
AS
10987{
10988 const char *encoding = fixed_type_info (type);
facc390f 10989 DOUBLEST num, den;
14f9c5c9 10990
facc390f
JB
10991 /* Strictly speaking, num and den are encoded as integer. However,
10992 they may not fit into a long, and they will have to be converted
10993 to DOUBLEST anyway. So scan them as DOUBLEST. */
10994 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10995 &num, &den) < 2)
14f9c5c9 10996 return -1.0;
d2e4a39e 10997 else
facc390f 10998 return num / den;
14f9c5c9
AS
10999}
11000
11001/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11002 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11003
11004static DOUBLEST
ebf56fd3 11005scaling_factor (struct type *type)
14f9c5c9
AS
11006{
11007 const char *encoding = fixed_type_info (type);
facc390f 11008 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11009 int n;
d2e4a39e 11010
facc390f
JB
11011 /* Strictly speaking, num's and den's are encoded as integer. However,
11012 they may not fit into a long, and they will have to be converted
11013 to DOUBLEST anyway. So scan them as DOUBLEST. */
11014 n = sscanf (encoding,
11015 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11016 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11017 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11018
11019 if (n < 2)
11020 return 1.0;
11021 else if (n == 4)
facc390f 11022 return num1 / den1;
d2e4a39e 11023 else
facc390f 11024 return num0 / den0;
14f9c5c9
AS
11025}
11026
11027
11028/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11029 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11030
11031DOUBLEST
ebf56fd3 11032ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11033{
d2e4a39e 11034 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11035}
11036
4c4b4cd2
PH
11037/* The representation of a fixed-point value of type TYPE
11038 corresponding to the value X. */
14f9c5c9
AS
11039
11040LONGEST
ebf56fd3 11041ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11042{
11043 return (LONGEST) (x / scaling_factor (type) + 0.5);
11044}
11045
14f9c5c9 11046\f
d2e4a39e 11047
4c4b4cd2 11048 /* Range types */
14f9c5c9
AS
11049
11050/* Scan STR beginning at position K for a discriminant name, and
11051 return the value of that discriminant field of DVAL in *PX. If
11052 PNEW_K is not null, put the position of the character beyond the
11053 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11054 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11055
11056static int
07d8f827 11057scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11058 int *pnew_k)
14f9c5c9
AS
11059{
11060 static char *bound_buffer = NULL;
11061 static size_t bound_buffer_len = 0;
11062 char *bound;
11063 char *pend;
d2e4a39e 11064 struct value *bound_val;
14f9c5c9
AS
11065
11066 if (dval == NULL || str == NULL || str[k] == '\0')
11067 return 0;
11068
d2e4a39e 11069 pend = strstr (str + k, "__");
14f9c5c9
AS
11070 if (pend == NULL)
11071 {
d2e4a39e 11072 bound = str + k;
14f9c5c9
AS
11073 k += strlen (bound);
11074 }
d2e4a39e 11075 else
14f9c5c9 11076 {
d2e4a39e 11077 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11078 bound = bound_buffer;
d2e4a39e
AS
11079 strncpy (bound_buffer, str + k, pend - (str + k));
11080 bound[pend - (str + k)] = '\0';
11081 k = pend - str;
14f9c5c9 11082 }
d2e4a39e 11083
df407dfe 11084 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11085 if (bound_val == NULL)
11086 return 0;
11087
11088 *px = value_as_long (bound_val);
11089 if (pnew_k != NULL)
11090 *pnew_k = k;
11091 return 1;
11092}
11093
11094/* Value of variable named NAME in the current environment. If
11095 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11096 otherwise causes an error with message ERR_MSG. */
11097
d2e4a39e
AS
11098static struct value *
11099get_var_value (char *name, char *err_msg)
14f9c5c9 11100{
4c4b4cd2 11101 struct ada_symbol_info *syms;
14f9c5c9
AS
11102 int nsyms;
11103
4c4b4cd2 11104 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11105 &syms);
14f9c5c9
AS
11106
11107 if (nsyms != 1)
11108 {
11109 if (err_msg == NULL)
4c4b4cd2 11110 return 0;
14f9c5c9 11111 else
8a3fe4f8 11112 error (("%s"), err_msg);
14f9c5c9
AS
11113 }
11114
4c4b4cd2 11115 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11116}
d2e4a39e 11117
14f9c5c9 11118/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11119 no such variable found, returns 0, and sets *FLAG to 0. If
11120 successful, sets *FLAG to 1. */
11121
14f9c5c9 11122LONGEST
4c4b4cd2 11123get_int_var_value (char *name, int *flag)
14f9c5c9 11124{
4c4b4cd2 11125 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11126
14f9c5c9
AS
11127 if (var_val == 0)
11128 {
11129 if (flag != NULL)
4c4b4cd2 11130 *flag = 0;
14f9c5c9
AS
11131 return 0;
11132 }
11133 else
11134 {
11135 if (flag != NULL)
4c4b4cd2 11136 *flag = 1;
14f9c5c9
AS
11137 return value_as_long (var_val);
11138 }
11139}
d2e4a39e 11140
14f9c5c9
AS
11141
11142/* Return a range type whose base type is that of the range type named
11143 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11144 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11145 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11146 corresponding range type from debug information; fall back to using it
11147 if symbol lookup fails. If a new type must be created, allocate it
11148 like ORIG_TYPE was. The bounds information, in general, is encoded
11149 in NAME, the base type given in the named range type. */
14f9c5c9 11150
d2e4a39e 11151static struct type *
28c85d6c 11152to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11153{
0d5cff50 11154 const char *name;
14f9c5c9 11155 struct type *base_type;
d2e4a39e 11156 char *subtype_info;
14f9c5c9 11157
28c85d6c
JB
11158 gdb_assert (raw_type != NULL);
11159 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11160
1ce677a4 11161 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11162 base_type = TYPE_TARGET_TYPE (raw_type);
11163 else
11164 base_type = raw_type;
11165
28c85d6c 11166 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11167 subtype_info = strstr (name, "___XD");
11168 if (subtype_info == NULL)
690cc4eb 11169 {
43bbcdc2
PH
11170 LONGEST L = ada_discrete_type_low_bound (raw_type);
11171 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11172
690cc4eb
PH
11173 if (L < INT_MIN || U > INT_MAX)
11174 return raw_type;
11175 else
0c9c3474
SA
11176 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11177 L, U);
690cc4eb 11178 }
14f9c5c9
AS
11179 else
11180 {
11181 static char *name_buf = NULL;
11182 static size_t name_len = 0;
11183 int prefix_len = subtype_info - name;
11184 LONGEST L, U;
11185 struct type *type;
11186 char *bounds_str;
11187 int n;
11188
11189 GROW_VECT (name_buf, name_len, prefix_len + 5);
11190 strncpy (name_buf, name, prefix_len);
11191 name_buf[prefix_len] = '\0';
11192
11193 subtype_info += 5;
11194 bounds_str = strchr (subtype_info, '_');
11195 n = 1;
11196
d2e4a39e 11197 if (*subtype_info == 'L')
4c4b4cd2
PH
11198 {
11199 if (!ada_scan_number (bounds_str, n, &L, &n)
11200 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11201 return raw_type;
11202 if (bounds_str[n] == '_')
11203 n += 2;
0963b4bd 11204 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11205 n += 1;
11206 subtype_info += 1;
11207 }
d2e4a39e 11208 else
4c4b4cd2
PH
11209 {
11210 int ok;
5b4ee69b 11211
4c4b4cd2
PH
11212 strcpy (name_buf + prefix_len, "___L");
11213 L = get_int_var_value (name_buf, &ok);
11214 if (!ok)
11215 {
323e0a4a 11216 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11217 L = 1;
11218 }
11219 }
14f9c5c9 11220
d2e4a39e 11221 if (*subtype_info == 'U')
4c4b4cd2
PH
11222 {
11223 if (!ada_scan_number (bounds_str, n, &U, &n)
11224 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11225 return raw_type;
11226 }
d2e4a39e 11227 else
4c4b4cd2
PH
11228 {
11229 int ok;
5b4ee69b 11230
4c4b4cd2
PH
11231 strcpy (name_buf + prefix_len, "___U");
11232 U = get_int_var_value (name_buf, &ok);
11233 if (!ok)
11234 {
323e0a4a 11235 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11236 U = L;
11237 }
11238 }
14f9c5c9 11239
0c9c3474
SA
11240 type = create_static_range_type (alloc_type_copy (raw_type),
11241 base_type, L, U);
d2e4a39e 11242 TYPE_NAME (type) = name;
14f9c5c9
AS
11243 return type;
11244 }
11245}
11246
4c4b4cd2
PH
11247/* True iff NAME is the name of a range type. */
11248
14f9c5c9 11249int
d2e4a39e 11250ada_is_range_type_name (const char *name)
14f9c5c9
AS
11251{
11252 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11253}
14f9c5c9 11254\f
d2e4a39e 11255
4c4b4cd2
PH
11256 /* Modular types */
11257
11258/* True iff TYPE is an Ada modular type. */
14f9c5c9 11259
14f9c5c9 11260int
d2e4a39e 11261ada_is_modular_type (struct type *type)
14f9c5c9 11262{
18af8284 11263 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11264
11265 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11266 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11267 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11268}
11269
4c4b4cd2
PH
11270/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11271
61ee279c 11272ULONGEST
0056e4d5 11273ada_modulus (struct type *type)
14f9c5c9 11274{
43bbcdc2 11275 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11276}
d2e4a39e 11277\f
f7f9143b
JB
11278
11279/* Ada exception catchpoint support:
11280 ---------------------------------
11281
11282 We support 3 kinds of exception catchpoints:
11283 . catchpoints on Ada exceptions
11284 . catchpoints on unhandled Ada exceptions
11285 . catchpoints on failed assertions
11286
11287 Exceptions raised during failed assertions, or unhandled exceptions
11288 could perfectly be caught with the general catchpoint on Ada exceptions.
11289 However, we can easily differentiate these two special cases, and having
11290 the option to distinguish these two cases from the rest can be useful
11291 to zero-in on certain situations.
11292
11293 Exception catchpoints are a specialized form of breakpoint,
11294 since they rely on inserting breakpoints inside known routines
11295 of the GNAT runtime. The implementation therefore uses a standard
11296 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11297 of breakpoint_ops.
11298
0259addd
JB
11299 Support in the runtime for exception catchpoints have been changed
11300 a few times already, and these changes affect the implementation
11301 of these catchpoints. In order to be able to support several
11302 variants of the runtime, we use a sniffer that will determine
28010a5d 11303 the runtime variant used by the program being debugged. */
f7f9143b 11304
82eacd52
JB
11305/* Ada's standard exceptions.
11306
11307 The Ada 83 standard also defined Numeric_Error. But there so many
11308 situations where it was unclear from the Ada 83 Reference Manual
11309 (RM) whether Constraint_Error or Numeric_Error should be raised,
11310 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11311 Interpretation saying that anytime the RM says that Numeric_Error
11312 should be raised, the implementation may raise Constraint_Error.
11313 Ada 95 went one step further and pretty much removed Numeric_Error
11314 from the list of standard exceptions (it made it a renaming of
11315 Constraint_Error, to help preserve compatibility when compiling
11316 an Ada83 compiler). As such, we do not include Numeric_Error from
11317 this list of standard exceptions. */
3d0b0fa3
JB
11318
11319static char *standard_exc[] = {
11320 "constraint_error",
11321 "program_error",
11322 "storage_error",
11323 "tasking_error"
11324};
11325
0259addd
JB
11326typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11327
11328/* A structure that describes how to support exception catchpoints
11329 for a given executable. */
11330
11331struct exception_support_info
11332{
11333 /* The name of the symbol to break on in order to insert
11334 a catchpoint on exceptions. */
11335 const char *catch_exception_sym;
11336
11337 /* The name of the symbol to break on in order to insert
11338 a catchpoint on unhandled exceptions. */
11339 const char *catch_exception_unhandled_sym;
11340
11341 /* The name of the symbol to break on in order to insert
11342 a catchpoint on failed assertions. */
11343 const char *catch_assert_sym;
11344
11345 /* Assuming that the inferior just triggered an unhandled exception
11346 catchpoint, this function is responsible for returning the address
11347 in inferior memory where the name of that exception is stored.
11348 Return zero if the address could not be computed. */
11349 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11350};
11351
11352static CORE_ADDR ada_unhandled_exception_name_addr (void);
11353static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11354
11355/* The following exception support info structure describes how to
11356 implement exception catchpoints with the latest version of the
11357 Ada runtime (as of 2007-03-06). */
11358
11359static const struct exception_support_info default_exception_support_info =
11360{
11361 "__gnat_debug_raise_exception", /* catch_exception_sym */
11362 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11363 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11364 ada_unhandled_exception_name_addr
11365};
11366
11367/* The following exception support info structure describes how to
11368 implement exception catchpoints with a slightly older version
11369 of the Ada runtime. */
11370
11371static const struct exception_support_info exception_support_info_fallback =
11372{
11373 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11374 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11375 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11376 ada_unhandled_exception_name_addr_from_raise
11377};
11378
f17011e0
JB
11379/* Return nonzero if we can detect the exception support routines
11380 described in EINFO.
11381
11382 This function errors out if an abnormal situation is detected
11383 (for instance, if we find the exception support routines, but
11384 that support is found to be incomplete). */
11385
11386static int
11387ada_has_this_exception_support (const struct exception_support_info *einfo)
11388{
11389 struct symbol *sym;
11390
11391 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11392 that should be compiled with debugging information. As a result, we
11393 expect to find that symbol in the symtabs. */
11394
11395 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11396 if (sym == NULL)
a6af7abe
JB
11397 {
11398 /* Perhaps we did not find our symbol because the Ada runtime was
11399 compiled without debugging info, or simply stripped of it.
11400 It happens on some GNU/Linux distributions for instance, where
11401 users have to install a separate debug package in order to get
11402 the runtime's debugging info. In that situation, let the user
11403 know why we cannot insert an Ada exception catchpoint.
11404
11405 Note: Just for the purpose of inserting our Ada exception
11406 catchpoint, we could rely purely on the associated minimal symbol.
11407 But we would be operating in degraded mode anyway, since we are
11408 still lacking the debugging info needed later on to extract
11409 the name of the exception being raised (this name is printed in
11410 the catchpoint message, and is also used when trying to catch
11411 a specific exception). We do not handle this case for now. */
3b7344d5 11412 struct bound_minimal_symbol msym
1c8e84b0
JB
11413 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11414
3b7344d5 11415 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11416 error (_("Your Ada runtime appears to be missing some debugging "
11417 "information.\nCannot insert Ada exception catchpoint "
11418 "in this configuration."));
11419
11420 return 0;
11421 }
f17011e0
JB
11422
11423 /* Make sure that the symbol we found corresponds to a function. */
11424
11425 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11426 error (_("Symbol \"%s\" is not a function (class = %d)"),
11427 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11428
11429 return 1;
11430}
11431
0259addd
JB
11432/* Inspect the Ada runtime and determine which exception info structure
11433 should be used to provide support for exception catchpoints.
11434
3eecfa55
JB
11435 This function will always set the per-inferior exception_info,
11436 or raise an error. */
0259addd
JB
11437
11438static void
11439ada_exception_support_info_sniffer (void)
11440{
3eecfa55 11441 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11442
11443 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11444 if (data->exception_info != NULL)
0259addd
JB
11445 return;
11446
11447 /* Check the latest (default) exception support info. */
f17011e0 11448 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11449 {
3eecfa55 11450 data->exception_info = &default_exception_support_info;
0259addd
JB
11451 return;
11452 }
11453
11454 /* Try our fallback exception suport info. */
f17011e0 11455 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11456 {
3eecfa55 11457 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11458 return;
11459 }
11460
11461 /* Sometimes, it is normal for us to not be able to find the routine
11462 we are looking for. This happens when the program is linked with
11463 the shared version of the GNAT runtime, and the program has not been
11464 started yet. Inform the user of these two possible causes if
11465 applicable. */
11466
ccefe4c4 11467 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11468 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11469
11470 /* If the symbol does not exist, then check that the program is
11471 already started, to make sure that shared libraries have been
11472 loaded. If it is not started, this may mean that the symbol is
11473 in a shared library. */
11474
11475 if (ptid_get_pid (inferior_ptid) == 0)
11476 error (_("Unable to insert catchpoint. Try to start the program first."));
11477
11478 /* At this point, we know that we are debugging an Ada program and
11479 that the inferior has been started, but we still are not able to
0963b4bd 11480 find the run-time symbols. That can mean that we are in
0259addd
JB
11481 configurable run time mode, or that a-except as been optimized
11482 out by the linker... In any case, at this point it is not worth
11483 supporting this feature. */
11484
7dda8cff 11485 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11486}
11487
f7f9143b
JB
11488/* True iff FRAME is very likely to be that of a function that is
11489 part of the runtime system. This is all very heuristic, but is
11490 intended to be used as advice as to what frames are uninteresting
11491 to most users. */
11492
11493static int
11494is_known_support_routine (struct frame_info *frame)
11495{
4ed6b5be 11496 struct symtab_and_line sal;
55b87a52 11497 char *func_name;
692465f1 11498 enum language func_lang;
f7f9143b 11499 int i;
f35a17b5 11500 const char *fullname;
f7f9143b 11501
4ed6b5be
JB
11502 /* If this code does not have any debugging information (no symtab),
11503 This cannot be any user code. */
f7f9143b 11504
4ed6b5be 11505 find_frame_sal (frame, &sal);
f7f9143b
JB
11506 if (sal.symtab == NULL)
11507 return 1;
11508
4ed6b5be
JB
11509 /* If there is a symtab, but the associated source file cannot be
11510 located, then assume this is not user code: Selecting a frame
11511 for which we cannot display the code would not be very helpful
11512 for the user. This should also take care of case such as VxWorks
11513 where the kernel has some debugging info provided for a few units. */
f7f9143b 11514
f35a17b5
JK
11515 fullname = symtab_to_fullname (sal.symtab);
11516 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11517 return 1;
11518
4ed6b5be
JB
11519 /* Check the unit filename againt the Ada runtime file naming.
11520 We also check the name of the objfile against the name of some
11521 known system libraries that sometimes come with debugging info
11522 too. */
11523
f7f9143b
JB
11524 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11525 {
11526 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11527 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11528 return 1;
eb822aa6
DE
11529 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11530 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11531 return 1;
f7f9143b
JB
11532 }
11533
4ed6b5be 11534 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11535
e9e07ba6 11536 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11537 if (func_name == NULL)
11538 return 1;
11539
11540 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11541 {
11542 re_comp (known_auxiliary_function_name_patterns[i]);
11543 if (re_exec (func_name))
55b87a52
KS
11544 {
11545 xfree (func_name);
11546 return 1;
11547 }
f7f9143b
JB
11548 }
11549
55b87a52 11550 xfree (func_name);
f7f9143b
JB
11551 return 0;
11552}
11553
11554/* Find the first frame that contains debugging information and that is not
11555 part of the Ada run-time, starting from FI and moving upward. */
11556
0ef643c8 11557void
f7f9143b
JB
11558ada_find_printable_frame (struct frame_info *fi)
11559{
11560 for (; fi != NULL; fi = get_prev_frame (fi))
11561 {
11562 if (!is_known_support_routine (fi))
11563 {
11564 select_frame (fi);
11565 break;
11566 }
11567 }
11568
11569}
11570
11571/* Assuming that the inferior just triggered an unhandled exception
11572 catchpoint, return the address in inferior memory where the name
11573 of the exception is stored.
11574
11575 Return zero if the address could not be computed. */
11576
11577static CORE_ADDR
11578ada_unhandled_exception_name_addr (void)
0259addd
JB
11579{
11580 return parse_and_eval_address ("e.full_name");
11581}
11582
11583/* Same as ada_unhandled_exception_name_addr, except that this function
11584 should be used when the inferior uses an older version of the runtime,
11585 where the exception name needs to be extracted from a specific frame
11586 several frames up in the callstack. */
11587
11588static CORE_ADDR
11589ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11590{
11591 int frame_level;
11592 struct frame_info *fi;
3eecfa55 11593 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11594 struct cleanup *old_chain;
f7f9143b
JB
11595
11596 /* To determine the name of this exception, we need to select
11597 the frame corresponding to RAISE_SYM_NAME. This frame is
11598 at least 3 levels up, so we simply skip the first 3 frames
11599 without checking the name of their associated function. */
11600 fi = get_current_frame ();
11601 for (frame_level = 0; frame_level < 3; frame_level += 1)
11602 if (fi != NULL)
11603 fi = get_prev_frame (fi);
11604
55b87a52 11605 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11606 while (fi != NULL)
11607 {
55b87a52 11608 char *func_name;
692465f1
JB
11609 enum language func_lang;
11610
e9e07ba6 11611 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11612 if (func_name != NULL)
11613 {
11614 make_cleanup (xfree, func_name);
11615
11616 if (strcmp (func_name,
11617 data->exception_info->catch_exception_sym) == 0)
11618 break; /* We found the frame we were looking for... */
11619 fi = get_prev_frame (fi);
11620 }
f7f9143b 11621 }
55b87a52 11622 do_cleanups (old_chain);
f7f9143b
JB
11623
11624 if (fi == NULL)
11625 return 0;
11626
11627 select_frame (fi);
11628 return parse_and_eval_address ("id.full_name");
11629}
11630
11631/* Assuming the inferior just triggered an Ada exception catchpoint
11632 (of any type), return the address in inferior memory where the name
11633 of the exception is stored, if applicable.
11634
11635 Return zero if the address could not be computed, or if not relevant. */
11636
11637static CORE_ADDR
761269c8 11638ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11639 struct breakpoint *b)
11640{
3eecfa55
JB
11641 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11642
f7f9143b
JB
11643 switch (ex)
11644 {
761269c8 11645 case ada_catch_exception:
f7f9143b
JB
11646 return (parse_and_eval_address ("e.full_name"));
11647 break;
11648
761269c8 11649 case ada_catch_exception_unhandled:
3eecfa55 11650 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11651 break;
11652
761269c8 11653 case ada_catch_assert:
f7f9143b
JB
11654 return 0; /* Exception name is not relevant in this case. */
11655 break;
11656
11657 default:
11658 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11659 break;
11660 }
11661
11662 return 0; /* Should never be reached. */
11663}
11664
11665/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11666 any error that ada_exception_name_addr_1 might cause to be thrown.
11667 When an error is intercepted, a warning with the error message is printed,
11668 and zero is returned. */
11669
11670static CORE_ADDR
761269c8 11671ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11672 struct breakpoint *b)
11673{
bfd189b1 11674 volatile struct gdb_exception e;
f7f9143b
JB
11675 CORE_ADDR result = 0;
11676
11677 TRY_CATCH (e, RETURN_MASK_ERROR)
11678 {
11679 result = ada_exception_name_addr_1 (ex, b);
11680 }
11681
11682 if (e.reason < 0)
11683 {
11684 warning (_("failed to get exception name: %s"), e.message);
11685 return 0;
11686 }
11687
11688 return result;
11689}
11690
28010a5d
PA
11691static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11692
11693/* Ada catchpoints.
11694
11695 In the case of catchpoints on Ada exceptions, the catchpoint will
11696 stop the target on every exception the program throws. When a user
11697 specifies the name of a specific exception, we translate this
11698 request into a condition expression (in text form), and then parse
11699 it into an expression stored in each of the catchpoint's locations.
11700 We then use this condition to check whether the exception that was
11701 raised is the one the user is interested in. If not, then the
11702 target is resumed again. We store the name of the requested
11703 exception, in order to be able to re-set the condition expression
11704 when symbols change. */
11705
11706/* An instance of this type is used to represent an Ada catchpoint
11707 breakpoint location. It includes a "struct bp_location" as a kind
11708 of base class; users downcast to "struct bp_location *" when
11709 needed. */
11710
11711struct ada_catchpoint_location
11712{
11713 /* The base class. */
11714 struct bp_location base;
11715
11716 /* The condition that checks whether the exception that was raised
11717 is the specific exception the user specified on catchpoint
11718 creation. */
11719 struct expression *excep_cond_expr;
11720};
11721
11722/* Implement the DTOR method in the bp_location_ops structure for all
11723 Ada exception catchpoint kinds. */
11724
11725static void
11726ada_catchpoint_location_dtor (struct bp_location *bl)
11727{
11728 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11729
11730 xfree (al->excep_cond_expr);
11731}
11732
11733/* The vtable to be used in Ada catchpoint locations. */
11734
11735static const struct bp_location_ops ada_catchpoint_location_ops =
11736{
11737 ada_catchpoint_location_dtor
11738};
11739
11740/* An instance of this type is used to represent an Ada catchpoint.
11741 It includes a "struct breakpoint" as a kind of base class; users
11742 downcast to "struct breakpoint *" when needed. */
11743
11744struct ada_catchpoint
11745{
11746 /* The base class. */
11747 struct breakpoint base;
11748
11749 /* The name of the specific exception the user specified. */
11750 char *excep_string;
11751};
11752
11753/* Parse the exception condition string in the context of each of the
11754 catchpoint's locations, and store them for later evaluation. */
11755
11756static void
11757create_excep_cond_exprs (struct ada_catchpoint *c)
11758{
11759 struct cleanup *old_chain;
11760 struct bp_location *bl;
11761 char *cond_string;
11762
11763 /* Nothing to do if there's no specific exception to catch. */
11764 if (c->excep_string == NULL)
11765 return;
11766
11767 /* Same if there are no locations... */
11768 if (c->base.loc == NULL)
11769 return;
11770
11771 /* Compute the condition expression in text form, from the specific
11772 expection we want to catch. */
11773 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11774 old_chain = make_cleanup (xfree, cond_string);
11775
11776 /* Iterate over all the catchpoint's locations, and parse an
11777 expression for each. */
11778 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11779 {
11780 struct ada_catchpoint_location *ada_loc
11781 = (struct ada_catchpoint_location *) bl;
11782 struct expression *exp = NULL;
11783
11784 if (!bl->shlib_disabled)
11785 {
11786 volatile struct gdb_exception e;
bbc13ae3 11787 const char *s;
28010a5d
PA
11788
11789 s = cond_string;
11790 TRY_CATCH (e, RETURN_MASK_ERROR)
11791 {
1bb9788d
TT
11792 exp = parse_exp_1 (&s, bl->address,
11793 block_for_pc (bl->address), 0);
28010a5d
PA
11794 }
11795 if (e.reason < 0)
849f2b52
JB
11796 {
11797 warning (_("failed to reevaluate internal exception condition "
11798 "for catchpoint %d: %s"),
11799 c->base.number, e.message);
11800 /* There is a bug in GCC on sparc-solaris when building with
11801 optimization which causes EXP to change unexpectedly
11802 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11803 The problem should be fixed starting with GCC 4.9.
11804 In the meantime, work around it by forcing EXP back
11805 to NULL. */
11806 exp = NULL;
11807 }
28010a5d
PA
11808 }
11809
11810 ada_loc->excep_cond_expr = exp;
11811 }
11812
11813 do_cleanups (old_chain);
11814}
11815
11816/* Implement the DTOR method in the breakpoint_ops structure for all
11817 exception catchpoint kinds. */
11818
11819static void
761269c8 11820dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11821{
11822 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11823
11824 xfree (c->excep_string);
348d480f 11825
2060206e 11826 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11827}
11828
11829/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11830 structure for all exception catchpoint kinds. */
11831
11832static struct bp_location *
761269c8 11833allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11834 struct breakpoint *self)
11835{
11836 struct ada_catchpoint_location *loc;
11837
11838 loc = XNEW (struct ada_catchpoint_location);
11839 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11840 loc->excep_cond_expr = NULL;
11841 return &loc->base;
11842}
11843
11844/* Implement the RE_SET method in the breakpoint_ops structure for all
11845 exception catchpoint kinds. */
11846
11847static void
761269c8 11848re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11849{
11850 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11851
11852 /* Call the base class's method. This updates the catchpoint's
11853 locations. */
2060206e 11854 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11855
11856 /* Reparse the exception conditional expressions. One for each
11857 location. */
11858 create_excep_cond_exprs (c);
11859}
11860
11861/* Returns true if we should stop for this breakpoint hit. If the
11862 user specified a specific exception, we only want to cause a stop
11863 if the program thrown that exception. */
11864
11865static int
11866should_stop_exception (const struct bp_location *bl)
11867{
11868 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11869 const struct ada_catchpoint_location *ada_loc
11870 = (const struct ada_catchpoint_location *) bl;
11871 volatile struct gdb_exception ex;
11872 int stop;
11873
11874 /* With no specific exception, should always stop. */
11875 if (c->excep_string == NULL)
11876 return 1;
11877
11878 if (ada_loc->excep_cond_expr == NULL)
11879 {
11880 /* We will have a NULL expression if back when we were creating
11881 the expressions, this location's had failed to parse. */
11882 return 1;
11883 }
11884
11885 stop = 1;
11886 TRY_CATCH (ex, RETURN_MASK_ALL)
11887 {
11888 struct value *mark;
11889
11890 mark = value_mark ();
11891 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11892 value_free_to_mark (mark);
11893 }
11894 if (ex.reason < 0)
11895 exception_fprintf (gdb_stderr, ex,
11896 _("Error in testing exception condition:\n"));
11897 return stop;
11898}
11899
11900/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11901 for all exception catchpoint kinds. */
11902
11903static void
761269c8 11904check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
11905{
11906 bs->stop = should_stop_exception (bs->bp_location_at);
11907}
11908
f7f9143b
JB
11909/* Implement the PRINT_IT method in the breakpoint_ops structure
11910 for all exception catchpoint kinds. */
11911
11912static enum print_stop_action
761269c8 11913print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11914{
79a45e25 11915 struct ui_out *uiout = current_uiout;
348d480f
PA
11916 struct breakpoint *b = bs->breakpoint_at;
11917
956a9fb9 11918 annotate_catchpoint (b->number);
f7f9143b 11919
956a9fb9 11920 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11921 {
956a9fb9
JB
11922 ui_out_field_string (uiout, "reason",
11923 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11924 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11925 }
11926
00eb2c4a
JB
11927 ui_out_text (uiout,
11928 b->disposition == disp_del ? "\nTemporary catchpoint "
11929 : "\nCatchpoint ");
956a9fb9
JB
11930 ui_out_field_int (uiout, "bkptno", b->number);
11931 ui_out_text (uiout, ", ");
f7f9143b 11932
f7f9143b
JB
11933 switch (ex)
11934 {
761269c8
JB
11935 case ada_catch_exception:
11936 case ada_catch_exception_unhandled:
956a9fb9
JB
11937 {
11938 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11939 char exception_name[256];
11940
11941 if (addr != 0)
11942 {
c714b426
PA
11943 read_memory (addr, (gdb_byte *) exception_name,
11944 sizeof (exception_name) - 1);
956a9fb9
JB
11945 exception_name [sizeof (exception_name) - 1] = '\0';
11946 }
11947 else
11948 {
11949 /* For some reason, we were unable to read the exception
11950 name. This could happen if the Runtime was compiled
11951 without debugging info, for instance. In that case,
11952 just replace the exception name by the generic string
11953 "exception" - it will read as "an exception" in the
11954 notification we are about to print. */
967cff16 11955 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11956 }
11957 /* In the case of unhandled exception breakpoints, we print
11958 the exception name as "unhandled EXCEPTION_NAME", to make
11959 it clearer to the user which kind of catchpoint just got
11960 hit. We used ui_out_text to make sure that this extra
11961 info does not pollute the exception name in the MI case. */
761269c8 11962 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
11963 ui_out_text (uiout, "unhandled ");
11964 ui_out_field_string (uiout, "exception-name", exception_name);
11965 }
11966 break;
761269c8 11967 case ada_catch_assert:
956a9fb9
JB
11968 /* In this case, the name of the exception is not really
11969 important. Just print "failed assertion" to make it clearer
11970 that his program just hit an assertion-failure catchpoint.
11971 We used ui_out_text because this info does not belong in
11972 the MI output. */
11973 ui_out_text (uiout, "failed assertion");
11974 break;
f7f9143b 11975 }
956a9fb9
JB
11976 ui_out_text (uiout, " at ");
11977 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11978
11979 return PRINT_SRC_AND_LOC;
11980}
11981
11982/* Implement the PRINT_ONE method in the breakpoint_ops structure
11983 for all exception catchpoint kinds. */
11984
11985static void
761269c8 11986print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 11987 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11988{
79a45e25 11989 struct ui_out *uiout = current_uiout;
28010a5d 11990 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11991 struct value_print_options opts;
11992
11993 get_user_print_options (&opts);
11994 if (opts.addressprint)
f7f9143b
JB
11995 {
11996 annotate_field (4);
5af949e3 11997 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11998 }
11999
12000 annotate_field (5);
a6d9a66e 12001 *last_loc = b->loc;
f7f9143b
JB
12002 switch (ex)
12003 {
761269c8 12004 case ada_catch_exception:
28010a5d 12005 if (c->excep_string != NULL)
f7f9143b 12006 {
28010a5d
PA
12007 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12008
f7f9143b
JB
12009 ui_out_field_string (uiout, "what", msg);
12010 xfree (msg);
12011 }
12012 else
12013 ui_out_field_string (uiout, "what", "all Ada exceptions");
12014
12015 break;
12016
761269c8 12017 case ada_catch_exception_unhandled:
f7f9143b
JB
12018 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12019 break;
12020
761269c8 12021 case ada_catch_assert:
f7f9143b
JB
12022 ui_out_field_string (uiout, "what", "failed Ada assertions");
12023 break;
12024
12025 default:
12026 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12027 break;
12028 }
12029}
12030
12031/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12032 for all exception catchpoint kinds. */
12033
12034static void
761269c8 12035print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12036 struct breakpoint *b)
12037{
28010a5d 12038 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12039 struct ui_out *uiout = current_uiout;
28010a5d 12040
00eb2c4a
JB
12041 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12042 : _("Catchpoint "));
12043 ui_out_field_int (uiout, "bkptno", b->number);
12044 ui_out_text (uiout, ": ");
12045
f7f9143b
JB
12046 switch (ex)
12047 {
761269c8 12048 case ada_catch_exception:
28010a5d 12049 if (c->excep_string != NULL)
00eb2c4a
JB
12050 {
12051 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12052 struct cleanup *old_chain = make_cleanup (xfree, info);
12053
12054 ui_out_text (uiout, info);
12055 do_cleanups (old_chain);
12056 }
f7f9143b 12057 else
00eb2c4a 12058 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12059 break;
12060
761269c8 12061 case ada_catch_exception_unhandled:
00eb2c4a 12062 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12063 break;
12064
761269c8 12065 case ada_catch_assert:
00eb2c4a 12066 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12067 break;
12068
12069 default:
12070 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12071 break;
12072 }
12073}
12074
6149aea9
PA
12075/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12076 for all exception catchpoint kinds. */
12077
12078static void
761269c8 12079print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12080 struct breakpoint *b, struct ui_file *fp)
12081{
28010a5d
PA
12082 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12083
6149aea9
PA
12084 switch (ex)
12085 {
761269c8 12086 case ada_catch_exception:
6149aea9 12087 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12088 if (c->excep_string != NULL)
12089 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12090 break;
12091
761269c8 12092 case ada_catch_exception_unhandled:
78076abc 12093 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12094 break;
12095
761269c8 12096 case ada_catch_assert:
6149aea9
PA
12097 fprintf_filtered (fp, "catch assert");
12098 break;
12099
12100 default:
12101 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12102 }
d9b3f62e 12103 print_recreate_thread (b, fp);
6149aea9
PA
12104}
12105
f7f9143b
JB
12106/* Virtual table for "catch exception" breakpoints. */
12107
28010a5d
PA
12108static void
12109dtor_catch_exception (struct breakpoint *b)
12110{
761269c8 12111 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12112}
12113
12114static struct bp_location *
12115allocate_location_catch_exception (struct breakpoint *self)
12116{
761269c8 12117 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12118}
12119
12120static void
12121re_set_catch_exception (struct breakpoint *b)
12122{
761269c8 12123 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12124}
12125
12126static void
12127check_status_catch_exception (bpstat bs)
12128{
761269c8 12129 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12130}
12131
f7f9143b 12132static enum print_stop_action
348d480f 12133print_it_catch_exception (bpstat bs)
f7f9143b 12134{
761269c8 12135 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12136}
12137
12138static void
a6d9a66e 12139print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12140{
761269c8 12141 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12142}
12143
12144static void
12145print_mention_catch_exception (struct breakpoint *b)
12146{
761269c8 12147 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12148}
12149
6149aea9
PA
12150static void
12151print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12152{
761269c8 12153 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12154}
12155
2060206e 12156static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12157
12158/* Virtual table for "catch exception unhandled" breakpoints. */
12159
28010a5d
PA
12160static void
12161dtor_catch_exception_unhandled (struct breakpoint *b)
12162{
761269c8 12163 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12164}
12165
12166static struct bp_location *
12167allocate_location_catch_exception_unhandled (struct breakpoint *self)
12168{
761269c8 12169 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12170}
12171
12172static void
12173re_set_catch_exception_unhandled (struct breakpoint *b)
12174{
761269c8 12175 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12176}
12177
12178static void
12179check_status_catch_exception_unhandled (bpstat bs)
12180{
761269c8 12181 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12182}
12183
f7f9143b 12184static enum print_stop_action
348d480f 12185print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12186{
761269c8 12187 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12188}
12189
12190static void
a6d9a66e
UW
12191print_one_catch_exception_unhandled (struct breakpoint *b,
12192 struct bp_location **last_loc)
f7f9143b 12193{
761269c8 12194 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12195}
12196
12197static void
12198print_mention_catch_exception_unhandled (struct breakpoint *b)
12199{
761269c8 12200 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12201}
12202
6149aea9
PA
12203static void
12204print_recreate_catch_exception_unhandled (struct breakpoint *b,
12205 struct ui_file *fp)
12206{
761269c8 12207 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12208}
12209
2060206e 12210static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12211
12212/* Virtual table for "catch assert" breakpoints. */
12213
28010a5d
PA
12214static void
12215dtor_catch_assert (struct breakpoint *b)
12216{
761269c8 12217 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12218}
12219
12220static struct bp_location *
12221allocate_location_catch_assert (struct breakpoint *self)
12222{
761269c8 12223 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12224}
12225
12226static void
12227re_set_catch_assert (struct breakpoint *b)
12228{
761269c8 12229 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12230}
12231
12232static void
12233check_status_catch_assert (bpstat bs)
12234{
761269c8 12235 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12236}
12237
f7f9143b 12238static enum print_stop_action
348d480f 12239print_it_catch_assert (bpstat bs)
f7f9143b 12240{
761269c8 12241 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12242}
12243
12244static void
a6d9a66e 12245print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12246{
761269c8 12247 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12248}
12249
12250static void
12251print_mention_catch_assert (struct breakpoint *b)
12252{
761269c8 12253 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12254}
12255
6149aea9
PA
12256static void
12257print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12258{
761269c8 12259 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12260}
12261
2060206e 12262static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12263
f7f9143b
JB
12264/* Return a newly allocated copy of the first space-separated token
12265 in ARGSP, and then adjust ARGSP to point immediately after that
12266 token.
12267
12268 Return NULL if ARGPS does not contain any more tokens. */
12269
12270static char *
12271ada_get_next_arg (char **argsp)
12272{
12273 char *args = *argsp;
12274 char *end;
12275 char *result;
12276
0fcd72ba 12277 args = skip_spaces (args);
f7f9143b
JB
12278 if (args[0] == '\0')
12279 return NULL; /* No more arguments. */
12280
12281 /* Find the end of the current argument. */
12282
0fcd72ba 12283 end = skip_to_space (args);
f7f9143b
JB
12284
12285 /* Adjust ARGSP to point to the start of the next argument. */
12286
12287 *argsp = end;
12288
12289 /* Make a copy of the current argument and return it. */
12290
12291 result = xmalloc (end - args + 1);
12292 strncpy (result, args, end - args);
12293 result[end - args] = '\0';
12294
12295 return result;
12296}
12297
12298/* Split the arguments specified in a "catch exception" command.
12299 Set EX to the appropriate catchpoint type.
28010a5d 12300 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12301 specified by the user.
12302 If a condition is found at the end of the arguments, the condition
12303 expression is stored in COND_STRING (memory must be deallocated
12304 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12305
12306static void
12307catch_ada_exception_command_split (char *args,
761269c8 12308 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12309 char **excep_string,
12310 char **cond_string)
f7f9143b
JB
12311{
12312 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12313 char *exception_name;
5845583d 12314 char *cond = NULL;
f7f9143b
JB
12315
12316 exception_name = ada_get_next_arg (&args);
5845583d
JB
12317 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12318 {
12319 /* This is not an exception name; this is the start of a condition
12320 expression for a catchpoint on all exceptions. So, "un-get"
12321 this token, and set exception_name to NULL. */
12322 xfree (exception_name);
12323 exception_name = NULL;
12324 args -= 2;
12325 }
f7f9143b
JB
12326 make_cleanup (xfree, exception_name);
12327
5845583d 12328 /* Check to see if we have a condition. */
f7f9143b 12329
0fcd72ba 12330 args = skip_spaces (args);
5845583d
JB
12331 if (strncmp (args, "if", 2) == 0
12332 && (isspace (args[2]) || args[2] == '\0'))
12333 {
12334 args += 2;
12335 args = skip_spaces (args);
12336
12337 if (args[0] == '\0')
12338 error (_("Condition missing after `if' keyword"));
12339 cond = xstrdup (args);
12340 make_cleanup (xfree, cond);
12341
12342 args += strlen (args);
12343 }
12344
12345 /* Check that we do not have any more arguments. Anything else
12346 is unexpected. */
f7f9143b
JB
12347
12348 if (args[0] != '\0')
12349 error (_("Junk at end of expression"));
12350
12351 discard_cleanups (old_chain);
12352
12353 if (exception_name == NULL)
12354 {
12355 /* Catch all exceptions. */
761269c8 12356 *ex = ada_catch_exception;
28010a5d 12357 *excep_string = NULL;
f7f9143b
JB
12358 }
12359 else if (strcmp (exception_name, "unhandled") == 0)
12360 {
12361 /* Catch unhandled exceptions. */
761269c8 12362 *ex = ada_catch_exception_unhandled;
28010a5d 12363 *excep_string = NULL;
f7f9143b
JB
12364 }
12365 else
12366 {
12367 /* Catch a specific exception. */
761269c8 12368 *ex = ada_catch_exception;
28010a5d 12369 *excep_string = exception_name;
f7f9143b 12370 }
5845583d 12371 *cond_string = cond;
f7f9143b
JB
12372}
12373
12374/* Return the name of the symbol on which we should break in order to
12375 implement a catchpoint of the EX kind. */
12376
12377static const char *
761269c8 12378ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12379{
3eecfa55
JB
12380 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12381
12382 gdb_assert (data->exception_info != NULL);
0259addd 12383
f7f9143b
JB
12384 switch (ex)
12385 {
761269c8 12386 case ada_catch_exception:
3eecfa55 12387 return (data->exception_info->catch_exception_sym);
f7f9143b 12388 break;
761269c8 12389 case ada_catch_exception_unhandled:
3eecfa55 12390 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12391 break;
761269c8 12392 case ada_catch_assert:
3eecfa55 12393 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12394 break;
12395 default:
12396 internal_error (__FILE__, __LINE__,
12397 _("unexpected catchpoint kind (%d)"), ex);
12398 }
12399}
12400
12401/* Return the breakpoint ops "virtual table" used for catchpoints
12402 of the EX kind. */
12403
c0a91b2b 12404static const struct breakpoint_ops *
761269c8 12405ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12406{
12407 switch (ex)
12408 {
761269c8 12409 case ada_catch_exception:
f7f9143b
JB
12410 return (&catch_exception_breakpoint_ops);
12411 break;
761269c8 12412 case ada_catch_exception_unhandled:
f7f9143b
JB
12413 return (&catch_exception_unhandled_breakpoint_ops);
12414 break;
761269c8 12415 case ada_catch_assert:
f7f9143b
JB
12416 return (&catch_assert_breakpoint_ops);
12417 break;
12418 default:
12419 internal_error (__FILE__, __LINE__,
12420 _("unexpected catchpoint kind (%d)"), ex);
12421 }
12422}
12423
12424/* Return the condition that will be used to match the current exception
12425 being raised with the exception that the user wants to catch. This
12426 assumes that this condition is used when the inferior just triggered
12427 an exception catchpoint.
12428
12429 The string returned is a newly allocated string that needs to be
12430 deallocated later. */
12431
12432static char *
28010a5d 12433ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12434{
3d0b0fa3
JB
12435 int i;
12436
0963b4bd 12437 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12438 runtime units that have been compiled without debugging info; if
28010a5d 12439 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12440 exception (e.g. "constraint_error") then, during the evaluation
12441 of the condition expression, the symbol lookup on this name would
0963b4bd 12442 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12443 may then be set only on user-defined exceptions which have the
12444 same not-fully-qualified name (e.g. my_package.constraint_error).
12445
12446 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12447 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12448 exception constraint_error" is rewritten into "catch exception
12449 standard.constraint_error".
12450
12451 If an exception named contraint_error is defined in another package of
12452 the inferior program, then the only way to specify this exception as a
12453 breakpoint condition is to use its fully-qualified named:
12454 e.g. my_package.constraint_error. */
12455
12456 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12457 {
28010a5d 12458 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12459 {
12460 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12461 excep_string);
3d0b0fa3
JB
12462 }
12463 }
28010a5d 12464 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12465}
12466
12467/* Return the symtab_and_line that should be used to insert an exception
12468 catchpoint of the TYPE kind.
12469
28010a5d
PA
12470 EXCEP_STRING should contain the name of a specific exception that
12471 the catchpoint should catch, or NULL otherwise.
f7f9143b 12472
28010a5d
PA
12473 ADDR_STRING returns the name of the function where the real
12474 breakpoint that implements the catchpoints is set, depending on the
12475 type of catchpoint we need to create. */
f7f9143b
JB
12476
12477static struct symtab_and_line
761269c8 12478ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12479 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12480{
12481 const char *sym_name;
12482 struct symbol *sym;
f7f9143b 12483
0259addd
JB
12484 /* First, find out which exception support info to use. */
12485 ada_exception_support_info_sniffer ();
12486
12487 /* Then lookup the function on which we will break in order to catch
f7f9143b 12488 the Ada exceptions requested by the user. */
f7f9143b
JB
12489 sym_name = ada_exception_sym_name (ex);
12490 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12491
f17011e0
JB
12492 /* We can assume that SYM is not NULL at this stage. If the symbol
12493 did not exist, ada_exception_support_info_sniffer would have
12494 raised an exception.
f7f9143b 12495
f17011e0
JB
12496 Also, ada_exception_support_info_sniffer should have already
12497 verified that SYM is a function symbol. */
12498 gdb_assert (sym != NULL);
12499 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12500
12501 /* Set ADDR_STRING. */
f7f9143b
JB
12502 *addr_string = xstrdup (sym_name);
12503
f7f9143b 12504 /* Set OPS. */
4b9eee8c 12505 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12506
f17011e0 12507 return find_function_start_sal (sym, 1);
f7f9143b
JB
12508}
12509
b4a5b78b 12510/* Create an Ada exception catchpoint.
f7f9143b 12511
b4a5b78b 12512 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12513
2df4d1d5
JB
12514 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12515 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12516 of the exception to which this catchpoint applies. When not NULL,
12517 the string must be allocated on the heap, and its deallocation
12518 is no longer the responsibility of the caller.
12519
12520 COND_STRING, if not NULL, is the catchpoint condition. This string
12521 must be allocated on the heap, and its deallocation is no longer
12522 the responsibility of the caller.
f7f9143b 12523
b4a5b78b
JB
12524 TEMPFLAG, if nonzero, means that the underlying breakpoint
12525 should be temporary.
28010a5d 12526
b4a5b78b 12527 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12528
349774ef 12529void
28010a5d 12530create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12531 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12532 char *excep_string,
5845583d 12533 char *cond_string,
28010a5d 12534 int tempflag,
349774ef 12535 int disabled,
28010a5d
PA
12536 int from_tty)
12537{
12538 struct ada_catchpoint *c;
b4a5b78b
JB
12539 char *addr_string = NULL;
12540 const struct breakpoint_ops *ops = NULL;
12541 struct symtab_and_line sal
12542 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12543
12544 c = XNEW (struct ada_catchpoint);
12545 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12546 ops, tempflag, disabled, from_tty);
28010a5d
PA
12547 c->excep_string = excep_string;
12548 create_excep_cond_exprs (c);
5845583d
JB
12549 if (cond_string != NULL)
12550 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12551 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12552}
12553
9ac4176b
PA
12554/* Implement the "catch exception" command. */
12555
12556static void
12557catch_ada_exception_command (char *arg, int from_tty,
12558 struct cmd_list_element *command)
12559{
12560 struct gdbarch *gdbarch = get_current_arch ();
12561 int tempflag;
761269c8 12562 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12563 char *excep_string = NULL;
5845583d 12564 char *cond_string = NULL;
9ac4176b
PA
12565
12566 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12567
12568 if (!arg)
12569 arg = "";
b4a5b78b
JB
12570 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12571 &cond_string);
12572 create_ada_exception_catchpoint (gdbarch, ex_kind,
12573 excep_string, cond_string,
349774ef
JB
12574 tempflag, 1 /* enabled */,
12575 from_tty);
9ac4176b
PA
12576}
12577
b4a5b78b 12578/* Split the arguments specified in a "catch assert" command.
5845583d 12579
b4a5b78b
JB
12580 ARGS contains the command's arguments (or the empty string if
12581 no arguments were passed).
5845583d
JB
12582
12583 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12584 (the memory needs to be deallocated after use). */
5845583d 12585
b4a5b78b
JB
12586static void
12587catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12588{
5845583d 12589 args = skip_spaces (args);
f7f9143b 12590
5845583d
JB
12591 /* Check whether a condition was provided. */
12592 if (strncmp (args, "if", 2) == 0
12593 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12594 {
5845583d 12595 args += 2;
0fcd72ba 12596 args = skip_spaces (args);
5845583d
JB
12597 if (args[0] == '\0')
12598 error (_("condition missing after `if' keyword"));
12599 *cond_string = xstrdup (args);
f7f9143b
JB
12600 }
12601
5845583d
JB
12602 /* Otherwise, there should be no other argument at the end of
12603 the command. */
12604 else if (args[0] != '\0')
12605 error (_("Junk at end of arguments."));
f7f9143b
JB
12606}
12607
9ac4176b
PA
12608/* Implement the "catch assert" command. */
12609
12610static void
12611catch_assert_command (char *arg, int from_tty,
12612 struct cmd_list_element *command)
12613{
12614 struct gdbarch *gdbarch = get_current_arch ();
12615 int tempflag;
5845583d 12616 char *cond_string = NULL;
9ac4176b
PA
12617
12618 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12619
12620 if (!arg)
12621 arg = "";
b4a5b78b 12622 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12623 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12624 NULL, cond_string,
349774ef
JB
12625 tempflag, 1 /* enabled */,
12626 from_tty);
9ac4176b 12627}
778865d3
JB
12628
12629/* Return non-zero if the symbol SYM is an Ada exception object. */
12630
12631static int
12632ada_is_exception_sym (struct symbol *sym)
12633{
12634 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12635
12636 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12637 && SYMBOL_CLASS (sym) != LOC_BLOCK
12638 && SYMBOL_CLASS (sym) != LOC_CONST
12639 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12640 && type_name != NULL && strcmp (type_name, "exception") == 0);
12641}
12642
12643/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12644 Ada exception object. This matches all exceptions except the ones
12645 defined by the Ada language. */
12646
12647static int
12648ada_is_non_standard_exception_sym (struct symbol *sym)
12649{
12650 int i;
12651
12652 if (!ada_is_exception_sym (sym))
12653 return 0;
12654
12655 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12656 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12657 return 0; /* A standard exception. */
12658
12659 /* Numeric_Error is also a standard exception, so exclude it.
12660 See the STANDARD_EXC description for more details as to why
12661 this exception is not listed in that array. */
12662 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12663 return 0;
12664
12665 return 1;
12666}
12667
12668/* A helper function for qsort, comparing two struct ada_exc_info
12669 objects.
12670
12671 The comparison is determined first by exception name, and then
12672 by exception address. */
12673
12674static int
12675compare_ada_exception_info (const void *a, const void *b)
12676{
12677 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12678 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12679 int result;
12680
12681 result = strcmp (exc_a->name, exc_b->name);
12682 if (result != 0)
12683 return result;
12684
12685 if (exc_a->addr < exc_b->addr)
12686 return -1;
12687 if (exc_a->addr > exc_b->addr)
12688 return 1;
12689
12690 return 0;
12691}
12692
12693/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12694 routine, but keeping the first SKIP elements untouched.
12695
12696 All duplicates are also removed. */
12697
12698static void
12699sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12700 int skip)
12701{
12702 struct ada_exc_info *to_sort
12703 = VEC_address (ada_exc_info, *exceptions) + skip;
12704 int to_sort_len
12705 = VEC_length (ada_exc_info, *exceptions) - skip;
12706 int i, j;
12707
12708 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12709 compare_ada_exception_info);
12710
12711 for (i = 1, j = 1; i < to_sort_len; i++)
12712 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12713 to_sort[j++] = to_sort[i];
12714 to_sort_len = j;
12715 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12716}
12717
12718/* A function intended as the "name_matcher" callback in the struct
12719 quick_symbol_functions' expand_symtabs_matching method.
12720
12721 SEARCH_NAME is the symbol's search name.
12722
12723 If USER_DATA is not NULL, it is a pointer to a regext_t object
12724 used to match the symbol (by natural name). Otherwise, when USER_DATA
12725 is null, no filtering is performed, and all symbols are a positive
12726 match. */
12727
12728static int
12729ada_exc_search_name_matches (const char *search_name, void *user_data)
12730{
12731 regex_t *preg = user_data;
12732
12733 if (preg == NULL)
12734 return 1;
12735
12736 /* In Ada, the symbol "search name" is a linkage name, whereas
12737 the regular expression used to do the matching refers to
12738 the natural name. So match against the decoded name. */
12739 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12740}
12741
12742/* Add all exceptions defined by the Ada standard whose name match
12743 a regular expression.
12744
12745 If PREG is not NULL, then this regexp_t object is used to
12746 perform the symbol name matching. Otherwise, no name-based
12747 filtering is performed.
12748
12749 EXCEPTIONS is a vector of exceptions to which matching exceptions
12750 gets pushed. */
12751
12752static void
12753ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12754{
12755 int i;
12756
12757 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12758 {
12759 if (preg == NULL
12760 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12761 {
12762 struct bound_minimal_symbol msymbol
12763 = ada_lookup_simple_minsym (standard_exc[i]);
12764
12765 if (msymbol.minsym != NULL)
12766 {
12767 struct ada_exc_info info
77e371c0 12768 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12769
12770 VEC_safe_push (ada_exc_info, *exceptions, &info);
12771 }
12772 }
12773 }
12774}
12775
12776/* Add all Ada exceptions defined locally and accessible from the given
12777 FRAME.
12778
12779 If PREG is not NULL, then this regexp_t object is used to
12780 perform the symbol name matching. Otherwise, no name-based
12781 filtering is performed.
12782
12783 EXCEPTIONS is a vector of exceptions to which matching exceptions
12784 gets pushed. */
12785
12786static void
12787ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12788 VEC(ada_exc_info) **exceptions)
12789{
3977b71f 12790 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12791
12792 while (block != 0)
12793 {
12794 struct block_iterator iter;
12795 struct symbol *sym;
12796
12797 ALL_BLOCK_SYMBOLS (block, iter, sym)
12798 {
12799 switch (SYMBOL_CLASS (sym))
12800 {
12801 case LOC_TYPEDEF:
12802 case LOC_BLOCK:
12803 case LOC_CONST:
12804 break;
12805 default:
12806 if (ada_is_exception_sym (sym))
12807 {
12808 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12809 SYMBOL_VALUE_ADDRESS (sym)};
12810
12811 VEC_safe_push (ada_exc_info, *exceptions, &info);
12812 }
12813 }
12814 }
12815 if (BLOCK_FUNCTION (block) != NULL)
12816 break;
12817 block = BLOCK_SUPERBLOCK (block);
12818 }
12819}
12820
12821/* Add all exceptions defined globally whose name name match
12822 a regular expression, excluding standard exceptions.
12823
12824 The reason we exclude standard exceptions is that they need
12825 to be handled separately: Standard exceptions are defined inside
12826 a runtime unit which is normally not compiled with debugging info,
12827 and thus usually do not show up in our symbol search. However,
12828 if the unit was in fact built with debugging info, we need to
12829 exclude them because they would duplicate the entry we found
12830 during the special loop that specifically searches for those
12831 standard exceptions.
12832
12833 If PREG is not NULL, then this regexp_t object is used to
12834 perform the symbol name matching. Otherwise, no name-based
12835 filtering is performed.
12836
12837 EXCEPTIONS is a vector of exceptions to which matching exceptions
12838 gets pushed. */
12839
12840static void
12841ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12842{
12843 struct objfile *objfile;
12844 struct symtab *s;
12845
bb4142cf
DE
12846 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12847 VARIABLES_DOMAIN, preg);
778865d3
JB
12848
12849 ALL_PRIMARY_SYMTABS (objfile, s)
12850 {
439247b6 12851 const struct blockvector *bv = SYMTAB_BLOCKVECTOR (s);
778865d3
JB
12852 int i;
12853
12854 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12855 {
12856 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12857 struct block_iterator iter;
12858 struct symbol *sym;
12859
12860 ALL_BLOCK_SYMBOLS (b, iter, sym)
12861 if (ada_is_non_standard_exception_sym (sym)
12862 && (preg == NULL
12863 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12864 0, NULL, 0) == 0))
12865 {
12866 struct ada_exc_info info
12867 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12868
12869 VEC_safe_push (ada_exc_info, *exceptions, &info);
12870 }
12871 }
12872 }
12873}
12874
12875/* Implements ada_exceptions_list with the regular expression passed
12876 as a regex_t, rather than a string.
12877
12878 If not NULL, PREG is used to filter out exceptions whose names
12879 do not match. Otherwise, all exceptions are listed. */
12880
12881static VEC(ada_exc_info) *
12882ada_exceptions_list_1 (regex_t *preg)
12883{
12884 VEC(ada_exc_info) *result = NULL;
12885 struct cleanup *old_chain
12886 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12887 int prev_len;
12888
12889 /* First, list the known standard exceptions. These exceptions
12890 need to be handled separately, as they are usually defined in
12891 runtime units that have been compiled without debugging info. */
12892
12893 ada_add_standard_exceptions (preg, &result);
12894
12895 /* Next, find all exceptions whose scope is local and accessible
12896 from the currently selected frame. */
12897
12898 if (has_stack_frames ())
12899 {
12900 prev_len = VEC_length (ada_exc_info, result);
12901 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12902 &result);
12903 if (VEC_length (ada_exc_info, result) > prev_len)
12904 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12905 }
12906
12907 /* Add all exceptions whose scope is global. */
12908
12909 prev_len = VEC_length (ada_exc_info, result);
12910 ada_add_global_exceptions (preg, &result);
12911 if (VEC_length (ada_exc_info, result) > prev_len)
12912 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12913
12914 discard_cleanups (old_chain);
12915 return result;
12916}
12917
12918/* Return a vector of ada_exc_info.
12919
12920 If REGEXP is NULL, all exceptions are included in the result.
12921 Otherwise, it should contain a valid regular expression,
12922 and only the exceptions whose names match that regular expression
12923 are included in the result.
12924
12925 The exceptions are sorted in the following order:
12926 - Standard exceptions (defined by the Ada language), in
12927 alphabetical order;
12928 - Exceptions only visible from the current frame, in
12929 alphabetical order;
12930 - Exceptions whose scope is global, in alphabetical order. */
12931
12932VEC(ada_exc_info) *
12933ada_exceptions_list (const char *regexp)
12934{
12935 VEC(ada_exc_info) *result = NULL;
12936 struct cleanup *old_chain = NULL;
12937 regex_t reg;
12938
12939 if (regexp != NULL)
12940 old_chain = compile_rx_or_error (&reg, regexp,
12941 _("invalid regular expression"));
12942
12943 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12944
12945 if (old_chain != NULL)
12946 do_cleanups (old_chain);
12947 return result;
12948}
12949
12950/* Implement the "info exceptions" command. */
12951
12952static void
12953info_exceptions_command (char *regexp, int from_tty)
12954{
12955 VEC(ada_exc_info) *exceptions;
12956 struct cleanup *cleanup;
12957 struct gdbarch *gdbarch = get_current_arch ();
12958 int ix;
12959 struct ada_exc_info *info;
12960
12961 exceptions = ada_exceptions_list (regexp);
12962 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12963
12964 if (regexp != NULL)
12965 printf_filtered
12966 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12967 else
12968 printf_filtered (_("All defined Ada exceptions:\n"));
12969
12970 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12971 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12972
12973 do_cleanups (cleanup);
12974}
12975
4c4b4cd2
PH
12976 /* Operators */
12977/* Information about operators given special treatment in functions
12978 below. */
12979/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12980
12981#define ADA_OPERATORS \
12982 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12983 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12984 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12985 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12986 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12987 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12988 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12989 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12990 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12991 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12992 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12993 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12994 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12995 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12996 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12997 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12998 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12999 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13000 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13001
13002static void
554794dc
SDJ
13003ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13004 int *argsp)
4c4b4cd2
PH
13005{
13006 switch (exp->elts[pc - 1].opcode)
13007 {
76a01679 13008 default:
4c4b4cd2
PH
13009 operator_length_standard (exp, pc, oplenp, argsp);
13010 break;
13011
13012#define OP_DEFN(op, len, args, binop) \
13013 case op: *oplenp = len; *argsp = args; break;
13014 ADA_OPERATORS;
13015#undef OP_DEFN
52ce6436
PH
13016
13017 case OP_AGGREGATE:
13018 *oplenp = 3;
13019 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13020 break;
13021
13022 case OP_CHOICES:
13023 *oplenp = 3;
13024 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13025 break;
4c4b4cd2
PH
13026 }
13027}
13028
c0201579
JK
13029/* Implementation of the exp_descriptor method operator_check. */
13030
13031static int
13032ada_operator_check (struct expression *exp, int pos,
13033 int (*objfile_func) (struct objfile *objfile, void *data),
13034 void *data)
13035{
13036 const union exp_element *const elts = exp->elts;
13037 struct type *type = NULL;
13038
13039 switch (elts[pos].opcode)
13040 {
13041 case UNOP_IN_RANGE:
13042 case UNOP_QUAL:
13043 type = elts[pos + 1].type;
13044 break;
13045
13046 default:
13047 return operator_check_standard (exp, pos, objfile_func, data);
13048 }
13049
13050 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13051
13052 if (type && TYPE_OBJFILE (type)
13053 && (*objfile_func) (TYPE_OBJFILE (type), data))
13054 return 1;
13055
13056 return 0;
13057}
13058
4c4b4cd2
PH
13059static char *
13060ada_op_name (enum exp_opcode opcode)
13061{
13062 switch (opcode)
13063 {
76a01679 13064 default:
4c4b4cd2 13065 return op_name_standard (opcode);
52ce6436 13066
4c4b4cd2
PH
13067#define OP_DEFN(op, len, args, binop) case op: return #op;
13068 ADA_OPERATORS;
13069#undef OP_DEFN
52ce6436
PH
13070
13071 case OP_AGGREGATE:
13072 return "OP_AGGREGATE";
13073 case OP_CHOICES:
13074 return "OP_CHOICES";
13075 case OP_NAME:
13076 return "OP_NAME";
4c4b4cd2
PH
13077 }
13078}
13079
13080/* As for operator_length, but assumes PC is pointing at the first
13081 element of the operator, and gives meaningful results only for the
52ce6436 13082 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13083
13084static void
76a01679
JB
13085ada_forward_operator_length (struct expression *exp, int pc,
13086 int *oplenp, int *argsp)
4c4b4cd2 13087{
76a01679 13088 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13089 {
13090 default:
13091 *oplenp = *argsp = 0;
13092 break;
52ce6436 13093
4c4b4cd2
PH
13094#define OP_DEFN(op, len, args, binop) \
13095 case op: *oplenp = len; *argsp = args; break;
13096 ADA_OPERATORS;
13097#undef OP_DEFN
52ce6436
PH
13098
13099 case OP_AGGREGATE:
13100 *oplenp = 3;
13101 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13102 break;
13103
13104 case OP_CHOICES:
13105 *oplenp = 3;
13106 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13107 break;
13108
13109 case OP_STRING:
13110 case OP_NAME:
13111 {
13112 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13113
52ce6436
PH
13114 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13115 *argsp = 0;
13116 break;
13117 }
4c4b4cd2
PH
13118 }
13119}
13120
13121static int
13122ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13123{
13124 enum exp_opcode op = exp->elts[elt].opcode;
13125 int oplen, nargs;
13126 int pc = elt;
13127 int i;
76a01679 13128
4c4b4cd2
PH
13129 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13130
76a01679 13131 switch (op)
4c4b4cd2 13132 {
76a01679 13133 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13134 case OP_ATR_FIRST:
13135 case OP_ATR_LAST:
13136 case OP_ATR_LENGTH:
13137 case OP_ATR_IMAGE:
13138 case OP_ATR_MAX:
13139 case OP_ATR_MIN:
13140 case OP_ATR_MODULUS:
13141 case OP_ATR_POS:
13142 case OP_ATR_SIZE:
13143 case OP_ATR_TAG:
13144 case OP_ATR_VAL:
13145 break;
13146
13147 case UNOP_IN_RANGE:
13148 case UNOP_QUAL:
323e0a4a
AC
13149 /* XXX: gdb_sprint_host_address, type_sprint */
13150 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13151 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13152 fprintf_filtered (stream, " (");
13153 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13154 fprintf_filtered (stream, ")");
13155 break;
13156 case BINOP_IN_BOUNDS:
52ce6436
PH
13157 fprintf_filtered (stream, " (%d)",
13158 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13159 break;
13160 case TERNOP_IN_RANGE:
13161 break;
13162
52ce6436
PH
13163 case OP_AGGREGATE:
13164 case OP_OTHERS:
13165 case OP_DISCRETE_RANGE:
13166 case OP_POSITIONAL:
13167 case OP_CHOICES:
13168 break;
13169
13170 case OP_NAME:
13171 case OP_STRING:
13172 {
13173 char *name = &exp->elts[elt + 2].string;
13174 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13175
52ce6436
PH
13176 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13177 break;
13178 }
13179
4c4b4cd2
PH
13180 default:
13181 return dump_subexp_body_standard (exp, stream, elt);
13182 }
13183
13184 elt += oplen;
13185 for (i = 0; i < nargs; i += 1)
13186 elt = dump_subexp (exp, stream, elt);
13187
13188 return elt;
13189}
13190
13191/* The Ada extension of print_subexp (q.v.). */
13192
76a01679
JB
13193static void
13194ada_print_subexp (struct expression *exp, int *pos,
13195 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13196{
52ce6436 13197 int oplen, nargs, i;
4c4b4cd2
PH
13198 int pc = *pos;
13199 enum exp_opcode op = exp->elts[pc].opcode;
13200
13201 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13202
52ce6436 13203 *pos += oplen;
4c4b4cd2
PH
13204 switch (op)
13205 {
13206 default:
52ce6436 13207 *pos -= oplen;
4c4b4cd2
PH
13208 print_subexp_standard (exp, pos, stream, prec);
13209 return;
13210
13211 case OP_VAR_VALUE:
4c4b4cd2
PH
13212 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13213 return;
13214
13215 case BINOP_IN_BOUNDS:
323e0a4a 13216 /* XXX: sprint_subexp */
4c4b4cd2 13217 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13218 fputs_filtered (" in ", stream);
4c4b4cd2 13219 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13220 fputs_filtered ("'range", stream);
4c4b4cd2 13221 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13222 fprintf_filtered (stream, "(%ld)",
13223 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13224 return;
13225
13226 case TERNOP_IN_RANGE:
4c4b4cd2 13227 if (prec >= PREC_EQUAL)
76a01679 13228 fputs_filtered ("(", stream);
323e0a4a 13229 /* XXX: sprint_subexp */
4c4b4cd2 13230 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13231 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13232 print_subexp (exp, pos, stream, PREC_EQUAL);
13233 fputs_filtered (" .. ", stream);
13234 print_subexp (exp, pos, stream, PREC_EQUAL);
13235 if (prec >= PREC_EQUAL)
76a01679
JB
13236 fputs_filtered (")", stream);
13237 return;
4c4b4cd2
PH
13238
13239 case OP_ATR_FIRST:
13240 case OP_ATR_LAST:
13241 case OP_ATR_LENGTH:
13242 case OP_ATR_IMAGE:
13243 case OP_ATR_MAX:
13244 case OP_ATR_MIN:
13245 case OP_ATR_MODULUS:
13246 case OP_ATR_POS:
13247 case OP_ATR_SIZE:
13248 case OP_ATR_TAG:
13249 case OP_ATR_VAL:
4c4b4cd2 13250 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13251 {
13252 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13253 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13254 &type_print_raw_options);
76a01679
JB
13255 *pos += 3;
13256 }
4c4b4cd2 13257 else
76a01679 13258 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13259 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13260 if (nargs > 1)
76a01679
JB
13261 {
13262 int tem;
5b4ee69b 13263
76a01679
JB
13264 for (tem = 1; tem < nargs; tem += 1)
13265 {
13266 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13267 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13268 }
13269 fputs_filtered (")", stream);
13270 }
4c4b4cd2 13271 return;
14f9c5c9 13272
4c4b4cd2 13273 case UNOP_QUAL:
4c4b4cd2
PH
13274 type_print (exp->elts[pc + 1].type, "", stream, 0);
13275 fputs_filtered ("'(", stream);
13276 print_subexp (exp, pos, stream, PREC_PREFIX);
13277 fputs_filtered (")", stream);
13278 return;
14f9c5c9 13279
4c4b4cd2 13280 case UNOP_IN_RANGE:
323e0a4a 13281 /* XXX: sprint_subexp */
4c4b4cd2 13282 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13283 fputs_filtered (" in ", stream);
79d43c61
TT
13284 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13285 &type_print_raw_options);
4c4b4cd2 13286 return;
52ce6436
PH
13287
13288 case OP_DISCRETE_RANGE:
13289 print_subexp (exp, pos, stream, PREC_SUFFIX);
13290 fputs_filtered ("..", stream);
13291 print_subexp (exp, pos, stream, PREC_SUFFIX);
13292 return;
13293
13294 case OP_OTHERS:
13295 fputs_filtered ("others => ", stream);
13296 print_subexp (exp, pos, stream, PREC_SUFFIX);
13297 return;
13298
13299 case OP_CHOICES:
13300 for (i = 0; i < nargs-1; i += 1)
13301 {
13302 if (i > 0)
13303 fputs_filtered ("|", stream);
13304 print_subexp (exp, pos, stream, PREC_SUFFIX);
13305 }
13306 fputs_filtered (" => ", stream);
13307 print_subexp (exp, pos, stream, PREC_SUFFIX);
13308 return;
13309
13310 case OP_POSITIONAL:
13311 print_subexp (exp, pos, stream, PREC_SUFFIX);
13312 return;
13313
13314 case OP_AGGREGATE:
13315 fputs_filtered ("(", stream);
13316 for (i = 0; i < nargs; i += 1)
13317 {
13318 if (i > 0)
13319 fputs_filtered (", ", stream);
13320 print_subexp (exp, pos, stream, PREC_SUFFIX);
13321 }
13322 fputs_filtered (")", stream);
13323 return;
4c4b4cd2
PH
13324 }
13325}
14f9c5c9
AS
13326
13327/* Table mapping opcodes into strings for printing operators
13328 and precedences of the operators. */
13329
d2e4a39e
AS
13330static const struct op_print ada_op_print_tab[] = {
13331 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13332 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13333 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13334 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13335 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13336 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13337 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13338 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13339 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13340 {">=", BINOP_GEQ, PREC_ORDER, 0},
13341 {">", BINOP_GTR, PREC_ORDER, 0},
13342 {"<", BINOP_LESS, PREC_ORDER, 0},
13343 {">>", BINOP_RSH, PREC_SHIFT, 0},
13344 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13345 {"+", BINOP_ADD, PREC_ADD, 0},
13346 {"-", BINOP_SUB, PREC_ADD, 0},
13347 {"&", BINOP_CONCAT, PREC_ADD, 0},
13348 {"*", BINOP_MUL, PREC_MUL, 0},
13349 {"/", BINOP_DIV, PREC_MUL, 0},
13350 {"rem", BINOP_REM, PREC_MUL, 0},
13351 {"mod", BINOP_MOD, PREC_MUL, 0},
13352 {"**", BINOP_EXP, PREC_REPEAT, 0},
13353 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13354 {"-", UNOP_NEG, PREC_PREFIX, 0},
13355 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13356 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13357 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13358 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13359 {".all", UNOP_IND, PREC_SUFFIX, 1},
13360 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13361 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13362 {NULL, 0, 0, 0}
14f9c5c9
AS
13363};
13364\f
72d5681a
PH
13365enum ada_primitive_types {
13366 ada_primitive_type_int,
13367 ada_primitive_type_long,
13368 ada_primitive_type_short,
13369 ada_primitive_type_char,
13370 ada_primitive_type_float,
13371 ada_primitive_type_double,
13372 ada_primitive_type_void,
13373 ada_primitive_type_long_long,
13374 ada_primitive_type_long_double,
13375 ada_primitive_type_natural,
13376 ada_primitive_type_positive,
13377 ada_primitive_type_system_address,
13378 nr_ada_primitive_types
13379};
6c038f32
PH
13380
13381static void
d4a9a881 13382ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13383 struct language_arch_info *lai)
13384{
d4a9a881 13385 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13386
72d5681a 13387 lai->primitive_type_vector
d4a9a881 13388 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13389 struct type *);
e9bb382b
UW
13390
13391 lai->primitive_type_vector [ada_primitive_type_int]
13392 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13393 0, "integer");
13394 lai->primitive_type_vector [ada_primitive_type_long]
13395 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13396 0, "long_integer");
13397 lai->primitive_type_vector [ada_primitive_type_short]
13398 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13399 0, "short_integer");
13400 lai->string_char_type
13401 = lai->primitive_type_vector [ada_primitive_type_char]
13402 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13403 lai->primitive_type_vector [ada_primitive_type_float]
13404 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13405 "float", NULL);
13406 lai->primitive_type_vector [ada_primitive_type_double]
13407 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13408 "long_float", NULL);
13409 lai->primitive_type_vector [ada_primitive_type_long_long]
13410 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13411 0, "long_long_integer");
13412 lai->primitive_type_vector [ada_primitive_type_long_double]
13413 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13414 "long_long_float", NULL);
13415 lai->primitive_type_vector [ada_primitive_type_natural]
13416 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13417 0, "natural");
13418 lai->primitive_type_vector [ada_primitive_type_positive]
13419 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13420 0, "positive");
13421 lai->primitive_type_vector [ada_primitive_type_void]
13422 = builtin->builtin_void;
13423
13424 lai->primitive_type_vector [ada_primitive_type_system_address]
13425 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13426 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13427 = "system__address";
fbb06eb1 13428
47e729a8 13429 lai->bool_type_symbol = NULL;
fbb06eb1 13430 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13431}
6c038f32
PH
13432\f
13433 /* Language vector */
13434
13435/* Not really used, but needed in the ada_language_defn. */
13436
13437static void
6c7a06a3 13438emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13439{
6c7a06a3 13440 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13441}
13442
13443static int
410a0ff2 13444parse (struct parser_state *ps)
6c038f32
PH
13445{
13446 warnings_issued = 0;
410a0ff2 13447 return ada_parse (ps);
6c038f32
PH
13448}
13449
13450static const struct exp_descriptor ada_exp_descriptor = {
13451 ada_print_subexp,
13452 ada_operator_length,
c0201579 13453 ada_operator_check,
6c038f32
PH
13454 ada_op_name,
13455 ada_dump_subexp_body,
13456 ada_evaluate_subexp
13457};
13458
1a119f36 13459/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13460 for Ada. */
13461
1a119f36
JB
13462static symbol_name_cmp_ftype
13463ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13464{
13465 if (should_use_wild_match (lookup_name))
13466 return wild_match;
13467 else
13468 return compare_names;
13469}
13470
a5ee536b
JB
13471/* Implement the "la_read_var_value" language_defn method for Ada. */
13472
13473static struct value *
13474ada_read_var_value (struct symbol *var, struct frame_info *frame)
13475{
3977b71f 13476 const struct block *frame_block = NULL;
a5ee536b
JB
13477 struct symbol *renaming_sym = NULL;
13478
13479 /* The only case where default_read_var_value is not sufficient
13480 is when VAR is a renaming... */
13481 if (frame)
13482 frame_block = get_frame_block (frame, NULL);
13483 if (frame_block)
13484 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13485 if (renaming_sym != NULL)
13486 return ada_read_renaming_var_value (renaming_sym, frame_block);
13487
13488 /* This is a typical case where we expect the default_read_var_value
13489 function to work. */
13490 return default_read_var_value (var, frame);
13491}
13492
6c038f32
PH
13493const struct language_defn ada_language_defn = {
13494 "ada", /* Language name */
6abde28f 13495 "Ada",
6c038f32 13496 language_ada,
6c038f32 13497 range_check_off,
6c038f32
PH
13498 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13499 that's not quite what this means. */
6c038f32 13500 array_row_major,
9a044a89 13501 macro_expansion_no,
6c038f32
PH
13502 &ada_exp_descriptor,
13503 parse,
13504 ada_error,
13505 resolve,
13506 ada_printchar, /* Print a character constant */
13507 ada_printstr, /* Function to print string constant */
13508 emit_char, /* Function to print single char (not used) */
6c038f32 13509 ada_print_type, /* Print a type using appropriate syntax */
be942545 13510 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13511 ada_val_print, /* Print a value using appropriate syntax */
13512 ada_value_print, /* Print a top-level value */
a5ee536b 13513 ada_read_var_value, /* la_read_var_value */
6c038f32 13514 NULL, /* Language specific skip_trampoline */
2b2d9e11 13515 NULL, /* name_of_this */
6c038f32
PH
13516 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13517 basic_lookup_transparent_type, /* lookup_transparent_type */
13518 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13519 NULL, /* Language specific
13520 class_name_from_physname */
6c038f32
PH
13521 ada_op_print_tab, /* expression operators for printing */
13522 0, /* c-style arrays */
13523 1, /* String lower bound */
6c038f32 13524 ada_get_gdb_completer_word_break_characters,
41d27058 13525 ada_make_symbol_completion_list,
72d5681a 13526 ada_language_arch_info,
e79af960 13527 ada_print_array_index,
41f1b697 13528 default_pass_by_reference,
ae6a3a4c 13529 c_get_string,
1a119f36 13530 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13531 ada_iterate_over_symbols,
a53b64ea 13532 &ada_varobj_ops,
6c038f32
PH
13533 LANG_MAGIC
13534};
13535
2c0b251b
PA
13536/* Provide a prototype to silence -Wmissing-prototypes. */
13537extern initialize_file_ftype _initialize_ada_language;
13538
5bf03f13
JB
13539/* Command-list for the "set/show ada" prefix command. */
13540static struct cmd_list_element *set_ada_list;
13541static struct cmd_list_element *show_ada_list;
13542
13543/* Implement the "set ada" prefix command. */
13544
13545static void
13546set_ada_command (char *arg, int from_tty)
13547{
13548 printf_unfiltered (_(\
13549"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13550 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13551}
13552
13553/* Implement the "show ada" prefix command. */
13554
13555static void
13556show_ada_command (char *args, int from_tty)
13557{
13558 cmd_show_list (show_ada_list, from_tty, "");
13559}
13560
2060206e
PA
13561static void
13562initialize_ada_catchpoint_ops (void)
13563{
13564 struct breakpoint_ops *ops;
13565
13566 initialize_breakpoint_ops ();
13567
13568 ops = &catch_exception_breakpoint_ops;
13569 *ops = bkpt_breakpoint_ops;
13570 ops->dtor = dtor_catch_exception;
13571 ops->allocate_location = allocate_location_catch_exception;
13572 ops->re_set = re_set_catch_exception;
13573 ops->check_status = check_status_catch_exception;
13574 ops->print_it = print_it_catch_exception;
13575 ops->print_one = print_one_catch_exception;
13576 ops->print_mention = print_mention_catch_exception;
13577 ops->print_recreate = print_recreate_catch_exception;
13578
13579 ops = &catch_exception_unhandled_breakpoint_ops;
13580 *ops = bkpt_breakpoint_ops;
13581 ops->dtor = dtor_catch_exception_unhandled;
13582 ops->allocate_location = allocate_location_catch_exception_unhandled;
13583 ops->re_set = re_set_catch_exception_unhandled;
13584 ops->check_status = check_status_catch_exception_unhandled;
13585 ops->print_it = print_it_catch_exception_unhandled;
13586 ops->print_one = print_one_catch_exception_unhandled;
13587 ops->print_mention = print_mention_catch_exception_unhandled;
13588 ops->print_recreate = print_recreate_catch_exception_unhandled;
13589
13590 ops = &catch_assert_breakpoint_ops;
13591 *ops = bkpt_breakpoint_ops;
13592 ops->dtor = dtor_catch_assert;
13593 ops->allocate_location = allocate_location_catch_assert;
13594 ops->re_set = re_set_catch_assert;
13595 ops->check_status = check_status_catch_assert;
13596 ops->print_it = print_it_catch_assert;
13597 ops->print_one = print_one_catch_assert;
13598 ops->print_mention = print_mention_catch_assert;
13599 ops->print_recreate = print_recreate_catch_assert;
13600}
13601
3d9434b5
JB
13602/* This module's 'new_objfile' observer. */
13603
13604static void
13605ada_new_objfile_observer (struct objfile *objfile)
13606{
13607 ada_clear_symbol_cache ();
13608}
13609
13610/* This module's 'free_objfile' observer. */
13611
13612static void
13613ada_free_objfile_observer (struct objfile *objfile)
13614{
13615 ada_clear_symbol_cache ();
13616}
13617
d2e4a39e 13618void
6c038f32 13619_initialize_ada_language (void)
14f9c5c9 13620{
6c038f32
PH
13621 add_language (&ada_language_defn);
13622
2060206e
PA
13623 initialize_ada_catchpoint_ops ();
13624
5bf03f13
JB
13625 add_prefix_cmd ("ada", no_class, set_ada_command,
13626 _("Prefix command for changing Ada-specfic settings"),
13627 &set_ada_list, "set ada ", 0, &setlist);
13628
13629 add_prefix_cmd ("ada", no_class, show_ada_command,
13630 _("Generic command for showing Ada-specific settings."),
13631 &show_ada_list, "show ada ", 0, &showlist);
13632
13633 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13634 &trust_pad_over_xvs, _("\
13635Enable or disable an optimization trusting PAD types over XVS types"), _("\
13636Show whether an optimization trusting PAD types over XVS types is activated"),
13637 _("\
13638This is related to the encoding used by the GNAT compiler. The debugger\n\
13639should normally trust the contents of PAD types, but certain older versions\n\
13640of GNAT have a bug that sometimes causes the information in the PAD type\n\
13641to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13642work around this bug. It is always safe to turn this option \"off\", but\n\
13643this incurs a slight performance penalty, so it is recommended to NOT change\n\
13644this option to \"off\" unless necessary."),
13645 NULL, NULL, &set_ada_list, &show_ada_list);
13646
9ac4176b
PA
13647 add_catch_command ("exception", _("\
13648Catch Ada exceptions, when raised.\n\
13649With an argument, catch only exceptions with the given name."),
13650 catch_ada_exception_command,
13651 NULL,
13652 CATCH_PERMANENT,
13653 CATCH_TEMPORARY);
13654 add_catch_command ("assert", _("\
13655Catch failed Ada assertions, when raised.\n\
13656With an argument, catch only exceptions with the given name."),
13657 catch_assert_command,
13658 NULL,
13659 CATCH_PERMANENT,
13660 CATCH_TEMPORARY);
13661
6c038f32 13662 varsize_limit = 65536;
6c038f32 13663
778865d3
JB
13664 add_info ("exceptions", info_exceptions_command,
13665 _("\
13666List all Ada exception names.\n\
13667If a regular expression is passed as an argument, only those matching\n\
13668the regular expression are listed."));
13669
c6044dd1
JB
13670 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13671 _("Set Ada maintenance-related variables."),
13672 &maint_set_ada_cmdlist, "maintenance set ada ",
13673 0/*allow-unknown*/, &maintenance_set_cmdlist);
13674
13675 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13676 _("Show Ada maintenance-related variables"),
13677 &maint_show_ada_cmdlist, "maintenance show ada ",
13678 0/*allow-unknown*/, &maintenance_show_cmdlist);
13679
13680 add_setshow_boolean_cmd
13681 ("ignore-descriptive-types", class_maintenance,
13682 &ada_ignore_descriptive_types_p,
13683 _("Set whether descriptive types generated by GNAT should be ignored."),
13684 _("Show whether descriptive types generated by GNAT should be ignored."),
13685 _("\
13686When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13687DWARF attribute."),
13688 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13689
6c038f32
PH
13690 obstack_init (&symbol_list_obstack);
13691
13692 decoded_names_store = htab_create_alloc
13693 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13694 NULL, xcalloc, xfree);
6b69afc4 13695
3d9434b5
JB
13696 /* The ada-lang observers. */
13697 observer_attach_new_objfile (ada_new_objfile_observer);
13698 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13699 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13700
13701 /* Setup various context-specific data. */
e802dbe0 13702 ada_inferior_data
8e260fc0 13703 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13704 ada_pspace_data_handle
13705 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13706}
This page took 3.795644 seconds and 4 git commands to generate.