implement support for "enum class"
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <stdio.h>
0e9f083f 23#include <string.h>
14f9c5c9
AS
24#include <ctype.h>
25#include <stdarg.h>
26#include "demangle.h"
4c4b4cd2
PH
27#include "gdb_regex.h"
28#include "frame.h"
14f9c5c9
AS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "expression.h"
33#include "parser-defs.h"
34#include "language.h"
a53b64ea 35#include "varobj.h"
14f9c5c9
AS
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2 45#include "completer.h"
53ce3c39 46#include <sys/stat.h>
14f9c5c9 47#include "ui-out.h"
fe898f56 48#include "block.h"
04714b91 49#include "infcall.h"
de4f826b 50#include "dictionary.h"
60250e8b 51#include "exceptions.h"
f7f9143b
JB
52#include "annotate.h"
53#include "valprint.h"
9bbc9174 54#include "source.h"
0259addd 55#include "observer.h"
2ba95b9b 56#include "vec.h"
692465f1 57#include "stack.h"
fa864999 58#include "gdb_vecs.h"
79d43c61 59#include "typeprint.h"
14f9c5c9 60
ccefe4c4 61#include "psymtab.h"
40bc484c 62#include "value.h"
956a9fb9 63#include "mi/mi-common.h"
9ac4176b 64#include "arch-utils.h"
0fcd72ba 65#include "cli/cli-utils.h"
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40658b94
PH
107static int full_match (const char *, const char *);
108
40bc484c 109static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 110
4c4b4cd2 111static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 112 const struct block *, const char *,
2570f2b7 113 domain_enum, struct objfile *, int);
14f9c5c9 114
4c4b4cd2 115static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 118 const struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
122static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
4c4b4cd2
PH
218static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
4c4b4cd2
PH
230static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab
PH
238
239static void check_size (const struct type *);
52ce6436
PH
240
241static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
245 struct expression *,
246 int *, enum noside);
52ce6436
PH
247
248static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
852dff6c
JB
272
273static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
274\f
275
ee01b665
JB
276/* The result of a symbol lookup to be stored in our symbol cache. */
277
278struct cache_entry
279{
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum namespace;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292};
293
294/* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303#define HASH_SIZE 1009
304
305struct ada_symbol_cache
306{
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312};
313
314static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 315
4c4b4cd2 316/* Maximum-sized dynamic type. */
14f9c5c9
AS
317static unsigned int varsize_limit;
318
4c4b4cd2
PH
319/* FIXME: brobecker/2003-09-17: No longer a const because it is
320 returned by a function that does not return a const char *. */
321static char *ada_completer_word_break_characters =
322#ifdef VMS
323 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
324#else
14f9c5c9 325 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 326#endif
14f9c5c9 327
4c4b4cd2 328/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 329static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 330 = "__gnat_ada_main_program_name";
14f9c5c9 331
4c4b4cd2
PH
332/* Limit on the number of warnings to raise per expression evaluation. */
333static int warning_limit = 2;
334
335/* Number of warning messages issued; reset to 0 by cleanups after
336 expression evaluation. */
337static int warnings_issued = 0;
338
339static const char *known_runtime_file_name_patterns[] = {
340 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
341};
342
343static const char *known_auxiliary_function_name_patterns[] = {
344 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
345};
346
347/* Space for allocating results of ada_lookup_symbol_list. */
348static struct obstack symbol_list_obstack;
349
c6044dd1
JB
350/* Maintenance-related settings for this module. */
351
352static struct cmd_list_element *maint_set_ada_cmdlist;
353static struct cmd_list_element *maint_show_ada_cmdlist;
354
355/* Implement the "maintenance set ada" (prefix) command. */
356
357static void
358maint_set_ada_cmd (char *args, int from_tty)
359{
360 help_list (maint_set_ada_cmdlist, "maintenance set ada ", -1, gdb_stdout);
361}
362
363/* Implement the "maintenance show ada" (prefix) command. */
364
365static void
366maint_show_ada_cmd (char *args, int from_tty)
367{
368 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
369}
370
371/* The "maintenance ada set/show ignore-descriptive-type" value. */
372
373static int ada_ignore_descriptive_types_p = 0;
374
e802dbe0
JB
375 /* Inferior-specific data. */
376
377/* Per-inferior data for this module. */
378
379struct ada_inferior_data
380{
381 /* The ada__tags__type_specific_data type, which is used when decoding
382 tagged types. With older versions of GNAT, this type was directly
383 accessible through a component ("tsd") in the object tag. But this
384 is no longer the case, so we cache it for each inferior. */
385 struct type *tsd_type;
3eecfa55
JB
386
387 /* The exception_support_info data. This data is used to determine
388 how to implement support for Ada exception catchpoints in a given
389 inferior. */
390 const struct exception_support_info *exception_info;
e802dbe0
JB
391};
392
393/* Our key to this module's inferior data. */
394static const struct inferior_data *ada_inferior_data;
395
396/* A cleanup routine for our inferior data. */
397static void
398ada_inferior_data_cleanup (struct inferior *inf, void *arg)
399{
400 struct ada_inferior_data *data;
401
402 data = inferior_data (inf, ada_inferior_data);
403 if (data != NULL)
404 xfree (data);
405}
406
407/* Return our inferior data for the given inferior (INF).
408
409 This function always returns a valid pointer to an allocated
410 ada_inferior_data structure. If INF's inferior data has not
411 been previously set, this functions creates a new one with all
412 fields set to zero, sets INF's inferior to it, and then returns
413 a pointer to that newly allocated ada_inferior_data. */
414
415static struct ada_inferior_data *
416get_ada_inferior_data (struct inferior *inf)
417{
418 struct ada_inferior_data *data;
419
420 data = inferior_data (inf, ada_inferior_data);
421 if (data == NULL)
422 {
41bf6aca 423 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
424 set_inferior_data (inf, ada_inferior_data, data);
425 }
426
427 return data;
428}
429
430/* Perform all necessary cleanups regarding our module's inferior data
431 that is required after the inferior INF just exited. */
432
433static void
434ada_inferior_exit (struct inferior *inf)
435{
436 ada_inferior_data_cleanup (inf, NULL);
437 set_inferior_data (inf, ada_inferior_data, NULL);
438}
439
ee01b665
JB
440
441 /* program-space-specific data. */
442
443/* This module's per-program-space data. */
444struct ada_pspace_data
445{
446 /* The Ada symbol cache. */
447 struct ada_symbol_cache *sym_cache;
448};
449
450/* Key to our per-program-space data. */
451static const struct program_space_data *ada_pspace_data_handle;
452
453/* Return this module's data for the given program space (PSPACE).
454 If not is found, add a zero'ed one now.
455
456 This function always returns a valid object. */
457
458static struct ada_pspace_data *
459get_ada_pspace_data (struct program_space *pspace)
460{
461 struct ada_pspace_data *data;
462
463 data = program_space_data (pspace, ada_pspace_data_handle);
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
478 struct ada_pspace_data *pspace_data = data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
529 const char *result = strrchr (decoded_name, '.');
530
531 if (result != NULL)
532 result++; /* Skip the dot... */
533 else
534 result = decoded_name;
535
536 return result;
537}
538
539/* Return a string starting with '<', followed by STR, and '>'.
540 The result is good until the next call. */
541
542static char *
543add_angle_brackets (const char *str)
544{
545 static char *result = NULL;
546
547 xfree (result);
88c15c34 548 result = xstrprintf ("<%s>", str);
41d27058
JB
549 return result;
550}
96d887e8 551
4c4b4cd2
PH
552static char *
553ada_get_gdb_completer_word_break_characters (void)
554{
555 return ada_completer_word_break_characters;
556}
557
e79af960
JB
558/* Print an array element index using the Ada syntax. */
559
560static void
561ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 562 const struct value_print_options *options)
e79af960 563{
79a45b7d 564 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
565 fprintf_filtered (stream, " => ");
566}
567
f27cf670 568/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 569 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 570 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 571
f27cf670
AS
572void *
573grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 574{
d2e4a39e
AS
575 if (*size < min_size)
576 {
577 *size *= 2;
578 if (*size < min_size)
4c4b4cd2 579 *size = min_size;
f27cf670 580 vect = xrealloc (vect, *size * element_size);
d2e4a39e 581 }
f27cf670 582 return vect;
14f9c5c9
AS
583}
584
585/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 586 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
587
588static int
ebf56fd3 589field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
590{
591 int len = strlen (target);
5b4ee69b 592
d2e4a39e 593 return
4c4b4cd2
PH
594 (strncmp (field_name, target, len) == 0
595 && (field_name[len] == '\0'
596 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
597 && strcmp (field_name + strlen (field_name) - 6,
598 "___XVN") != 0)));
14f9c5c9
AS
599}
600
601
872c8b51
JB
602/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
603 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
604 and return its index. This function also handles fields whose name
605 have ___ suffixes because the compiler sometimes alters their name
606 by adding such a suffix to represent fields with certain constraints.
607 If the field could not be found, return a negative number if
608 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
609
610int
611ada_get_field_index (const struct type *type, const char *field_name,
612 int maybe_missing)
613{
614 int fieldno;
872c8b51
JB
615 struct type *struct_type = check_typedef ((struct type *) type);
616
617 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
618 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
619 return fieldno;
620
621 if (!maybe_missing)
323e0a4a 622 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 623 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
624
625 return -1;
626}
627
628/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
629
630int
d2e4a39e 631ada_name_prefix_len (const char *name)
14f9c5c9
AS
632{
633 if (name == NULL)
634 return 0;
d2e4a39e 635 else
14f9c5c9 636 {
d2e4a39e 637 const char *p = strstr (name, "___");
5b4ee69b 638
14f9c5c9 639 if (p == NULL)
4c4b4cd2 640 return strlen (name);
14f9c5c9 641 else
4c4b4cd2 642 return p - name;
14f9c5c9
AS
643 }
644}
645
4c4b4cd2
PH
646/* Return non-zero if SUFFIX is a suffix of STR.
647 Return zero if STR is null. */
648
14f9c5c9 649static int
d2e4a39e 650is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
651{
652 int len1, len2;
5b4ee69b 653
14f9c5c9
AS
654 if (str == NULL)
655 return 0;
656 len1 = strlen (str);
657 len2 = strlen (suffix);
4c4b4cd2 658 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
659}
660
4c4b4cd2
PH
661/* The contents of value VAL, treated as a value of type TYPE. The
662 result is an lval in memory if VAL is. */
14f9c5c9 663
d2e4a39e 664static struct value *
4c4b4cd2 665coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 666{
61ee279c 667 type = ada_check_typedef (type);
df407dfe 668 if (value_type (val) == type)
4c4b4cd2 669 return val;
d2e4a39e 670 else
14f9c5c9 671 {
4c4b4cd2
PH
672 struct value *result;
673
674 /* Make sure that the object size is not unreasonable before
675 trying to allocate some memory for it. */
714e53ab 676 check_size (type);
4c4b4cd2 677
41e8491f
JK
678 if (value_lazy (val)
679 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
680 result = allocate_value_lazy (type);
681 else
682 {
683 result = allocate_value (type);
684 memcpy (value_contents_raw (result), value_contents (val),
685 TYPE_LENGTH (type));
686 }
74bcbdf3 687 set_value_component_location (result, val);
9bbda503
AC
688 set_value_bitsize (result, value_bitsize (val));
689 set_value_bitpos (result, value_bitpos (val));
42ae5230 690 set_value_address (result, value_address (val));
eca07816 691 set_value_optimized_out (result, value_optimized_out_const (val));
14f9c5c9
AS
692 return result;
693 }
694}
695
fc1a4b47
AC
696static const gdb_byte *
697cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
698{
699 if (valaddr == NULL)
700 return NULL;
701 else
702 return valaddr + offset;
703}
704
705static CORE_ADDR
ebf56fd3 706cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
707{
708 if (address == 0)
709 return 0;
d2e4a39e 710 else
14f9c5c9
AS
711 return address + offset;
712}
713
4c4b4cd2
PH
714/* Issue a warning (as for the definition of warning in utils.c, but
715 with exactly one argument rather than ...), unless the limit on the
716 number of warnings has passed during the evaluation of the current
717 expression. */
a2249542 718
77109804
AC
719/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
720 provided by "complaint". */
a0b31db1 721static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 722
14f9c5c9 723static void
a2249542 724lim_warning (const char *format, ...)
14f9c5c9 725{
a2249542 726 va_list args;
a2249542 727
5b4ee69b 728 va_start (args, format);
4c4b4cd2
PH
729 warnings_issued += 1;
730 if (warnings_issued <= warning_limit)
a2249542
MK
731 vwarning (format, args);
732
733 va_end (args);
4c4b4cd2
PH
734}
735
714e53ab
PH
736/* Issue an error if the size of an object of type T is unreasonable,
737 i.e. if it would be a bad idea to allocate a value of this type in
738 GDB. */
739
740static void
741check_size (const struct type *type)
742{
743 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 744 error (_("object size is larger than varsize-limit"));
714e53ab
PH
745}
746
0963b4bd 747/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 748static LONGEST
c3e5cd34 749max_of_size (int size)
4c4b4cd2 750{
76a01679 751 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 752
76a01679 753 return top_bit | (top_bit - 1);
4c4b4cd2
PH
754}
755
0963b4bd 756/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 757static LONGEST
c3e5cd34 758min_of_size (int size)
4c4b4cd2 759{
c3e5cd34 760 return -max_of_size (size) - 1;
4c4b4cd2
PH
761}
762
0963b4bd 763/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 764static ULONGEST
c3e5cd34 765umax_of_size (int size)
4c4b4cd2 766{
76a01679 767 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 768
76a01679 769 return top_bit | (top_bit - 1);
4c4b4cd2
PH
770}
771
0963b4bd 772/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
773static LONGEST
774max_of_type (struct type *t)
4c4b4cd2 775{
c3e5cd34
PH
776 if (TYPE_UNSIGNED (t))
777 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
778 else
779 return max_of_size (TYPE_LENGTH (t));
780}
781
0963b4bd 782/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
783static LONGEST
784min_of_type (struct type *t)
785{
786 if (TYPE_UNSIGNED (t))
787 return 0;
788 else
789 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
790}
791
792/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
793LONGEST
794ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 795{
76a01679 796 switch (TYPE_CODE (type))
4c4b4cd2
PH
797 {
798 case TYPE_CODE_RANGE:
690cc4eb 799 return TYPE_HIGH_BOUND (type);
4c4b4cd2 800 case TYPE_CODE_ENUM:
14e75d8e 801 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
802 case TYPE_CODE_BOOL:
803 return 1;
804 case TYPE_CODE_CHAR:
76a01679 805 case TYPE_CODE_INT:
690cc4eb 806 return max_of_type (type);
4c4b4cd2 807 default:
43bbcdc2 808 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
809 }
810}
811
14e75d8e 812/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
813LONGEST
814ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 815{
76a01679 816 switch (TYPE_CODE (type))
4c4b4cd2
PH
817 {
818 case TYPE_CODE_RANGE:
690cc4eb 819 return TYPE_LOW_BOUND (type);
4c4b4cd2 820 case TYPE_CODE_ENUM:
14e75d8e 821 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
822 case TYPE_CODE_BOOL:
823 return 0;
824 case TYPE_CODE_CHAR:
76a01679 825 case TYPE_CODE_INT:
690cc4eb 826 return min_of_type (type);
4c4b4cd2 827 default:
43bbcdc2 828 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
829 }
830}
831
832/* The identity on non-range types. For range types, the underlying
76a01679 833 non-range scalar type. */
4c4b4cd2
PH
834
835static struct type *
18af8284 836get_base_type (struct type *type)
4c4b4cd2
PH
837{
838 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
839 {
76a01679
JB
840 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
841 return type;
4c4b4cd2
PH
842 type = TYPE_TARGET_TYPE (type);
843 }
844 return type;
14f9c5c9 845}
41246937
JB
846
847/* Return a decoded version of the given VALUE. This means returning
848 a value whose type is obtained by applying all the GNAT-specific
849 encondings, making the resulting type a static but standard description
850 of the initial type. */
851
852struct value *
853ada_get_decoded_value (struct value *value)
854{
855 struct type *type = ada_check_typedef (value_type (value));
856
857 if (ada_is_array_descriptor_type (type)
858 || (ada_is_constrained_packed_array_type (type)
859 && TYPE_CODE (type) != TYPE_CODE_PTR))
860 {
861 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
862 value = ada_coerce_to_simple_array_ptr (value);
863 else
864 value = ada_coerce_to_simple_array (value);
865 }
866 else
867 value = ada_to_fixed_value (value);
868
869 return value;
870}
871
872/* Same as ada_get_decoded_value, but with the given TYPE.
873 Because there is no associated actual value for this type,
874 the resulting type might be a best-effort approximation in
875 the case of dynamic types. */
876
877struct type *
878ada_get_decoded_type (struct type *type)
879{
880 type = to_static_fixed_type (type);
881 if (ada_is_constrained_packed_array_type (type))
882 type = ada_coerce_to_simple_array_type (type);
883 return type;
884}
885
4c4b4cd2 886\f
76a01679 887
4c4b4cd2 888 /* Language Selection */
14f9c5c9
AS
889
890/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 891 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 892
14f9c5c9 893enum language
ccefe4c4 894ada_update_initial_language (enum language lang)
14f9c5c9 895{
d2e4a39e 896 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 897 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 898 return language_ada;
14f9c5c9
AS
899
900 return lang;
901}
96d887e8
PH
902
903/* If the main procedure is written in Ada, then return its name.
904 The result is good until the next call. Return NULL if the main
905 procedure doesn't appear to be in Ada. */
906
907char *
908ada_main_name (void)
909{
3b7344d5 910 struct bound_minimal_symbol msym;
f9bc20b9 911 static char *main_program_name = NULL;
6c038f32 912
96d887e8
PH
913 /* For Ada, the name of the main procedure is stored in a specific
914 string constant, generated by the binder. Look for that symbol,
915 extract its address, and then read that string. If we didn't find
916 that string, then most probably the main procedure is not written
917 in Ada. */
918 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
919
3b7344d5 920 if (msym.minsym != NULL)
96d887e8 921 {
f9bc20b9
JB
922 CORE_ADDR main_program_name_addr;
923 int err_code;
924
77e371c0 925 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 926 if (main_program_name_addr == 0)
323e0a4a 927 error (_("Invalid address for Ada main program name."));
96d887e8 928
f9bc20b9
JB
929 xfree (main_program_name);
930 target_read_string (main_program_name_addr, &main_program_name,
931 1024, &err_code);
932
933 if (err_code != 0)
934 return NULL;
96d887e8
PH
935 return main_program_name;
936 }
937
938 /* The main procedure doesn't seem to be in Ada. */
939 return NULL;
940}
14f9c5c9 941\f
4c4b4cd2 942 /* Symbols */
d2e4a39e 943
4c4b4cd2
PH
944/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
945 of NULLs. */
14f9c5c9 946
d2e4a39e
AS
947const struct ada_opname_map ada_opname_table[] = {
948 {"Oadd", "\"+\"", BINOP_ADD},
949 {"Osubtract", "\"-\"", BINOP_SUB},
950 {"Omultiply", "\"*\"", BINOP_MUL},
951 {"Odivide", "\"/\"", BINOP_DIV},
952 {"Omod", "\"mod\"", BINOP_MOD},
953 {"Orem", "\"rem\"", BINOP_REM},
954 {"Oexpon", "\"**\"", BINOP_EXP},
955 {"Olt", "\"<\"", BINOP_LESS},
956 {"Ole", "\"<=\"", BINOP_LEQ},
957 {"Ogt", "\">\"", BINOP_GTR},
958 {"Oge", "\">=\"", BINOP_GEQ},
959 {"Oeq", "\"=\"", BINOP_EQUAL},
960 {"One", "\"/=\"", BINOP_NOTEQUAL},
961 {"Oand", "\"and\"", BINOP_BITWISE_AND},
962 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
963 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
964 {"Oconcat", "\"&\"", BINOP_CONCAT},
965 {"Oabs", "\"abs\"", UNOP_ABS},
966 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
967 {"Oadd", "\"+\"", UNOP_PLUS},
968 {"Osubtract", "\"-\"", UNOP_NEG},
969 {NULL, NULL}
14f9c5c9
AS
970};
971
4c4b4cd2
PH
972/* The "encoded" form of DECODED, according to GNAT conventions.
973 The result is valid until the next call to ada_encode. */
974
14f9c5c9 975char *
4c4b4cd2 976ada_encode (const char *decoded)
14f9c5c9 977{
4c4b4cd2
PH
978 static char *encoding_buffer = NULL;
979 static size_t encoding_buffer_size = 0;
d2e4a39e 980 const char *p;
14f9c5c9 981 int k;
d2e4a39e 982
4c4b4cd2 983 if (decoded == NULL)
14f9c5c9
AS
984 return NULL;
985
4c4b4cd2
PH
986 GROW_VECT (encoding_buffer, encoding_buffer_size,
987 2 * strlen (decoded) + 10);
14f9c5c9
AS
988
989 k = 0;
4c4b4cd2 990 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 991 {
cdc7bb92 992 if (*p == '.')
4c4b4cd2
PH
993 {
994 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
995 k += 2;
996 }
14f9c5c9 997 else if (*p == '"')
4c4b4cd2
PH
998 {
999 const struct ada_opname_map *mapping;
1000
1001 for (mapping = ada_opname_table;
1265e4aa
JB
1002 mapping->encoded != NULL
1003 && strncmp (mapping->decoded, p,
1004 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
1005 ;
1006 if (mapping->encoded == NULL)
323e0a4a 1007 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1008 strcpy (encoding_buffer + k, mapping->encoded);
1009 k += strlen (mapping->encoded);
1010 break;
1011 }
d2e4a39e 1012 else
4c4b4cd2
PH
1013 {
1014 encoding_buffer[k] = *p;
1015 k += 1;
1016 }
14f9c5c9
AS
1017 }
1018
4c4b4cd2
PH
1019 encoding_buffer[k] = '\0';
1020 return encoding_buffer;
14f9c5c9
AS
1021}
1022
1023/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1024 quotes, unfolded, but with the quotes stripped away. Result good
1025 to next call. */
1026
d2e4a39e
AS
1027char *
1028ada_fold_name (const char *name)
14f9c5c9 1029{
d2e4a39e 1030 static char *fold_buffer = NULL;
14f9c5c9
AS
1031 static size_t fold_buffer_size = 0;
1032
1033 int len = strlen (name);
d2e4a39e 1034 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1035
1036 if (name[0] == '\'')
1037 {
d2e4a39e
AS
1038 strncpy (fold_buffer, name + 1, len - 2);
1039 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1040 }
1041 else
1042 {
1043 int i;
5b4ee69b 1044
14f9c5c9 1045 for (i = 0; i <= len; i += 1)
4c4b4cd2 1046 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1047 }
1048
1049 return fold_buffer;
1050}
1051
529cad9c
PH
1052/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1053
1054static int
1055is_lower_alphanum (const char c)
1056{
1057 return (isdigit (c) || (isalpha (c) && islower (c)));
1058}
1059
c90092fe
JB
1060/* ENCODED is the linkage name of a symbol and LEN contains its length.
1061 This function saves in LEN the length of that same symbol name but
1062 without either of these suffixes:
29480c32
JB
1063 . .{DIGIT}+
1064 . ${DIGIT}+
1065 . ___{DIGIT}+
1066 . __{DIGIT}+.
c90092fe 1067
29480c32
JB
1068 These are suffixes introduced by the compiler for entities such as
1069 nested subprogram for instance, in order to avoid name clashes.
1070 They do not serve any purpose for the debugger. */
1071
1072static void
1073ada_remove_trailing_digits (const char *encoded, int *len)
1074{
1075 if (*len > 1 && isdigit (encoded[*len - 1]))
1076 {
1077 int i = *len - 2;
5b4ee69b 1078
29480c32
JB
1079 while (i > 0 && isdigit (encoded[i]))
1080 i--;
1081 if (i >= 0 && encoded[i] == '.')
1082 *len = i;
1083 else if (i >= 0 && encoded[i] == '$')
1084 *len = i;
1085 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1086 *len = i - 2;
1087 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1088 *len = i - 1;
1089 }
1090}
1091
1092/* Remove the suffix introduced by the compiler for protected object
1093 subprograms. */
1094
1095static void
1096ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1097{
1098 /* Remove trailing N. */
1099
1100 /* Protected entry subprograms are broken into two
1101 separate subprograms: The first one is unprotected, and has
1102 a 'N' suffix; the second is the protected version, and has
0963b4bd 1103 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1104 the protection. Since the P subprograms are internally generated,
1105 we leave these names undecoded, giving the user a clue that this
1106 entity is internal. */
1107
1108 if (*len > 1
1109 && encoded[*len - 1] == 'N'
1110 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1111 *len = *len - 1;
1112}
1113
69fadcdf
JB
1114/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1115
1116static void
1117ada_remove_Xbn_suffix (const char *encoded, int *len)
1118{
1119 int i = *len - 1;
1120
1121 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1122 i--;
1123
1124 if (encoded[i] != 'X')
1125 return;
1126
1127 if (i == 0)
1128 return;
1129
1130 if (isalnum (encoded[i-1]))
1131 *len = i;
1132}
1133
29480c32
JB
1134/* If ENCODED follows the GNAT entity encoding conventions, then return
1135 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1136 replaced by ENCODED.
14f9c5c9 1137
4c4b4cd2 1138 The resulting string is valid until the next call of ada_decode.
29480c32 1139 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1140 is returned. */
1141
1142const char *
1143ada_decode (const char *encoded)
14f9c5c9
AS
1144{
1145 int i, j;
1146 int len0;
d2e4a39e 1147 const char *p;
4c4b4cd2 1148 char *decoded;
14f9c5c9 1149 int at_start_name;
4c4b4cd2
PH
1150 static char *decoding_buffer = NULL;
1151 static size_t decoding_buffer_size = 0;
d2e4a39e 1152
29480c32
JB
1153 /* The name of the Ada main procedure starts with "_ada_".
1154 This prefix is not part of the decoded name, so skip this part
1155 if we see this prefix. */
4c4b4cd2
PH
1156 if (strncmp (encoded, "_ada_", 5) == 0)
1157 encoded += 5;
14f9c5c9 1158
29480c32
JB
1159 /* If the name starts with '_', then it is not a properly encoded
1160 name, so do not attempt to decode it. Similarly, if the name
1161 starts with '<', the name should not be decoded. */
4c4b4cd2 1162 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1163 goto Suppress;
1164
4c4b4cd2 1165 len0 = strlen (encoded);
4c4b4cd2 1166
29480c32
JB
1167 ada_remove_trailing_digits (encoded, &len0);
1168 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1169
4c4b4cd2
PH
1170 /* Remove the ___X.* suffix if present. Do not forget to verify that
1171 the suffix is located before the current "end" of ENCODED. We want
1172 to avoid re-matching parts of ENCODED that have previously been
1173 marked as discarded (by decrementing LEN0). */
1174 p = strstr (encoded, "___");
1175 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1176 {
1177 if (p[3] == 'X')
4c4b4cd2 1178 len0 = p - encoded;
14f9c5c9 1179 else
4c4b4cd2 1180 goto Suppress;
14f9c5c9 1181 }
4c4b4cd2 1182
29480c32
JB
1183 /* Remove any trailing TKB suffix. It tells us that this symbol
1184 is for the body of a task, but that information does not actually
1185 appear in the decoded name. */
1186
4c4b4cd2 1187 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1188 len0 -= 3;
76a01679 1189
a10967fa
JB
1190 /* Remove any trailing TB suffix. The TB suffix is slightly different
1191 from the TKB suffix because it is used for non-anonymous task
1192 bodies. */
1193
1194 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1195 len0 -= 2;
1196
29480c32
JB
1197 /* Remove trailing "B" suffixes. */
1198 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1199
4c4b4cd2 1200 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1201 len0 -= 1;
1202
4c4b4cd2 1203 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1204
4c4b4cd2
PH
1205 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1206 decoded = decoding_buffer;
14f9c5c9 1207
29480c32
JB
1208 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1209
4c4b4cd2 1210 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1211 {
4c4b4cd2
PH
1212 i = len0 - 2;
1213 while ((i >= 0 && isdigit (encoded[i]))
1214 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1215 i -= 1;
1216 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1217 len0 = i - 1;
1218 else if (encoded[i] == '$')
1219 len0 = i;
d2e4a39e 1220 }
14f9c5c9 1221
29480c32
JB
1222 /* The first few characters that are not alphabetic are not part
1223 of any encoding we use, so we can copy them over verbatim. */
1224
4c4b4cd2
PH
1225 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1226 decoded[j] = encoded[i];
14f9c5c9
AS
1227
1228 at_start_name = 1;
1229 while (i < len0)
1230 {
29480c32 1231 /* Is this a symbol function? */
4c4b4cd2
PH
1232 if (at_start_name && encoded[i] == 'O')
1233 {
1234 int k;
5b4ee69b 1235
4c4b4cd2
PH
1236 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1237 {
1238 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1239 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1240 op_len - 1) == 0)
1241 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1242 {
1243 strcpy (decoded + j, ada_opname_table[k].decoded);
1244 at_start_name = 0;
1245 i += op_len;
1246 j += strlen (ada_opname_table[k].decoded);
1247 break;
1248 }
1249 }
1250 if (ada_opname_table[k].encoded != NULL)
1251 continue;
1252 }
14f9c5c9
AS
1253 at_start_name = 0;
1254
529cad9c
PH
1255 /* Replace "TK__" with "__", which will eventually be translated
1256 into "." (just below). */
1257
4c4b4cd2
PH
1258 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1259 i += 2;
529cad9c 1260
29480c32
JB
1261 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1262 be translated into "." (just below). These are internal names
1263 generated for anonymous blocks inside which our symbol is nested. */
1264
1265 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1266 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1267 && isdigit (encoded [i+4]))
1268 {
1269 int k = i + 5;
1270
1271 while (k < len0 && isdigit (encoded[k]))
1272 k++; /* Skip any extra digit. */
1273
1274 /* Double-check that the "__B_{DIGITS}+" sequence we found
1275 is indeed followed by "__". */
1276 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1277 i = k;
1278 }
1279
529cad9c
PH
1280 /* Remove _E{DIGITS}+[sb] */
1281
1282 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1283 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1284 one implements the actual entry code, and has a suffix following
1285 the convention above; the second one implements the barrier and
1286 uses the same convention as above, except that the 'E' is replaced
1287 by a 'B'.
1288
1289 Just as above, we do not decode the name of barrier functions
1290 to give the user a clue that the code he is debugging has been
1291 internally generated. */
1292
1293 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1294 && isdigit (encoded[i+2]))
1295 {
1296 int k = i + 3;
1297
1298 while (k < len0 && isdigit (encoded[k]))
1299 k++;
1300
1301 if (k < len0
1302 && (encoded[k] == 'b' || encoded[k] == 's'))
1303 {
1304 k++;
1305 /* Just as an extra precaution, make sure that if this
1306 suffix is followed by anything else, it is a '_'.
1307 Otherwise, we matched this sequence by accident. */
1308 if (k == len0
1309 || (k < len0 && encoded[k] == '_'))
1310 i = k;
1311 }
1312 }
1313
1314 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1315 the GNAT front-end in protected object subprograms. */
1316
1317 if (i < len0 + 3
1318 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1319 {
1320 /* Backtrack a bit up until we reach either the begining of
1321 the encoded name, or "__". Make sure that we only find
1322 digits or lowercase characters. */
1323 const char *ptr = encoded + i - 1;
1324
1325 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1326 ptr--;
1327 if (ptr < encoded
1328 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1329 i++;
1330 }
1331
4c4b4cd2
PH
1332 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1333 {
29480c32
JB
1334 /* This is a X[bn]* sequence not separated from the previous
1335 part of the name with a non-alpha-numeric character (in other
1336 words, immediately following an alpha-numeric character), then
1337 verify that it is placed at the end of the encoded name. If
1338 not, then the encoding is not valid and we should abort the
1339 decoding. Otherwise, just skip it, it is used in body-nested
1340 package names. */
4c4b4cd2
PH
1341 do
1342 i += 1;
1343 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1344 if (i < len0)
1345 goto Suppress;
1346 }
cdc7bb92 1347 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1348 {
29480c32 1349 /* Replace '__' by '.'. */
4c4b4cd2
PH
1350 decoded[j] = '.';
1351 at_start_name = 1;
1352 i += 2;
1353 j += 1;
1354 }
14f9c5c9 1355 else
4c4b4cd2 1356 {
29480c32
JB
1357 /* It's a character part of the decoded name, so just copy it
1358 over. */
4c4b4cd2
PH
1359 decoded[j] = encoded[i];
1360 i += 1;
1361 j += 1;
1362 }
14f9c5c9 1363 }
4c4b4cd2 1364 decoded[j] = '\000';
14f9c5c9 1365
29480c32
JB
1366 /* Decoded names should never contain any uppercase character.
1367 Double-check this, and abort the decoding if we find one. */
1368
4c4b4cd2
PH
1369 for (i = 0; decoded[i] != '\0'; i += 1)
1370 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1371 goto Suppress;
1372
4c4b4cd2
PH
1373 if (strcmp (decoded, encoded) == 0)
1374 return encoded;
1375 else
1376 return decoded;
14f9c5c9
AS
1377
1378Suppress:
4c4b4cd2
PH
1379 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1380 decoded = decoding_buffer;
1381 if (encoded[0] == '<')
1382 strcpy (decoded, encoded);
14f9c5c9 1383 else
88c15c34 1384 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1385 return decoded;
1386
1387}
1388
1389/* Table for keeping permanent unique copies of decoded names. Once
1390 allocated, names in this table are never released. While this is a
1391 storage leak, it should not be significant unless there are massive
1392 changes in the set of decoded names in successive versions of a
1393 symbol table loaded during a single session. */
1394static struct htab *decoded_names_store;
1395
1396/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1397 in the language-specific part of GSYMBOL, if it has not been
1398 previously computed. Tries to save the decoded name in the same
1399 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1400 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1401 GSYMBOL).
4c4b4cd2
PH
1402 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1403 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1404 when a decoded name is cached in it. */
4c4b4cd2 1405
45e6c716 1406const char *
f85f34ed 1407ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1408{
f85f34ed
TT
1409 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1410 const char **resultp =
1411 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1412
f85f34ed 1413 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1414 {
1415 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1416 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1417
f85f34ed 1418 gsymbol->ada_mangled = 1;
5b4ee69b 1419
f85f34ed
TT
1420 if (obstack != NULL)
1421 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1422 else
76a01679 1423 {
f85f34ed
TT
1424 /* Sometimes, we can't find a corresponding objfile, in
1425 which case, we put the result on the heap. Since we only
1426 decode when needed, we hope this usually does not cause a
1427 significant memory leak (FIXME). */
1428
76a01679
JB
1429 char **slot = (char **) htab_find_slot (decoded_names_store,
1430 decoded, INSERT);
5b4ee69b 1431
76a01679
JB
1432 if (*slot == NULL)
1433 *slot = xstrdup (decoded);
1434 *resultp = *slot;
1435 }
4c4b4cd2 1436 }
14f9c5c9 1437
4c4b4cd2
PH
1438 return *resultp;
1439}
76a01679 1440
2c0b251b 1441static char *
76a01679 1442ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1443{
1444 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1445}
1446
1447/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1448 suffixes that encode debugging information or leading _ada_ on
1449 SYM_NAME (see is_name_suffix commentary for the debugging
1450 information that is ignored). If WILD, then NAME need only match a
1451 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1452 either argument is NULL. */
14f9c5c9 1453
2c0b251b 1454static int
40658b94 1455match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1456{
1457 if (sym_name == NULL || name == NULL)
1458 return 0;
1459 else if (wild)
73589123 1460 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1461 else
1462 {
1463 int len_name = strlen (name);
5b4ee69b 1464
4c4b4cd2
PH
1465 return (strncmp (sym_name, name, len_name) == 0
1466 && is_name_suffix (sym_name + len_name))
1467 || (strncmp (sym_name, "_ada_", 5) == 0
1468 && strncmp (sym_name + 5, name, len_name) == 0
1469 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1470 }
14f9c5c9 1471}
14f9c5c9 1472\f
d2e4a39e 1473
4c4b4cd2 1474 /* Arrays */
14f9c5c9 1475
28c85d6c
JB
1476/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1477 generated by the GNAT compiler to describe the index type used
1478 for each dimension of an array, check whether it follows the latest
1479 known encoding. If not, fix it up to conform to the latest encoding.
1480 Otherwise, do nothing. This function also does nothing if
1481 INDEX_DESC_TYPE is NULL.
1482
1483 The GNAT encoding used to describle the array index type evolved a bit.
1484 Initially, the information would be provided through the name of each
1485 field of the structure type only, while the type of these fields was
1486 described as unspecified and irrelevant. The debugger was then expected
1487 to perform a global type lookup using the name of that field in order
1488 to get access to the full index type description. Because these global
1489 lookups can be very expensive, the encoding was later enhanced to make
1490 the global lookup unnecessary by defining the field type as being
1491 the full index type description.
1492
1493 The purpose of this routine is to allow us to support older versions
1494 of the compiler by detecting the use of the older encoding, and by
1495 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1496 we essentially replace each field's meaningless type by the associated
1497 index subtype). */
1498
1499void
1500ada_fixup_array_indexes_type (struct type *index_desc_type)
1501{
1502 int i;
1503
1504 if (index_desc_type == NULL)
1505 return;
1506 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1507
1508 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1509 to check one field only, no need to check them all). If not, return
1510 now.
1511
1512 If our INDEX_DESC_TYPE was generated using the older encoding,
1513 the field type should be a meaningless integer type whose name
1514 is not equal to the field name. */
1515 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1516 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1517 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1518 return;
1519
1520 /* Fixup each field of INDEX_DESC_TYPE. */
1521 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1522 {
0d5cff50 1523 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1524 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1525
1526 if (raw_type)
1527 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1528 }
1529}
1530
4c4b4cd2 1531/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1532
d2e4a39e
AS
1533static char *bound_name[] = {
1534 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1535 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1536};
1537
1538/* Maximum number of array dimensions we are prepared to handle. */
1539
4c4b4cd2 1540#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1541
14f9c5c9 1542
4c4b4cd2
PH
1543/* The desc_* routines return primitive portions of array descriptors
1544 (fat pointers). */
14f9c5c9
AS
1545
1546/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1547 level of indirection, if needed. */
1548
d2e4a39e
AS
1549static struct type *
1550desc_base_type (struct type *type)
14f9c5c9
AS
1551{
1552 if (type == NULL)
1553 return NULL;
61ee279c 1554 type = ada_check_typedef (type);
720d1a40
JB
1555 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1556 type = ada_typedef_target_type (type);
1557
1265e4aa
JB
1558 if (type != NULL
1559 && (TYPE_CODE (type) == TYPE_CODE_PTR
1560 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1561 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1562 else
1563 return type;
1564}
1565
4c4b4cd2
PH
1566/* True iff TYPE indicates a "thin" array pointer type. */
1567
14f9c5c9 1568static int
d2e4a39e 1569is_thin_pntr (struct type *type)
14f9c5c9 1570{
d2e4a39e 1571 return
14f9c5c9
AS
1572 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1573 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1574}
1575
4c4b4cd2
PH
1576/* The descriptor type for thin pointer type TYPE. */
1577
d2e4a39e
AS
1578static struct type *
1579thin_descriptor_type (struct type *type)
14f9c5c9 1580{
d2e4a39e 1581 struct type *base_type = desc_base_type (type);
5b4ee69b 1582
14f9c5c9
AS
1583 if (base_type == NULL)
1584 return NULL;
1585 if (is_suffix (ada_type_name (base_type), "___XVE"))
1586 return base_type;
d2e4a39e 1587 else
14f9c5c9 1588 {
d2e4a39e 1589 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1590
14f9c5c9 1591 if (alt_type == NULL)
4c4b4cd2 1592 return base_type;
14f9c5c9 1593 else
4c4b4cd2 1594 return alt_type;
14f9c5c9
AS
1595 }
1596}
1597
4c4b4cd2
PH
1598/* A pointer to the array data for thin-pointer value VAL. */
1599
d2e4a39e
AS
1600static struct value *
1601thin_data_pntr (struct value *val)
14f9c5c9 1602{
828292f2 1603 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1604 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1605
556bdfd4
UW
1606 data_type = lookup_pointer_type (data_type);
1607
14f9c5c9 1608 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1609 return value_cast (data_type, value_copy (val));
d2e4a39e 1610 else
42ae5230 1611 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1612}
1613
4c4b4cd2
PH
1614/* True iff TYPE indicates a "thick" array pointer type. */
1615
14f9c5c9 1616static int
d2e4a39e 1617is_thick_pntr (struct type *type)
14f9c5c9
AS
1618{
1619 type = desc_base_type (type);
1620 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1621 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1622}
1623
4c4b4cd2
PH
1624/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1626
d2e4a39e
AS
1627static struct type *
1628desc_bounds_type (struct type *type)
14f9c5c9 1629{
d2e4a39e 1630 struct type *r;
14f9c5c9
AS
1631
1632 type = desc_base_type (type);
1633
1634 if (type == NULL)
1635 return NULL;
1636 else if (is_thin_pntr (type))
1637 {
1638 type = thin_descriptor_type (type);
1639 if (type == NULL)
4c4b4cd2 1640 return NULL;
14f9c5c9
AS
1641 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1642 if (r != NULL)
61ee279c 1643 return ada_check_typedef (r);
14f9c5c9
AS
1644 }
1645 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1646 {
1647 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1648 if (r != NULL)
61ee279c 1649 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1650 }
1651 return NULL;
1652}
1653
1654/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1655 one, a pointer to its bounds data. Otherwise NULL. */
1656
d2e4a39e
AS
1657static struct value *
1658desc_bounds (struct value *arr)
14f9c5c9 1659{
df407dfe 1660 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1661
d2e4a39e 1662 if (is_thin_pntr (type))
14f9c5c9 1663 {
d2e4a39e 1664 struct type *bounds_type =
4c4b4cd2 1665 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1666 LONGEST addr;
1667
4cdfadb1 1668 if (bounds_type == NULL)
323e0a4a 1669 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1670
1671 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1672 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1673 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1674 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1675 addr = value_as_long (arr);
d2e4a39e 1676 else
42ae5230 1677 addr = value_address (arr);
14f9c5c9 1678
d2e4a39e 1679 return
4c4b4cd2
PH
1680 value_from_longest (lookup_pointer_type (bounds_type),
1681 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1682 }
1683
1684 else if (is_thick_pntr (type))
05e522ef
JB
1685 {
1686 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1687 _("Bad GNAT array descriptor"));
1688 struct type *p_bounds_type = value_type (p_bounds);
1689
1690 if (p_bounds_type
1691 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1692 {
1693 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1694
1695 if (TYPE_STUB (target_type))
1696 p_bounds = value_cast (lookup_pointer_type
1697 (ada_check_typedef (target_type)),
1698 p_bounds);
1699 }
1700 else
1701 error (_("Bad GNAT array descriptor"));
1702
1703 return p_bounds;
1704 }
14f9c5c9
AS
1705 else
1706 return NULL;
1707}
1708
4c4b4cd2
PH
1709/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1710 position of the field containing the address of the bounds data. */
1711
14f9c5c9 1712static int
d2e4a39e 1713fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1714{
1715 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1716}
1717
1718/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1719 size of the field containing the address of the bounds data. */
1720
14f9c5c9 1721static int
d2e4a39e 1722fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1723{
1724 type = desc_base_type (type);
1725
d2e4a39e 1726 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1727 return TYPE_FIELD_BITSIZE (type, 1);
1728 else
61ee279c 1729 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1730}
1731
4c4b4cd2 1732/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1733 pointer to one, the type of its array data (a array-with-no-bounds type);
1734 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1735 data. */
4c4b4cd2 1736
d2e4a39e 1737static struct type *
556bdfd4 1738desc_data_target_type (struct type *type)
14f9c5c9
AS
1739{
1740 type = desc_base_type (type);
1741
4c4b4cd2 1742 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1743 if (is_thin_pntr (type))
556bdfd4 1744 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1745 else if (is_thick_pntr (type))
556bdfd4
UW
1746 {
1747 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1748
1749 if (data_type
1750 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1751 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1752 }
1753
1754 return NULL;
14f9c5c9
AS
1755}
1756
1757/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1758 its array data. */
4c4b4cd2 1759
d2e4a39e
AS
1760static struct value *
1761desc_data (struct value *arr)
14f9c5c9 1762{
df407dfe 1763 struct type *type = value_type (arr);
5b4ee69b 1764
14f9c5c9
AS
1765 if (is_thin_pntr (type))
1766 return thin_data_pntr (arr);
1767 else if (is_thick_pntr (type))
d2e4a39e 1768 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1769 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1770 else
1771 return NULL;
1772}
1773
1774
1775/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1776 position of the field containing the address of the data. */
1777
14f9c5c9 1778static int
d2e4a39e 1779fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1780{
1781 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1782}
1783
1784/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1785 size of the field containing the address of the data. */
1786
14f9c5c9 1787static int
d2e4a39e 1788fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1789{
1790 type = desc_base_type (type);
1791
1792 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1793 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1794 else
14f9c5c9
AS
1795 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1796}
1797
4c4b4cd2 1798/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1799 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1800 bound, if WHICH is 1. The first bound is I=1. */
1801
d2e4a39e
AS
1802static struct value *
1803desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1804{
d2e4a39e 1805 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1806 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1807}
1808
1809/* If BOUNDS is an array-bounds structure type, return the bit position
1810 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1811 bound, if WHICH is 1. The first bound is I=1. */
1812
14f9c5c9 1813static int
d2e4a39e 1814desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1815{
d2e4a39e 1816 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1817}
1818
1819/* If BOUNDS is an array-bounds structure type, return the bit field size
1820 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1821 bound, if WHICH is 1. The first bound is I=1. */
1822
76a01679 1823static int
d2e4a39e 1824desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1825{
1826 type = desc_base_type (type);
1827
d2e4a39e
AS
1828 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1829 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1830 else
1831 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1832}
1833
1834/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1835 Ith bound (numbering from 1). Otherwise, NULL. */
1836
d2e4a39e
AS
1837static struct type *
1838desc_index_type (struct type *type, int i)
14f9c5c9
AS
1839{
1840 type = desc_base_type (type);
1841
1842 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1843 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1844 else
14f9c5c9
AS
1845 return NULL;
1846}
1847
4c4b4cd2
PH
1848/* The number of index positions in the array-bounds type TYPE.
1849 Return 0 if TYPE is NULL. */
1850
14f9c5c9 1851static int
d2e4a39e 1852desc_arity (struct type *type)
14f9c5c9
AS
1853{
1854 type = desc_base_type (type);
1855
1856 if (type != NULL)
1857 return TYPE_NFIELDS (type) / 2;
1858 return 0;
1859}
1860
4c4b4cd2
PH
1861/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1862 an array descriptor type (representing an unconstrained array
1863 type). */
1864
76a01679
JB
1865static int
1866ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1867{
1868 if (type == NULL)
1869 return 0;
61ee279c 1870 type = ada_check_typedef (type);
4c4b4cd2 1871 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1872 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1873}
1874
52ce6436 1875/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1876 * to one. */
52ce6436 1877
2c0b251b 1878static int
52ce6436
PH
1879ada_is_array_type (struct type *type)
1880{
1881 while (type != NULL
1882 && (TYPE_CODE (type) == TYPE_CODE_PTR
1883 || TYPE_CODE (type) == TYPE_CODE_REF))
1884 type = TYPE_TARGET_TYPE (type);
1885 return ada_is_direct_array_type (type);
1886}
1887
4c4b4cd2 1888/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1889
14f9c5c9 1890int
4c4b4cd2 1891ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1892{
1893 if (type == NULL)
1894 return 0;
61ee279c 1895 type = ada_check_typedef (type);
14f9c5c9 1896 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1897 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1898 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1899 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1900}
1901
4c4b4cd2
PH
1902/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1903
14f9c5c9 1904int
4c4b4cd2 1905ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1906{
556bdfd4 1907 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1908
1909 if (type == NULL)
1910 return 0;
61ee279c 1911 type = ada_check_typedef (type);
556bdfd4
UW
1912 return (data_type != NULL
1913 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1914 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1915}
1916
1917/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1918 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1919 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1920 is still needed. */
1921
14f9c5c9 1922int
ebf56fd3 1923ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1924{
d2e4a39e 1925 return
14f9c5c9
AS
1926 type != NULL
1927 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1928 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1929 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1930 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1931}
1932
1933
4c4b4cd2 1934/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1935 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1936 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1937 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1938 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1939 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1940 a descriptor. */
d2e4a39e
AS
1941struct type *
1942ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1943{
ad82864c
JB
1944 if (ada_is_constrained_packed_array_type (value_type (arr)))
1945 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1946
df407dfe
AC
1947 if (!ada_is_array_descriptor_type (value_type (arr)))
1948 return value_type (arr);
d2e4a39e
AS
1949
1950 if (!bounds)
ad82864c
JB
1951 {
1952 struct type *array_type =
1953 ada_check_typedef (desc_data_target_type (value_type (arr)));
1954
1955 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1956 TYPE_FIELD_BITSIZE (array_type, 0) =
1957 decode_packed_array_bitsize (value_type (arr));
1958
1959 return array_type;
1960 }
14f9c5c9
AS
1961 else
1962 {
d2e4a39e 1963 struct type *elt_type;
14f9c5c9 1964 int arity;
d2e4a39e 1965 struct value *descriptor;
14f9c5c9 1966
df407dfe
AC
1967 elt_type = ada_array_element_type (value_type (arr), -1);
1968 arity = ada_array_arity (value_type (arr));
14f9c5c9 1969
d2e4a39e 1970 if (elt_type == NULL || arity == 0)
df407dfe 1971 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1972
1973 descriptor = desc_bounds (arr);
d2e4a39e 1974 if (value_as_long (descriptor) == 0)
4c4b4cd2 1975 return NULL;
d2e4a39e 1976 while (arity > 0)
4c4b4cd2 1977 {
e9bb382b
UW
1978 struct type *range_type = alloc_type_copy (value_type (arr));
1979 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1980 struct value *low = desc_one_bound (descriptor, arity, 0);
1981 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1982
5b4ee69b 1983 arity -= 1;
0c9c3474
SA
1984 create_static_range_type (range_type, value_type (low),
1985 longest_to_int (value_as_long (low)),
1986 longest_to_int (value_as_long (high)));
4c4b4cd2 1987 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1990 {
1991 /* We need to store the element packed bitsize, as well as
1992 recompute the array size, because it was previously
1993 computed based on the unpacked element size. */
1994 LONGEST lo = value_as_long (low);
1995 LONGEST hi = value_as_long (high);
1996
1997 TYPE_FIELD_BITSIZE (elt_type, 0) =
1998 decode_packed_array_bitsize (value_type (arr));
1999 /* If the array has no element, then the size is already
2000 zero, and does not need to be recomputed. */
2001 if (lo < hi)
2002 {
2003 int array_bitsize =
2004 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2005
2006 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2007 }
2008 }
4c4b4cd2 2009 }
14f9c5c9
AS
2010
2011 return lookup_pointer_type (elt_type);
2012 }
2013}
2014
2015/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2016 Otherwise, returns either a standard GDB array with bounds set
2017 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2018 GDB array. Returns NULL if ARR is a null fat pointer. */
2019
d2e4a39e
AS
2020struct value *
2021ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2022{
df407dfe 2023 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2024 {
d2e4a39e 2025 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2026
14f9c5c9 2027 if (arrType == NULL)
4c4b4cd2 2028 return NULL;
14f9c5c9
AS
2029 return value_cast (arrType, value_copy (desc_data (arr)));
2030 }
ad82864c
JB
2031 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2032 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2033 else
2034 return arr;
2035}
2036
2037/* If ARR does not represent an array, returns ARR unchanged.
2038 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2039 be ARR itself if it already is in the proper form). */
2040
720d1a40 2041struct value *
d2e4a39e 2042ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2043{
df407dfe 2044 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2045 {
d2e4a39e 2046 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2047
14f9c5c9 2048 if (arrVal == NULL)
323e0a4a 2049 error (_("Bounds unavailable for null array pointer."));
529cad9c 2050 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2051 return value_ind (arrVal);
2052 }
ad82864c
JB
2053 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2054 return decode_constrained_packed_array (arr);
d2e4a39e 2055 else
14f9c5c9
AS
2056 return arr;
2057}
2058
2059/* If TYPE represents a GNAT array type, return it translated to an
2060 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2061 packing). For other types, is the identity. */
2062
d2e4a39e
AS
2063struct type *
2064ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2065{
ad82864c
JB
2066 if (ada_is_constrained_packed_array_type (type))
2067 return decode_constrained_packed_array_type (type);
17280b9f
UW
2068
2069 if (ada_is_array_descriptor_type (type))
556bdfd4 2070 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2071
2072 return type;
14f9c5c9
AS
2073}
2074
4c4b4cd2
PH
2075/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2076
ad82864c
JB
2077static int
2078ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2079{
2080 if (type == NULL)
2081 return 0;
4c4b4cd2 2082 type = desc_base_type (type);
61ee279c 2083 type = ada_check_typedef (type);
d2e4a39e 2084 return
14f9c5c9
AS
2085 ada_type_name (type) != NULL
2086 && strstr (ada_type_name (type), "___XP") != NULL;
2087}
2088
ad82864c
JB
2089/* Non-zero iff TYPE represents a standard GNAT constrained
2090 packed-array type. */
2091
2092int
2093ada_is_constrained_packed_array_type (struct type *type)
2094{
2095 return ada_is_packed_array_type (type)
2096 && !ada_is_array_descriptor_type (type);
2097}
2098
2099/* Non-zero iff TYPE represents an array descriptor for a
2100 unconstrained packed-array type. */
2101
2102static int
2103ada_is_unconstrained_packed_array_type (struct type *type)
2104{
2105 return ada_is_packed_array_type (type)
2106 && ada_is_array_descriptor_type (type);
2107}
2108
2109/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2110 return the size of its elements in bits. */
2111
2112static long
2113decode_packed_array_bitsize (struct type *type)
2114{
0d5cff50
DE
2115 const char *raw_name;
2116 const char *tail;
ad82864c
JB
2117 long bits;
2118
720d1a40
JB
2119 /* Access to arrays implemented as fat pointers are encoded as a typedef
2120 of the fat pointer type. We need the name of the fat pointer type
2121 to do the decoding, so strip the typedef layer. */
2122 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2123 type = ada_typedef_target_type (type);
2124
2125 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2126 if (!raw_name)
2127 raw_name = ada_type_name (desc_base_type (type));
2128
2129 if (!raw_name)
2130 return 0;
2131
2132 tail = strstr (raw_name, "___XP");
720d1a40 2133 gdb_assert (tail != NULL);
ad82864c
JB
2134
2135 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2136 {
2137 lim_warning
2138 (_("could not understand bit size information on packed array"));
2139 return 0;
2140 }
2141
2142 return bits;
2143}
2144
14f9c5c9
AS
2145/* Given that TYPE is a standard GDB array type with all bounds filled
2146 in, and that the element size of its ultimate scalar constituents
2147 (that is, either its elements, or, if it is an array of arrays, its
2148 elements' elements, etc.) is *ELT_BITS, return an identical type,
2149 but with the bit sizes of its elements (and those of any
2150 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2151 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2152 in bits. */
2153
d2e4a39e 2154static struct type *
ad82864c 2155constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2156{
d2e4a39e
AS
2157 struct type *new_elt_type;
2158 struct type *new_type;
99b1c762
JB
2159 struct type *index_type_desc;
2160 struct type *index_type;
14f9c5c9
AS
2161 LONGEST low_bound, high_bound;
2162
61ee279c 2163 type = ada_check_typedef (type);
14f9c5c9
AS
2164 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2165 return type;
2166
99b1c762
JB
2167 index_type_desc = ada_find_parallel_type (type, "___XA");
2168 if (index_type_desc)
2169 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2170 NULL);
2171 else
2172 index_type = TYPE_INDEX_TYPE (type);
2173
e9bb382b 2174 new_type = alloc_type_copy (type);
ad82864c
JB
2175 new_elt_type =
2176 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2177 elt_bits);
99b1c762 2178 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2179 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2180 TYPE_NAME (new_type) = ada_type_name (type);
2181
99b1c762 2182 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2183 low_bound = high_bound = 0;
2184 if (high_bound < low_bound)
2185 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2186 else
14f9c5c9
AS
2187 {
2188 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2189 TYPE_LENGTH (new_type) =
4c4b4cd2 2190 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2191 }
2192
876cecd0 2193 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2194 return new_type;
2195}
2196
ad82864c
JB
2197/* The array type encoded by TYPE, where
2198 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2199
d2e4a39e 2200static struct type *
ad82864c 2201decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2202{
0d5cff50 2203 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2204 char *name;
0d5cff50 2205 const char *tail;
d2e4a39e 2206 struct type *shadow_type;
14f9c5c9 2207 long bits;
14f9c5c9 2208
727e3d2e
JB
2209 if (!raw_name)
2210 raw_name = ada_type_name (desc_base_type (type));
2211
2212 if (!raw_name)
2213 return NULL;
2214
2215 name = (char *) alloca (strlen (raw_name) + 1);
2216 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2217 type = desc_base_type (type);
2218
14f9c5c9
AS
2219 memcpy (name, raw_name, tail - raw_name);
2220 name[tail - raw_name] = '\000';
2221
b4ba55a1
JB
2222 shadow_type = ada_find_parallel_type_with_name (type, name);
2223
2224 if (shadow_type == NULL)
14f9c5c9 2225 {
323e0a4a 2226 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2227 return NULL;
2228 }
cb249c71 2229 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2230
2231 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2232 {
0963b4bd
MS
2233 lim_warning (_("could not understand bounds "
2234 "information on packed array"));
14f9c5c9
AS
2235 return NULL;
2236 }
d2e4a39e 2237
ad82864c
JB
2238 bits = decode_packed_array_bitsize (type);
2239 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2240}
2241
ad82864c
JB
2242/* Given that ARR is a struct value *indicating a GNAT constrained packed
2243 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2244 standard GDB array type except that the BITSIZEs of the array
2245 target types are set to the number of bits in each element, and the
4c4b4cd2 2246 type length is set appropriately. */
14f9c5c9 2247
d2e4a39e 2248static struct value *
ad82864c 2249decode_constrained_packed_array (struct value *arr)
14f9c5c9 2250{
4c4b4cd2 2251 struct type *type;
14f9c5c9 2252
11aa919a
PMR
2253 /* If our value is a pointer, then dereference it. Likewise if
2254 the value is a reference. Make sure that this operation does not
2255 cause the target type to be fixed, as this would indirectly cause
2256 this array to be decoded. The rest of the routine assumes that
2257 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2258 and "value_ind" routines to perform the dereferencing, as opposed
2259 to using "ada_coerce_ref" or "ada_value_ind". */
2260 arr = coerce_ref (arr);
828292f2 2261 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2262 arr = value_ind (arr);
4c4b4cd2 2263
ad82864c 2264 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2265 if (type == NULL)
2266 {
323e0a4a 2267 error (_("can't unpack array"));
14f9c5c9
AS
2268 return NULL;
2269 }
61ee279c 2270
50810684 2271 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2272 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2273 {
2274 /* This is a (right-justified) modular type representing a packed
2275 array with no wrapper. In order to interpret the value through
2276 the (left-justified) packed array type we just built, we must
2277 first left-justify it. */
2278 int bit_size, bit_pos;
2279 ULONGEST mod;
2280
df407dfe 2281 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2282 bit_size = 0;
2283 while (mod > 0)
2284 {
2285 bit_size += 1;
2286 mod >>= 1;
2287 }
df407dfe 2288 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2289 arr = ada_value_primitive_packed_val (arr, NULL,
2290 bit_pos / HOST_CHAR_BIT,
2291 bit_pos % HOST_CHAR_BIT,
2292 bit_size,
2293 type);
2294 }
2295
4c4b4cd2 2296 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2297}
2298
2299
2300/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2301 given in IND. ARR must be a simple array. */
14f9c5c9 2302
d2e4a39e
AS
2303static struct value *
2304value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2305{
2306 int i;
2307 int bits, elt_off, bit_off;
2308 long elt_total_bit_offset;
d2e4a39e
AS
2309 struct type *elt_type;
2310 struct value *v;
14f9c5c9
AS
2311
2312 bits = 0;
2313 elt_total_bit_offset = 0;
df407dfe 2314 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2315 for (i = 0; i < arity; i += 1)
14f9c5c9 2316 {
d2e4a39e 2317 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2318 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2319 error
0963b4bd
MS
2320 (_("attempt to do packed indexing of "
2321 "something other than a packed array"));
14f9c5c9 2322 else
4c4b4cd2
PH
2323 {
2324 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2325 LONGEST lowerbound, upperbound;
2326 LONGEST idx;
2327
2328 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2329 {
323e0a4a 2330 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2331 lowerbound = upperbound = 0;
2332 }
2333
3cb382c9 2334 idx = pos_atr (ind[i]);
4c4b4cd2 2335 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2336 lim_warning (_("packed array index %ld out of bounds"),
2337 (long) idx);
4c4b4cd2
PH
2338 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2339 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2340 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2341 }
14f9c5c9
AS
2342 }
2343 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2344 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2345
2346 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2347 bits, elt_type);
14f9c5c9
AS
2348 return v;
2349}
2350
4c4b4cd2 2351/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2352
2353static int
d2e4a39e 2354has_negatives (struct type *type)
14f9c5c9 2355{
d2e4a39e
AS
2356 switch (TYPE_CODE (type))
2357 {
2358 default:
2359 return 0;
2360 case TYPE_CODE_INT:
2361 return !TYPE_UNSIGNED (type);
2362 case TYPE_CODE_RANGE:
2363 return TYPE_LOW_BOUND (type) < 0;
2364 }
14f9c5c9 2365}
d2e4a39e 2366
14f9c5c9
AS
2367
2368/* Create a new value of type TYPE from the contents of OBJ starting
2369 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2370 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2371 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2372 VALADDR is ignored unless OBJ is NULL, in which case,
2373 VALADDR+OFFSET must address the start of storage containing the
2374 packed value. The value returned in this case is never an lval.
2375 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2376
d2e4a39e 2377struct value *
fc1a4b47 2378ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2379 long offset, int bit_offset, int bit_size,
4c4b4cd2 2380 struct type *type)
14f9c5c9 2381{
d2e4a39e 2382 struct value *v;
4c4b4cd2
PH
2383 int src, /* Index into the source area */
2384 targ, /* Index into the target area */
2385 srcBitsLeft, /* Number of source bits left to move */
2386 nsrc, ntarg, /* Number of source and target bytes */
2387 unusedLS, /* Number of bits in next significant
2388 byte of source that are unused */
2389 accumSize; /* Number of meaningful bits in accum */
2390 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2391 unsigned char *unpacked;
4c4b4cd2 2392 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2393 unsigned char sign;
2394 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2395 /* Transmit bytes from least to most significant; delta is the direction
2396 the indices move. */
50810684 2397 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2398
61ee279c 2399 type = ada_check_typedef (type);
14f9c5c9
AS
2400
2401 if (obj == NULL)
2402 {
2403 v = allocate_value (type);
d2e4a39e 2404 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2405 }
9214ee5f 2406 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2407 {
53ba8333 2408 v = value_at (type, value_address (obj));
9f1f738a 2409 type = value_type (v);
d2e4a39e 2410 bytes = (unsigned char *) alloca (len);
53ba8333 2411 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2412 }
d2e4a39e 2413 else
14f9c5c9
AS
2414 {
2415 v = allocate_value (type);
0fd88904 2416 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2417 }
d2e4a39e
AS
2418
2419 if (obj != NULL)
14f9c5c9 2420 {
53ba8333 2421 long new_offset = offset;
5b4ee69b 2422
74bcbdf3 2423 set_value_component_location (v, obj);
9bbda503
AC
2424 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2425 set_value_bitsize (v, bit_size);
df407dfe 2426 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2427 {
53ba8333 2428 ++new_offset;
9bbda503 2429 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2430 }
53ba8333
JB
2431 set_value_offset (v, new_offset);
2432
2433 /* Also set the parent value. This is needed when trying to
2434 assign a new value (in inferior memory). */
2435 set_value_parent (v, obj);
14f9c5c9
AS
2436 }
2437 else
9bbda503 2438 set_value_bitsize (v, bit_size);
0fd88904 2439 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2440
2441 srcBitsLeft = bit_size;
2442 nsrc = len;
2443 ntarg = TYPE_LENGTH (type);
2444 sign = 0;
2445 if (bit_size == 0)
2446 {
2447 memset (unpacked, 0, TYPE_LENGTH (type));
2448 return v;
2449 }
50810684 2450 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2451 {
d2e4a39e 2452 src = len - 1;
1265e4aa
JB
2453 if (has_negatives (type)
2454 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2455 sign = ~0;
d2e4a39e
AS
2456
2457 unusedLS =
4c4b4cd2
PH
2458 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2459 % HOST_CHAR_BIT;
14f9c5c9
AS
2460
2461 switch (TYPE_CODE (type))
4c4b4cd2
PH
2462 {
2463 case TYPE_CODE_ARRAY:
2464 case TYPE_CODE_UNION:
2465 case TYPE_CODE_STRUCT:
2466 /* Non-scalar values must be aligned at a byte boundary... */
2467 accumSize =
2468 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2469 /* ... And are placed at the beginning (most-significant) bytes
2470 of the target. */
529cad9c 2471 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2472 ntarg = targ + 1;
4c4b4cd2
PH
2473 break;
2474 default:
2475 accumSize = 0;
2476 targ = TYPE_LENGTH (type) - 1;
2477 break;
2478 }
14f9c5c9 2479 }
d2e4a39e 2480 else
14f9c5c9
AS
2481 {
2482 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2483
2484 src = targ = 0;
2485 unusedLS = bit_offset;
2486 accumSize = 0;
2487
d2e4a39e 2488 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2489 sign = ~0;
14f9c5c9 2490 }
d2e4a39e 2491
14f9c5c9
AS
2492 accum = 0;
2493 while (nsrc > 0)
2494 {
2495 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2496 part of the value. */
d2e4a39e 2497 unsigned int unusedMSMask =
4c4b4cd2
PH
2498 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2499 1;
2500 /* Sign-extend bits for this byte. */
14f9c5c9 2501 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2502
d2e4a39e 2503 accum |=
4c4b4cd2 2504 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2505 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2506 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2507 {
2508 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2509 accumSize -= HOST_CHAR_BIT;
2510 accum >>= HOST_CHAR_BIT;
2511 ntarg -= 1;
2512 targ += delta;
2513 }
14f9c5c9
AS
2514 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2515 unusedLS = 0;
2516 nsrc -= 1;
2517 src += delta;
2518 }
2519 while (ntarg > 0)
2520 {
2521 accum |= sign << accumSize;
2522 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2523 accumSize -= HOST_CHAR_BIT;
2524 accum >>= HOST_CHAR_BIT;
2525 ntarg -= 1;
2526 targ += delta;
2527 }
2528
2529 return v;
2530}
d2e4a39e 2531
14f9c5c9
AS
2532/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2533 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2534 not overlap. */
14f9c5c9 2535static void
fc1a4b47 2536move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2537 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2538{
2539 unsigned int accum, mask;
2540 int accum_bits, chunk_size;
2541
2542 target += targ_offset / HOST_CHAR_BIT;
2543 targ_offset %= HOST_CHAR_BIT;
2544 source += src_offset / HOST_CHAR_BIT;
2545 src_offset %= HOST_CHAR_BIT;
50810684 2546 if (bits_big_endian_p)
14f9c5c9
AS
2547 {
2548 accum = (unsigned char) *source;
2549 source += 1;
2550 accum_bits = HOST_CHAR_BIT - src_offset;
2551
d2e4a39e 2552 while (n > 0)
4c4b4cd2
PH
2553 {
2554 int unused_right;
5b4ee69b 2555
4c4b4cd2
PH
2556 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2557 accum_bits += HOST_CHAR_BIT;
2558 source += 1;
2559 chunk_size = HOST_CHAR_BIT - targ_offset;
2560 if (chunk_size > n)
2561 chunk_size = n;
2562 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2563 mask = ((1 << chunk_size) - 1) << unused_right;
2564 *target =
2565 (*target & ~mask)
2566 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2567 n -= chunk_size;
2568 accum_bits -= chunk_size;
2569 target += 1;
2570 targ_offset = 0;
2571 }
14f9c5c9
AS
2572 }
2573 else
2574 {
2575 accum = (unsigned char) *source >> src_offset;
2576 source += 1;
2577 accum_bits = HOST_CHAR_BIT - src_offset;
2578
d2e4a39e 2579 while (n > 0)
4c4b4cd2
PH
2580 {
2581 accum = accum + ((unsigned char) *source << accum_bits);
2582 accum_bits += HOST_CHAR_BIT;
2583 source += 1;
2584 chunk_size = HOST_CHAR_BIT - targ_offset;
2585 if (chunk_size > n)
2586 chunk_size = n;
2587 mask = ((1 << chunk_size) - 1) << targ_offset;
2588 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2589 n -= chunk_size;
2590 accum_bits -= chunk_size;
2591 accum >>= chunk_size;
2592 target += 1;
2593 targ_offset = 0;
2594 }
14f9c5c9
AS
2595 }
2596}
2597
14f9c5c9
AS
2598/* Store the contents of FROMVAL into the location of TOVAL.
2599 Return a new value with the location of TOVAL and contents of
2600 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2601 floating-point or non-scalar types. */
14f9c5c9 2602
d2e4a39e
AS
2603static struct value *
2604ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2605{
df407dfe
AC
2606 struct type *type = value_type (toval);
2607 int bits = value_bitsize (toval);
14f9c5c9 2608
52ce6436
PH
2609 toval = ada_coerce_ref (toval);
2610 fromval = ada_coerce_ref (fromval);
2611
2612 if (ada_is_direct_array_type (value_type (toval)))
2613 toval = ada_coerce_to_simple_array (toval);
2614 if (ada_is_direct_array_type (value_type (fromval)))
2615 fromval = ada_coerce_to_simple_array (fromval);
2616
88e3b34b 2617 if (!deprecated_value_modifiable (toval))
323e0a4a 2618 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2619
d2e4a39e 2620 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2621 && bits > 0
d2e4a39e 2622 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2623 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2624 {
df407dfe
AC
2625 int len = (value_bitpos (toval)
2626 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2627 int from_size;
948f8e3d 2628 gdb_byte *buffer = alloca (len);
d2e4a39e 2629 struct value *val;
42ae5230 2630 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2631
2632 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2633 fromval = value_cast (type, fromval);
14f9c5c9 2634
52ce6436 2635 read_memory (to_addr, buffer, len);
aced2898
PH
2636 from_size = value_bitsize (fromval);
2637 if (from_size == 0)
2638 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2639 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2640 move_bits (buffer, value_bitpos (toval),
50810684 2641 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2642 else
50810684
UW
2643 move_bits (buffer, value_bitpos (toval),
2644 value_contents (fromval), 0, bits, 0);
972daa01 2645 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2646
14f9c5c9 2647 val = value_copy (toval);
0fd88904 2648 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2649 TYPE_LENGTH (type));
04624583 2650 deprecated_set_value_type (val, type);
d2e4a39e 2651
14f9c5c9
AS
2652 return val;
2653 }
2654
2655 return value_assign (toval, fromval);
2656}
2657
2658
52ce6436
PH
2659/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2660 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2661 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2662 * COMPONENT, and not the inferior's memory. The current contents
2663 * of COMPONENT are ignored. */
2664static void
2665value_assign_to_component (struct value *container, struct value *component,
2666 struct value *val)
2667{
2668 LONGEST offset_in_container =
42ae5230 2669 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2670 int bit_offset_in_container =
2671 value_bitpos (component) - value_bitpos (container);
2672 int bits;
2673
2674 val = value_cast (value_type (component), val);
2675
2676 if (value_bitsize (component) == 0)
2677 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2678 else
2679 bits = value_bitsize (component);
2680
50810684 2681 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2682 move_bits (value_contents_writeable (container) + offset_in_container,
2683 value_bitpos (container) + bit_offset_in_container,
2684 value_contents (val),
2685 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2686 bits, 1);
52ce6436
PH
2687 else
2688 move_bits (value_contents_writeable (container) + offset_in_container,
2689 value_bitpos (container) + bit_offset_in_container,
50810684 2690 value_contents (val), 0, bits, 0);
52ce6436
PH
2691}
2692
4c4b4cd2
PH
2693/* The value of the element of array ARR at the ARITY indices given in IND.
2694 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2695 thereto. */
2696
d2e4a39e
AS
2697struct value *
2698ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2699{
2700 int k;
d2e4a39e
AS
2701 struct value *elt;
2702 struct type *elt_type;
14f9c5c9
AS
2703
2704 elt = ada_coerce_to_simple_array (arr);
2705
df407dfe 2706 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2707 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2708 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2709 return value_subscript_packed (elt, arity, ind);
2710
2711 for (k = 0; k < arity; k += 1)
2712 {
2713 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2714 error (_("too many subscripts (%d expected)"), k);
2497b498 2715 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2716 }
2717 return elt;
2718}
2719
2720/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2721 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2722 IND. Does not read the entire array into memory. */
14f9c5c9 2723
2c0b251b 2724static struct value *
d2e4a39e 2725ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2726 struct value **ind)
14f9c5c9
AS
2727{
2728 int k;
2729
2730 for (k = 0; k < arity; k += 1)
2731 {
2732 LONGEST lwb, upb;
14f9c5c9
AS
2733
2734 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2735 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2736 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2737 value_copy (arr));
14f9c5c9 2738 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2739 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2740 type = TYPE_TARGET_TYPE (type);
2741 }
2742
2743 return value_ind (arr);
2744}
2745
0b5d8877 2746/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2747 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2748 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2749 per Ada rules. */
0b5d8877 2750static struct value *
f5938064
JG
2751ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2752 int low, int high)
0b5d8877 2753{
b0dd7688 2754 struct type *type0 = ada_check_typedef (type);
6c038f32 2755 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2756 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2757 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2758 struct type *index_type
2759 = create_static_range_type (NULL,
2760 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2761 low, high);
6c038f32 2762 struct type *slice_type =
b0dd7688 2763 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2764
f5938064 2765 return value_at_lazy (slice_type, base);
0b5d8877
PH
2766}
2767
2768
2769static struct value *
2770ada_value_slice (struct value *array, int low, int high)
2771{
b0dd7688 2772 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2773 struct type *index_type
2774 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2775 struct type *slice_type =
0b5d8877 2776 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2777
6c038f32 2778 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2779}
2780
14f9c5c9
AS
2781/* If type is a record type in the form of a standard GNAT array
2782 descriptor, returns the number of dimensions for type. If arr is a
2783 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2784 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2785
2786int
d2e4a39e 2787ada_array_arity (struct type *type)
14f9c5c9
AS
2788{
2789 int arity;
2790
2791 if (type == NULL)
2792 return 0;
2793
2794 type = desc_base_type (type);
2795
2796 arity = 0;
d2e4a39e 2797 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2798 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2799 else
2800 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2801 {
4c4b4cd2 2802 arity += 1;
61ee279c 2803 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2804 }
d2e4a39e 2805
14f9c5c9
AS
2806 return arity;
2807}
2808
2809/* If TYPE is a record type in the form of a standard GNAT array
2810 descriptor or a simple array type, returns the element type for
2811 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2812 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2813
d2e4a39e
AS
2814struct type *
2815ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2816{
2817 type = desc_base_type (type);
2818
d2e4a39e 2819 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2820 {
2821 int k;
d2e4a39e 2822 struct type *p_array_type;
14f9c5c9 2823
556bdfd4 2824 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2825
2826 k = ada_array_arity (type);
2827 if (k == 0)
4c4b4cd2 2828 return NULL;
d2e4a39e 2829
4c4b4cd2 2830 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2831 if (nindices >= 0 && k > nindices)
4c4b4cd2 2832 k = nindices;
d2e4a39e 2833 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2834 {
61ee279c 2835 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2836 k -= 1;
2837 }
14f9c5c9
AS
2838 return p_array_type;
2839 }
2840 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2841 {
2842 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2843 {
2844 type = TYPE_TARGET_TYPE (type);
2845 nindices -= 1;
2846 }
14f9c5c9
AS
2847 return type;
2848 }
2849
2850 return NULL;
2851}
2852
4c4b4cd2 2853/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2854 Does not examine memory. Throws an error if N is invalid or TYPE
2855 is not an array type. NAME is the name of the Ada attribute being
2856 evaluated ('range, 'first, 'last, or 'length); it is used in building
2857 the error message. */
14f9c5c9 2858
1eea4ebd
UW
2859static struct type *
2860ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2861{
4c4b4cd2
PH
2862 struct type *result_type;
2863
14f9c5c9
AS
2864 type = desc_base_type (type);
2865
1eea4ebd
UW
2866 if (n < 0 || n > ada_array_arity (type))
2867 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2868
4c4b4cd2 2869 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2870 {
2871 int i;
2872
2873 for (i = 1; i < n; i += 1)
4c4b4cd2 2874 type = TYPE_TARGET_TYPE (type);
262452ec 2875 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2876 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2877 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2878 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2879 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2880 result_type = NULL;
14f9c5c9 2881 }
d2e4a39e 2882 else
1eea4ebd
UW
2883 {
2884 result_type = desc_index_type (desc_bounds_type (type), n);
2885 if (result_type == NULL)
2886 error (_("attempt to take bound of something that is not an array"));
2887 }
2888
2889 return result_type;
14f9c5c9
AS
2890}
2891
2892/* Given that arr is an array type, returns the lower bound of the
2893 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2894 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2895 array-descriptor type. It works for other arrays with bounds supplied
2896 by run-time quantities other than discriminants. */
14f9c5c9 2897
abb68b3e 2898static LONGEST
fb5e3d5c 2899ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2900{
8a48ac95 2901 struct type *type, *index_type_desc, *index_type;
1ce677a4 2902 int i;
262452ec
JK
2903
2904 gdb_assert (which == 0 || which == 1);
14f9c5c9 2905
ad82864c
JB
2906 if (ada_is_constrained_packed_array_type (arr_type))
2907 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2908
4c4b4cd2 2909 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2910 return (LONGEST) - which;
14f9c5c9
AS
2911
2912 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2913 type = TYPE_TARGET_TYPE (arr_type);
2914 else
2915 type = arr_type;
2916
2917 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2918 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2919 if (index_type_desc != NULL)
28c85d6c
JB
2920 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2921 NULL);
262452ec 2922 else
8a48ac95
JB
2923 {
2924 struct type *elt_type = check_typedef (type);
2925
2926 for (i = 1; i < n; i++)
2927 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2928
2929 index_type = TYPE_INDEX_TYPE (elt_type);
2930 }
262452ec 2931
43bbcdc2
PH
2932 return
2933 (LONGEST) (which == 0
2934 ? ada_discrete_type_low_bound (index_type)
2935 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2936}
2937
2938/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2939 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2940 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2941 supplied by run-time quantities other than discriminants. */
14f9c5c9 2942
1eea4ebd 2943static LONGEST
4dc81987 2944ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2945{
df407dfe 2946 struct type *arr_type = value_type (arr);
14f9c5c9 2947
ad82864c
JB
2948 if (ada_is_constrained_packed_array_type (arr_type))
2949 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2950 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2951 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2952 else
1eea4ebd 2953 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2954}
2955
2956/* Given that arr is an array value, returns the length of the
2957 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2958 supplied by run-time quantities other than discriminants.
2959 Does not work for arrays indexed by enumeration types with representation
2960 clauses at the moment. */
14f9c5c9 2961
1eea4ebd 2962static LONGEST
d2e4a39e 2963ada_array_length (struct value *arr, int n)
14f9c5c9 2964{
df407dfe 2965 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2966
ad82864c
JB
2967 if (ada_is_constrained_packed_array_type (arr_type))
2968 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2969
4c4b4cd2 2970 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2971 return (ada_array_bound_from_type (arr_type, n, 1)
2972 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2973 else
1eea4ebd
UW
2974 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2975 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2976}
2977
2978/* An empty array whose type is that of ARR_TYPE (an array type),
2979 with bounds LOW to LOW-1. */
2980
2981static struct value *
2982empty_array (struct type *arr_type, int low)
2983{
b0dd7688 2984 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
2985 struct type *index_type
2986 = create_static_range_type
2987 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 2988 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2989
0b5d8877 2990 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2991}
14f9c5c9 2992\f
d2e4a39e 2993
4c4b4cd2 2994 /* Name resolution */
14f9c5c9 2995
4c4b4cd2
PH
2996/* The "decoded" name for the user-definable Ada operator corresponding
2997 to OP. */
14f9c5c9 2998
d2e4a39e 2999static const char *
4c4b4cd2 3000ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3001{
3002 int i;
3003
4c4b4cd2 3004 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3005 {
3006 if (ada_opname_table[i].op == op)
4c4b4cd2 3007 return ada_opname_table[i].decoded;
14f9c5c9 3008 }
323e0a4a 3009 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3010}
3011
3012
4c4b4cd2
PH
3013/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3014 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3015 undefined namespace) and converts operators that are
3016 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3017 non-null, it provides a preferred result type [at the moment, only
3018 type void has any effect---causing procedures to be preferred over
3019 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3020 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3021
4c4b4cd2
PH
3022static void
3023resolve (struct expression **expp, int void_context_p)
14f9c5c9 3024{
30b15541
UW
3025 struct type *context_type = NULL;
3026 int pc = 0;
3027
3028 if (void_context_p)
3029 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3030
3031 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3032}
3033
4c4b4cd2
PH
3034/* Resolve the operator of the subexpression beginning at
3035 position *POS of *EXPP. "Resolving" consists of replacing
3036 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3037 with their resolutions, replacing built-in operators with
3038 function calls to user-defined operators, where appropriate, and,
3039 when DEPROCEDURE_P is non-zero, converting function-valued variables
3040 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3041 are as in ada_resolve, above. */
14f9c5c9 3042
d2e4a39e 3043static struct value *
4c4b4cd2 3044resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3045 struct type *context_type)
14f9c5c9
AS
3046{
3047 int pc = *pos;
3048 int i;
4c4b4cd2 3049 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3050 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3051 struct value **argvec; /* Vector of operand types (alloca'ed). */
3052 int nargs; /* Number of operands. */
52ce6436 3053 int oplen;
14f9c5c9
AS
3054
3055 argvec = NULL;
3056 nargs = 0;
3057 exp = *expp;
3058
52ce6436
PH
3059 /* Pass one: resolve operands, saving their types and updating *pos,
3060 if needed. */
14f9c5c9
AS
3061 switch (op)
3062 {
4c4b4cd2
PH
3063 case OP_FUNCALL:
3064 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3065 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3066 *pos += 7;
4c4b4cd2
PH
3067 else
3068 {
3069 *pos += 3;
3070 resolve_subexp (expp, pos, 0, NULL);
3071 }
3072 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3073 break;
3074
14f9c5c9 3075 case UNOP_ADDR:
4c4b4cd2
PH
3076 *pos += 1;
3077 resolve_subexp (expp, pos, 0, NULL);
3078 break;
3079
52ce6436
PH
3080 case UNOP_QUAL:
3081 *pos += 3;
17466c1a 3082 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3083 break;
3084
52ce6436 3085 case OP_ATR_MODULUS:
4c4b4cd2
PH
3086 case OP_ATR_SIZE:
3087 case OP_ATR_TAG:
4c4b4cd2
PH
3088 case OP_ATR_FIRST:
3089 case OP_ATR_LAST:
3090 case OP_ATR_LENGTH:
3091 case OP_ATR_POS:
3092 case OP_ATR_VAL:
4c4b4cd2
PH
3093 case OP_ATR_MIN:
3094 case OP_ATR_MAX:
52ce6436
PH
3095 case TERNOP_IN_RANGE:
3096 case BINOP_IN_BOUNDS:
3097 case UNOP_IN_RANGE:
3098 case OP_AGGREGATE:
3099 case OP_OTHERS:
3100 case OP_CHOICES:
3101 case OP_POSITIONAL:
3102 case OP_DISCRETE_RANGE:
3103 case OP_NAME:
3104 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3105 *pos += oplen;
14f9c5c9
AS
3106 break;
3107
3108 case BINOP_ASSIGN:
3109 {
4c4b4cd2
PH
3110 struct value *arg1;
3111
3112 *pos += 1;
3113 arg1 = resolve_subexp (expp, pos, 0, NULL);
3114 if (arg1 == NULL)
3115 resolve_subexp (expp, pos, 1, NULL);
3116 else
df407dfe 3117 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3118 break;
14f9c5c9
AS
3119 }
3120
4c4b4cd2 3121 case UNOP_CAST:
4c4b4cd2
PH
3122 *pos += 3;
3123 nargs = 1;
3124 break;
14f9c5c9 3125
4c4b4cd2
PH
3126 case BINOP_ADD:
3127 case BINOP_SUB:
3128 case BINOP_MUL:
3129 case BINOP_DIV:
3130 case BINOP_REM:
3131 case BINOP_MOD:
3132 case BINOP_EXP:
3133 case BINOP_CONCAT:
3134 case BINOP_LOGICAL_AND:
3135 case BINOP_LOGICAL_OR:
3136 case BINOP_BITWISE_AND:
3137 case BINOP_BITWISE_IOR:
3138 case BINOP_BITWISE_XOR:
14f9c5c9 3139
4c4b4cd2
PH
3140 case BINOP_EQUAL:
3141 case BINOP_NOTEQUAL:
3142 case BINOP_LESS:
3143 case BINOP_GTR:
3144 case BINOP_LEQ:
3145 case BINOP_GEQ:
14f9c5c9 3146
4c4b4cd2
PH
3147 case BINOP_REPEAT:
3148 case BINOP_SUBSCRIPT:
3149 case BINOP_COMMA:
40c8aaa9
JB
3150 *pos += 1;
3151 nargs = 2;
3152 break;
14f9c5c9 3153
4c4b4cd2
PH
3154 case UNOP_NEG:
3155 case UNOP_PLUS:
3156 case UNOP_LOGICAL_NOT:
3157 case UNOP_ABS:
3158 case UNOP_IND:
3159 *pos += 1;
3160 nargs = 1;
3161 break;
14f9c5c9 3162
4c4b4cd2
PH
3163 case OP_LONG:
3164 case OP_DOUBLE:
3165 case OP_VAR_VALUE:
3166 *pos += 4;
3167 break;
14f9c5c9 3168
4c4b4cd2
PH
3169 case OP_TYPE:
3170 case OP_BOOL:
3171 case OP_LAST:
4c4b4cd2
PH
3172 case OP_INTERNALVAR:
3173 *pos += 3;
3174 break;
14f9c5c9 3175
4c4b4cd2
PH
3176 case UNOP_MEMVAL:
3177 *pos += 3;
3178 nargs = 1;
3179 break;
3180
67f3407f
DJ
3181 case OP_REGISTER:
3182 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3183 break;
3184
4c4b4cd2
PH
3185 case STRUCTOP_STRUCT:
3186 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3187 nargs = 1;
3188 break;
3189
4c4b4cd2 3190 case TERNOP_SLICE:
4c4b4cd2
PH
3191 *pos += 1;
3192 nargs = 3;
3193 break;
3194
52ce6436 3195 case OP_STRING:
14f9c5c9 3196 break;
4c4b4cd2
PH
3197
3198 default:
323e0a4a 3199 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3200 }
3201
76a01679 3202 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3203 for (i = 0; i < nargs; i += 1)
3204 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3205 argvec[i] = NULL;
3206 exp = *expp;
3207
3208 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3209 switch (op)
3210 {
3211 default:
3212 break;
3213
14f9c5c9 3214 case OP_VAR_VALUE:
4c4b4cd2 3215 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3216 {
3217 struct ada_symbol_info *candidates;
3218 int n_candidates;
3219
3220 n_candidates =
3221 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3222 (exp->elts[pc + 2].symbol),
3223 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3224 &candidates);
76a01679
JB
3225
3226 if (n_candidates > 1)
3227 {
3228 /* Types tend to get re-introduced locally, so if there
3229 are any local symbols that are not types, first filter
3230 out all types. */
3231 int j;
3232 for (j = 0; j < n_candidates; j += 1)
3233 switch (SYMBOL_CLASS (candidates[j].sym))
3234 {
3235 case LOC_REGISTER:
3236 case LOC_ARG:
3237 case LOC_REF_ARG:
76a01679
JB
3238 case LOC_REGPARM_ADDR:
3239 case LOC_LOCAL:
76a01679 3240 case LOC_COMPUTED:
76a01679
JB
3241 goto FoundNonType;
3242 default:
3243 break;
3244 }
3245 FoundNonType:
3246 if (j < n_candidates)
3247 {
3248 j = 0;
3249 while (j < n_candidates)
3250 {
3251 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3252 {
3253 candidates[j] = candidates[n_candidates - 1];
3254 n_candidates -= 1;
3255 }
3256 else
3257 j += 1;
3258 }
3259 }
3260 }
3261
3262 if (n_candidates == 0)
323e0a4a 3263 error (_("No definition found for %s"),
76a01679
JB
3264 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3265 else if (n_candidates == 1)
3266 i = 0;
3267 else if (deprocedure_p
3268 && !is_nonfunction (candidates, n_candidates))
3269 {
06d5cf63
JB
3270 i = ada_resolve_function
3271 (candidates, n_candidates, NULL, 0,
3272 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3273 context_type);
76a01679 3274 if (i < 0)
323e0a4a 3275 error (_("Could not find a match for %s"),
76a01679
JB
3276 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3277 }
3278 else
3279 {
323e0a4a 3280 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3281 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3282 user_select_syms (candidates, n_candidates, 1);
3283 i = 0;
3284 }
3285
3286 exp->elts[pc + 1].block = candidates[i].block;
3287 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3288 if (innermost_block == NULL
3289 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3290 innermost_block = candidates[i].block;
3291 }
3292
3293 if (deprocedure_p
3294 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3295 == TYPE_CODE_FUNC))
3296 {
3297 replace_operator_with_call (expp, pc, 0, 0,
3298 exp->elts[pc + 2].symbol,
3299 exp->elts[pc + 1].block);
3300 exp = *expp;
3301 }
14f9c5c9
AS
3302 break;
3303
3304 case OP_FUNCALL:
3305 {
4c4b4cd2 3306 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3307 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3308 {
3309 struct ada_symbol_info *candidates;
3310 int n_candidates;
3311
3312 n_candidates =
76a01679
JB
3313 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3314 (exp->elts[pc + 5].symbol),
3315 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3316 &candidates);
4c4b4cd2
PH
3317 if (n_candidates == 1)
3318 i = 0;
3319 else
3320 {
06d5cf63
JB
3321 i = ada_resolve_function
3322 (candidates, n_candidates,
3323 argvec, nargs,
3324 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3325 context_type);
4c4b4cd2 3326 if (i < 0)
323e0a4a 3327 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3328 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3329 }
3330
3331 exp->elts[pc + 4].block = candidates[i].block;
3332 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3333 if (innermost_block == NULL
3334 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3335 innermost_block = candidates[i].block;
3336 }
14f9c5c9
AS
3337 }
3338 break;
3339 case BINOP_ADD:
3340 case BINOP_SUB:
3341 case BINOP_MUL:
3342 case BINOP_DIV:
3343 case BINOP_REM:
3344 case BINOP_MOD:
3345 case BINOP_CONCAT:
3346 case BINOP_BITWISE_AND:
3347 case BINOP_BITWISE_IOR:
3348 case BINOP_BITWISE_XOR:
3349 case BINOP_EQUAL:
3350 case BINOP_NOTEQUAL:
3351 case BINOP_LESS:
3352 case BINOP_GTR:
3353 case BINOP_LEQ:
3354 case BINOP_GEQ:
3355 case BINOP_EXP:
3356 case UNOP_NEG:
3357 case UNOP_PLUS:
3358 case UNOP_LOGICAL_NOT:
3359 case UNOP_ABS:
3360 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3361 {
3362 struct ada_symbol_info *candidates;
3363 int n_candidates;
3364
3365 n_candidates =
3366 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3367 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3368 &candidates);
4c4b4cd2 3369 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3370 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3371 if (i < 0)
3372 break;
3373
76a01679
JB
3374 replace_operator_with_call (expp, pc, nargs, 1,
3375 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3376 exp = *expp;
3377 }
14f9c5c9 3378 break;
4c4b4cd2
PH
3379
3380 case OP_TYPE:
b3dbf008 3381 case OP_REGISTER:
4c4b4cd2 3382 return NULL;
14f9c5c9
AS
3383 }
3384
3385 *pos = pc;
3386 return evaluate_subexp_type (exp, pos);
3387}
3388
3389/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3390 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3391 a non-pointer. */
14f9c5c9 3392/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3393 liberal. */
14f9c5c9
AS
3394
3395static int
4dc81987 3396ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3397{
61ee279c
PH
3398 ftype = ada_check_typedef (ftype);
3399 atype = ada_check_typedef (atype);
14f9c5c9
AS
3400
3401 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3402 ftype = TYPE_TARGET_TYPE (ftype);
3403 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3404 atype = TYPE_TARGET_TYPE (atype);
3405
d2e4a39e 3406 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3407 {
3408 default:
5b3d5b7d 3409 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3410 case TYPE_CODE_PTR:
3411 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3412 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3413 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3414 else
1265e4aa
JB
3415 return (may_deref
3416 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3417 case TYPE_CODE_INT:
3418 case TYPE_CODE_ENUM:
3419 case TYPE_CODE_RANGE:
3420 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3421 {
3422 case TYPE_CODE_INT:
3423 case TYPE_CODE_ENUM:
3424 case TYPE_CODE_RANGE:
3425 return 1;
3426 default:
3427 return 0;
3428 }
14f9c5c9
AS
3429
3430 case TYPE_CODE_ARRAY:
d2e4a39e 3431 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3432 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3433
3434 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3435 if (ada_is_array_descriptor_type (ftype))
3436 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3437 || ada_is_array_descriptor_type (atype));
14f9c5c9 3438 else
4c4b4cd2
PH
3439 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3440 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3441
3442 case TYPE_CODE_UNION:
3443 case TYPE_CODE_FLT:
3444 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3445 }
3446}
3447
3448/* Return non-zero if the formals of FUNC "sufficiently match" the
3449 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3450 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3451 argument function. */
14f9c5c9
AS
3452
3453static int
d2e4a39e 3454ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3455{
3456 int i;
d2e4a39e 3457 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3458
1265e4aa
JB
3459 if (SYMBOL_CLASS (func) == LOC_CONST
3460 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3461 return (n_actuals == 0);
3462 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3463 return 0;
3464
3465 if (TYPE_NFIELDS (func_type) != n_actuals)
3466 return 0;
3467
3468 for (i = 0; i < n_actuals; i += 1)
3469 {
4c4b4cd2 3470 if (actuals[i] == NULL)
76a01679
JB
3471 return 0;
3472 else
3473 {
5b4ee69b
MS
3474 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3475 i));
df407dfe 3476 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3477
76a01679
JB
3478 if (!ada_type_match (ftype, atype, 1))
3479 return 0;
3480 }
14f9c5c9
AS
3481 }
3482 return 1;
3483}
3484
3485/* False iff function type FUNC_TYPE definitely does not produce a value
3486 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3487 FUNC_TYPE is not a valid function type with a non-null return type
3488 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3489
3490static int
d2e4a39e 3491return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3492{
d2e4a39e 3493 struct type *return_type;
14f9c5c9
AS
3494
3495 if (func_type == NULL)
3496 return 1;
3497
4c4b4cd2 3498 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3499 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3500 else
18af8284 3501 return_type = get_base_type (func_type);
14f9c5c9
AS
3502 if (return_type == NULL)
3503 return 1;
3504
18af8284 3505 context_type = get_base_type (context_type);
14f9c5c9
AS
3506
3507 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3508 return context_type == NULL || return_type == context_type;
3509 else if (context_type == NULL)
3510 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3511 else
3512 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3513}
3514
3515
4c4b4cd2 3516/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3517 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3518 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3519 that returns that type, then eliminate matches that don't. If
3520 CONTEXT_TYPE is void and there is at least one match that does not
3521 return void, eliminate all matches that do.
3522
14f9c5c9
AS
3523 Asks the user if there is more than one match remaining. Returns -1
3524 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3525 solely for messages. May re-arrange and modify SYMS in
3526 the process; the index returned is for the modified vector. */
14f9c5c9 3527
4c4b4cd2
PH
3528static int
3529ada_resolve_function (struct ada_symbol_info syms[],
3530 int nsyms, struct value **args, int nargs,
3531 const char *name, struct type *context_type)
14f9c5c9 3532{
30b15541 3533 int fallback;
14f9c5c9 3534 int k;
4c4b4cd2 3535 int m; /* Number of hits */
14f9c5c9 3536
d2e4a39e 3537 m = 0;
30b15541
UW
3538 /* In the first pass of the loop, we only accept functions matching
3539 context_type. If none are found, we add a second pass of the loop
3540 where every function is accepted. */
3541 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3542 {
3543 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3544 {
61ee279c 3545 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3546
3547 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3548 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3549 {
3550 syms[m] = syms[k];
3551 m += 1;
3552 }
3553 }
14f9c5c9
AS
3554 }
3555
3556 if (m == 0)
3557 return -1;
3558 else if (m > 1)
3559 {
323e0a4a 3560 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3561 user_select_syms (syms, m, 1);
14f9c5c9
AS
3562 return 0;
3563 }
3564 return 0;
3565}
3566
4c4b4cd2
PH
3567/* Returns true (non-zero) iff decoded name N0 should appear before N1
3568 in a listing of choices during disambiguation (see sort_choices, below).
3569 The idea is that overloadings of a subprogram name from the
3570 same package should sort in their source order. We settle for ordering
3571 such symbols by their trailing number (__N or $N). */
3572
14f9c5c9 3573static int
0d5cff50 3574encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3575{
3576 if (N1 == NULL)
3577 return 0;
3578 else if (N0 == NULL)
3579 return 1;
3580 else
3581 {
3582 int k0, k1;
5b4ee69b 3583
d2e4a39e 3584 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3585 ;
d2e4a39e 3586 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3587 ;
d2e4a39e 3588 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3589 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3590 {
3591 int n0, n1;
5b4ee69b 3592
4c4b4cd2
PH
3593 n0 = k0;
3594 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3595 n0 -= 1;
3596 n1 = k1;
3597 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3598 n1 -= 1;
3599 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3600 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3601 }
14f9c5c9
AS
3602 return (strcmp (N0, N1) < 0);
3603 }
3604}
d2e4a39e 3605
4c4b4cd2
PH
3606/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3607 encoded names. */
3608
d2e4a39e 3609static void
4c4b4cd2 3610sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3611{
4c4b4cd2 3612 int i;
5b4ee69b 3613
d2e4a39e 3614 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3615 {
4c4b4cd2 3616 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3617 int j;
3618
d2e4a39e 3619 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3620 {
3621 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3622 SYMBOL_LINKAGE_NAME (sym.sym)))
3623 break;
3624 syms[j + 1] = syms[j];
3625 }
d2e4a39e 3626 syms[j + 1] = sym;
14f9c5c9
AS
3627 }
3628}
3629
4c4b4cd2
PH
3630/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3631 by asking the user (if necessary), returning the number selected,
3632 and setting the first elements of SYMS items. Error if no symbols
3633 selected. */
14f9c5c9
AS
3634
3635/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3636 to be re-integrated one of these days. */
14f9c5c9
AS
3637
3638int
4c4b4cd2 3639user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3640{
3641 int i;
d2e4a39e 3642 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3643 int n_chosen;
3644 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3645 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3646
3647 if (max_results < 1)
323e0a4a 3648 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3649 if (nsyms <= 1)
3650 return nsyms;
3651
717d2f5a
JB
3652 if (select_mode == multiple_symbols_cancel)
3653 error (_("\
3654canceled because the command is ambiguous\n\
3655See set/show multiple-symbol."));
3656
3657 /* If select_mode is "all", then return all possible symbols.
3658 Only do that if more than one symbol can be selected, of course.
3659 Otherwise, display the menu as usual. */
3660 if (select_mode == multiple_symbols_all && max_results > 1)
3661 return nsyms;
3662
323e0a4a 3663 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3664 if (max_results > 1)
323e0a4a 3665 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3666
4c4b4cd2 3667 sort_choices (syms, nsyms);
14f9c5c9
AS
3668
3669 for (i = 0; i < nsyms; i += 1)
3670 {
4c4b4cd2
PH
3671 if (syms[i].sym == NULL)
3672 continue;
3673
3674 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3675 {
76a01679
JB
3676 struct symtab_and_line sal =
3677 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3678
323e0a4a
AC
3679 if (sal.symtab == NULL)
3680 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3681 i + first_choice,
3682 SYMBOL_PRINT_NAME (syms[i].sym),
3683 sal.line);
3684 else
3685 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3686 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3687 symtab_to_filename_for_display (sal.symtab),
3688 sal.line);
4c4b4cd2
PH
3689 continue;
3690 }
d2e4a39e 3691 else
4c4b4cd2
PH
3692 {
3693 int is_enumeral =
3694 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3695 && SYMBOL_TYPE (syms[i].sym) != NULL
3696 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3697 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3698
3699 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3700 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3701 i + first_choice,
3702 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3703 symtab_to_filename_for_display (symtab),
3704 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3705 else if (is_enumeral
3706 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3707 {
a3f17187 3708 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3709 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3710 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3711 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3712 SYMBOL_PRINT_NAME (syms[i].sym));
3713 }
3714 else if (symtab != NULL)
3715 printf_unfiltered (is_enumeral
323e0a4a
AC
3716 ? _("[%d] %s in %s (enumeral)\n")
3717 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3718 i + first_choice,
3719 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3720 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3721 else
3722 printf_unfiltered (is_enumeral
323e0a4a
AC
3723 ? _("[%d] %s (enumeral)\n")
3724 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3725 i + first_choice,
3726 SYMBOL_PRINT_NAME (syms[i].sym));
3727 }
14f9c5c9 3728 }
d2e4a39e 3729
14f9c5c9 3730 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3731 "overload-choice");
14f9c5c9
AS
3732
3733 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3734 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3735
3736 return n_chosen;
3737}
3738
3739/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3740 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3741 order in CHOICES[0 .. N-1], and return N.
3742
3743 The user types choices as a sequence of numbers on one line
3744 separated by blanks, encoding them as follows:
3745
4c4b4cd2 3746 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3747 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3748 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3749
4c4b4cd2 3750 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3751
3752 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3753 prompts (for use with the -f switch). */
14f9c5c9
AS
3754
3755int
d2e4a39e 3756get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3757 int is_all_choice, char *annotation_suffix)
14f9c5c9 3758{
d2e4a39e 3759 char *args;
0bcd0149 3760 char *prompt;
14f9c5c9
AS
3761 int n_chosen;
3762 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3763
14f9c5c9
AS
3764 prompt = getenv ("PS2");
3765 if (prompt == NULL)
0bcd0149 3766 prompt = "> ";
14f9c5c9 3767
0bcd0149 3768 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3769
14f9c5c9 3770 if (args == NULL)
323e0a4a 3771 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3772
3773 n_chosen = 0;
76a01679 3774
4c4b4cd2
PH
3775 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3776 order, as given in args. Choices are validated. */
14f9c5c9
AS
3777 while (1)
3778 {
d2e4a39e 3779 char *args2;
14f9c5c9
AS
3780 int choice, j;
3781
0fcd72ba 3782 args = skip_spaces (args);
14f9c5c9 3783 if (*args == '\0' && n_chosen == 0)
323e0a4a 3784 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3785 else if (*args == '\0')
4c4b4cd2 3786 break;
14f9c5c9
AS
3787
3788 choice = strtol (args, &args2, 10);
d2e4a39e 3789 if (args == args2 || choice < 0
4c4b4cd2 3790 || choice > n_choices + first_choice - 1)
323e0a4a 3791 error (_("Argument must be choice number"));
14f9c5c9
AS
3792 args = args2;
3793
d2e4a39e 3794 if (choice == 0)
323e0a4a 3795 error (_("cancelled"));
14f9c5c9
AS
3796
3797 if (choice < first_choice)
4c4b4cd2
PH
3798 {
3799 n_chosen = n_choices;
3800 for (j = 0; j < n_choices; j += 1)
3801 choices[j] = j;
3802 break;
3803 }
14f9c5c9
AS
3804 choice -= first_choice;
3805
d2e4a39e 3806 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3807 {
3808 }
14f9c5c9
AS
3809
3810 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3811 {
3812 int k;
5b4ee69b 3813
4c4b4cd2
PH
3814 for (k = n_chosen - 1; k > j; k -= 1)
3815 choices[k + 1] = choices[k];
3816 choices[j + 1] = choice;
3817 n_chosen += 1;
3818 }
14f9c5c9
AS
3819 }
3820
3821 if (n_chosen > max_results)
323e0a4a 3822 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3823
14f9c5c9
AS
3824 return n_chosen;
3825}
3826
4c4b4cd2
PH
3827/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3828 on the function identified by SYM and BLOCK, and taking NARGS
3829 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3830
3831static void
d2e4a39e 3832replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3833 int oplen, struct symbol *sym,
270140bd 3834 const struct block *block)
14f9c5c9
AS
3835{
3836 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3837 symbol, -oplen for operator being replaced). */
d2e4a39e 3838 struct expression *newexp = (struct expression *)
8c1a34e7 3839 xzalloc (sizeof (struct expression)
4c4b4cd2 3840 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3841 struct expression *exp = *expp;
14f9c5c9
AS
3842
3843 newexp->nelts = exp->nelts + 7 - oplen;
3844 newexp->language_defn = exp->language_defn;
3489610d 3845 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3846 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3847 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3848 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3849
3850 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3851 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3852
3853 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3854 newexp->elts[pc + 4].block = block;
3855 newexp->elts[pc + 5].symbol = sym;
3856
3857 *expp = newexp;
aacb1f0a 3858 xfree (exp);
d2e4a39e 3859}
14f9c5c9
AS
3860
3861/* Type-class predicates */
3862
4c4b4cd2
PH
3863/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3864 or FLOAT). */
14f9c5c9
AS
3865
3866static int
d2e4a39e 3867numeric_type_p (struct type *type)
14f9c5c9
AS
3868{
3869 if (type == NULL)
3870 return 0;
d2e4a39e
AS
3871 else
3872 {
3873 switch (TYPE_CODE (type))
4c4b4cd2
PH
3874 {
3875 case TYPE_CODE_INT:
3876 case TYPE_CODE_FLT:
3877 return 1;
3878 case TYPE_CODE_RANGE:
3879 return (type == TYPE_TARGET_TYPE (type)
3880 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3881 default:
3882 return 0;
3883 }
d2e4a39e 3884 }
14f9c5c9
AS
3885}
3886
4c4b4cd2 3887/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3888
3889static int
d2e4a39e 3890integer_type_p (struct type *type)
14f9c5c9
AS
3891{
3892 if (type == NULL)
3893 return 0;
d2e4a39e
AS
3894 else
3895 {
3896 switch (TYPE_CODE (type))
4c4b4cd2
PH
3897 {
3898 case TYPE_CODE_INT:
3899 return 1;
3900 case TYPE_CODE_RANGE:
3901 return (type == TYPE_TARGET_TYPE (type)
3902 || integer_type_p (TYPE_TARGET_TYPE (type)));
3903 default:
3904 return 0;
3905 }
d2e4a39e 3906 }
14f9c5c9
AS
3907}
3908
4c4b4cd2 3909/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3910
3911static int
d2e4a39e 3912scalar_type_p (struct type *type)
14f9c5c9
AS
3913{
3914 if (type == NULL)
3915 return 0;
d2e4a39e
AS
3916 else
3917 {
3918 switch (TYPE_CODE (type))
4c4b4cd2
PH
3919 {
3920 case TYPE_CODE_INT:
3921 case TYPE_CODE_RANGE:
3922 case TYPE_CODE_ENUM:
3923 case TYPE_CODE_FLT:
3924 return 1;
3925 default:
3926 return 0;
3927 }
d2e4a39e 3928 }
14f9c5c9
AS
3929}
3930
4c4b4cd2 3931/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3932
3933static int
d2e4a39e 3934discrete_type_p (struct type *type)
14f9c5c9
AS
3935{
3936 if (type == NULL)
3937 return 0;
d2e4a39e
AS
3938 else
3939 {
3940 switch (TYPE_CODE (type))
4c4b4cd2
PH
3941 {
3942 case TYPE_CODE_INT:
3943 case TYPE_CODE_RANGE:
3944 case TYPE_CODE_ENUM:
872f0337 3945 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3946 return 1;
3947 default:
3948 return 0;
3949 }
d2e4a39e 3950 }
14f9c5c9
AS
3951}
3952
4c4b4cd2
PH
3953/* Returns non-zero if OP with operands in the vector ARGS could be
3954 a user-defined function. Errs on the side of pre-defined operators
3955 (i.e., result 0). */
14f9c5c9
AS
3956
3957static int
d2e4a39e 3958possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3959{
76a01679 3960 struct type *type0 =
df407dfe 3961 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3962 struct type *type1 =
df407dfe 3963 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3964
4c4b4cd2
PH
3965 if (type0 == NULL)
3966 return 0;
3967
14f9c5c9
AS
3968 switch (op)
3969 {
3970 default:
3971 return 0;
3972
3973 case BINOP_ADD:
3974 case BINOP_SUB:
3975 case BINOP_MUL:
3976 case BINOP_DIV:
d2e4a39e 3977 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3978
3979 case BINOP_REM:
3980 case BINOP_MOD:
3981 case BINOP_BITWISE_AND:
3982 case BINOP_BITWISE_IOR:
3983 case BINOP_BITWISE_XOR:
d2e4a39e 3984 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3985
3986 case BINOP_EQUAL:
3987 case BINOP_NOTEQUAL:
3988 case BINOP_LESS:
3989 case BINOP_GTR:
3990 case BINOP_LEQ:
3991 case BINOP_GEQ:
d2e4a39e 3992 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3993
3994 case BINOP_CONCAT:
ee90b9ab 3995 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3996
3997 case BINOP_EXP:
d2e4a39e 3998 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3999
4000 case UNOP_NEG:
4001 case UNOP_PLUS:
4002 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4003 case UNOP_ABS:
4004 return (!numeric_type_p (type0));
14f9c5c9
AS
4005
4006 }
4007}
4008\f
4c4b4cd2 4009 /* Renaming */
14f9c5c9 4010
aeb5907d
JB
4011/* NOTES:
4012
4013 1. In the following, we assume that a renaming type's name may
4014 have an ___XD suffix. It would be nice if this went away at some
4015 point.
4016 2. We handle both the (old) purely type-based representation of
4017 renamings and the (new) variable-based encoding. At some point,
4018 it is devoutly to be hoped that the former goes away
4019 (FIXME: hilfinger-2007-07-09).
4020 3. Subprogram renamings are not implemented, although the XRS
4021 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4022
4023/* If SYM encodes a renaming,
4024
4025 <renaming> renames <renamed entity>,
4026
4027 sets *LEN to the length of the renamed entity's name,
4028 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4029 the string describing the subcomponent selected from the renamed
0963b4bd 4030 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4031 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4032 are undefined). Otherwise, returns a value indicating the category
4033 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4034 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4035 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4036 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4037 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4038 may be NULL, in which case they are not assigned.
4039
4040 [Currently, however, GCC does not generate subprogram renamings.] */
4041
4042enum ada_renaming_category
4043ada_parse_renaming (struct symbol *sym,
4044 const char **renamed_entity, int *len,
4045 const char **renaming_expr)
4046{
4047 enum ada_renaming_category kind;
4048 const char *info;
4049 const char *suffix;
4050
4051 if (sym == NULL)
4052 return ADA_NOT_RENAMING;
4053 switch (SYMBOL_CLASS (sym))
14f9c5c9 4054 {
aeb5907d
JB
4055 default:
4056 return ADA_NOT_RENAMING;
4057 case LOC_TYPEDEF:
4058 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4059 renamed_entity, len, renaming_expr);
4060 case LOC_LOCAL:
4061 case LOC_STATIC:
4062 case LOC_COMPUTED:
4063 case LOC_OPTIMIZED_OUT:
4064 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4065 if (info == NULL)
4066 return ADA_NOT_RENAMING;
4067 switch (info[5])
4068 {
4069 case '_':
4070 kind = ADA_OBJECT_RENAMING;
4071 info += 6;
4072 break;
4073 case 'E':
4074 kind = ADA_EXCEPTION_RENAMING;
4075 info += 7;
4076 break;
4077 case 'P':
4078 kind = ADA_PACKAGE_RENAMING;
4079 info += 7;
4080 break;
4081 case 'S':
4082 kind = ADA_SUBPROGRAM_RENAMING;
4083 info += 7;
4084 break;
4085 default:
4086 return ADA_NOT_RENAMING;
4087 }
14f9c5c9 4088 }
4c4b4cd2 4089
aeb5907d
JB
4090 if (renamed_entity != NULL)
4091 *renamed_entity = info;
4092 suffix = strstr (info, "___XE");
4093 if (suffix == NULL || suffix == info)
4094 return ADA_NOT_RENAMING;
4095 if (len != NULL)
4096 *len = strlen (info) - strlen (suffix);
4097 suffix += 5;
4098 if (renaming_expr != NULL)
4099 *renaming_expr = suffix;
4100 return kind;
4101}
4102
4103/* Assuming TYPE encodes a renaming according to the old encoding in
4104 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4105 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4106 ADA_NOT_RENAMING otherwise. */
4107static enum ada_renaming_category
4108parse_old_style_renaming (struct type *type,
4109 const char **renamed_entity, int *len,
4110 const char **renaming_expr)
4111{
4112 enum ada_renaming_category kind;
4113 const char *name;
4114 const char *info;
4115 const char *suffix;
14f9c5c9 4116
aeb5907d
JB
4117 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4118 || TYPE_NFIELDS (type) != 1)
4119 return ADA_NOT_RENAMING;
14f9c5c9 4120
aeb5907d
JB
4121 name = type_name_no_tag (type);
4122 if (name == NULL)
4123 return ADA_NOT_RENAMING;
4124
4125 name = strstr (name, "___XR");
4126 if (name == NULL)
4127 return ADA_NOT_RENAMING;
4128 switch (name[5])
4129 {
4130 case '\0':
4131 case '_':
4132 kind = ADA_OBJECT_RENAMING;
4133 break;
4134 case 'E':
4135 kind = ADA_EXCEPTION_RENAMING;
4136 break;
4137 case 'P':
4138 kind = ADA_PACKAGE_RENAMING;
4139 break;
4140 case 'S':
4141 kind = ADA_SUBPROGRAM_RENAMING;
4142 break;
4143 default:
4144 return ADA_NOT_RENAMING;
4145 }
14f9c5c9 4146
aeb5907d
JB
4147 info = TYPE_FIELD_NAME (type, 0);
4148 if (info == NULL)
4149 return ADA_NOT_RENAMING;
4150 if (renamed_entity != NULL)
4151 *renamed_entity = info;
4152 suffix = strstr (info, "___XE");
4153 if (renaming_expr != NULL)
4154 *renaming_expr = suffix + 5;
4155 if (suffix == NULL || suffix == info)
4156 return ADA_NOT_RENAMING;
4157 if (len != NULL)
4158 *len = suffix - info;
4159 return kind;
a5ee536b
JB
4160}
4161
4162/* Compute the value of the given RENAMING_SYM, which is expected to
4163 be a symbol encoding a renaming expression. BLOCK is the block
4164 used to evaluate the renaming. */
52ce6436 4165
a5ee536b
JB
4166static struct value *
4167ada_read_renaming_var_value (struct symbol *renaming_sym,
4168 struct block *block)
4169{
bbc13ae3 4170 const char *sym_name;
a5ee536b
JB
4171 struct expression *expr;
4172 struct value *value;
4173 struct cleanup *old_chain = NULL;
4174
bbc13ae3 4175 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4176 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4177 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4178 value = evaluate_expression (expr);
4179
4180 do_cleanups (old_chain);
4181 return value;
4182}
14f9c5c9 4183\f
d2e4a39e 4184
4c4b4cd2 4185 /* Evaluation: Function Calls */
14f9c5c9 4186
4c4b4cd2 4187/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4188 lvalues, and otherwise has the side-effect of allocating memory
4189 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4190
d2e4a39e 4191static struct value *
40bc484c 4192ensure_lval (struct value *val)
14f9c5c9 4193{
40bc484c
JB
4194 if (VALUE_LVAL (val) == not_lval
4195 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4196 {
df407dfe 4197 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4198 const CORE_ADDR addr =
4199 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4200
40bc484c 4201 set_value_address (val, addr);
a84a8a0d 4202 VALUE_LVAL (val) = lval_memory;
40bc484c 4203 write_memory (addr, value_contents (val), len);
c3e5cd34 4204 }
14f9c5c9
AS
4205
4206 return val;
4207}
4208
4209/* Return the value ACTUAL, converted to be an appropriate value for a
4210 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4211 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4212 values not residing in memory, updating it as needed. */
14f9c5c9 4213
a93c0eb6 4214struct value *
40bc484c 4215ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4216{
df407dfe 4217 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4218 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4219 struct type *formal_target =
4220 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4221 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4222 struct type *actual_target =
4223 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4224 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4225
4c4b4cd2 4226 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4227 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4228 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4229 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4230 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4231 {
a84a8a0d 4232 struct value *result;
5b4ee69b 4233
14f9c5c9 4234 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4235 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4236 result = desc_data (actual);
14f9c5c9 4237 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4238 {
4239 if (VALUE_LVAL (actual) != lval_memory)
4240 {
4241 struct value *val;
5b4ee69b 4242
df407dfe 4243 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4244 val = allocate_value (actual_type);
990a07ab 4245 memcpy ((char *) value_contents_raw (val),
0fd88904 4246 (char *) value_contents (actual),
4c4b4cd2 4247 TYPE_LENGTH (actual_type));
40bc484c 4248 actual = ensure_lval (val);
4c4b4cd2 4249 }
a84a8a0d 4250 result = value_addr (actual);
4c4b4cd2 4251 }
a84a8a0d
JB
4252 else
4253 return actual;
b1af9e97 4254 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4255 }
4256 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4257 return ada_value_ind (actual);
4258
4259 return actual;
4260}
4261
438c98a1
JB
4262/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4263 type TYPE. This is usually an inefficient no-op except on some targets
4264 (such as AVR) where the representation of a pointer and an address
4265 differs. */
4266
4267static CORE_ADDR
4268value_pointer (struct value *value, struct type *type)
4269{
4270 struct gdbarch *gdbarch = get_type_arch (type);
4271 unsigned len = TYPE_LENGTH (type);
4272 gdb_byte *buf = alloca (len);
4273 CORE_ADDR addr;
4274
4275 addr = value_address (value);
4276 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4277 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4278 return addr;
4279}
4280
14f9c5c9 4281
4c4b4cd2
PH
4282/* Push a descriptor of type TYPE for array value ARR on the stack at
4283 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4284 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4285 to-descriptor type rather than a descriptor type), a struct value *
4286 representing a pointer to this descriptor. */
14f9c5c9 4287
d2e4a39e 4288static struct value *
40bc484c 4289make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4290{
d2e4a39e
AS
4291 struct type *bounds_type = desc_bounds_type (type);
4292 struct type *desc_type = desc_base_type (type);
4293 struct value *descriptor = allocate_value (desc_type);
4294 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4295 int i;
d2e4a39e 4296
0963b4bd
MS
4297 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4298 i > 0; i -= 1)
14f9c5c9 4299 {
19f220c3
JK
4300 modify_field (value_type (bounds), value_contents_writeable (bounds),
4301 ada_array_bound (arr, i, 0),
4302 desc_bound_bitpos (bounds_type, i, 0),
4303 desc_bound_bitsize (bounds_type, i, 0));
4304 modify_field (value_type (bounds), value_contents_writeable (bounds),
4305 ada_array_bound (arr, i, 1),
4306 desc_bound_bitpos (bounds_type, i, 1),
4307 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4308 }
d2e4a39e 4309
40bc484c 4310 bounds = ensure_lval (bounds);
d2e4a39e 4311
19f220c3
JK
4312 modify_field (value_type (descriptor),
4313 value_contents_writeable (descriptor),
4314 value_pointer (ensure_lval (arr),
4315 TYPE_FIELD_TYPE (desc_type, 0)),
4316 fat_pntr_data_bitpos (desc_type),
4317 fat_pntr_data_bitsize (desc_type));
4318
4319 modify_field (value_type (descriptor),
4320 value_contents_writeable (descriptor),
4321 value_pointer (bounds,
4322 TYPE_FIELD_TYPE (desc_type, 1)),
4323 fat_pntr_bounds_bitpos (desc_type),
4324 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4325
40bc484c 4326 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4327
4328 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4329 return value_addr (descriptor);
4330 else
4331 return descriptor;
4332}
14f9c5c9 4333\f
3d9434b5
JB
4334 /* Symbol Cache Module */
4335
3d9434b5 4336/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4337 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4338 on the type of entity being printed, the cache can make it as much
4339 as an order of magnitude faster than without it.
4340
4341 The descriptive type DWARF extension has significantly reduced
4342 the need for this cache, at least when DWARF is being used. However,
4343 even in this case, some expensive name-based symbol searches are still
4344 sometimes necessary - to find an XVZ variable, mostly. */
4345
ee01b665 4346/* Initialize the contents of SYM_CACHE. */
3d9434b5 4347
ee01b665
JB
4348static void
4349ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4350{
4351 obstack_init (&sym_cache->cache_space);
4352 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4353}
3d9434b5 4354
ee01b665
JB
4355/* Free the memory used by SYM_CACHE. */
4356
4357static void
4358ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4359{
ee01b665
JB
4360 obstack_free (&sym_cache->cache_space, NULL);
4361 xfree (sym_cache);
4362}
3d9434b5 4363
ee01b665
JB
4364/* Return the symbol cache associated to the given program space PSPACE.
4365 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4366
ee01b665
JB
4367static struct ada_symbol_cache *
4368ada_get_symbol_cache (struct program_space *pspace)
4369{
4370 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4371 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4372
4373 if (sym_cache == NULL)
4374 {
4375 sym_cache = XCNEW (struct ada_symbol_cache);
4376 ada_init_symbol_cache (sym_cache);
4377 }
4378
4379 return sym_cache;
4380}
3d9434b5
JB
4381
4382/* Clear all entries from the symbol cache. */
4383
4384static void
4385ada_clear_symbol_cache (void)
4386{
ee01b665
JB
4387 struct ada_symbol_cache *sym_cache
4388 = ada_get_symbol_cache (current_program_space);
4389
4390 obstack_free (&sym_cache->cache_space, NULL);
4391 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4392}
4393
4394/* Search our cache for an entry matching NAME and NAMESPACE.
4395 Return it if found, or NULL otherwise. */
4396
4397static struct cache_entry **
4398find_entry (const char *name, domain_enum namespace)
4399{
ee01b665
JB
4400 struct ada_symbol_cache *sym_cache
4401 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4402 int h = msymbol_hash (name) % HASH_SIZE;
4403 struct cache_entry **e;
4404
ee01b665 4405 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5
JB
4406 {
4407 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4408 return e;
4409 }
4410 return NULL;
4411}
4412
4413/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4414 Return 1 if found, 0 otherwise.
4415
4416 If an entry was found and SYM is not NULL, set *SYM to the entry's
4417 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4418
96d887e8
PH
4419static int
4420lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4421 struct symbol **sym, const struct block **block)
96d887e8 4422{
3d9434b5
JB
4423 struct cache_entry **e = find_entry (name, namespace);
4424
4425 if (e == NULL)
4426 return 0;
4427 if (sym != NULL)
4428 *sym = (*e)->sym;
4429 if (block != NULL)
4430 *block = (*e)->block;
4431 return 1;
96d887e8
PH
4432}
4433
3d9434b5
JB
4434/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4435 in domain NAMESPACE, save this result in our symbol cache. */
4436
96d887e8
PH
4437static void
4438cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4439 const struct block *block)
96d887e8 4440{
ee01b665
JB
4441 struct ada_symbol_cache *sym_cache
4442 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4443 int h;
4444 char *copy;
4445 struct cache_entry *e;
4446
4447 /* If the symbol is a local symbol, then do not cache it, as a search
4448 for that symbol depends on the context. To determine whether
4449 the symbol is local or not, we check the block where we found it
4450 against the global and static blocks of its associated symtab. */
4451 if (sym
4452 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4453 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4454 return;
4455
4456 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4457 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4458 sizeof (*e));
4459 e->next = sym_cache->root[h];
4460 sym_cache->root[h] = e;
4461 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4462 strcpy (copy, name);
4463 e->sym = sym;
4464 e->namespace = namespace;
4465 e->block = block;
96d887e8 4466}
4c4b4cd2
PH
4467\f
4468 /* Symbol Lookup */
4469
c0431670
JB
4470/* Return nonzero if wild matching should be used when searching for
4471 all symbols matching LOOKUP_NAME.
4472
4473 LOOKUP_NAME is expected to be a symbol name after transformation
4474 for Ada lookups (see ada_name_for_lookup). */
4475
4476static int
4477should_use_wild_match (const char *lookup_name)
4478{
4479 return (strstr (lookup_name, "__") == NULL);
4480}
4481
4c4b4cd2
PH
4482/* Return the result of a standard (literal, C-like) lookup of NAME in
4483 given DOMAIN, visible from lexical block BLOCK. */
4484
4485static struct symbol *
4486standard_lookup (const char *name, const struct block *block,
4487 domain_enum domain)
4488{
acbd605d
MGD
4489 /* Initialize it just to avoid a GCC false warning. */
4490 struct symbol *sym = NULL;
4c4b4cd2 4491
2570f2b7 4492 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4493 return sym;
2570f2b7
UW
4494 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4495 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4496 return sym;
4497}
4498
4499
4500/* Non-zero iff there is at least one non-function/non-enumeral symbol
4501 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4502 since they contend in overloading in the same way. */
4503static int
4504is_nonfunction (struct ada_symbol_info syms[], int n)
4505{
4506 int i;
4507
4508 for (i = 0; i < n; i += 1)
4509 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4510 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4511 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4512 return 1;
4513
4514 return 0;
4515}
4516
4517/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4518 struct types. Otherwise, they may not. */
14f9c5c9
AS
4519
4520static int
d2e4a39e 4521equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4522{
d2e4a39e 4523 if (type0 == type1)
14f9c5c9 4524 return 1;
d2e4a39e 4525 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4526 || TYPE_CODE (type0) != TYPE_CODE (type1))
4527 return 0;
d2e4a39e 4528 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4529 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4530 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4531 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4532 return 1;
d2e4a39e 4533
14f9c5c9
AS
4534 return 0;
4535}
4536
4537/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4538 no more defined than that of SYM1. */
14f9c5c9
AS
4539
4540static int
d2e4a39e 4541lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4542{
4543 if (sym0 == sym1)
4544 return 1;
176620f1 4545 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4546 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4547 return 0;
4548
d2e4a39e 4549 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4550 {
4551 case LOC_UNDEF:
4552 return 1;
4553 case LOC_TYPEDEF:
4554 {
4c4b4cd2
PH
4555 struct type *type0 = SYMBOL_TYPE (sym0);
4556 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4557 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4558 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4559 int len0 = strlen (name0);
5b4ee69b 4560
4c4b4cd2
PH
4561 return
4562 TYPE_CODE (type0) == TYPE_CODE (type1)
4563 && (equiv_types (type0, type1)
4564 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4565 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4566 }
4567 case LOC_CONST:
4568 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4569 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4570 default:
4571 return 0;
14f9c5c9
AS
4572 }
4573}
4574
4c4b4cd2
PH
4575/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4576 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4577
4578static void
76a01679
JB
4579add_defn_to_vec (struct obstack *obstackp,
4580 struct symbol *sym,
f0c5f9b2 4581 const struct block *block)
14f9c5c9
AS
4582{
4583 int i;
4c4b4cd2 4584 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4585
529cad9c
PH
4586 /* Do not try to complete stub types, as the debugger is probably
4587 already scanning all symbols matching a certain name at the
4588 time when this function is called. Trying to replace the stub
4589 type by its associated full type will cause us to restart a scan
4590 which may lead to an infinite recursion. Instead, the client
4591 collecting the matching symbols will end up collecting several
4592 matches, with at least one of them complete. It can then filter
4593 out the stub ones if needed. */
4594
4c4b4cd2
PH
4595 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4596 {
4597 if (lesseq_defined_than (sym, prevDefns[i].sym))
4598 return;
4599 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4600 {
4601 prevDefns[i].sym = sym;
4602 prevDefns[i].block = block;
4c4b4cd2 4603 return;
76a01679 4604 }
4c4b4cd2
PH
4605 }
4606
4607 {
4608 struct ada_symbol_info info;
4609
4610 info.sym = sym;
4611 info.block = block;
4c4b4cd2
PH
4612 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4613 }
4614}
4615
4616/* Number of ada_symbol_info structures currently collected in
4617 current vector in *OBSTACKP. */
4618
76a01679
JB
4619static int
4620num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4621{
4622 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4623}
4624
4625/* Vector of ada_symbol_info structures currently collected in current
4626 vector in *OBSTACKP. If FINISH, close off the vector and return
4627 its final address. */
4628
76a01679 4629static struct ada_symbol_info *
4c4b4cd2
PH
4630defns_collected (struct obstack *obstackp, int finish)
4631{
4632 if (finish)
4633 return obstack_finish (obstackp);
4634 else
4635 return (struct ada_symbol_info *) obstack_base (obstackp);
4636}
4637
7c7b6655
TT
4638/* Return a bound minimal symbol matching NAME according to Ada
4639 decoding rules. Returns an invalid symbol if there is no such
4640 minimal symbol. Names prefixed with "standard__" are handled
4641 specially: "standard__" is first stripped off, and only static and
4642 global symbols are searched. */
4c4b4cd2 4643
7c7b6655 4644struct bound_minimal_symbol
96d887e8 4645ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4646{
7c7b6655 4647 struct bound_minimal_symbol result;
4c4b4cd2 4648 struct objfile *objfile;
96d887e8 4649 struct minimal_symbol *msymbol;
dc4024cd 4650 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4651
7c7b6655
TT
4652 memset (&result, 0, sizeof (result));
4653
c0431670
JB
4654 /* Special case: If the user specifies a symbol name inside package
4655 Standard, do a non-wild matching of the symbol name without
4656 the "standard__" prefix. This was primarily introduced in order
4657 to allow the user to specifically access the standard exceptions
4658 using, for instance, Standard.Constraint_Error when Constraint_Error
4659 is ambiguous (due to the user defining its own Constraint_Error
4660 entity inside its program). */
96d887e8 4661 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4662 name += sizeof ("standard__") - 1;
4c4b4cd2 4663
96d887e8
PH
4664 ALL_MSYMBOLS (objfile, msymbol)
4665 {
efd66ac6 4666 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4667 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4668 {
4669 result.minsym = msymbol;
4670 result.objfile = objfile;
4671 break;
4672 }
96d887e8 4673 }
4c4b4cd2 4674
7c7b6655 4675 return result;
96d887e8 4676}
4c4b4cd2 4677
96d887e8
PH
4678/* For all subprograms that statically enclose the subprogram of the
4679 selected frame, add symbols matching identifier NAME in DOMAIN
4680 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4681 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4682 with a wildcard prefix. */
4c4b4cd2 4683
96d887e8
PH
4684static void
4685add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4686 const char *name, domain_enum namespace,
48b78332 4687 int wild_match_p)
96d887e8 4688{
96d887e8 4689}
14f9c5c9 4690
96d887e8
PH
4691/* True if TYPE is definitely an artificial type supplied to a symbol
4692 for which no debugging information was given in the symbol file. */
14f9c5c9 4693
96d887e8
PH
4694static int
4695is_nondebugging_type (struct type *type)
4696{
0d5cff50 4697 const char *name = ada_type_name (type);
5b4ee69b 4698
96d887e8
PH
4699 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4700}
4c4b4cd2 4701
8f17729f
JB
4702/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4703 that are deemed "identical" for practical purposes.
4704
4705 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4706 types and that their number of enumerals is identical (in other
4707 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4708
4709static int
4710ada_identical_enum_types_p (struct type *type1, struct type *type2)
4711{
4712 int i;
4713
4714 /* The heuristic we use here is fairly conservative. We consider
4715 that 2 enumerate types are identical if they have the same
4716 number of enumerals and that all enumerals have the same
4717 underlying value and name. */
4718
4719 /* All enums in the type should have an identical underlying value. */
4720 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4721 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4722 return 0;
4723
4724 /* All enumerals should also have the same name (modulo any numerical
4725 suffix). */
4726 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4727 {
0d5cff50
DE
4728 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4729 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4730 int len_1 = strlen (name_1);
4731 int len_2 = strlen (name_2);
4732
4733 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4734 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4735 if (len_1 != len_2
4736 || strncmp (TYPE_FIELD_NAME (type1, i),
4737 TYPE_FIELD_NAME (type2, i),
4738 len_1) != 0)
4739 return 0;
4740 }
4741
4742 return 1;
4743}
4744
4745/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4746 that are deemed "identical" for practical purposes. Sometimes,
4747 enumerals are not strictly identical, but their types are so similar
4748 that they can be considered identical.
4749
4750 For instance, consider the following code:
4751
4752 type Color is (Black, Red, Green, Blue, White);
4753 type RGB_Color is new Color range Red .. Blue;
4754
4755 Type RGB_Color is a subrange of an implicit type which is a copy
4756 of type Color. If we call that implicit type RGB_ColorB ("B" is
4757 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4758 As a result, when an expression references any of the enumeral
4759 by name (Eg. "print green"), the expression is technically
4760 ambiguous and the user should be asked to disambiguate. But
4761 doing so would only hinder the user, since it wouldn't matter
4762 what choice he makes, the outcome would always be the same.
4763 So, for practical purposes, we consider them as the same. */
4764
4765static int
4766symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4767{
4768 int i;
4769
4770 /* Before performing a thorough comparison check of each type,
4771 we perform a series of inexpensive checks. We expect that these
4772 checks will quickly fail in the vast majority of cases, and thus
4773 help prevent the unnecessary use of a more expensive comparison.
4774 Said comparison also expects us to make some of these checks
4775 (see ada_identical_enum_types_p). */
4776
4777 /* Quick check: All symbols should have an enum type. */
4778 for (i = 0; i < nsyms; i++)
4779 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4780 return 0;
4781
4782 /* Quick check: They should all have the same value. */
4783 for (i = 1; i < nsyms; i++)
4784 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4785 return 0;
4786
4787 /* Quick check: They should all have the same number of enumerals. */
4788 for (i = 1; i < nsyms; i++)
4789 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4790 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4791 return 0;
4792
4793 /* All the sanity checks passed, so we might have a set of
4794 identical enumeration types. Perform a more complete
4795 comparison of the type of each symbol. */
4796 for (i = 1; i < nsyms; i++)
4797 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4798 SYMBOL_TYPE (syms[0].sym)))
4799 return 0;
4800
4801 return 1;
4802}
4803
96d887e8
PH
4804/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4805 duplicate other symbols in the list (The only case I know of where
4806 this happens is when object files containing stabs-in-ecoff are
4807 linked with files containing ordinary ecoff debugging symbols (or no
4808 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4809 Returns the number of items in the modified list. */
4c4b4cd2 4810
96d887e8
PH
4811static int
4812remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4813{
4814 int i, j;
4c4b4cd2 4815
8f17729f
JB
4816 /* We should never be called with less than 2 symbols, as there
4817 cannot be any extra symbol in that case. But it's easy to
4818 handle, since we have nothing to do in that case. */
4819 if (nsyms < 2)
4820 return nsyms;
4821
96d887e8
PH
4822 i = 0;
4823 while (i < nsyms)
4824 {
a35ddb44 4825 int remove_p = 0;
339c13b6
JB
4826
4827 /* If two symbols have the same name and one of them is a stub type,
4828 the get rid of the stub. */
4829
4830 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4831 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4832 {
4833 for (j = 0; j < nsyms; j++)
4834 {
4835 if (j != i
4836 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4837 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4838 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4839 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4840 remove_p = 1;
339c13b6
JB
4841 }
4842 }
4843
4844 /* Two symbols with the same name, same class and same address
4845 should be identical. */
4846
4847 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4848 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4849 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4850 {
4851 for (j = 0; j < nsyms; j += 1)
4852 {
4853 if (i != j
4854 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4855 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4856 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4857 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4858 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4859 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4860 remove_p = 1;
4c4b4cd2 4861 }
4c4b4cd2 4862 }
339c13b6 4863
a35ddb44 4864 if (remove_p)
339c13b6
JB
4865 {
4866 for (j = i + 1; j < nsyms; j += 1)
4867 syms[j - 1] = syms[j];
4868 nsyms -= 1;
4869 }
4870
96d887e8 4871 i += 1;
14f9c5c9 4872 }
8f17729f
JB
4873
4874 /* If all the remaining symbols are identical enumerals, then
4875 just keep the first one and discard the rest.
4876
4877 Unlike what we did previously, we do not discard any entry
4878 unless they are ALL identical. This is because the symbol
4879 comparison is not a strict comparison, but rather a practical
4880 comparison. If all symbols are considered identical, then
4881 we can just go ahead and use the first one and discard the rest.
4882 But if we cannot reduce the list to a single element, we have
4883 to ask the user to disambiguate anyways. And if we have to
4884 present a multiple-choice menu, it's less confusing if the list
4885 isn't missing some choices that were identical and yet distinct. */
4886 if (symbols_are_identical_enums (syms, nsyms))
4887 nsyms = 1;
4888
96d887e8 4889 return nsyms;
14f9c5c9
AS
4890}
4891
96d887e8
PH
4892/* Given a type that corresponds to a renaming entity, use the type name
4893 to extract the scope (package name or function name, fully qualified,
4894 and following the GNAT encoding convention) where this renaming has been
4895 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4896
96d887e8
PH
4897static char *
4898xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4899{
96d887e8 4900 /* The renaming types adhere to the following convention:
0963b4bd 4901 <scope>__<rename>___<XR extension>.
96d887e8
PH
4902 So, to extract the scope, we search for the "___XR" extension,
4903 and then backtrack until we find the first "__". */
76a01679 4904
96d887e8
PH
4905 const char *name = type_name_no_tag (renaming_type);
4906 char *suffix = strstr (name, "___XR");
4907 char *last;
4908 int scope_len;
4909 char *scope;
14f9c5c9 4910
96d887e8
PH
4911 /* Now, backtrack a bit until we find the first "__". Start looking
4912 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4913
96d887e8
PH
4914 for (last = suffix - 3; last > name; last--)
4915 if (last[0] == '_' && last[1] == '_')
4916 break;
76a01679 4917
96d887e8 4918 /* Make a copy of scope and return it. */
14f9c5c9 4919
96d887e8
PH
4920 scope_len = last - name;
4921 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4922
96d887e8
PH
4923 strncpy (scope, name, scope_len);
4924 scope[scope_len] = '\0';
4c4b4cd2 4925
96d887e8 4926 return scope;
4c4b4cd2
PH
4927}
4928
96d887e8 4929/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4930
96d887e8
PH
4931static int
4932is_package_name (const char *name)
4c4b4cd2 4933{
96d887e8
PH
4934 /* Here, We take advantage of the fact that no symbols are generated
4935 for packages, while symbols are generated for each function.
4936 So the condition for NAME represent a package becomes equivalent
4937 to NAME not existing in our list of symbols. There is only one
4938 small complication with library-level functions (see below). */
4c4b4cd2 4939
96d887e8 4940 char *fun_name;
76a01679 4941
96d887e8
PH
4942 /* If it is a function that has not been defined at library level,
4943 then we should be able to look it up in the symbols. */
4944 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4945 return 0;
14f9c5c9 4946
96d887e8
PH
4947 /* Library-level function names start with "_ada_". See if function
4948 "_ada_" followed by NAME can be found. */
14f9c5c9 4949
96d887e8 4950 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4951 functions names cannot contain "__" in them. */
96d887e8
PH
4952 if (strstr (name, "__") != NULL)
4953 return 0;
4c4b4cd2 4954
b435e160 4955 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4956
96d887e8
PH
4957 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4958}
14f9c5c9 4959
96d887e8 4960/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4961 not visible from FUNCTION_NAME. */
14f9c5c9 4962
96d887e8 4963static int
0d5cff50 4964old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4965{
aeb5907d 4966 char *scope;
1509e573 4967 struct cleanup *old_chain;
aeb5907d
JB
4968
4969 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4970 return 0;
4971
4972 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 4973 old_chain = make_cleanup (xfree, scope);
14f9c5c9 4974
96d887e8
PH
4975 /* If the rename has been defined in a package, then it is visible. */
4976 if (is_package_name (scope))
1509e573
JB
4977 {
4978 do_cleanups (old_chain);
4979 return 0;
4980 }
14f9c5c9 4981
96d887e8
PH
4982 /* Check that the rename is in the current function scope by checking
4983 that its name starts with SCOPE. */
76a01679 4984
96d887e8
PH
4985 /* If the function name starts with "_ada_", it means that it is
4986 a library-level function. Strip this prefix before doing the
4987 comparison, as the encoding for the renaming does not contain
4988 this prefix. */
4989 if (strncmp (function_name, "_ada_", 5) == 0)
4990 function_name += 5;
f26caa11 4991
1509e573
JB
4992 {
4993 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4994
4995 do_cleanups (old_chain);
4996 return is_invisible;
4997 }
f26caa11
PH
4998}
4999
aeb5907d
JB
5000/* Remove entries from SYMS that corresponds to a renaming entity that
5001 is not visible from the function associated with CURRENT_BLOCK or
5002 that is superfluous due to the presence of more specific renaming
5003 information. Places surviving symbols in the initial entries of
5004 SYMS and returns the number of surviving symbols.
96d887e8
PH
5005
5006 Rationale:
aeb5907d
JB
5007 First, in cases where an object renaming is implemented as a
5008 reference variable, GNAT may produce both the actual reference
5009 variable and the renaming encoding. In this case, we discard the
5010 latter.
5011
5012 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5013 entity. Unfortunately, STABS currently does not support the definition
5014 of types that are local to a given lexical block, so all renamings types
5015 are emitted at library level. As a consequence, if an application
5016 contains two renaming entities using the same name, and a user tries to
5017 print the value of one of these entities, the result of the ada symbol
5018 lookup will also contain the wrong renaming type.
f26caa11 5019
96d887e8
PH
5020 This function partially covers for this limitation by attempting to
5021 remove from the SYMS list renaming symbols that should be visible
5022 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5023 method with the current information available. The implementation
5024 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5025
5026 - When the user tries to print a rename in a function while there
5027 is another rename entity defined in a package: Normally, the
5028 rename in the function has precedence over the rename in the
5029 package, so the latter should be removed from the list. This is
5030 currently not the case.
5031
5032 - This function will incorrectly remove valid renames if
5033 the CURRENT_BLOCK corresponds to a function which symbol name
5034 has been changed by an "Export" pragma. As a consequence,
5035 the user will be unable to print such rename entities. */
4c4b4cd2 5036
14f9c5c9 5037static int
aeb5907d
JB
5038remove_irrelevant_renamings (struct ada_symbol_info *syms,
5039 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5040{
5041 struct symbol *current_function;
0d5cff50 5042 const char *current_function_name;
4c4b4cd2 5043 int i;
aeb5907d
JB
5044 int is_new_style_renaming;
5045
5046 /* If there is both a renaming foo___XR... encoded as a variable and
5047 a simple variable foo in the same block, discard the latter.
0963b4bd 5048 First, zero out such symbols, then compress. */
aeb5907d
JB
5049 is_new_style_renaming = 0;
5050 for (i = 0; i < nsyms; i += 1)
5051 {
5052 struct symbol *sym = syms[i].sym;
270140bd 5053 const struct block *block = syms[i].block;
aeb5907d
JB
5054 const char *name;
5055 const char *suffix;
5056
5057 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5058 continue;
5059 name = SYMBOL_LINKAGE_NAME (sym);
5060 suffix = strstr (name, "___XR");
5061
5062 if (suffix != NULL)
5063 {
5064 int name_len = suffix - name;
5065 int j;
5b4ee69b 5066
aeb5907d
JB
5067 is_new_style_renaming = 1;
5068 for (j = 0; j < nsyms; j += 1)
5069 if (i != j && syms[j].sym != NULL
5070 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5071 name_len) == 0
5072 && block == syms[j].block)
5073 syms[j].sym = NULL;
5074 }
5075 }
5076 if (is_new_style_renaming)
5077 {
5078 int j, k;
5079
5080 for (j = k = 0; j < nsyms; j += 1)
5081 if (syms[j].sym != NULL)
5082 {
5083 syms[k] = syms[j];
5084 k += 1;
5085 }
5086 return k;
5087 }
4c4b4cd2
PH
5088
5089 /* Extract the function name associated to CURRENT_BLOCK.
5090 Abort if unable to do so. */
76a01679 5091
4c4b4cd2
PH
5092 if (current_block == NULL)
5093 return nsyms;
76a01679 5094
7f0df278 5095 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5096 if (current_function == NULL)
5097 return nsyms;
5098
5099 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5100 if (current_function_name == NULL)
5101 return nsyms;
5102
5103 /* Check each of the symbols, and remove it from the list if it is
5104 a type corresponding to a renaming that is out of the scope of
5105 the current block. */
5106
5107 i = 0;
5108 while (i < nsyms)
5109 {
aeb5907d
JB
5110 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5111 == ADA_OBJECT_RENAMING
5112 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5113 {
5114 int j;
5b4ee69b 5115
aeb5907d 5116 for (j = i + 1; j < nsyms; j += 1)
76a01679 5117 syms[j - 1] = syms[j];
4c4b4cd2
PH
5118 nsyms -= 1;
5119 }
5120 else
5121 i += 1;
5122 }
5123
5124 return nsyms;
5125}
5126
339c13b6
JB
5127/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5128 whose name and domain match NAME and DOMAIN respectively.
5129 If no match was found, then extend the search to "enclosing"
5130 routines (in other words, if we're inside a nested function,
5131 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5132 If WILD_MATCH_P is nonzero, perform the naming matching in
5133 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5134
5135 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5136
5137static void
5138ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5139 const struct block *block, domain_enum domain,
d0a8ab18 5140 int wild_match_p)
339c13b6
JB
5141{
5142 int block_depth = 0;
5143
5144 while (block != NULL)
5145 {
5146 block_depth += 1;
d0a8ab18
JB
5147 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5148 wild_match_p);
339c13b6
JB
5149
5150 /* If we found a non-function match, assume that's the one. */
5151 if (is_nonfunction (defns_collected (obstackp, 0),
5152 num_defns_collected (obstackp)))
5153 return;
5154
5155 block = BLOCK_SUPERBLOCK (block);
5156 }
5157
5158 /* If no luck so far, try to find NAME as a local symbol in some lexically
5159 enclosing subprogram. */
5160 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5161 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5162}
5163
ccefe4c4 5164/* An object of this type is used as the user_data argument when
40658b94 5165 calling the map_matching_symbols method. */
ccefe4c4 5166
40658b94 5167struct match_data
ccefe4c4 5168{
40658b94 5169 struct objfile *objfile;
ccefe4c4 5170 struct obstack *obstackp;
40658b94
PH
5171 struct symbol *arg_sym;
5172 int found_sym;
ccefe4c4
TT
5173};
5174
40658b94
PH
5175/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5176 to a list of symbols. DATA0 is a pointer to a struct match_data *
5177 containing the obstack that collects the symbol list, the file that SYM
5178 must come from, a flag indicating whether a non-argument symbol has
5179 been found in the current block, and the last argument symbol
5180 passed in SYM within the current block (if any). When SYM is null,
5181 marking the end of a block, the argument symbol is added if no
5182 other has been found. */
ccefe4c4 5183
40658b94
PH
5184static int
5185aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5186{
40658b94
PH
5187 struct match_data *data = (struct match_data *) data0;
5188
5189 if (sym == NULL)
5190 {
5191 if (!data->found_sym && data->arg_sym != NULL)
5192 add_defn_to_vec (data->obstackp,
5193 fixup_symbol_section (data->arg_sym, data->objfile),
5194 block);
5195 data->found_sym = 0;
5196 data->arg_sym = NULL;
5197 }
5198 else
5199 {
5200 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5201 return 0;
5202 else if (SYMBOL_IS_ARGUMENT (sym))
5203 data->arg_sym = sym;
5204 else
5205 {
5206 data->found_sym = 1;
5207 add_defn_to_vec (data->obstackp,
5208 fixup_symbol_section (sym, data->objfile),
5209 block);
5210 }
5211 }
5212 return 0;
5213}
5214
db230ce3
JB
5215/* Implements compare_names, but only applying the comparision using
5216 the given CASING. */
5b4ee69b 5217
40658b94 5218static int
db230ce3
JB
5219compare_names_with_case (const char *string1, const char *string2,
5220 enum case_sensitivity casing)
40658b94
PH
5221{
5222 while (*string1 != '\0' && *string2 != '\0')
5223 {
db230ce3
JB
5224 char c1, c2;
5225
40658b94
PH
5226 if (isspace (*string1) || isspace (*string2))
5227 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5228
5229 if (casing == case_sensitive_off)
5230 {
5231 c1 = tolower (*string1);
5232 c2 = tolower (*string2);
5233 }
5234 else
5235 {
5236 c1 = *string1;
5237 c2 = *string2;
5238 }
5239 if (c1 != c2)
40658b94 5240 break;
db230ce3 5241
40658b94
PH
5242 string1 += 1;
5243 string2 += 1;
5244 }
db230ce3 5245
40658b94
PH
5246 switch (*string1)
5247 {
5248 case '(':
5249 return strcmp_iw_ordered (string1, string2);
5250 case '_':
5251 if (*string2 == '\0')
5252 {
052874e8 5253 if (is_name_suffix (string1))
40658b94
PH
5254 return 0;
5255 else
1a1d5513 5256 return 1;
40658b94 5257 }
dbb8534f 5258 /* FALLTHROUGH */
40658b94
PH
5259 default:
5260 if (*string2 == '(')
5261 return strcmp_iw_ordered (string1, string2);
5262 else
db230ce3
JB
5263 {
5264 if (casing == case_sensitive_off)
5265 return tolower (*string1) - tolower (*string2);
5266 else
5267 return *string1 - *string2;
5268 }
40658b94 5269 }
ccefe4c4
TT
5270}
5271
db230ce3
JB
5272/* Compare STRING1 to STRING2, with results as for strcmp.
5273 Compatible with strcmp_iw_ordered in that...
5274
5275 strcmp_iw_ordered (STRING1, STRING2) <= 0
5276
5277 ... implies...
5278
5279 compare_names (STRING1, STRING2) <= 0
5280
5281 (they may differ as to what symbols compare equal). */
5282
5283static int
5284compare_names (const char *string1, const char *string2)
5285{
5286 int result;
5287
5288 /* Similar to what strcmp_iw_ordered does, we need to perform
5289 a case-insensitive comparison first, and only resort to
5290 a second, case-sensitive, comparison if the first one was
5291 not sufficient to differentiate the two strings. */
5292
5293 result = compare_names_with_case (string1, string2, case_sensitive_off);
5294 if (result == 0)
5295 result = compare_names_with_case (string1, string2, case_sensitive_on);
5296
5297 return result;
5298}
5299
339c13b6
JB
5300/* Add to OBSTACKP all non-local symbols whose name and domain match
5301 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5302 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5303
5304static void
40658b94
PH
5305add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5306 domain_enum domain, int global,
5307 int is_wild_match)
339c13b6
JB
5308{
5309 struct objfile *objfile;
40658b94 5310 struct match_data data;
339c13b6 5311
6475f2fe 5312 memset (&data, 0, sizeof data);
ccefe4c4 5313 data.obstackp = obstackp;
339c13b6 5314
ccefe4c4 5315 ALL_OBJFILES (objfile)
40658b94
PH
5316 {
5317 data.objfile = objfile;
5318
5319 if (is_wild_match)
ade7ed9e 5320 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
40658b94
PH
5321 aux_add_nonlocal_symbols, &data,
5322 wild_match, NULL);
5323 else
ade7ed9e 5324 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
40658b94
PH
5325 aux_add_nonlocal_symbols, &data,
5326 full_match, compare_names);
5327 }
5328
5329 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5330 {
5331 ALL_OBJFILES (objfile)
5332 {
5333 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5334 strcpy (name1, "_ada_");
5335 strcpy (name1 + sizeof ("_ada_") - 1, name);
5336 data.objfile = objfile;
ade7ed9e
DE
5337 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5338 global,
0963b4bd
MS
5339 aux_add_nonlocal_symbols,
5340 &data,
40658b94
PH
5341 full_match, compare_names);
5342 }
5343 }
339c13b6
JB
5344}
5345
4eeaa230
DE
5346/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5347 non-zero, enclosing scope and in global scopes, returning the number of
5348 matches.
9f88c959 5349 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5350 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5351 any) in which they were found. This vector is transient---good only to
5352 the next call of ada_lookup_symbol_list.
5353
5354 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5355 symbol match within the nest of blocks whose innermost member is BLOCK0,
5356 is the one match returned (no other matches in that or
d9680e73 5357 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5358 surrounding BLOCK0, then these alone are returned.
5359
9f88c959 5360 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5361 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5362
4eeaa230
DE
5363static int
5364ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5365 domain_enum namespace,
5366 struct ada_symbol_info **results,
5367 int full_search)
14f9c5c9
AS
5368{
5369 struct symbol *sym;
f0c5f9b2 5370 const struct block *block;
4c4b4cd2 5371 const char *name;
82ccd55e 5372 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5373 int cacheIfUnique;
4c4b4cd2 5374 int ndefns;
14f9c5c9 5375
4c4b4cd2
PH
5376 obstack_free (&symbol_list_obstack, NULL);
5377 obstack_init (&symbol_list_obstack);
14f9c5c9 5378
14f9c5c9
AS
5379 cacheIfUnique = 0;
5380
5381 /* Search specified block and its superiors. */
5382
4c4b4cd2 5383 name = name0;
f0c5f9b2 5384 block = block0;
339c13b6
JB
5385
5386 /* Special case: If the user specifies a symbol name inside package
5387 Standard, do a non-wild matching of the symbol name without
5388 the "standard__" prefix. This was primarily introduced in order
5389 to allow the user to specifically access the standard exceptions
5390 using, for instance, Standard.Constraint_Error when Constraint_Error
5391 is ambiguous (due to the user defining its own Constraint_Error
5392 entity inside its program). */
4c4b4cd2
PH
5393 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5394 {
4c4b4cd2
PH
5395 block = NULL;
5396 name = name0 + sizeof ("standard__") - 1;
5397 }
5398
339c13b6 5399 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5400
4eeaa230
DE
5401 if (block != NULL)
5402 {
5403 if (full_search)
5404 {
5405 ada_add_local_symbols (&symbol_list_obstack, name, block,
5406 namespace, wild_match_p);
5407 }
5408 else
5409 {
5410 /* In the !full_search case we're are being called by
5411 ada_iterate_over_symbols, and we don't want to search
5412 superblocks. */
5413 ada_add_block_symbols (&symbol_list_obstack, block, name,
5414 namespace, NULL, wild_match_p);
5415 }
5416 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5417 goto done;
5418 }
d2e4a39e 5419
339c13b6
JB
5420 /* No non-global symbols found. Check our cache to see if we have
5421 already performed this search before. If we have, then return
5422 the same result. */
5423
14f9c5c9 5424 cacheIfUnique = 1;
2570f2b7 5425 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5426 {
5427 if (sym != NULL)
2570f2b7 5428 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5429 goto done;
5430 }
14f9c5c9 5431
339c13b6
JB
5432 /* Search symbols from all global blocks. */
5433
40658b94 5434 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5435 wild_match_p);
d2e4a39e 5436
4c4b4cd2 5437 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5438 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5439
4c4b4cd2 5440 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5441 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5442 wild_match_p);
14f9c5c9 5443
4c4b4cd2
PH
5444done:
5445 ndefns = num_defns_collected (&symbol_list_obstack);
5446 *results = defns_collected (&symbol_list_obstack, 1);
5447
5448 ndefns = remove_extra_symbols (*results, ndefns);
5449
2ad01556 5450 if (ndefns == 0 && full_search)
2570f2b7 5451 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5452
2ad01556 5453 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5454 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5455
aeb5907d 5456 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5457
14f9c5c9
AS
5458 return ndefns;
5459}
5460
4eeaa230
DE
5461/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5462 in global scopes, returning the number of matches, and setting *RESULTS
5463 to a vector of (SYM,BLOCK) tuples.
5464 See ada_lookup_symbol_list_worker for further details. */
5465
5466int
5467ada_lookup_symbol_list (const char *name0, const struct block *block0,
5468 domain_enum domain, struct ada_symbol_info **results)
5469{
5470 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5471}
5472
5473/* Implementation of the la_iterate_over_symbols method. */
5474
5475static void
5476ada_iterate_over_symbols (const struct block *block,
5477 const char *name, domain_enum domain,
5478 symbol_found_callback_ftype *callback,
5479 void *data)
5480{
5481 int ndefs, i;
5482 struct ada_symbol_info *results;
5483
5484 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5485 for (i = 0; i < ndefs; ++i)
5486 {
5487 if (! (*callback) (results[i].sym, data))
5488 break;
5489 }
5490}
5491
f8eba3c6
TT
5492/* If NAME is the name of an entity, return a string that should
5493 be used to look that entity up in Ada units. This string should
5494 be deallocated after use using xfree.
5495
5496 NAME can have any form that the "break" or "print" commands might
5497 recognize. In other words, it does not have to be the "natural"
5498 name, or the "encoded" name. */
5499
5500char *
5501ada_name_for_lookup (const char *name)
5502{
5503 char *canon;
5504 int nlen = strlen (name);
5505
5506 if (name[0] == '<' && name[nlen - 1] == '>')
5507 {
5508 canon = xmalloc (nlen - 1);
5509 memcpy (canon, name + 1, nlen - 2);
5510 canon[nlen - 2] = '\0';
5511 }
5512 else
5513 canon = xstrdup (ada_encode (ada_fold_name (name)));
5514 return canon;
5515}
5516
4e5c77fe
JB
5517/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5518 to 1, but choosing the first symbol found if there are multiple
5519 choices.
5520
5e2336be
JB
5521 The result is stored in *INFO, which must be non-NULL.
5522 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5523
5524void
5525ada_lookup_encoded_symbol (const char *name, const struct block *block,
5526 domain_enum namespace,
5e2336be 5527 struct ada_symbol_info *info)
14f9c5c9 5528{
4c4b4cd2 5529 struct ada_symbol_info *candidates;
14f9c5c9
AS
5530 int n_candidates;
5531
5e2336be
JB
5532 gdb_assert (info != NULL);
5533 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5534
4eeaa230 5535 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5536 if (n_candidates == 0)
4e5c77fe 5537 return;
4c4b4cd2 5538
5e2336be
JB
5539 *info = candidates[0];
5540 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5541}
aeb5907d
JB
5542
5543/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5544 scope and in global scopes, or NULL if none. NAME is folded and
5545 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5546 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5547 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5548
aeb5907d
JB
5549struct symbol *
5550ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5551 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5552{
5e2336be 5553 struct ada_symbol_info info;
4e5c77fe 5554
aeb5907d
JB
5555 if (is_a_field_of_this != NULL)
5556 *is_a_field_of_this = 0;
5557
4e5c77fe 5558 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5559 block0, namespace, &info);
5560 return info.sym;
4c4b4cd2 5561}
14f9c5c9 5562
4c4b4cd2
PH
5563static struct symbol *
5564ada_lookup_symbol_nonlocal (const char *name,
76a01679 5565 const struct block *block,
21b556f4 5566 const domain_enum domain)
4c4b4cd2 5567{
94af9270 5568 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5569}
5570
5571
4c4b4cd2
PH
5572/* True iff STR is a possible encoded suffix of a normal Ada name
5573 that is to be ignored for matching purposes. Suffixes of parallel
5574 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5575 are given by any of the regular expressions:
4c4b4cd2 5576
babe1480
JB
5577 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5578 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5579 TKB [subprogram suffix for task bodies]
babe1480 5580 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5581 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5582
5583 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5584 match is performed. This sequence is used to differentiate homonyms,
5585 is an optional part of a valid name suffix. */
4c4b4cd2 5586
14f9c5c9 5587static int
d2e4a39e 5588is_name_suffix (const char *str)
14f9c5c9
AS
5589{
5590 int k;
4c4b4cd2
PH
5591 const char *matching;
5592 const int len = strlen (str);
5593
babe1480
JB
5594 /* Skip optional leading __[0-9]+. */
5595
4c4b4cd2
PH
5596 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5597 {
babe1480
JB
5598 str += 3;
5599 while (isdigit (str[0]))
5600 str += 1;
4c4b4cd2 5601 }
babe1480
JB
5602
5603 /* [.$][0-9]+ */
4c4b4cd2 5604
babe1480 5605 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5606 {
babe1480 5607 matching = str + 1;
4c4b4cd2
PH
5608 while (isdigit (matching[0]))
5609 matching += 1;
5610 if (matching[0] == '\0')
5611 return 1;
5612 }
5613
5614 /* ___[0-9]+ */
babe1480 5615
4c4b4cd2
PH
5616 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5617 {
5618 matching = str + 3;
5619 while (isdigit (matching[0]))
5620 matching += 1;
5621 if (matching[0] == '\0')
5622 return 1;
5623 }
5624
9ac7f98e
JB
5625 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5626
5627 if (strcmp (str, "TKB") == 0)
5628 return 1;
5629
529cad9c
PH
5630#if 0
5631 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5632 with a N at the end. Unfortunately, the compiler uses the same
5633 convention for other internal types it creates. So treating
529cad9c 5634 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5635 some regressions. For instance, consider the case of an enumerated
5636 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5637 name ends with N.
5638 Having a single character like this as a suffix carrying some
0963b4bd 5639 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5640 to be something like "_N" instead. In the meantime, do not do
5641 the following check. */
5642 /* Protected Object Subprograms */
5643 if (len == 1 && str [0] == 'N')
5644 return 1;
5645#endif
5646
5647 /* _E[0-9]+[bs]$ */
5648 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5649 {
5650 matching = str + 3;
5651 while (isdigit (matching[0]))
5652 matching += 1;
5653 if ((matching[0] == 'b' || matching[0] == 's')
5654 && matching [1] == '\0')
5655 return 1;
5656 }
5657
4c4b4cd2
PH
5658 /* ??? We should not modify STR directly, as we are doing below. This
5659 is fine in this case, but may become problematic later if we find
5660 that this alternative did not work, and want to try matching
5661 another one from the begining of STR. Since we modified it, we
5662 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5663 if (str[0] == 'X')
5664 {
5665 str += 1;
d2e4a39e 5666 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5667 {
5668 if (str[0] != 'n' && str[0] != 'b')
5669 return 0;
5670 str += 1;
5671 }
14f9c5c9 5672 }
babe1480 5673
14f9c5c9
AS
5674 if (str[0] == '\000')
5675 return 1;
babe1480 5676
d2e4a39e 5677 if (str[0] == '_')
14f9c5c9
AS
5678 {
5679 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5680 return 0;
d2e4a39e 5681 if (str[2] == '_')
4c4b4cd2 5682 {
61ee279c
PH
5683 if (strcmp (str + 3, "JM") == 0)
5684 return 1;
5685 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5686 the LJM suffix in favor of the JM one. But we will
5687 still accept LJM as a valid suffix for a reasonable
5688 amount of time, just to allow ourselves to debug programs
5689 compiled using an older version of GNAT. */
4c4b4cd2
PH
5690 if (strcmp (str + 3, "LJM") == 0)
5691 return 1;
5692 if (str[3] != 'X')
5693 return 0;
1265e4aa
JB
5694 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5695 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5696 return 1;
5697 if (str[4] == 'R' && str[5] != 'T')
5698 return 1;
5699 return 0;
5700 }
5701 if (!isdigit (str[2]))
5702 return 0;
5703 for (k = 3; str[k] != '\0'; k += 1)
5704 if (!isdigit (str[k]) && str[k] != '_')
5705 return 0;
14f9c5c9
AS
5706 return 1;
5707 }
4c4b4cd2 5708 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5709 {
4c4b4cd2
PH
5710 for (k = 2; str[k] != '\0'; k += 1)
5711 if (!isdigit (str[k]) && str[k] != '_')
5712 return 0;
14f9c5c9
AS
5713 return 1;
5714 }
5715 return 0;
5716}
d2e4a39e 5717
aeb5907d
JB
5718/* Return non-zero if the string starting at NAME and ending before
5719 NAME_END contains no capital letters. */
529cad9c
PH
5720
5721static int
5722is_valid_name_for_wild_match (const char *name0)
5723{
5724 const char *decoded_name = ada_decode (name0);
5725 int i;
5726
5823c3ef
JB
5727 /* If the decoded name starts with an angle bracket, it means that
5728 NAME0 does not follow the GNAT encoding format. It should then
5729 not be allowed as a possible wild match. */
5730 if (decoded_name[0] == '<')
5731 return 0;
5732
529cad9c
PH
5733 for (i=0; decoded_name[i] != '\0'; i++)
5734 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5735 return 0;
5736
5737 return 1;
5738}
5739
73589123
PH
5740/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5741 that could start a simple name. Assumes that *NAMEP points into
5742 the string beginning at NAME0. */
4c4b4cd2 5743
14f9c5c9 5744static int
73589123 5745advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5746{
73589123 5747 const char *name = *namep;
5b4ee69b 5748
5823c3ef 5749 while (1)
14f9c5c9 5750 {
aa27d0b3 5751 int t0, t1;
73589123
PH
5752
5753 t0 = *name;
5754 if (t0 == '_')
5755 {
5756 t1 = name[1];
5757 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5758 {
5759 name += 1;
5760 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5761 break;
5762 else
5763 name += 1;
5764 }
aa27d0b3
JB
5765 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5766 || name[2] == target0))
73589123
PH
5767 {
5768 name += 2;
5769 break;
5770 }
5771 else
5772 return 0;
5773 }
5774 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5775 name += 1;
5776 else
5823c3ef 5777 return 0;
73589123
PH
5778 }
5779
5780 *namep = name;
5781 return 1;
5782}
5783
5784/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5785 informational suffixes of NAME (i.e., for which is_name_suffix is
5786 true). Assumes that PATN is a lower-cased Ada simple name. */
5787
5788static int
5789wild_match (const char *name, const char *patn)
5790{
22e048c9 5791 const char *p;
73589123
PH
5792 const char *name0 = name;
5793
5794 while (1)
5795 {
5796 const char *match = name;
5797
5798 if (*name == *patn)
5799 {
5800 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5801 if (*p != *name)
5802 break;
5803 if (*p == '\0' && is_name_suffix (name))
5804 return match != name0 && !is_valid_name_for_wild_match (name0);
5805
5806 if (name[-1] == '_')
5807 name -= 1;
5808 }
5809 if (!advance_wild_match (&name, name0, *patn))
5810 return 1;
96d887e8 5811 }
96d887e8
PH
5812}
5813
40658b94
PH
5814/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5815 informational suffix. */
5816
c4d840bd
PH
5817static int
5818full_match (const char *sym_name, const char *search_name)
5819{
40658b94 5820 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5821}
5822
5823
96d887e8
PH
5824/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5825 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5826 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5827 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5828
5829static void
5830ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5831 const struct block *block, const char *name,
96d887e8 5832 domain_enum domain, struct objfile *objfile,
2570f2b7 5833 int wild)
96d887e8 5834{
8157b174 5835 struct block_iterator iter;
96d887e8
PH
5836 int name_len = strlen (name);
5837 /* A matching argument symbol, if any. */
5838 struct symbol *arg_sym;
5839 /* Set true when we find a matching non-argument symbol. */
5840 int found_sym;
5841 struct symbol *sym;
5842
5843 arg_sym = NULL;
5844 found_sym = 0;
5845 if (wild)
5846 {
8157b174
TT
5847 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5848 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5849 {
5eeb2539
AR
5850 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5851 SYMBOL_DOMAIN (sym), domain)
73589123 5852 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5853 {
2a2d4dc3
AS
5854 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5855 continue;
5856 else if (SYMBOL_IS_ARGUMENT (sym))
5857 arg_sym = sym;
5858 else
5859 {
76a01679
JB
5860 found_sym = 1;
5861 add_defn_to_vec (obstackp,
5862 fixup_symbol_section (sym, objfile),
2570f2b7 5863 block);
76a01679
JB
5864 }
5865 }
5866 }
96d887e8
PH
5867 }
5868 else
5869 {
8157b174
TT
5870 for (sym = block_iter_match_first (block, name, full_match, &iter);
5871 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5872 {
5eeb2539
AR
5873 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5874 SYMBOL_DOMAIN (sym), domain))
76a01679 5875 {
c4d840bd
PH
5876 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5877 {
5878 if (SYMBOL_IS_ARGUMENT (sym))
5879 arg_sym = sym;
5880 else
2a2d4dc3 5881 {
c4d840bd
PH
5882 found_sym = 1;
5883 add_defn_to_vec (obstackp,
5884 fixup_symbol_section (sym, objfile),
5885 block);
2a2d4dc3 5886 }
c4d840bd 5887 }
76a01679
JB
5888 }
5889 }
96d887e8
PH
5890 }
5891
5892 if (!found_sym && arg_sym != NULL)
5893 {
76a01679
JB
5894 add_defn_to_vec (obstackp,
5895 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5896 block);
96d887e8
PH
5897 }
5898
5899 if (!wild)
5900 {
5901 arg_sym = NULL;
5902 found_sym = 0;
5903
5904 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5905 {
5eeb2539
AR
5906 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5907 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5908 {
5909 int cmp;
5910
5911 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5912 if (cmp == 0)
5913 {
5914 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5915 if (cmp == 0)
5916 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5917 name_len);
5918 }
5919
5920 if (cmp == 0
5921 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5922 {
2a2d4dc3
AS
5923 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5924 {
5925 if (SYMBOL_IS_ARGUMENT (sym))
5926 arg_sym = sym;
5927 else
5928 {
5929 found_sym = 1;
5930 add_defn_to_vec (obstackp,
5931 fixup_symbol_section (sym, objfile),
5932 block);
5933 }
5934 }
76a01679
JB
5935 }
5936 }
76a01679 5937 }
96d887e8
PH
5938
5939 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5940 They aren't parameters, right? */
5941 if (!found_sym && arg_sym != NULL)
5942 {
5943 add_defn_to_vec (obstackp,
76a01679 5944 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5945 block);
96d887e8
PH
5946 }
5947 }
5948}
5949\f
41d27058
JB
5950
5951 /* Symbol Completion */
5952
5953/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5954 name in a form that's appropriate for the completion. The result
5955 does not need to be deallocated, but is only good until the next call.
5956
5957 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5958 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5959 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5960 in its encoded form. */
5961
5962static const char *
5963symbol_completion_match (const char *sym_name,
5964 const char *text, int text_len,
6ea35997 5965 int wild_match_p, int encoded_p)
41d27058 5966{
41d27058
JB
5967 const int verbatim_match = (text[0] == '<');
5968 int match = 0;
5969
5970 if (verbatim_match)
5971 {
5972 /* Strip the leading angle bracket. */
5973 text = text + 1;
5974 text_len--;
5975 }
5976
5977 /* First, test against the fully qualified name of the symbol. */
5978
5979 if (strncmp (sym_name, text, text_len) == 0)
5980 match = 1;
5981
6ea35997 5982 if (match && !encoded_p)
41d27058
JB
5983 {
5984 /* One needed check before declaring a positive match is to verify
5985 that iff we are doing a verbatim match, the decoded version
5986 of the symbol name starts with '<'. Otherwise, this symbol name
5987 is not a suitable completion. */
5988 const char *sym_name_copy = sym_name;
5989 int has_angle_bracket;
5990
5991 sym_name = ada_decode (sym_name);
5992 has_angle_bracket = (sym_name[0] == '<');
5993 match = (has_angle_bracket == verbatim_match);
5994 sym_name = sym_name_copy;
5995 }
5996
5997 if (match && !verbatim_match)
5998 {
5999 /* When doing non-verbatim match, another check that needs to
6000 be done is to verify that the potentially matching symbol name
6001 does not include capital letters, because the ada-mode would
6002 not be able to understand these symbol names without the
6003 angle bracket notation. */
6004 const char *tmp;
6005
6006 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6007 if (*tmp != '\0')
6008 match = 0;
6009 }
6010
6011 /* Second: Try wild matching... */
6012
e701b3c0 6013 if (!match && wild_match_p)
41d27058
JB
6014 {
6015 /* Since we are doing wild matching, this means that TEXT
6016 may represent an unqualified symbol name. We therefore must
6017 also compare TEXT against the unqualified name of the symbol. */
6018 sym_name = ada_unqualified_name (ada_decode (sym_name));
6019
6020 if (strncmp (sym_name, text, text_len) == 0)
6021 match = 1;
6022 }
6023
6024 /* Finally: If we found a mach, prepare the result to return. */
6025
6026 if (!match)
6027 return NULL;
6028
6029 if (verbatim_match)
6030 sym_name = add_angle_brackets (sym_name);
6031
6ea35997 6032 if (!encoded_p)
41d27058
JB
6033 sym_name = ada_decode (sym_name);
6034
6035 return sym_name;
6036}
6037
6038/* A companion function to ada_make_symbol_completion_list().
6039 Check if SYM_NAME represents a symbol which name would be suitable
6040 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6041 it is appended at the end of the given string vector SV.
6042
6043 ORIG_TEXT is the string original string from the user command
6044 that needs to be completed. WORD is the entire command on which
6045 completion should be performed. These two parameters are used to
6046 determine which part of the symbol name should be added to the
6047 completion vector.
c0af1706 6048 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6049 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6050 encoded formed (in which case the completion should also be
6051 encoded). */
6052
6053static void
d6565258 6054symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6055 const char *sym_name,
6056 const char *text, int text_len,
6057 const char *orig_text, const char *word,
cb8e9b97 6058 int wild_match_p, int encoded_p)
41d27058
JB
6059{
6060 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6061 wild_match_p, encoded_p);
41d27058
JB
6062 char *completion;
6063
6064 if (match == NULL)
6065 return;
6066
6067 /* We found a match, so add the appropriate completion to the given
6068 string vector. */
6069
6070 if (word == orig_text)
6071 {
6072 completion = xmalloc (strlen (match) + 5);
6073 strcpy (completion, match);
6074 }
6075 else if (word > orig_text)
6076 {
6077 /* Return some portion of sym_name. */
6078 completion = xmalloc (strlen (match) + 5);
6079 strcpy (completion, match + (word - orig_text));
6080 }
6081 else
6082 {
6083 /* Return some of ORIG_TEXT plus sym_name. */
6084 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6085 strncpy (completion, word, orig_text - word);
6086 completion[orig_text - word] = '\0';
6087 strcat (completion, match);
6088 }
6089
d6565258 6090 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6091}
6092
ccefe4c4 6093/* An object of this type is passed as the user_data argument to the
bb4142cf 6094 expand_symtabs_matching method. */
ccefe4c4
TT
6095struct add_partial_datum
6096{
6097 VEC(char_ptr) **completions;
6f937416 6098 const char *text;
ccefe4c4 6099 int text_len;
6f937416
PA
6100 const char *text0;
6101 const char *word;
ccefe4c4
TT
6102 int wild_match;
6103 int encoded;
6104};
6105
bb4142cf
DE
6106/* A callback for expand_symtabs_matching. */
6107
7b08b9eb 6108static int
bb4142cf 6109ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6110{
6111 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6112
6113 return symbol_completion_match (name, data->text, data->text_len,
6114 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6115}
6116
49c4e619
TT
6117/* Return a list of possible symbol names completing TEXT0. WORD is
6118 the entire command on which completion is made. */
41d27058 6119
49c4e619 6120static VEC (char_ptr) *
6f937416
PA
6121ada_make_symbol_completion_list (const char *text0, const char *word,
6122 enum type_code code)
41d27058
JB
6123{
6124 char *text;
6125 int text_len;
b1ed564a
JB
6126 int wild_match_p;
6127 int encoded_p;
2ba95b9b 6128 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
6129 struct symbol *sym;
6130 struct symtab *s;
41d27058
JB
6131 struct minimal_symbol *msymbol;
6132 struct objfile *objfile;
6133 struct block *b, *surrounding_static_block = 0;
6134 int i;
8157b174 6135 struct block_iterator iter;
b8fea896 6136 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6137
2f68a895
TT
6138 gdb_assert (code == TYPE_CODE_UNDEF);
6139
41d27058
JB
6140 if (text0[0] == '<')
6141 {
6142 text = xstrdup (text0);
6143 make_cleanup (xfree, text);
6144 text_len = strlen (text);
b1ed564a
JB
6145 wild_match_p = 0;
6146 encoded_p = 1;
41d27058
JB
6147 }
6148 else
6149 {
6150 text = xstrdup (ada_encode (text0));
6151 make_cleanup (xfree, text);
6152 text_len = strlen (text);
6153 for (i = 0; i < text_len; i++)
6154 text[i] = tolower (text[i]);
6155
b1ed564a 6156 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6157 /* If the name contains a ".", then the user is entering a fully
6158 qualified entity name, and the match must not be done in wild
6159 mode. Similarly, if the user wants to complete what looks like
6160 an encoded name, the match must not be done in wild mode. */
b1ed564a 6161 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6162 }
6163
6164 /* First, look at the partial symtab symbols. */
41d27058 6165 {
ccefe4c4
TT
6166 struct add_partial_datum data;
6167
6168 data.completions = &completions;
6169 data.text = text;
6170 data.text_len = text_len;
6171 data.text0 = text0;
6172 data.word = word;
b1ed564a
JB
6173 data.wild_match = wild_match_p;
6174 data.encoded = encoded_p;
bb4142cf
DE
6175 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6176 &data);
41d27058
JB
6177 }
6178
6179 /* At this point scan through the misc symbol vectors and add each
6180 symbol you find to the list. Eventually we want to ignore
6181 anything that isn't a text symbol (everything else will be
6182 handled by the psymtab code above). */
6183
6184 ALL_MSYMBOLS (objfile, msymbol)
6185 {
6186 QUIT;
efd66ac6 6187 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6188 text, text_len, text0, word, wild_match_p,
6189 encoded_p);
41d27058
JB
6190 }
6191
6192 /* Search upwards from currently selected frame (so that we can
6193 complete on local vars. */
6194
6195 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6196 {
6197 if (!BLOCK_SUPERBLOCK (b))
6198 surrounding_static_block = b; /* For elmin of dups */
6199
6200 ALL_BLOCK_SYMBOLS (b, iter, sym)
6201 {
d6565258 6202 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6203 text, text_len, text0, word,
b1ed564a 6204 wild_match_p, encoded_p);
41d27058
JB
6205 }
6206 }
6207
6208 /* Go through the symtabs and check the externs and statics for
6209 symbols which match. */
6210
6211 ALL_SYMTABS (objfile, s)
6212 {
6213 QUIT;
6214 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6215 ALL_BLOCK_SYMBOLS (b, iter, sym)
6216 {
d6565258 6217 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6218 text, text_len, text0, word,
b1ed564a 6219 wild_match_p, encoded_p);
41d27058
JB
6220 }
6221 }
6222
6223 ALL_SYMTABS (objfile, s)
6224 {
6225 QUIT;
6226 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6227 /* Don't do this block twice. */
6228 if (b == surrounding_static_block)
6229 continue;
6230 ALL_BLOCK_SYMBOLS (b, iter, sym)
6231 {
d6565258 6232 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6233 text, text_len, text0, word,
b1ed564a 6234 wild_match_p, encoded_p);
41d27058
JB
6235 }
6236 }
6237
b8fea896 6238 do_cleanups (old_chain);
49c4e619 6239 return completions;
41d27058
JB
6240}
6241
963a6417 6242 /* Field Access */
96d887e8 6243
73fb9985
JB
6244/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6245 for tagged types. */
6246
6247static int
6248ada_is_dispatch_table_ptr_type (struct type *type)
6249{
0d5cff50 6250 const char *name;
73fb9985
JB
6251
6252 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6253 return 0;
6254
6255 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6256 if (name == NULL)
6257 return 0;
6258
6259 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6260}
6261
ac4a2da4
JG
6262/* Return non-zero if TYPE is an interface tag. */
6263
6264static int
6265ada_is_interface_tag (struct type *type)
6266{
6267 const char *name = TYPE_NAME (type);
6268
6269 if (name == NULL)
6270 return 0;
6271
6272 return (strcmp (name, "ada__tags__interface_tag") == 0);
6273}
6274
963a6417
PH
6275/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6276 to be invisible to users. */
96d887e8 6277
963a6417
PH
6278int
6279ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6280{
963a6417
PH
6281 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6282 return 1;
ffde82bf 6283
73fb9985
JB
6284 /* Check the name of that field. */
6285 {
6286 const char *name = TYPE_FIELD_NAME (type, field_num);
6287
6288 /* Anonymous field names should not be printed.
6289 brobecker/2007-02-20: I don't think this can actually happen
6290 but we don't want to print the value of annonymous fields anyway. */
6291 if (name == NULL)
6292 return 1;
6293
ffde82bf
JB
6294 /* Normally, fields whose name start with an underscore ("_")
6295 are fields that have been internally generated by the compiler,
6296 and thus should not be printed. The "_parent" field is special,
6297 however: This is a field internally generated by the compiler
6298 for tagged types, and it contains the components inherited from
6299 the parent type. This field should not be printed as is, but
6300 should not be ignored either. */
73fb9985
JB
6301 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6302 return 1;
6303 }
6304
ac4a2da4
JG
6305 /* If this is the dispatch table of a tagged type or an interface tag,
6306 then ignore. */
73fb9985 6307 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6308 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6309 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6310 return 1;
6311
6312 /* Not a special field, so it should not be ignored. */
6313 return 0;
963a6417 6314}
96d887e8 6315
963a6417 6316/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6317 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6318
963a6417
PH
6319int
6320ada_is_tagged_type (struct type *type, int refok)
6321{
6322 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6323}
96d887e8 6324
963a6417 6325/* True iff TYPE represents the type of X'Tag */
96d887e8 6326
963a6417
PH
6327int
6328ada_is_tag_type (struct type *type)
6329{
6330 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6331 return 0;
6332 else
96d887e8 6333 {
963a6417 6334 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6335
963a6417
PH
6336 return (name != NULL
6337 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6338 }
96d887e8
PH
6339}
6340
963a6417 6341/* The type of the tag on VAL. */
76a01679 6342
963a6417
PH
6343struct type *
6344ada_tag_type (struct value *val)
96d887e8 6345{
df407dfe 6346 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6347}
96d887e8 6348
b50d69b5
JG
6349/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6350 retired at Ada 05). */
6351
6352static int
6353is_ada95_tag (struct value *tag)
6354{
6355 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6356}
6357
963a6417 6358/* The value of the tag on VAL. */
96d887e8 6359
963a6417
PH
6360struct value *
6361ada_value_tag (struct value *val)
6362{
03ee6b2e 6363 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6364}
6365
963a6417
PH
6366/* The value of the tag on the object of type TYPE whose contents are
6367 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6368 ADDRESS. */
96d887e8 6369
963a6417 6370static struct value *
10a2c479 6371value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6372 const gdb_byte *valaddr,
963a6417 6373 CORE_ADDR address)
96d887e8 6374{
b5385fc0 6375 int tag_byte_offset;
963a6417 6376 struct type *tag_type;
5b4ee69b 6377
963a6417 6378 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6379 NULL, NULL, NULL))
96d887e8 6380 {
fc1a4b47 6381 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6382 ? NULL
6383 : valaddr + tag_byte_offset);
963a6417 6384 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6385
963a6417 6386 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6387 }
963a6417
PH
6388 return NULL;
6389}
96d887e8 6390
963a6417
PH
6391static struct type *
6392type_from_tag (struct value *tag)
6393{
6394 const char *type_name = ada_tag_name (tag);
5b4ee69b 6395
963a6417
PH
6396 if (type_name != NULL)
6397 return ada_find_any_type (ada_encode (type_name));
6398 return NULL;
6399}
96d887e8 6400
b50d69b5
JG
6401/* Given a value OBJ of a tagged type, return a value of this
6402 type at the base address of the object. The base address, as
6403 defined in Ada.Tags, it is the address of the primary tag of
6404 the object, and therefore where the field values of its full
6405 view can be fetched. */
6406
6407struct value *
6408ada_tag_value_at_base_address (struct value *obj)
6409{
6410 volatile struct gdb_exception e;
6411 struct value *val;
6412 LONGEST offset_to_top = 0;
6413 struct type *ptr_type, *obj_type;
6414 struct value *tag;
6415 CORE_ADDR base_address;
6416
6417 obj_type = value_type (obj);
6418
6419 /* It is the responsability of the caller to deref pointers. */
6420
6421 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6422 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6423 return obj;
6424
6425 tag = ada_value_tag (obj);
6426 if (!tag)
6427 return obj;
6428
6429 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6430
6431 if (is_ada95_tag (tag))
6432 return obj;
6433
6434 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6435 ptr_type = lookup_pointer_type (ptr_type);
6436 val = value_cast (ptr_type, tag);
6437 if (!val)
6438 return obj;
6439
6440 /* It is perfectly possible that an exception be raised while
6441 trying to determine the base address, just like for the tag;
6442 see ada_tag_name for more details. We do not print the error
6443 message for the same reason. */
6444
6445 TRY_CATCH (e, RETURN_MASK_ERROR)
6446 {
6447 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6448 }
6449
6450 if (e.reason < 0)
6451 return obj;
6452
6453 /* If offset is null, nothing to do. */
6454
6455 if (offset_to_top == 0)
6456 return obj;
6457
6458 /* -1 is a special case in Ada.Tags; however, what should be done
6459 is not quite clear from the documentation. So do nothing for
6460 now. */
6461
6462 if (offset_to_top == -1)
6463 return obj;
6464
6465 base_address = value_address (obj) - offset_to_top;
6466 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6467
6468 /* Make sure that we have a proper tag at the new address.
6469 Otherwise, offset_to_top is bogus (which can happen when
6470 the object is not initialized yet). */
6471
6472 if (!tag)
6473 return obj;
6474
6475 obj_type = type_from_tag (tag);
6476
6477 if (!obj_type)
6478 return obj;
6479
6480 return value_from_contents_and_address (obj_type, NULL, base_address);
6481}
6482
1b611343
JB
6483/* Return the "ada__tags__type_specific_data" type. */
6484
6485static struct type *
6486ada_get_tsd_type (struct inferior *inf)
963a6417 6487{
1b611343 6488 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6489
1b611343
JB
6490 if (data->tsd_type == 0)
6491 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6492 return data->tsd_type;
6493}
529cad9c 6494
1b611343
JB
6495/* Return the TSD (type-specific data) associated to the given TAG.
6496 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6497
1b611343 6498 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6499
1b611343
JB
6500static struct value *
6501ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6502{
4c4b4cd2 6503 struct value *val;
1b611343 6504 struct type *type;
5b4ee69b 6505
1b611343
JB
6506 /* First option: The TSD is simply stored as a field of our TAG.
6507 Only older versions of GNAT would use this format, but we have
6508 to test it first, because there are no visible markers for
6509 the current approach except the absence of that field. */
529cad9c 6510
1b611343
JB
6511 val = ada_value_struct_elt (tag, "tsd", 1);
6512 if (val)
6513 return val;
e802dbe0 6514
1b611343
JB
6515 /* Try the second representation for the dispatch table (in which
6516 there is no explicit 'tsd' field in the referent of the tag pointer,
6517 and instead the tsd pointer is stored just before the dispatch
6518 table. */
e802dbe0 6519
1b611343
JB
6520 type = ada_get_tsd_type (current_inferior());
6521 if (type == NULL)
6522 return NULL;
6523 type = lookup_pointer_type (lookup_pointer_type (type));
6524 val = value_cast (type, tag);
6525 if (val == NULL)
6526 return NULL;
6527 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6528}
6529
1b611343
JB
6530/* Given the TSD of a tag (type-specific data), return a string
6531 containing the name of the associated type.
6532
6533 The returned value is good until the next call. May return NULL
6534 if we are unable to determine the tag name. */
6535
6536static char *
6537ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6538{
529cad9c
PH
6539 static char name[1024];
6540 char *p;
1b611343 6541 struct value *val;
529cad9c 6542
1b611343 6543 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6544 if (val == NULL)
1b611343 6545 return NULL;
4c4b4cd2
PH
6546 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6547 for (p = name; *p != '\0'; p += 1)
6548 if (isalpha (*p))
6549 *p = tolower (*p);
1b611343 6550 return name;
4c4b4cd2
PH
6551}
6552
6553/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6554 a C string.
6555
6556 Return NULL if the TAG is not an Ada tag, or if we were unable to
6557 determine the name of that tag. The result is good until the next
6558 call. */
4c4b4cd2
PH
6559
6560const char *
6561ada_tag_name (struct value *tag)
6562{
1b611343
JB
6563 volatile struct gdb_exception e;
6564 char *name = NULL;
5b4ee69b 6565
df407dfe 6566 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6567 return NULL;
1b611343
JB
6568
6569 /* It is perfectly possible that an exception be raised while trying
6570 to determine the TAG's name, even under normal circumstances:
6571 The associated variable may be uninitialized or corrupted, for
6572 instance. We do not let any exception propagate past this point.
6573 instead we return NULL.
6574
6575 We also do not print the error message either (which often is very
6576 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6577 the caller print a more meaningful message if necessary. */
6578 TRY_CATCH (e, RETURN_MASK_ERROR)
6579 {
6580 struct value *tsd = ada_get_tsd_from_tag (tag);
6581
6582 if (tsd != NULL)
6583 name = ada_tag_name_from_tsd (tsd);
6584 }
6585
6586 return name;
4c4b4cd2
PH
6587}
6588
6589/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6590
d2e4a39e 6591struct type *
ebf56fd3 6592ada_parent_type (struct type *type)
14f9c5c9
AS
6593{
6594 int i;
6595
61ee279c 6596 type = ada_check_typedef (type);
14f9c5c9
AS
6597
6598 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6599 return NULL;
6600
6601 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6602 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6603 {
6604 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6605
6606 /* If the _parent field is a pointer, then dereference it. */
6607 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6608 parent_type = TYPE_TARGET_TYPE (parent_type);
6609 /* If there is a parallel XVS type, get the actual base type. */
6610 parent_type = ada_get_base_type (parent_type);
6611
6612 return ada_check_typedef (parent_type);
6613 }
14f9c5c9
AS
6614
6615 return NULL;
6616}
6617
4c4b4cd2
PH
6618/* True iff field number FIELD_NUM of structure type TYPE contains the
6619 parent-type (inherited) fields of a derived type. Assumes TYPE is
6620 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6621
6622int
ebf56fd3 6623ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6624{
61ee279c 6625 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6626
4c4b4cd2
PH
6627 return (name != NULL
6628 && (strncmp (name, "PARENT", 6) == 0
6629 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6630}
6631
4c4b4cd2 6632/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6633 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6634 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6635 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6636 structures. */
14f9c5c9
AS
6637
6638int
ebf56fd3 6639ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6640{
d2e4a39e 6641 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6642
d2e4a39e 6643 return (name != NULL
4c4b4cd2
PH
6644 && (strncmp (name, "PARENT", 6) == 0
6645 || strcmp (name, "REP") == 0
6646 || strncmp (name, "_parent", 7) == 0
6647 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6648}
6649
4c4b4cd2
PH
6650/* True iff field number FIELD_NUM of structure or union type TYPE
6651 is a variant wrapper. Assumes TYPE is a structure type with at least
6652 FIELD_NUM+1 fields. */
14f9c5c9
AS
6653
6654int
ebf56fd3 6655ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6656{
d2e4a39e 6657 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6658
14f9c5c9 6659 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6660 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6661 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6662 == TYPE_CODE_UNION)));
14f9c5c9
AS
6663}
6664
6665/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6666 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6667 returns the type of the controlling discriminant for the variant.
6668 May return NULL if the type could not be found. */
14f9c5c9 6669
d2e4a39e 6670struct type *
ebf56fd3 6671ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6672{
d2e4a39e 6673 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6674
7c964f07 6675 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6676}
6677
4c4b4cd2 6678/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6679 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6680 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6681
6682int
ebf56fd3 6683ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6684{
d2e4a39e 6685 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6686
14f9c5c9
AS
6687 return (name != NULL && name[0] == 'O');
6688}
6689
6690/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6691 returns the name of the discriminant controlling the variant.
6692 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6693
d2e4a39e 6694char *
ebf56fd3 6695ada_variant_discrim_name (struct type *type0)
14f9c5c9 6696{
d2e4a39e 6697 static char *result = NULL;
14f9c5c9 6698 static size_t result_len = 0;
d2e4a39e
AS
6699 struct type *type;
6700 const char *name;
6701 const char *discrim_end;
6702 const char *discrim_start;
14f9c5c9
AS
6703
6704 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6705 type = TYPE_TARGET_TYPE (type0);
6706 else
6707 type = type0;
6708
6709 name = ada_type_name (type);
6710
6711 if (name == NULL || name[0] == '\000')
6712 return "";
6713
6714 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6715 discrim_end -= 1)
6716 {
4c4b4cd2
PH
6717 if (strncmp (discrim_end, "___XVN", 6) == 0)
6718 break;
14f9c5c9
AS
6719 }
6720 if (discrim_end == name)
6721 return "";
6722
d2e4a39e 6723 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6724 discrim_start -= 1)
6725 {
d2e4a39e 6726 if (discrim_start == name + 1)
4c4b4cd2 6727 return "";
76a01679 6728 if ((discrim_start > name + 3
4c4b4cd2
PH
6729 && strncmp (discrim_start - 3, "___", 3) == 0)
6730 || discrim_start[-1] == '.')
6731 break;
14f9c5c9
AS
6732 }
6733
6734 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6735 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6736 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6737 return result;
6738}
6739
4c4b4cd2
PH
6740/* Scan STR for a subtype-encoded number, beginning at position K.
6741 Put the position of the character just past the number scanned in
6742 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6743 Return 1 if there was a valid number at the given position, and 0
6744 otherwise. A "subtype-encoded" number consists of the absolute value
6745 in decimal, followed by the letter 'm' to indicate a negative number.
6746 Assumes 0m does not occur. */
14f9c5c9
AS
6747
6748int
d2e4a39e 6749ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6750{
6751 ULONGEST RU;
6752
d2e4a39e 6753 if (!isdigit (str[k]))
14f9c5c9
AS
6754 return 0;
6755
4c4b4cd2 6756 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6757 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6758 LONGEST. */
14f9c5c9
AS
6759 RU = 0;
6760 while (isdigit (str[k]))
6761 {
d2e4a39e 6762 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6763 k += 1;
6764 }
6765
d2e4a39e 6766 if (str[k] == 'm')
14f9c5c9
AS
6767 {
6768 if (R != NULL)
4c4b4cd2 6769 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6770 k += 1;
6771 }
6772 else if (R != NULL)
6773 *R = (LONGEST) RU;
6774
4c4b4cd2 6775 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6776 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6777 number representable as a LONGEST (although either would probably work
6778 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6779 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6780
6781 if (new_k != NULL)
6782 *new_k = k;
6783 return 1;
6784}
6785
4c4b4cd2
PH
6786/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6787 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6788 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6789
d2e4a39e 6790int
ebf56fd3 6791ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6792{
d2e4a39e 6793 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6794 int p;
6795
6796 p = 0;
6797 while (1)
6798 {
d2e4a39e 6799 switch (name[p])
4c4b4cd2
PH
6800 {
6801 case '\0':
6802 return 0;
6803 case 'S':
6804 {
6805 LONGEST W;
5b4ee69b 6806
4c4b4cd2
PH
6807 if (!ada_scan_number (name, p + 1, &W, &p))
6808 return 0;
6809 if (val == W)
6810 return 1;
6811 break;
6812 }
6813 case 'R':
6814 {
6815 LONGEST L, U;
5b4ee69b 6816
4c4b4cd2
PH
6817 if (!ada_scan_number (name, p + 1, &L, &p)
6818 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6819 return 0;
6820 if (val >= L && val <= U)
6821 return 1;
6822 break;
6823 }
6824 case 'O':
6825 return 1;
6826 default:
6827 return 0;
6828 }
6829 }
6830}
6831
0963b4bd 6832/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6833
6834/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6835 ARG_TYPE, extract and return the value of one of its (non-static)
6836 fields. FIELDNO says which field. Differs from value_primitive_field
6837 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6838
4c4b4cd2 6839static struct value *
d2e4a39e 6840ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6841 struct type *arg_type)
14f9c5c9 6842{
14f9c5c9
AS
6843 struct type *type;
6844
61ee279c 6845 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6846 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6847
4c4b4cd2 6848 /* Handle packed fields. */
14f9c5c9
AS
6849
6850 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6851 {
6852 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6853 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6854
0fd88904 6855 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6856 offset + bit_pos / 8,
6857 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6858 }
6859 else
6860 return value_primitive_field (arg1, offset, fieldno, arg_type);
6861}
6862
52ce6436
PH
6863/* Find field with name NAME in object of type TYPE. If found,
6864 set the following for each argument that is non-null:
6865 - *FIELD_TYPE_P to the field's type;
6866 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6867 an object of that type;
6868 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6869 - *BIT_SIZE_P to its size in bits if the field is packed, and
6870 0 otherwise;
6871 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6872 fields up to but not including the desired field, or by the total
6873 number of fields if not found. A NULL value of NAME never
6874 matches; the function just counts visible fields in this case.
6875
0963b4bd 6876 Returns 1 if found, 0 otherwise. */
52ce6436 6877
4c4b4cd2 6878static int
0d5cff50 6879find_struct_field (const char *name, struct type *type, int offset,
76a01679 6880 struct type **field_type_p,
52ce6436
PH
6881 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6882 int *index_p)
4c4b4cd2
PH
6883{
6884 int i;
6885
61ee279c 6886 type = ada_check_typedef (type);
76a01679 6887
52ce6436
PH
6888 if (field_type_p != NULL)
6889 *field_type_p = NULL;
6890 if (byte_offset_p != NULL)
d5d6fca5 6891 *byte_offset_p = 0;
52ce6436
PH
6892 if (bit_offset_p != NULL)
6893 *bit_offset_p = 0;
6894 if (bit_size_p != NULL)
6895 *bit_size_p = 0;
6896
6897 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6898 {
6899 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6900 int fld_offset = offset + bit_pos / 8;
0d5cff50 6901 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6902
4c4b4cd2
PH
6903 if (t_field_name == NULL)
6904 continue;
6905
52ce6436 6906 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6907 {
6908 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6909
52ce6436
PH
6910 if (field_type_p != NULL)
6911 *field_type_p = TYPE_FIELD_TYPE (type, i);
6912 if (byte_offset_p != NULL)
6913 *byte_offset_p = fld_offset;
6914 if (bit_offset_p != NULL)
6915 *bit_offset_p = bit_pos % 8;
6916 if (bit_size_p != NULL)
6917 *bit_size_p = bit_size;
76a01679
JB
6918 return 1;
6919 }
4c4b4cd2
PH
6920 else if (ada_is_wrapper_field (type, i))
6921 {
52ce6436
PH
6922 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6923 field_type_p, byte_offset_p, bit_offset_p,
6924 bit_size_p, index_p))
76a01679
JB
6925 return 1;
6926 }
4c4b4cd2
PH
6927 else if (ada_is_variant_part (type, i))
6928 {
52ce6436
PH
6929 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6930 fixed type?? */
4c4b4cd2 6931 int j;
52ce6436
PH
6932 struct type *field_type
6933 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6934
52ce6436 6935 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6936 {
76a01679
JB
6937 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6938 fld_offset
6939 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6940 field_type_p, byte_offset_p,
52ce6436 6941 bit_offset_p, bit_size_p, index_p))
76a01679 6942 return 1;
4c4b4cd2
PH
6943 }
6944 }
52ce6436
PH
6945 else if (index_p != NULL)
6946 *index_p += 1;
4c4b4cd2
PH
6947 }
6948 return 0;
6949}
6950
0963b4bd 6951/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6952
52ce6436
PH
6953static int
6954num_visible_fields (struct type *type)
6955{
6956 int n;
5b4ee69b 6957
52ce6436
PH
6958 n = 0;
6959 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6960 return n;
6961}
14f9c5c9 6962
4c4b4cd2 6963/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6964 and search in it assuming it has (class) type TYPE.
6965 If found, return value, else return NULL.
6966
4c4b4cd2 6967 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6968
4c4b4cd2 6969static struct value *
d2e4a39e 6970ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6971 struct type *type)
14f9c5c9
AS
6972{
6973 int i;
14f9c5c9 6974
5b4ee69b 6975 type = ada_check_typedef (type);
52ce6436 6976 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6977 {
0d5cff50 6978 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6979
6980 if (t_field_name == NULL)
4c4b4cd2 6981 continue;
14f9c5c9
AS
6982
6983 else if (field_name_match (t_field_name, name))
4c4b4cd2 6984 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6985
6986 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6987 {
0963b4bd 6988 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6989 ada_search_struct_field (name, arg,
6990 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6991 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6992
4c4b4cd2
PH
6993 if (v != NULL)
6994 return v;
6995 }
14f9c5c9
AS
6996
6997 else if (ada_is_variant_part (type, i))
4c4b4cd2 6998 {
0963b4bd 6999 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7000 int j;
5b4ee69b
MS
7001 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7002 i));
4c4b4cd2
PH
7003 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7004
52ce6436 7005 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7006 {
0963b4bd
MS
7007 struct value *v = ada_search_struct_field /* Force line
7008 break. */
06d5cf63
JB
7009 (name, arg,
7010 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7011 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7012
4c4b4cd2
PH
7013 if (v != NULL)
7014 return v;
7015 }
7016 }
14f9c5c9
AS
7017 }
7018 return NULL;
7019}
d2e4a39e 7020
52ce6436
PH
7021static struct value *ada_index_struct_field_1 (int *, struct value *,
7022 int, struct type *);
7023
7024
7025/* Return field #INDEX in ARG, where the index is that returned by
7026 * find_struct_field through its INDEX_P argument. Adjust the address
7027 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7028 * If found, return value, else return NULL. */
52ce6436
PH
7029
7030static struct value *
7031ada_index_struct_field (int index, struct value *arg, int offset,
7032 struct type *type)
7033{
7034 return ada_index_struct_field_1 (&index, arg, offset, type);
7035}
7036
7037
7038/* Auxiliary function for ada_index_struct_field. Like
7039 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7040 * *INDEX_P. */
52ce6436
PH
7041
7042static struct value *
7043ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7044 struct type *type)
7045{
7046 int i;
7047 type = ada_check_typedef (type);
7048
7049 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7050 {
7051 if (TYPE_FIELD_NAME (type, i) == NULL)
7052 continue;
7053 else if (ada_is_wrapper_field (type, i))
7054 {
0963b4bd 7055 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7056 ada_index_struct_field_1 (index_p, arg,
7057 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7058 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7059
52ce6436
PH
7060 if (v != NULL)
7061 return v;
7062 }
7063
7064 else if (ada_is_variant_part (type, i))
7065 {
7066 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7067 find_struct_field. */
52ce6436
PH
7068 error (_("Cannot assign this kind of variant record"));
7069 }
7070 else if (*index_p == 0)
7071 return ada_value_primitive_field (arg, offset, i, type);
7072 else
7073 *index_p -= 1;
7074 }
7075 return NULL;
7076}
7077
4c4b4cd2
PH
7078/* Given ARG, a value of type (pointer or reference to a)*
7079 structure/union, extract the component named NAME from the ultimate
7080 target structure/union and return it as a value with its
f5938064 7081 appropriate type.
14f9c5c9 7082
4c4b4cd2
PH
7083 The routine searches for NAME among all members of the structure itself
7084 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7085 (e.g., '_parent').
7086
03ee6b2e
PH
7087 If NO_ERR, then simply return NULL in case of error, rather than
7088 calling error. */
14f9c5c9 7089
d2e4a39e 7090struct value *
03ee6b2e 7091ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7092{
4c4b4cd2 7093 struct type *t, *t1;
d2e4a39e 7094 struct value *v;
14f9c5c9 7095
4c4b4cd2 7096 v = NULL;
df407dfe 7097 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7098 if (TYPE_CODE (t) == TYPE_CODE_REF)
7099 {
7100 t1 = TYPE_TARGET_TYPE (t);
7101 if (t1 == NULL)
03ee6b2e 7102 goto BadValue;
61ee279c 7103 t1 = ada_check_typedef (t1);
4c4b4cd2 7104 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7105 {
994b9211 7106 arg = coerce_ref (arg);
76a01679
JB
7107 t = t1;
7108 }
4c4b4cd2 7109 }
14f9c5c9 7110
4c4b4cd2
PH
7111 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7112 {
7113 t1 = TYPE_TARGET_TYPE (t);
7114 if (t1 == NULL)
03ee6b2e 7115 goto BadValue;
61ee279c 7116 t1 = ada_check_typedef (t1);
4c4b4cd2 7117 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7118 {
7119 arg = value_ind (arg);
7120 t = t1;
7121 }
4c4b4cd2 7122 else
76a01679 7123 break;
4c4b4cd2 7124 }
14f9c5c9 7125
4c4b4cd2 7126 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7127 goto BadValue;
14f9c5c9 7128
4c4b4cd2
PH
7129 if (t1 == t)
7130 v = ada_search_struct_field (name, arg, 0, t);
7131 else
7132 {
7133 int bit_offset, bit_size, byte_offset;
7134 struct type *field_type;
7135 CORE_ADDR address;
7136
76a01679 7137 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7138 address = value_address (ada_value_ind (arg));
4c4b4cd2 7139 else
b50d69b5 7140 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7141
1ed6ede0 7142 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7143 if (find_struct_field (name, t1, 0,
7144 &field_type, &byte_offset, &bit_offset,
52ce6436 7145 &bit_size, NULL))
76a01679
JB
7146 {
7147 if (bit_size != 0)
7148 {
714e53ab
PH
7149 if (TYPE_CODE (t) == TYPE_CODE_REF)
7150 arg = ada_coerce_ref (arg);
7151 else
7152 arg = ada_value_ind (arg);
76a01679
JB
7153 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7154 bit_offset, bit_size,
7155 field_type);
7156 }
7157 else
f5938064 7158 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7159 }
7160 }
7161
03ee6b2e
PH
7162 if (v != NULL || no_err)
7163 return v;
7164 else
323e0a4a 7165 error (_("There is no member named %s."), name);
14f9c5c9 7166
03ee6b2e
PH
7167 BadValue:
7168 if (no_err)
7169 return NULL;
7170 else
0963b4bd
MS
7171 error (_("Attempt to extract a component of "
7172 "a value that is not a record."));
14f9c5c9
AS
7173}
7174
7175/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7176 If DISPP is non-null, add its byte displacement from the beginning of a
7177 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7178 work for packed fields).
7179
7180 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7181 followed by "___".
14f9c5c9 7182
0963b4bd 7183 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7184 be a (pointer or reference)+ to a struct or union, and the
7185 ultimate target type will be searched.
14f9c5c9
AS
7186
7187 Looks recursively into variant clauses and parent types.
7188
4c4b4cd2
PH
7189 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7190 TYPE is not a type of the right kind. */
14f9c5c9 7191
4c4b4cd2 7192static struct type *
76a01679
JB
7193ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7194 int noerr, int *dispp)
14f9c5c9
AS
7195{
7196 int i;
7197
7198 if (name == NULL)
7199 goto BadName;
7200
76a01679 7201 if (refok && type != NULL)
4c4b4cd2
PH
7202 while (1)
7203 {
61ee279c 7204 type = ada_check_typedef (type);
76a01679
JB
7205 if (TYPE_CODE (type) != TYPE_CODE_PTR
7206 && TYPE_CODE (type) != TYPE_CODE_REF)
7207 break;
7208 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7209 }
14f9c5c9 7210
76a01679 7211 if (type == NULL
1265e4aa
JB
7212 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7213 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7214 {
4c4b4cd2 7215 if (noerr)
76a01679 7216 return NULL;
4c4b4cd2 7217 else
76a01679
JB
7218 {
7219 target_terminal_ours ();
7220 gdb_flush (gdb_stdout);
323e0a4a
AC
7221 if (type == NULL)
7222 error (_("Type (null) is not a structure or union type"));
7223 else
7224 {
7225 /* XXX: type_sprint */
7226 fprintf_unfiltered (gdb_stderr, _("Type "));
7227 type_print (type, "", gdb_stderr, -1);
7228 error (_(" is not a structure or union type"));
7229 }
76a01679 7230 }
14f9c5c9
AS
7231 }
7232
7233 type = to_static_fixed_type (type);
7234
7235 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7236 {
0d5cff50 7237 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7238 struct type *t;
7239 int disp;
d2e4a39e 7240
14f9c5c9 7241 if (t_field_name == NULL)
4c4b4cd2 7242 continue;
14f9c5c9
AS
7243
7244 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7245 {
7246 if (dispp != NULL)
7247 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7248 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7249 }
14f9c5c9
AS
7250
7251 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7252 {
7253 disp = 0;
7254 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7255 0, 1, &disp);
7256 if (t != NULL)
7257 {
7258 if (dispp != NULL)
7259 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7260 return t;
7261 }
7262 }
14f9c5c9
AS
7263
7264 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7265 {
7266 int j;
5b4ee69b
MS
7267 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7268 i));
4c4b4cd2
PH
7269
7270 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7271 {
b1f33ddd
JB
7272 /* FIXME pnh 2008/01/26: We check for a field that is
7273 NOT wrapped in a struct, since the compiler sometimes
7274 generates these for unchecked variant types. Revisit
0963b4bd 7275 if the compiler changes this practice. */
0d5cff50 7276 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7277 disp = 0;
b1f33ddd
JB
7278 if (v_field_name != NULL
7279 && field_name_match (v_field_name, name))
7280 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7281 else
0963b4bd
MS
7282 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7283 j),
b1f33ddd
JB
7284 name, 0, 1, &disp);
7285
4c4b4cd2
PH
7286 if (t != NULL)
7287 {
7288 if (dispp != NULL)
7289 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7290 return t;
7291 }
7292 }
7293 }
14f9c5c9
AS
7294
7295 }
7296
7297BadName:
d2e4a39e 7298 if (!noerr)
14f9c5c9
AS
7299 {
7300 target_terminal_ours ();
7301 gdb_flush (gdb_stdout);
323e0a4a
AC
7302 if (name == NULL)
7303 {
7304 /* XXX: type_sprint */
7305 fprintf_unfiltered (gdb_stderr, _("Type "));
7306 type_print (type, "", gdb_stderr, -1);
7307 error (_(" has no component named <null>"));
7308 }
7309 else
7310 {
7311 /* XXX: type_sprint */
7312 fprintf_unfiltered (gdb_stderr, _("Type "));
7313 type_print (type, "", gdb_stderr, -1);
7314 error (_(" has no component named %s"), name);
7315 }
14f9c5c9
AS
7316 }
7317
7318 return NULL;
7319}
7320
b1f33ddd
JB
7321/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7322 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7323 represents an unchecked union (that is, the variant part of a
0963b4bd 7324 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7325
7326static int
7327is_unchecked_variant (struct type *var_type, struct type *outer_type)
7328{
7329 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7330
b1f33ddd
JB
7331 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7332 == NULL);
7333}
7334
7335
14f9c5c9
AS
7336/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7337 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7338 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7339 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7340
d2e4a39e 7341int
ebf56fd3 7342ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7343 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7344{
7345 int others_clause;
7346 int i;
d2e4a39e 7347 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7348 struct value *outer;
7349 struct value *discrim;
14f9c5c9
AS
7350 LONGEST discrim_val;
7351
0c281816
JB
7352 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7353 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7354 if (discrim == NULL)
14f9c5c9 7355 return -1;
0c281816 7356 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7357
7358 others_clause = -1;
7359 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7360 {
7361 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7362 others_clause = i;
14f9c5c9 7363 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7364 return i;
14f9c5c9
AS
7365 }
7366
7367 return others_clause;
7368}
d2e4a39e 7369\f
14f9c5c9
AS
7370
7371
4c4b4cd2 7372 /* Dynamic-Sized Records */
14f9c5c9
AS
7373
7374/* Strategy: The type ostensibly attached to a value with dynamic size
7375 (i.e., a size that is not statically recorded in the debugging
7376 data) does not accurately reflect the size or layout of the value.
7377 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7378 conventional types that are constructed on the fly. */
14f9c5c9
AS
7379
7380/* There is a subtle and tricky problem here. In general, we cannot
7381 determine the size of dynamic records without its data. However,
7382 the 'struct value' data structure, which GDB uses to represent
7383 quantities in the inferior process (the target), requires the size
7384 of the type at the time of its allocation in order to reserve space
7385 for GDB's internal copy of the data. That's why the
7386 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7387 rather than struct value*s.
14f9c5c9
AS
7388
7389 However, GDB's internal history variables ($1, $2, etc.) are
7390 struct value*s containing internal copies of the data that are not, in
7391 general, the same as the data at their corresponding addresses in
7392 the target. Fortunately, the types we give to these values are all
7393 conventional, fixed-size types (as per the strategy described
7394 above), so that we don't usually have to perform the
7395 'to_fixed_xxx_type' conversions to look at their values.
7396 Unfortunately, there is one exception: if one of the internal
7397 history variables is an array whose elements are unconstrained
7398 records, then we will need to create distinct fixed types for each
7399 element selected. */
7400
7401/* The upshot of all of this is that many routines take a (type, host
7402 address, target address) triple as arguments to represent a value.
7403 The host address, if non-null, is supposed to contain an internal
7404 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7405 target at the target address. */
14f9c5c9
AS
7406
7407/* Assuming that VAL0 represents a pointer value, the result of
7408 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7409 dynamic-sized types. */
14f9c5c9 7410
d2e4a39e
AS
7411struct value *
7412ada_value_ind (struct value *val0)
14f9c5c9 7413{
c48db5ca 7414 struct value *val = value_ind (val0);
5b4ee69b 7415
b50d69b5
JG
7416 if (ada_is_tagged_type (value_type (val), 0))
7417 val = ada_tag_value_at_base_address (val);
7418
4c4b4cd2 7419 return ada_to_fixed_value (val);
14f9c5c9
AS
7420}
7421
7422/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7423 qualifiers on VAL0. */
7424
d2e4a39e
AS
7425static struct value *
7426ada_coerce_ref (struct value *val0)
7427{
df407dfe 7428 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7429 {
7430 struct value *val = val0;
5b4ee69b 7431
994b9211 7432 val = coerce_ref (val);
b50d69b5
JG
7433
7434 if (ada_is_tagged_type (value_type (val), 0))
7435 val = ada_tag_value_at_base_address (val);
7436
4c4b4cd2 7437 return ada_to_fixed_value (val);
d2e4a39e
AS
7438 }
7439 else
14f9c5c9
AS
7440 return val0;
7441}
7442
7443/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7444 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7445
7446static unsigned int
ebf56fd3 7447align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7448{
7449 return (off + alignment - 1) & ~(alignment - 1);
7450}
7451
4c4b4cd2 7452/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7453
7454static unsigned int
ebf56fd3 7455field_alignment (struct type *type, int f)
14f9c5c9 7456{
d2e4a39e 7457 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7458 int len;
14f9c5c9
AS
7459 int align_offset;
7460
64a1bf19
JB
7461 /* The field name should never be null, unless the debugging information
7462 is somehow malformed. In this case, we assume the field does not
7463 require any alignment. */
7464 if (name == NULL)
7465 return 1;
7466
7467 len = strlen (name);
7468
4c4b4cd2
PH
7469 if (!isdigit (name[len - 1]))
7470 return 1;
14f9c5c9 7471
d2e4a39e 7472 if (isdigit (name[len - 2]))
14f9c5c9
AS
7473 align_offset = len - 2;
7474 else
7475 align_offset = len - 1;
7476
4c4b4cd2 7477 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7478 return TARGET_CHAR_BIT;
7479
4c4b4cd2
PH
7480 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7481}
7482
852dff6c 7483/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7484
852dff6c
JB
7485static struct symbol *
7486ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7487{
7488 struct symbol *sym;
7489
7490 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7491 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7492 return sym;
7493
7494 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7495 return sym;
14f9c5c9
AS
7496}
7497
dddfab26
UW
7498/* Find a type named NAME. Ignores ambiguity. This routine will look
7499 solely for types defined by debug info, it will not search the GDB
7500 primitive types. */
4c4b4cd2 7501
852dff6c 7502static struct type *
ebf56fd3 7503ada_find_any_type (const char *name)
14f9c5c9 7504{
852dff6c 7505 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7506
14f9c5c9 7507 if (sym != NULL)
dddfab26 7508 return SYMBOL_TYPE (sym);
14f9c5c9 7509
dddfab26 7510 return NULL;
14f9c5c9
AS
7511}
7512
739593e0
JB
7513/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7514 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7515 symbol, in which case it is returned. Otherwise, this looks for
7516 symbols whose name is that of NAME_SYM suffixed with "___XR".
7517 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7518
7519struct symbol *
270140bd 7520ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7521{
739593e0 7522 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7523 struct symbol *sym;
7524
739593e0
JB
7525 if (strstr (name, "___XR") != NULL)
7526 return name_sym;
7527
aeb5907d
JB
7528 sym = find_old_style_renaming_symbol (name, block);
7529
7530 if (sym != NULL)
7531 return sym;
7532
0963b4bd 7533 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7534 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7535 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7536 return sym;
7537 else
7538 return NULL;
7539}
7540
7541static struct symbol *
270140bd 7542find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7543{
7f0df278 7544 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7545 char *rename;
7546
7547 if (function_sym != NULL)
7548 {
7549 /* If the symbol is defined inside a function, NAME is not fully
7550 qualified. This means we need to prepend the function name
7551 as well as adding the ``___XR'' suffix to build the name of
7552 the associated renaming symbol. */
0d5cff50 7553 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7554 /* Function names sometimes contain suffixes used
7555 for instance to qualify nested subprograms. When building
7556 the XR type name, we need to make sure that this suffix is
7557 not included. So do not include any suffix in the function
7558 name length below. */
69fadcdf 7559 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7560 const int rename_len = function_name_len + 2 /* "__" */
7561 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7562
529cad9c 7563 /* Strip the suffix if necessary. */
69fadcdf
JB
7564 ada_remove_trailing_digits (function_name, &function_name_len);
7565 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7566 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7567
4c4b4cd2
PH
7568 /* Library-level functions are a special case, as GNAT adds
7569 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7570 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7571 have this prefix, so we need to skip this prefix if present. */
7572 if (function_name_len > 5 /* "_ada_" */
7573 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7574 {
7575 function_name += 5;
7576 function_name_len -= 5;
7577 }
4c4b4cd2
PH
7578
7579 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7580 strncpy (rename, function_name, function_name_len);
7581 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7582 "__%s___XR", name);
4c4b4cd2
PH
7583 }
7584 else
7585 {
7586 const int rename_len = strlen (name) + 6;
5b4ee69b 7587
4c4b4cd2 7588 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7589 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7590 }
7591
852dff6c 7592 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7593}
7594
14f9c5c9 7595/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7596 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7597 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7598 otherwise return 0. */
7599
14f9c5c9 7600int
d2e4a39e 7601ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7602{
7603 if (type1 == NULL)
7604 return 1;
7605 else if (type0 == NULL)
7606 return 0;
7607 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7608 return 1;
7609 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7610 return 0;
4c4b4cd2
PH
7611 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7612 return 1;
ad82864c 7613 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7614 return 1;
4c4b4cd2
PH
7615 else if (ada_is_array_descriptor_type (type0)
7616 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7617 return 1;
aeb5907d
JB
7618 else
7619 {
7620 const char *type0_name = type_name_no_tag (type0);
7621 const char *type1_name = type_name_no_tag (type1);
7622
7623 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7624 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7625 return 1;
7626 }
14f9c5c9
AS
7627 return 0;
7628}
7629
7630/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7631 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7632
0d5cff50 7633const char *
d2e4a39e 7634ada_type_name (struct type *type)
14f9c5c9 7635{
d2e4a39e 7636 if (type == NULL)
14f9c5c9
AS
7637 return NULL;
7638 else if (TYPE_NAME (type) != NULL)
7639 return TYPE_NAME (type);
7640 else
7641 return TYPE_TAG_NAME (type);
7642}
7643
b4ba55a1
JB
7644/* Search the list of "descriptive" types associated to TYPE for a type
7645 whose name is NAME. */
7646
7647static struct type *
7648find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7649{
7650 struct type *result;
7651
c6044dd1
JB
7652 if (ada_ignore_descriptive_types_p)
7653 return NULL;
7654
b4ba55a1
JB
7655 /* If there no descriptive-type info, then there is no parallel type
7656 to be found. */
7657 if (!HAVE_GNAT_AUX_INFO (type))
7658 return NULL;
7659
7660 result = TYPE_DESCRIPTIVE_TYPE (type);
7661 while (result != NULL)
7662 {
0d5cff50 7663 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7664
7665 if (result_name == NULL)
7666 {
7667 warning (_("unexpected null name on descriptive type"));
7668 return NULL;
7669 }
7670
7671 /* If the names match, stop. */
7672 if (strcmp (result_name, name) == 0)
7673 break;
7674
7675 /* Otherwise, look at the next item on the list, if any. */
7676 if (HAVE_GNAT_AUX_INFO (result))
7677 result = TYPE_DESCRIPTIVE_TYPE (result);
7678 else
7679 result = NULL;
7680 }
7681
7682 /* If we didn't find a match, see whether this is a packed array. With
7683 older compilers, the descriptive type information is either absent or
7684 irrelevant when it comes to packed arrays so the above lookup fails.
7685 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7686 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7687 return ada_find_any_type (name);
7688
7689 return result;
7690}
7691
7692/* Find a parallel type to TYPE with the specified NAME, using the
7693 descriptive type taken from the debugging information, if available,
7694 and otherwise using the (slower) name-based method. */
7695
7696static struct type *
7697ada_find_parallel_type_with_name (struct type *type, const char *name)
7698{
7699 struct type *result = NULL;
7700
7701 if (HAVE_GNAT_AUX_INFO (type))
7702 result = find_parallel_type_by_descriptive_type (type, name);
7703 else
7704 result = ada_find_any_type (name);
7705
7706 return result;
7707}
7708
7709/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7710 SUFFIX to the name of TYPE. */
14f9c5c9 7711
d2e4a39e 7712struct type *
ebf56fd3 7713ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7714{
0d5cff50
DE
7715 char *name;
7716 const char *typename = ada_type_name (type);
14f9c5c9 7717 int len;
d2e4a39e 7718
14f9c5c9
AS
7719 if (typename == NULL)
7720 return NULL;
7721
7722 len = strlen (typename);
7723
b4ba55a1 7724 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7725
7726 strcpy (name, typename);
7727 strcpy (name + len, suffix);
7728
b4ba55a1 7729 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7730}
7731
14f9c5c9 7732/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7733 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7734
d2e4a39e
AS
7735static struct type *
7736dynamic_template_type (struct type *type)
14f9c5c9 7737{
61ee279c 7738 type = ada_check_typedef (type);
14f9c5c9
AS
7739
7740 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7741 || ada_type_name (type) == NULL)
14f9c5c9 7742 return NULL;
d2e4a39e 7743 else
14f9c5c9
AS
7744 {
7745 int len = strlen (ada_type_name (type));
5b4ee69b 7746
4c4b4cd2
PH
7747 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7748 return type;
14f9c5c9 7749 else
4c4b4cd2 7750 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7751 }
7752}
7753
7754/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7755 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7756
d2e4a39e
AS
7757static int
7758is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7759{
7760 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7761
d2e4a39e 7762 return name != NULL
14f9c5c9
AS
7763 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7764 && strstr (name, "___XVL") != NULL;
7765}
7766
4c4b4cd2
PH
7767/* The index of the variant field of TYPE, or -1 if TYPE does not
7768 represent a variant record type. */
14f9c5c9 7769
d2e4a39e 7770static int
4c4b4cd2 7771variant_field_index (struct type *type)
14f9c5c9
AS
7772{
7773 int f;
7774
4c4b4cd2
PH
7775 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7776 return -1;
7777
7778 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7779 {
7780 if (ada_is_variant_part (type, f))
7781 return f;
7782 }
7783 return -1;
14f9c5c9
AS
7784}
7785
4c4b4cd2
PH
7786/* A record type with no fields. */
7787
d2e4a39e 7788static struct type *
e9bb382b 7789empty_record (struct type *template)
14f9c5c9 7790{
e9bb382b 7791 struct type *type = alloc_type_copy (template);
5b4ee69b 7792
14f9c5c9
AS
7793 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7794 TYPE_NFIELDS (type) = 0;
7795 TYPE_FIELDS (type) = NULL;
b1f33ddd 7796 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7797 TYPE_NAME (type) = "<empty>";
7798 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7799 TYPE_LENGTH (type) = 0;
7800 return type;
7801}
7802
7803/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7804 the value of type TYPE at VALADDR or ADDRESS (see comments at
7805 the beginning of this section) VAL according to GNAT conventions.
7806 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7807 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7808 an outer-level type (i.e., as opposed to a branch of a variant.) A
7809 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7810 of the variant.
14f9c5c9 7811
4c4b4cd2
PH
7812 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7813 length are not statically known are discarded. As a consequence,
7814 VALADDR, ADDRESS and DVAL0 are ignored.
7815
7816 NOTE: Limitations: For now, we assume that dynamic fields and
7817 variants occupy whole numbers of bytes. However, they need not be
7818 byte-aligned. */
7819
7820struct type *
10a2c479 7821ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7822 const gdb_byte *valaddr,
4c4b4cd2
PH
7823 CORE_ADDR address, struct value *dval0,
7824 int keep_dynamic_fields)
14f9c5c9 7825{
d2e4a39e
AS
7826 struct value *mark = value_mark ();
7827 struct value *dval;
7828 struct type *rtype;
14f9c5c9 7829 int nfields, bit_len;
4c4b4cd2 7830 int variant_field;
14f9c5c9 7831 long off;
d94e4f4f 7832 int fld_bit_len;
14f9c5c9
AS
7833 int f;
7834
4c4b4cd2
PH
7835 /* Compute the number of fields in this record type that are going
7836 to be processed: unless keep_dynamic_fields, this includes only
7837 fields whose position and length are static will be processed. */
7838 if (keep_dynamic_fields)
7839 nfields = TYPE_NFIELDS (type);
7840 else
7841 {
7842 nfields = 0;
76a01679 7843 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7844 && !ada_is_variant_part (type, nfields)
7845 && !is_dynamic_field (type, nfields))
7846 nfields++;
7847 }
7848
e9bb382b 7849 rtype = alloc_type_copy (type);
14f9c5c9
AS
7850 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7851 INIT_CPLUS_SPECIFIC (rtype);
7852 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7853 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7854 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7855 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7856 TYPE_NAME (rtype) = ada_type_name (type);
7857 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7858 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7859
d2e4a39e
AS
7860 off = 0;
7861 bit_len = 0;
4c4b4cd2
PH
7862 variant_field = -1;
7863
14f9c5c9
AS
7864 for (f = 0; f < nfields; f += 1)
7865 {
6c038f32
PH
7866 off = align_value (off, field_alignment (type, f))
7867 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7868 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7869 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7870
d2e4a39e 7871 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7872 {
7873 variant_field = f;
d94e4f4f 7874 fld_bit_len = 0;
4c4b4cd2 7875 }
14f9c5c9 7876 else if (is_dynamic_field (type, f))
4c4b4cd2 7877 {
284614f0
JB
7878 const gdb_byte *field_valaddr = valaddr;
7879 CORE_ADDR field_address = address;
7880 struct type *field_type =
7881 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7882
4c4b4cd2 7883 if (dval0 == NULL)
b5304971
JG
7884 {
7885 /* rtype's length is computed based on the run-time
7886 value of discriminants. If the discriminants are not
7887 initialized, the type size may be completely bogus and
0963b4bd 7888 GDB may fail to allocate a value for it. So check the
b5304971
JG
7889 size first before creating the value. */
7890 check_size (rtype);
7891 dval = value_from_contents_and_address (rtype, valaddr, address);
9f1f738a 7892 rtype = value_type (dval);
b5304971 7893 }
4c4b4cd2
PH
7894 else
7895 dval = dval0;
7896
284614f0
JB
7897 /* If the type referenced by this field is an aligner type, we need
7898 to unwrap that aligner type, because its size might not be set.
7899 Keeping the aligner type would cause us to compute the wrong
7900 size for this field, impacting the offset of the all the fields
7901 that follow this one. */
7902 if (ada_is_aligner_type (field_type))
7903 {
7904 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7905
7906 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7907 field_address = cond_offset_target (field_address, field_offset);
7908 field_type = ada_aligned_type (field_type);
7909 }
7910
7911 field_valaddr = cond_offset_host (field_valaddr,
7912 off / TARGET_CHAR_BIT);
7913 field_address = cond_offset_target (field_address,
7914 off / TARGET_CHAR_BIT);
7915
7916 /* Get the fixed type of the field. Note that, in this case,
7917 we do not want to get the real type out of the tag: if
7918 the current field is the parent part of a tagged record,
7919 we will get the tag of the object. Clearly wrong: the real
7920 type of the parent is not the real type of the child. We
7921 would end up in an infinite loop. */
7922 field_type = ada_get_base_type (field_type);
7923 field_type = ada_to_fixed_type (field_type, field_valaddr,
7924 field_address, dval, 0);
27f2a97b
JB
7925 /* If the field size is already larger than the maximum
7926 object size, then the record itself will necessarily
7927 be larger than the maximum object size. We need to make
7928 this check now, because the size might be so ridiculously
7929 large (due to an uninitialized variable in the inferior)
7930 that it would cause an overflow when adding it to the
7931 record size. */
7932 check_size (field_type);
284614f0
JB
7933
7934 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7935 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7936 /* The multiplication can potentially overflow. But because
7937 the field length has been size-checked just above, and
7938 assuming that the maximum size is a reasonable value,
7939 an overflow should not happen in practice. So rather than
7940 adding overflow recovery code to this already complex code,
7941 we just assume that it's not going to happen. */
d94e4f4f 7942 fld_bit_len =
4c4b4cd2
PH
7943 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7944 }
14f9c5c9 7945 else
4c4b4cd2 7946 {
5ded5331
JB
7947 /* Note: If this field's type is a typedef, it is important
7948 to preserve the typedef layer.
7949
7950 Otherwise, we might be transforming a typedef to a fat
7951 pointer (encoding a pointer to an unconstrained array),
7952 into a basic fat pointer (encoding an unconstrained
7953 array). As both types are implemented using the same
7954 structure, the typedef is the only clue which allows us
7955 to distinguish between the two options. Stripping it
7956 would prevent us from printing this field appropriately. */
7957 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7958 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7959 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7960 fld_bit_len =
4c4b4cd2
PH
7961 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7962 else
5ded5331
JB
7963 {
7964 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7965
7966 /* We need to be careful of typedefs when computing
7967 the length of our field. If this is a typedef,
7968 get the length of the target type, not the length
7969 of the typedef. */
7970 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7971 field_type = ada_typedef_target_type (field_type);
7972
7973 fld_bit_len =
7974 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7975 }
4c4b4cd2 7976 }
14f9c5c9 7977 if (off + fld_bit_len > bit_len)
4c4b4cd2 7978 bit_len = off + fld_bit_len;
d94e4f4f 7979 off += fld_bit_len;
4c4b4cd2
PH
7980 TYPE_LENGTH (rtype) =
7981 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7982 }
4c4b4cd2
PH
7983
7984 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7985 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7986 the record. This can happen in the presence of representation
7987 clauses. */
7988 if (variant_field >= 0)
7989 {
7990 struct type *branch_type;
7991
7992 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7993
7994 if (dval0 == NULL)
9f1f738a
SA
7995 {
7996 dval = value_from_contents_and_address (rtype, valaddr, address);
7997 rtype = value_type (dval);
7998 }
4c4b4cd2
PH
7999 else
8000 dval = dval0;
8001
8002 branch_type =
8003 to_fixed_variant_branch_type
8004 (TYPE_FIELD_TYPE (type, variant_field),
8005 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8006 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8007 if (branch_type == NULL)
8008 {
8009 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8010 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8011 TYPE_NFIELDS (rtype) -= 1;
8012 }
8013 else
8014 {
8015 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8016 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8017 fld_bit_len =
8018 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8019 TARGET_CHAR_BIT;
8020 if (off + fld_bit_len > bit_len)
8021 bit_len = off + fld_bit_len;
8022 TYPE_LENGTH (rtype) =
8023 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8024 }
8025 }
8026
714e53ab
PH
8027 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8028 should contain the alignment of that record, which should be a strictly
8029 positive value. If null or negative, then something is wrong, most
8030 probably in the debug info. In that case, we don't round up the size
0963b4bd 8031 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8032 the current RTYPE length might be good enough for our purposes. */
8033 if (TYPE_LENGTH (type) <= 0)
8034 {
323e0a4a
AC
8035 if (TYPE_NAME (rtype))
8036 warning (_("Invalid type size for `%s' detected: %d."),
8037 TYPE_NAME (rtype), TYPE_LENGTH (type));
8038 else
8039 warning (_("Invalid type size for <unnamed> detected: %d."),
8040 TYPE_LENGTH (type));
714e53ab
PH
8041 }
8042 else
8043 {
8044 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8045 TYPE_LENGTH (type));
8046 }
14f9c5c9
AS
8047
8048 value_free_to_mark (mark);
d2e4a39e 8049 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8050 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8051 return rtype;
8052}
8053
4c4b4cd2
PH
8054/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8055 of 1. */
14f9c5c9 8056
d2e4a39e 8057static struct type *
fc1a4b47 8058template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8059 CORE_ADDR address, struct value *dval0)
8060{
8061 return ada_template_to_fixed_record_type_1 (type, valaddr,
8062 address, dval0, 1);
8063}
8064
8065/* An ordinary record type in which ___XVL-convention fields and
8066 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8067 static approximations, containing all possible fields. Uses
8068 no runtime values. Useless for use in values, but that's OK,
8069 since the results are used only for type determinations. Works on both
8070 structs and unions. Representation note: to save space, we memorize
8071 the result of this function in the TYPE_TARGET_TYPE of the
8072 template type. */
8073
8074static struct type *
8075template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8076{
8077 struct type *type;
8078 int nfields;
8079 int f;
8080
4c4b4cd2
PH
8081 if (TYPE_TARGET_TYPE (type0) != NULL)
8082 return TYPE_TARGET_TYPE (type0);
8083
8084 nfields = TYPE_NFIELDS (type0);
8085 type = type0;
14f9c5c9
AS
8086
8087 for (f = 0; f < nfields; f += 1)
8088 {
61ee279c 8089 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 8090 struct type *new_type;
14f9c5c9 8091
4c4b4cd2
PH
8092 if (is_dynamic_field (type0, f))
8093 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 8094 else
f192137b 8095 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8096 if (type == type0 && new_type != field_type)
8097 {
e9bb382b 8098 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8099 TYPE_CODE (type) = TYPE_CODE (type0);
8100 INIT_CPLUS_SPECIFIC (type);
8101 TYPE_NFIELDS (type) = nfields;
8102 TYPE_FIELDS (type) = (struct field *)
8103 TYPE_ALLOC (type, nfields * sizeof (struct field));
8104 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8105 sizeof (struct field) * nfields);
8106 TYPE_NAME (type) = ada_type_name (type0);
8107 TYPE_TAG_NAME (type) = NULL;
876cecd0 8108 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8109 TYPE_LENGTH (type) = 0;
8110 }
8111 TYPE_FIELD_TYPE (type, f) = new_type;
8112 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8113 }
14f9c5c9
AS
8114 return type;
8115}
8116
4c4b4cd2 8117/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8118 whose address in memory is ADDRESS, returns a revision of TYPE,
8119 which should be a non-dynamic-sized record, in which the variant
8120 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8121 for discriminant values in DVAL0, which can be NULL if the record
8122 contains the necessary discriminant values. */
8123
d2e4a39e 8124static struct type *
fc1a4b47 8125to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8126 CORE_ADDR address, struct value *dval0)
14f9c5c9 8127{
d2e4a39e 8128 struct value *mark = value_mark ();
4c4b4cd2 8129 struct value *dval;
d2e4a39e 8130 struct type *rtype;
14f9c5c9
AS
8131 struct type *branch_type;
8132 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8133 int variant_field = variant_field_index (type);
14f9c5c9 8134
4c4b4cd2 8135 if (variant_field == -1)
14f9c5c9
AS
8136 return type;
8137
4c4b4cd2 8138 if (dval0 == NULL)
9f1f738a
SA
8139 {
8140 dval = value_from_contents_and_address (type, valaddr, address);
8141 type = value_type (dval);
8142 }
4c4b4cd2
PH
8143 else
8144 dval = dval0;
8145
e9bb382b 8146 rtype = alloc_type_copy (type);
14f9c5c9 8147 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8148 INIT_CPLUS_SPECIFIC (rtype);
8149 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8150 TYPE_FIELDS (rtype) =
8151 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8152 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8153 sizeof (struct field) * nfields);
14f9c5c9
AS
8154 TYPE_NAME (rtype) = ada_type_name (type);
8155 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8156 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8157 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8158
4c4b4cd2
PH
8159 branch_type = to_fixed_variant_branch_type
8160 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8161 cond_offset_host (valaddr,
4c4b4cd2
PH
8162 TYPE_FIELD_BITPOS (type, variant_field)
8163 / TARGET_CHAR_BIT),
d2e4a39e 8164 cond_offset_target (address,
4c4b4cd2
PH
8165 TYPE_FIELD_BITPOS (type, variant_field)
8166 / TARGET_CHAR_BIT), dval);
d2e4a39e 8167 if (branch_type == NULL)
14f9c5c9 8168 {
4c4b4cd2 8169 int f;
5b4ee69b 8170
4c4b4cd2
PH
8171 for (f = variant_field + 1; f < nfields; f += 1)
8172 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8173 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8174 }
8175 else
8176 {
4c4b4cd2
PH
8177 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8178 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8179 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8180 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8181 }
4c4b4cd2 8182 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8183
4c4b4cd2 8184 value_free_to_mark (mark);
14f9c5c9
AS
8185 return rtype;
8186}
8187
8188/* An ordinary record type (with fixed-length fields) that describes
8189 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8190 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8191 should be in DVAL, a record value; it may be NULL if the object
8192 at ADDR itself contains any necessary discriminant values.
8193 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8194 values from the record are needed. Except in the case that DVAL,
8195 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8196 unchecked) is replaced by a particular branch of the variant.
8197
8198 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8199 is questionable and may be removed. It can arise during the
8200 processing of an unconstrained-array-of-record type where all the
8201 variant branches have exactly the same size. This is because in
8202 such cases, the compiler does not bother to use the XVS convention
8203 when encoding the record. I am currently dubious of this
8204 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8205
d2e4a39e 8206static struct type *
fc1a4b47 8207to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8208 CORE_ADDR address, struct value *dval)
14f9c5c9 8209{
d2e4a39e 8210 struct type *templ_type;
14f9c5c9 8211
876cecd0 8212 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8213 return type0;
8214
d2e4a39e 8215 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8216
8217 if (templ_type != NULL)
8218 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8219 else if (variant_field_index (type0) >= 0)
8220 {
8221 if (dval == NULL && valaddr == NULL && address == 0)
8222 return type0;
8223 return to_record_with_fixed_variant_part (type0, valaddr, address,
8224 dval);
8225 }
14f9c5c9
AS
8226 else
8227 {
876cecd0 8228 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8229 return type0;
8230 }
8231
8232}
8233
8234/* An ordinary record type (with fixed-length fields) that describes
8235 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8236 union type. Any necessary discriminants' values should be in DVAL,
8237 a record value. That is, this routine selects the appropriate
8238 branch of the union at ADDR according to the discriminant value
b1f33ddd 8239 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8240 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8241
d2e4a39e 8242static struct type *
fc1a4b47 8243to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8244 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8245{
8246 int which;
d2e4a39e
AS
8247 struct type *templ_type;
8248 struct type *var_type;
14f9c5c9
AS
8249
8250 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8251 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8252 else
14f9c5c9
AS
8253 var_type = var_type0;
8254
8255 templ_type = ada_find_parallel_type (var_type, "___XVU");
8256
8257 if (templ_type != NULL)
8258 var_type = templ_type;
8259
b1f33ddd
JB
8260 if (is_unchecked_variant (var_type, value_type (dval)))
8261 return var_type0;
d2e4a39e
AS
8262 which =
8263 ada_which_variant_applies (var_type,
0fd88904 8264 value_type (dval), value_contents (dval));
14f9c5c9
AS
8265
8266 if (which < 0)
e9bb382b 8267 return empty_record (var_type);
14f9c5c9 8268 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8269 return to_fixed_record_type
d2e4a39e
AS
8270 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8271 valaddr, address, dval);
4c4b4cd2 8272 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8273 return
8274 to_fixed_record_type
8275 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8276 else
8277 return TYPE_FIELD_TYPE (var_type, which);
8278}
8279
8280/* Assuming that TYPE0 is an array type describing the type of a value
8281 at ADDR, and that DVAL describes a record containing any
8282 discriminants used in TYPE0, returns a type for the value that
8283 contains no dynamic components (that is, no components whose sizes
8284 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8285 true, gives an error message if the resulting type's size is over
4c4b4cd2 8286 varsize_limit. */
14f9c5c9 8287
d2e4a39e
AS
8288static struct type *
8289to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8290 int ignore_too_big)
14f9c5c9 8291{
d2e4a39e
AS
8292 struct type *index_type_desc;
8293 struct type *result;
ad82864c 8294 int constrained_packed_array_p;
14f9c5c9 8295
b0dd7688 8296 type0 = ada_check_typedef (type0);
284614f0 8297 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8298 return type0;
14f9c5c9 8299
ad82864c
JB
8300 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8301 if (constrained_packed_array_p)
8302 type0 = decode_constrained_packed_array_type (type0);
284614f0 8303
14f9c5c9 8304 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8305 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8306 if (index_type_desc == NULL)
8307 {
61ee279c 8308 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8309
14f9c5c9 8310 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8311 depend on the contents of the array in properly constructed
8312 debugging data. */
529cad9c
PH
8313 /* Create a fixed version of the array element type.
8314 We're not providing the address of an element here,
e1d5a0d2 8315 and thus the actual object value cannot be inspected to do
529cad9c
PH
8316 the conversion. This should not be a problem, since arrays of
8317 unconstrained objects are not allowed. In particular, all
8318 the elements of an array of a tagged type should all be of
8319 the same type specified in the debugging info. No need to
8320 consult the object tag. */
1ed6ede0 8321 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8322
284614f0
JB
8323 /* Make sure we always create a new array type when dealing with
8324 packed array types, since we're going to fix-up the array
8325 type length and element bitsize a little further down. */
ad82864c 8326 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8327 result = type0;
14f9c5c9 8328 else
e9bb382b 8329 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8330 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8331 }
8332 else
8333 {
8334 int i;
8335 struct type *elt_type0;
8336
8337 elt_type0 = type0;
8338 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8339 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8340
8341 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8342 depend on the contents of the array in properly constructed
8343 debugging data. */
529cad9c
PH
8344 /* Create a fixed version of the array element type.
8345 We're not providing the address of an element here,
e1d5a0d2 8346 and thus the actual object value cannot be inspected to do
529cad9c
PH
8347 the conversion. This should not be a problem, since arrays of
8348 unconstrained objects are not allowed. In particular, all
8349 the elements of an array of a tagged type should all be of
8350 the same type specified in the debugging info. No need to
8351 consult the object tag. */
1ed6ede0
JB
8352 result =
8353 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8354
8355 elt_type0 = type0;
14f9c5c9 8356 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8357 {
8358 struct type *range_type =
28c85d6c 8359 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8360
e9bb382b 8361 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8362 result, range_type);
1ce677a4 8363 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8364 }
d2e4a39e 8365 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8366 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8367 }
8368
2e6fda7d
JB
8369 /* We want to preserve the type name. This can be useful when
8370 trying to get the type name of a value that has already been
8371 printed (for instance, if the user did "print VAR; whatis $". */
8372 TYPE_NAME (result) = TYPE_NAME (type0);
8373
ad82864c 8374 if (constrained_packed_array_p)
284614f0
JB
8375 {
8376 /* So far, the resulting type has been created as if the original
8377 type was a regular (non-packed) array type. As a result, the
8378 bitsize of the array elements needs to be set again, and the array
8379 length needs to be recomputed based on that bitsize. */
8380 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8381 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8382
8383 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8384 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8385 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8386 TYPE_LENGTH (result)++;
8387 }
8388
876cecd0 8389 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8390 return result;
d2e4a39e 8391}
14f9c5c9
AS
8392
8393
8394/* A standard type (containing no dynamically sized components)
8395 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8396 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8397 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8398 ADDRESS or in VALADDR contains these discriminants.
8399
1ed6ede0
JB
8400 If CHECK_TAG is not null, in the case of tagged types, this function
8401 attempts to locate the object's tag and use it to compute the actual
8402 type. However, when ADDRESS is null, we cannot use it to determine the
8403 location of the tag, and therefore compute the tagged type's actual type.
8404 So we return the tagged type without consulting the tag. */
529cad9c 8405
f192137b
JB
8406static struct type *
8407ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8408 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8409{
61ee279c 8410 type = ada_check_typedef (type);
d2e4a39e
AS
8411 switch (TYPE_CODE (type))
8412 {
8413 default:
14f9c5c9 8414 return type;
d2e4a39e 8415 case TYPE_CODE_STRUCT:
4c4b4cd2 8416 {
76a01679 8417 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8418 struct type *fixed_record_type =
8419 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8420
529cad9c
PH
8421 /* If STATIC_TYPE is a tagged type and we know the object's address,
8422 then we can determine its tag, and compute the object's actual
0963b4bd 8423 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8424 type (the parent part of the record may have dynamic fields
8425 and the way the location of _tag is expressed may depend on
8426 them). */
529cad9c 8427
1ed6ede0 8428 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8429 {
b50d69b5
JG
8430 struct value *tag =
8431 value_tag_from_contents_and_address
8432 (fixed_record_type,
8433 valaddr,
8434 address);
8435 struct type *real_type = type_from_tag (tag);
8436 struct value *obj =
8437 value_from_contents_and_address (fixed_record_type,
8438 valaddr,
8439 address);
9f1f738a 8440 fixed_record_type = value_type (obj);
76a01679 8441 if (real_type != NULL)
b50d69b5
JG
8442 return to_fixed_record_type
8443 (real_type, NULL,
8444 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8445 }
4af88198
JB
8446
8447 /* Check to see if there is a parallel ___XVZ variable.
8448 If there is, then it provides the actual size of our type. */
8449 else if (ada_type_name (fixed_record_type) != NULL)
8450 {
0d5cff50 8451 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8452 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8453 int xvz_found = 0;
8454 LONGEST size;
8455
88c15c34 8456 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8457 size = get_int_var_value (xvz_name, &xvz_found);
8458 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8459 {
8460 fixed_record_type = copy_type (fixed_record_type);
8461 TYPE_LENGTH (fixed_record_type) = size;
8462
8463 /* The FIXED_RECORD_TYPE may have be a stub. We have
8464 observed this when the debugging info is STABS, and
8465 apparently it is something that is hard to fix.
8466
8467 In practice, we don't need the actual type definition
8468 at all, because the presence of the XVZ variable allows us
8469 to assume that there must be a XVS type as well, which we
8470 should be able to use later, when we need the actual type
8471 definition.
8472
8473 In the meantime, pretend that the "fixed" type we are
8474 returning is NOT a stub, because this can cause trouble
8475 when using this type to create new types targeting it.
8476 Indeed, the associated creation routines often check
8477 whether the target type is a stub and will try to replace
0963b4bd 8478 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8479 might cause the new type to have the wrong size too.
8480 Consider the case of an array, for instance, where the size
8481 of the array is computed from the number of elements in
8482 our array multiplied by the size of its element. */
8483 TYPE_STUB (fixed_record_type) = 0;
8484 }
8485 }
1ed6ede0 8486 return fixed_record_type;
4c4b4cd2 8487 }
d2e4a39e 8488 case TYPE_CODE_ARRAY:
4c4b4cd2 8489 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8490 case TYPE_CODE_UNION:
8491 if (dval == NULL)
4c4b4cd2 8492 return type;
d2e4a39e 8493 else
4c4b4cd2 8494 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8495 }
14f9c5c9
AS
8496}
8497
f192137b
JB
8498/* The same as ada_to_fixed_type_1, except that it preserves the type
8499 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8500
8501 The typedef layer needs be preserved in order to differentiate between
8502 arrays and array pointers when both types are implemented using the same
8503 fat pointer. In the array pointer case, the pointer is encoded as
8504 a typedef of the pointer type. For instance, considering:
8505
8506 type String_Access is access String;
8507 S1 : String_Access := null;
8508
8509 To the debugger, S1 is defined as a typedef of type String. But
8510 to the user, it is a pointer. So if the user tries to print S1,
8511 we should not dereference the array, but print the array address
8512 instead.
8513
8514 If we didn't preserve the typedef layer, we would lose the fact that
8515 the type is to be presented as a pointer (needs de-reference before
8516 being printed). And we would also use the source-level type name. */
f192137b
JB
8517
8518struct type *
8519ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8520 CORE_ADDR address, struct value *dval, int check_tag)
8521
8522{
8523 struct type *fixed_type =
8524 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8525
96dbd2c1
JB
8526 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8527 then preserve the typedef layer.
8528
8529 Implementation note: We can only check the main-type portion of
8530 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8531 from TYPE now returns a type that has the same instance flags
8532 as TYPE. For instance, if TYPE is a "typedef const", and its
8533 target type is a "struct", then the typedef elimination will return
8534 a "const" version of the target type. See check_typedef for more
8535 details about how the typedef layer elimination is done.
8536
8537 brobecker/2010-11-19: It seems to me that the only case where it is
8538 useful to preserve the typedef layer is when dealing with fat pointers.
8539 Perhaps, we could add a check for that and preserve the typedef layer
8540 only in that situation. But this seems unecessary so far, probably
8541 because we call check_typedef/ada_check_typedef pretty much everywhere.
8542 */
f192137b 8543 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8544 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8545 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8546 return type;
8547
8548 return fixed_type;
8549}
8550
14f9c5c9 8551/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8552 TYPE0, but based on no runtime data. */
14f9c5c9 8553
d2e4a39e
AS
8554static struct type *
8555to_static_fixed_type (struct type *type0)
14f9c5c9 8556{
d2e4a39e 8557 struct type *type;
14f9c5c9
AS
8558
8559 if (type0 == NULL)
8560 return NULL;
8561
876cecd0 8562 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8563 return type0;
8564
61ee279c 8565 type0 = ada_check_typedef (type0);
d2e4a39e 8566
14f9c5c9
AS
8567 switch (TYPE_CODE (type0))
8568 {
8569 default:
8570 return type0;
8571 case TYPE_CODE_STRUCT:
8572 type = dynamic_template_type (type0);
d2e4a39e 8573 if (type != NULL)
4c4b4cd2
PH
8574 return template_to_static_fixed_type (type);
8575 else
8576 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8577 case TYPE_CODE_UNION:
8578 type = ada_find_parallel_type (type0, "___XVU");
8579 if (type != NULL)
4c4b4cd2
PH
8580 return template_to_static_fixed_type (type);
8581 else
8582 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8583 }
8584}
8585
4c4b4cd2
PH
8586/* A static approximation of TYPE with all type wrappers removed. */
8587
d2e4a39e
AS
8588static struct type *
8589static_unwrap_type (struct type *type)
14f9c5c9
AS
8590{
8591 if (ada_is_aligner_type (type))
8592 {
61ee279c 8593 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8594 if (ada_type_name (type1) == NULL)
4c4b4cd2 8595 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8596
8597 return static_unwrap_type (type1);
8598 }
d2e4a39e 8599 else
14f9c5c9 8600 {
d2e4a39e 8601 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8602
d2e4a39e 8603 if (raw_real_type == type)
4c4b4cd2 8604 return type;
14f9c5c9 8605 else
4c4b4cd2 8606 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8607 }
8608}
8609
8610/* In some cases, incomplete and private types require
4c4b4cd2 8611 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8612 type Foo;
8613 type FooP is access Foo;
8614 V: FooP;
8615 type Foo is array ...;
4c4b4cd2 8616 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8617 cross-references to such types, we instead substitute for FooP a
8618 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8619 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8620
8621/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8622 exists, otherwise TYPE. */
8623
d2e4a39e 8624struct type *
61ee279c 8625ada_check_typedef (struct type *type)
14f9c5c9 8626{
727e3d2e
JB
8627 if (type == NULL)
8628 return NULL;
8629
720d1a40
JB
8630 /* If our type is a typedef type of a fat pointer, then we're done.
8631 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8632 what allows us to distinguish between fat pointers that represent
8633 array types, and fat pointers that represent array access types
8634 (in both cases, the compiler implements them as fat pointers). */
8635 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8636 && is_thick_pntr (ada_typedef_target_type (type)))
8637 return type;
8638
14f9c5c9
AS
8639 CHECK_TYPEDEF (type);
8640 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8641 || !TYPE_STUB (type)
14f9c5c9
AS
8642 || TYPE_TAG_NAME (type) == NULL)
8643 return type;
d2e4a39e 8644 else
14f9c5c9 8645 {
0d5cff50 8646 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8647 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8648
05e522ef
JB
8649 if (type1 == NULL)
8650 return type;
8651
8652 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8653 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8654 types, only for the typedef-to-array types). If that's the case,
8655 strip the typedef layer. */
8656 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8657 type1 = ada_check_typedef (type1);
8658
8659 return type1;
14f9c5c9
AS
8660 }
8661}
8662
8663/* A value representing the data at VALADDR/ADDRESS as described by
8664 type TYPE0, but with a standard (static-sized) type that correctly
8665 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8666 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8667 creation of struct values]. */
14f9c5c9 8668
4c4b4cd2
PH
8669static struct value *
8670ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8671 struct value *val0)
14f9c5c9 8672{
1ed6ede0 8673 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8674
14f9c5c9
AS
8675 if (type == type0 && val0 != NULL)
8676 return val0;
d2e4a39e 8677 else
4c4b4cd2
PH
8678 return value_from_contents_and_address (type, 0, address);
8679}
8680
8681/* A value representing VAL, but with a standard (static-sized) type
8682 that correctly describes it. Does not necessarily create a new
8683 value. */
8684
0c3acc09 8685struct value *
4c4b4cd2
PH
8686ada_to_fixed_value (struct value *val)
8687{
c48db5ca
JB
8688 val = unwrap_value (val);
8689 val = ada_to_fixed_value_create (value_type (val),
8690 value_address (val),
8691 val);
8692 return val;
14f9c5c9 8693}
d2e4a39e 8694\f
14f9c5c9 8695
14f9c5c9
AS
8696/* Attributes */
8697
4c4b4cd2
PH
8698/* Table mapping attribute numbers to names.
8699 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8700
d2e4a39e 8701static const char *attribute_names[] = {
14f9c5c9
AS
8702 "<?>",
8703
d2e4a39e 8704 "first",
14f9c5c9
AS
8705 "last",
8706 "length",
8707 "image",
14f9c5c9
AS
8708 "max",
8709 "min",
4c4b4cd2
PH
8710 "modulus",
8711 "pos",
8712 "size",
8713 "tag",
14f9c5c9 8714 "val",
14f9c5c9
AS
8715 0
8716};
8717
d2e4a39e 8718const char *
4c4b4cd2 8719ada_attribute_name (enum exp_opcode n)
14f9c5c9 8720{
4c4b4cd2
PH
8721 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8722 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8723 else
8724 return attribute_names[0];
8725}
8726
4c4b4cd2 8727/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8728
4c4b4cd2
PH
8729static LONGEST
8730pos_atr (struct value *arg)
14f9c5c9 8731{
24209737
PH
8732 struct value *val = coerce_ref (arg);
8733 struct type *type = value_type (val);
14f9c5c9 8734
d2e4a39e 8735 if (!discrete_type_p (type))
323e0a4a 8736 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8737
8738 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8739 {
8740 int i;
24209737 8741 LONGEST v = value_as_long (val);
14f9c5c9 8742
d2e4a39e 8743 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8744 {
14e75d8e 8745 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8746 return i;
8747 }
323e0a4a 8748 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8749 }
8750 else
24209737 8751 return value_as_long (val);
4c4b4cd2
PH
8752}
8753
8754static struct value *
3cb382c9 8755value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8756{
3cb382c9 8757 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8758}
8759
4c4b4cd2 8760/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8761
d2e4a39e
AS
8762static struct value *
8763value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8764{
d2e4a39e 8765 if (!discrete_type_p (type))
323e0a4a 8766 error (_("'VAL only defined on discrete types"));
df407dfe 8767 if (!integer_type_p (value_type (arg)))
323e0a4a 8768 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8769
8770 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8771 {
8772 long pos = value_as_long (arg);
5b4ee69b 8773
14f9c5c9 8774 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8775 error (_("argument to 'VAL out of range"));
14e75d8e 8776 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8777 }
8778 else
8779 return value_from_longest (type, value_as_long (arg));
8780}
14f9c5c9 8781\f
d2e4a39e 8782
4c4b4cd2 8783 /* Evaluation */
14f9c5c9 8784
4c4b4cd2
PH
8785/* True if TYPE appears to be an Ada character type.
8786 [At the moment, this is true only for Character and Wide_Character;
8787 It is a heuristic test that could stand improvement]. */
14f9c5c9 8788
d2e4a39e
AS
8789int
8790ada_is_character_type (struct type *type)
14f9c5c9 8791{
7b9f71f2
JB
8792 const char *name;
8793
8794 /* If the type code says it's a character, then assume it really is,
8795 and don't check any further. */
8796 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8797 return 1;
8798
8799 /* Otherwise, assume it's a character type iff it is a discrete type
8800 with a known character type name. */
8801 name = ada_type_name (type);
8802 return (name != NULL
8803 && (TYPE_CODE (type) == TYPE_CODE_INT
8804 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8805 && (strcmp (name, "character") == 0
8806 || strcmp (name, "wide_character") == 0
5a517ebd 8807 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8808 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8809}
8810
4c4b4cd2 8811/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8812
8813int
ebf56fd3 8814ada_is_string_type (struct type *type)
14f9c5c9 8815{
61ee279c 8816 type = ada_check_typedef (type);
d2e4a39e 8817 if (type != NULL
14f9c5c9 8818 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8819 && (ada_is_simple_array_type (type)
8820 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8821 && ada_array_arity (type) == 1)
8822 {
8823 struct type *elttype = ada_array_element_type (type, 1);
8824
8825 return ada_is_character_type (elttype);
8826 }
d2e4a39e 8827 else
14f9c5c9
AS
8828 return 0;
8829}
8830
5bf03f13
JB
8831/* The compiler sometimes provides a parallel XVS type for a given
8832 PAD type. Normally, it is safe to follow the PAD type directly,
8833 but older versions of the compiler have a bug that causes the offset
8834 of its "F" field to be wrong. Following that field in that case
8835 would lead to incorrect results, but this can be worked around
8836 by ignoring the PAD type and using the associated XVS type instead.
8837
8838 Set to True if the debugger should trust the contents of PAD types.
8839 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8840static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8841
8842/* True if TYPE is a struct type introduced by the compiler to force the
8843 alignment of a value. Such types have a single field with a
4c4b4cd2 8844 distinctive name. */
14f9c5c9
AS
8845
8846int
ebf56fd3 8847ada_is_aligner_type (struct type *type)
14f9c5c9 8848{
61ee279c 8849 type = ada_check_typedef (type);
714e53ab 8850
5bf03f13 8851 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8852 return 0;
8853
14f9c5c9 8854 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8855 && TYPE_NFIELDS (type) == 1
8856 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8857}
8858
8859/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8860 the parallel type. */
14f9c5c9 8861
d2e4a39e
AS
8862struct type *
8863ada_get_base_type (struct type *raw_type)
14f9c5c9 8864{
d2e4a39e
AS
8865 struct type *real_type_namer;
8866 struct type *raw_real_type;
14f9c5c9
AS
8867
8868 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8869 return raw_type;
8870
284614f0
JB
8871 if (ada_is_aligner_type (raw_type))
8872 /* The encoding specifies that we should always use the aligner type.
8873 So, even if this aligner type has an associated XVS type, we should
8874 simply ignore it.
8875
8876 According to the compiler gurus, an XVS type parallel to an aligner
8877 type may exist because of a stabs limitation. In stabs, aligner
8878 types are empty because the field has a variable-sized type, and
8879 thus cannot actually be used as an aligner type. As a result,
8880 we need the associated parallel XVS type to decode the type.
8881 Since the policy in the compiler is to not change the internal
8882 representation based on the debugging info format, we sometimes
8883 end up having a redundant XVS type parallel to the aligner type. */
8884 return raw_type;
8885
14f9c5c9 8886 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8887 if (real_type_namer == NULL
14f9c5c9
AS
8888 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8889 || TYPE_NFIELDS (real_type_namer) != 1)
8890 return raw_type;
8891
f80d3ff2
JB
8892 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8893 {
8894 /* This is an older encoding form where the base type needs to be
8895 looked up by name. We prefer the newer enconding because it is
8896 more efficient. */
8897 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8898 if (raw_real_type == NULL)
8899 return raw_type;
8900 else
8901 return raw_real_type;
8902 }
8903
8904 /* The field in our XVS type is a reference to the base type. */
8905 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8906}
14f9c5c9 8907
4c4b4cd2 8908/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8909
d2e4a39e
AS
8910struct type *
8911ada_aligned_type (struct type *type)
14f9c5c9
AS
8912{
8913 if (ada_is_aligner_type (type))
8914 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8915 else
8916 return ada_get_base_type (type);
8917}
8918
8919
8920/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8921 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8922
fc1a4b47
AC
8923const gdb_byte *
8924ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8925{
d2e4a39e 8926 if (ada_is_aligner_type (type))
14f9c5c9 8927 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8928 valaddr +
8929 TYPE_FIELD_BITPOS (type,
8930 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8931 else
8932 return valaddr;
8933}
8934
4c4b4cd2
PH
8935
8936
14f9c5c9 8937/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8938 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8939const char *
8940ada_enum_name (const char *name)
14f9c5c9 8941{
4c4b4cd2
PH
8942 static char *result;
8943 static size_t result_len = 0;
d2e4a39e 8944 char *tmp;
14f9c5c9 8945
4c4b4cd2
PH
8946 /* First, unqualify the enumeration name:
8947 1. Search for the last '.' character. If we find one, then skip
177b42fe 8948 all the preceding characters, the unqualified name starts
76a01679 8949 right after that dot.
4c4b4cd2 8950 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8951 translates dots into "__". Search forward for double underscores,
8952 but stop searching when we hit an overloading suffix, which is
8953 of the form "__" followed by digits. */
4c4b4cd2 8954
c3e5cd34
PH
8955 tmp = strrchr (name, '.');
8956 if (tmp != NULL)
4c4b4cd2
PH
8957 name = tmp + 1;
8958 else
14f9c5c9 8959 {
4c4b4cd2
PH
8960 while ((tmp = strstr (name, "__")) != NULL)
8961 {
8962 if (isdigit (tmp[2]))
8963 break;
8964 else
8965 name = tmp + 2;
8966 }
14f9c5c9
AS
8967 }
8968
8969 if (name[0] == 'Q')
8970 {
14f9c5c9 8971 int v;
5b4ee69b 8972
14f9c5c9 8973 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8974 {
8975 if (sscanf (name + 2, "%x", &v) != 1)
8976 return name;
8977 }
14f9c5c9 8978 else
4c4b4cd2 8979 return name;
14f9c5c9 8980
4c4b4cd2 8981 GROW_VECT (result, result_len, 16);
14f9c5c9 8982 if (isascii (v) && isprint (v))
88c15c34 8983 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8984 else if (name[1] == 'U')
88c15c34 8985 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8986 else
88c15c34 8987 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8988
8989 return result;
8990 }
d2e4a39e 8991 else
4c4b4cd2 8992 {
c3e5cd34
PH
8993 tmp = strstr (name, "__");
8994 if (tmp == NULL)
8995 tmp = strstr (name, "$");
8996 if (tmp != NULL)
4c4b4cd2
PH
8997 {
8998 GROW_VECT (result, result_len, tmp - name + 1);
8999 strncpy (result, name, tmp - name);
9000 result[tmp - name] = '\0';
9001 return result;
9002 }
9003
9004 return name;
9005 }
14f9c5c9
AS
9006}
9007
14f9c5c9
AS
9008/* Evaluate the subexpression of EXP starting at *POS as for
9009 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9010 expression. */
14f9c5c9 9011
d2e4a39e
AS
9012static struct value *
9013evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9014{
4b27a620 9015 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9016}
9017
9018/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9019 value it wraps. */
14f9c5c9 9020
d2e4a39e
AS
9021static struct value *
9022unwrap_value (struct value *val)
14f9c5c9 9023{
df407dfe 9024 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9025
14f9c5c9
AS
9026 if (ada_is_aligner_type (type))
9027 {
de4d072f 9028 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9029 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9030
14f9c5c9 9031 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9032 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9033
9034 return unwrap_value (v);
9035 }
d2e4a39e 9036 else
14f9c5c9 9037 {
d2e4a39e 9038 struct type *raw_real_type =
61ee279c 9039 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9040
5bf03f13
JB
9041 /* If there is no parallel XVS or XVE type, then the value is
9042 already unwrapped. Return it without further modification. */
9043 if ((type == raw_real_type)
9044 && ada_find_parallel_type (type, "___XVE") == NULL)
9045 return val;
14f9c5c9 9046
d2e4a39e 9047 return
4c4b4cd2
PH
9048 coerce_unspec_val_to_type
9049 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9050 value_address (val),
1ed6ede0 9051 NULL, 1));
14f9c5c9
AS
9052 }
9053}
d2e4a39e
AS
9054
9055static struct value *
9056cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9057{
9058 LONGEST val;
9059
df407dfe 9060 if (type == value_type (arg))
14f9c5c9 9061 return arg;
df407dfe 9062 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9063 val = ada_float_to_fixed (type,
df407dfe 9064 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9065 value_as_long (arg)));
d2e4a39e 9066 else
14f9c5c9 9067 {
a53b7a21 9068 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9069
14f9c5c9
AS
9070 val = ada_float_to_fixed (type, argd);
9071 }
9072
9073 return value_from_longest (type, val);
9074}
9075
d2e4a39e 9076static struct value *
a53b7a21 9077cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9078{
df407dfe 9079 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9080 value_as_long (arg));
5b4ee69b 9081
a53b7a21 9082 return value_from_double (type, val);
14f9c5c9
AS
9083}
9084
d99dcf51
JB
9085/* Given two array types T1 and T2, return nonzero iff both arrays
9086 contain the same number of elements. */
9087
9088static int
9089ada_same_array_size_p (struct type *t1, struct type *t2)
9090{
9091 LONGEST lo1, hi1, lo2, hi2;
9092
9093 /* Get the array bounds in order to verify that the size of
9094 the two arrays match. */
9095 if (!get_array_bounds (t1, &lo1, &hi1)
9096 || !get_array_bounds (t2, &lo2, &hi2))
9097 error (_("unable to determine array bounds"));
9098
9099 /* To make things easier for size comparison, normalize a bit
9100 the case of empty arrays by making sure that the difference
9101 between upper bound and lower bound is always -1. */
9102 if (lo1 > hi1)
9103 hi1 = lo1 - 1;
9104 if (lo2 > hi2)
9105 hi2 = lo2 - 1;
9106
9107 return (hi1 - lo1 == hi2 - lo2);
9108}
9109
9110/* Assuming that VAL is an array of integrals, and TYPE represents
9111 an array with the same number of elements, but with wider integral
9112 elements, return an array "casted" to TYPE. In practice, this
9113 means that the returned array is built by casting each element
9114 of the original array into TYPE's (wider) element type. */
9115
9116static struct value *
9117ada_promote_array_of_integrals (struct type *type, struct value *val)
9118{
9119 struct type *elt_type = TYPE_TARGET_TYPE (type);
9120 LONGEST lo, hi;
9121 struct value *res;
9122 LONGEST i;
9123
9124 /* Verify that both val and type are arrays of scalars, and
9125 that the size of val's elements is smaller than the size
9126 of type's element. */
9127 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9128 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9129 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9130 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9131 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9132 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9133
9134 if (!get_array_bounds (type, &lo, &hi))
9135 error (_("unable to determine array bounds"));
9136
9137 res = allocate_value (type);
9138
9139 /* Promote each array element. */
9140 for (i = 0; i < hi - lo + 1; i++)
9141 {
9142 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9143
9144 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9145 value_contents_all (elt), TYPE_LENGTH (elt_type));
9146 }
9147
9148 return res;
9149}
9150
4c4b4cd2
PH
9151/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9152 return the converted value. */
9153
d2e4a39e
AS
9154static struct value *
9155coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9156{
df407dfe 9157 struct type *type2 = value_type (val);
5b4ee69b 9158
14f9c5c9
AS
9159 if (type == type2)
9160 return val;
9161
61ee279c
PH
9162 type2 = ada_check_typedef (type2);
9163 type = ada_check_typedef (type);
14f9c5c9 9164
d2e4a39e
AS
9165 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9166 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9167 {
9168 val = ada_value_ind (val);
df407dfe 9169 type2 = value_type (val);
14f9c5c9
AS
9170 }
9171
d2e4a39e 9172 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9173 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9174 {
d99dcf51
JB
9175 if (!ada_same_array_size_p (type, type2))
9176 error (_("cannot assign arrays of different length"));
9177
9178 if (is_integral_type (TYPE_TARGET_TYPE (type))
9179 && is_integral_type (TYPE_TARGET_TYPE (type2))
9180 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9181 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9182 {
9183 /* Allow implicit promotion of the array elements to
9184 a wider type. */
9185 return ada_promote_array_of_integrals (type, val);
9186 }
9187
9188 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9189 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9190 error (_("Incompatible types in assignment"));
04624583 9191 deprecated_set_value_type (val, type);
14f9c5c9 9192 }
d2e4a39e 9193 return val;
14f9c5c9
AS
9194}
9195
4c4b4cd2
PH
9196static struct value *
9197ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9198{
9199 struct value *val;
9200 struct type *type1, *type2;
9201 LONGEST v, v1, v2;
9202
994b9211
AC
9203 arg1 = coerce_ref (arg1);
9204 arg2 = coerce_ref (arg2);
18af8284
JB
9205 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9206 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9207
76a01679
JB
9208 if (TYPE_CODE (type1) != TYPE_CODE_INT
9209 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9210 return value_binop (arg1, arg2, op);
9211
76a01679 9212 switch (op)
4c4b4cd2
PH
9213 {
9214 case BINOP_MOD:
9215 case BINOP_DIV:
9216 case BINOP_REM:
9217 break;
9218 default:
9219 return value_binop (arg1, arg2, op);
9220 }
9221
9222 v2 = value_as_long (arg2);
9223 if (v2 == 0)
323e0a4a 9224 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9225
9226 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9227 return value_binop (arg1, arg2, op);
9228
9229 v1 = value_as_long (arg1);
9230 switch (op)
9231 {
9232 case BINOP_DIV:
9233 v = v1 / v2;
76a01679
JB
9234 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9235 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9236 break;
9237 case BINOP_REM:
9238 v = v1 % v2;
76a01679
JB
9239 if (v * v1 < 0)
9240 v -= v2;
4c4b4cd2
PH
9241 break;
9242 default:
9243 /* Should not reach this point. */
9244 v = 0;
9245 }
9246
9247 val = allocate_value (type1);
990a07ab 9248 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9249 TYPE_LENGTH (value_type (val)),
9250 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9251 return val;
9252}
9253
9254static int
9255ada_value_equal (struct value *arg1, struct value *arg2)
9256{
df407dfe
AC
9257 if (ada_is_direct_array_type (value_type (arg1))
9258 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9259 {
f58b38bf
JB
9260 /* Automatically dereference any array reference before
9261 we attempt to perform the comparison. */
9262 arg1 = ada_coerce_ref (arg1);
9263 arg2 = ada_coerce_ref (arg2);
9264
4c4b4cd2
PH
9265 arg1 = ada_coerce_to_simple_array (arg1);
9266 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9267 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9268 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9269 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9270 /* FIXME: The following works only for types whose
76a01679
JB
9271 representations use all bits (no padding or undefined bits)
9272 and do not have user-defined equality. */
9273 return
df407dfe 9274 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9275 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9276 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9277 }
9278 return value_equal (arg1, arg2);
9279}
9280
52ce6436
PH
9281/* Total number of component associations in the aggregate starting at
9282 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9283 OP_AGGREGATE. */
52ce6436
PH
9284
9285static int
9286num_component_specs (struct expression *exp, int pc)
9287{
9288 int n, m, i;
5b4ee69b 9289
52ce6436
PH
9290 m = exp->elts[pc + 1].longconst;
9291 pc += 3;
9292 n = 0;
9293 for (i = 0; i < m; i += 1)
9294 {
9295 switch (exp->elts[pc].opcode)
9296 {
9297 default:
9298 n += 1;
9299 break;
9300 case OP_CHOICES:
9301 n += exp->elts[pc + 1].longconst;
9302 break;
9303 }
9304 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9305 }
9306 return n;
9307}
9308
9309/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9310 component of LHS (a simple array or a record), updating *POS past
9311 the expression, assuming that LHS is contained in CONTAINER. Does
9312 not modify the inferior's memory, nor does it modify LHS (unless
9313 LHS == CONTAINER). */
9314
9315static void
9316assign_component (struct value *container, struct value *lhs, LONGEST index,
9317 struct expression *exp, int *pos)
9318{
9319 struct value *mark = value_mark ();
9320 struct value *elt;
5b4ee69b 9321
52ce6436
PH
9322 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9323 {
22601c15
UW
9324 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9325 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9326
52ce6436
PH
9327 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9328 }
9329 else
9330 {
9331 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9332 elt = ada_to_fixed_value (elt);
52ce6436
PH
9333 }
9334
9335 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9336 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9337 else
9338 value_assign_to_component (container, elt,
9339 ada_evaluate_subexp (NULL, exp, pos,
9340 EVAL_NORMAL));
9341
9342 value_free_to_mark (mark);
9343}
9344
9345/* Assuming that LHS represents an lvalue having a record or array
9346 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9347 of that aggregate's value to LHS, advancing *POS past the
9348 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9349 lvalue containing LHS (possibly LHS itself). Does not modify
9350 the inferior's memory, nor does it modify the contents of
0963b4bd 9351 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9352
9353static struct value *
9354assign_aggregate (struct value *container,
9355 struct value *lhs, struct expression *exp,
9356 int *pos, enum noside noside)
9357{
9358 struct type *lhs_type;
9359 int n = exp->elts[*pos+1].longconst;
9360 LONGEST low_index, high_index;
9361 int num_specs;
9362 LONGEST *indices;
9363 int max_indices, num_indices;
52ce6436 9364 int i;
52ce6436
PH
9365
9366 *pos += 3;
9367 if (noside != EVAL_NORMAL)
9368 {
52ce6436
PH
9369 for (i = 0; i < n; i += 1)
9370 ada_evaluate_subexp (NULL, exp, pos, noside);
9371 return container;
9372 }
9373
9374 container = ada_coerce_ref (container);
9375 if (ada_is_direct_array_type (value_type (container)))
9376 container = ada_coerce_to_simple_array (container);
9377 lhs = ada_coerce_ref (lhs);
9378 if (!deprecated_value_modifiable (lhs))
9379 error (_("Left operand of assignment is not a modifiable lvalue."));
9380
9381 lhs_type = value_type (lhs);
9382 if (ada_is_direct_array_type (lhs_type))
9383 {
9384 lhs = ada_coerce_to_simple_array (lhs);
9385 lhs_type = value_type (lhs);
9386 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9387 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9388 }
9389 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9390 {
9391 low_index = 0;
9392 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9393 }
9394 else
9395 error (_("Left-hand side must be array or record."));
9396
9397 num_specs = num_component_specs (exp, *pos - 3);
9398 max_indices = 4 * num_specs + 4;
9399 indices = alloca (max_indices * sizeof (indices[0]));
9400 indices[0] = indices[1] = low_index - 1;
9401 indices[2] = indices[3] = high_index + 1;
9402 num_indices = 4;
9403
9404 for (i = 0; i < n; i += 1)
9405 {
9406 switch (exp->elts[*pos].opcode)
9407 {
1fbf5ada
JB
9408 case OP_CHOICES:
9409 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9410 &num_indices, max_indices,
9411 low_index, high_index);
9412 break;
9413 case OP_POSITIONAL:
9414 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9415 &num_indices, max_indices,
9416 low_index, high_index);
1fbf5ada
JB
9417 break;
9418 case OP_OTHERS:
9419 if (i != n-1)
9420 error (_("Misplaced 'others' clause"));
9421 aggregate_assign_others (container, lhs, exp, pos, indices,
9422 num_indices, low_index, high_index);
9423 break;
9424 default:
9425 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9426 }
9427 }
9428
9429 return container;
9430}
9431
9432/* Assign into the component of LHS indexed by the OP_POSITIONAL
9433 construct at *POS, updating *POS past the construct, given that
9434 the positions are relative to lower bound LOW, where HIGH is the
9435 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9436 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9437 assign_aggregate. */
52ce6436
PH
9438static void
9439aggregate_assign_positional (struct value *container,
9440 struct value *lhs, struct expression *exp,
9441 int *pos, LONGEST *indices, int *num_indices,
9442 int max_indices, LONGEST low, LONGEST high)
9443{
9444 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9445
9446 if (ind - 1 == high)
e1d5a0d2 9447 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9448 if (ind <= high)
9449 {
9450 add_component_interval (ind, ind, indices, num_indices, max_indices);
9451 *pos += 3;
9452 assign_component (container, lhs, ind, exp, pos);
9453 }
9454 else
9455 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9456}
9457
9458/* Assign into the components of LHS indexed by the OP_CHOICES
9459 construct at *POS, updating *POS past the construct, given that
9460 the allowable indices are LOW..HIGH. Record the indices assigned
9461 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9462 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9463static void
9464aggregate_assign_from_choices (struct value *container,
9465 struct value *lhs, struct expression *exp,
9466 int *pos, LONGEST *indices, int *num_indices,
9467 int max_indices, LONGEST low, LONGEST high)
9468{
9469 int j;
9470 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9471 int choice_pos, expr_pc;
9472 int is_array = ada_is_direct_array_type (value_type (lhs));
9473
9474 choice_pos = *pos += 3;
9475
9476 for (j = 0; j < n_choices; j += 1)
9477 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9478 expr_pc = *pos;
9479 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9480
9481 for (j = 0; j < n_choices; j += 1)
9482 {
9483 LONGEST lower, upper;
9484 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9485
52ce6436
PH
9486 if (op == OP_DISCRETE_RANGE)
9487 {
9488 choice_pos += 1;
9489 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9490 EVAL_NORMAL));
9491 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9492 EVAL_NORMAL));
9493 }
9494 else if (is_array)
9495 {
9496 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9497 EVAL_NORMAL));
9498 upper = lower;
9499 }
9500 else
9501 {
9502 int ind;
0d5cff50 9503 const char *name;
5b4ee69b 9504
52ce6436
PH
9505 switch (op)
9506 {
9507 case OP_NAME:
9508 name = &exp->elts[choice_pos + 2].string;
9509 break;
9510 case OP_VAR_VALUE:
9511 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9512 break;
9513 default:
9514 error (_("Invalid record component association."));
9515 }
9516 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9517 ind = 0;
9518 if (! find_struct_field (name, value_type (lhs), 0,
9519 NULL, NULL, NULL, NULL, &ind))
9520 error (_("Unknown component name: %s."), name);
9521 lower = upper = ind;
9522 }
9523
9524 if (lower <= upper && (lower < low || upper > high))
9525 error (_("Index in component association out of bounds."));
9526
9527 add_component_interval (lower, upper, indices, num_indices,
9528 max_indices);
9529 while (lower <= upper)
9530 {
9531 int pos1;
5b4ee69b 9532
52ce6436
PH
9533 pos1 = expr_pc;
9534 assign_component (container, lhs, lower, exp, &pos1);
9535 lower += 1;
9536 }
9537 }
9538}
9539
9540/* Assign the value of the expression in the OP_OTHERS construct in
9541 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9542 have not been previously assigned. The index intervals already assigned
9543 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9544 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9545static void
9546aggregate_assign_others (struct value *container,
9547 struct value *lhs, struct expression *exp,
9548 int *pos, LONGEST *indices, int num_indices,
9549 LONGEST low, LONGEST high)
9550{
9551 int i;
5ce64950 9552 int expr_pc = *pos + 1;
52ce6436
PH
9553
9554 for (i = 0; i < num_indices - 2; i += 2)
9555 {
9556 LONGEST ind;
5b4ee69b 9557
52ce6436
PH
9558 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9559 {
5ce64950 9560 int localpos;
5b4ee69b 9561
5ce64950
MS
9562 localpos = expr_pc;
9563 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9564 }
9565 }
9566 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9567}
9568
9569/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9570 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9571 modifying *SIZE as needed. It is an error if *SIZE exceeds
9572 MAX_SIZE. The resulting intervals do not overlap. */
9573static void
9574add_component_interval (LONGEST low, LONGEST high,
9575 LONGEST* indices, int *size, int max_size)
9576{
9577 int i, j;
5b4ee69b 9578
52ce6436
PH
9579 for (i = 0; i < *size; i += 2) {
9580 if (high >= indices[i] && low <= indices[i + 1])
9581 {
9582 int kh;
5b4ee69b 9583
52ce6436
PH
9584 for (kh = i + 2; kh < *size; kh += 2)
9585 if (high < indices[kh])
9586 break;
9587 if (low < indices[i])
9588 indices[i] = low;
9589 indices[i + 1] = indices[kh - 1];
9590 if (high > indices[i + 1])
9591 indices[i + 1] = high;
9592 memcpy (indices + i + 2, indices + kh, *size - kh);
9593 *size -= kh - i - 2;
9594 return;
9595 }
9596 else if (high < indices[i])
9597 break;
9598 }
9599
9600 if (*size == max_size)
9601 error (_("Internal error: miscounted aggregate components."));
9602 *size += 2;
9603 for (j = *size-1; j >= i+2; j -= 1)
9604 indices[j] = indices[j - 2];
9605 indices[i] = low;
9606 indices[i + 1] = high;
9607}
9608
6e48bd2c
JB
9609/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9610 is different. */
9611
9612static struct value *
9613ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9614{
9615 if (type == ada_check_typedef (value_type (arg2)))
9616 return arg2;
9617
9618 if (ada_is_fixed_point_type (type))
9619 return (cast_to_fixed (type, arg2));
9620
9621 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9622 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9623
9624 return value_cast (type, arg2);
9625}
9626
284614f0
JB
9627/* Evaluating Ada expressions, and printing their result.
9628 ------------------------------------------------------
9629
21649b50
JB
9630 1. Introduction:
9631 ----------------
9632
284614f0
JB
9633 We usually evaluate an Ada expression in order to print its value.
9634 We also evaluate an expression in order to print its type, which
9635 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9636 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9637 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9638 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9639 similar.
9640
9641 Evaluating expressions is a little more complicated for Ada entities
9642 than it is for entities in languages such as C. The main reason for
9643 this is that Ada provides types whose definition might be dynamic.
9644 One example of such types is variant records. Or another example
9645 would be an array whose bounds can only be known at run time.
9646
9647 The following description is a general guide as to what should be
9648 done (and what should NOT be done) in order to evaluate an expression
9649 involving such types, and when. This does not cover how the semantic
9650 information is encoded by GNAT as this is covered separatly. For the
9651 document used as the reference for the GNAT encoding, see exp_dbug.ads
9652 in the GNAT sources.
9653
9654 Ideally, we should embed each part of this description next to its
9655 associated code. Unfortunately, the amount of code is so vast right
9656 now that it's hard to see whether the code handling a particular
9657 situation might be duplicated or not. One day, when the code is
9658 cleaned up, this guide might become redundant with the comments
9659 inserted in the code, and we might want to remove it.
9660
21649b50
JB
9661 2. ``Fixing'' an Entity, the Simple Case:
9662 -----------------------------------------
9663
284614f0
JB
9664 When evaluating Ada expressions, the tricky issue is that they may
9665 reference entities whose type contents and size are not statically
9666 known. Consider for instance a variant record:
9667
9668 type Rec (Empty : Boolean := True) is record
9669 case Empty is
9670 when True => null;
9671 when False => Value : Integer;
9672 end case;
9673 end record;
9674 Yes : Rec := (Empty => False, Value => 1);
9675 No : Rec := (empty => True);
9676
9677 The size and contents of that record depends on the value of the
9678 descriminant (Rec.Empty). At this point, neither the debugging
9679 information nor the associated type structure in GDB are able to
9680 express such dynamic types. So what the debugger does is to create
9681 "fixed" versions of the type that applies to the specific object.
9682 We also informally refer to this opperation as "fixing" an object,
9683 which means creating its associated fixed type.
9684
9685 Example: when printing the value of variable "Yes" above, its fixed
9686 type would look like this:
9687
9688 type Rec is record
9689 Empty : Boolean;
9690 Value : Integer;
9691 end record;
9692
9693 On the other hand, if we printed the value of "No", its fixed type
9694 would become:
9695
9696 type Rec is record
9697 Empty : Boolean;
9698 end record;
9699
9700 Things become a little more complicated when trying to fix an entity
9701 with a dynamic type that directly contains another dynamic type,
9702 such as an array of variant records, for instance. There are
9703 two possible cases: Arrays, and records.
9704
21649b50
JB
9705 3. ``Fixing'' Arrays:
9706 ---------------------
9707
9708 The type structure in GDB describes an array in terms of its bounds,
9709 and the type of its elements. By design, all elements in the array
9710 have the same type and we cannot represent an array of variant elements
9711 using the current type structure in GDB. When fixing an array,
9712 we cannot fix the array element, as we would potentially need one
9713 fixed type per element of the array. As a result, the best we can do
9714 when fixing an array is to produce an array whose bounds and size
9715 are correct (allowing us to read it from memory), but without having
9716 touched its element type. Fixing each element will be done later,
9717 when (if) necessary.
9718
9719 Arrays are a little simpler to handle than records, because the same
9720 amount of memory is allocated for each element of the array, even if
1b536f04 9721 the amount of space actually used by each element differs from element
21649b50 9722 to element. Consider for instance the following array of type Rec:
284614f0
JB
9723
9724 type Rec_Array is array (1 .. 2) of Rec;
9725
1b536f04
JB
9726 The actual amount of memory occupied by each element might be different
9727 from element to element, depending on the value of their discriminant.
21649b50 9728 But the amount of space reserved for each element in the array remains
1b536f04 9729 fixed regardless. So we simply need to compute that size using
21649b50
JB
9730 the debugging information available, from which we can then determine
9731 the array size (we multiply the number of elements of the array by
9732 the size of each element).
9733
9734 The simplest case is when we have an array of a constrained element
9735 type. For instance, consider the following type declarations:
9736
9737 type Bounded_String (Max_Size : Integer) is
9738 Length : Integer;
9739 Buffer : String (1 .. Max_Size);
9740 end record;
9741 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9742
9743 In this case, the compiler describes the array as an array of
9744 variable-size elements (identified by its XVS suffix) for which
9745 the size can be read in the parallel XVZ variable.
9746
9747 In the case of an array of an unconstrained element type, the compiler
9748 wraps the array element inside a private PAD type. This type should not
9749 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9750 that we also use the adjective "aligner" in our code to designate
9751 these wrapper types.
9752
1b536f04 9753 In some cases, the size allocated for each element is statically
21649b50
JB
9754 known. In that case, the PAD type already has the correct size,
9755 and the array element should remain unfixed.
9756
9757 But there are cases when this size is not statically known.
9758 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9759
9760 type Dynamic is array (1 .. Five) of Integer;
9761 type Wrapper (Has_Length : Boolean := False) is record
9762 Data : Dynamic;
9763 case Has_Length is
9764 when True => Length : Integer;
9765 when False => null;
9766 end case;
9767 end record;
9768 type Wrapper_Array is array (1 .. 2) of Wrapper;
9769
9770 Hello : Wrapper_Array := (others => (Has_Length => True,
9771 Data => (others => 17),
9772 Length => 1));
9773
9774
9775 The debugging info would describe variable Hello as being an
9776 array of a PAD type. The size of that PAD type is not statically
9777 known, but can be determined using a parallel XVZ variable.
9778 In that case, a copy of the PAD type with the correct size should
9779 be used for the fixed array.
9780
21649b50
JB
9781 3. ``Fixing'' record type objects:
9782 ----------------------------------
9783
9784 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9785 record types. In this case, in order to compute the associated
9786 fixed type, we need to determine the size and offset of each of
9787 its components. This, in turn, requires us to compute the fixed
9788 type of each of these components.
9789
9790 Consider for instance the example:
9791
9792 type Bounded_String (Max_Size : Natural) is record
9793 Str : String (1 .. Max_Size);
9794 Length : Natural;
9795 end record;
9796 My_String : Bounded_String (Max_Size => 10);
9797
9798 In that case, the position of field "Length" depends on the size
9799 of field Str, which itself depends on the value of the Max_Size
21649b50 9800 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9801 we need to fix the type of field Str. Therefore, fixing a variant
9802 record requires us to fix each of its components.
9803
9804 However, if a component does not have a dynamic size, the component
9805 should not be fixed. In particular, fields that use a PAD type
9806 should not fixed. Here is an example where this might happen
9807 (assuming type Rec above):
9808
9809 type Container (Big : Boolean) is record
9810 First : Rec;
9811 After : Integer;
9812 case Big is
9813 when True => Another : Integer;
9814 when False => null;
9815 end case;
9816 end record;
9817 My_Container : Container := (Big => False,
9818 First => (Empty => True),
9819 After => 42);
9820
9821 In that example, the compiler creates a PAD type for component First,
9822 whose size is constant, and then positions the component After just
9823 right after it. The offset of component After is therefore constant
9824 in this case.
9825
9826 The debugger computes the position of each field based on an algorithm
9827 that uses, among other things, the actual position and size of the field
21649b50
JB
9828 preceding it. Let's now imagine that the user is trying to print
9829 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9830 end up computing the offset of field After based on the size of the
9831 fixed version of field First. And since in our example First has
9832 only one actual field, the size of the fixed type is actually smaller
9833 than the amount of space allocated to that field, and thus we would
9834 compute the wrong offset of field After.
9835
21649b50
JB
9836 To make things more complicated, we need to watch out for dynamic
9837 components of variant records (identified by the ___XVL suffix in
9838 the component name). Even if the target type is a PAD type, the size
9839 of that type might not be statically known. So the PAD type needs
9840 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9841 we might end up with the wrong size for our component. This can be
9842 observed with the following type declarations:
284614f0
JB
9843
9844 type Octal is new Integer range 0 .. 7;
9845 type Octal_Array is array (Positive range <>) of Octal;
9846 pragma Pack (Octal_Array);
9847
9848 type Octal_Buffer (Size : Positive) is record
9849 Buffer : Octal_Array (1 .. Size);
9850 Length : Integer;
9851 end record;
9852
9853 In that case, Buffer is a PAD type whose size is unset and needs
9854 to be computed by fixing the unwrapped type.
9855
21649b50
JB
9856 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9857 ----------------------------------------------------------
9858
9859 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9860 thus far, be actually fixed?
9861
9862 The answer is: Only when referencing that element. For instance
9863 when selecting one component of a record, this specific component
9864 should be fixed at that point in time. Or when printing the value
9865 of a record, each component should be fixed before its value gets
9866 printed. Similarly for arrays, the element of the array should be
9867 fixed when printing each element of the array, or when extracting
9868 one element out of that array. On the other hand, fixing should
9869 not be performed on the elements when taking a slice of an array!
9870
9871 Note that one of the side-effects of miscomputing the offset and
9872 size of each field is that we end up also miscomputing the size
9873 of the containing type. This can have adverse results when computing
9874 the value of an entity. GDB fetches the value of an entity based
9875 on the size of its type, and thus a wrong size causes GDB to fetch
9876 the wrong amount of memory. In the case where the computed size is
9877 too small, GDB fetches too little data to print the value of our
9878 entiry. Results in this case as unpredicatble, as we usually read
9879 past the buffer containing the data =:-o. */
9880
9881/* Implement the evaluate_exp routine in the exp_descriptor structure
9882 for the Ada language. */
9883
52ce6436 9884static struct value *
ebf56fd3 9885ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9886 int *pos, enum noside noside)
14f9c5c9
AS
9887{
9888 enum exp_opcode op;
b5385fc0 9889 int tem;
14f9c5c9 9890 int pc;
5ec18f2b 9891 int preeval_pos;
14f9c5c9
AS
9892 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9893 struct type *type;
52ce6436 9894 int nargs, oplen;
d2e4a39e 9895 struct value **argvec;
14f9c5c9 9896
d2e4a39e
AS
9897 pc = *pos;
9898 *pos += 1;
14f9c5c9
AS
9899 op = exp->elts[pc].opcode;
9900
d2e4a39e 9901 switch (op)
14f9c5c9
AS
9902 {
9903 default:
9904 *pos -= 1;
6e48bd2c 9905 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9906
9907 if (noside == EVAL_NORMAL)
9908 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9909
9910 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9911 then we need to perform the conversion manually, because
9912 evaluate_subexp_standard doesn't do it. This conversion is
9913 necessary in Ada because the different kinds of float/fixed
9914 types in Ada have different representations.
9915
9916 Similarly, we need to perform the conversion from OP_LONG
9917 ourselves. */
9918 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9919 arg1 = ada_value_cast (expect_type, arg1, noside);
9920
9921 return arg1;
4c4b4cd2
PH
9922
9923 case OP_STRING:
9924 {
76a01679 9925 struct value *result;
5b4ee69b 9926
76a01679
JB
9927 *pos -= 1;
9928 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9929 /* The result type will have code OP_STRING, bashed there from
9930 OP_ARRAY. Bash it back. */
df407dfe
AC
9931 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9932 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9933 return result;
4c4b4cd2 9934 }
14f9c5c9
AS
9935
9936 case UNOP_CAST:
9937 (*pos) += 2;
9938 type = exp->elts[pc + 1].type;
9939 arg1 = evaluate_subexp (type, exp, pos, noside);
9940 if (noside == EVAL_SKIP)
4c4b4cd2 9941 goto nosideret;
6e48bd2c 9942 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9943 return arg1;
9944
4c4b4cd2
PH
9945 case UNOP_QUAL:
9946 (*pos) += 2;
9947 type = exp->elts[pc + 1].type;
9948 return ada_evaluate_subexp (type, exp, pos, noside);
9949
14f9c5c9
AS
9950 case BINOP_ASSIGN:
9951 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9952 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9953 {
9954 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9955 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9956 return arg1;
9957 return ada_value_assign (arg1, arg1);
9958 }
003f3813
JB
9959 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9960 except if the lhs of our assignment is a convenience variable.
9961 In the case of assigning to a convenience variable, the lhs
9962 should be exactly the result of the evaluation of the rhs. */
9963 type = value_type (arg1);
9964 if (VALUE_LVAL (arg1) == lval_internalvar)
9965 type = NULL;
9966 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9967 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9968 return arg1;
df407dfe
AC
9969 if (ada_is_fixed_point_type (value_type (arg1)))
9970 arg2 = cast_to_fixed (value_type (arg1), arg2);
9971 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9972 error
323e0a4a 9973 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9974 else
df407dfe 9975 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9976 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9977
9978 case BINOP_ADD:
9979 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9980 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9981 if (noside == EVAL_SKIP)
4c4b4cd2 9982 goto nosideret;
2ac8a782
JB
9983 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9984 return (value_from_longest
9985 (value_type (arg1),
9986 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9987 if ((ada_is_fixed_point_type (value_type (arg1))
9988 || ada_is_fixed_point_type (value_type (arg2)))
9989 && value_type (arg1) != value_type (arg2))
323e0a4a 9990 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9991 /* Do the addition, and cast the result to the type of the first
9992 argument. We cannot cast the result to a reference type, so if
9993 ARG1 is a reference type, find its underlying type. */
9994 type = value_type (arg1);
9995 while (TYPE_CODE (type) == TYPE_CODE_REF)
9996 type = TYPE_TARGET_TYPE (type);
f44316fa 9997 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9998 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9999
10000 case BINOP_SUB:
10001 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10002 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10003 if (noside == EVAL_SKIP)
4c4b4cd2 10004 goto nosideret;
2ac8a782
JB
10005 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10006 return (value_from_longest
10007 (value_type (arg1),
10008 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10009 if ((ada_is_fixed_point_type (value_type (arg1))
10010 || ada_is_fixed_point_type (value_type (arg2)))
10011 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10012 error (_("Operands of fixed-point subtraction "
10013 "must have the same type"));
b7789565
JB
10014 /* Do the substraction, and cast the result to the type of the first
10015 argument. We cannot cast the result to a reference type, so if
10016 ARG1 is a reference type, find its underlying type. */
10017 type = value_type (arg1);
10018 while (TYPE_CODE (type) == TYPE_CODE_REF)
10019 type = TYPE_TARGET_TYPE (type);
f44316fa 10020 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10021 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10022
10023 case BINOP_MUL:
10024 case BINOP_DIV:
e1578042
JB
10025 case BINOP_REM:
10026 case BINOP_MOD:
14f9c5c9
AS
10027 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10028 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10029 if (noside == EVAL_SKIP)
4c4b4cd2 10030 goto nosideret;
e1578042 10031 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10032 {
10033 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10034 return value_zero (value_type (arg1), not_lval);
10035 }
14f9c5c9 10036 else
4c4b4cd2 10037 {
a53b7a21 10038 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10039 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10040 arg1 = cast_from_fixed (type, arg1);
df407dfe 10041 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10042 arg2 = cast_from_fixed (type, arg2);
f44316fa 10043 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10044 return ada_value_binop (arg1, arg2, op);
10045 }
10046
4c4b4cd2
PH
10047 case BINOP_EQUAL:
10048 case BINOP_NOTEQUAL:
14f9c5c9 10049 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10050 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10051 if (noside == EVAL_SKIP)
76a01679 10052 goto nosideret;
4c4b4cd2 10053 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10054 tem = 0;
4c4b4cd2 10055 else
f44316fa
UW
10056 {
10057 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10058 tem = ada_value_equal (arg1, arg2);
10059 }
4c4b4cd2 10060 if (op == BINOP_NOTEQUAL)
76a01679 10061 tem = !tem;
fbb06eb1
UW
10062 type = language_bool_type (exp->language_defn, exp->gdbarch);
10063 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10064
10065 case UNOP_NEG:
10066 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10067 if (noside == EVAL_SKIP)
10068 goto nosideret;
df407dfe
AC
10069 else if (ada_is_fixed_point_type (value_type (arg1)))
10070 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10071 else
f44316fa
UW
10072 {
10073 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10074 return value_neg (arg1);
10075 }
4c4b4cd2 10076
2330c6c6
JB
10077 case BINOP_LOGICAL_AND:
10078 case BINOP_LOGICAL_OR:
10079 case UNOP_LOGICAL_NOT:
000d5124
JB
10080 {
10081 struct value *val;
10082
10083 *pos -= 1;
10084 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10085 type = language_bool_type (exp->language_defn, exp->gdbarch);
10086 return value_cast (type, val);
000d5124 10087 }
2330c6c6
JB
10088
10089 case BINOP_BITWISE_AND:
10090 case BINOP_BITWISE_IOR:
10091 case BINOP_BITWISE_XOR:
000d5124
JB
10092 {
10093 struct value *val;
10094
10095 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10096 *pos = pc;
10097 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10098
10099 return value_cast (value_type (arg1), val);
10100 }
2330c6c6 10101
14f9c5c9
AS
10102 case OP_VAR_VALUE:
10103 *pos -= 1;
6799def4 10104
14f9c5c9 10105 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10106 {
10107 *pos += 4;
10108 goto nosideret;
10109 }
10110 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10111 /* Only encountered when an unresolved symbol occurs in a
10112 context other than a function call, in which case, it is
52ce6436 10113 invalid. */
323e0a4a 10114 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10115 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 10116 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10117 {
0c1f74cf 10118 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10119 /* Check to see if this is a tagged type. We also need to handle
10120 the case where the type is a reference to a tagged type, but
10121 we have to be careful to exclude pointers to tagged types.
10122 The latter should be shown as usual (as a pointer), whereas
10123 a reference should mostly be transparent to the user. */
10124 if (ada_is_tagged_type (type, 0)
023db19c 10125 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10126 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
10127 {
10128 /* Tagged types are a little special in the fact that the real
10129 type is dynamic and can only be determined by inspecting the
10130 object's tag. This means that we need to get the object's
10131 value first (EVAL_NORMAL) and then extract the actual object
10132 type from its tag.
10133
10134 Note that we cannot skip the final step where we extract
10135 the object type from its tag, because the EVAL_NORMAL phase
10136 results in dynamic components being resolved into fixed ones.
10137 This can cause problems when trying to print the type
10138 description of tagged types whose parent has a dynamic size:
10139 We use the type name of the "_parent" component in order
10140 to print the name of the ancestor type in the type description.
10141 If that component had a dynamic size, the resolution into
10142 a fixed type would result in the loss of that type name,
10143 thus preventing us from printing the name of the ancestor
10144 type in the type description. */
10145 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b50d69b5
JG
10146
10147 if (TYPE_CODE (type) != TYPE_CODE_REF)
10148 {
10149 struct type *actual_type;
10150
10151 actual_type = type_from_tag (ada_value_tag (arg1));
10152 if (actual_type == NULL)
10153 /* If, for some reason, we were unable to determine
10154 the actual type from the tag, then use the static
10155 approximation that we just computed as a fallback.
10156 This can happen if the debugging information is
10157 incomplete, for instance. */
10158 actual_type = type;
10159 return value_zero (actual_type, not_lval);
10160 }
10161 else
10162 {
10163 /* In the case of a ref, ada_coerce_ref takes care
10164 of determining the actual type. But the evaluation
10165 should return a ref as it should be valid to ask
10166 for its address; so rebuild a ref after coerce. */
10167 arg1 = ada_coerce_ref (arg1);
10168 return value_ref (arg1);
10169 }
0c1f74cf
JB
10170 }
10171
4c4b4cd2
PH
10172 *pos += 4;
10173 return value_zero
10174 (to_static_fixed_type
10175 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
10176 not_lval);
10177 }
d2e4a39e 10178 else
4c4b4cd2 10179 {
284614f0 10180 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
10181 return ada_to_fixed_value (arg1);
10182 }
10183
10184 case OP_FUNCALL:
10185 (*pos) += 2;
10186
10187 /* Allocate arg vector, including space for the function to be
10188 called in argvec[0] and a terminating NULL. */
10189 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10190 argvec =
10191 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10192
10193 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10194 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10195 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10196 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10197 else
10198 {
10199 for (tem = 0; tem <= nargs; tem += 1)
10200 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10201 argvec[tem] = 0;
10202
10203 if (noside == EVAL_SKIP)
10204 goto nosideret;
10205 }
10206
ad82864c
JB
10207 if (ada_is_constrained_packed_array_type
10208 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10209 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10210 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10211 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10212 /* This is a packed array that has already been fixed, and
10213 therefore already coerced to a simple array. Nothing further
10214 to do. */
10215 ;
df407dfe
AC
10216 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10217 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10218 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10219 argvec[0] = value_addr (argvec[0]);
10220
df407dfe 10221 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10222
10223 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10224 them. So, if this is an array typedef (encoding use for array
10225 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10226 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10227 type = ada_typedef_target_type (type);
10228
4c4b4cd2
PH
10229 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10230 {
61ee279c 10231 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10232 {
10233 case TYPE_CODE_FUNC:
61ee279c 10234 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10235 break;
10236 case TYPE_CODE_ARRAY:
10237 break;
10238 case TYPE_CODE_STRUCT:
10239 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10240 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10241 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10242 break;
10243 default:
323e0a4a 10244 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10245 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10246 break;
10247 }
10248 }
10249
10250 switch (TYPE_CODE (type))
10251 {
10252 case TYPE_CODE_FUNC:
10253 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10254 {
10255 struct type *rtype = TYPE_TARGET_TYPE (type);
10256
10257 if (TYPE_GNU_IFUNC (type))
10258 return allocate_value (TYPE_TARGET_TYPE (rtype));
10259 return allocate_value (rtype);
10260 }
4c4b4cd2 10261 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10262 case TYPE_CODE_INTERNAL_FUNCTION:
10263 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10264 /* We don't know anything about what the internal
10265 function might return, but we have to return
10266 something. */
10267 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10268 not_lval);
10269 else
10270 return call_internal_function (exp->gdbarch, exp->language_defn,
10271 argvec[0], nargs, argvec + 1);
10272
4c4b4cd2
PH
10273 case TYPE_CODE_STRUCT:
10274 {
10275 int arity;
10276
4c4b4cd2
PH
10277 arity = ada_array_arity (type);
10278 type = ada_array_element_type (type, nargs);
10279 if (type == NULL)
323e0a4a 10280 error (_("cannot subscript or call a record"));
4c4b4cd2 10281 if (arity != nargs)
323e0a4a 10282 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10283 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10284 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10285 return
10286 unwrap_value (ada_value_subscript
10287 (argvec[0], nargs, argvec + 1));
10288 }
10289 case TYPE_CODE_ARRAY:
10290 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10291 {
10292 type = ada_array_element_type (type, nargs);
10293 if (type == NULL)
323e0a4a 10294 error (_("element type of array unknown"));
4c4b4cd2 10295 else
0a07e705 10296 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10297 }
10298 return
10299 unwrap_value (ada_value_subscript
10300 (ada_coerce_to_simple_array (argvec[0]),
10301 nargs, argvec + 1));
10302 case TYPE_CODE_PTR: /* Pointer to array */
10303 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10304 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10305 {
10306 type = ada_array_element_type (type, nargs);
10307 if (type == NULL)
323e0a4a 10308 error (_("element type of array unknown"));
4c4b4cd2 10309 else
0a07e705 10310 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10311 }
10312 return
10313 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10314 nargs, argvec + 1));
10315
10316 default:
e1d5a0d2
PH
10317 error (_("Attempt to index or call something other than an "
10318 "array or function"));
4c4b4cd2
PH
10319 }
10320
10321 case TERNOP_SLICE:
10322 {
10323 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10324 struct value *low_bound_val =
10325 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10326 struct value *high_bound_val =
10327 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10328 LONGEST low_bound;
10329 LONGEST high_bound;
5b4ee69b 10330
994b9211
AC
10331 low_bound_val = coerce_ref (low_bound_val);
10332 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10333 low_bound = pos_atr (low_bound_val);
10334 high_bound = pos_atr (high_bound_val);
963a6417 10335
4c4b4cd2
PH
10336 if (noside == EVAL_SKIP)
10337 goto nosideret;
10338
4c4b4cd2
PH
10339 /* If this is a reference to an aligner type, then remove all
10340 the aligners. */
df407dfe
AC
10341 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10342 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10343 TYPE_TARGET_TYPE (value_type (array)) =
10344 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10345
ad82864c 10346 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10347 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10348
10349 /* If this is a reference to an array or an array lvalue,
10350 convert to a pointer. */
df407dfe
AC
10351 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10352 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10353 && VALUE_LVAL (array) == lval_memory))
10354 array = value_addr (array);
10355
1265e4aa 10356 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10357 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10358 (value_type (array))))
0b5d8877 10359 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10360
10361 array = ada_coerce_to_simple_array_ptr (array);
10362
714e53ab
PH
10363 /* If we have more than one level of pointer indirection,
10364 dereference the value until we get only one level. */
df407dfe
AC
10365 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10366 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10367 == TYPE_CODE_PTR))
10368 array = value_ind (array);
10369
10370 /* Make sure we really do have an array type before going further,
10371 to avoid a SEGV when trying to get the index type or the target
10372 type later down the road if the debug info generated by
10373 the compiler is incorrect or incomplete. */
df407dfe 10374 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10375 error (_("cannot take slice of non-array"));
714e53ab 10376
828292f2
JB
10377 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10378 == TYPE_CODE_PTR)
4c4b4cd2 10379 {
828292f2
JB
10380 struct type *type0 = ada_check_typedef (value_type (array));
10381
0b5d8877 10382 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10383 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10384 else
10385 {
10386 struct type *arr_type0 =
828292f2 10387 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10388
f5938064
JG
10389 return ada_value_slice_from_ptr (array, arr_type0,
10390 longest_to_int (low_bound),
10391 longest_to_int (high_bound));
4c4b4cd2
PH
10392 }
10393 }
10394 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10395 return array;
10396 else if (high_bound < low_bound)
df407dfe 10397 return empty_array (value_type (array), low_bound);
4c4b4cd2 10398 else
529cad9c
PH
10399 return ada_value_slice (array, longest_to_int (low_bound),
10400 longest_to_int (high_bound));
4c4b4cd2 10401 }
14f9c5c9 10402
4c4b4cd2
PH
10403 case UNOP_IN_RANGE:
10404 (*pos) += 2;
10405 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10406 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10407
14f9c5c9 10408 if (noside == EVAL_SKIP)
4c4b4cd2 10409 goto nosideret;
14f9c5c9 10410
4c4b4cd2
PH
10411 switch (TYPE_CODE (type))
10412 {
10413 default:
e1d5a0d2
PH
10414 lim_warning (_("Membership test incompletely implemented; "
10415 "always returns true"));
fbb06eb1
UW
10416 type = language_bool_type (exp->language_defn, exp->gdbarch);
10417 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10418
10419 case TYPE_CODE_RANGE:
030b4912
UW
10420 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10421 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10422 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10423 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10424 type = language_bool_type (exp->language_defn, exp->gdbarch);
10425 return
10426 value_from_longest (type,
4c4b4cd2
PH
10427 (value_less (arg1, arg3)
10428 || value_equal (arg1, arg3))
10429 && (value_less (arg2, arg1)
10430 || value_equal (arg2, arg1)));
10431 }
10432
10433 case BINOP_IN_BOUNDS:
14f9c5c9 10434 (*pos) += 2;
4c4b4cd2
PH
10435 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10436 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10437
4c4b4cd2
PH
10438 if (noside == EVAL_SKIP)
10439 goto nosideret;
14f9c5c9 10440
4c4b4cd2 10441 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10442 {
10443 type = language_bool_type (exp->language_defn, exp->gdbarch);
10444 return value_zero (type, not_lval);
10445 }
14f9c5c9 10446
4c4b4cd2 10447 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10448
1eea4ebd
UW
10449 type = ada_index_type (value_type (arg2), tem, "range");
10450 if (!type)
10451 type = value_type (arg1);
14f9c5c9 10452
1eea4ebd
UW
10453 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10454 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10455
f44316fa
UW
10456 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10457 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10458 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10459 return
fbb06eb1 10460 value_from_longest (type,
4c4b4cd2
PH
10461 (value_less (arg1, arg3)
10462 || value_equal (arg1, arg3))
10463 && (value_less (arg2, arg1)
10464 || value_equal (arg2, arg1)));
10465
10466 case TERNOP_IN_RANGE:
10467 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10468 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10469 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10470
10471 if (noside == EVAL_SKIP)
10472 goto nosideret;
10473
f44316fa
UW
10474 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10475 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10476 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10477 return
fbb06eb1 10478 value_from_longest (type,
4c4b4cd2
PH
10479 (value_less (arg1, arg3)
10480 || value_equal (arg1, arg3))
10481 && (value_less (arg2, arg1)
10482 || value_equal (arg2, arg1)));
10483
10484 case OP_ATR_FIRST:
10485 case OP_ATR_LAST:
10486 case OP_ATR_LENGTH:
10487 {
76a01679 10488 struct type *type_arg;
5b4ee69b 10489
76a01679
JB
10490 if (exp->elts[*pos].opcode == OP_TYPE)
10491 {
10492 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10493 arg1 = NULL;
5bc23cb3 10494 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10495 }
10496 else
10497 {
10498 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10499 type_arg = NULL;
10500 }
10501
10502 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10503 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10504 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10505 *pos += 4;
10506
10507 if (noside == EVAL_SKIP)
10508 goto nosideret;
10509
10510 if (type_arg == NULL)
10511 {
10512 arg1 = ada_coerce_ref (arg1);
10513
ad82864c 10514 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10515 arg1 = ada_coerce_to_simple_array (arg1);
10516
aa4fb036 10517 if (op == OP_ATR_LENGTH)
1eea4ebd 10518 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10519 else
10520 {
10521 type = ada_index_type (value_type (arg1), tem,
10522 ada_attribute_name (op));
10523 if (type == NULL)
10524 type = builtin_type (exp->gdbarch)->builtin_int;
10525 }
76a01679
JB
10526
10527 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10528 return allocate_value (type);
76a01679
JB
10529
10530 switch (op)
10531 {
10532 default: /* Should never happen. */
323e0a4a 10533 error (_("unexpected attribute encountered"));
76a01679 10534 case OP_ATR_FIRST:
1eea4ebd
UW
10535 return value_from_longest
10536 (type, ada_array_bound (arg1, tem, 0));
76a01679 10537 case OP_ATR_LAST:
1eea4ebd
UW
10538 return value_from_longest
10539 (type, ada_array_bound (arg1, tem, 1));
76a01679 10540 case OP_ATR_LENGTH:
1eea4ebd
UW
10541 return value_from_longest
10542 (type, ada_array_length (arg1, tem));
76a01679
JB
10543 }
10544 }
10545 else if (discrete_type_p (type_arg))
10546 {
10547 struct type *range_type;
0d5cff50 10548 const char *name = ada_type_name (type_arg);
5b4ee69b 10549
76a01679
JB
10550 range_type = NULL;
10551 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10552 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10553 if (range_type == NULL)
10554 range_type = type_arg;
10555 switch (op)
10556 {
10557 default:
323e0a4a 10558 error (_("unexpected attribute encountered"));
76a01679 10559 case OP_ATR_FIRST:
690cc4eb 10560 return value_from_longest
43bbcdc2 10561 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10562 case OP_ATR_LAST:
690cc4eb 10563 return value_from_longest
43bbcdc2 10564 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10565 case OP_ATR_LENGTH:
323e0a4a 10566 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10567 }
10568 }
10569 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10570 error (_("unimplemented type attribute"));
76a01679
JB
10571 else
10572 {
10573 LONGEST low, high;
10574
ad82864c
JB
10575 if (ada_is_constrained_packed_array_type (type_arg))
10576 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10577
aa4fb036 10578 if (op == OP_ATR_LENGTH)
1eea4ebd 10579 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10580 else
10581 {
10582 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10583 if (type == NULL)
10584 type = builtin_type (exp->gdbarch)->builtin_int;
10585 }
1eea4ebd 10586
76a01679
JB
10587 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10588 return allocate_value (type);
10589
10590 switch (op)
10591 {
10592 default:
323e0a4a 10593 error (_("unexpected attribute encountered"));
76a01679 10594 case OP_ATR_FIRST:
1eea4ebd 10595 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10596 return value_from_longest (type, low);
10597 case OP_ATR_LAST:
1eea4ebd 10598 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10599 return value_from_longest (type, high);
10600 case OP_ATR_LENGTH:
1eea4ebd
UW
10601 low = ada_array_bound_from_type (type_arg, tem, 0);
10602 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10603 return value_from_longest (type, high - low + 1);
10604 }
10605 }
14f9c5c9
AS
10606 }
10607
4c4b4cd2
PH
10608 case OP_ATR_TAG:
10609 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10610 if (noside == EVAL_SKIP)
76a01679 10611 goto nosideret;
4c4b4cd2
PH
10612
10613 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10614 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10615
10616 return ada_value_tag (arg1);
10617
10618 case OP_ATR_MIN:
10619 case OP_ATR_MAX:
10620 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10621 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10622 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10623 if (noside == EVAL_SKIP)
76a01679 10624 goto nosideret;
d2e4a39e 10625 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10626 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10627 else
f44316fa
UW
10628 {
10629 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10630 return value_binop (arg1, arg2,
10631 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10632 }
14f9c5c9 10633
4c4b4cd2
PH
10634 case OP_ATR_MODULUS:
10635 {
31dedfee 10636 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10637
5b4ee69b 10638 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10639 if (noside == EVAL_SKIP)
10640 goto nosideret;
4c4b4cd2 10641
76a01679 10642 if (!ada_is_modular_type (type_arg))
323e0a4a 10643 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10644
76a01679
JB
10645 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10646 ada_modulus (type_arg));
4c4b4cd2
PH
10647 }
10648
10649
10650 case OP_ATR_POS:
10651 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10652 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10653 if (noside == EVAL_SKIP)
76a01679 10654 goto nosideret;
3cb382c9
UW
10655 type = builtin_type (exp->gdbarch)->builtin_int;
10656 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10657 return value_zero (type, not_lval);
14f9c5c9 10658 else
3cb382c9 10659 return value_pos_atr (type, arg1);
14f9c5c9 10660
4c4b4cd2
PH
10661 case OP_ATR_SIZE:
10662 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10663 type = value_type (arg1);
10664
10665 /* If the argument is a reference, then dereference its type, since
10666 the user is really asking for the size of the actual object,
10667 not the size of the pointer. */
10668 if (TYPE_CODE (type) == TYPE_CODE_REF)
10669 type = TYPE_TARGET_TYPE (type);
10670
4c4b4cd2 10671 if (noside == EVAL_SKIP)
76a01679 10672 goto nosideret;
4c4b4cd2 10673 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10674 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10675 else
22601c15 10676 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10677 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10678
10679 case OP_ATR_VAL:
10680 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10681 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10682 type = exp->elts[pc + 2].type;
14f9c5c9 10683 if (noside == EVAL_SKIP)
76a01679 10684 goto nosideret;
4c4b4cd2 10685 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10686 return value_zero (type, not_lval);
4c4b4cd2 10687 else
76a01679 10688 return value_val_atr (type, arg1);
4c4b4cd2
PH
10689
10690 case BINOP_EXP:
10691 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10692 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10693 if (noside == EVAL_SKIP)
10694 goto nosideret;
10695 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10696 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10697 else
f44316fa
UW
10698 {
10699 /* For integer exponentiation operations,
10700 only promote the first argument. */
10701 if (is_integral_type (value_type (arg2)))
10702 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10703 else
10704 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10705
10706 return value_binop (arg1, arg2, op);
10707 }
4c4b4cd2
PH
10708
10709 case UNOP_PLUS:
10710 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10711 if (noside == EVAL_SKIP)
10712 goto nosideret;
10713 else
10714 return arg1;
10715
10716 case UNOP_ABS:
10717 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10718 if (noside == EVAL_SKIP)
10719 goto nosideret;
f44316fa 10720 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10721 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10722 return value_neg (arg1);
14f9c5c9 10723 else
4c4b4cd2 10724 return arg1;
14f9c5c9
AS
10725
10726 case UNOP_IND:
5ec18f2b 10727 preeval_pos = *pos;
6b0d7253 10728 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10729 if (noside == EVAL_SKIP)
4c4b4cd2 10730 goto nosideret;
df407dfe 10731 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10732 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10733 {
10734 if (ada_is_array_descriptor_type (type))
10735 /* GDB allows dereferencing GNAT array descriptors. */
10736 {
10737 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10738
4c4b4cd2 10739 if (arrType == NULL)
323e0a4a 10740 error (_("Attempt to dereference null array pointer."));
00a4c844 10741 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10742 }
10743 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10744 || TYPE_CODE (type) == TYPE_CODE_REF
10745 /* In C you can dereference an array to get the 1st elt. */
10746 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10747 {
5ec18f2b
JG
10748 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10749 only be determined by inspecting the object's tag.
10750 This means that we need to evaluate completely the
10751 expression in order to get its type. */
10752
023db19c
JB
10753 if ((TYPE_CODE (type) == TYPE_CODE_REF
10754 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10755 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10756 {
10757 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10758 EVAL_NORMAL);
10759 type = value_type (ada_value_ind (arg1));
10760 }
10761 else
10762 {
10763 type = to_static_fixed_type
10764 (ada_aligned_type
10765 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10766 }
10767 check_size (type);
714e53ab
PH
10768 return value_zero (type, lval_memory);
10769 }
4c4b4cd2 10770 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10771 {
10772 /* GDB allows dereferencing an int. */
10773 if (expect_type == NULL)
10774 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10775 lval_memory);
10776 else
10777 {
10778 expect_type =
10779 to_static_fixed_type (ada_aligned_type (expect_type));
10780 return value_zero (expect_type, lval_memory);
10781 }
10782 }
4c4b4cd2 10783 else
323e0a4a 10784 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10785 }
0963b4bd 10786 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10787 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10788
96967637
JB
10789 if (TYPE_CODE (type) == TYPE_CODE_INT)
10790 /* GDB allows dereferencing an int. If we were given
10791 the expect_type, then use that as the target type.
10792 Otherwise, assume that the target type is an int. */
10793 {
10794 if (expect_type != NULL)
10795 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10796 arg1));
10797 else
10798 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10799 (CORE_ADDR) value_as_address (arg1));
10800 }
6b0d7253 10801
4c4b4cd2
PH
10802 if (ada_is_array_descriptor_type (type))
10803 /* GDB allows dereferencing GNAT array descriptors. */
10804 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10805 else
4c4b4cd2 10806 return ada_value_ind (arg1);
14f9c5c9
AS
10807
10808 case STRUCTOP_STRUCT:
10809 tem = longest_to_int (exp->elts[pc + 1].longconst);
10810 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 10811 preeval_pos = *pos;
14f9c5c9
AS
10812 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10813 if (noside == EVAL_SKIP)
4c4b4cd2 10814 goto nosideret;
14f9c5c9 10815 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10816 {
df407dfe 10817 struct type *type1 = value_type (arg1);
5b4ee69b 10818
76a01679
JB
10819 if (ada_is_tagged_type (type1, 1))
10820 {
10821 type = ada_lookup_struct_elt_type (type1,
10822 &exp->elts[pc + 2].string,
10823 1, 1, NULL);
5ec18f2b
JG
10824
10825 /* If the field is not found, check if it exists in the
10826 extension of this object's type. This means that we
10827 need to evaluate completely the expression. */
10828
76a01679 10829 if (type == NULL)
5ec18f2b
JG
10830 {
10831 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10832 EVAL_NORMAL);
10833 arg1 = ada_value_struct_elt (arg1,
10834 &exp->elts[pc + 2].string,
10835 0);
10836 arg1 = unwrap_value (arg1);
10837 type = value_type (ada_to_fixed_value (arg1));
10838 }
76a01679
JB
10839 }
10840 else
10841 type =
10842 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10843 0, NULL);
10844
10845 return value_zero (ada_aligned_type (type), lval_memory);
10846 }
14f9c5c9 10847 else
284614f0
JB
10848 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10849 arg1 = unwrap_value (arg1);
10850 return ada_to_fixed_value (arg1);
10851
14f9c5c9 10852 case OP_TYPE:
4c4b4cd2
PH
10853 /* The value is not supposed to be used. This is here to make it
10854 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10855 (*pos) += 2;
10856 if (noside == EVAL_SKIP)
4c4b4cd2 10857 goto nosideret;
14f9c5c9 10858 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10859 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10860 else
323e0a4a 10861 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10862
10863 case OP_AGGREGATE:
10864 case OP_CHOICES:
10865 case OP_OTHERS:
10866 case OP_DISCRETE_RANGE:
10867 case OP_POSITIONAL:
10868 case OP_NAME:
10869 if (noside == EVAL_NORMAL)
10870 switch (op)
10871 {
10872 case OP_NAME:
10873 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10874 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10875 case OP_AGGREGATE:
10876 error (_("Aggregates only allowed on the right of an assignment"));
10877 default:
0963b4bd
MS
10878 internal_error (__FILE__, __LINE__,
10879 _("aggregate apparently mangled"));
52ce6436
PH
10880 }
10881
10882 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10883 *pos += oplen - 1;
10884 for (tem = 0; tem < nargs; tem += 1)
10885 ada_evaluate_subexp (NULL, exp, pos, noside);
10886 goto nosideret;
14f9c5c9
AS
10887 }
10888
10889nosideret:
22601c15 10890 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10891}
14f9c5c9 10892\f
d2e4a39e 10893
4c4b4cd2 10894 /* Fixed point */
14f9c5c9
AS
10895
10896/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10897 type name that encodes the 'small and 'delta information.
4c4b4cd2 10898 Otherwise, return NULL. */
14f9c5c9 10899
d2e4a39e 10900static const char *
ebf56fd3 10901fixed_type_info (struct type *type)
14f9c5c9 10902{
d2e4a39e 10903 const char *name = ada_type_name (type);
14f9c5c9
AS
10904 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10905
d2e4a39e
AS
10906 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10907 {
14f9c5c9 10908 const char *tail = strstr (name, "___XF_");
5b4ee69b 10909
14f9c5c9 10910 if (tail == NULL)
4c4b4cd2 10911 return NULL;
d2e4a39e 10912 else
4c4b4cd2 10913 return tail + 5;
14f9c5c9
AS
10914 }
10915 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10916 return fixed_type_info (TYPE_TARGET_TYPE (type));
10917 else
10918 return NULL;
10919}
10920
4c4b4cd2 10921/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10922
10923int
ebf56fd3 10924ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10925{
10926 return fixed_type_info (type) != NULL;
10927}
10928
4c4b4cd2
PH
10929/* Return non-zero iff TYPE represents a System.Address type. */
10930
10931int
10932ada_is_system_address_type (struct type *type)
10933{
10934 return (TYPE_NAME (type)
10935 && strcmp (TYPE_NAME (type), "system__address") == 0);
10936}
10937
14f9c5c9
AS
10938/* Assuming that TYPE is the representation of an Ada fixed-point
10939 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10940 delta cannot be determined. */
14f9c5c9
AS
10941
10942DOUBLEST
ebf56fd3 10943ada_delta (struct type *type)
14f9c5c9
AS
10944{
10945 const char *encoding = fixed_type_info (type);
facc390f 10946 DOUBLEST num, den;
14f9c5c9 10947
facc390f
JB
10948 /* Strictly speaking, num and den are encoded as integer. However,
10949 they may not fit into a long, and they will have to be converted
10950 to DOUBLEST anyway. So scan them as DOUBLEST. */
10951 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10952 &num, &den) < 2)
14f9c5c9 10953 return -1.0;
d2e4a39e 10954 else
facc390f 10955 return num / den;
14f9c5c9
AS
10956}
10957
10958/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10959 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10960
10961static DOUBLEST
ebf56fd3 10962scaling_factor (struct type *type)
14f9c5c9
AS
10963{
10964 const char *encoding = fixed_type_info (type);
facc390f 10965 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10966 int n;
d2e4a39e 10967
facc390f
JB
10968 /* Strictly speaking, num's and den's are encoded as integer. However,
10969 they may not fit into a long, and they will have to be converted
10970 to DOUBLEST anyway. So scan them as DOUBLEST. */
10971 n = sscanf (encoding,
10972 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10973 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10974 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10975
10976 if (n < 2)
10977 return 1.0;
10978 else if (n == 4)
facc390f 10979 return num1 / den1;
d2e4a39e 10980 else
facc390f 10981 return num0 / den0;
14f9c5c9
AS
10982}
10983
10984
10985/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10986 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10987
10988DOUBLEST
ebf56fd3 10989ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10990{
d2e4a39e 10991 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10992}
10993
4c4b4cd2
PH
10994/* The representation of a fixed-point value of type TYPE
10995 corresponding to the value X. */
14f9c5c9
AS
10996
10997LONGEST
ebf56fd3 10998ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10999{
11000 return (LONGEST) (x / scaling_factor (type) + 0.5);
11001}
11002
14f9c5c9 11003\f
d2e4a39e 11004
4c4b4cd2 11005 /* Range types */
14f9c5c9
AS
11006
11007/* Scan STR beginning at position K for a discriminant name, and
11008 return the value of that discriminant field of DVAL in *PX. If
11009 PNEW_K is not null, put the position of the character beyond the
11010 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11011 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11012
11013static int
07d8f827 11014scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11015 int *pnew_k)
14f9c5c9
AS
11016{
11017 static char *bound_buffer = NULL;
11018 static size_t bound_buffer_len = 0;
11019 char *bound;
11020 char *pend;
d2e4a39e 11021 struct value *bound_val;
14f9c5c9
AS
11022
11023 if (dval == NULL || str == NULL || str[k] == '\0')
11024 return 0;
11025
d2e4a39e 11026 pend = strstr (str + k, "__");
14f9c5c9
AS
11027 if (pend == NULL)
11028 {
d2e4a39e 11029 bound = str + k;
14f9c5c9
AS
11030 k += strlen (bound);
11031 }
d2e4a39e 11032 else
14f9c5c9 11033 {
d2e4a39e 11034 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11035 bound = bound_buffer;
d2e4a39e
AS
11036 strncpy (bound_buffer, str + k, pend - (str + k));
11037 bound[pend - (str + k)] = '\0';
11038 k = pend - str;
14f9c5c9 11039 }
d2e4a39e 11040
df407dfe 11041 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11042 if (bound_val == NULL)
11043 return 0;
11044
11045 *px = value_as_long (bound_val);
11046 if (pnew_k != NULL)
11047 *pnew_k = k;
11048 return 1;
11049}
11050
11051/* Value of variable named NAME in the current environment. If
11052 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11053 otherwise causes an error with message ERR_MSG. */
11054
d2e4a39e
AS
11055static struct value *
11056get_var_value (char *name, char *err_msg)
14f9c5c9 11057{
4c4b4cd2 11058 struct ada_symbol_info *syms;
14f9c5c9
AS
11059 int nsyms;
11060
4c4b4cd2 11061 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11062 &syms);
14f9c5c9
AS
11063
11064 if (nsyms != 1)
11065 {
11066 if (err_msg == NULL)
4c4b4cd2 11067 return 0;
14f9c5c9 11068 else
8a3fe4f8 11069 error (("%s"), err_msg);
14f9c5c9
AS
11070 }
11071
4c4b4cd2 11072 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11073}
d2e4a39e 11074
14f9c5c9 11075/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11076 no such variable found, returns 0, and sets *FLAG to 0. If
11077 successful, sets *FLAG to 1. */
11078
14f9c5c9 11079LONGEST
4c4b4cd2 11080get_int_var_value (char *name, int *flag)
14f9c5c9 11081{
4c4b4cd2 11082 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11083
14f9c5c9
AS
11084 if (var_val == 0)
11085 {
11086 if (flag != NULL)
4c4b4cd2 11087 *flag = 0;
14f9c5c9
AS
11088 return 0;
11089 }
11090 else
11091 {
11092 if (flag != NULL)
4c4b4cd2 11093 *flag = 1;
14f9c5c9
AS
11094 return value_as_long (var_val);
11095 }
11096}
d2e4a39e 11097
14f9c5c9
AS
11098
11099/* Return a range type whose base type is that of the range type named
11100 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11101 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11102 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11103 corresponding range type from debug information; fall back to using it
11104 if symbol lookup fails. If a new type must be created, allocate it
11105 like ORIG_TYPE was. The bounds information, in general, is encoded
11106 in NAME, the base type given in the named range type. */
14f9c5c9 11107
d2e4a39e 11108static struct type *
28c85d6c 11109to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11110{
0d5cff50 11111 const char *name;
14f9c5c9 11112 struct type *base_type;
d2e4a39e 11113 char *subtype_info;
14f9c5c9 11114
28c85d6c
JB
11115 gdb_assert (raw_type != NULL);
11116 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11117
1ce677a4 11118 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11119 base_type = TYPE_TARGET_TYPE (raw_type);
11120 else
11121 base_type = raw_type;
11122
28c85d6c 11123 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11124 subtype_info = strstr (name, "___XD");
11125 if (subtype_info == NULL)
690cc4eb 11126 {
43bbcdc2
PH
11127 LONGEST L = ada_discrete_type_low_bound (raw_type);
11128 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11129
690cc4eb
PH
11130 if (L < INT_MIN || U > INT_MAX)
11131 return raw_type;
11132 else
0c9c3474
SA
11133 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11134 L, U);
690cc4eb 11135 }
14f9c5c9
AS
11136 else
11137 {
11138 static char *name_buf = NULL;
11139 static size_t name_len = 0;
11140 int prefix_len = subtype_info - name;
11141 LONGEST L, U;
11142 struct type *type;
11143 char *bounds_str;
11144 int n;
11145
11146 GROW_VECT (name_buf, name_len, prefix_len + 5);
11147 strncpy (name_buf, name, prefix_len);
11148 name_buf[prefix_len] = '\0';
11149
11150 subtype_info += 5;
11151 bounds_str = strchr (subtype_info, '_');
11152 n = 1;
11153
d2e4a39e 11154 if (*subtype_info == 'L')
4c4b4cd2
PH
11155 {
11156 if (!ada_scan_number (bounds_str, n, &L, &n)
11157 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11158 return raw_type;
11159 if (bounds_str[n] == '_')
11160 n += 2;
0963b4bd 11161 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11162 n += 1;
11163 subtype_info += 1;
11164 }
d2e4a39e 11165 else
4c4b4cd2
PH
11166 {
11167 int ok;
5b4ee69b 11168
4c4b4cd2
PH
11169 strcpy (name_buf + prefix_len, "___L");
11170 L = get_int_var_value (name_buf, &ok);
11171 if (!ok)
11172 {
323e0a4a 11173 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11174 L = 1;
11175 }
11176 }
14f9c5c9 11177
d2e4a39e 11178 if (*subtype_info == 'U')
4c4b4cd2
PH
11179 {
11180 if (!ada_scan_number (bounds_str, n, &U, &n)
11181 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11182 return raw_type;
11183 }
d2e4a39e 11184 else
4c4b4cd2
PH
11185 {
11186 int ok;
5b4ee69b 11187
4c4b4cd2
PH
11188 strcpy (name_buf + prefix_len, "___U");
11189 U = get_int_var_value (name_buf, &ok);
11190 if (!ok)
11191 {
323e0a4a 11192 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11193 U = L;
11194 }
11195 }
14f9c5c9 11196
0c9c3474
SA
11197 type = create_static_range_type (alloc_type_copy (raw_type),
11198 base_type, L, U);
d2e4a39e 11199 TYPE_NAME (type) = name;
14f9c5c9
AS
11200 return type;
11201 }
11202}
11203
4c4b4cd2
PH
11204/* True iff NAME is the name of a range type. */
11205
14f9c5c9 11206int
d2e4a39e 11207ada_is_range_type_name (const char *name)
14f9c5c9
AS
11208{
11209 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11210}
14f9c5c9 11211\f
d2e4a39e 11212
4c4b4cd2
PH
11213 /* Modular types */
11214
11215/* True iff TYPE is an Ada modular type. */
14f9c5c9 11216
14f9c5c9 11217int
d2e4a39e 11218ada_is_modular_type (struct type *type)
14f9c5c9 11219{
18af8284 11220 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11221
11222 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11223 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11224 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11225}
11226
4c4b4cd2
PH
11227/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11228
61ee279c 11229ULONGEST
0056e4d5 11230ada_modulus (struct type *type)
14f9c5c9 11231{
43bbcdc2 11232 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11233}
d2e4a39e 11234\f
f7f9143b
JB
11235
11236/* Ada exception catchpoint support:
11237 ---------------------------------
11238
11239 We support 3 kinds of exception catchpoints:
11240 . catchpoints on Ada exceptions
11241 . catchpoints on unhandled Ada exceptions
11242 . catchpoints on failed assertions
11243
11244 Exceptions raised during failed assertions, or unhandled exceptions
11245 could perfectly be caught with the general catchpoint on Ada exceptions.
11246 However, we can easily differentiate these two special cases, and having
11247 the option to distinguish these two cases from the rest can be useful
11248 to zero-in on certain situations.
11249
11250 Exception catchpoints are a specialized form of breakpoint,
11251 since they rely on inserting breakpoints inside known routines
11252 of the GNAT runtime. The implementation therefore uses a standard
11253 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11254 of breakpoint_ops.
11255
0259addd
JB
11256 Support in the runtime for exception catchpoints have been changed
11257 a few times already, and these changes affect the implementation
11258 of these catchpoints. In order to be able to support several
11259 variants of the runtime, we use a sniffer that will determine
28010a5d 11260 the runtime variant used by the program being debugged. */
f7f9143b 11261
3d0b0fa3
JB
11262/* Ada's standard exceptions. */
11263
11264static char *standard_exc[] = {
11265 "constraint_error",
11266 "program_error",
11267 "storage_error",
11268 "tasking_error"
11269};
11270
0259addd
JB
11271typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11272
11273/* A structure that describes how to support exception catchpoints
11274 for a given executable. */
11275
11276struct exception_support_info
11277{
11278 /* The name of the symbol to break on in order to insert
11279 a catchpoint on exceptions. */
11280 const char *catch_exception_sym;
11281
11282 /* The name of the symbol to break on in order to insert
11283 a catchpoint on unhandled exceptions. */
11284 const char *catch_exception_unhandled_sym;
11285
11286 /* The name of the symbol to break on in order to insert
11287 a catchpoint on failed assertions. */
11288 const char *catch_assert_sym;
11289
11290 /* Assuming that the inferior just triggered an unhandled exception
11291 catchpoint, this function is responsible for returning the address
11292 in inferior memory where the name of that exception is stored.
11293 Return zero if the address could not be computed. */
11294 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11295};
11296
11297static CORE_ADDR ada_unhandled_exception_name_addr (void);
11298static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11299
11300/* The following exception support info structure describes how to
11301 implement exception catchpoints with the latest version of the
11302 Ada runtime (as of 2007-03-06). */
11303
11304static const struct exception_support_info default_exception_support_info =
11305{
11306 "__gnat_debug_raise_exception", /* catch_exception_sym */
11307 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11308 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11309 ada_unhandled_exception_name_addr
11310};
11311
11312/* The following exception support info structure describes how to
11313 implement exception catchpoints with a slightly older version
11314 of the Ada runtime. */
11315
11316static const struct exception_support_info exception_support_info_fallback =
11317{
11318 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11319 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11320 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11321 ada_unhandled_exception_name_addr_from_raise
11322};
11323
f17011e0
JB
11324/* Return nonzero if we can detect the exception support routines
11325 described in EINFO.
11326
11327 This function errors out if an abnormal situation is detected
11328 (for instance, if we find the exception support routines, but
11329 that support is found to be incomplete). */
11330
11331static int
11332ada_has_this_exception_support (const struct exception_support_info *einfo)
11333{
11334 struct symbol *sym;
11335
11336 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11337 that should be compiled with debugging information. As a result, we
11338 expect to find that symbol in the symtabs. */
11339
11340 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11341 if (sym == NULL)
a6af7abe
JB
11342 {
11343 /* Perhaps we did not find our symbol because the Ada runtime was
11344 compiled without debugging info, or simply stripped of it.
11345 It happens on some GNU/Linux distributions for instance, where
11346 users have to install a separate debug package in order to get
11347 the runtime's debugging info. In that situation, let the user
11348 know why we cannot insert an Ada exception catchpoint.
11349
11350 Note: Just for the purpose of inserting our Ada exception
11351 catchpoint, we could rely purely on the associated minimal symbol.
11352 But we would be operating in degraded mode anyway, since we are
11353 still lacking the debugging info needed later on to extract
11354 the name of the exception being raised (this name is printed in
11355 the catchpoint message, and is also used when trying to catch
11356 a specific exception). We do not handle this case for now. */
3b7344d5 11357 struct bound_minimal_symbol msym
1c8e84b0
JB
11358 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11359
3b7344d5 11360 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11361 error (_("Your Ada runtime appears to be missing some debugging "
11362 "information.\nCannot insert Ada exception catchpoint "
11363 "in this configuration."));
11364
11365 return 0;
11366 }
f17011e0
JB
11367
11368 /* Make sure that the symbol we found corresponds to a function. */
11369
11370 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11371 error (_("Symbol \"%s\" is not a function (class = %d)"),
11372 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11373
11374 return 1;
11375}
11376
0259addd
JB
11377/* Inspect the Ada runtime and determine which exception info structure
11378 should be used to provide support for exception catchpoints.
11379
3eecfa55
JB
11380 This function will always set the per-inferior exception_info,
11381 or raise an error. */
0259addd
JB
11382
11383static void
11384ada_exception_support_info_sniffer (void)
11385{
3eecfa55 11386 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11387
11388 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11389 if (data->exception_info != NULL)
0259addd
JB
11390 return;
11391
11392 /* Check the latest (default) exception support info. */
f17011e0 11393 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11394 {
3eecfa55 11395 data->exception_info = &default_exception_support_info;
0259addd
JB
11396 return;
11397 }
11398
11399 /* Try our fallback exception suport info. */
f17011e0 11400 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11401 {
3eecfa55 11402 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11403 return;
11404 }
11405
11406 /* Sometimes, it is normal for us to not be able to find the routine
11407 we are looking for. This happens when the program is linked with
11408 the shared version of the GNAT runtime, and the program has not been
11409 started yet. Inform the user of these two possible causes if
11410 applicable. */
11411
ccefe4c4 11412 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11413 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11414
11415 /* If the symbol does not exist, then check that the program is
11416 already started, to make sure that shared libraries have been
11417 loaded. If it is not started, this may mean that the symbol is
11418 in a shared library. */
11419
11420 if (ptid_get_pid (inferior_ptid) == 0)
11421 error (_("Unable to insert catchpoint. Try to start the program first."));
11422
11423 /* At this point, we know that we are debugging an Ada program and
11424 that the inferior has been started, but we still are not able to
0963b4bd 11425 find the run-time symbols. That can mean that we are in
0259addd
JB
11426 configurable run time mode, or that a-except as been optimized
11427 out by the linker... In any case, at this point it is not worth
11428 supporting this feature. */
11429
7dda8cff 11430 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11431}
11432
f7f9143b
JB
11433/* True iff FRAME is very likely to be that of a function that is
11434 part of the runtime system. This is all very heuristic, but is
11435 intended to be used as advice as to what frames are uninteresting
11436 to most users. */
11437
11438static int
11439is_known_support_routine (struct frame_info *frame)
11440{
4ed6b5be 11441 struct symtab_and_line sal;
55b87a52 11442 char *func_name;
692465f1 11443 enum language func_lang;
f7f9143b 11444 int i;
f35a17b5 11445 const char *fullname;
f7f9143b 11446
4ed6b5be
JB
11447 /* If this code does not have any debugging information (no symtab),
11448 This cannot be any user code. */
f7f9143b 11449
4ed6b5be 11450 find_frame_sal (frame, &sal);
f7f9143b
JB
11451 if (sal.symtab == NULL)
11452 return 1;
11453
4ed6b5be
JB
11454 /* If there is a symtab, but the associated source file cannot be
11455 located, then assume this is not user code: Selecting a frame
11456 for which we cannot display the code would not be very helpful
11457 for the user. This should also take care of case such as VxWorks
11458 where the kernel has some debugging info provided for a few units. */
f7f9143b 11459
f35a17b5
JK
11460 fullname = symtab_to_fullname (sal.symtab);
11461 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11462 return 1;
11463
4ed6b5be
JB
11464 /* Check the unit filename againt the Ada runtime file naming.
11465 We also check the name of the objfile against the name of some
11466 known system libraries that sometimes come with debugging info
11467 too. */
11468
f7f9143b
JB
11469 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11470 {
11471 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11472 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11473 return 1;
4ed6b5be 11474 if (sal.symtab->objfile != NULL
4262abfb 11475 && re_exec (objfile_name (sal.symtab->objfile)))
4ed6b5be 11476 return 1;
f7f9143b
JB
11477 }
11478
4ed6b5be 11479 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11480
e9e07ba6 11481 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11482 if (func_name == NULL)
11483 return 1;
11484
11485 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11486 {
11487 re_comp (known_auxiliary_function_name_patterns[i]);
11488 if (re_exec (func_name))
55b87a52
KS
11489 {
11490 xfree (func_name);
11491 return 1;
11492 }
f7f9143b
JB
11493 }
11494
55b87a52 11495 xfree (func_name);
f7f9143b
JB
11496 return 0;
11497}
11498
11499/* Find the first frame that contains debugging information and that is not
11500 part of the Ada run-time, starting from FI and moving upward. */
11501
0ef643c8 11502void
f7f9143b
JB
11503ada_find_printable_frame (struct frame_info *fi)
11504{
11505 for (; fi != NULL; fi = get_prev_frame (fi))
11506 {
11507 if (!is_known_support_routine (fi))
11508 {
11509 select_frame (fi);
11510 break;
11511 }
11512 }
11513
11514}
11515
11516/* Assuming that the inferior just triggered an unhandled exception
11517 catchpoint, return the address in inferior memory where the name
11518 of the exception is stored.
11519
11520 Return zero if the address could not be computed. */
11521
11522static CORE_ADDR
11523ada_unhandled_exception_name_addr (void)
0259addd
JB
11524{
11525 return parse_and_eval_address ("e.full_name");
11526}
11527
11528/* Same as ada_unhandled_exception_name_addr, except that this function
11529 should be used when the inferior uses an older version of the runtime,
11530 where the exception name needs to be extracted from a specific frame
11531 several frames up in the callstack. */
11532
11533static CORE_ADDR
11534ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11535{
11536 int frame_level;
11537 struct frame_info *fi;
3eecfa55 11538 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11539 struct cleanup *old_chain;
f7f9143b
JB
11540
11541 /* To determine the name of this exception, we need to select
11542 the frame corresponding to RAISE_SYM_NAME. This frame is
11543 at least 3 levels up, so we simply skip the first 3 frames
11544 without checking the name of their associated function. */
11545 fi = get_current_frame ();
11546 for (frame_level = 0; frame_level < 3; frame_level += 1)
11547 if (fi != NULL)
11548 fi = get_prev_frame (fi);
11549
55b87a52 11550 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11551 while (fi != NULL)
11552 {
55b87a52 11553 char *func_name;
692465f1
JB
11554 enum language func_lang;
11555
e9e07ba6 11556 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11557 if (func_name != NULL)
11558 {
11559 make_cleanup (xfree, func_name);
11560
11561 if (strcmp (func_name,
11562 data->exception_info->catch_exception_sym) == 0)
11563 break; /* We found the frame we were looking for... */
11564 fi = get_prev_frame (fi);
11565 }
f7f9143b 11566 }
55b87a52 11567 do_cleanups (old_chain);
f7f9143b
JB
11568
11569 if (fi == NULL)
11570 return 0;
11571
11572 select_frame (fi);
11573 return parse_and_eval_address ("id.full_name");
11574}
11575
11576/* Assuming the inferior just triggered an Ada exception catchpoint
11577 (of any type), return the address in inferior memory where the name
11578 of the exception is stored, if applicable.
11579
11580 Return zero if the address could not be computed, or if not relevant. */
11581
11582static CORE_ADDR
761269c8 11583ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11584 struct breakpoint *b)
11585{
3eecfa55
JB
11586 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11587
f7f9143b
JB
11588 switch (ex)
11589 {
761269c8 11590 case ada_catch_exception:
f7f9143b
JB
11591 return (parse_and_eval_address ("e.full_name"));
11592 break;
11593
761269c8 11594 case ada_catch_exception_unhandled:
3eecfa55 11595 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11596 break;
11597
761269c8 11598 case ada_catch_assert:
f7f9143b
JB
11599 return 0; /* Exception name is not relevant in this case. */
11600 break;
11601
11602 default:
11603 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11604 break;
11605 }
11606
11607 return 0; /* Should never be reached. */
11608}
11609
11610/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11611 any error that ada_exception_name_addr_1 might cause to be thrown.
11612 When an error is intercepted, a warning with the error message is printed,
11613 and zero is returned. */
11614
11615static CORE_ADDR
761269c8 11616ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11617 struct breakpoint *b)
11618{
bfd189b1 11619 volatile struct gdb_exception e;
f7f9143b
JB
11620 CORE_ADDR result = 0;
11621
11622 TRY_CATCH (e, RETURN_MASK_ERROR)
11623 {
11624 result = ada_exception_name_addr_1 (ex, b);
11625 }
11626
11627 if (e.reason < 0)
11628 {
11629 warning (_("failed to get exception name: %s"), e.message);
11630 return 0;
11631 }
11632
11633 return result;
11634}
11635
28010a5d
PA
11636static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11637
11638/* Ada catchpoints.
11639
11640 In the case of catchpoints on Ada exceptions, the catchpoint will
11641 stop the target on every exception the program throws. When a user
11642 specifies the name of a specific exception, we translate this
11643 request into a condition expression (in text form), and then parse
11644 it into an expression stored in each of the catchpoint's locations.
11645 We then use this condition to check whether the exception that was
11646 raised is the one the user is interested in. If not, then the
11647 target is resumed again. We store the name of the requested
11648 exception, in order to be able to re-set the condition expression
11649 when symbols change. */
11650
11651/* An instance of this type is used to represent an Ada catchpoint
11652 breakpoint location. It includes a "struct bp_location" as a kind
11653 of base class; users downcast to "struct bp_location *" when
11654 needed. */
11655
11656struct ada_catchpoint_location
11657{
11658 /* The base class. */
11659 struct bp_location base;
11660
11661 /* The condition that checks whether the exception that was raised
11662 is the specific exception the user specified on catchpoint
11663 creation. */
11664 struct expression *excep_cond_expr;
11665};
11666
11667/* Implement the DTOR method in the bp_location_ops structure for all
11668 Ada exception catchpoint kinds. */
11669
11670static void
11671ada_catchpoint_location_dtor (struct bp_location *bl)
11672{
11673 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11674
11675 xfree (al->excep_cond_expr);
11676}
11677
11678/* The vtable to be used in Ada catchpoint locations. */
11679
11680static const struct bp_location_ops ada_catchpoint_location_ops =
11681{
11682 ada_catchpoint_location_dtor
11683};
11684
11685/* An instance of this type is used to represent an Ada catchpoint.
11686 It includes a "struct breakpoint" as a kind of base class; users
11687 downcast to "struct breakpoint *" when needed. */
11688
11689struct ada_catchpoint
11690{
11691 /* The base class. */
11692 struct breakpoint base;
11693
11694 /* The name of the specific exception the user specified. */
11695 char *excep_string;
11696};
11697
11698/* Parse the exception condition string in the context of each of the
11699 catchpoint's locations, and store them for later evaluation. */
11700
11701static void
11702create_excep_cond_exprs (struct ada_catchpoint *c)
11703{
11704 struct cleanup *old_chain;
11705 struct bp_location *bl;
11706 char *cond_string;
11707
11708 /* Nothing to do if there's no specific exception to catch. */
11709 if (c->excep_string == NULL)
11710 return;
11711
11712 /* Same if there are no locations... */
11713 if (c->base.loc == NULL)
11714 return;
11715
11716 /* Compute the condition expression in text form, from the specific
11717 expection we want to catch. */
11718 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11719 old_chain = make_cleanup (xfree, cond_string);
11720
11721 /* Iterate over all the catchpoint's locations, and parse an
11722 expression for each. */
11723 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11724 {
11725 struct ada_catchpoint_location *ada_loc
11726 = (struct ada_catchpoint_location *) bl;
11727 struct expression *exp = NULL;
11728
11729 if (!bl->shlib_disabled)
11730 {
11731 volatile struct gdb_exception e;
bbc13ae3 11732 const char *s;
28010a5d
PA
11733
11734 s = cond_string;
11735 TRY_CATCH (e, RETURN_MASK_ERROR)
11736 {
1bb9788d
TT
11737 exp = parse_exp_1 (&s, bl->address,
11738 block_for_pc (bl->address), 0);
28010a5d
PA
11739 }
11740 if (e.reason < 0)
849f2b52
JB
11741 {
11742 warning (_("failed to reevaluate internal exception condition "
11743 "for catchpoint %d: %s"),
11744 c->base.number, e.message);
11745 /* There is a bug in GCC on sparc-solaris when building with
11746 optimization which causes EXP to change unexpectedly
11747 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11748 The problem should be fixed starting with GCC 4.9.
11749 In the meantime, work around it by forcing EXP back
11750 to NULL. */
11751 exp = NULL;
11752 }
28010a5d
PA
11753 }
11754
11755 ada_loc->excep_cond_expr = exp;
11756 }
11757
11758 do_cleanups (old_chain);
11759}
11760
11761/* Implement the DTOR method in the breakpoint_ops structure for all
11762 exception catchpoint kinds. */
11763
11764static void
761269c8 11765dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11766{
11767 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11768
11769 xfree (c->excep_string);
348d480f 11770
2060206e 11771 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11772}
11773
11774/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11775 structure for all exception catchpoint kinds. */
11776
11777static struct bp_location *
761269c8 11778allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11779 struct breakpoint *self)
11780{
11781 struct ada_catchpoint_location *loc;
11782
11783 loc = XNEW (struct ada_catchpoint_location);
11784 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11785 loc->excep_cond_expr = NULL;
11786 return &loc->base;
11787}
11788
11789/* Implement the RE_SET method in the breakpoint_ops structure for all
11790 exception catchpoint kinds. */
11791
11792static void
761269c8 11793re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11794{
11795 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11796
11797 /* Call the base class's method. This updates the catchpoint's
11798 locations. */
2060206e 11799 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11800
11801 /* Reparse the exception conditional expressions. One for each
11802 location. */
11803 create_excep_cond_exprs (c);
11804}
11805
11806/* Returns true if we should stop for this breakpoint hit. If the
11807 user specified a specific exception, we only want to cause a stop
11808 if the program thrown that exception. */
11809
11810static int
11811should_stop_exception (const struct bp_location *bl)
11812{
11813 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11814 const struct ada_catchpoint_location *ada_loc
11815 = (const struct ada_catchpoint_location *) bl;
11816 volatile struct gdb_exception ex;
11817 int stop;
11818
11819 /* With no specific exception, should always stop. */
11820 if (c->excep_string == NULL)
11821 return 1;
11822
11823 if (ada_loc->excep_cond_expr == NULL)
11824 {
11825 /* We will have a NULL expression if back when we were creating
11826 the expressions, this location's had failed to parse. */
11827 return 1;
11828 }
11829
11830 stop = 1;
11831 TRY_CATCH (ex, RETURN_MASK_ALL)
11832 {
11833 struct value *mark;
11834
11835 mark = value_mark ();
11836 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11837 value_free_to_mark (mark);
11838 }
11839 if (ex.reason < 0)
11840 exception_fprintf (gdb_stderr, ex,
11841 _("Error in testing exception condition:\n"));
11842 return stop;
11843}
11844
11845/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11846 for all exception catchpoint kinds. */
11847
11848static void
761269c8 11849check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
11850{
11851 bs->stop = should_stop_exception (bs->bp_location_at);
11852}
11853
f7f9143b
JB
11854/* Implement the PRINT_IT method in the breakpoint_ops structure
11855 for all exception catchpoint kinds. */
11856
11857static enum print_stop_action
761269c8 11858print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11859{
79a45e25 11860 struct ui_out *uiout = current_uiout;
348d480f
PA
11861 struct breakpoint *b = bs->breakpoint_at;
11862
956a9fb9 11863 annotate_catchpoint (b->number);
f7f9143b 11864
956a9fb9 11865 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11866 {
956a9fb9
JB
11867 ui_out_field_string (uiout, "reason",
11868 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11869 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11870 }
11871
00eb2c4a
JB
11872 ui_out_text (uiout,
11873 b->disposition == disp_del ? "\nTemporary catchpoint "
11874 : "\nCatchpoint ");
956a9fb9
JB
11875 ui_out_field_int (uiout, "bkptno", b->number);
11876 ui_out_text (uiout, ", ");
f7f9143b 11877
f7f9143b
JB
11878 switch (ex)
11879 {
761269c8
JB
11880 case ada_catch_exception:
11881 case ada_catch_exception_unhandled:
956a9fb9
JB
11882 {
11883 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11884 char exception_name[256];
11885
11886 if (addr != 0)
11887 {
c714b426
PA
11888 read_memory (addr, (gdb_byte *) exception_name,
11889 sizeof (exception_name) - 1);
956a9fb9
JB
11890 exception_name [sizeof (exception_name) - 1] = '\0';
11891 }
11892 else
11893 {
11894 /* For some reason, we were unable to read the exception
11895 name. This could happen if the Runtime was compiled
11896 without debugging info, for instance. In that case,
11897 just replace the exception name by the generic string
11898 "exception" - it will read as "an exception" in the
11899 notification we are about to print. */
967cff16 11900 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11901 }
11902 /* In the case of unhandled exception breakpoints, we print
11903 the exception name as "unhandled EXCEPTION_NAME", to make
11904 it clearer to the user which kind of catchpoint just got
11905 hit. We used ui_out_text to make sure that this extra
11906 info does not pollute the exception name in the MI case. */
761269c8 11907 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
11908 ui_out_text (uiout, "unhandled ");
11909 ui_out_field_string (uiout, "exception-name", exception_name);
11910 }
11911 break;
761269c8 11912 case ada_catch_assert:
956a9fb9
JB
11913 /* In this case, the name of the exception is not really
11914 important. Just print "failed assertion" to make it clearer
11915 that his program just hit an assertion-failure catchpoint.
11916 We used ui_out_text because this info does not belong in
11917 the MI output. */
11918 ui_out_text (uiout, "failed assertion");
11919 break;
f7f9143b 11920 }
956a9fb9
JB
11921 ui_out_text (uiout, " at ");
11922 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11923
11924 return PRINT_SRC_AND_LOC;
11925}
11926
11927/* Implement the PRINT_ONE method in the breakpoint_ops structure
11928 for all exception catchpoint kinds. */
11929
11930static void
761269c8 11931print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 11932 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11933{
79a45e25 11934 struct ui_out *uiout = current_uiout;
28010a5d 11935 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11936 struct value_print_options opts;
11937
11938 get_user_print_options (&opts);
11939 if (opts.addressprint)
f7f9143b
JB
11940 {
11941 annotate_field (4);
5af949e3 11942 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11943 }
11944
11945 annotate_field (5);
a6d9a66e 11946 *last_loc = b->loc;
f7f9143b
JB
11947 switch (ex)
11948 {
761269c8 11949 case ada_catch_exception:
28010a5d 11950 if (c->excep_string != NULL)
f7f9143b 11951 {
28010a5d
PA
11952 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11953
f7f9143b
JB
11954 ui_out_field_string (uiout, "what", msg);
11955 xfree (msg);
11956 }
11957 else
11958 ui_out_field_string (uiout, "what", "all Ada exceptions");
11959
11960 break;
11961
761269c8 11962 case ada_catch_exception_unhandled:
f7f9143b
JB
11963 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11964 break;
11965
761269c8 11966 case ada_catch_assert:
f7f9143b
JB
11967 ui_out_field_string (uiout, "what", "failed Ada assertions");
11968 break;
11969
11970 default:
11971 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11972 break;
11973 }
11974}
11975
11976/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11977 for all exception catchpoint kinds. */
11978
11979static void
761269c8 11980print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11981 struct breakpoint *b)
11982{
28010a5d 11983 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11984 struct ui_out *uiout = current_uiout;
28010a5d 11985
00eb2c4a
JB
11986 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11987 : _("Catchpoint "));
11988 ui_out_field_int (uiout, "bkptno", b->number);
11989 ui_out_text (uiout, ": ");
11990
f7f9143b
JB
11991 switch (ex)
11992 {
761269c8 11993 case ada_catch_exception:
28010a5d 11994 if (c->excep_string != NULL)
00eb2c4a
JB
11995 {
11996 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11997 struct cleanup *old_chain = make_cleanup (xfree, info);
11998
11999 ui_out_text (uiout, info);
12000 do_cleanups (old_chain);
12001 }
f7f9143b 12002 else
00eb2c4a 12003 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12004 break;
12005
761269c8 12006 case ada_catch_exception_unhandled:
00eb2c4a 12007 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12008 break;
12009
761269c8 12010 case ada_catch_assert:
00eb2c4a 12011 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12012 break;
12013
12014 default:
12015 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12016 break;
12017 }
12018}
12019
6149aea9
PA
12020/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12021 for all exception catchpoint kinds. */
12022
12023static void
761269c8 12024print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12025 struct breakpoint *b, struct ui_file *fp)
12026{
28010a5d
PA
12027 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12028
6149aea9
PA
12029 switch (ex)
12030 {
761269c8 12031 case ada_catch_exception:
6149aea9 12032 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12033 if (c->excep_string != NULL)
12034 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12035 break;
12036
761269c8 12037 case ada_catch_exception_unhandled:
78076abc 12038 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12039 break;
12040
761269c8 12041 case ada_catch_assert:
6149aea9
PA
12042 fprintf_filtered (fp, "catch assert");
12043 break;
12044
12045 default:
12046 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12047 }
d9b3f62e 12048 print_recreate_thread (b, fp);
6149aea9
PA
12049}
12050
f7f9143b
JB
12051/* Virtual table for "catch exception" breakpoints. */
12052
28010a5d
PA
12053static void
12054dtor_catch_exception (struct breakpoint *b)
12055{
761269c8 12056 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12057}
12058
12059static struct bp_location *
12060allocate_location_catch_exception (struct breakpoint *self)
12061{
761269c8 12062 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12063}
12064
12065static void
12066re_set_catch_exception (struct breakpoint *b)
12067{
761269c8 12068 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12069}
12070
12071static void
12072check_status_catch_exception (bpstat bs)
12073{
761269c8 12074 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12075}
12076
f7f9143b 12077static enum print_stop_action
348d480f 12078print_it_catch_exception (bpstat bs)
f7f9143b 12079{
761269c8 12080 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12081}
12082
12083static void
a6d9a66e 12084print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12085{
761269c8 12086 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12087}
12088
12089static void
12090print_mention_catch_exception (struct breakpoint *b)
12091{
761269c8 12092 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12093}
12094
6149aea9
PA
12095static void
12096print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12097{
761269c8 12098 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12099}
12100
2060206e 12101static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12102
12103/* Virtual table for "catch exception unhandled" breakpoints. */
12104
28010a5d
PA
12105static void
12106dtor_catch_exception_unhandled (struct breakpoint *b)
12107{
761269c8 12108 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12109}
12110
12111static struct bp_location *
12112allocate_location_catch_exception_unhandled (struct breakpoint *self)
12113{
761269c8 12114 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12115}
12116
12117static void
12118re_set_catch_exception_unhandled (struct breakpoint *b)
12119{
761269c8 12120 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12121}
12122
12123static void
12124check_status_catch_exception_unhandled (bpstat bs)
12125{
761269c8 12126 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12127}
12128
f7f9143b 12129static enum print_stop_action
348d480f 12130print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12131{
761269c8 12132 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12133}
12134
12135static void
a6d9a66e
UW
12136print_one_catch_exception_unhandled (struct breakpoint *b,
12137 struct bp_location **last_loc)
f7f9143b 12138{
761269c8 12139 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12140}
12141
12142static void
12143print_mention_catch_exception_unhandled (struct breakpoint *b)
12144{
761269c8 12145 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12146}
12147
6149aea9
PA
12148static void
12149print_recreate_catch_exception_unhandled (struct breakpoint *b,
12150 struct ui_file *fp)
12151{
761269c8 12152 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12153}
12154
2060206e 12155static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12156
12157/* Virtual table for "catch assert" breakpoints. */
12158
28010a5d
PA
12159static void
12160dtor_catch_assert (struct breakpoint *b)
12161{
761269c8 12162 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12163}
12164
12165static struct bp_location *
12166allocate_location_catch_assert (struct breakpoint *self)
12167{
761269c8 12168 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12169}
12170
12171static void
12172re_set_catch_assert (struct breakpoint *b)
12173{
761269c8 12174 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12175}
12176
12177static void
12178check_status_catch_assert (bpstat bs)
12179{
761269c8 12180 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12181}
12182
f7f9143b 12183static enum print_stop_action
348d480f 12184print_it_catch_assert (bpstat bs)
f7f9143b 12185{
761269c8 12186 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12187}
12188
12189static void
a6d9a66e 12190print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12191{
761269c8 12192 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12193}
12194
12195static void
12196print_mention_catch_assert (struct breakpoint *b)
12197{
761269c8 12198 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12199}
12200
6149aea9
PA
12201static void
12202print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12203{
761269c8 12204 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12205}
12206
2060206e 12207static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12208
f7f9143b
JB
12209/* Return a newly allocated copy of the first space-separated token
12210 in ARGSP, and then adjust ARGSP to point immediately after that
12211 token.
12212
12213 Return NULL if ARGPS does not contain any more tokens. */
12214
12215static char *
12216ada_get_next_arg (char **argsp)
12217{
12218 char *args = *argsp;
12219 char *end;
12220 char *result;
12221
0fcd72ba 12222 args = skip_spaces (args);
f7f9143b
JB
12223 if (args[0] == '\0')
12224 return NULL; /* No more arguments. */
12225
12226 /* Find the end of the current argument. */
12227
0fcd72ba 12228 end = skip_to_space (args);
f7f9143b
JB
12229
12230 /* Adjust ARGSP to point to the start of the next argument. */
12231
12232 *argsp = end;
12233
12234 /* Make a copy of the current argument and return it. */
12235
12236 result = xmalloc (end - args + 1);
12237 strncpy (result, args, end - args);
12238 result[end - args] = '\0';
12239
12240 return result;
12241}
12242
12243/* Split the arguments specified in a "catch exception" command.
12244 Set EX to the appropriate catchpoint type.
28010a5d 12245 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12246 specified by the user.
12247 If a condition is found at the end of the arguments, the condition
12248 expression is stored in COND_STRING (memory must be deallocated
12249 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12250
12251static void
12252catch_ada_exception_command_split (char *args,
761269c8 12253 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12254 char **excep_string,
12255 char **cond_string)
f7f9143b
JB
12256{
12257 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12258 char *exception_name;
5845583d 12259 char *cond = NULL;
f7f9143b
JB
12260
12261 exception_name = ada_get_next_arg (&args);
5845583d
JB
12262 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12263 {
12264 /* This is not an exception name; this is the start of a condition
12265 expression for a catchpoint on all exceptions. So, "un-get"
12266 this token, and set exception_name to NULL. */
12267 xfree (exception_name);
12268 exception_name = NULL;
12269 args -= 2;
12270 }
f7f9143b
JB
12271 make_cleanup (xfree, exception_name);
12272
5845583d 12273 /* Check to see if we have a condition. */
f7f9143b 12274
0fcd72ba 12275 args = skip_spaces (args);
5845583d
JB
12276 if (strncmp (args, "if", 2) == 0
12277 && (isspace (args[2]) || args[2] == '\0'))
12278 {
12279 args += 2;
12280 args = skip_spaces (args);
12281
12282 if (args[0] == '\0')
12283 error (_("Condition missing after `if' keyword"));
12284 cond = xstrdup (args);
12285 make_cleanup (xfree, cond);
12286
12287 args += strlen (args);
12288 }
12289
12290 /* Check that we do not have any more arguments. Anything else
12291 is unexpected. */
f7f9143b
JB
12292
12293 if (args[0] != '\0')
12294 error (_("Junk at end of expression"));
12295
12296 discard_cleanups (old_chain);
12297
12298 if (exception_name == NULL)
12299 {
12300 /* Catch all exceptions. */
761269c8 12301 *ex = ada_catch_exception;
28010a5d 12302 *excep_string = NULL;
f7f9143b
JB
12303 }
12304 else if (strcmp (exception_name, "unhandled") == 0)
12305 {
12306 /* Catch unhandled exceptions. */
761269c8 12307 *ex = ada_catch_exception_unhandled;
28010a5d 12308 *excep_string = NULL;
f7f9143b
JB
12309 }
12310 else
12311 {
12312 /* Catch a specific exception. */
761269c8 12313 *ex = ada_catch_exception;
28010a5d 12314 *excep_string = exception_name;
f7f9143b 12315 }
5845583d 12316 *cond_string = cond;
f7f9143b
JB
12317}
12318
12319/* Return the name of the symbol on which we should break in order to
12320 implement a catchpoint of the EX kind. */
12321
12322static const char *
761269c8 12323ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12324{
3eecfa55
JB
12325 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12326
12327 gdb_assert (data->exception_info != NULL);
0259addd 12328
f7f9143b
JB
12329 switch (ex)
12330 {
761269c8 12331 case ada_catch_exception:
3eecfa55 12332 return (data->exception_info->catch_exception_sym);
f7f9143b 12333 break;
761269c8 12334 case ada_catch_exception_unhandled:
3eecfa55 12335 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12336 break;
761269c8 12337 case ada_catch_assert:
3eecfa55 12338 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12339 break;
12340 default:
12341 internal_error (__FILE__, __LINE__,
12342 _("unexpected catchpoint kind (%d)"), ex);
12343 }
12344}
12345
12346/* Return the breakpoint ops "virtual table" used for catchpoints
12347 of the EX kind. */
12348
c0a91b2b 12349static const struct breakpoint_ops *
761269c8 12350ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12351{
12352 switch (ex)
12353 {
761269c8 12354 case ada_catch_exception:
f7f9143b
JB
12355 return (&catch_exception_breakpoint_ops);
12356 break;
761269c8 12357 case ada_catch_exception_unhandled:
f7f9143b
JB
12358 return (&catch_exception_unhandled_breakpoint_ops);
12359 break;
761269c8 12360 case ada_catch_assert:
f7f9143b
JB
12361 return (&catch_assert_breakpoint_ops);
12362 break;
12363 default:
12364 internal_error (__FILE__, __LINE__,
12365 _("unexpected catchpoint kind (%d)"), ex);
12366 }
12367}
12368
12369/* Return the condition that will be used to match the current exception
12370 being raised with the exception that the user wants to catch. This
12371 assumes that this condition is used when the inferior just triggered
12372 an exception catchpoint.
12373
12374 The string returned is a newly allocated string that needs to be
12375 deallocated later. */
12376
12377static char *
28010a5d 12378ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12379{
3d0b0fa3
JB
12380 int i;
12381
0963b4bd 12382 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12383 runtime units that have been compiled without debugging info; if
28010a5d 12384 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12385 exception (e.g. "constraint_error") then, during the evaluation
12386 of the condition expression, the symbol lookup on this name would
0963b4bd 12387 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12388 may then be set only on user-defined exceptions which have the
12389 same not-fully-qualified name (e.g. my_package.constraint_error).
12390
12391 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12392 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12393 exception constraint_error" is rewritten into "catch exception
12394 standard.constraint_error".
12395
12396 If an exception named contraint_error is defined in another package of
12397 the inferior program, then the only way to specify this exception as a
12398 breakpoint condition is to use its fully-qualified named:
12399 e.g. my_package.constraint_error. */
12400
12401 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12402 {
28010a5d 12403 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12404 {
12405 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12406 excep_string);
3d0b0fa3
JB
12407 }
12408 }
28010a5d 12409 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12410}
12411
12412/* Return the symtab_and_line that should be used to insert an exception
12413 catchpoint of the TYPE kind.
12414
28010a5d
PA
12415 EXCEP_STRING should contain the name of a specific exception that
12416 the catchpoint should catch, or NULL otherwise.
f7f9143b 12417
28010a5d
PA
12418 ADDR_STRING returns the name of the function where the real
12419 breakpoint that implements the catchpoints is set, depending on the
12420 type of catchpoint we need to create. */
f7f9143b
JB
12421
12422static struct symtab_and_line
761269c8 12423ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12424 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12425{
12426 const char *sym_name;
12427 struct symbol *sym;
f7f9143b 12428
0259addd
JB
12429 /* First, find out which exception support info to use. */
12430 ada_exception_support_info_sniffer ();
12431
12432 /* Then lookup the function on which we will break in order to catch
f7f9143b 12433 the Ada exceptions requested by the user. */
f7f9143b
JB
12434 sym_name = ada_exception_sym_name (ex);
12435 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12436
f17011e0
JB
12437 /* We can assume that SYM is not NULL at this stage. If the symbol
12438 did not exist, ada_exception_support_info_sniffer would have
12439 raised an exception.
f7f9143b 12440
f17011e0
JB
12441 Also, ada_exception_support_info_sniffer should have already
12442 verified that SYM is a function symbol. */
12443 gdb_assert (sym != NULL);
12444 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12445
12446 /* Set ADDR_STRING. */
f7f9143b
JB
12447 *addr_string = xstrdup (sym_name);
12448
f7f9143b 12449 /* Set OPS. */
4b9eee8c 12450 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12451
f17011e0 12452 return find_function_start_sal (sym, 1);
f7f9143b
JB
12453}
12454
b4a5b78b 12455/* Create an Ada exception catchpoint.
f7f9143b 12456
b4a5b78b 12457 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12458
2df4d1d5
JB
12459 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12460 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12461 of the exception to which this catchpoint applies. When not NULL,
12462 the string must be allocated on the heap, and its deallocation
12463 is no longer the responsibility of the caller.
12464
12465 COND_STRING, if not NULL, is the catchpoint condition. This string
12466 must be allocated on the heap, and its deallocation is no longer
12467 the responsibility of the caller.
f7f9143b 12468
b4a5b78b
JB
12469 TEMPFLAG, if nonzero, means that the underlying breakpoint
12470 should be temporary.
28010a5d 12471
b4a5b78b 12472 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12473
349774ef 12474void
28010a5d 12475create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12476 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12477 char *excep_string,
5845583d 12478 char *cond_string,
28010a5d 12479 int tempflag,
349774ef 12480 int disabled,
28010a5d
PA
12481 int from_tty)
12482{
12483 struct ada_catchpoint *c;
b4a5b78b
JB
12484 char *addr_string = NULL;
12485 const struct breakpoint_ops *ops = NULL;
12486 struct symtab_and_line sal
12487 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12488
12489 c = XNEW (struct ada_catchpoint);
12490 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12491 ops, tempflag, disabled, from_tty);
28010a5d
PA
12492 c->excep_string = excep_string;
12493 create_excep_cond_exprs (c);
5845583d
JB
12494 if (cond_string != NULL)
12495 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12496 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12497}
12498
9ac4176b
PA
12499/* Implement the "catch exception" command. */
12500
12501static void
12502catch_ada_exception_command (char *arg, int from_tty,
12503 struct cmd_list_element *command)
12504{
12505 struct gdbarch *gdbarch = get_current_arch ();
12506 int tempflag;
761269c8 12507 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12508 char *excep_string = NULL;
5845583d 12509 char *cond_string = NULL;
9ac4176b
PA
12510
12511 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12512
12513 if (!arg)
12514 arg = "";
b4a5b78b
JB
12515 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12516 &cond_string);
12517 create_ada_exception_catchpoint (gdbarch, ex_kind,
12518 excep_string, cond_string,
349774ef
JB
12519 tempflag, 1 /* enabled */,
12520 from_tty);
9ac4176b
PA
12521}
12522
b4a5b78b 12523/* Split the arguments specified in a "catch assert" command.
5845583d 12524
b4a5b78b
JB
12525 ARGS contains the command's arguments (or the empty string if
12526 no arguments were passed).
5845583d
JB
12527
12528 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12529 (the memory needs to be deallocated after use). */
5845583d 12530
b4a5b78b
JB
12531static void
12532catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12533{
5845583d 12534 args = skip_spaces (args);
f7f9143b 12535
5845583d
JB
12536 /* Check whether a condition was provided. */
12537 if (strncmp (args, "if", 2) == 0
12538 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12539 {
5845583d 12540 args += 2;
0fcd72ba 12541 args = skip_spaces (args);
5845583d
JB
12542 if (args[0] == '\0')
12543 error (_("condition missing after `if' keyword"));
12544 *cond_string = xstrdup (args);
f7f9143b
JB
12545 }
12546
5845583d
JB
12547 /* Otherwise, there should be no other argument at the end of
12548 the command. */
12549 else if (args[0] != '\0')
12550 error (_("Junk at end of arguments."));
f7f9143b
JB
12551}
12552
9ac4176b
PA
12553/* Implement the "catch assert" command. */
12554
12555static void
12556catch_assert_command (char *arg, int from_tty,
12557 struct cmd_list_element *command)
12558{
12559 struct gdbarch *gdbarch = get_current_arch ();
12560 int tempflag;
5845583d 12561 char *cond_string = NULL;
9ac4176b
PA
12562
12563 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12564
12565 if (!arg)
12566 arg = "";
b4a5b78b 12567 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12568 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12569 NULL, cond_string,
349774ef
JB
12570 tempflag, 1 /* enabled */,
12571 from_tty);
9ac4176b 12572}
778865d3
JB
12573
12574/* Return non-zero if the symbol SYM is an Ada exception object. */
12575
12576static int
12577ada_is_exception_sym (struct symbol *sym)
12578{
12579 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12580
12581 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12582 && SYMBOL_CLASS (sym) != LOC_BLOCK
12583 && SYMBOL_CLASS (sym) != LOC_CONST
12584 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12585 && type_name != NULL && strcmp (type_name, "exception") == 0);
12586}
12587
12588/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12589 Ada exception object. This matches all exceptions except the ones
12590 defined by the Ada language. */
12591
12592static int
12593ada_is_non_standard_exception_sym (struct symbol *sym)
12594{
12595 int i;
12596
12597 if (!ada_is_exception_sym (sym))
12598 return 0;
12599
12600 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12601 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12602 return 0; /* A standard exception. */
12603
12604 /* Numeric_Error is also a standard exception, so exclude it.
12605 See the STANDARD_EXC description for more details as to why
12606 this exception is not listed in that array. */
12607 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12608 return 0;
12609
12610 return 1;
12611}
12612
12613/* A helper function for qsort, comparing two struct ada_exc_info
12614 objects.
12615
12616 The comparison is determined first by exception name, and then
12617 by exception address. */
12618
12619static int
12620compare_ada_exception_info (const void *a, const void *b)
12621{
12622 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12623 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12624 int result;
12625
12626 result = strcmp (exc_a->name, exc_b->name);
12627 if (result != 0)
12628 return result;
12629
12630 if (exc_a->addr < exc_b->addr)
12631 return -1;
12632 if (exc_a->addr > exc_b->addr)
12633 return 1;
12634
12635 return 0;
12636}
12637
12638/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12639 routine, but keeping the first SKIP elements untouched.
12640
12641 All duplicates are also removed. */
12642
12643static void
12644sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12645 int skip)
12646{
12647 struct ada_exc_info *to_sort
12648 = VEC_address (ada_exc_info, *exceptions) + skip;
12649 int to_sort_len
12650 = VEC_length (ada_exc_info, *exceptions) - skip;
12651 int i, j;
12652
12653 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12654 compare_ada_exception_info);
12655
12656 for (i = 1, j = 1; i < to_sort_len; i++)
12657 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12658 to_sort[j++] = to_sort[i];
12659 to_sort_len = j;
12660 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12661}
12662
12663/* A function intended as the "name_matcher" callback in the struct
12664 quick_symbol_functions' expand_symtabs_matching method.
12665
12666 SEARCH_NAME is the symbol's search name.
12667
12668 If USER_DATA is not NULL, it is a pointer to a regext_t object
12669 used to match the symbol (by natural name). Otherwise, when USER_DATA
12670 is null, no filtering is performed, and all symbols are a positive
12671 match. */
12672
12673static int
12674ada_exc_search_name_matches (const char *search_name, void *user_data)
12675{
12676 regex_t *preg = user_data;
12677
12678 if (preg == NULL)
12679 return 1;
12680
12681 /* In Ada, the symbol "search name" is a linkage name, whereas
12682 the regular expression used to do the matching refers to
12683 the natural name. So match against the decoded name. */
12684 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12685}
12686
12687/* Add all exceptions defined by the Ada standard whose name match
12688 a regular expression.
12689
12690 If PREG is not NULL, then this regexp_t object is used to
12691 perform the symbol name matching. Otherwise, no name-based
12692 filtering is performed.
12693
12694 EXCEPTIONS is a vector of exceptions to which matching exceptions
12695 gets pushed. */
12696
12697static void
12698ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12699{
12700 int i;
12701
12702 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12703 {
12704 if (preg == NULL
12705 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12706 {
12707 struct bound_minimal_symbol msymbol
12708 = ada_lookup_simple_minsym (standard_exc[i]);
12709
12710 if (msymbol.minsym != NULL)
12711 {
12712 struct ada_exc_info info
77e371c0 12713 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12714
12715 VEC_safe_push (ada_exc_info, *exceptions, &info);
12716 }
12717 }
12718 }
12719}
12720
12721/* Add all Ada exceptions defined locally and accessible from the given
12722 FRAME.
12723
12724 If PREG is not NULL, then this regexp_t object is used to
12725 perform the symbol name matching. Otherwise, no name-based
12726 filtering is performed.
12727
12728 EXCEPTIONS is a vector of exceptions to which matching exceptions
12729 gets pushed. */
12730
12731static void
12732ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12733 VEC(ada_exc_info) **exceptions)
12734{
12735 struct block *block = get_frame_block (frame, 0);
12736
12737 while (block != 0)
12738 {
12739 struct block_iterator iter;
12740 struct symbol *sym;
12741
12742 ALL_BLOCK_SYMBOLS (block, iter, sym)
12743 {
12744 switch (SYMBOL_CLASS (sym))
12745 {
12746 case LOC_TYPEDEF:
12747 case LOC_BLOCK:
12748 case LOC_CONST:
12749 break;
12750 default:
12751 if (ada_is_exception_sym (sym))
12752 {
12753 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12754 SYMBOL_VALUE_ADDRESS (sym)};
12755
12756 VEC_safe_push (ada_exc_info, *exceptions, &info);
12757 }
12758 }
12759 }
12760 if (BLOCK_FUNCTION (block) != NULL)
12761 break;
12762 block = BLOCK_SUPERBLOCK (block);
12763 }
12764}
12765
12766/* Add all exceptions defined globally whose name name match
12767 a regular expression, excluding standard exceptions.
12768
12769 The reason we exclude standard exceptions is that they need
12770 to be handled separately: Standard exceptions are defined inside
12771 a runtime unit which is normally not compiled with debugging info,
12772 and thus usually do not show up in our symbol search. However,
12773 if the unit was in fact built with debugging info, we need to
12774 exclude them because they would duplicate the entry we found
12775 during the special loop that specifically searches for those
12776 standard exceptions.
12777
12778 If PREG is not NULL, then this regexp_t object is used to
12779 perform the symbol name matching. Otherwise, no name-based
12780 filtering is performed.
12781
12782 EXCEPTIONS is a vector of exceptions to which matching exceptions
12783 gets pushed. */
12784
12785static void
12786ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12787{
12788 struct objfile *objfile;
12789 struct symtab *s;
12790
bb4142cf
DE
12791 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12792 VARIABLES_DOMAIN, preg);
778865d3
JB
12793
12794 ALL_PRIMARY_SYMTABS (objfile, s)
12795 {
12796 struct blockvector *bv = BLOCKVECTOR (s);
12797 int i;
12798
12799 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12800 {
12801 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12802 struct block_iterator iter;
12803 struct symbol *sym;
12804
12805 ALL_BLOCK_SYMBOLS (b, iter, sym)
12806 if (ada_is_non_standard_exception_sym (sym)
12807 && (preg == NULL
12808 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12809 0, NULL, 0) == 0))
12810 {
12811 struct ada_exc_info info
12812 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12813
12814 VEC_safe_push (ada_exc_info, *exceptions, &info);
12815 }
12816 }
12817 }
12818}
12819
12820/* Implements ada_exceptions_list with the regular expression passed
12821 as a regex_t, rather than a string.
12822
12823 If not NULL, PREG is used to filter out exceptions whose names
12824 do not match. Otherwise, all exceptions are listed. */
12825
12826static VEC(ada_exc_info) *
12827ada_exceptions_list_1 (regex_t *preg)
12828{
12829 VEC(ada_exc_info) *result = NULL;
12830 struct cleanup *old_chain
12831 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12832 int prev_len;
12833
12834 /* First, list the known standard exceptions. These exceptions
12835 need to be handled separately, as they are usually defined in
12836 runtime units that have been compiled without debugging info. */
12837
12838 ada_add_standard_exceptions (preg, &result);
12839
12840 /* Next, find all exceptions whose scope is local and accessible
12841 from the currently selected frame. */
12842
12843 if (has_stack_frames ())
12844 {
12845 prev_len = VEC_length (ada_exc_info, result);
12846 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12847 &result);
12848 if (VEC_length (ada_exc_info, result) > prev_len)
12849 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12850 }
12851
12852 /* Add all exceptions whose scope is global. */
12853
12854 prev_len = VEC_length (ada_exc_info, result);
12855 ada_add_global_exceptions (preg, &result);
12856 if (VEC_length (ada_exc_info, result) > prev_len)
12857 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12858
12859 discard_cleanups (old_chain);
12860 return result;
12861}
12862
12863/* Return a vector of ada_exc_info.
12864
12865 If REGEXP is NULL, all exceptions are included in the result.
12866 Otherwise, it should contain a valid regular expression,
12867 and only the exceptions whose names match that regular expression
12868 are included in the result.
12869
12870 The exceptions are sorted in the following order:
12871 - Standard exceptions (defined by the Ada language), in
12872 alphabetical order;
12873 - Exceptions only visible from the current frame, in
12874 alphabetical order;
12875 - Exceptions whose scope is global, in alphabetical order. */
12876
12877VEC(ada_exc_info) *
12878ada_exceptions_list (const char *regexp)
12879{
12880 VEC(ada_exc_info) *result = NULL;
12881 struct cleanup *old_chain = NULL;
12882 regex_t reg;
12883
12884 if (regexp != NULL)
12885 old_chain = compile_rx_or_error (&reg, regexp,
12886 _("invalid regular expression"));
12887
12888 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12889
12890 if (old_chain != NULL)
12891 do_cleanups (old_chain);
12892 return result;
12893}
12894
12895/* Implement the "info exceptions" command. */
12896
12897static void
12898info_exceptions_command (char *regexp, int from_tty)
12899{
12900 VEC(ada_exc_info) *exceptions;
12901 struct cleanup *cleanup;
12902 struct gdbarch *gdbarch = get_current_arch ();
12903 int ix;
12904 struct ada_exc_info *info;
12905
12906 exceptions = ada_exceptions_list (regexp);
12907 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12908
12909 if (regexp != NULL)
12910 printf_filtered
12911 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12912 else
12913 printf_filtered (_("All defined Ada exceptions:\n"));
12914
12915 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12916 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12917
12918 do_cleanups (cleanup);
12919}
12920
4c4b4cd2
PH
12921 /* Operators */
12922/* Information about operators given special treatment in functions
12923 below. */
12924/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12925
12926#define ADA_OPERATORS \
12927 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12928 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12929 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12930 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12931 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12932 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12933 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12934 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12935 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12936 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12937 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12938 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12939 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12940 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12941 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12942 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12943 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12944 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12945 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12946
12947static void
554794dc
SDJ
12948ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12949 int *argsp)
4c4b4cd2
PH
12950{
12951 switch (exp->elts[pc - 1].opcode)
12952 {
76a01679 12953 default:
4c4b4cd2
PH
12954 operator_length_standard (exp, pc, oplenp, argsp);
12955 break;
12956
12957#define OP_DEFN(op, len, args, binop) \
12958 case op: *oplenp = len; *argsp = args; break;
12959 ADA_OPERATORS;
12960#undef OP_DEFN
52ce6436
PH
12961
12962 case OP_AGGREGATE:
12963 *oplenp = 3;
12964 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12965 break;
12966
12967 case OP_CHOICES:
12968 *oplenp = 3;
12969 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12970 break;
4c4b4cd2
PH
12971 }
12972}
12973
c0201579
JK
12974/* Implementation of the exp_descriptor method operator_check. */
12975
12976static int
12977ada_operator_check (struct expression *exp, int pos,
12978 int (*objfile_func) (struct objfile *objfile, void *data),
12979 void *data)
12980{
12981 const union exp_element *const elts = exp->elts;
12982 struct type *type = NULL;
12983
12984 switch (elts[pos].opcode)
12985 {
12986 case UNOP_IN_RANGE:
12987 case UNOP_QUAL:
12988 type = elts[pos + 1].type;
12989 break;
12990
12991 default:
12992 return operator_check_standard (exp, pos, objfile_func, data);
12993 }
12994
12995 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12996
12997 if (type && TYPE_OBJFILE (type)
12998 && (*objfile_func) (TYPE_OBJFILE (type), data))
12999 return 1;
13000
13001 return 0;
13002}
13003
4c4b4cd2
PH
13004static char *
13005ada_op_name (enum exp_opcode opcode)
13006{
13007 switch (opcode)
13008 {
76a01679 13009 default:
4c4b4cd2 13010 return op_name_standard (opcode);
52ce6436 13011
4c4b4cd2
PH
13012#define OP_DEFN(op, len, args, binop) case op: return #op;
13013 ADA_OPERATORS;
13014#undef OP_DEFN
52ce6436
PH
13015
13016 case OP_AGGREGATE:
13017 return "OP_AGGREGATE";
13018 case OP_CHOICES:
13019 return "OP_CHOICES";
13020 case OP_NAME:
13021 return "OP_NAME";
4c4b4cd2
PH
13022 }
13023}
13024
13025/* As for operator_length, but assumes PC is pointing at the first
13026 element of the operator, and gives meaningful results only for the
52ce6436 13027 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13028
13029static void
76a01679
JB
13030ada_forward_operator_length (struct expression *exp, int pc,
13031 int *oplenp, int *argsp)
4c4b4cd2 13032{
76a01679 13033 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13034 {
13035 default:
13036 *oplenp = *argsp = 0;
13037 break;
52ce6436 13038
4c4b4cd2
PH
13039#define OP_DEFN(op, len, args, binop) \
13040 case op: *oplenp = len; *argsp = args; break;
13041 ADA_OPERATORS;
13042#undef OP_DEFN
52ce6436
PH
13043
13044 case OP_AGGREGATE:
13045 *oplenp = 3;
13046 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13047 break;
13048
13049 case OP_CHOICES:
13050 *oplenp = 3;
13051 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13052 break;
13053
13054 case OP_STRING:
13055 case OP_NAME:
13056 {
13057 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13058
52ce6436
PH
13059 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13060 *argsp = 0;
13061 break;
13062 }
4c4b4cd2
PH
13063 }
13064}
13065
13066static int
13067ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13068{
13069 enum exp_opcode op = exp->elts[elt].opcode;
13070 int oplen, nargs;
13071 int pc = elt;
13072 int i;
76a01679 13073
4c4b4cd2
PH
13074 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13075
76a01679 13076 switch (op)
4c4b4cd2 13077 {
76a01679 13078 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13079 case OP_ATR_FIRST:
13080 case OP_ATR_LAST:
13081 case OP_ATR_LENGTH:
13082 case OP_ATR_IMAGE:
13083 case OP_ATR_MAX:
13084 case OP_ATR_MIN:
13085 case OP_ATR_MODULUS:
13086 case OP_ATR_POS:
13087 case OP_ATR_SIZE:
13088 case OP_ATR_TAG:
13089 case OP_ATR_VAL:
13090 break;
13091
13092 case UNOP_IN_RANGE:
13093 case UNOP_QUAL:
323e0a4a
AC
13094 /* XXX: gdb_sprint_host_address, type_sprint */
13095 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13096 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13097 fprintf_filtered (stream, " (");
13098 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13099 fprintf_filtered (stream, ")");
13100 break;
13101 case BINOP_IN_BOUNDS:
52ce6436
PH
13102 fprintf_filtered (stream, " (%d)",
13103 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13104 break;
13105 case TERNOP_IN_RANGE:
13106 break;
13107
52ce6436
PH
13108 case OP_AGGREGATE:
13109 case OP_OTHERS:
13110 case OP_DISCRETE_RANGE:
13111 case OP_POSITIONAL:
13112 case OP_CHOICES:
13113 break;
13114
13115 case OP_NAME:
13116 case OP_STRING:
13117 {
13118 char *name = &exp->elts[elt + 2].string;
13119 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13120
52ce6436
PH
13121 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13122 break;
13123 }
13124
4c4b4cd2
PH
13125 default:
13126 return dump_subexp_body_standard (exp, stream, elt);
13127 }
13128
13129 elt += oplen;
13130 for (i = 0; i < nargs; i += 1)
13131 elt = dump_subexp (exp, stream, elt);
13132
13133 return elt;
13134}
13135
13136/* The Ada extension of print_subexp (q.v.). */
13137
76a01679
JB
13138static void
13139ada_print_subexp (struct expression *exp, int *pos,
13140 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13141{
52ce6436 13142 int oplen, nargs, i;
4c4b4cd2
PH
13143 int pc = *pos;
13144 enum exp_opcode op = exp->elts[pc].opcode;
13145
13146 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13147
52ce6436 13148 *pos += oplen;
4c4b4cd2
PH
13149 switch (op)
13150 {
13151 default:
52ce6436 13152 *pos -= oplen;
4c4b4cd2
PH
13153 print_subexp_standard (exp, pos, stream, prec);
13154 return;
13155
13156 case OP_VAR_VALUE:
4c4b4cd2
PH
13157 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13158 return;
13159
13160 case BINOP_IN_BOUNDS:
323e0a4a 13161 /* XXX: sprint_subexp */
4c4b4cd2 13162 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13163 fputs_filtered (" in ", stream);
4c4b4cd2 13164 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13165 fputs_filtered ("'range", stream);
4c4b4cd2 13166 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13167 fprintf_filtered (stream, "(%ld)",
13168 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13169 return;
13170
13171 case TERNOP_IN_RANGE:
4c4b4cd2 13172 if (prec >= PREC_EQUAL)
76a01679 13173 fputs_filtered ("(", stream);
323e0a4a 13174 /* XXX: sprint_subexp */
4c4b4cd2 13175 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13176 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13177 print_subexp (exp, pos, stream, PREC_EQUAL);
13178 fputs_filtered (" .. ", stream);
13179 print_subexp (exp, pos, stream, PREC_EQUAL);
13180 if (prec >= PREC_EQUAL)
76a01679
JB
13181 fputs_filtered (")", stream);
13182 return;
4c4b4cd2
PH
13183
13184 case OP_ATR_FIRST:
13185 case OP_ATR_LAST:
13186 case OP_ATR_LENGTH:
13187 case OP_ATR_IMAGE:
13188 case OP_ATR_MAX:
13189 case OP_ATR_MIN:
13190 case OP_ATR_MODULUS:
13191 case OP_ATR_POS:
13192 case OP_ATR_SIZE:
13193 case OP_ATR_TAG:
13194 case OP_ATR_VAL:
4c4b4cd2 13195 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13196 {
13197 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13198 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13199 &type_print_raw_options);
76a01679
JB
13200 *pos += 3;
13201 }
4c4b4cd2 13202 else
76a01679 13203 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13204 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13205 if (nargs > 1)
76a01679
JB
13206 {
13207 int tem;
5b4ee69b 13208
76a01679
JB
13209 for (tem = 1; tem < nargs; tem += 1)
13210 {
13211 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13212 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13213 }
13214 fputs_filtered (")", stream);
13215 }
4c4b4cd2 13216 return;
14f9c5c9 13217
4c4b4cd2 13218 case UNOP_QUAL:
4c4b4cd2
PH
13219 type_print (exp->elts[pc + 1].type, "", stream, 0);
13220 fputs_filtered ("'(", stream);
13221 print_subexp (exp, pos, stream, PREC_PREFIX);
13222 fputs_filtered (")", stream);
13223 return;
14f9c5c9 13224
4c4b4cd2 13225 case UNOP_IN_RANGE:
323e0a4a 13226 /* XXX: sprint_subexp */
4c4b4cd2 13227 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13228 fputs_filtered (" in ", stream);
79d43c61
TT
13229 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13230 &type_print_raw_options);
4c4b4cd2 13231 return;
52ce6436
PH
13232
13233 case OP_DISCRETE_RANGE:
13234 print_subexp (exp, pos, stream, PREC_SUFFIX);
13235 fputs_filtered ("..", stream);
13236 print_subexp (exp, pos, stream, PREC_SUFFIX);
13237 return;
13238
13239 case OP_OTHERS:
13240 fputs_filtered ("others => ", stream);
13241 print_subexp (exp, pos, stream, PREC_SUFFIX);
13242 return;
13243
13244 case OP_CHOICES:
13245 for (i = 0; i < nargs-1; i += 1)
13246 {
13247 if (i > 0)
13248 fputs_filtered ("|", stream);
13249 print_subexp (exp, pos, stream, PREC_SUFFIX);
13250 }
13251 fputs_filtered (" => ", stream);
13252 print_subexp (exp, pos, stream, PREC_SUFFIX);
13253 return;
13254
13255 case OP_POSITIONAL:
13256 print_subexp (exp, pos, stream, PREC_SUFFIX);
13257 return;
13258
13259 case OP_AGGREGATE:
13260 fputs_filtered ("(", stream);
13261 for (i = 0; i < nargs; i += 1)
13262 {
13263 if (i > 0)
13264 fputs_filtered (", ", stream);
13265 print_subexp (exp, pos, stream, PREC_SUFFIX);
13266 }
13267 fputs_filtered (")", stream);
13268 return;
4c4b4cd2
PH
13269 }
13270}
14f9c5c9
AS
13271
13272/* Table mapping opcodes into strings for printing operators
13273 and precedences of the operators. */
13274
d2e4a39e
AS
13275static const struct op_print ada_op_print_tab[] = {
13276 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13277 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13278 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13279 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13280 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13281 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13282 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13283 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13284 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13285 {">=", BINOP_GEQ, PREC_ORDER, 0},
13286 {">", BINOP_GTR, PREC_ORDER, 0},
13287 {"<", BINOP_LESS, PREC_ORDER, 0},
13288 {">>", BINOP_RSH, PREC_SHIFT, 0},
13289 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13290 {"+", BINOP_ADD, PREC_ADD, 0},
13291 {"-", BINOP_SUB, PREC_ADD, 0},
13292 {"&", BINOP_CONCAT, PREC_ADD, 0},
13293 {"*", BINOP_MUL, PREC_MUL, 0},
13294 {"/", BINOP_DIV, PREC_MUL, 0},
13295 {"rem", BINOP_REM, PREC_MUL, 0},
13296 {"mod", BINOP_MOD, PREC_MUL, 0},
13297 {"**", BINOP_EXP, PREC_REPEAT, 0},
13298 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13299 {"-", UNOP_NEG, PREC_PREFIX, 0},
13300 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13301 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13302 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13303 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13304 {".all", UNOP_IND, PREC_SUFFIX, 1},
13305 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13306 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13307 {NULL, 0, 0, 0}
14f9c5c9
AS
13308};
13309\f
72d5681a
PH
13310enum ada_primitive_types {
13311 ada_primitive_type_int,
13312 ada_primitive_type_long,
13313 ada_primitive_type_short,
13314 ada_primitive_type_char,
13315 ada_primitive_type_float,
13316 ada_primitive_type_double,
13317 ada_primitive_type_void,
13318 ada_primitive_type_long_long,
13319 ada_primitive_type_long_double,
13320 ada_primitive_type_natural,
13321 ada_primitive_type_positive,
13322 ada_primitive_type_system_address,
13323 nr_ada_primitive_types
13324};
6c038f32
PH
13325
13326static void
d4a9a881 13327ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13328 struct language_arch_info *lai)
13329{
d4a9a881 13330 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13331
72d5681a 13332 lai->primitive_type_vector
d4a9a881 13333 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13334 struct type *);
e9bb382b
UW
13335
13336 lai->primitive_type_vector [ada_primitive_type_int]
13337 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13338 0, "integer");
13339 lai->primitive_type_vector [ada_primitive_type_long]
13340 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13341 0, "long_integer");
13342 lai->primitive_type_vector [ada_primitive_type_short]
13343 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13344 0, "short_integer");
13345 lai->string_char_type
13346 = lai->primitive_type_vector [ada_primitive_type_char]
13347 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13348 lai->primitive_type_vector [ada_primitive_type_float]
13349 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13350 "float", NULL);
13351 lai->primitive_type_vector [ada_primitive_type_double]
13352 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13353 "long_float", NULL);
13354 lai->primitive_type_vector [ada_primitive_type_long_long]
13355 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13356 0, "long_long_integer");
13357 lai->primitive_type_vector [ada_primitive_type_long_double]
13358 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13359 "long_long_float", NULL);
13360 lai->primitive_type_vector [ada_primitive_type_natural]
13361 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13362 0, "natural");
13363 lai->primitive_type_vector [ada_primitive_type_positive]
13364 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13365 0, "positive");
13366 lai->primitive_type_vector [ada_primitive_type_void]
13367 = builtin->builtin_void;
13368
13369 lai->primitive_type_vector [ada_primitive_type_system_address]
13370 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13371 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13372 = "system__address";
fbb06eb1 13373
47e729a8 13374 lai->bool_type_symbol = NULL;
fbb06eb1 13375 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13376}
6c038f32
PH
13377\f
13378 /* Language vector */
13379
13380/* Not really used, but needed in the ada_language_defn. */
13381
13382static void
6c7a06a3 13383emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13384{
6c7a06a3 13385 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13386}
13387
13388static int
410a0ff2 13389parse (struct parser_state *ps)
6c038f32
PH
13390{
13391 warnings_issued = 0;
410a0ff2 13392 return ada_parse (ps);
6c038f32
PH
13393}
13394
13395static const struct exp_descriptor ada_exp_descriptor = {
13396 ada_print_subexp,
13397 ada_operator_length,
c0201579 13398 ada_operator_check,
6c038f32
PH
13399 ada_op_name,
13400 ada_dump_subexp_body,
13401 ada_evaluate_subexp
13402};
13403
1a119f36 13404/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13405 for Ada. */
13406
1a119f36
JB
13407static symbol_name_cmp_ftype
13408ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13409{
13410 if (should_use_wild_match (lookup_name))
13411 return wild_match;
13412 else
13413 return compare_names;
13414}
13415
a5ee536b
JB
13416/* Implement the "la_read_var_value" language_defn method for Ada. */
13417
13418static struct value *
13419ada_read_var_value (struct symbol *var, struct frame_info *frame)
13420{
13421 struct block *frame_block = NULL;
13422 struct symbol *renaming_sym = NULL;
13423
13424 /* The only case where default_read_var_value is not sufficient
13425 is when VAR is a renaming... */
13426 if (frame)
13427 frame_block = get_frame_block (frame, NULL);
13428 if (frame_block)
13429 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13430 if (renaming_sym != NULL)
13431 return ada_read_renaming_var_value (renaming_sym, frame_block);
13432
13433 /* This is a typical case where we expect the default_read_var_value
13434 function to work. */
13435 return default_read_var_value (var, frame);
13436}
13437
6c038f32
PH
13438const struct language_defn ada_language_defn = {
13439 "ada", /* Language name */
6abde28f 13440 "Ada",
6c038f32 13441 language_ada,
6c038f32 13442 range_check_off,
6c038f32
PH
13443 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13444 that's not quite what this means. */
6c038f32 13445 array_row_major,
9a044a89 13446 macro_expansion_no,
6c038f32
PH
13447 &ada_exp_descriptor,
13448 parse,
13449 ada_error,
13450 resolve,
13451 ada_printchar, /* Print a character constant */
13452 ada_printstr, /* Function to print string constant */
13453 emit_char, /* Function to print single char (not used) */
6c038f32 13454 ada_print_type, /* Print a type using appropriate syntax */
be942545 13455 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13456 ada_val_print, /* Print a value using appropriate syntax */
13457 ada_value_print, /* Print a top-level value */
a5ee536b 13458 ada_read_var_value, /* la_read_var_value */
6c038f32 13459 NULL, /* Language specific skip_trampoline */
2b2d9e11 13460 NULL, /* name_of_this */
6c038f32
PH
13461 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13462 basic_lookup_transparent_type, /* lookup_transparent_type */
13463 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13464 NULL, /* Language specific
13465 class_name_from_physname */
6c038f32
PH
13466 ada_op_print_tab, /* expression operators for printing */
13467 0, /* c-style arrays */
13468 1, /* String lower bound */
6c038f32 13469 ada_get_gdb_completer_word_break_characters,
41d27058 13470 ada_make_symbol_completion_list,
72d5681a 13471 ada_language_arch_info,
e79af960 13472 ada_print_array_index,
41f1b697 13473 default_pass_by_reference,
ae6a3a4c 13474 c_get_string,
1a119f36 13475 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13476 ada_iterate_over_symbols,
a53b64ea 13477 &ada_varobj_ops,
6c038f32
PH
13478 LANG_MAGIC
13479};
13480
2c0b251b
PA
13481/* Provide a prototype to silence -Wmissing-prototypes. */
13482extern initialize_file_ftype _initialize_ada_language;
13483
5bf03f13
JB
13484/* Command-list for the "set/show ada" prefix command. */
13485static struct cmd_list_element *set_ada_list;
13486static struct cmd_list_element *show_ada_list;
13487
13488/* Implement the "set ada" prefix command. */
13489
13490static void
13491set_ada_command (char *arg, int from_tty)
13492{
13493 printf_unfiltered (_(\
13494"\"set ada\" must be followed by the name of a setting.\n"));
13495 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
13496}
13497
13498/* Implement the "show ada" prefix command. */
13499
13500static void
13501show_ada_command (char *args, int from_tty)
13502{
13503 cmd_show_list (show_ada_list, from_tty, "");
13504}
13505
2060206e
PA
13506static void
13507initialize_ada_catchpoint_ops (void)
13508{
13509 struct breakpoint_ops *ops;
13510
13511 initialize_breakpoint_ops ();
13512
13513 ops = &catch_exception_breakpoint_ops;
13514 *ops = bkpt_breakpoint_ops;
13515 ops->dtor = dtor_catch_exception;
13516 ops->allocate_location = allocate_location_catch_exception;
13517 ops->re_set = re_set_catch_exception;
13518 ops->check_status = check_status_catch_exception;
13519 ops->print_it = print_it_catch_exception;
13520 ops->print_one = print_one_catch_exception;
13521 ops->print_mention = print_mention_catch_exception;
13522 ops->print_recreate = print_recreate_catch_exception;
13523
13524 ops = &catch_exception_unhandled_breakpoint_ops;
13525 *ops = bkpt_breakpoint_ops;
13526 ops->dtor = dtor_catch_exception_unhandled;
13527 ops->allocate_location = allocate_location_catch_exception_unhandled;
13528 ops->re_set = re_set_catch_exception_unhandled;
13529 ops->check_status = check_status_catch_exception_unhandled;
13530 ops->print_it = print_it_catch_exception_unhandled;
13531 ops->print_one = print_one_catch_exception_unhandled;
13532 ops->print_mention = print_mention_catch_exception_unhandled;
13533 ops->print_recreate = print_recreate_catch_exception_unhandled;
13534
13535 ops = &catch_assert_breakpoint_ops;
13536 *ops = bkpt_breakpoint_ops;
13537 ops->dtor = dtor_catch_assert;
13538 ops->allocate_location = allocate_location_catch_assert;
13539 ops->re_set = re_set_catch_assert;
13540 ops->check_status = check_status_catch_assert;
13541 ops->print_it = print_it_catch_assert;
13542 ops->print_one = print_one_catch_assert;
13543 ops->print_mention = print_mention_catch_assert;
13544 ops->print_recreate = print_recreate_catch_assert;
13545}
13546
3d9434b5
JB
13547/* This module's 'new_objfile' observer. */
13548
13549static void
13550ada_new_objfile_observer (struct objfile *objfile)
13551{
13552 ada_clear_symbol_cache ();
13553}
13554
13555/* This module's 'free_objfile' observer. */
13556
13557static void
13558ada_free_objfile_observer (struct objfile *objfile)
13559{
13560 ada_clear_symbol_cache ();
13561}
13562
d2e4a39e 13563void
6c038f32 13564_initialize_ada_language (void)
14f9c5c9 13565{
6c038f32
PH
13566 add_language (&ada_language_defn);
13567
2060206e
PA
13568 initialize_ada_catchpoint_ops ();
13569
5bf03f13
JB
13570 add_prefix_cmd ("ada", no_class, set_ada_command,
13571 _("Prefix command for changing Ada-specfic settings"),
13572 &set_ada_list, "set ada ", 0, &setlist);
13573
13574 add_prefix_cmd ("ada", no_class, show_ada_command,
13575 _("Generic command for showing Ada-specific settings."),
13576 &show_ada_list, "show ada ", 0, &showlist);
13577
13578 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13579 &trust_pad_over_xvs, _("\
13580Enable or disable an optimization trusting PAD types over XVS types"), _("\
13581Show whether an optimization trusting PAD types over XVS types is activated"),
13582 _("\
13583This is related to the encoding used by the GNAT compiler. The debugger\n\
13584should normally trust the contents of PAD types, but certain older versions\n\
13585of GNAT have a bug that sometimes causes the information in the PAD type\n\
13586to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13587work around this bug. It is always safe to turn this option \"off\", but\n\
13588this incurs a slight performance penalty, so it is recommended to NOT change\n\
13589this option to \"off\" unless necessary."),
13590 NULL, NULL, &set_ada_list, &show_ada_list);
13591
9ac4176b
PA
13592 add_catch_command ("exception", _("\
13593Catch Ada exceptions, when raised.\n\
13594With an argument, catch only exceptions with the given name."),
13595 catch_ada_exception_command,
13596 NULL,
13597 CATCH_PERMANENT,
13598 CATCH_TEMPORARY);
13599 add_catch_command ("assert", _("\
13600Catch failed Ada assertions, when raised.\n\
13601With an argument, catch only exceptions with the given name."),
13602 catch_assert_command,
13603 NULL,
13604 CATCH_PERMANENT,
13605 CATCH_TEMPORARY);
13606
6c038f32 13607 varsize_limit = 65536;
6c038f32 13608
778865d3
JB
13609 add_info ("exceptions", info_exceptions_command,
13610 _("\
13611List all Ada exception names.\n\
13612If a regular expression is passed as an argument, only those matching\n\
13613the regular expression are listed."));
13614
c6044dd1
JB
13615 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13616 _("Set Ada maintenance-related variables."),
13617 &maint_set_ada_cmdlist, "maintenance set ada ",
13618 0/*allow-unknown*/, &maintenance_set_cmdlist);
13619
13620 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13621 _("Show Ada maintenance-related variables"),
13622 &maint_show_ada_cmdlist, "maintenance show ada ",
13623 0/*allow-unknown*/, &maintenance_show_cmdlist);
13624
13625 add_setshow_boolean_cmd
13626 ("ignore-descriptive-types", class_maintenance,
13627 &ada_ignore_descriptive_types_p,
13628 _("Set whether descriptive types generated by GNAT should be ignored."),
13629 _("Show whether descriptive types generated by GNAT should be ignored."),
13630 _("\
13631When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13632DWARF attribute."),
13633 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13634
6c038f32
PH
13635 obstack_init (&symbol_list_obstack);
13636
13637 decoded_names_store = htab_create_alloc
13638 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13639 NULL, xcalloc, xfree);
6b69afc4 13640
3d9434b5
JB
13641 /* The ada-lang observers. */
13642 observer_attach_new_objfile (ada_new_objfile_observer);
13643 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13644 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13645
13646 /* Setup various context-specific data. */
e802dbe0 13647 ada_inferior_data
8e260fc0 13648 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13649 ada_pspace_data_handle
13650 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13651}
This page took 2.011885 seconds and 4 git commands to generate.