Teach linux gdbserver to step-over-breakpoints.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
14f9c5c9 60
ccefe4c4
TT
61#include "psymtab.h"
62
4c4b4cd2
PH
63/* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
50810684 71static void modify_general_field (struct type *, char *, LONGEST, int, int);
14f9c5c9 72
d2e4a39e 73static struct type *desc_base_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct type *desc_bounds_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct value *desc_bounds (struct value *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 82
556bdfd4 83static struct type *desc_data_target_type (struct type *);
14f9c5c9 84
d2e4a39e 85static struct value *desc_data (struct value *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 90
d2e4a39e 91static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static struct type *desc_index_type (struct type *, int);
14f9c5c9 98
d2e4a39e 99static int desc_arity (struct type *);
14f9c5c9 100
d2e4a39e 101static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 102
d2e4a39e 103static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 104
4a399546
UW
105static struct value *ensure_lval (struct value *,
106 struct gdbarch *, CORE_ADDR *);
14f9c5c9 107
d2e4a39e 108static struct value *make_array_descriptor (struct type *, struct value *,
4a399546 109 struct gdbarch *, CORE_ADDR *);
14f9c5c9 110
4c4b4cd2 111static void ada_add_block_symbols (struct obstack *,
76a01679 112 struct block *, const char *,
2570f2b7 113 domain_enum, struct objfile *, int);
14f9c5c9 114
4c4b4cd2 115static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 118 struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
122static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 128 struct symbol *, struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
d2e4a39e 168static struct type *to_fixed_range_type (char *, struct value *,
1ce677a4 169 struct type *);
14f9c5c9 170
d2e4a39e 171static struct type *to_static_fixed_type (struct type *);
f192137b 172static struct type *static_unwrap_type (struct type *type);
14f9c5c9 173
d2e4a39e 174static struct value *unwrap_value (struct value *);
14f9c5c9 175
ad82864c 176static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 177
ad82864c 178static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 179
ad82864c
JB
180static long decode_packed_array_bitsize (struct type *);
181
182static struct value *decode_constrained_packed_array (struct value *);
183
184static int ada_is_packed_array_type (struct type *);
185
186static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 187
d2e4a39e 188static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 189 struct value **);
14f9c5c9 190
50810684 191static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 192
4c4b4cd2
PH
193static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
14f9c5c9 195
d2e4a39e 196static struct value *get_var_value (char *, char *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
d2e4a39e 204static int wild_match (const char *, int, const char *);
14f9c5c9 205
d2e4a39e 206static struct value *ada_coerce_ref (struct value *);
14f9c5c9 207
4c4b4cd2
PH
208static LONGEST pos_atr (struct value *);
209
3cb382c9 210static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 211
d2e4a39e 212static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 213
4c4b4cd2
PH
214static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
14f9c5c9 216
4c4b4cd2
PH
217static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
76a01679 223static int find_struct_field (char *, struct type *, int,
52ce6436 224 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
225
226static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
229static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 230
4c4b4cd2
PH
231static int ada_resolve_function (struct ada_symbol_info *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235static struct value *ada_coerce_to_simple_array (struct value *);
236
237static int ada_is_direct_array_type (struct type *);
238
72d5681a
PH
239static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
714e53ab
PH
241
242static void check_size (const struct type *);
52ce6436
PH
243
244static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *, int *, enum noside);
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
4c4b4cd2
PH
274\f
275
76a01679 276
4c4b4cd2 277/* Maximum-sized dynamic type. */
14f9c5c9
AS
278static unsigned int varsize_limit;
279
4c4b4cd2
PH
280/* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282static char *ada_completer_word_break_characters =
283#ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285#else
14f9c5c9 286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 287#endif
14f9c5c9 288
4c4b4cd2 289/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 290static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 291 = "__gnat_ada_main_program_name";
14f9c5c9 292
4c4b4cd2
PH
293/* Limit on the number of warnings to raise per expression evaluation. */
294static int warning_limit = 2;
295
296/* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298static int warnings_issued = 0;
299
300static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302};
303
304static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306};
307
308/* Space for allocating results of ada_lookup_symbol_list. */
309static struct obstack symbol_list_obstack;
310
311 /* Utilities */
312
41d27058
JB
313/* Given DECODED_NAME a string holding a symbol name in its
314 decoded form (ie using the Ada dotted notation), returns
315 its unqualified name. */
316
317static const char *
318ada_unqualified_name (const char *decoded_name)
319{
320 const char *result = strrchr (decoded_name, '.');
321
322 if (result != NULL)
323 result++; /* Skip the dot... */
324 else
325 result = decoded_name;
326
327 return result;
328}
329
330/* Return a string starting with '<', followed by STR, and '>'.
331 The result is good until the next call. */
332
333static char *
334add_angle_brackets (const char *str)
335{
336 static char *result = NULL;
337
338 xfree (result);
88c15c34 339 result = xstrprintf ("<%s>", str);
41d27058
JB
340 return result;
341}
96d887e8 342
4c4b4cd2
PH
343static char *
344ada_get_gdb_completer_word_break_characters (void)
345{
346 return ada_completer_word_break_characters;
347}
348
e79af960
JB
349/* Print an array element index using the Ada syntax. */
350
351static void
352ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 353 const struct value_print_options *options)
e79af960 354{
79a45b7d 355 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
356 fprintf_filtered (stream, " => ");
357}
358
f27cf670 359/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 360 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 361 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 362
f27cf670
AS
363void *
364grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 365{
d2e4a39e
AS
366 if (*size < min_size)
367 {
368 *size *= 2;
369 if (*size < min_size)
4c4b4cd2 370 *size = min_size;
f27cf670 371 vect = xrealloc (vect, *size * element_size);
d2e4a39e 372 }
f27cf670 373 return vect;
14f9c5c9
AS
374}
375
376/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 377 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
378
379static int
ebf56fd3 380field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
381{
382 int len = strlen (target);
d2e4a39e 383 return
4c4b4cd2
PH
384 (strncmp (field_name, target, len) == 0
385 && (field_name[len] == '\0'
386 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
387 && strcmp (field_name + strlen (field_name) - 6,
388 "___XVN") != 0)));
14f9c5c9
AS
389}
390
391
872c8b51
JB
392/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
393 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
394 and return its index. This function also handles fields whose name
395 have ___ suffixes because the compiler sometimes alters their name
396 by adding such a suffix to represent fields with certain constraints.
397 If the field could not be found, return a negative number if
398 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
399
400int
401ada_get_field_index (const struct type *type, const char *field_name,
402 int maybe_missing)
403{
404 int fieldno;
872c8b51
JB
405 struct type *struct_type = check_typedef ((struct type *) type);
406
407 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
408 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
409 return fieldno;
410
411 if (!maybe_missing)
323e0a4a 412 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 413 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
414
415 return -1;
416}
417
418/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
419
420int
d2e4a39e 421ada_name_prefix_len (const char *name)
14f9c5c9
AS
422{
423 if (name == NULL)
424 return 0;
d2e4a39e 425 else
14f9c5c9 426 {
d2e4a39e 427 const char *p = strstr (name, "___");
14f9c5c9 428 if (p == NULL)
4c4b4cd2 429 return strlen (name);
14f9c5c9 430 else
4c4b4cd2 431 return p - name;
14f9c5c9
AS
432 }
433}
434
4c4b4cd2
PH
435/* Return non-zero if SUFFIX is a suffix of STR.
436 Return zero if STR is null. */
437
14f9c5c9 438static int
d2e4a39e 439is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
440{
441 int len1, len2;
442 if (str == NULL)
443 return 0;
444 len1 = strlen (str);
445 len2 = strlen (suffix);
4c4b4cd2 446 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
447}
448
4c4b4cd2
PH
449/* The contents of value VAL, treated as a value of type TYPE. The
450 result is an lval in memory if VAL is. */
14f9c5c9 451
d2e4a39e 452static struct value *
4c4b4cd2 453coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 454{
61ee279c 455 type = ada_check_typedef (type);
df407dfe 456 if (value_type (val) == type)
4c4b4cd2 457 return val;
d2e4a39e 458 else
14f9c5c9 459 {
4c4b4cd2
PH
460 struct value *result;
461
462 /* Make sure that the object size is not unreasonable before
463 trying to allocate some memory for it. */
714e53ab 464 check_size (type);
4c4b4cd2
PH
465
466 result = allocate_value (type);
74bcbdf3 467 set_value_component_location (result, val);
9bbda503
AC
468 set_value_bitsize (result, value_bitsize (val));
469 set_value_bitpos (result, value_bitpos (val));
42ae5230 470 set_value_address (result, value_address (val));
d69fe07e 471 if (value_lazy (val)
df407dfe 472 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 473 set_value_lazy (result, 1);
d2e4a39e 474 else
0fd88904 475 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 476 TYPE_LENGTH (type));
14f9c5c9
AS
477 return result;
478 }
479}
480
fc1a4b47
AC
481static const gdb_byte *
482cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
483{
484 if (valaddr == NULL)
485 return NULL;
486 else
487 return valaddr + offset;
488}
489
490static CORE_ADDR
ebf56fd3 491cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
492{
493 if (address == 0)
494 return 0;
d2e4a39e 495 else
14f9c5c9
AS
496 return address + offset;
497}
498
4c4b4cd2
PH
499/* Issue a warning (as for the definition of warning in utils.c, but
500 with exactly one argument rather than ...), unless the limit on the
501 number of warnings has passed during the evaluation of the current
502 expression. */
a2249542 503
77109804
AC
504/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
505 provided by "complaint". */
506static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
507
14f9c5c9 508static void
a2249542 509lim_warning (const char *format, ...)
14f9c5c9 510{
a2249542
MK
511 va_list args;
512 va_start (args, format);
513
4c4b4cd2
PH
514 warnings_issued += 1;
515 if (warnings_issued <= warning_limit)
a2249542
MK
516 vwarning (format, args);
517
518 va_end (args);
4c4b4cd2
PH
519}
520
714e53ab
PH
521/* Issue an error if the size of an object of type T is unreasonable,
522 i.e. if it would be a bad idea to allocate a value of this type in
523 GDB. */
524
525static void
526check_size (const struct type *type)
527{
528 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 529 error (_("object size is larger than varsize-limit"));
714e53ab
PH
530}
531
532
c3e5cd34
PH
533/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
534 gdbtypes.h, but some of the necessary definitions in that file
535 seem to have gone missing. */
536
537/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 538static LONGEST
c3e5cd34 539max_of_size (int size)
4c4b4cd2 540{
76a01679
JB
541 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
542 return top_bit | (top_bit - 1);
4c4b4cd2
PH
543}
544
c3e5cd34 545/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 546static LONGEST
c3e5cd34 547min_of_size (int size)
4c4b4cd2 548{
c3e5cd34 549 return -max_of_size (size) - 1;
4c4b4cd2
PH
550}
551
c3e5cd34 552/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 553static ULONGEST
c3e5cd34 554umax_of_size (int size)
4c4b4cd2 555{
76a01679
JB
556 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
557 return top_bit | (top_bit - 1);
4c4b4cd2
PH
558}
559
c3e5cd34
PH
560/* Maximum value of integral type T, as a signed quantity. */
561static LONGEST
562max_of_type (struct type *t)
4c4b4cd2 563{
c3e5cd34
PH
564 if (TYPE_UNSIGNED (t))
565 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
566 else
567 return max_of_size (TYPE_LENGTH (t));
568}
569
570/* Minimum value of integral type T, as a signed quantity. */
571static LONGEST
572min_of_type (struct type *t)
573{
574 if (TYPE_UNSIGNED (t))
575 return 0;
576 else
577 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
578}
579
580/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
581LONGEST
582ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 583{
76a01679 584 switch (TYPE_CODE (type))
4c4b4cd2
PH
585 {
586 case TYPE_CODE_RANGE:
690cc4eb 587 return TYPE_HIGH_BOUND (type);
4c4b4cd2 588 case TYPE_CODE_ENUM:
690cc4eb
PH
589 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
590 case TYPE_CODE_BOOL:
591 return 1;
592 case TYPE_CODE_CHAR:
76a01679 593 case TYPE_CODE_INT:
690cc4eb 594 return max_of_type (type);
4c4b4cd2 595 default:
43bbcdc2 596 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
597 }
598}
599
600/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
601LONGEST
602ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 603{
76a01679 604 switch (TYPE_CODE (type))
4c4b4cd2
PH
605 {
606 case TYPE_CODE_RANGE:
690cc4eb 607 return TYPE_LOW_BOUND (type);
4c4b4cd2 608 case TYPE_CODE_ENUM:
690cc4eb
PH
609 return TYPE_FIELD_BITPOS (type, 0);
610 case TYPE_CODE_BOOL:
611 return 0;
612 case TYPE_CODE_CHAR:
76a01679 613 case TYPE_CODE_INT:
690cc4eb 614 return min_of_type (type);
4c4b4cd2 615 default:
43bbcdc2 616 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
617 }
618}
619
620/* The identity on non-range types. For range types, the underlying
76a01679 621 non-range scalar type. */
4c4b4cd2
PH
622
623static struct type *
624base_type (struct type *type)
625{
626 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
627 {
76a01679
JB
628 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
629 return type;
4c4b4cd2
PH
630 type = TYPE_TARGET_TYPE (type);
631 }
632 return type;
14f9c5c9 633}
4c4b4cd2 634\f
76a01679 635
4c4b4cd2 636 /* Language Selection */
14f9c5c9
AS
637
638/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 639 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 640
14f9c5c9 641enum language
ccefe4c4 642ada_update_initial_language (enum language lang)
14f9c5c9 643{
d2e4a39e 644 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
645 (struct objfile *) NULL) != NULL)
646 return language_ada;
14f9c5c9
AS
647
648 return lang;
649}
96d887e8
PH
650
651/* If the main procedure is written in Ada, then return its name.
652 The result is good until the next call. Return NULL if the main
653 procedure doesn't appear to be in Ada. */
654
655char *
656ada_main_name (void)
657{
658 struct minimal_symbol *msym;
f9bc20b9 659 static char *main_program_name = NULL;
6c038f32 660
96d887e8
PH
661 /* For Ada, the name of the main procedure is stored in a specific
662 string constant, generated by the binder. Look for that symbol,
663 extract its address, and then read that string. If we didn't find
664 that string, then most probably the main procedure is not written
665 in Ada. */
666 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
667
668 if (msym != NULL)
669 {
f9bc20b9
JB
670 CORE_ADDR main_program_name_addr;
671 int err_code;
672
96d887e8
PH
673 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
674 if (main_program_name_addr == 0)
323e0a4a 675 error (_("Invalid address for Ada main program name."));
96d887e8 676
f9bc20b9
JB
677 xfree (main_program_name);
678 target_read_string (main_program_name_addr, &main_program_name,
679 1024, &err_code);
680
681 if (err_code != 0)
682 return NULL;
96d887e8
PH
683 return main_program_name;
684 }
685
686 /* The main procedure doesn't seem to be in Ada. */
687 return NULL;
688}
14f9c5c9 689\f
4c4b4cd2 690 /* Symbols */
d2e4a39e 691
4c4b4cd2
PH
692/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
693 of NULLs. */
14f9c5c9 694
d2e4a39e
AS
695const struct ada_opname_map ada_opname_table[] = {
696 {"Oadd", "\"+\"", BINOP_ADD},
697 {"Osubtract", "\"-\"", BINOP_SUB},
698 {"Omultiply", "\"*\"", BINOP_MUL},
699 {"Odivide", "\"/\"", BINOP_DIV},
700 {"Omod", "\"mod\"", BINOP_MOD},
701 {"Orem", "\"rem\"", BINOP_REM},
702 {"Oexpon", "\"**\"", BINOP_EXP},
703 {"Olt", "\"<\"", BINOP_LESS},
704 {"Ole", "\"<=\"", BINOP_LEQ},
705 {"Ogt", "\">\"", BINOP_GTR},
706 {"Oge", "\">=\"", BINOP_GEQ},
707 {"Oeq", "\"=\"", BINOP_EQUAL},
708 {"One", "\"/=\"", BINOP_NOTEQUAL},
709 {"Oand", "\"and\"", BINOP_BITWISE_AND},
710 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
711 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
712 {"Oconcat", "\"&\"", BINOP_CONCAT},
713 {"Oabs", "\"abs\"", UNOP_ABS},
714 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
715 {"Oadd", "\"+\"", UNOP_PLUS},
716 {"Osubtract", "\"-\"", UNOP_NEG},
717 {NULL, NULL}
14f9c5c9
AS
718};
719
4c4b4cd2
PH
720/* The "encoded" form of DECODED, according to GNAT conventions.
721 The result is valid until the next call to ada_encode. */
722
14f9c5c9 723char *
4c4b4cd2 724ada_encode (const char *decoded)
14f9c5c9 725{
4c4b4cd2
PH
726 static char *encoding_buffer = NULL;
727 static size_t encoding_buffer_size = 0;
d2e4a39e 728 const char *p;
14f9c5c9 729 int k;
d2e4a39e 730
4c4b4cd2 731 if (decoded == NULL)
14f9c5c9
AS
732 return NULL;
733
4c4b4cd2
PH
734 GROW_VECT (encoding_buffer, encoding_buffer_size,
735 2 * strlen (decoded) + 10);
14f9c5c9
AS
736
737 k = 0;
4c4b4cd2 738 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 739 {
cdc7bb92 740 if (*p == '.')
4c4b4cd2
PH
741 {
742 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
743 k += 2;
744 }
14f9c5c9 745 else if (*p == '"')
4c4b4cd2
PH
746 {
747 const struct ada_opname_map *mapping;
748
749 for (mapping = ada_opname_table;
1265e4aa
JB
750 mapping->encoded != NULL
751 && strncmp (mapping->decoded, p,
752 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
753 ;
754 if (mapping->encoded == NULL)
323e0a4a 755 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
756 strcpy (encoding_buffer + k, mapping->encoded);
757 k += strlen (mapping->encoded);
758 break;
759 }
d2e4a39e 760 else
4c4b4cd2
PH
761 {
762 encoding_buffer[k] = *p;
763 k += 1;
764 }
14f9c5c9
AS
765 }
766
4c4b4cd2
PH
767 encoding_buffer[k] = '\0';
768 return encoding_buffer;
14f9c5c9
AS
769}
770
771/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
772 quotes, unfolded, but with the quotes stripped away. Result good
773 to next call. */
774
d2e4a39e
AS
775char *
776ada_fold_name (const char *name)
14f9c5c9 777{
d2e4a39e 778 static char *fold_buffer = NULL;
14f9c5c9
AS
779 static size_t fold_buffer_size = 0;
780
781 int len = strlen (name);
d2e4a39e 782 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
783
784 if (name[0] == '\'')
785 {
d2e4a39e
AS
786 strncpy (fold_buffer, name + 1, len - 2);
787 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
788 }
789 else
790 {
791 int i;
792 for (i = 0; i <= len; i += 1)
4c4b4cd2 793 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
794 }
795
796 return fold_buffer;
797}
798
529cad9c
PH
799/* Return nonzero if C is either a digit or a lowercase alphabet character. */
800
801static int
802is_lower_alphanum (const char c)
803{
804 return (isdigit (c) || (isalpha (c) && islower (c)));
805}
806
29480c32
JB
807/* Remove either of these suffixes:
808 . .{DIGIT}+
809 . ${DIGIT}+
810 . ___{DIGIT}+
811 . __{DIGIT}+.
812 These are suffixes introduced by the compiler for entities such as
813 nested subprogram for instance, in order to avoid name clashes.
814 They do not serve any purpose for the debugger. */
815
816static void
817ada_remove_trailing_digits (const char *encoded, int *len)
818{
819 if (*len > 1 && isdigit (encoded[*len - 1]))
820 {
821 int i = *len - 2;
822 while (i > 0 && isdigit (encoded[i]))
823 i--;
824 if (i >= 0 && encoded[i] == '.')
825 *len = i;
826 else if (i >= 0 && encoded[i] == '$')
827 *len = i;
828 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
829 *len = i - 2;
830 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
831 *len = i - 1;
832 }
833}
834
835/* Remove the suffix introduced by the compiler for protected object
836 subprograms. */
837
838static void
839ada_remove_po_subprogram_suffix (const char *encoded, int *len)
840{
841 /* Remove trailing N. */
842
843 /* Protected entry subprograms are broken into two
844 separate subprograms: The first one is unprotected, and has
845 a 'N' suffix; the second is the protected version, and has
846 the 'P' suffix. The second calls the first one after handling
847 the protection. Since the P subprograms are internally generated,
848 we leave these names undecoded, giving the user a clue that this
849 entity is internal. */
850
851 if (*len > 1
852 && encoded[*len - 1] == 'N'
853 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
854 *len = *len - 1;
855}
856
69fadcdf
JB
857/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
858
859static void
860ada_remove_Xbn_suffix (const char *encoded, int *len)
861{
862 int i = *len - 1;
863
864 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
865 i--;
866
867 if (encoded[i] != 'X')
868 return;
869
870 if (i == 0)
871 return;
872
873 if (isalnum (encoded[i-1]))
874 *len = i;
875}
876
29480c32
JB
877/* If ENCODED follows the GNAT entity encoding conventions, then return
878 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
879 replaced by ENCODED.
14f9c5c9 880
4c4b4cd2 881 The resulting string is valid until the next call of ada_decode.
29480c32 882 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
883 is returned. */
884
885const char *
886ada_decode (const char *encoded)
14f9c5c9
AS
887{
888 int i, j;
889 int len0;
d2e4a39e 890 const char *p;
4c4b4cd2 891 char *decoded;
14f9c5c9 892 int at_start_name;
4c4b4cd2
PH
893 static char *decoding_buffer = NULL;
894 static size_t decoding_buffer_size = 0;
d2e4a39e 895
29480c32
JB
896 /* The name of the Ada main procedure starts with "_ada_".
897 This prefix is not part of the decoded name, so skip this part
898 if we see this prefix. */
4c4b4cd2
PH
899 if (strncmp (encoded, "_ada_", 5) == 0)
900 encoded += 5;
14f9c5c9 901
29480c32
JB
902 /* If the name starts with '_', then it is not a properly encoded
903 name, so do not attempt to decode it. Similarly, if the name
904 starts with '<', the name should not be decoded. */
4c4b4cd2 905 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
906 goto Suppress;
907
4c4b4cd2 908 len0 = strlen (encoded);
4c4b4cd2 909
29480c32
JB
910 ada_remove_trailing_digits (encoded, &len0);
911 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 912
4c4b4cd2
PH
913 /* Remove the ___X.* suffix if present. Do not forget to verify that
914 the suffix is located before the current "end" of ENCODED. We want
915 to avoid re-matching parts of ENCODED that have previously been
916 marked as discarded (by decrementing LEN0). */
917 p = strstr (encoded, "___");
918 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
919 {
920 if (p[3] == 'X')
4c4b4cd2 921 len0 = p - encoded;
14f9c5c9 922 else
4c4b4cd2 923 goto Suppress;
14f9c5c9 924 }
4c4b4cd2 925
29480c32
JB
926 /* Remove any trailing TKB suffix. It tells us that this symbol
927 is for the body of a task, but that information does not actually
928 appear in the decoded name. */
929
4c4b4cd2 930 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 931 len0 -= 3;
76a01679 932
a10967fa
JB
933 /* Remove any trailing TB suffix. The TB suffix is slightly different
934 from the TKB suffix because it is used for non-anonymous task
935 bodies. */
936
937 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
938 len0 -= 2;
939
29480c32
JB
940 /* Remove trailing "B" suffixes. */
941 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
942
4c4b4cd2 943 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
944 len0 -= 1;
945
4c4b4cd2 946 /* Make decoded big enough for possible expansion by operator name. */
29480c32 947
4c4b4cd2
PH
948 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
949 decoded = decoding_buffer;
14f9c5c9 950
29480c32
JB
951 /* Remove trailing __{digit}+ or trailing ${digit}+. */
952
4c4b4cd2 953 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 954 {
4c4b4cd2
PH
955 i = len0 - 2;
956 while ((i >= 0 && isdigit (encoded[i]))
957 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
958 i -= 1;
959 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
960 len0 = i - 1;
961 else if (encoded[i] == '$')
962 len0 = i;
d2e4a39e 963 }
14f9c5c9 964
29480c32
JB
965 /* The first few characters that are not alphabetic are not part
966 of any encoding we use, so we can copy them over verbatim. */
967
4c4b4cd2
PH
968 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
969 decoded[j] = encoded[i];
14f9c5c9
AS
970
971 at_start_name = 1;
972 while (i < len0)
973 {
29480c32 974 /* Is this a symbol function? */
4c4b4cd2
PH
975 if (at_start_name && encoded[i] == 'O')
976 {
977 int k;
978 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
979 {
980 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
981 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
982 op_len - 1) == 0)
983 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
984 {
985 strcpy (decoded + j, ada_opname_table[k].decoded);
986 at_start_name = 0;
987 i += op_len;
988 j += strlen (ada_opname_table[k].decoded);
989 break;
990 }
991 }
992 if (ada_opname_table[k].encoded != NULL)
993 continue;
994 }
14f9c5c9
AS
995 at_start_name = 0;
996
529cad9c
PH
997 /* Replace "TK__" with "__", which will eventually be translated
998 into "." (just below). */
999
4c4b4cd2
PH
1000 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1001 i += 2;
529cad9c 1002
29480c32
JB
1003 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1004 be translated into "." (just below). These are internal names
1005 generated for anonymous blocks inside which our symbol is nested. */
1006
1007 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1008 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1009 && isdigit (encoded [i+4]))
1010 {
1011 int k = i + 5;
1012
1013 while (k < len0 && isdigit (encoded[k]))
1014 k++; /* Skip any extra digit. */
1015
1016 /* Double-check that the "__B_{DIGITS}+" sequence we found
1017 is indeed followed by "__". */
1018 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1019 i = k;
1020 }
1021
529cad9c
PH
1022 /* Remove _E{DIGITS}+[sb] */
1023
1024 /* Just as for protected object subprograms, there are 2 categories
1025 of subprograms created by the compiler for each entry. The first
1026 one implements the actual entry code, and has a suffix following
1027 the convention above; the second one implements the barrier and
1028 uses the same convention as above, except that the 'E' is replaced
1029 by a 'B'.
1030
1031 Just as above, we do not decode the name of barrier functions
1032 to give the user a clue that the code he is debugging has been
1033 internally generated. */
1034
1035 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1036 && isdigit (encoded[i+2]))
1037 {
1038 int k = i + 3;
1039
1040 while (k < len0 && isdigit (encoded[k]))
1041 k++;
1042
1043 if (k < len0
1044 && (encoded[k] == 'b' || encoded[k] == 's'))
1045 {
1046 k++;
1047 /* Just as an extra precaution, make sure that if this
1048 suffix is followed by anything else, it is a '_'.
1049 Otherwise, we matched this sequence by accident. */
1050 if (k == len0
1051 || (k < len0 && encoded[k] == '_'))
1052 i = k;
1053 }
1054 }
1055
1056 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1057 the GNAT front-end in protected object subprograms. */
1058
1059 if (i < len0 + 3
1060 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1061 {
1062 /* Backtrack a bit up until we reach either the begining of
1063 the encoded name, or "__". Make sure that we only find
1064 digits or lowercase characters. */
1065 const char *ptr = encoded + i - 1;
1066
1067 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1068 ptr--;
1069 if (ptr < encoded
1070 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1071 i++;
1072 }
1073
4c4b4cd2
PH
1074 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1075 {
29480c32
JB
1076 /* This is a X[bn]* sequence not separated from the previous
1077 part of the name with a non-alpha-numeric character (in other
1078 words, immediately following an alpha-numeric character), then
1079 verify that it is placed at the end of the encoded name. If
1080 not, then the encoding is not valid and we should abort the
1081 decoding. Otherwise, just skip it, it is used in body-nested
1082 package names. */
4c4b4cd2
PH
1083 do
1084 i += 1;
1085 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1086 if (i < len0)
1087 goto Suppress;
1088 }
cdc7bb92 1089 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1090 {
29480c32 1091 /* Replace '__' by '.'. */
4c4b4cd2
PH
1092 decoded[j] = '.';
1093 at_start_name = 1;
1094 i += 2;
1095 j += 1;
1096 }
14f9c5c9 1097 else
4c4b4cd2 1098 {
29480c32
JB
1099 /* It's a character part of the decoded name, so just copy it
1100 over. */
4c4b4cd2
PH
1101 decoded[j] = encoded[i];
1102 i += 1;
1103 j += 1;
1104 }
14f9c5c9 1105 }
4c4b4cd2 1106 decoded[j] = '\000';
14f9c5c9 1107
29480c32
JB
1108 /* Decoded names should never contain any uppercase character.
1109 Double-check this, and abort the decoding if we find one. */
1110
4c4b4cd2
PH
1111 for (i = 0; decoded[i] != '\0'; i += 1)
1112 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1113 goto Suppress;
1114
4c4b4cd2
PH
1115 if (strcmp (decoded, encoded) == 0)
1116 return encoded;
1117 else
1118 return decoded;
14f9c5c9
AS
1119
1120Suppress:
4c4b4cd2
PH
1121 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1122 decoded = decoding_buffer;
1123 if (encoded[0] == '<')
1124 strcpy (decoded, encoded);
14f9c5c9 1125 else
88c15c34 1126 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1127 return decoded;
1128
1129}
1130
1131/* Table for keeping permanent unique copies of decoded names. Once
1132 allocated, names in this table are never released. While this is a
1133 storage leak, it should not be significant unless there are massive
1134 changes in the set of decoded names in successive versions of a
1135 symbol table loaded during a single session. */
1136static struct htab *decoded_names_store;
1137
1138/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1139 in the language-specific part of GSYMBOL, if it has not been
1140 previously computed. Tries to save the decoded name in the same
1141 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1142 in any case, the decoded symbol has a lifetime at least that of
1143 GSYMBOL).
1144 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1145 const, but nevertheless modified to a semantically equivalent form
1146 when a decoded name is cached in it.
76a01679 1147*/
4c4b4cd2 1148
76a01679
JB
1149char *
1150ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1151{
76a01679 1152 char **resultp =
4c4b4cd2
PH
1153 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1154 if (*resultp == NULL)
1155 {
1156 const char *decoded = ada_decode (gsymbol->name);
714835d5 1157 if (gsymbol->obj_section != NULL)
76a01679 1158 {
714835d5
UW
1159 struct objfile *objf = gsymbol->obj_section->objfile;
1160 *resultp = obsavestring (decoded, strlen (decoded),
1161 &objf->objfile_obstack);
76a01679 1162 }
4c4b4cd2 1163 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1164 case, we put the result on the heap. Since we only decode
1165 when needed, we hope this usually does not cause a
1166 significant memory leak (FIXME). */
4c4b4cd2 1167 if (*resultp == NULL)
76a01679
JB
1168 {
1169 char **slot = (char **) htab_find_slot (decoded_names_store,
1170 decoded, INSERT);
1171 if (*slot == NULL)
1172 *slot = xstrdup (decoded);
1173 *resultp = *slot;
1174 }
4c4b4cd2 1175 }
14f9c5c9 1176
4c4b4cd2
PH
1177 return *resultp;
1178}
76a01679 1179
2c0b251b 1180static char *
76a01679 1181ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1182{
1183 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1184}
1185
1186/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1187 suffixes that encode debugging information or leading _ada_ on
1188 SYM_NAME (see is_name_suffix commentary for the debugging
1189 information that is ignored). If WILD, then NAME need only match a
1190 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1191 either argument is NULL. */
14f9c5c9 1192
2c0b251b 1193static int
d2e4a39e 1194ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1195{
1196 if (sym_name == NULL || name == NULL)
1197 return 0;
1198 else if (wild)
1199 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1200 else
1201 {
1202 int len_name = strlen (name);
4c4b4cd2
PH
1203 return (strncmp (sym_name, name, len_name) == 0
1204 && is_name_suffix (sym_name + len_name))
1205 || (strncmp (sym_name, "_ada_", 5) == 0
1206 && strncmp (sym_name + 5, name, len_name) == 0
1207 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1208 }
14f9c5c9 1209}
14f9c5c9 1210\f
d2e4a39e 1211
4c4b4cd2 1212 /* Arrays */
14f9c5c9 1213
4c4b4cd2 1214/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1215
d2e4a39e
AS
1216static char *bound_name[] = {
1217 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1218 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1219};
1220
1221/* Maximum number of array dimensions we are prepared to handle. */
1222
4c4b4cd2 1223#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1224
4c4b4cd2 1225/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1226
1227static void
50810684
UW
1228modify_general_field (struct type *type, char *addr,
1229 LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1230{
50810684 1231 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1232}
1233
1234
4c4b4cd2
PH
1235/* The desc_* routines return primitive portions of array descriptors
1236 (fat pointers). */
14f9c5c9
AS
1237
1238/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1239 level of indirection, if needed. */
1240
d2e4a39e
AS
1241static struct type *
1242desc_base_type (struct type *type)
14f9c5c9
AS
1243{
1244 if (type == NULL)
1245 return NULL;
61ee279c 1246 type = ada_check_typedef (type);
1265e4aa
JB
1247 if (type != NULL
1248 && (TYPE_CODE (type) == TYPE_CODE_PTR
1249 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1250 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1251 else
1252 return type;
1253}
1254
4c4b4cd2
PH
1255/* True iff TYPE indicates a "thin" array pointer type. */
1256
14f9c5c9 1257static int
d2e4a39e 1258is_thin_pntr (struct type *type)
14f9c5c9 1259{
d2e4a39e 1260 return
14f9c5c9
AS
1261 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1262 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1263}
1264
4c4b4cd2
PH
1265/* The descriptor type for thin pointer type TYPE. */
1266
d2e4a39e
AS
1267static struct type *
1268thin_descriptor_type (struct type *type)
14f9c5c9 1269{
d2e4a39e 1270 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1271 if (base_type == NULL)
1272 return NULL;
1273 if (is_suffix (ada_type_name (base_type), "___XVE"))
1274 return base_type;
d2e4a39e 1275 else
14f9c5c9 1276 {
d2e4a39e 1277 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1278 if (alt_type == NULL)
4c4b4cd2 1279 return base_type;
14f9c5c9 1280 else
4c4b4cd2 1281 return alt_type;
14f9c5c9
AS
1282 }
1283}
1284
4c4b4cd2
PH
1285/* A pointer to the array data for thin-pointer value VAL. */
1286
d2e4a39e
AS
1287static struct value *
1288thin_data_pntr (struct value *val)
14f9c5c9 1289{
df407dfe 1290 struct type *type = value_type (val);
556bdfd4
UW
1291 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1292 data_type = lookup_pointer_type (data_type);
1293
14f9c5c9 1294 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1295 return value_cast (data_type, value_copy (val));
d2e4a39e 1296 else
42ae5230 1297 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1298}
1299
4c4b4cd2
PH
1300/* True iff TYPE indicates a "thick" array pointer type. */
1301
14f9c5c9 1302static int
d2e4a39e 1303is_thick_pntr (struct type *type)
14f9c5c9
AS
1304{
1305 type = desc_base_type (type);
1306 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1307 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1308}
1309
4c4b4cd2
PH
1310/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1311 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1312
d2e4a39e
AS
1313static struct type *
1314desc_bounds_type (struct type *type)
14f9c5c9 1315{
d2e4a39e 1316 struct type *r;
14f9c5c9
AS
1317
1318 type = desc_base_type (type);
1319
1320 if (type == NULL)
1321 return NULL;
1322 else if (is_thin_pntr (type))
1323 {
1324 type = thin_descriptor_type (type);
1325 if (type == NULL)
4c4b4cd2 1326 return NULL;
14f9c5c9
AS
1327 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1328 if (r != NULL)
61ee279c 1329 return ada_check_typedef (r);
14f9c5c9
AS
1330 }
1331 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1332 {
1333 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1334 if (r != NULL)
61ee279c 1335 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1336 }
1337 return NULL;
1338}
1339
1340/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1341 one, a pointer to its bounds data. Otherwise NULL. */
1342
d2e4a39e
AS
1343static struct value *
1344desc_bounds (struct value *arr)
14f9c5c9 1345{
df407dfe 1346 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1347 if (is_thin_pntr (type))
14f9c5c9 1348 {
d2e4a39e 1349 struct type *bounds_type =
4c4b4cd2 1350 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1351 LONGEST addr;
1352
4cdfadb1 1353 if (bounds_type == NULL)
323e0a4a 1354 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1355
1356 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1357 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1358 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1359 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1360 addr = value_as_long (arr);
d2e4a39e 1361 else
42ae5230 1362 addr = value_address (arr);
14f9c5c9 1363
d2e4a39e 1364 return
4c4b4cd2
PH
1365 value_from_longest (lookup_pointer_type (bounds_type),
1366 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1367 }
1368
1369 else if (is_thick_pntr (type))
d2e4a39e 1370 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1371 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1372 else
1373 return NULL;
1374}
1375
4c4b4cd2
PH
1376/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1377 position of the field containing the address of the bounds data. */
1378
14f9c5c9 1379static int
d2e4a39e 1380fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1381{
1382 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1383}
1384
1385/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1386 size of the field containing the address of the bounds data. */
1387
14f9c5c9 1388static int
d2e4a39e 1389fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1390{
1391 type = desc_base_type (type);
1392
d2e4a39e 1393 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1394 return TYPE_FIELD_BITSIZE (type, 1);
1395 else
61ee279c 1396 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1397}
1398
4c4b4cd2 1399/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1400 pointer to one, the type of its array data (a array-with-no-bounds type);
1401 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1402 data. */
4c4b4cd2 1403
d2e4a39e 1404static struct type *
556bdfd4 1405desc_data_target_type (struct type *type)
14f9c5c9
AS
1406{
1407 type = desc_base_type (type);
1408
4c4b4cd2 1409 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1410 if (is_thin_pntr (type))
556bdfd4 1411 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1412 else if (is_thick_pntr (type))
556bdfd4
UW
1413 {
1414 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1415
1416 if (data_type
1417 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1418 return TYPE_TARGET_TYPE (data_type);
1419 }
1420
1421 return NULL;
14f9c5c9
AS
1422}
1423
1424/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1425 its array data. */
4c4b4cd2 1426
d2e4a39e
AS
1427static struct value *
1428desc_data (struct value *arr)
14f9c5c9 1429{
df407dfe 1430 struct type *type = value_type (arr);
14f9c5c9
AS
1431 if (is_thin_pntr (type))
1432 return thin_data_pntr (arr);
1433 else if (is_thick_pntr (type))
d2e4a39e 1434 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1435 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1436 else
1437 return NULL;
1438}
1439
1440
1441/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1442 position of the field containing the address of the data. */
1443
14f9c5c9 1444static int
d2e4a39e 1445fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1446{
1447 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1448}
1449
1450/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1451 size of the field containing the address of the data. */
1452
14f9c5c9 1453static int
d2e4a39e 1454fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1455{
1456 type = desc_base_type (type);
1457
1458 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1459 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1460 else
14f9c5c9
AS
1461 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1462}
1463
4c4b4cd2 1464/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1465 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1466 bound, if WHICH is 1. The first bound is I=1. */
1467
d2e4a39e
AS
1468static struct value *
1469desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1470{
d2e4a39e 1471 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1472 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1473}
1474
1475/* If BOUNDS is an array-bounds structure type, return the bit position
1476 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1477 bound, if WHICH is 1. The first bound is I=1. */
1478
14f9c5c9 1479static int
d2e4a39e 1480desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1481{
d2e4a39e 1482 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1483}
1484
1485/* If BOUNDS is an array-bounds structure type, return the bit field size
1486 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1487 bound, if WHICH is 1. The first bound is I=1. */
1488
76a01679 1489static int
d2e4a39e 1490desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1491{
1492 type = desc_base_type (type);
1493
d2e4a39e
AS
1494 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1495 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1496 else
1497 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1498}
1499
1500/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1501 Ith bound (numbering from 1). Otherwise, NULL. */
1502
d2e4a39e
AS
1503static struct type *
1504desc_index_type (struct type *type, int i)
14f9c5c9
AS
1505{
1506 type = desc_base_type (type);
1507
1508 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1509 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1510 else
14f9c5c9
AS
1511 return NULL;
1512}
1513
4c4b4cd2
PH
1514/* The number of index positions in the array-bounds type TYPE.
1515 Return 0 if TYPE is NULL. */
1516
14f9c5c9 1517static int
d2e4a39e 1518desc_arity (struct type *type)
14f9c5c9
AS
1519{
1520 type = desc_base_type (type);
1521
1522 if (type != NULL)
1523 return TYPE_NFIELDS (type) / 2;
1524 return 0;
1525}
1526
4c4b4cd2
PH
1527/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1528 an array descriptor type (representing an unconstrained array
1529 type). */
1530
76a01679
JB
1531static int
1532ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1533{
1534 if (type == NULL)
1535 return 0;
61ee279c 1536 type = ada_check_typedef (type);
4c4b4cd2 1537 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1538 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1539}
1540
52ce6436
PH
1541/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1542 * to one. */
1543
2c0b251b 1544static int
52ce6436
PH
1545ada_is_array_type (struct type *type)
1546{
1547 while (type != NULL
1548 && (TYPE_CODE (type) == TYPE_CODE_PTR
1549 || TYPE_CODE (type) == TYPE_CODE_REF))
1550 type = TYPE_TARGET_TYPE (type);
1551 return ada_is_direct_array_type (type);
1552}
1553
4c4b4cd2 1554/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1555
14f9c5c9 1556int
4c4b4cd2 1557ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1558{
1559 if (type == NULL)
1560 return 0;
61ee279c 1561 type = ada_check_typedef (type);
14f9c5c9 1562 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1563 || (TYPE_CODE (type) == TYPE_CODE_PTR
1564 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1565}
1566
4c4b4cd2
PH
1567/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1568
14f9c5c9 1569int
4c4b4cd2 1570ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1571{
556bdfd4 1572 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1573
1574 if (type == NULL)
1575 return 0;
61ee279c 1576 type = ada_check_typedef (type);
556bdfd4
UW
1577 return (data_type != NULL
1578 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1579 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1580}
1581
1582/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1583 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1584 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1585 is still needed. */
1586
14f9c5c9 1587int
ebf56fd3 1588ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1589{
d2e4a39e 1590 return
14f9c5c9
AS
1591 type != NULL
1592 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1593 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1594 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1595 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1596}
1597
1598
4c4b4cd2 1599/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1600 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1601 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1602 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1603 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1604 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1605 a descriptor. */
d2e4a39e
AS
1606struct type *
1607ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1608{
ad82864c
JB
1609 if (ada_is_constrained_packed_array_type (value_type (arr)))
1610 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1611
df407dfe
AC
1612 if (!ada_is_array_descriptor_type (value_type (arr)))
1613 return value_type (arr);
d2e4a39e
AS
1614
1615 if (!bounds)
ad82864c
JB
1616 {
1617 struct type *array_type =
1618 ada_check_typedef (desc_data_target_type (value_type (arr)));
1619
1620 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1621 TYPE_FIELD_BITSIZE (array_type, 0) =
1622 decode_packed_array_bitsize (value_type (arr));
1623
1624 return array_type;
1625 }
14f9c5c9
AS
1626 else
1627 {
d2e4a39e 1628 struct type *elt_type;
14f9c5c9 1629 int arity;
d2e4a39e 1630 struct value *descriptor;
14f9c5c9 1631
df407dfe
AC
1632 elt_type = ada_array_element_type (value_type (arr), -1);
1633 arity = ada_array_arity (value_type (arr));
14f9c5c9 1634
d2e4a39e 1635 if (elt_type == NULL || arity == 0)
df407dfe 1636 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1637
1638 descriptor = desc_bounds (arr);
d2e4a39e 1639 if (value_as_long (descriptor) == 0)
4c4b4cd2 1640 return NULL;
d2e4a39e 1641 while (arity > 0)
4c4b4cd2 1642 {
e9bb382b
UW
1643 struct type *range_type = alloc_type_copy (value_type (arr));
1644 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1645 struct value *low = desc_one_bound (descriptor, arity, 0);
1646 struct value *high = desc_one_bound (descriptor, arity, 1);
1647 arity -= 1;
1648
df407dfe 1649 create_range_type (range_type, value_type (low),
529cad9c
PH
1650 longest_to_int (value_as_long (low)),
1651 longest_to_int (value_as_long (high)));
4c4b4cd2 1652 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1653
1654 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1655 TYPE_FIELD_BITSIZE (elt_type, 0) =
1656 decode_packed_array_bitsize (value_type (arr));
4c4b4cd2 1657 }
14f9c5c9
AS
1658
1659 return lookup_pointer_type (elt_type);
1660 }
1661}
1662
1663/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1664 Otherwise, returns either a standard GDB array with bounds set
1665 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1666 GDB array. Returns NULL if ARR is a null fat pointer. */
1667
d2e4a39e
AS
1668struct value *
1669ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1670{
df407dfe 1671 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1672 {
d2e4a39e 1673 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1674 if (arrType == NULL)
4c4b4cd2 1675 return NULL;
14f9c5c9
AS
1676 return value_cast (arrType, value_copy (desc_data (arr)));
1677 }
ad82864c
JB
1678 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1679 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1680 else
1681 return arr;
1682}
1683
1684/* If ARR does not represent an array, returns ARR unchanged.
1685 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1686 be ARR itself if it already is in the proper form). */
1687
1688static struct value *
d2e4a39e 1689ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1690{
df407dfe 1691 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1692 {
d2e4a39e 1693 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1694 if (arrVal == NULL)
323e0a4a 1695 error (_("Bounds unavailable for null array pointer."));
529cad9c 1696 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1697 return value_ind (arrVal);
1698 }
ad82864c
JB
1699 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1700 return decode_constrained_packed_array (arr);
d2e4a39e 1701 else
14f9c5c9
AS
1702 return arr;
1703}
1704
1705/* If TYPE represents a GNAT array type, return it translated to an
1706 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1707 packing). For other types, is the identity. */
1708
d2e4a39e
AS
1709struct type *
1710ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1711{
ad82864c
JB
1712 if (ada_is_constrained_packed_array_type (type))
1713 return decode_constrained_packed_array_type (type);
17280b9f
UW
1714
1715 if (ada_is_array_descriptor_type (type))
556bdfd4 1716 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1717
1718 return type;
14f9c5c9
AS
1719}
1720
4c4b4cd2
PH
1721/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1722
ad82864c
JB
1723static int
1724ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1725{
1726 if (type == NULL)
1727 return 0;
4c4b4cd2 1728 type = desc_base_type (type);
61ee279c 1729 type = ada_check_typedef (type);
d2e4a39e 1730 return
14f9c5c9
AS
1731 ada_type_name (type) != NULL
1732 && strstr (ada_type_name (type), "___XP") != NULL;
1733}
1734
ad82864c
JB
1735/* Non-zero iff TYPE represents a standard GNAT constrained
1736 packed-array type. */
1737
1738int
1739ada_is_constrained_packed_array_type (struct type *type)
1740{
1741 return ada_is_packed_array_type (type)
1742 && !ada_is_array_descriptor_type (type);
1743}
1744
1745/* Non-zero iff TYPE represents an array descriptor for a
1746 unconstrained packed-array type. */
1747
1748static int
1749ada_is_unconstrained_packed_array_type (struct type *type)
1750{
1751 return ada_is_packed_array_type (type)
1752 && ada_is_array_descriptor_type (type);
1753}
1754
1755/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1756 return the size of its elements in bits. */
1757
1758static long
1759decode_packed_array_bitsize (struct type *type)
1760{
1761 char *raw_name = ada_type_name (ada_check_typedef (type));
1762 char *tail;
1763 long bits;
1764
1765 if (!raw_name)
1766 raw_name = ada_type_name (desc_base_type (type));
1767
1768 if (!raw_name)
1769 return 0;
1770
1771 tail = strstr (raw_name, "___XP");
1772
1773 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1774 {
1775 lim_warning
1776 (_("could not understand bit size information on packed array"));
1777 return 0;
1778 }
1779
1780 return bits;
1781}
1782
14f9c5c9
AS
1783/* Given that TYPE is a standard GDB array type with all bounds filled
1784 in, and that the element size of its ultimate scalar constituents
1785 (that is, either its elements, or, if it is an array of arrays, its
1786 elements' elements, etc.) is *ELT_BITS, return an identical type,
1787 but with the bit sizes of its elements (and those of any
1788 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1789 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1790 in bits. */
1791
d2e4a39e 1792static struct type *
ad82864c 1793constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1794{
d2e4a39e
AS
1795 struct type *new_elt_type;
1796 struct type *new_type;
14f9c5c9
AS
1797 LONGEST low_bound, high_bound;
1798
61ee279c 1799 type = ada_check_typedef (type);
14f9c5c9
AS
1800 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1801 return type;
1802
e9bb382b 1803 new_type = alloc_type_copy (type);
ad82864c
JB
1804 new_elt_type =
1805 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1806 elt_bits);
262452ec 1807 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1808 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1809 TYPE_NAME (new_type) = ada_type_name (type);
1810
262452ec 1811 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1812 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1813 low_bound = high_bound = 0;
1814 if (high_bound < low_bound)
1815 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1816 else
14f9c5c9
AS
1817 {
1818 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1819 TYPE_LENGTH (new_type) =
4c4b4cd2 1820 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1821 }
1822
876cecd0 1823 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1824 return new_type;
1825}
1826
ad82864c
JB
1827/* The array type encoded by TYPE, where
1828 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 1829
d2e4a39e 1830static struct type *
ad82864c 1831decode_constrained_packed_array_type (struct type *type)
d2e4a39e 1832{
4c4b4cd2 1833 struct symbol *sym;
d2e4a39e 1834 struct block **blocks;
727e3d2e
JB
1835 char *raw_name = ada_type_name (ada_check_typedef (type));
1836 char *name;
1837 char *tail;
d2e4a39e 1838 struct type *shadow_type;
14f9c5c9
AS
1839 long bits;
1840 int i, n;
1841
727e3d2e
JB
1842 if (!raw_name)
1843 raw_name = ada_type_name (desc_base_type (type));
1844
1845 if (!raw_name)
1846 return NULL;
1847
1848 name = (char *) alloca (strlen (raw_name) + 1);
1849 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1850 type = desc_base_type (type);
1851
14f9c5c9
AS
1852 memcpy (name, raw_name, tail - raw_name);
1853 name[tail - raw_name] = '\000';
1854
b4ba55a1
JB
1855 shadow_type = ada_find_parallel_type_with_name (type, name);
1856
1857 if (shadow_type == NULL)
14f9c5c9 1858 {
323e0a4a 1859 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1860 return NULL;
1861 }
cb249c71 1862 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
1863
1864 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1865 {
323e0a4a 1866 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1867 return NULL;
1868 }
d2e4a39e 1869
ad82864c
JB
1870 bits = decode_packed_array_bitsize (type);
1871 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
1872}
1873
ad82864c
JB
1874/* Given that ARR is a struct value *indicating a GNAT constrained packed
1875 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
1876 standard GDB array type except that the BITSIZEs of the array
1877 target types are set to the number of bits in each element, and the
4c4b4cd2 1878 type length is set appropriately. */
14f9c5c9 1879
d2e4a39e 1880static struct value *
ad82864c 1881decode_constrained_packed_array (struct value *arr)
14f9c5c9 1882{
4c4b4cd2 1883 struct type *type;
14f9c5c9 1884
4c4b4cd2 1885 arr = ada_coerce_ref (arr);
284614f0
JB
1886
1887 /* If our value is a pointer, then dererence it. Make sure that
1888 this operation does not cause the target type to be fixed, as
1889 this would indirectly cause this array to be decoded. The rest
1890 of the routine assumes that the array hasn't been decoded yet,
1891 so we use the basic "value_ind" routine to perform the dereferencing,
1892 as opposed to using "ada_value_ind". */
df407dfe 1893 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 1894 arr = value_ind (arr);
4c4b4cd2 1895
ad82864c 1896 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
1897 if (type == NULL)
1898 {
323e0a4a 1899 error (_("can't unpack array"));
14f9c5c9
AS
1900 return NULL;
1901 }
61ee279c 1902
50810684 1903 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 1904 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1905 {
1906 /* This is a (right-justified) modular type representing a packed
1907 array with no wrapper. In order to interpret the value through
1908 the (left-justified) packed array type we just built, we must
1909 first left-justify it. */
1910 int bit_size, bit_pos;
1911 ULONGEST mod;
1912
df407dfe 1913 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1914 bit_size = 0;
1915 while (mod > 0)
1916 {
1917 bit_size += 1;
1918 mod >>= 1;
1919 }
df407dfe 1920 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1921 arr = ada_value_primitive_packed_val (arr, NULL,
1922 bit_pos / HOST_CHAR_BIT,
1923 bit_pos % HOST_CHAR_BIT,
1924 bit_size,
1925 type);
1926 }
1927
4c4b4cd2 1928 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1929}
1930
1931
1932/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1933 given in IND. ARR must be a simple array. */
14f9c5c9 1934
d2e4a39e
AS
1935static struct value *
1936value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1937{
1938 int i;
1939 int bits, elt_off, bit_off;
1940 long elt_total_bit_offset;
d2e4a39e
AS
1941 struct type *elt_type;
1942 struct value *v;
14f9c5c9
AS
1943
1944 bits = 0;
1945 elt_total_bit_offset = 0;
df407dfe 1946 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1947 for (i = 0; i < arity; i += 1)
14f9c5c9 1948 {
d2e4a39e 1949 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1950 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1951 error
323e0a4a 1952 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1953 else
4c4b4cd2
PH
1954 {
1955 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1956 LONGEST lowerbound, upperbound;
1957 LONGEST idx;
1958
1959 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1960 {
323e0a4a 1961 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1962 lowerbound = upperbound = 0;
1963 }
1964
3cb382c9 1965 idx = pos_atr (ind[i]);
4c4b4cd2 1966 if (idx < lowerbound || idx > upperbound)
323e0a4a 1967 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1968 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1969 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1970 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1971 }
14f9c5c9
AS
1972 }
1973 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1974 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1975
1976 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1977 bits, elt_type);
14f9c5c9
AS
1978 return v;
1979}
1980
4c4b4cd2 1981/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1982
1983static int
d2e4a39e 1984has_negatives (struct type *type)
14f9c5c9 1985{
d2e4a39e
AS
1986 switch (TYPE_CODE (type))
1987 {
1988 default:
1989 return 0;
1990 case TYPE_CODE_INT:
1991 return !TYPE_UNSIGNED (type);
1992 case TYPE_CODE_RANGE:
1993 return TYPE_LOW_BOUND (type) < 0;
1994 }
14f9c5c9 1995}
d2e4a39e 1996
14f9c5c9
AS
1997
1998/* Create a new value of type TYPE from the contents of OBJ starting
1999 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2000 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
2001 assigning through the result will set the field fetched from.
2002 VALADDR is ignored unless OBJ is NULL, in which case,
2003 VALADDR+OFFSET must address the start of storage containing the
2004 packed value. The value returned in this case is never an lval.
2005 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2006
d2e4a39e 2007struct value *
fc1a4b47 2008ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2009 long offset, int bit_offset, int bit_size,
4c4b4cd2 2010 struct type *type)
14f9c5c9 2011{
d2e4a39e 2012 struct value *v;
4c4b4cd2
PH
2013 int src, /* Index into the source area */
2014 targ, /* Index into the target area */
2015 srcBitsLeft, /* Number of source bits left to move */
2016 nsrc, ntarg, /* Number of source and target bytes */
2017 unusedLS, /* Number of bits in next significant
2018 byte of source that are unused */
2019 accumSize; /* Number of meaningful bits in accum */
2020 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2021 unsigned char *unpacked;
4c4b4cd2 2022 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2023 unsigned char sign;
2024 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2025 /* Transmit bytes from least to most significant; delta is the direction
2026 the indices move. */
50810684 2027 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2028
61ee279c 2029 type = ada_check_typedef (type);
14f9c5c9
AS
2030
2031 if (obj == NULL)
2032 {
2033 v = allocate_value (type);
d2e4a39e 2034 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2035 }
9214ee5f 2036 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2037 {
2038 v = value_at (type,
42ae5230 2039 value_address (obj) + offset);
d2e4a39e 2040 bytes = (unsigned char *) alloca (len);
42ae5230 2041 read_memory (value_address (v), bytes, len);
14f9c5c9 2042 }
d2e4a39e 2043 else
14f9c5c9
AS
2044 {
2045 v = allocate_value (type);
0fd88904 2046 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2047 }
d2e4a39e
AS
2048
2049 if (obj != NULL)
14f9c5c9 2050 {
42ae5230 2051 CORE_ADDR new_addr;
74bcbdf3 2052 set_value_component_location (v, obj);
42ae5230 2053 new_addr = value_address (obj) + offset;
9bbda503
AC
2054 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2055 set_value_bitsize (v, bit_size);
df407dfe 2056 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2057 {
42ae5230 2058 ++new_addr;
9bbda503 2059 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2060 }
42ae5230 2061 set_value_address (v, new_addr);
14f9c5c9
AS
2062 }
2063 else
9bbda503 2064 set_value_bitsize (v, bit_size);
0fd88904 2065 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2066
2067 srcBitsLeft = bit_size;
2068 nsrc = len;
2069 ntarg = TYPE_LENGTH (type);
2070 sign = 0;
2071 if (bit_size == 0)
2072 {
2073 memset (unpacked, 0, TYPE_LENGTH (type));
2074 return v;
2075 }
50810684 2076 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2077 {
d2e4a39e 2078 src = len - 1;
1265e4aa
JB
2079 if (has_negatives (type)
2080 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2081 sign = ~0;
d2e4a39e
AS
2082
2083 unusedLS =
4c4b4cd2
PH
2084 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2085 % HOST_CHAR_BIT;
14f9c5c9
AS
2086
2087 switch (TYPE_CODE (type))
4c4b4cd2
PH
2088 {
2089 case TYPE_CODE_ARRAY:
2090 case TYPE_CODE_UNION:
2091 case TYPE_CODE_STRUCT:
2092 /* Non-scalar values must be aligned at a byte boundary... */
2093 accumSize =
2094 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2095 /* ... And are placed at the beginning (most-significant) bytes
2096 of the target. */
529cad9c 2097 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2098 ntarg = targ + 1;
4c4b4cd2
PH
2099 break;
2100 default:
2101 accumSize = 0;
2102 targ = TYPE_LENGTH (type) - 1;
2103 break;
2104 }
14f9c5c9 2105 }
d2e4a39e 2106 else
14f9c5c9
AS
2107 {
2108 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2109
2110 src = targ = 0;
2111 unusedLS = bit_offset;
2112 accumSize = 0;
2113
d2e4a39e 2114 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2115 sign = ~0;
14f9c5c9 2116 }
d2e4a39e 2117
14f9c5c9
AS
2118 accum = 0;
2119 while (nsrc > 0)
2120 {
2121 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2122 part of the value. */
d2e4a39e 2123 unsigned int unusedMSMask =
4c4b4cd2
PH
2124 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2125 1;
2126 /* Sign-extend bits for this byte. */
14f9c5c9 2127 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2128 accum |=
4c4b4cd2 2129 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2130 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2131 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2132 {
2133 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2134 accumSize -= HOST_CHAR_BIT;
2135 accum >>= HOST_CHAR_BIT;
2136 ntarg -= 1;
2137 targ += delta;
2138 }
14f9c5c9
AS
2139 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2140 unusedLS = 0;
2141 nsrc -= 1;
2142 src += delta;
2143 }
2144 while (ntarg > 0)
2145 {
2146 accum |= sign << accumSize;
2147 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2148 accumSize -= HOST_CHAR_BIT;
2149 accum >>= HOST_CHAR_BIT;
2150 ntarg -= 1;
2151 targ += delta;
2152 }
2153
2154 return v;
2155}
d2e4a39e 2156
14f9c5c9
AS
2157/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2158 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2159 not overlap. */
14f9c5c9 2160static void
fc1a4b47 2161move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2162 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2163{
2164 unsigned int accum, mask;
2165 int accum_bits, chunk_size;
2166
2167 target += targ_offset / HOST_CHAR_BIT;
2168 targ_offset %= HOST_CHAR_BIT;
2169 source += src_offset / HOST_CHAR_BIT;
2170 src_offset %= HOST_CHAR_BIT;
50810684 2171 if (bits_big_endian_p)
14f9c5c9
AS
2172 {
2173 accum = (unsigned char) *source;
2174 source += 1;
2175 accum_bits = HOST_CHAR_BIT - src_offset;
2176
d2e4a39e 2177 while (n > 0)
4c4b4cd2
PH
2178 {
2179 int unused_right;
2180 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2181 accum_bits += HOST_CHAR_BIT;
2182 source += 1;
2183 chunk_size = HOST_CHAR_BIT - targ_offset;
2184 if (chunk_size > n)
2185 chunk_size = n;
2186 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2187 mask = ((1 << chunk_size) - 1) << unused_right;
2188 *target =
2189 (*target & ~mask)
2190 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2191 n -= chunk_size;
2192 accum_bits -= chunk_size;
2193 target += 1;
2194 targ_offset = 0;
2195 }
14f9c5c9
AS
2196 }
2197 else
2198 {
2199 accum = (unsigned char) *source >> src_offset;
2200 source += 1;
2201 accum_bits = HOST_CHAR_BIT - src_offset;
2202
d2e4a39e 2203 while (n > 0)
4c4b4cd2
PH
2204 {
2205 accum = accum + ((unsigned char) *source << accum_bits);
2206 accum_bits += HOST_CHAR_BIT;
2207 source += 1;
2208 chunk_size = HOST_CHAR_BIT - targ_offset;
2209 if (chunk_size > n)
2210 chunk_size = n;
2211 mask = ((1 << chunk_size) - 1) << targ_offset;
2212 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2213 n -= chunk_size;
2214 accum_bits -= chunk_size;
2215 accum >>= chunk_size;
2216 target += 1;
2217 targ_offset = 0;
2218 }
14f9c5c9
AS
2219 }
2220}
2221
14f9c5c9
AS
2222/* Store the contents of FROMVAL into the location of TOVAL.
2223 Return a new value with the location of TOVAL and contents of
2224 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2225 floating-point or non-scalar types. */
14f9c5c9 2226
d2e4a39e
AS
2227static struct value *
2228ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2229{
df407dfe
AC
2230 struct type *type = value_type (toval);
2231 int bits = value_bitsize (toval);
14f9c5c9 2232
52ce6436
PH
2233 toval = ada_coerce_ref (toval);
2234 fromval = ada_coerce_ref (fromval);
2235
2236 if (ada_is_direct_array_type (value_type (toval)))
2237 toval = ada_coerce_to_simple_array (toval);
2238 if (ada_is_direct_array_type (value_type (fromval)))
2239 fromval = ada_coerce_to_simple_array (fromval);
2240
88e3b34b 2241 if (!deprecated_value_modifiable (toval))
323e0a4a 2242 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2243
d2e4a39e 2244 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2245 && bits > 0
d2e4a39e 2246 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2247 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2248 {
df407dfe
AC
2249 int len = (value_bitpos (toval)
2250 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2251 int from_size;
d2e4a39e
AS
2252 char *buffer = (char *) alloca (len);
2253 struct value *val;
42ae5230 2254 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2255
2256 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2257 fromval = value_cast (type, fromval);
14f9c5c9 2258
52ce6436 2259 read_memory (to_addr, buffer, len);
aced2898
PH
2260 from_size = value_bitsize (fromval);
2261 if (from_size == 0)
2262 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2263 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2264 move_bits (buffer, value_bitpos (toval),
50810684 2265 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2266 else
50810684
UW
2267 move_bits (buffer, value_bitpos (toval),
2268 value_contents (fromval), 0, bits, 0);
52ce6436 2269 write_memory (to_addr, buffer, len);
8cebebb9
PP
2270 observer_notify_memory_changed (to_addr, len, buffer);
2271
14f9c5c9 2272 val = value_copy (toval);
0fd88904 2273 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2274 TYPE_LENGTH (type));
04624583 2275 deprecated_set_value_type (val, type);
d2e4a39e 2276
14f9c5c9
AS
2277 return val;
2278 }
2279
2280 return value_assign (toval, fromval);
2281}
2282
2283
52ce6436
PH
2284/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2285 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2286 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2287 * COMPONENT, and not the inferior's memory. The current contents
2288 * of COMPONENT are ignored. */
2289static void
2290value_assign_to_component (struct value *container, struct value *component,
2291 struct value *val)
2292{
2293 LONGEST offset_in_container =
42ae5230 2294 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2295 int bit_offset_in_container =
2296 value_bitpos (component) - value_bitpos (container);
2297 int bits;
2298
2299 val = value_cast (value_type (component), val);
2300
2301 if (value_bitsize (component) == 0)
2302 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2303 else
2304 bits = value_bitsize (component);
2305
50810684 2306 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2307 move_bits (value_contents_writeable (container) + offset_in_container,
2308 value_bitpos (container) + bit_offset_in_container,
2309 value_contents (val),
2310 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2311 bits, 1);
52ce6436
PH
2312 else
2313 move_bits (value_contents_writeable (container) + offset_in_container,
2314 value_bitpos (container) + bit_offset_in_container,
50810684 2315 value_contents (val), 0, bits, 0);
52ce6436
PH
2316}
2317
4c4b4cd2
PH
2318/* The value of the element of array ARR at the ARITY indices given in IND.
2319 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2320 thereto. */
2321
d2e4a39e
AS
2322struct value *
2323ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2324{
2325 int k;
d2e4a39e
AS
2326 struct value *elt;
2327 struct type *elt_type;
14f9c5c9
AS
2328
2329 elt = ada_coerce_to_simple_array (arr);
2330
df407dfe 2331 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2332 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2333 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2334 return value_subscript_packed (elt, arity, ind);
2335
2336 for (k = 0; k < arity; k += 1)
2337 {
2338 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2339 error (_("too many subscripts (%d expected)"), k);
2497b498 2340 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2341 }
2342 return elt;
2343}
2344
2345/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2346 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2347 IND. Does not read the entire array into memory. */
14f9c5c9 2348
2c0b251b 2349static struct value *
d2e4a39e 2350ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2351 struct value **ind)
14f9c5c9
AS
2352{
2353 int k;
2354
2355 for (k = 0; k < arity; k += 1)
2356 {
2357 LONGEST lwb, upb;
14f9c5c9
AS
2358
2359 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2360 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2361 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2362 value_copy (arr));
14f9c5c9 2363 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2364 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2365 type = TYPE_TARGET_TYPE (type);
2366 }
2367
2368 return value_ind (arr);
2369}
2370
0b5d8877 2371/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2372 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2373 elements starting at index LOW. The lower bound of this array is LOW, as
2374 per Ada rules. */
0b5d8877 2375static struct value *
f5938064
JG
2376ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2377 int low, int high)
0b5d8877 2378{
6c038f32 2379 CORE_ADDR base = value_as_address (array_ptr)
43bbcdc2 2380 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
0b5d8877 2381 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2382 struct type *index_type =
2383 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2384 low, high);
6c038f32 2385 struct type *slice_type =
0b5d8877 2386 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
f5938064 2387 return value_at_lazy (slice_type, base);
0b5d8877
PH
2388}
2389
2390
2391static struct value *
2392ada_value_slice (struct value *array, int low, int high)
2393{
df407dfe 2394 struct type *type = value_type (array);
6c038f32 2395 struct type *index_type =
0b5d8877 2396 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2397 struct type *slice_type =
0b5d8877 2398 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2399 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2400}
2401
14f9c5c9
AS
2402/* If type is a record type in the form of a standard GNAT array
2403 descriptor, returns the number of dimensions for type. If arr is a
2404 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2405 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2406
2407int
d2e4a39e 2408ada_array_arity (struct type *type)
14f9c5c9
AS
2409{
2410 int arity;
2411
2412 if (type == NULL)
2413 return 0;
2414
2415 type = desc_base_type (type);
2416
2417 arity = 0;
d2e4a39e 2418 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2419 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2420 else
2421 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2422 {
4c4b4cd2 2423 arity += 1;
61ee279c 2424 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2425 }
d2e4a39e 2426
14f9c5c9
AS
2427 return arity;
2428}
2429
2430/* If TYPE is a record type in the form of a standard GNAT array
2431 descriptor or a simple array type, returns the element type for
2432 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2433 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2434
d2e4a39e
AS
2435struct type *
2436ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2437{
2438 type = desc_base_type (type);
2439
d2e4a39e 2440 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2441 {
2442 int k;
d2e4a39e 2443 struct type *p_array_type;
14f9c5c9 2444
556bdfd4 2445 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2446
2447 k = ada_array_arity (type);
2448 if (k == 0)
4c4b4cd2 2449 return NULL;
d2e4a39e 2450
4c4b4cd2 2451 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2452 if (nindices >= 0 && k > nindices)
4c4b4cd2 2453 k = nindices;
d2e4a39e 2454 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2455 {
61ee279c 2456 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2457 k -= 1;
2458 }
14f9c5c9
AS
2459 return p_array_type;
2460 }
2461 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2462 {
2463 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2464 {
2465 type = TYPE_TARGET_TYPE (type);
2466 nindices -= 1;
2467 }
14f9c5c9
AS
2468 return type;
2469 }
2470
2471 return NULL;
2472}
2473
4c4b4cd2 2474/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2475 Does not examine memory. Throws an error if N is invalid or TYPE
2476 is not an array type. NAME is the name of the Ada attribute being
2477 evaluated ('range, 'first, 'last, or 'length); it is used in building
2478 the error message. */
14f9c5c9 2479
1eea4ebd
UW
2480static struct type *
2481ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2482{
4c4b4cd2
PH
2483 struct type *result_type;
2484
14f9c5c9
AS
2485 type = desc_base_type (type);
2486
1eea4ebd
UW
2487 if (n < 0 || n > ada_array_arity (type))
2488 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2489
4c4b4cd2 2490 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2491 {
2492 int i;
2493
2494 for (i = 1; i < n; i += 1)
4c4b4cd2 2495 type = TYPE_TARGET_TYPE (type);
262452ec 2496 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2497 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2498 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2499 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2500 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2501 result_type = NULL;
14f9c5c9 2502 }
d2e4a39e 2503 else
1eea4ebd
UW
2504 {
2505 result_type = desc_index_type (desc_bounds_type (type), n);
2506 if (result_type == NULL)
2507 error (_("attempt to take bound of something that is not an array"));
2508 }
2509
2510 return result_type;
14f9c5c9
AS
2511}
2512
2513/* Given that arr is an array type, returns the lower bound of the
2514 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2515 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2516 array-descriptor type. It works for other arrays with bounds supplied
2517 by run-time quantities other than discriminants. */
14f9c5c9 2518
abb68b3e 2519static LONGEST
1eea4ebd 2520ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2521{
1ce677a4 2522 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2523 int i;
262452ec
JK
2524
2525 gdb_assert (which == 0 || which == 1);
14f9c5c9 2526
ad82864c
JB
2527 if (ada_is_constrained_packed_array_type (arr_type))
2528 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2529
4c4b4cd2 2530 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2531 return (LONGEST) - which;
14f9c5c9
AS
2532
2533 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2534 type = TYPE_TARGET_TYPE (arr_type);
2535 else
2536 type = arr_type;
2537
1ce677a4
UW
2538 elt_type = type;
2539 for (i = n; i > 1; i--)
2540 elt_type = TYPE_TARGET_TYPE (type);
2541
14f9c5c9 2542 index_type_desc = ada_find_parallel_type (type, "___XA");
262452ec
JK
2543 if (index_type_desc != NULL)
2544 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
1ce677a4 2545 NULL, TYPE_INDEX_TYPE (elt_type));
262452ec 2546 else
1ce677a4 2547 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2548
43bbcdc2
PH
2549 return
2550 (LONGEST) (which == 0
2551 ? ada_discrete_type_low_bound (index_type)
2552 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2553}
2554
2555/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2556 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2557 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2558 supplied by run-time quantities other than discriminants. */
14f9c5c9 2559
1eea4ebd 2560static LONGEST
4dc81987 2561ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2562{
df407dfe 2563 struct type *arr_type = value_type (arr);
14f9c5c9 2564
ad82864c
JB
2565 if (ada_is_constrained_packed_array_type (arr_type))
2566 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2567 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2568 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2569 else
1eea4ebd 2570 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2571}
2572
2573/* Given that arr is an array value, returns the length of the
2574 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2575 supplied by run-time quantities other than discriminants.
2576 Does not work for arrays indexed by enumeration types with representation
2577 clauses at the moment. */
14f9c5c9 2578
1eea4ebd 2579static LONGEST
d2e4a39e 2580ada_array_length (struct value *arr, int n)
14f9c5c9 2581{
df407dfe 2582 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2583
ad82864c
JB
2584 if (ada_is_constrained_packed_array_type (arr_type))
2585 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2586
4c4b4cd2 2587 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2588 return (ada_array_bound_from_type (arr_type, n, 1)
2589 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2590 else
1eea4ebd
UW
2591 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2592 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2593}
2594
2595/* An empty array whose type is that of ARR_TYPE (an array type),
2596 with bounds LOW to LOW-1. */
2597
2598static struct value *
2599empty_array (struct type *arr_type, int low)
2600{
6c038f32 2601 struct type *index_type =
0b5d8877
PH
2602 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2603 low, low - 1);
2604 struct type *elt_type = ada_array_element_type (arr_type, 1);
2605 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2606}
14f9c5c9 2607\f
d2e4a39e 2608
4c4b4cd2 2609 /* Name resolution */
14f9c5c9 2610
4c4b4cd2
PH
2611/* The "decoded" name for the user-definable Ada operator corresponding
2612 to OP. */
14f9c5c9 2613
d2e4a39e 2614static const char *
4c4b4cd2 2615ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2616{
2617 int i;
2618
4c4b4cd2 2619 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2620 {
2621 if (ada_opname_table[i].op == op)
4c4b4cd2 2622 return ada_opname_table[i].decoded;
14f9c5c9 2623 }
323e0a4a 2624 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2625}
2626
2627
4c4b4cd2
PH
2628/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2629 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2630 undefined namespace) and converts operators that are
2631 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2632 non-null, it provides a preferred result type [at the moment, only
2633 type void has any effect---causing procedures to be preferred over
2634 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2635 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2636
4c4b4cd2
PH
2637static void
2638resolve (struct expression **expp, int void_context_p)
14f9c5c9 2639{
30b15541
UW
2640 struct type *context_type = NULL;
2641 int pc = 0;
2642
2643 if (void_context_p)
2644 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2645
2646 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2647}
2648
4c4b4cd2
PH
2649/* Resolve the operator of the subexpression beginning at
2650 position *POS of *EXPP. "Resolving" consists of replacing
2651 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2652 with their resolutions, replacing built-in operators with
2653 function calls to user-defined operators, where appropriate, and,
2654 when DEPROCEDURE_P is non-zero, converting function-valued variables
2655 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2656 are as in ada_resolve, above. */
14f9c5c9 2657
d2e4a39e 2658static struct value *
4c4b4cd2 2659resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2660 struct type *context_type)
14f9c5c9
AS
2661{
2662 int pc = *pos;
2663 int i;
4c4b4cd2 2664 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2665 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2666 struct value **argvec; /* Vector of operand types (alloca'ed). */
2667 int nargs; /* Number of operands. */
52ce6436 2668 int oplen;
14f9c5c9
AS
2669
2670 argvec = NULL;
2671 nargs = 0;
2672 exp = *expp;
2673
52ce6436
PH
2674 /* Pass one: resolve operands, saving their types and updating *pos,
2675 if needed. */
14f9c5c9
AS
2676 switch (op)
2677 {
4c4b4cd2
PH
2678 case OP_FUNCALL:
2679 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2680 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2681 *pos += 7;
4c4b4cd2
PH
2682 else
2683 {
2684 *pos += 3;
2685 resolve_subexp (expp, pos, 0, NULL);
2686 }
2687 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2688 break;
2689
14f9c5c9 2690 case UNOP_ADDR:
4c4b4cd2
PH
2691 *pos += 1;
2692 resolve_subexp (expp, pos, 0, NULL);
2693 break;
2694
52ce6436
PH
2695 case UNOP_QUAL:
2696 *pos += 3;
17466c1a 2697 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2698 break;
2699
52ce6436 2700 case OP_ATR_MODULUS:
4c4b4cd2
PH
2701 case OP_ATR_SIZE:
2702 case OP_ATR_TAG:
4c4b4cd2
PH
2703 case OP_ATR_FIRST:
2704 case OP_ATR_LAST:
2705 case OP_ATR_LENGTH:
2706 case OP_ATR_POS:
2707 case OP_ATR_VAL:
4c4b4cd2
PH
2708 case OP_ATR_MIN:
2709 case OP_ATR_MAX:
52ce6436
PH
2710 case TERNOP_IN_RANGE:
2711 case BINOP_IN_BOUNDS:
2712 case UNOP_IN_RANGE:
2713 case OP_AGGREGATE:
2714 case OP_OTHERS:
2715 case OP_CHOICES:
2716 case OP_POSITIONAL:
2717 case OP_DISCRETE_RANGE:
2718 case OP_NAME:
2719 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2720 *pos += oplen;
14f9c5c9
AS
2721 break;
2722
2723 case BINOP_ASSIGN:
2724 {
4c4b4cd2
PH
2725 struct value *arg1;
2726
2727 *pos += 1;
2728 arg1 = resolve_subexp (expp, pos, 0, NULL);
2729 if (arg1 == NULL)
2730 resolve_subexp (expp, pos, 1, NULL);
2731 else
df407dfe 2732 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2733 break;
14f9c5c9
AS
2734 }
2735
4c4b4cd2 2736 case UNOP_CAST:
4c4b4cd2
PH
2737 *pos += 3;
2738 nargs = 1;
2739 break;
14f9c5c9 2740
4c4b4cd2
PH
2741 case BINOP_ADD:
2742 case BINOP_SUB:
2743 case BINOP_MUL:
2744 case BINOP_DIV:
2745 case BINOP_REM:
2746 case BINOP_MOD:
2747 case BINOP_EXP:
2748 case BINOP_CONCAT:
2749 case BINOP_LOGICAL_AND:
2750 case BINOP_LOGICAL_OR:
2751 case BINOP_BITWISE_AND:
2752 case BINOP_BITWISE_IOR:
2753 case BINOP_BITWISE_XOR:
14f9c5c9 2754
4c4b4cd2
PH
2755 case BINOP_EQUAL:
2756 case BINOP_NOTEQUAL:
2757 case BINOP_LESS:
2758 case BINOP_GTR:
2759 case BINOP_LEQ:
2760 case BINOP_GEQ:
14f9c5c9 2761
4c4b4cd2
PH
2762 case BINOP_REPEAT:
2763 case BINOP_SUBSCRIPT:
2764 case BINOP_COMMA:
40c8aaa9
JB
2765 *pos += 1;
2766 nargs = 2;
2767 break;
14f9c5c9 2768
4c4b4cd2
PH
2769 case UNOP_NEG:
2770 case UNOP_PLUS:
2771 case UNOP_LOGICAL_NOT:
2772 case UNOP_ABS:
2773 case UNOP_IND:
2774 *pos += 1;
2775 nargs = 1;
2776 break;
14f9c5c9 2777
4c4b4cd2
PH
2778 case OP_LONG:
2779 case OP_DOUBLE:
2780 case OP_VAR_VALUE:
2781 *pos += 4;
2782 break;
14f9c5c9 2783
4c4b4cd2
PH
2784 case OP_TYPE:
2785 case OP_BOOL:
2786 case OP_LAST:
4c4b4cd2
PH
2787 case OP_INTERNALVAR:
2788 *pos += 3;
2789 break;
14f9c5c9 2790
4c4b4cd2
PH
2791 case UNOP_MEMVAL:
2792 *pos += 3;
2793 nargs = 1;
2794 break;
2795
67f3407f
DJ
2796 case OP_REGISTER:
2797 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2798 break;
2799
4c4b4cd2
PH
2800 case STRUCTOP_STRUCT:
2801 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2802 nargs = 1;
2803 break;
2804
4c4b4cd2 2805 case TERNOP_SLICE:
4c4b4cd2
PH
2806 *pos += 1;
2807 nargs = 3;
2808 break;
2809
52ce6436 2810 case OP_STRING:
14f9c5c9 2811 break;
4c4b4cd2
PH
2812
2813 default:
323e0a4a 2814 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2815 }
2816
76a01679 2817 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2818 for (i = 0; i < nargs; i += 1)
2819 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2820 argvec[i] = NULL;
2821 exp = *expp;
2822
2823 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2824 switch (op)
2825 {
2826 default:
2827 break;
2828
14f9c5c9 2829 case OP_VAR_VALUE:
4c4b4cd2 2830 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2831 {
2832 struct ada_symbol_info *candidates;
2833 int n_candidates;
2834
2835 n_candidates =
2836 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2837 (exp->elts[pc + 2].symbol),
2838 exp->elts[pc + 1].block, VAR_DOMAIN,
2839 &candidates);
2840
2841 if (n_candidates > 1)
2842 {
2843 /* Types tend to get re-introduced locally, so if there
2844 are any local symbols that are not types, first filter
2845 out all types. */
2846 int j;
2847 for (j = 0; j < n_candidates; j += 1)
2848 switch (SYMBOL_CLASS (candidates[j].sym))
2849 {
2850 case LOC_REGISTER:
2851 case LOC_ARG:
2852 case LOC_REF_ARG:
76a01679
JB
2853 case LOC_REGPARM_ADDR:
2854 case LOC_LOCAL:
76a01679 2855 case LOC_COMPUTED:
76a01679
JB
2856 goto FoundNonType;
2857 default:
2858 break;
2859 }
2860 FoundNonType:
2861 if (j < n_candidates)
2862 {
2863 j = 0;
2864 while (j < n_candidates)
2865 {
2866 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2867 {
2868 candidates[j] = candidates[n_candidates - 1];
2869 n_candidates -= 1;
2870 }
2871 else
2872 j += 1;
2873 }
2874 }
2875 }
2876
2877 if (n_candidates == 0)
323e0a4a 2878 error (_("No definition found for %s"),
76a01679
JB
2879 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2880 else if (n_candidates == 1)
2881 i = 0;
2882 else if (deprocedure_p
2883 && !is_nonfunction (candidates, n_candidates))
2884 {
06d5cf63
JB
2885 i = ada_resolve_function
2886 (candidates, n_candidates, NULL, 0,
2887 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2888 context_type);
76a01679 2889 if (i < 0)
323e0a4a 2890 error (_("Could not find a match for %s"),
76a01679
JB
2891 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2892 }
2893 else
2894 {
323e0a4a 2895 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2896 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2897 user_select_syms (candidates, n_candidates, 1);
2898 i = 0;
2899 }
2900
2901 exp->elts[pc + 1].block = candidates[i].block;
2902 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2903 if (innermost_block == NULL
2904 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2905 innermost_block = candidates[i].block;
2906 }
2907
2908 if (deprocedure_p
2909 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2910 == TYPE_CODE_FUNC))
2911 {
2912 replace_operator_with_call (expp, pc, 0, 0,
2913 exp->elts[pc + 2].symbol,
2914 exp->elts[pc + 1].block);
2915 exp = *expp;
2916 }
14f9c5c9
AS
2917 break;
2918
2919 case OP_FUNCALL:
2920 {
4c4b4cd2 2921 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2922 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2923 {
2924 struct ada_symbol_info *candidates;
2925 int n_candidates;
2926
2927 n_candidates =
76a01679
JB
2928 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2929 (exp->elts[pc + 5].symbol),
2930 exp->elts[pc + 4].block, VAR_DOMAIN,
2931 &candidates);
4c4b4cd2
PH
2932 if (n_candidates == 1)
2933 i = 0;
2934 else
2935 {
06d5cf63
JB
2936 i = ada_resolve_function
2937 (candidates, n_candidates,
2938 argvec, nargs,
2939 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2940 context_type);
4c4b4cd2 2941 if (i < 0)
323e0a4a 2942 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2943 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2944 }
2945
2946 exp->elts[pc + 4].block = candidates[i].block;
2947 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2948 if (innermost_block == NULL
2949 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2950 innermost_block = candidates[i].block;
2951 }
14f9c5c9
AS
2952 }
2953 break;
2954 case BINOP_ADD:
2955 case BINOP_SUB:
2956 case BINOP_MUL:
2957 case BINOP_DIV:
2958 case BINOP_REM:
2959 case BINOP_MOD:
2960 case BINOP_CONCAT:
2961 case BINOP_BITWISE_AND:
2962 case BINOP_BITWISE_IOR:
2963 case BINOP_BITWISE_XOR:
2964 case BINOP_EQUAL:
2965 case BINOP_NOTEQUAL:
2966 case BINOP_LESS:
2967 case BINOP_GTR:
2968 case BINOP_LEQ:
2969 case BINOP_GEQ:
2970 case BINOP_EXP:
2971 case UNOP_NEG:
2972 case UNOP_PLUS:
2973 case UNOP_LOGICAL_NOT:
2974 case UNOP_ABS:
2975 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2976 {
2977 struct ada_symbol_info *candidates;
2978 int n_candidates;
2979
2980 n_candidates =
2981 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2982 (struct block *) NULL, VAR_DOMAIN,
2983 &candidates);
2984 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2985 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2986 if (i < 0)
2987 break;
2988
76a01679
JB
2989 replace_operator_with_call (expp, pc, nargs, 1,
2990 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
2991 exp = *expp;
2992 }
14f9c5c9 2993 break;
4c4b4cd2
PH
2994
2995 case OP_TYPE:
b3dbf008 2996 case OP_REGISTER:
4c4b4cd2 2997 return NULL;
14f9c5c9
AS
2998 }
2999
3000 *pos = pc;
3001 return evaluate_subexp_type (exp, pos);
3002}
3003
3004/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3005 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3006 a non-pointer. */
14f9c5c9 3007/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3008 liberal. */
14f9c5c9
AS
3009
3010static int
4dc81987 3011ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3012{
61ee279c
PH
3013 ftype = ada_check_typedef (ftype);
3014 atype = ada_check_typedef (atype);
14f9c5c9
AS
3015
3016 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3017 ftype = TYPE_TARGET_TYPE (ftype);
3018 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3019 atype = TYPE_TARGET_TYPE (atype);
3020
d2e4a39e 3021 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3022 {
3023 default:
5b3d5b7d 3024 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3025 case TYPE_CODE_PTR:
3026 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3027 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3028 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3029 else
1265e4aa
JB
3030 return (may_deref
3031 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3032 case TYPE_CODE_INT:
3033 case TYPE_CODE_ENUM:
3034 case TYPE_CODE_RANGE:
3035 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3036 {
3037 case TYPE_CODE_INT:
3038 case TYPE_CODE_ENUM:
3039 case TYPE_CODE_RANGE:
3040 return 1;
3041 default:
3042 return 0;
3043 }
14f9c5c9
AS
3044
3045 case TYPE_CODE_ARRAY:
d2e4a39e 3046 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3047 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3048
3049 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3050 if (ada_is_array_descriptor_type (ftype))
3051 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3052 || ada_is_array_descriptor_type (atype));
14f9c5c9 3053 else
4c4b4cd2
PH
3054 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3055 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3056
3057 case TYPE_CODE_UNION:
3058 case TYPE_CODE_FLT:
3059 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3060 }
3061}
3062
3063/* Return non-zero if the formals of FUNC "sufficiently match" the
3064 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3065 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3066 argument function. */
14f9c5c9
AS
3067
3068static int
d2e4a39e 3069ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3070{
3071 int i;
d2e4a39e 3072 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3073
1265e4aa
JB
3074 if (SYMBOL_CLASS (func) == LOC_CONST
3075 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3076 return (n_actuals == 0);
3077 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3078 return 0;
3079
3080 if (TYPE_NFIELDS (func_type) != n_actuals)
3081 return 0;
3082
3083 for (i = 0; i < n_actuals; i += 1)
3084 {
4c4b4cd2 3085 if (actuals[i] == NULL)
76a01679
JB
3086 return 0;
3087 else
3088 {
61ee279c 3089 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3090 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3091
76a01679
JB
3092 if (!ada_type_match (ftype, atype, 1))
3093 return 0;
3094 }
14f9c5c9
AS
3095 }
3096 return 1;
3097}
3098
3099/* False iff function type FUNC_TYPE definitely does not produce a value
3100 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3101 FUNC_TYPE is not a valid function type with a non-null return type
3102 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3103
3104static int
d2e4a39e 3105return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3106{
d2e4a39e 3107 struct type *return_type;
14f9c5c9
AS
3108
3109 if (func_type == NULL)
3110 return 1;
3111
4c4b4cd2
PH
3112 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3113 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3114 else
3115 return_type = base_type (func_type);
14f9c5c9
AS
3116 if (return_type == NULL)
3117 return 1;
3118
4c4b4cd2 3119 context_type = base_type (context_type);
14f9c5c9
AS
3120
3121 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3122 return context_type == NULL || return_type == context_type;
3123 else if (context_type == NULL)
3124 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3125 else
3126 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3127}
3128
3129
4c4b4cd2 3130/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3131 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3132 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3133 that returns that type, then eliminate matches that don't. If
3134 CONTEXT_TYPE is void and there is at least one match that does not
3135 return void, eliminate all matches that do.
3136
14f9c5c9
AS
3137 Asks the user if there is more than one match remaining. Returns -1
3138 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3139 solely for messages. May re-arrange and modify SYMS in
3140 the process; the index returned is for the modified vector. */
14f9c5c9 3141
4c4b4cd2
PH
3142static int
3143ada_resolve_function (struct ada_symbol_info syms[],
3144 int nsyms, struct value **args, int nargs,
3145 const char *name, struct type *context_type)
14f9c5c9 3146{
30b15541 3147 int fallback;
14f9c5c9 3148 int k;
4c4b4cd2 3149 int m; /* Number of hits */
14f9c5c9 3150
d2e4a39e 3151 m = 0;
30b15541
UW
3152 /* In the first pass of the loop, we only accept functions matching
3153 context_type. If none are found, we add a second pass of the loop
3154 where every function is accepted. */
3155 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3156 {
3157 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3158 {
61ee279c 3159 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3160
3161 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3162 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3163 {
3164 syms[m] = syms[k];
3165 m += 1;
3166 }
3167 }
14f9c5c9
AS
3168 }
3169
3170 if (m == 0)
3171 return -1;
3172 else if (m > 1)
3173 {
323e0a4a 3174 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3175 user_select_syms (syms, m, 1);
14f9c5c9
AS
3176 return 0;
3177 }
3178 return 0;
3179}
3180
4c4b4cd2
PH
3181/* Returns true (non-zero) iff decoded name N0 should appear before N1
3182 in a listing of choices during disambiguation (see sort_choices, below).
3183 The idea is that overloadings of a subprogram name from the
3184 same package should sort in their source order. We settle for ordering
3185 such symbols by their trailing number (__N or $N). */
3186
14f9c5c9 3187static int
4c4b4cd2 3188encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3189{
3190 if (N1 == NULL)
3191 return 0;
3192 else if (N0 == NULL)
3193 return 1;
3194 else
3195 {
3196 int k0, k1;
d2e4a39e 3197 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3198 ;
d2e4a39e 3199 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3200 ;
d2e4a39e 3201 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3202 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3203 {
3204 int n0, n1;
3205 n0 = k0;
3206 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3207 n0 -= 1;
3208 n1 = k1;
3209 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3210 n1 -= 1;
3211 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3212 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3213 }
14f9c5c9
AS
3214 return (strcmp (N0, N1) < 0);
3215 }
3216}
d2e4a39e 3217
4c4b4cd2
PH
3218/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3219 encoded names. */
3220
d2e4a39e 3221static void
4c4b4cd2 3222sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3223{
4c4b4cd2 3224 int i;
d2e4a39e 3225 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3226 {
4c4b4cd2 3227 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3228 int j;
3229
d2e4a39e 3230 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3231 {
3232 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3233 SYMBOL_LINKAGE_NAME (sym.sym)))
3234 break;
3235 syms[j + 1] = syms[j];
3236 }
d2e4a39e 3237 syms[j + 1] = sym;
14f9c5c9
AS
3238 }
3239}
3240
4c4b4cd2
PH
3241/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3242 by asking the user (if necessary), returning the number selected,
3243 and setting the first elements of SYMS items. Error if no symbols
3244 selected. */
14f9c5c9
AS
3245
3246/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3247 to be re-integrated one of these days. */
14f9c5c9
AS
3248
3249int
4c4b4cd2 3250user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3251{
3252 int i;
d2e4a39e 3253 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3254 int n_chosen;
3255 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3256 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3257
3258 if (max_results < 1)
323e0a4a 3259 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3260 if (nsyms <= 1)
3261 return nsyms;
3262
717d2f5a
JB
3263 if (select_mode == multiple_symbols_cancel)
3264 error (_("\
3265canceled because the command is ambiguous\n\
3266See set/show multiple-symbol."));
3267
3268 /* If select_mode is "all", then return all possible symbols.
3269 Only do that if more than one symbol can be selected, of course.
3270 Otherwise, display the menu as usual. */
3271 if (select_mode == multiple_symbols_all && max_results > 1)
3272 return nsyms;
3273
323e0a4a 3274 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3275 if (max_results > 1)
323e0a4a 3276 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3277
4c4b4cd2 3278 sort_choices (syms, nsyms);
14f9c5c9
AS
3279
3280 for (i = 0; i < nsyms; i += 1)
3281 {
4c4b4cd2
PH
3282 if (syms[i].sym == NULL)
3283 continue;
3284
3285 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3286 {
76a01679
JB
3287 struct symtab_and_line sal =
3288 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3289 if (sal.symtab == NULL)
3290 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3291 i + first_choice,
3292 SYMBOL_PRINT_NAME (syms[i].sym),
3293 sal.line);
3294 else
3295 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3296 SYMBOL_PRINT_NAME (syms[i].sym),
3297 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3298 continue;
3299 }
d2e4a39e 3300 else
4c4b4cd2
PH
3301 {
3302 int is_enumeral =
3303 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3304 && SYMBOL_TYPE (syms[i].sym) != NULL
3305 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3306 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3307
3308 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3309 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3310 i + first_choice,
3311 SYMBOL_PRINT_NAME (syms[i].sym),
3312 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3313 else if (is_enumeral
3314 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3315 {
a3f17187 3316 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3317 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3318 gdb_stdout, -1, 0);
323e0a4a 3319 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3320 SYMBOL_PRINT_NAME (syms[i].sym));
3321 }
3322 else if (symtab != NULL)
3323 printf_unfiltered (is_enumeral
323e0a4a
AC
3324 ? _("[%d] %s in %s (enumeral)\n")
3325 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3326 i + first_choice,
3327 SYMBOL_PRINT_NAME (syms[i].sym),
3328 symtab->filename);
3329 else
3330 printf_unfiltered (is_enumeral
323e0a4a
AC
3331 ? _("[%d] %s (enumeral)\n")
3332 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3333 i + first_choice,
3334 SYMBOL_PRINT_NAME (syms[i].sym));
3335 }
14f9c5c9 3336 }
d2e4a39e 3337
14f9c5c9 3338 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3339 "overload-choice");
14f9c5c9
AS
3340
3341 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3342 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3343
3344 return n_chosen;
3345}
3346
3347/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3348 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3349 order in CHOICES[0 .. N-1], and return N.
3350
3351 The user types choices as a sequence of numbers on one line
3352 separated by blanks, encoding them as follows:
3353
4c4b4cd2 3354 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3355 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3356 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3357
4c4b4cd2 3358 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3359
3360 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3361 prompts (for use with the -f switch). */
14f9c5c9
AS
3362
3363int
d2e4a39e 3364get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3365 int is_all_choice, char *annotation_suffix)
14f9c5c9 3366{
d2e4a39e 3367 char *args;
0bcd0149 3368 char *prompt;
14f9c5c9
AS
3369 int n_chosen;
3370 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3371
14f9c5c9
AS
3372 prompt = getenv ("PS2");
3373 if (prompt == NULL)
0bcd0149 3374 prompt = "> ";
14f9c5c9 3375
0bcd0149 3376 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3377
14f9c5c9 3378 if (args == NULL)
323e0a4a 3379 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3380
3381 n_chosen = 0;
76a01679 3382
4c4b4cd2
PH
3383 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3384 order, as given in args. Choices are validated. */
14f9c5c9
AS
3385 while (1)
3386 {
d2e4a39e 3387 char *args2;
14f9c5c9
AS
3388 int choice, j;
3389
3390 while (isspace (*args))
4c4b4cd2 3391 args += 1;
14f9c5c9 3392 if (*args == '\0' && n_chosen == 0)
323e0a4a 3393 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3394 else if (*args == '\0')
4c4b4cd2 3395 break;
14f9c5c9
AS
3396
3397 choice = strtol (args, &args2, 10);
d2e4a39e 3398 if (args == args2 || choice < 0
4c4b4cd2 3399 || choice > n_choices + first_choice - 1)
323e0a4a 3400 error (_("Argument must be choice number"));
14f9c5c9
AS
3401 args = args2;
3402
d2e4a39e 3403 if (choice == 0)
323e0a4a 3404 error (_("cancelled"));
14f9c5c9
AS
3405
3406 if (choice < first_choice)
4c4b4cd2
PH
3407 {
3408 n_chosen = n_choices;
3409 for (j = 0; j < n_choices; j += 1)
3410 choices[j] = j;
3411 break;
3412 }
14f9c5c9
AS
3413 choice -= first_choice;
3414
d2e4a39e 3415 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3416 {
3417 }
14f9c5c9
AS
3418
3419 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3420 {
3421 int k;
3422 for (k = n_chosen - 1; k > j; k -= 1)
3423 choices[k + 1] = choices[k];
3424 choices[j + 1] = choice;
3425 n_chosen += 1;
3426 }
14f9c5c9
AS
3427 }
3428
3429 if (n_chosen > max_results)
323e0a4a 3430 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3431
14f9c5c9
AS
3432 return n_chosen;
3433}
3434
4c4b4cd2
PH
3435/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3436 on the function identified by SYM and BLOCK, and taking NARGS
3437 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3438
3439static void
d2e4a39e 3440replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3441 int oplen, struct symbol *sym,
3442 struct block *block)
14f9c5c9
AS
3443{
3444 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3445 symbol, -oplen for operator being replaced). */
d2e4a39e 3446 struct expression *newexp = (struct expression *)
14f9c5c9 3447 xmalloc (sizeof (struct expression)
4c4b4cd2 3448 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3449 struct expression *exp = *expp;
14f9c5c9
AS
3450
3451 newexp->nelts = exp->nelts + 7 - oplen;
3452 newexp->language_defn = exp->language_defn;
3453 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3454 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3455 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3456
3457 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3458 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3459
3460 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3461 newexp->elts[pc + 4].block = block;
3462 newexp->elts[pc + 5].symbol = sym;
3463
3464 *expp = newexp;
aacb1f0a 3465 xfree (exp);
d2e4a39e 3466}
14f9c5c9
AS
3467
3468/* Type-class predicates */
3469
4c4b4cd2
PH
3470/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3471 or FLOAT). */
14f9c5c9
AS
3472
3473static int
d2e4a39e 3474numeric_type_p (struct type *type)
14f9c5c9
AS
3475{
3476 if (type == NULL)
3477 return 0;
d2e4a39e
AS
3478 else
3479 {
3480 switch (TYPE_CODE (type))
4c4b4cd2
PH
3481 {
3482 case TYPE_CODE_INT:
3483 case TYPE_CODE_FLT:
3484 return 1;
3485 case TYPE_CODE_RANGE:
3486 return (type == TYPE_TARGET_TYPE (type)
3487 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3488 default:
3489 return 0;
3490 }
d2e4a39e 3491 }
14f9c5c9
AS
3492}
3493
4c4b4cd2 3494/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3495
3496static int
d2e4a39e 3497integer_type_p (struct type *type)
14f9c5c9
AS
3498{
3499 if (type == NULL)
3500 return 0;
d2e4a39e
AS
3501 else
3502 {
3503 switch (TYPE_CODE (type))
4c4b4cd2
PH
3504 {
3505 case TYPE_CODE_INT:
3506 return 1;
3507 case TYPE_CODE_RANGE:
3508 return (type == TYPE_TARGET_TYPE (type)
3509 || integer_type_p (TYPE_TARGET_TYPE (type)));
3510 default:
3511 return 0;
3512 }
d2e4a39e 3513 }
14f9c5c9
AS
3514}
3515
4c4b4cd2 3516/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3517
3518static int
d2e4a39e 3519scalar_type_p (struct type *type)
14f9c5c9
AS
3520{
3521 if (type == NULL)
3522 return 0;
d2e4a39e
AS
3523 else
3524 {
3525 switch (TYPE_CODE (type))
4c4b4cd2
PH
3526 {
3527 case TYPE_CODE_INT:
3528 case TYPE_CODE_RANGE:
3529 case TYPE_CODE_ENUM:
3530 case TYPE_CODE_FLT:
3531 return 1;
3532 default:
3533 return 0;
3534 }
d2e4a39e 3535 }
14f9c5c9
AS
3536}
3537
4c4b4cd2 3538/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3539
3540static int
d2e4a39e 3541discrete_type_p (struct type *type)
14f9c5c9
AS
3542{
3543 if (type == NULL)
3544 return 0;
d2e4a39e
AS
3545 else
3546 {
3547 switch (TYPE_CODE (type))
4c4b4cd2
PH
3548 {
3549 case TYPE_CODE_INT:
3550 case TYPE_CODE_RANGE:
3551 case TYPE_CODE_ENUM:
872f0337 3552 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3553 return 1;
3554 default:
3555 return 0;
3556 }
d2e4a39e 3557 }
14f9c5c9
AS
3558}
3559
4c4b4cd2
PH
3560/* Returns non-zero if OP with operands in the vector ARGS could be
3561 a user-defined function. Errs on the side of pre-defined operators
3562 (i.e., result 0). */
14f9c5c9
AS
3563
3564static int
d2e4a39e 3565possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3566{
76a01679 3567 struct type *type0 =
df407dfe 3568 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3569 struct type *type1 =
df407dfe 3570 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3571
4c4b4cd2
PH
3572 if (type0 == NULL)
3573 return 0;
3574
14f9c5c9
AS
3575 switch (op)
3576 {
3577 default:
3578 return 0;
3579
3580 case BINOP_ADD:
3581 case BINOP_SUB:
3582 case BINOP_MUL:
3583 case BINOP_DIV:
d2e4a39e 3584 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3585
3586 case BINOP_REM:
3587 case BINOP_MOD:
3588 case BINOP_BITWISE_AND:
3589 case BINOP_BITWISE_IOR:
3590 case BINOP_BITWISE_XOR:
d2e4a39e 3591 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3592
3593 case BINOP_EQUAL:
3594 case BINOP_NOTEQUAL:
3595 case BINOP_LESS:
3596 case BINOP_GTR:
3597 case BINOP_LEQ:
3598 case BINOP_GEQ:
d2e4a39e 3599 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3600
3601 case BINOP_CONCAT:
ee90b9ab 3602 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3603
3604 case BINOP_EXP:
d2e4a39e 3605 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3606
3607 case UNOP_NEG:
3608 case UNOP_PLUS:
3609 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3610 case UNOP_ABS:
3611 return (!numeric_type_p (type0));
14f9c5c9
AS
3612
3613 }
3614}
3615\f
4c4b4cd2 3616 /* Renaming */
14f9c5c9 3617
aeb5907d
JB
3618/* NOTES:
3619
3620 1. In the following, we assume that a renaming type's name may
3621 have an ___XD suffix. It would be nice if this went away at some
3622 point.
3623 2. We handle both the (old) purely type-based representation of
3624 renamings and the (new) variable-based encoding. At some point,
3625 it is devoutly to be hoped that the former goes away
3626 (FIXME: hilfinger-2007-07-09).
3627 3. Subprogram renamings are not implemented, although the XRS
3628 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3629
3630/* If SYM encodes a renaming,
3631
3632 <renaming> renames <renamed entity>,
3633
3634 sets *LEN to the length of the renamed entity's name,
3635 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3636 the string describing the subcomponent selected from the renamed
3637 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3638 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3639 are undefined). Otherwise, returns a value indicating the category
3640 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3641 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3642 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3643 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3644 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3645 may be NULL, in which case they are not assigned.
3646
3647 [Currently, however, GCC does not generate subprogram renamings.] */
3648
3649enum ada_renaming_category
3650ada_parse_renaming (struct symbol *sym,
3651 const char **renamed_entity, int *len,
3652 const char **renaming_expr)
3653{
3654 enum ada_renaming_category kind;
3655 const char *info;
3656 const char *suffix;
3657
3658 if (sym == NULL)
3659 return ADA_NOT_RENAMING;
3660 switch (SYMBOL_CLASS (sym))
14f9c5c9 3661 {
aeb5907d
JB
3662 default:
3663 return ADA_NOT_RENAMING;
3664 case LOC_TYPEDEF:
3665 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3666 renamed_entity, len, renaming_expr);
3667 case LOC_LOCAL:
3668 case LOC_STATIC:
3669 case LOC_COMPUTED:
3670 case LOC_OPTIMIZED_OUT:
3671 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3672 if (info == NULL)
3673 return ADA_NOT_RENAMING;
3674 switch (info[5])
3675 {
3676 case '_':
3677 kind = ADA_OBJECT_RENAMING;
3678 info += 6;
3679 break;
3680 case 'E':
3681 kind = ADA_EXCEPTION_RENAMING;
3682 info += 7;
3683 break;
3684 case 'P':
3685 kind = ADA_PACKAGE_RENAMING;
3686 info += 7;
3687 break;
3688 case 'S':
3689 kind = ADA_SUBPROGRAM_RENAMING;
3690 info += 7;
3691 break;
3692 default:
3693 return ADA_NOT_RENAMING;
3694 }
14f9c5c9 3695 }
4c4b4cd2 3696
aeb5907d
JB
3697 if (renamed_entity != NULL)
3698 *renamed_entity = info;
3699 suffix = strstr (info, "___XE");
3700 if (suffix == NULL || suffix == info)
3701 return ADA_NOT_RENAMING;
3702 if (len != NULL)
3703 *len = strlen (info) - strlen (suffix);
3704 suffix += 5;
3705 if (renaming_expr != NULL)
3706 *renaming_expr = suffix;
3707 return kind;
3708}
3709
3710/* Assuming TYPE encodes a renaming according to the old encoding in
3711 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3712 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3713 ADA_NOT_RENAMING otherwise. */
3714static enum ada_renaming_category
3715parse_old_style_renaming (struct type *type,
3716 const char **renamed_entity, int *len,
3717 const char **renaming_expr)
3718{
3719 enum ada_renaming_category kind;
3720 const char *name;
3721 const char *info;
3722 const char *suffix;
14f9c5c9 3723
aeb5907d
JB
3724 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3725 || TYPE_NFIELDS (type) != 1)
3726 return ADA_NOT_RENAMING;
14f9c5c9 3727
aeb5907d
JB
3728 name = type_name_no_tag (type);
3729 if (name == NULL)
3730 return ADA_NOT_RENAMING;
3731
3732 name = strstr (name, "___XR");
3733 if (name == NULL)
3734 return ADA_NOT_RENAMING;
3735 switch (name[5])
3736 {
3737 case '\0':
3738 case '_':
3739 kind = ADA_OBJECT_RENAMING;
3740 break;
3741 case 'E':
3742 kind = ADA_EXCEPTION_RENAMING;
3743 break;
3744 case 'P':
3745 kind = ADA_PACKAGE_RENAMING;
3746 break;
3747 case 'S':
3748 kind = ADA_SUBPROGRAM_RENAMING;
3749 break;
3750 default:
3751 return ADA_NOT_RENAMING;
3752 }
14f9c5c9 3753
aeb5907d
JB
3754 info = TYPE_FIELD_NAME (type, 0);
3755 if (info == NULL)
3756 return ADA_NOT_RENAMING;
3757 if (renamed_entity != NULL)
3758 *renamed_entity = info;
3759 suffix = strstr (info, "___XE");
3760 if (renaming_expr != NULL)
3761 *renaming_expr = suffix + 5;
3762 if (suffix == NULL || suffix == info)
3763 return ADA_NOT_RENAMING;
3764 if (len != NULL)
3765 *len = suffix - info;
3766 return kind;
3767}
52ce6436 3768
14f9c5c9 3769\f
d2e4a39e 3770
4c4b4cd2 3771 /* Evaluation: Function Calls */
14f9c5c9 3772
4c4b4cd2
PH
3773/* Return an lvalue containing the value VAL. This is the identity on
3774 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3775 on the stack, using and updating *SP as the stack pointer, and
42ae5230 3776 returning an lvalue whose value_address points to the copy. */
14f9c5c9 3777
d2e4a39e 3778static struct value *
4a399546 3779ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3780{
c3e5cd34
PH
3781 if (! VALUE_LVAL (val))
3782 {
df407dfe 3783 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3784
3785 /* The following is taken from the structure-return code in
3786 call_function_by_hand. FIXME: Therefore, some refactoring seems
3787 indicated. */
4a399546 3788 if (gdbarch_inner_than (gdbarch, 1, 2))
c3e5cd34 3789 {
42ae5230 3790 /* Stack grows downward. Align SP and value_address (val) after
c3e5cd34
PH
3791 reserving sufficient space. */
3792 *sp -= len;
4a399546
UW
3793 if (gdbarch_frame_align_p (gdbarch))
3794 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3795 set_value_address (val, *sp);
c3e5cd34
PH
3796 }
3797 else
3798 {
3799 /* Stack grows upward. Align the frame, allocate space, and
3800 then again, re-align the frame. */
4a399546
UW
3801 if (gdbarch_frame_align_p (gdbarch))
3802 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3803 set_value_address (val, *sp);
c3e5cd34 3804 *sp += len;
4a399546
UW
3805 if (gdbarch_frame_align_p (gdbarch))
3806 *sp = gdbarch_frame_align (gdbarch, *sp);
c3e5cd34 3807 }
a84a8a0d 3808 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3809
42ae5230 3810 write_memory (value_address (val), value_contents_raw (val), len);
c3e5cd34 3811 }
14f9c5c9
AS
3812
3813 return val;
3814}
3815
3816/* Return the value ACTUAL, converted to be an appropriate value for a
3817 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3818 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3819 values not residing in memory, updating it as needed. */
14f9c5c9 3820
a93c0eb6
JB
3821struct value *
3822ada_convert_actual (struct value *actual, struct type *formal_type0,
4a399546 3823 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3824{
df407dfe 3825 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3826 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3827 struct type *formal_target =
3828 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3829 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3830 struct type *actual_target =
3831 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3832 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3833
4c4b4cd2 3834 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 3835 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4a399546 3836 return make_array_descriptor (formal_type, actual, gdbarch, sp);
a84a8a0d
JB
3837 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3838 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3839 {
a84a8a0d 3840 struct value *result;
14f9c5c9 3841 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3842 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3843 result = desc_data (actual);
14f9c5c9 3844 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3845 {
3846 if (VALUE_LVAL (actual) != lval_memory)
3847 {
3848 struct value *val;
df407dfe 3849 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3850 val = allocate_value (actual_type);
990a07ab 3851 memcpy ((char *) value_contents_raw (val),
0fd88904 3852 (char *) value_contents (actual),
4c4b4cd2 3853 TYPE_LENGTH (actual_type));
4a399546 3854 actual = ensure_lval (val, gdbarch, sp);
4c4b4cd2 3855 }
a84a8a0d 3856 result = value_addr (actual);
4c4b4cd2 3857 }
a84a8a0d
JB
3858 else
3859 return actual;
3860 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3861 }
3862 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3863 return ada_value_ind (actual);
3864
3865 return actual;
3866}
3867
3868
4c4b4cd2
PH
3869/* Push a descriptor of type TYPE for array value ARR on the stack at
3870 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3871 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3872 to-descriptor type rather than a descriptor type), a struct value *
3873 representing a pointer to this descriptor. */
14f9c5c9 3874
d2e4a39e 3875static struct value *
4a399546
UW
3876make_array_descriptor (struct type *type, struct value *arr,
3877 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3878{
d2e4a39e
AS
3879 struct type *bounds_type = desc_bounds_type (type);
3880 struct type *desc_type = desc_base_type (type);
3881 struct value *descriptor = allocate_value (desc_type);
3882 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3883 int i;
d2e4a39e 3884
df407dfe 3885 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3886 {
50810684
UW
3887 modify_general_field (value_type (bounds),
3888 value_contents_writeable (bounds),
1eea4ebd 3889 ada_array_bound (arr, i, 0),
4c4b4cd2
PH
3890 desc_bound_bitpos (bounds_type, i, 0),
3891 desc_bound_bitsize (bounds_type, i, 0));
50810684
UW
3892 modify_general_field (value_type (bounds),
3893 value_contents_writeable (bounds),
1eea4ebd 3894 ada_array_bound (arr, i, 1),
4c4b4cd2
PH
3895 desc_bound_bitpos (bounds_type, i, 1),
3896 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3897 }
d2e4a39e 3898
4a399546 3899 bounds = ensure_lval (bounds, gdbarch, sp);
d2e4a39e 3900
50810684
UW
3901 modify_general_field (value_type (descriptor),
3902 value_contents_writeable (descriptor),
4a399546 3903 value_address (ensure_lval (arr, gdbarch, sp)),
76a01679
JB
3904 fat_pntr_data_bitpos (desc_type),
3905 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3906
50810684
UW
3907 modify_general_field (value_type (descriptor),
3908 value_contents_writeable (descriptor),
42ae5230 3909 value_address (bounds),
4c4b4cd2
PH
3910 fat_pntr_bounds_bitpos (desc_type),
3911 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3912
4a399546 3913 descriptor = ensure_lval (descriptor, gdbarch, sp);
14f9c5c9
AS
3914
3915 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3916 return value_addr (descriptor);
3917 else
3918 return descriptor;
3919}
14f9c5c9 3920\f
963a6417
PH
3921/* Dummy definitions for an experimental caching module that is not
3922 * used in the public sources. */
96d887e8 3923
96d887e8
PH
3924static int
3925lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3926 struct symbol **sym, struct block **block)
96d887e8
PH
3927{
3928 return 0;
3929}
3930
3931static void
3932cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3933 struct block *block)
96d887e8
PH
3934{
3935}
4c4b4cd2
PH
3936\f
3937 /* Symbol Lookup */
3938
3939/* Return the result of a standard (literal, C-like) lookup of NAME in
3940 given DOMAIN, visible from lexical block BLOCK. */
3941
3942static struct symbol *
3943standard_lookup (const char *name, const struct block *block,
3944 domain_enum domain)
3945{
3946 struct symbol *sym;
4c4b4cd2 3947
2570f2b7 3948 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3949 return sym;
2570f2b7
UW
3950 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3951 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3952 return sym;
3953}
3954
3955
3956/* Non-zero iff there is at least one non-function/non-enumeral symbol
3957 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3958 since they contend in overloading in the same way. */
3959static int
3960is_nonfunction (struct ada_symbol_info syms[], int n)
3961{
3962 int i;
3963
3964 for (i = 0; i < n; i += 1)
3965 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3966 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3967 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3968 return 1;
3969
3970 return 0;
3971}
3972
3973/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3974 struct types. Otherwise, they may not. */
14f9c5c9
AS
3975
3976static int
d2e4a39e 3977equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3978{
d2e4a39e 3979 if (type0 == type1)
14f9c5c9 3980 return 1;
d2e4a39e 3981 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3982 || TYPE_CODE (type0) != TYPE_CODE (type1))
3983 return 0;
d2e4a39e 3984 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
3985 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3986 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 3987 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 3988 return 1;
d2e4a39e 3989
14f9c5c9
AS
3990 return 0;
3991}
3992
3993/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 3994 no more defined than that of SYM1. */
14f9c5c9
AS
3995
3996static int
d2e4a39e 3997lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
3998{
3999 if (sym0 == sym1)
4000 return 1;
176620f1 4001 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4002 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4003 return 0;
4004
d2e4a39e 4005 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4006 {
4007 case LOC_UNDEF:
4008 return 1;
4009 case LOC_TYPEDEF:
4010 {
4c4b4cd2
PH
4011 struct type *type0 = SYMBOL_TYPE (sym0);
4012 struct type *type1 = SYMBOL_TYPE (sym1);
4013 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4014 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4015 int len0 = strlen (name0);
4016 return
4017 TYPE_CODE (type0) == TYPE_CODE (type1)
4018 && (equiv_types (type0, type1)
4019 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4020 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4021 }
4022 case LOC_CONST:
4023 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4024 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4025 default:
4026 return 0;
14f9c5c9
AS
4027 }
4028}
4029
4c4b4cd2
PH
4030/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4031 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4032
4033static void
76a01679
JB
4034add_defn_to_vec (struct obstack *obstackp,
4035 struct symbol *sym,
2570f2b7 4036 struct block *block)
14f9c5c9
AS
4037{
4038 int i;
4039 size_t tmp;
4c4b4cd2 4040 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4041
529cad9c
PH
4042 /* Do not try to complete stub types, as the debugger is probably
4043 already scanning all symbols matching a certain name at the
4044 time when this function is called. Trying to replace the stub
4045 type by its associated full type will cause us to restart a scan
4046 which may lead to an infinite recursion. Instead, the client
4047 collecting the matching symbols will end up collecting several
4048 matches, with at least one of them complete. It can then filter
4049 out the stub ones if needed. */
4050
4c4b4cd2
PH
4051 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4052 {
4053 if (lesseq_defined_than (sym, prevDefns[i].sym))
4054 return;
4055 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4056 {
4057 prevDefns[i].sym = sym;
4058 prevDefns[i].block = block;
4c4b4cd2 4059 return;
76a01679 4060 }
4c4b4cd2
PH
4061 }
4062
4063 {
4064 struct ada_symbol_info info;
4065
4066 info.sym = sym;
4067 info.block = block;
4c4b4cd2
PH
4068 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4069 }
4070}
4071
4072/* Number of ada_symbol_info structures currently collected in
4073 current vector in *OBSTACKP. */
4074
76a01679
JB
4075static int
4076num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4077{
4078 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4079}
4080
4081/* Vector of ada_symbol_info structures currently collected in current
4082 vector in *OBSTACKP. If FINISH, close off the vector and return
4083 its final address. */
4084
76a01679 4085static struct ada_symbol_info *
4c4b4cd2
PH
4086defns_collected (struct obstack *obstackp, int finish)
4087{
4088 if (finish)
4089 return obstack_finish (obstackp);
4090 else
4091 return (struct ada_symbol_info *) obstack_base (obstackp);
4092}
4093
96d887e8
PH
4094/* Return a minimal symbol matching NAME according to Ada decoding
4095 rules. Returns NULL if there is no such minimal symbol. Names
4096 prefixed with "standard__" are handled specially: "standard__" is
4097 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4098
96d887e8
PH
4099struct minimal_symbol *
4100ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4101{
4c4b4cd2 4102 struct objfile *objfile;
96d887e8
PH
4103 struct minimal_symbol *msymbol;
4104 int wild_match;
4c4b4cd2 4105
96d887e8 4106 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4107 {
96d887e8 4108 name += sizeof ("standard__") - 1;
4c4b4cd2 4109 wild_match = 0;
4c4b4cd2
PH
4110 }
4111 else
96d887e8 4112 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4113
96d887e8
PH
4114 ALL_MSYMBOLS (objfile, msymbol)
4115 {
4116 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4117 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4118 return msymbol;
4119 }
4c4b4cd2 4120
96d887e8
PH
4121 return NULL;
4122}
4c4b4cd2 4123
96d887e8
PH
4124/* For all subprograms that statically enclose the subprogram of the
4125 selected frame, add symbols matching identifier NAME in DOMAIN
4126 and their blocks to the list of data in OBSTACKP, as for
4127 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4128 wildcard prefix. */
4c4b4cd2 4129
96d887e8
PH
4130static void
4131add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4132 const char *name, domain_enum namespace,
96d887e8
PH
4133 int wild_match)
4134{
96d887e8 4135}
14f9c5c9 4136
96d887e8
PH
4137/* True if TYPE is definitely an artificial type supplied to a symbol
4138 for which no debugging information was given in the symbol file. */
14f9c5c9 4139
96d887e8
PH
4140static int
4141is_nondebugging_type (struct type *type)
4142{
4143 char *name = ada_type_name (type);
4144 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4145}
4c4b4cd2 4146
96d887e8
PH
4147/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4148 duplicate other symbols in the list (The only case I know of where
4149 this happens is when object files containing stabs-in-ecoff are
4150 linked with files containing ordinary ecoff debugging symbols (or no
4151 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4152 Returns the number of items in the modified list. */
4c4b4cd2 4153
96d887e8
PH
4154static int
4155remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4156{
4157 int i, j;
4c4b4cd2 4158
96d887e8
PH
4159 i = 0;
4160 while (i < nsyms)
4161 {
339c13b6
JB
4162 int remove = 0;
4163
4164 /* If two symbols have the same name and one of them is a stub type,
4165 the get rid of the stub. */
4166
4167 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4168 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4169 {
4170 for (j = 0; j < nsyms; j++)
4171 {
4172 if (j != i
4173 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4174 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4175 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4176 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4177 remove = 1;
4178 }
4179 }
4180
4181 /* Two symbols with the same name, same class and same address
4182 should be identical. */
4183
4184 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4185 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4186 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4187 {
4188 for (j = 0; j < nsyms; j += 1)
4189 {
4190 if (i != j
4191 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4192 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4193 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4194 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4195 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4196 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4197 remove = 1;
4c4b4cd2 4198 }
4c4b4cd2 4199 }
339c13b6
JB
4200
4201 if (remove)
4202 {
4203 for (j = i + 1; j < nsyms; j += 1)
4204 syms[j - 1] = syms[j];
4205 nsyms -= 1;
4206 }
4207
96d887e8 4208 i += 1;
14f9c5c9 4209 }
96d887e8 4210 return nsyms;
14f9c5c9
AS
4211}
4212
96d887e8
PH
4213/* Given a type that corresponds to a renaming entity, use the type name
4214 to extract the scope (package name or function name, fully qualified,
4215 and following the GNAT encoding convention) where this renaming has been
4216 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4217
96d887e8
PH
4218static char *
4219xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4220{
96d887e8
PH
4221 /* The renaming types adhere to the following convention:
4222 <scope>__<rename>___<XR extension>.
4223 So, to extract the scope, we search for the "___XR" extension,
4224 and then backtrack until we find the first "__". */
76a01679 4225
96d887e8
PH
4226 const char *name = type_name_no_tag (renaming_type);
4227 char *suffix = strstr (name, "___XR");
4228 char *last;
4229 int scope_len;
4230 char *scope;
14f9c5c9 4231
96d887e8
PH
4232 /* Now, backtrack a bit until we find the first "__". Start looking
4233 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4234
96d887e8
PH
4235 for (last = suffix - 3; last > name; last--)
4236 if (last[0] == '_' && last[1] == '_')
4237 break;
76a01679 4238
96d887e8 4239 /* Make a copy of scope and return it. */
14f9c5c9 4240
96d887e8
PH
4241 scope_len = last - name;
4242 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4243
96d887e8
PH
4244 strncpy (scope, name, scope_len);
4245 scope[scope_len] = '\0';
4c4b4cd2 4246
96d887e8 4247 return scope;
4c4b4cd2
PH
4248}
4249
96d887e8 4250/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4251
96d887e8
PH
4252static int
4253is_package_name (const char *name)
4c4b4cd2 4254{
96d887e8
PH
4255 /* Here, We take advantage of the fact that no symbols are generated
4256 for packages, while symbols are generated for each function.
4257 So the condition for NAME represent a package becomes equivalent
4258 to NAME not existing in our list of symbols. There is only one
4259 small complication with library-level functions (see below). */
4c4b4cd2 4260
96d887e8 4261 char *fun_name;
76a01679 4262
96d887e8
PH
4263 /* If it is a function that has not been defined at library level,
4264 then we should be able to look it up in the symbols. */
4265 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4266 return 0;
14f9c5c9 4267
96d887e8
PH
4268 /* Library-level function names start with "_ada_". See if function
4269 "_ada_" followed by NAME can be found. */
14f9c5c9 4270
96d887e8 4271 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4272 functions names cannot contain "__" in them. */
96d887e8
PH
4273 if (strstr (name, "__") != NULL)
4274 return 0;
4c4b4cd2 4275
b435e160 4276 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4277
96d887e8
PH
4278 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4279}
14f9c5c9 4280
96d887e8 4281/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4282 not visible from FUNCTION_NAME. */
14f9c5c9 4283
96d887e8 4284static int
aeb5907d 4285old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4286{
aeb5907d
JB
4287 char *scope;
4288
4289 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4290 return 0;
4291
4292 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4293
96d887e8 4294 make_cleanup (xfree, scope);
14f9c5c9 4295
96d887e8
PH
4296 /* If the rename has been defined in a package, then it is visible. */
4297 if (is_package_name (scope))
aeb5907d 4298 return 0;
14f9c5c9 4299
96d887e8
PH
4300 /* Check that the rename is in the current function scope by checking
4301 that its name starts with SCOPE. */
76a01679 4302
96d887e8
PH
4303 /* If the function name starts with "_ada_", it means that it is
4304 a library-level function. Strip this prefix before doing the
4305 comparison, as the encoding for the renaming does not contain
4306 this prefix. */
4307 if (strncmp (function_name, "_ada_", 5) == 0)
4308 function_name += 5;
f26caa11 4309
aeb5907d 4310 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4311}
4312
aeb5907d
JB
4313/* Remove entries from SYMS that corresponds to a renaming entity that
4314 is not visible from the function associated with CURRENT_BLOCK or
4315 that is superfluous due to the presence of more specific renaming
4316 information. Places surviving symbols in the initial entries of
4317 SYMS and returns the number of surviving symbols.
96d887e8
PH
4318
4319 Rationale:
aeb5907d
JB
4320 First, in cases where an object renaming is implemented as a
4321 reference variable, GNAT may produce both the actual reference
4322 variable and the renaming encoding. In this case, we discard the
4323 latter.
4324
4325 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4326 entity. Unfortunately, STABS currently does not support the definition
4327 of types that are local to a given lexical block, so all renamings types
4328 are emitted at library level. As a consequence, if an application
4329 contains two renaming entities using the same name, and a user tries to
4330 print the value of one of these entities, the result of the ada symbol
4331 lookup will also contain the wrong renaming type.
f26caa11 4332
96d887e8
PH
4333 This function partially covers for this limitation by attempting to
4334 remove from the SYMS list renaming symbols that should be visible
4335 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4336 method with the current information available. The implementation
4337 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4338
4339 - When the user tries to print a rename in a function while there
4340 is another rename entity defined in a package: Normally, the
4341 rename in the function has precedence over the rename in the
4342 package, so the latter should be removed from the list. This is
4343 currently not the case.
4344
4345 - This function will incorrectly remove valid renames if
4346 the CURRENT_BLOCK corresponds to a function which symbol name
4347 has been changed by an "Export" pragma. As a consequence,
4348 the user will be unable to print such rename entities. */
4c4b4cd2 4349
14f9c5c9 4350static int
aeb5907d
JB
4351remove_irrelevant_renamings (struct ada_symbol_info *syms,
4352 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4353{
4354 struct symbol *current_function;
4355 char *current_function_name;
4356 int i;
aeb5907d
JB
4357 int is_new_style_renaming;
4358
4359 /* If there is both a renaming foo___XR... encoded as a variable and
4360 a simple variable foo in the same block, discard the latter.
4361 First, zero out such symbols, then compress. */
4362 is_new_style_renaming = 0;
4363 for (i = 0; i < nsyms; i += 1)
4364 {
4365 struct symbol *sym = syms[i].sym;
4366 struct block *block = syms[i].block;
4367 const char *name;
4368 const char *suffix;
4369
4370 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4371 continue;
4372 name = SYMBOL_LINKAGE_NAME (sym);
4373 suffix = strstr (name, "___XR");
4374
4375 if (suffix != NULL)
4376 {
4377 int name_len = suffix - name;
4378 int j;
4379 is_new_style_renaming = 1;
4380 for (j = 0; j < nsyms; j += 1)
4381 if (i != j && syms[j].sym != NULL
4382 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4383 name_len) == 0
4384 && block == syms[j].block)
4385 syms[j].sym = NULL;
4386 }
4387 }
4388 if (is_new_style_renaming)
4389 {
4390 int j, k;
4391
4392 for (j = k = 0; j < nsyms; j += 1)
4393 if (syms[j].sym != NULL)
4394 {
4395 syms[k] = syms[j];
4396 k += 1;
4397 }
4398 return k;
4399 }
4c4b4cd2
PH
4400
4401 /* Extract the function name associated to CURRENT_BLOCK.
4402 Abort if unable to do so. */
76a01679 4403
4c4b4cd2
PH
4404 if (current_block == NULL)
4405 return nsyms;
76a01679 4406
7f0df278 4407 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4408 if (current_function == NULL)
4409 return nsyms;
4410
4411 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4412 if (current_function_name == NULL)
4413 return nsyms;
4414
4415 /* Check each of the symbols, and remove it from the list if it is
4416 a type corresponding to a renaming that is out of the scope of
4417 the current block. */
4418
4419 i = 0;
4420 while (i < nsyms)
4421 {
aeb5907d
JB
4422 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4423 == ADA_OBJECT_RENAMING
4424 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4425 {
4426 int j;
aeb5907d 4427 for (j = i + 1; j < nsyms; j += 1)
76a01679 4428 syms[j - 1] = syms[j];
4c4b4cd2
PH
4429 nsyms -= 1;
4430 }
4431 else
4432 i += 1;
4433 }
4434
4435 return nsyms;
4436}
4437
339c13b6
JB
4438/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4439 whose name and domain match NAME and DOMAIN respectively.
4440 If no match was found, then extend the search to "enclosing"
4441 routines (in other words, if we're inside a nested function,
4442 search the symbols defined inside the enclosing functions).
4443
4444 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4445
4446static void
4447ada_add_local_symbols (struct obstack *obstackp, const char *name,
4448 struct block *block, domain_enum domain,
4449 int wild_match)
4450{
4451 int block_depth = 0;
4452
4453 while (block != NULL)
4454 {
4455 block_depth += 1;
4456 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4457
4458 /* If we found a non-function match, assume that's the one. */
4459 if (is_nonfunction (defns_collected (obstackp, 0),
4460 num_defns_collected (obstackp)))
4461 return;
4462
4463 block = BLOCK_SUPERBLOCK (block);
4464 }
4465
4466 /* If no luck so far, try to find NAME as a local symbol in some lexically
4467 enclosing subprogram. */
4468 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4469 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4470}
4471
ccefe4c4
TT
4472/* An object of this type is used as the user_data argument when
4473 calling the map_ada_symtabs method. */
4474
4475struct ada_psym_data
4476{
4477 struct obstack *obstackp;
4478 const char *name;
4479 domain_enum domain;
4480 int global;
4481 int wild_match;
4482};
4483
4484/* Callback function for map_ada_symtabs. */
4485
4486static void
4487ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data)
4488{
4489 struct ada_psym_data *data = user_data;
4490 const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK;
4491 ada_add_block_symbols (data->obstackp,
4492 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4493 data->name, data->domain, objfile, data->wild_match);
4494}
4495
339c13b6
JB
4496/* Add to OBSTACKP all non-local symbols whose name and domain match
4497 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4498 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4499
4500static void
4501ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4502 domain_enum domain, int global,
ccefe4c4 4503 int is_wild_match)
339c13b6
JB
4504{
4505 struct objfile *objfile;
ccefe4c4 4506 struct ada_psym_data data;
339c13b6 4507
ccefe4c4
TT
4508 data.obstackp = obstackp;
4509 data.name = name;
4510 data.domain = domain;
4511 data.global = global;
4512 data.wild_match = is_wild_match;
339c13b6 4513
ccefe4c4
TT
4514 ALL_OBJFILES (objfile)
4515 {
4516 if (objfile->sf)
4517 objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix,
4518 ada_add_psyms, name,
4519 global, domain,
4520 is_wild_match, &data);
339c13b6
JB
4521 }
4522}
4523
4c4b4cd2
PH
4524/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4525 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4526 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4527 indicating the symbols found and the blocks and symbol tables (if
4528 any) in which they were found. This vector are transient---good only to
4529 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4530 symbol match within the nest of blocks whose innermost member is BLOCK0,
4531 is the one match returned (no other matches in that or
4532 enclosing blocks is returned). If there are any matches in or
4533 surrounding BLOCK0, then these alone are returned. Otherwise, the
4534 search extends to global and file-scope (static) symbol tables.
4535 Names prefixed with "standard__" are handled specially: "standard__"
4536 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4537
4538int
4c4b4cd2 4539ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4540 domain_enum namespace,
4541 struct ada_symbol_info **results)
14f9c5c9
AS
4542{
4543 struct symbol *sym;
14f9c5c9 4544 struct block *block;
4c4b4cd2 4545 const char *name;
4c4b4cd2 4546 int wild_match;
14f9c5c9 4547 int cacheIfUnique;
4c4b4cd2 4548 int ndefns;
14f9c5c9 4549
4c4b4cd2
PH
4550 obstack_free (&symbol_list_obstack, NULL);
4551 obstack_init (&symbol_list_obstack);
14f9c5c9 4552
14f9c5c9
AS
4553 cacheIfUnique = 0;
4554
4555 /* Search specified block and its superiors. */
4556
4c4b4cd2
PH
4557 wild_match = (strstr (name0, "__") == NULL);
4558 name = name0;
76a01679
JB
4559 block = (struct block *) block0; /* FIXME: No cast ought to be
4560 needed, but adding const will
4561 have a cascade effect. */
339c13b6
JB
4562
4563 /* Special case: If the user specifies a symbol name inside package
4564 Standard, do a non-wild matching of the symbol name without
4565 the "standard__" prefix. This was primarily introduced in order
4566 to allow the user to specifically access the standard exceptions
4567 using, for instance, Standard.Constraint_Error when Constraint_Error
4568 is ambiguous (due to the user defining its own Constraint_Error
4569 entity inside its program). */
4c4b4cd2
PH
4570 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4571 {
4572 wild_match = 0;
4573 block = NULL;
4574 name = name0 + sizeof ("standard__") - 1;
4575 }
4576
339c13b6 4577 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4578
339c13b6
JB
4579 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4580 wild_match);
4c4b4cd2 4581 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4582 goto done;
d2e4a39e 4583
339c13b6
JB
4584 /* No non-global symbols found. Check our cache to see if we have
4585 already performed this search before. If we have, then return
4586 the same result. */
4587
14f9c5c9 4588 cacheIfUnique = 1;
2570f2b7 4589 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4590 {
4591 if (sym != NULL)
2570f2b7 4592 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4593 goto done;
4594 }
14f9c5c9 4595
339c13b6
JB
4596 /* Search symbols from all global blocks. */
4597
4598 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4599 wild_match);
d2e4a39e 4600
4c4b4cd2 4601 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4602 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4603
4c4b4cd2 4604 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4605 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4606 wild_match);
14f9c5c9 4607
4c4b4cd2
PH
4608done:
4609 ndefns = num_defns_collected (&symbol_list_obstack);
4610 *results = defns_collected (&symbol_list_obstack, 1);
4611
4612 ndefns = remove_extra_symbols (*results, ndefns);
4613
d2e4a39e 4614 if (ndefns == 0)
2570f2b7 4615 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4616
4c4b4cd2 4617 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4618 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4619
aeb5907d 4620 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4621
14f9c5c9
AS
4622 return ndefns;
4623}
4624
d2e4a39e 4625struct symbol *
aeb5907d 4626ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4627 domain_enum namespace, struct block **block_found)
14f9c5c9 4628{
4c4b4cd2 4629 struct ada_symbol_info *candidates;
14f9c5c9
AS
4630 int n_candidates;
4631
aeb5907d 4632 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4633
4634 if (n_candidates == 0)
4635 return NULL;
4c4b4cd2 4636
aeb5907d
JB
4637 if (block_found != NULL)
4638 *block_found = candidates[0].block;
4c4b4cd2 4639
21b556f4 4640 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4641}
4642
4643/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4644 scope and in global scopes, or NULL if none. NAME is folded and
4645 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4646 choosing the first symbol if there are multiple choices.
4647 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4648 table in which the symbol was found (in both cases, these
4649 assignments occur only if the pointers are non-null). */
4650struct symbol *
4651ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4652 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4653{
4654 if (is_a_field_of_this != NULL)
4655 *is_a_field_of_this = 0;
4656
4657 return
4658 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4659 block0, namespace, NULL);
4c4b4cd2 4660}
14f9c5c9 4661
4c4b4cd2
PH
4662static struct symbol *
4663ada_lookup_symbol_nonlocal (const char *name,
76a01679 4664 const struct block *block,
21b556f4 4665 const domain_enum domain)
4c4b4cd2 4666{
94af9270 4667 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
4668}
4669
4670
4c4b4cd2
PH
4671/* True iff STR is a possible encoded suffix of a normal Ada name
4672 that is to be ignored for matching purposes. Suffixes of parallel
4673 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4674 are given by any of the regular expressions:
4c4b4cd2 4675
babe1480
JB
4676 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4677 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4678 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4679 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4680
4681 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4682 match is performed. This sequence is used to differentiate homonyms,
4683 is an optional part of a valid name suffix. */
4c4b4cd2 4684
14f9c5c9 4685static int
d2e4a39e 4686is_name_suffix (const char *str)
14f9c5c9
AS
4687{
4688 int k;
4c4b4cd2
PH
4689 const char *matching;
4690 const int len = strlen (str);
4691
babe1480
JB
4692 /* Skip optional leading __[0-9]+. */
4693
4c4b4cd2
PH
4694 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4695 {
babe1480
JB
4696 str += 3;
4697 while (isdigit (str[0]))
4698 str += 1;
4c4b4cd2 4699 }
babe1480
JB
4700
4701 /* [.$][0-9]+ */
4c4b4cd2 4702
babe1480 4703 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4704 {
babe1480 4705 matching = str + 1;
4c4b4cd2
PH
4706 while (isdigit (matching[0]))
4707 matching += 1;
4708 if (matching[0] == '\0')
4709 return 1;
4710 }
4711
4712 /* ___[0-9]+ */
babe1480 4713
4c4b4cd2
PH
4714 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4715 {
4716 matching = str + 3;
4717 while (isdigit (matching[0]))
4718 matching += 1;
4719 if (matching[0] == '\0')
4720 return 1;
4721 }
4722
529cad9c
PH
4723#if 0
4724 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4725 with a N at the end. Unfortunately, the compiler uses the same
4726 convention for other internal types it creates. So treating
4727 all entity names that end with an "N" as a name suffix causes
4728 some regressions. For instance, consider the case of an enumerated
4729 type. To support the 'Image attribute, it creates an array whose
4730 name ends with N.
4731 Having a single character like this as a suffix carrying some
4732 information is a bit risky. Perhaps we should change the encoding
4733 to be something like "_N" instead. In the meantime, do not do
4734 the following check. */
4735 /* Protected Object Subprograms */
4736 if (len == 1 && str [0] == 'N')
4737 return 1;
4738#endif
4739
4740 /* _E[0-9]+[bs]$ */
4741 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4742 {
4743 matching = str + 3;
4744 while (isdigit (matching[0]))
4745 matching += 1;
4746 if ((matching[0] == 'b' || matching[0] == 's')
4747 && matching [1] == '\0')
4748 return 1;
4749 }
4750
4c4b4cd2
PH
4751 /* ??? We should not modify STR directly, as we are doing below. This
4752 is fine in this case, but may become problematic later if we find
4753 that this alternative did not work, and want to try matching
4754 another one from the begining of STR. Since we modified it, we
4755 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4756 if (str[0] == 'X')
4757 {
4758 str += 1;
d2e4a39e 4759 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4760 {
4761 if (str[0] != 'n' && str[0] != 'b')
4762 return 0;
4763 str += 1;
4764 }
14f9c5c9 4765 }
babe1480 4766
14f9c5c9
AS
4767 if (str[0] == '\000')
4768 return 1;
babe1480 4769
d2e4a39e 4770 if (str[0] == '_')
14f9c5c9
AS
4771 {
4772 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4773 return 0;
d2e4a39e 4774 if (str[2] == '_')
4c4b4cd2 4775 {
61ee279c
PH
4776 if (strcmp (str + 3, "JM") == 0)
4777 return 1;
4778 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4779 the LJM suffix in favor of the JM one. But we will
4780 still accept LJM as a valid suffix for a reasonable
4781 amount of time, just to allow ourselves to debug programs
4782 compiled using an older version of GNAT. */
4c4b4cd2
PH
4783 if (strcmp (str + 3, "LJM") == 0)
4784 return 1;
4785 if (str[3] != 'X')
4786 return 0;
1265e4aa
JB
4787 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4788 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4789 return 1;
4790 if (str[4] == 'R' && str[5] != 'T')
4791 return 1;
4792 return 0;
4793 }
4794 if (!isdigit (str[2]))
4795 return 0;
4796 for (k = 3; str[k] != '\0'; k += 1)
4797 if (!isdigit (str[k]) && str[k] != '_')
4798 return 0;
14f9c5c9
AS
4799 return 1;
4800 }
4c4b4cd2 4801 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4802 {
4c4b4cd2
PH
4803 for (k = 2; str[k] != '\0'; k += 1)
4804 if (!isdigit (str[k]) && str[k] != '_')
4805 return 0;
14f9c5c9
AS
4806 return 1;
4807 }
4808 return 0;
4809}
d2e4a39e 4810
aeb5907d
JB
4811/* Return non-zero if the string starting at NAME and ending before
4812 NAME_END contains no capital letters. */
529cad9c
PH
4813
4814static int
4815is_valid_name_for_wild_match (const char *name0)
4816{
4817 const char *decoded_name = ada_decode (name0);
4818 int i;
4819
5823c3ef
JB
4820 /* If the decoded name starts with an angle bracket, it means that
4821 NAME0 does not follow the GNAT encoding format. It should then
4822 not be allowed as a possible wild match. */
4823 if (decoded_name[0] == '<')
4824 return 0;
4825
529cad9c
PH
4826 for (i=0; decoded_name[i] != '\0'; i++)
4827 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4828 return 0;
4829
4830 return 1;
4831}
4832
4c4b4cd2
PH
4833/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4834 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4835 informational suffixes of NAME (i.e., for which is_name_suffix is
4836 true). */
4837
14f9c5c9 4838static int
4c4b4cd2 4839wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 4840{
5823c3ef
JB
4841 char* match;
4842 const char* start;
4843 start = name0;
4844 while (1)
14f9c5c9 4845 {
5823c3ef
JB
4846 match = strstr (start, patn0);
4847 if (match == NULL)
4848 return 0;
4849 if ((match == name0
4850 || match[-1] == '.'
4851 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4852 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4853 && is_name_suffix (match + patn_len))
4854 return (match == name0 || is_valid_name_for_wild_match (name0));
4855 start = match + 1;
96d887e8 4856 }
96d887e8
PH
4857}
4858
96d887e8
PH
4859/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4860 vector *defn_symbols, updating the list of symbols in OBSTACKP
4861 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4862 OBJFILE is the section containing BLOCK.
4863 SYMTAB is recorded with each symbol added. */
4864
4865static void
4866ada_add_block_symbols (struct obstack *obstackp,
76a01679 4867 struct block *block, const char *name,
96d887e8 4868 domain_enum domain, struct objfile *objfile,
2570f2b7 4869 int wild)
96d887e8
PH
4870{
4871 struct dict_iterator iter;
4872 int name_len = strlen (name);
4873 /* A matching argument symbol, if any. */
4874 struct symbol *arg_sym;
4875 /* Set true when we find a matching non-argument symbol. */
4876 int found_sym;
4877 struct symbol *sym;
4878
4879 arg_sym = NULL;
4880 found_sym = 0;
4881 if (wild)
4882 {
4883 struct symbol *sym;
4884 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4885 {
5eeb2539
AR
4886 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4887 SYMBOL_DOMAIN (sym), domain)
1265e4aa 4888 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 4889 {
2a2d4dc3
AS
4890 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4891 continue;
4892 else if (SYMBOL_IS_ARGUMENT (sym))
4893 arg_sym = sym;
4894 else
4895 {
76a01679
JB
4896 found_sym = 1;
4897 add_defn_to_vec (obstackp,
4898 fixup_symbol_section (sym, objfile),
2570f2b7 4899 block);
76a01679
JB
4900 }
4901 }
4902 }
96d887e8
PH
4903 }
4904 else
4905 {
4906 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4907 {
5eeb2539
AR
4908 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4909 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
4910 {
4911 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4912 if (cmp == 0
4913 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4914 {
2a2d4dc3
AS
4915 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4916 {
4917 if (SYMBOL_IS_ARGUMENT (sym))
4918 arg_sym = sym;
4919 else
4920 {
4921 found_sym = 1;
4922 add_defn_to_vec (obstackp,
4923 fixup_symbol_section (sym, objfile),
4924 block);
4925 }
4926 }
76a01679
JB
4927 }
4928 }
4929 }
96d887e8
PH
4930 }
4931
4932 if (!found_sym && arg_sym != NULL)
4933 {
76a01679
JB
4934 add_defn_to_vec (obstackp,
4935 fixup_symbol_section (arg_sym, objfile),
2570f2b7 4936 block);
96d887e8
PH
4937 }
4938
4939 if (!wild)
4940 {
4941 arg_sym = NULL;
4942 found_sym = 0;
4943
4944 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4945 {
5eeb2539
AR
4946 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4947 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
4948 {
4949 int cmp;
4950
4951 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
4952 if (cmp == 0)
4953 {
4954 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
4955 if (cmp == 0)
4956 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
4957 name_len);
4958 }
4959
4960 if (cmp == 0
4961 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
4962 {
2a2d4dc3
AS
4963 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4964 {
4965 if (SYMBOL_IS_ARGUMENT (sym))
4966 arg_sym = sym;
4967 else
4968 {
4969 found_sym = 1;
4970 add_defn_to_vec (obstackp,
4971 fixup_symbol_section (sym, objfile),
4972 block);
4973 }
4974 }
76a01679
JB
4975 }
4976 }
76a01679 4977 }
96d887e8
PH
4978
4979 /* NOTE: This really shouldn't be needed for _ada_ symbols.
4980 They aren't parameters, right? */
4981 if (!found_sym && arg_sym != NULL)
4982 {
4983 add_defn_to_vec (obstackp,
76a01679 4984 fixup_symbol_section (arg_sym, objfile),
2570f2b7 4985 block);
96d887e8
PH
4986 }
4987 }
4988}
4989\f
41d27058
JB
4990
4991 /* Symbol Completion */
4992
4993/* If SYM_NAME is a completion candidate for TEXT, return this symbol
4994 name in a form that's appropriate for the completion. The result
4995 does not need to be deallocated, but is only good until the next call.
4996
4997 TEXT_LEN is equal to the length of TEXT.
4998 Perform a wild match if WILD_MATCH is set.
4999 ENCODED should be set if TEXT represents the start of a symbol name
5000 in its encoded form. */
5001
5002static const char *
5003symbol_completion_match (const char *sym_name,
5004 const char *text, int text_len,
5005 int wild_match, int encoded)
5006{
5007 char *result;
5008 const int verbatim_match = (text[0] == '<');
5009 int match = 0;
5010
5011 if (verbatim_match)
5012 {
5013 /* Strip the leading angle bracket. */
5014 text = text + 1;
5015 text_len--;
5016 }
5017
5018 /* First, test against the fully qualified name of the symbol. */
5019
5020 if (strncmp (sym_name, text, text_len) == 0)
5021 match = 1;
5022
5023 if (match && !encoded)
5024 {
5025 /* One needed check before declaring a positive match is to verify
5026 that iff we are doing a verbatim match, the decoded version
5027 of the symbol name starts with '<'. Otherwise, this symbol name
5028 is not a suitable completion. */
5029 const char *sym_name_copy = sym_name;
5030 int has_angle_bracket;
5031
5032 sym_name = ada_decode (sym_name);
5033 has_angle_bracket = (sym_name[0] == '<');
5034 match = (has_angle_bracket == verbatim_match);
5035 sym_name = sym_name_copy;
5036 }
5037
5038 if (match && !verbatim_match)
5039 {
5040 /* When doing non-verbatim match, another check that needs to
5041 be done is to verify that the potentially matching symbol name
5042 does not include capital letters, because the ada-mode would
5043 not be able to understand these symbol names without the
5044 angle bracket notation. */
5045 const char *tmp;
5046
5047 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5048 if (*tmp != '\0')
5049 match = 0;
5050 }
5051
5052 /* Second: Try wild matching... */
5053
5054 if (!match && wild_match)
5055 {
5056 /* Since we are doing wild matching, this means that TEXT
5057 may represent an unqualified symbol name. We therefore must
5058 also compare TEXT against the unqualified name of the symbol. */
5059 sym_name = ada_unqualified_name (ada_decode (sym_name));
5060
5061 if (strncmp (sym_name, text, text_len) == 0)
5062 match = 1;
5063 }
5064
5065 /* Finally: If we found a mach, prepare the result to return. */
5066
5067 if (!match)
5068 return NULL;
5069
5070 if (verbatim_match)
5071 sym_name = add_angle_brackets (sym_name);
5072
5073 if (!encoded)
5074 sym_name = ada_decode (sym_name);
5075
5076 return sym_name;
5077}
5078
2ba95b9b
JB
5079typedef char *char_ptr;
5080DEF_VEC_P (char_ptr);
5081
41d27058
JB
5082/* A companion function to ada_make_symbol_completion_list().
5083 Check if SYM_NAME represents a symbol which name would be suitable
5084 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5085 it is appended at the end of the given string vector SV.
5086
5087 ORIG_TEXT is the string original string from the user command
5088 that needs to be completed. WORD is the entire command on which
5089 completion should be performed. These two parameters are used to
5090 determine which part of the symbol name should be added to the
5091 completion vector.
5092 if WILD_MATCH is set, then wild matching is performed.
5093 ENCODED should be set if TEXT represents a symbol name in its
5094 encoded formed (in which case the completion should also be
5095 encoded). */
5096
5097static void
d6565258 5098symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5099 const char *sym_name,
5100 const char *text, int text_len,
5101 const char *orig_text, const char *word,
5102 int wild_match, int encoded)
5103{
5104 const char *match = symbol_completion_match (sym_name, text, text_len,
5105 wild_match, encoded);
5106 char *completion;
5107
5108 if (match == NULL)
5109 return;
5110
5111 /* We found a match, so add the appropriate completion to the given
5112 string vector. */
5113
5114 if (word == orig_text)
5115 {
5116 completion = xmalloc (strlen (match) + 5);
5117 strcpy (completion, match);
5118 }
5119 else if (word > orig_text)
5120 {
5121 /* Return some portion of sym_name. */
5122 completion = xmalloc (strlen (match) + 5);
5123 strcpy (completion, match + (word - orig_text));
5124 }
5125 else
5126 {
5127 /* Return some of ORIG_TEXT plus sym_name. */
5128 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5129 strncpy (completion, word, orig_text - word);
5130 completion[orig_text - word] = '\0';
5131 strcat (completion, match);
5132 }
5133
d6565258 5134 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5135}
5136
ccefe4c4
TT
5137/* An object of this type is passed as the user_data argument to the
5138 map_partial_symbol_names method. */
5139struct add_partial_datum
5140{
5141 VEC(char_ptr) **completions;
5142 char *text;
5143 int text_len;
5144 char *text0;
5145 char *word;
5146 int wild_match;
5147 int encoded;
5148};
5149
5150/* A callback for map_partial_symbol_names. */
5151static void
5152ada_add_partial_symbol_completions (const char *name, void *user_data)
5153{
5154 struct add_partial_datum *data = user_data;
5155 symbol_completion_add (data->completions, name,
5156 data->text, data->text_len, data->text0, data->word,
5157 data->wild_match, data->encoded);
5158}
5159
41d27058
JB
5160/* Return a list of possible symbol names completing TEXT0. The list
5161 is NULL terminated. WORD is the entire command on which completion
5162 is made. */
5163
5164static char **
5165ada_make_symbol_completion_list (char *text0, char *word)
5166{
5167 char *text;
5168 int text_len;
5169 int wild_match;
5170 int encoded;
2ba95b9b 5171 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5172 struct symbol *sym;
5173 struct symtab *s;
41d27058
JB
5174 struct minimal_symbol *msymbol;
5175 struct objfile *objfile;
5176 struct block *b, *surrounding_static_block = 0;
5177 int i;
5178 struct dict_iterator iter;
5179
5180 if (text0[0] == '<')
5181 {
5182 text = xstrdup (text0);
5183 make_cleanup (xfree, text);
5184 text_len = strlen (text);
5185 wild_match = 0;
5186 encoded = 1;
5187 }
5188 else
5189 {
5190 text = xstrdup (ada_encode (text0));
5191 make_cleanup (xfree, text);
5192 text_len = strlen (text);
5193 for (i = 0; i < text_len; i++)
5194 text[i] = tolower (text[i]);
5195
5196 encoded = (strstr (text0, "__") != NULL);
5197 /* If the name contains a ".", then the user is entering a fully
5198 qualified entity name, and the match must not be done in wild
5199 mode. Similarly, if the user wants to complete what looks like
5200 an encoded name, the match must not be done in wild mode. */
5201 wild_match = (strchr (text0, '.') == NULL && !encoded);
5202 }
5203
5204 /* First, look at the partial symtab symbols. */
41d27058 5205 {
ccefe4c4
TT
5206 struct add_partial_datum data;
5207
5208 data.completions = &completions;
5209 data.text = text;
5210 data.text_len = text_len;
5211 data.text0 = text0;
5212 data.word = word;
5213 data.wild_match = wild_match;
5214 data.encoded = encoded;
5215 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
41d27058
JB
5216 }
5217
5218 /* At this point scan through the misc symbol vectors and add each
5219 symbol you find to the list. Eventually we want to ignore
5220 anything that isn't a text symbol (everything else will be
5221 handled by the psymtab code above). */
5222
5223 ALL_MSYMBOLS (objfile, msymbol)
5224 {
5225 QUIT;
d6565258 5226 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5227 text, text_len, text0, word, wild_match, encoded);
5228 }
5229
5230 /* Search upwards from currently selected frame (so that we can
5231 complete on local vars. */
5232
5233 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5234 {
5235 if (!BLOCK_SUPERBLOCK (b))
5236 surrounding_static_block = b; /* For elmin of dups */
5237
5238 ALL_BLOCK_SYMBOLS (b, iter, sym)
5239 {
d6565258 5240 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5241 text, text_len, text0, word,
5242 wild_match, encoded);
5243 }
5244 }
5245
5246 /* Go through the symtabs and check the externs and statics for
5247 symbols which match. */
5248
5249 ALL_SYMTABS (objfile, s)
5250 {
5251 QUIT;
5252 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5253 ALL_BLOCK_SYMBOLS (b, iter, sym)
5254 {
d6565258 5255 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5256 text, text_len, text0, word,
5257 wild_match, encoded);
5258 }
5259 }
5260
5261 ALL_SYMTABS (objfile, s)
5262 {
5263 QUIT;
5264 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5265 /* Don't do this block twice. */
5266 if (b == surrounding_static_block)
5267 continue;
5268 ALL_BLOCK_SYMBOLS (b, iter, sym)
5269 {
d6565258 5270 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5271 text, text_len, text0, word,
5272 wild_match, encoded);
5273 }
5274 }
5275
5276 /* Append the closing NULL entry. */
2ba95b9b 5277 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5278
2ba95b9b
JB
5279 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5280 return the copy. It's unfortunate that we have to make a copy
5281 of an array that we're about to destroy, but there is nothing much
5282 we can do about it. Fortunately, it's typically not a very large
5283 array. */
5284 {
5285 const size_t completions_size =
5286 VEC_length (char_ptr, completions) * sizeof (char *);
5287 char **result = malloc (completions_size);
5288
5289 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5290
5291 VEC_free (char_ptr, completions);
5292 return result;
5293 }
41d27058
JB
5294}
5295
963a6417 5296 /* Field Access */
96d887e8 5297
73fb9985
JB
5298/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5299 for tagged types. */
5300
5301static int
5302ada_is_dispatch_table_ptr_type (struct type *type)
5303{
5304 char *name;
5305
5306 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5307 return 0;
5308
5309 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5310 if (name == NULL)
5311 return 0;
5312
5313 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5314}
5315
963a6417
PH
5316/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5317 to be invisible to users. */
96d887e8 5318
963a6417
PH
5319int
5320ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5321{
963a6417
PH
5322 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5323 return 1;
73fb9985
JB
5324
5325 /* Check the name of that field. */
5326 {
5327 const char *name = TYPE_FIELD_NAME (type, field_num);
5328
5329 /* Anonymous field names should not be printed.
5330 brobecker/2007-02-20: I don't think this can actually happen
5331 but we don't want to print the value of annonymous fields anyway. */
5332 if (name == NULL)
5333 return 1;
5334
5335 /* A field named "_parent" is internally generated by GNAT for
5336 tagged types, and should not be printed either. */
5337 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5338 return 1;
5339 }
5340
5341 /* If this is the dispatch table of a tagged type, then ignore. */
5342 if (ada_is_tagged_type (type, 1)
5343 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5344 return 1;
5345
5346 /* Not a special field, so it should not be ignored. */
5347 return 0;
963a6417 5348}
96d887e8 5349
963a6417
PH
5350/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5351 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5352
963a6417
PH
5353int
5354ada_is_tagged_type (struct type *type, int refok)
5355{
5356 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5357}
96d887e8 5358
963a6417 5359/* True iff TYPE represents the type of X'Tag */
96d887e8 5360
963a6417
PH
5361int
5362ada_is_tag_type (struct type *type)
5363{
5364 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5365 return 0;
5366 else
96d887e8 5367 {
963a6417
PH
5368 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5369 return (name != NULL
5370 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5371 }
96d887e8
PH
5372}
5373
963a6417 5374/* The type of the tag on VAL. */
76a01679 5375
963a6417
PH
5376struct type *
5377ada_tag_type (struct value *val)
96d887e8 5378{
df407dfe 5379 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5380}
96d887e8 5381
963a6417 5382/* The value of the tag on VAL. */
96d887e8 5383
963a6417
PH
5384struct value *
5385ada_value_tag (struct value *val)
5386{
03ee6b2e 5387 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5388}
5389
963a6417
PH
5390/* The value of the tag on the object of type TYPE whose contents are
5391 saved at VALADDR, if it is non-null, or is at memory address
5392 ADDRESS. */
96d887e8 5393
963a6417 5394static struct value *
10a2c479 5395value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5396 const gdb_byte *valaddr,
963a6417 5397 CORE_ADDR address)
96d887e8 5398{
963a6417
PH
5399 int tag_byte_offset, dummy1, dummy2;
5400 struct type *tag_type;
5401 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5402 NULL, NULL, NULL))
96d887e8 5403 {
fc1a4b47 5404 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5405 ? NULL
5406 : valaddr + tag_byte_offset);
963a6417 5407 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5408
963a6417 5409 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5410 }
963a6417
PH
5411 return NULL;
5412}
96d887e8 5413
963a6417
PH
5414static struct type *
5415type_from_tag (struct value *tag)
5416{
5417 const char *type_name = ada_tag_name (tag);
5418 if (type_name != NULL)
5419 return ada_find_any_type (ada_encode (type_name));
5420 return NULL;
5421}
96d887e8 5422
963a6417
PH
5423struct tag_args
5424{
5425 struct value *tag;
5426 char *name;
5427};
4c4b4cd2 5428
529cad9c
PH
5429
5430static int ada_tag_name_1 (void *);
5431static int ada_tag_name_2 (struct tag_args *);
5432
4c4b4cd2
PH
5433/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5434 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5435 The value stored in ARGS->name is valid until the next call to
5436 ada_tag_name_1. */
5437
5438static int
5439ada_tag_name_1 (void *args0)
5440{
5441 struct tag_args *args = (struct tag_args *) args0;
5442 static char name[1024];
76a01679 5443 char *p;
4c4b4cd2
PH
5444 struct value *val;
5445 args->name = NULL;
03ee6b2e 5446 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5447 if (val == NULL)
5448 return ada_tag_name_2 (args);
03ee6b2e 5449 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5450 if (val == NULL)
5451 return 0;
5452 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5453 for (p = name; *p != '\0'; p += 1)
5454 if (isalpha (*p))
5455 *p = tolower (*p);
5456 args->name = name;
5457 return 0;
5458}
5459
5460/* Utility function for ada_tag_name_1 that tries the second
5461 representation for the dispatch table (in which there is no
5462 explicit 'tsd' field in the referent of the tag pointer, and instead
5463 the tsd pointer is stored just before the dispatch table. */
5464
5465static int
5466ada_tag_name_2 (struct tag_args *args)
5467{
5468 struct type *info_type;
5469 static char name[1024];
5470 char *p;
5471 struct value *val, *valp;
5472
5473 args->name = NULL;
5474 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5475 if (info_type == NULL)
5476 return 0;
5477 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5478 valp = value_cast (info_type, args->tag);
5479 if (valp == NULL)
5480 return 0;
2497b498 5481 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5482 if (val == NULL)
5483 return 0;
03ee6b2e 5484 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5485 if (val == NULL)
5486 return 0;
5487 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5488 for (p = name; *p != '\0'; p += 1)
5489 if (isalpha (*p))
5490 *p = tolower (*p);
5491 args->name = name;
5492 return 0;
5493}
5494
5495/* The type name of the dynamic type denoted by the 'tag value TAG, as
5496 * a C string. */
5497
5498const char *
5499ada_tag_name (struct value *tag)
5500{
5501 struct tag_args args;
df407dfe 5502 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5503 return NULL;
76a01679 5504 args.tag = tag;
4c4b4cd2
PH
5505 args.name = NULL;
5506 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5507 return args.name;
5508}
5509
5510/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5511
d2e4a39e 5512struct type *
ebf56fd3 5513ada_parent_type (struct type *type)
14f9c5c9
AS
5514{
5515 int i;
5516
61ee279c 5517 type = ada_check_typedef (type);
14f9c5c9
AS
5518
5519 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5520 return NULL;
5521
5522 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5523 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5524 {
5525 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5526
5527 /* If the _parent field is a pointer, then dereference it. */
5528 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5529 parent_type = TYPE_TARGET_TYPE (parent_type);
5530 /* If there is a parallel XVS type, get the actual base type. */
5531 parent_type = ada_get_base_type (parent_type);
5532
5533 return ada_check_typedef (parent_type);
5534 }
14f9c5c9
AS
5535
5536 return NULL;
5537}
5538
4c4b4cd2
PH
5539/* True iff field number FIELD_NUM of structure type TYPE contains the
5540 parent-type (inherited) fields of a derived type. Assumes TYPE is
5541 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5542
5543int
ebf56fd3 5544ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5545{
61ee279c 5546 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5547 return (name != NULL
5548 && (strncmp (name, "PARENT", 6) == 0
5549 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5550}
5551
4c4b4cd2 5552/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5553 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5554 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5555 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5556 structures. */
14f9c5c9
AS
5557
5558int
ebf56fd3 5559ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5560{
d2e4a39e
AS
5561 const char *name = TYPE_FIELD_NAME (type, field_num);
5562 return (name != NULL
4c4b4cd2
PH
5563 && (strncmp (name, "PARENT", 6) == 0
5564 || strcmp (name, "REP") == 0
5565 || strncmp (name, "_parent", 7) == 0
5566 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5567}
5568
4c4b4cd2
PH
5569/* True iff field number FIELD_NUM of structure or union type TYPE
5570 is a variant wrapper. Assumes TYPE is a structure type with at least
5571 FIELD_NUM+1 fields. */
14f9c5c9
AS
5572
5573int
ebf56fd3 5574ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5575{
d2e4a39e 5576 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5577 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5578 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5579 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5580 == TYPE_CODE_UNION)));
14f9c5c9
AS
5581}
5582
5583/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5584 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
5585 returns the type of the controlling discriminant for the variant.
5586 May return NULL if the type could not be found. */
14f9c5c9 5587
d2e4a39e 5588struct type *
ebf56fd3 5589ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5590{
d2e4a39e 5591 char *name = ada_variant_discrim_name (var_type);
7c964f07 5592 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5593}
5594
4c4b4cd2 5595/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5596 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5597 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5598
5599int
ebf56fd3 5600ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5601{
d2e4a39e 5602 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5603 return (name != NULL && name[0] == 'O');
5604}
5605
5606/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5607 returns the name of the discriminant controlling the variant.
5608 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5609
d2e4a39e 5610char *
ebf56fd3 5611ada_variant_discrim_name (struct type *type0)
14f9c5c9 5612{
d2e4a39e 5613 static char *result = NULL;
14f9c5c9 5614 static size_t result_len = 0;
d2e4a39e
AS
5615 struct type *type;
5616 const char *name;
5617 const char *discrim_end;
5618 const char *discrim_start;
14f9c5c9
AS
5619
5620 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5621 type = TYPE_TARGET_TYPE (type0);
5622 else
5623 type = type0;
5624
5625 name = ada_type_name (type);
5626
5627 if (name == NULL || name[0] == '\000')
5628 return "";
5629
5630 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5631 discrim_end -= 1)
5632 {
4c4b4cd2
PH
5633 if (strncmp (discrim_end, "___XVN", 6) == 0)
5634 break;
14f9c5c9
AS
5635 }
5636 if (discrim_end == name)
5637 return "";
5638
d2e4a39e 5639 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5640 discrim_start -= 1)
5641 {
d2e4a39e 5642 if (discrim_start == name + 1)
4c4b4cd2 5643 return "";
76a01679 5644 if ((discrim_start > name + 3
4c4b4cd2
PH
5645 && strncmp (discrim_start - 3, "___", 3) == 0)
5646 || discrim_start[-1] == '.')
5647 break;
14f9c5c9
AS
5648 }
5649
5650 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5651 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5652 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5653 return result;
5654}
5655
4c4b4cd2
PH
5656/* Scan STR for a subtype-encoded number, beginning at position K.
5657 Put the position of the character just past the number scanned in
5658 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5659 Return 1 if there was a valid number at the given position, and 0
5660 otherwise. A "subtype-encoded" number consists of the absolute value
5661 in decimal, followed by the letter 'm' to indicate a negative number.
5662 Assumes 0m does not occur. */
14f9c5c9
AS
5663
5664int
d2e4a39e 5665ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5666{
5667 ULONGEST RU;
5668
d2e4a39e 5669 if (!isdigit (str[k]))
14f9c5c9
AS
5670 return 0;
5671
4c4b4cd2 5672 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5673 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5674 LONGEST. */
14f9c5c9
AS
5675 RU = 0;
5676 while (isdigit (str[k]))
5677 {
d2e4a39e 5678 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5679 k += 1;
5680 }
5681
d2e4a39e 5682 if (str[k] == 'm')
14f9c5c9
AS
5683 {
5684 if (R != NULL)
4c4b4cd2 5685 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5686 k += 1;
5687 }
5688 else if (R != NULL)
5689 *R = (LONGEST) RU;
5690
4c4b4cd2 5691 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5692 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5693 number representable as a LONGEST (although either would probably work
5694 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5695 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5696
5697 if (new_k != NULL)
5698 *new_k = k;
5699 return 1;
5700}
5701
4c4b4cd2
PH
5702/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5703 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5704 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5705
d2e4a39e 5706int
ebf56fd3 5707ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5708{
d2e4a39e 5709 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5710 int p;
5711
5712 p = 0;
5713 while (1)
5714 {
d2e4a39e 5715 switch (name[p])
4c4b4cd2
PH
5716 {
5717 case '\0':
5718 return 0;
5719 case 'S':
5720 {
5721 LONGEST W;
5722 if (!ada_scan_number (name, p + 1, &W, &p))
5723 return 0;
5724 if (val == W)
5725 return 1;
5726 break;
5727 }
5728 case 'R':
5729 {
5730 LONGEST L, U;
5731 if (!ada_scan_number (name, p + 1, &L, &p)
5732 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5733 return 0;
5734 if (val >= L && val <= U)
5735 return 1;
5736 break;
5737 }
5738 case 'O':
5739 return 1;
5740 default:
5741 return 0;
5742 }
5743 }
5744}
5745
5746/* FIXME: Lots of redundancy below. Try to consolidate. */
5747
5748/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5749 ARG_TYPE, extract and return the value of one of its (non-static)
5750 fields. FIELDNO says which field. Differs from value_primitive_field
5751 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5752
4c4b4cd2 5753static struct value *
d2e4a39e 5754ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5755 struct type *arg_type)
14f9c5c9 5756{
14f9c5c9
AS
5757 struct type *type;
5758
61ee279c 5759 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5760 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5761
4c4b4cd2 5762 /* Handle packed fields. */
14f9c5c9
AS
5763
5764 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5765 {
5766 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5767 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5768
0fd88904 5769 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5770 offset + bit_pos / 8,
5771 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5772 }
5773 else
5774 return value_primitive_field (arg1, offset, fieldno, arg_type);
5775}
5776
52ce6436
PH
5777/* Find field with name NAME in object of type TYPE. If found,
5778 set the following for each argument that is non-null:
5779 - *FIELD_TYPE_P to the field's type;
5780 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5781 an object of that type;
5782 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5783 - *BIT_SIZE_P to its size in bits if the field is packed, and
5784 0 otherwise;
5785 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5786 fields up to but not including the desired field, or by the total
5787 number of fields if not found. A NULL value of NAME never
5788 matches; the function just counts visible fields in this case.
5789
5790 Returns 1 if found, 0 otherwise. */
5791
4c4b4cd2 5792static int
76a01679
JB
5793find_struct_field (char *name, struct type *type, int offset,
5794 struct type **field_type_p,
52ce6436
PH
5795 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5796 int *index_p)
4c4b4cd2
PH
5797{
5798 int i;
5799
61ee279c 5800 type = ada_check_typedef (type);
76a01679 5801
52ce6436
PH
5802 if (field_type_p != NULL)
5803 *field_type_p = NULL;
5804 if (byte_offset_p != NULL)
d5d6fca5 5805 *byte_offset_p = 0;
52ce6436
PH
5806 if (bit_offset_p != NULL)
5807 *bit_offset_p = 0;
5808 if (bit_size_p != NULL)
5809 *bit_size_p = 0;
5810
5811 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5812 {
5813 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5814 int fld_offset = offset + bit_pos / 8;
5815 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 5816
4c4b4cd2
PH
5817 if (t_field_name == NULL)
5818 continue;
5819
52ce6436 5820 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
5821 {
5822 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
5823 if (field_type_p != NULL)
5824 *field_type_p = TYPE_FIELD_TYPE (type, i);
5825 if (byte_offset_p != NULL)
5826 *byte_offset_p = fld_offset;
5827 if (bit_offset_p != NULL)
5828 *bit_offset_p = bit_pos % 8;
5829 if (bit_size_p != NULL)
5830 *bit_size_p = bit_size;
76a01679
JB
5831 return 1;
5832 }
4c4b4cd2
PH
5833 else if (ada_is_wrapper_field (type, i))
5834 {
52ce6436
PH
5835 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5836 field_type_p, byte_offset_p, bit_offset_p,
5837 bit_size_p, index_p))
76a01679
JB
5838 return 1;
5839 }
4c4b4cd2
PH
5840 else if (ada_is_variant_part (type, i))
5841 {
52ce6436
PH
5842 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5843 fixed type?? */
4c4b4cd2 5844 int j;
52ce6436
PH
5845 struct type *field_type
5846 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 5847
52ce6436 5848 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5849 {
76a01679
JB
5850 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5851 fld_offset
5852 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5853 field_type_p, byte_offset_p,
52ce6436 5854 bit_offset_p, bit_size_p, index_p))
76a01679 5855 return 1;
4c4b4cd2
PH
5856 }
5857 }
52ce6436
PH
5858 else if (index_p != NULL)
5859 *index_p += 1;
4c4b4cd2
PH
5860 }
5861 return 0;
5862}
5863
52ce6436 5864/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 5865
52ce6436
PH
5866static int
5867num_visible_fields (struct type *type)
5868{
5869 int n;
5870 n = 0;
5871 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5872 return n;
5873}
14f9c5c9 5874
4c4b4cd2 5875/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
5876 and search in it assuming it has (class) type TYPE.
5877 If found, return value, else return NULL.
5878
4c4b4cd2 5879 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 5880
4c4b4cd2 5881static struct value *
d2e4a39e 5882ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 5883 struct type *type)
14f9c5c9
AS
5884{
5885 int i;
61ee279c 5886 type = ada_check_typedef (type);
14f9c5c9 5887
52ce6436 5888 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
5889 {
5890 char *t_field_name = TYPE_FIELD_NAME (type, i);
5891
5892 if (t_field_name == NULL)
4c4b4cd2 5893 continue;
14f9c5c9
AS
5894
5895 else if (field_name_match (t_field_name, name))
4c4b4cd2 5896 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
5897
5898 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 5899 {
06d5cf63
JB
5900 struct value *v = /* Do not let indent join lines here. */
5901 ada_search_struct_field (name, arg,
5902 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5903 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5904 if (v != NULL)
5905 return v;
5906 }
14f9c5c9
AS
5907
5908 else if (ada_is_variant_part (type, i))
4c4b4cd2 5909 {
52ce6436 5910 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 5911 int j;
61ee279c 5912 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5913 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5914
52ce6436 5915 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5916 {
06d5cf63
JB
5917 struct value *v = ada_search_struct_field /* Force line break. */
5918 (name, arg,
5919 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5920 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
5921 if (v != NULL)
5922 return v;
5923 }
5924 }
14f9c5c9
AS
5925 }
5926 return NULL;
5927}
d2e4a39e 5928
52ce6436
PH
5929static struct value *ada_index_struct_field_1 (int *, struct value *,
5930 int, struct type *);
5931
5932
5933/* Return field #INDEX in ARG, where the index is that returned by
5934 * find_struct_field through its INDEX_P argument. Adjust the address
5935 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5936 * If found, return value, else return NULL. */
5937
5938static struct value *
5939ada_index_struct_field (int index, struct value *arg, int offset,
5940 struct type *type)
5941{
5942 return ada_index_struct_field_1 (&index, arg, offset, type);
5943}
5944
5945
5946/* Auxiliary function for ada_index_struct_field. Like
5947 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5948 * *INDEX_P. */
5949
5950static struct value *
5951ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5952 struct type *type)
5953{
5954 int i;
5955 type = ada_check_typedef (type);
5956
5957 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5958 {
5959 if (TYPE_FIELD_NAME (type, i) == NULL)
5960 continue;
5961 else if (ada_is_wrapper_field (type, i))
5962 {
5963 struct value *v = /* Do not let indent join lines here. */
5964 ada_index_struct_field_1 (index_p, arg,
5965 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5966 TYPE_FIELD_TYPE (type, i));
5967 if (v != NULL)
5968 return v;
5969 }
5970
5971 else if (ada_is_variant_part (type, i))
5972 {
5973 /* PNH: Do we ever get here? See ada_search_struct_field,
5974 find_struct_field. */
5975 error (_("Cannot assign this kind of variant record"));
5976 }
5977 else if (*index_p == 0)
5978 return ada_value_primitive_field (arg, offset, i, type);
5979 else
5980 *index_p -= 1;
5981 }
5982 return NULL;
5983}
5984
4c4b4cd2
PH
5985/* Given ARG, a value of type (pointer or reference to a)*
5986 structure/union, extract the component named NAME from the ultimate
5987 target structure/union and return it as a value with its
f5938064 5988 appropriate type.
14f9c5c9 5989
4c4b4cd2
PH
5990 The routine searches for NAME among all members of the structure itself
5991 and (recursively) among all members of any wrapper members
14f9c5c9
AS
5992 (e.g., '_parent').
5993
03ee6b2e
PH
5994 If NO_ERR, then simply return NULL in case of error, rather than
5995 calling error. */
14f9c5c9 5996
d2e4a39e 5997struct value *
03ee6b2e 5998ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 5999{
4c4b4cd2 6000 struct type *t, *t1;
d2e4a39e 6001 struct value *v;
14f9c5c9 6002
4c4b4cd2 6003 v = NULL;
df407dfe 6004 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6005 if (TYPE_CODE (t) == TYPE_CODE_REF)
6006 {
6007 t1 = TYPE_TARGET_TYPE (t);
6008 if (t1 == NULL)
03ee6b2e 6009 goto BadValue;
61ee279c 6010 t1 = ada_check_typedef (t1);
4c4b4cd2 6011 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6012 {
994b9211 6013 arg = coerce_ref (arg);
76a01679
JB
6014 t = t1;
6015 }
4c4b4cd2 6016 }
14f9c5c9 6017
4c4b4cd2
PH
6018 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6019 {
6020 t1 = TYPE_TARGET_TYPE (t);
6021 if (t1 == NULL)
03ee6b2e 6022 goto BadValue;
61ee279c 6023 t1 = ada_check_typedef (t1);
4c4b4cd2 6024 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6025 {
6026 arg = value_ind (arg);
6027 t = t1;
6028 }
4c4b4cd2 6029 else
76a01679 6030 break;
4c4b4cd2 6031 }
14f9c5c9 6032
4c4b4cd2 6033 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6034 goto BadValue;
14f9c5c9 6035
4c4b4cd2
PH
6036 if (t1 == t)
6037 v = ada_search_struct_field (name, arg, 0, t);
6038 else
6039 {
6040 int bit_offset, bit_size, byte_offset;
6041 struct type *field_type;
6042 CORE_ADDR address;
6043
76a01679
JB
6044 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6045 address = value_as_address (arg);
4c4b4cd2 6046 else
0fd88904 6047 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6048
1ed6ede0 6049 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6050 if (find_struct_field (name, t1, 0,
6051 &field_type, &byte_offset, &bit_offset,
52ce6436 6052 &bit_size, NULL))
76a01679
JB
6053 {
6054 if (bit_size != 0)
6055 {
714e53ab
PH
6056 if (TYPE_CODE (t) == TYPE_CODE_REF)
6057 arg = ada_coerce_ref (arg);
6058 else
6059 arg = ada_value_ind (arg);
76a01679
JB
6060 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6061 bit_offset, bit_size,
6062 field_type);
6063 }
6064 else
f5938064 6065 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6066 }
6067 }
6068
03ee6b2e
PH
6069 if (v != NULL || no_err)
6070 return v;
6071 else
323e0a4a 6072 error (_("There is no member named %s."), name);
14f9c5c9 6073
03ee6b2e
PH
6074 BadValue:
6075 if (no_err)
6076 return NULL;
6077 else
6078 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6079}
6080
6081/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6082 If DISPP is non-null, add its byte displacement from the beginning of a
6083 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6084 work for packed fields).
6085
6086 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6087 followed by "___".
14f9c5c9 6088
4c4b4cd2
PH
6089 TYPE can be either a struct or union. If REFOK, TYPE may also
6090 be a (pointer or reference)+ to a struct or union, and the
6091 ultimate target type will be searched.
14f9c5c9
AS
6092
6093 Looks recursively into variant clauses and parent types.
6094
4c4b4cd2
PH
6095 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6096 TYPE is not a type of the right kind. */
14f9c5c9 6097
4c4b4cd2 6098static struct type *
76a01679
JB
6099ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6100 int noerr, int *dispp)
14f9c5c9
AS
6101{
6102 int i;
6103
6104 if (name == NULL)
6105 goto BadName;
6106
76a01679 6107 if (refok && type != NULL)
4c4b4cd2
PH
6108 while (1)
6109 {
61ee279c 6110 type = ada_check_typedef (type);
76a01679
JB
6111 if (TYPE_CODE (type) != TYPE_CODE_PTR
6112 && TYPE_CODE (type) != TYPE_CODE_REF)
6113 break;
6114 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6115 }
14f9c5c9 6116
76a01679 6117 if (type == NULL
1265e4aa
JB
6118 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6119 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6120 {
4c4b4cd2 6121 if (noerr)
76a01679 6122 return NULL;
4c4b4cd2 6123 else
76a01679
JB
6124 {
6125 target_terminal_ours ();
6126 gdb_flush (gdb_stdout);
323e0a4a
AC
6127 if (type == NULL)
6128 error (_("Type (null) is not a structure or union type"));
6129 else
6130 {
6131 /* XXX: type_sprint */
6132 fprintf_unfiltered (gdb_stderr, _("Type "));
6133 type_print (type, "", gdb_stderr, -1);
6134 error (_(" is not a structure or union type"));
6135 }
76a01679 6136 }
14f9c5c9
AS
6137 }
6138
6139 type = to_static_fixed_type (type);
6140
6141 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6142 {
6143 char *t_field_name = TYPE_FIELD_NAME (type, i);
6144 struct type *t;
6145 int disp;
d2e4a39e 6146
14f9c5c9 6147 if (t_field_name == NULL)
4c4b4cd2 6148 continue;
14f9c5c9
AS
6149
6150 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6151 {
6152 if (dispp != NULL)
6153 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6154 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6155 }
14f9c5c9
AS
6156
6157 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6158 {
6159 disp = 0;
6160 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6161 0, 1, &disp);
6162 if (t != NULL)
6163 {
6164 if (dispp != NULL)
6165 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6166 return t;
6167 }
6168 }
14f9c5c9
AS
6169
6170 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6171 {
6172 int j;
61ee279c 6173 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6174
6175 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6176 {
b1f33ddd
JB
6177 /* FIXME pnh 2008/01/26: We check for a field that is
6178 NOT wrapped in a struct, since the compiler sometimes
6179 generates these for unchecked variant types. Revisit
6180 if the compiler changes this practice. */
6181 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6182 disp = 0;
b1f33ddd
JB
6183 if (v_field_name != NULL
6184 && field_name_match (v_field_name, name))
6185 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6186 else
6187 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6188 name, 0, 1, &disp);
6189
4c4b4cd2
PH
6190 if (t != NULL)
6191 {
6192 if (dispp != NULL)
6193 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6194 return t;
6195 }
6196 }
6197 }
14f9c5c9
AS
6198
6199 }
6200
6201BadName:
d2e4a39e 6202 if (!noerr)
14f9c5c9
AS
6203 {
6204 target_terminal_ours ();
6205 gdb_flush (gdb_stdout);
323e0a4a
AC
6206 if (name == NULL)
6207 {
6208 /* XXX: type_sprint */
6209 fprintf_unfiltered (gdb_stderr, _("Type "));
6210 type_print (type, "", gdb_stderr, -1);
6211 error (_(" has no component named <null>"));
6212 }
6213 else
6214 {
6215 /* XXX: type_sprint */
6216 fprintf_unfiltered (gdb_stderr, _("Type "));
6217 type_print (type, "", gdb_stderr, -1);
6218 error (_(" has no component named %s"), name);
6219 }
14f9c5c9
AS
6220 }
6221
6222 return NULL;
6223}
6224
b1f33ddd
JB
6225/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6226 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6227 represents an unchecked union (that is, the variant part of a
6228 record that is named in an Unchecked_Union pragma). */
6229
6230static int
6231is_unchecked_variant (struct type *var_type, struct type *outer_type)
6232{
6233 char *discrim_name = ada_variant_discrim_name (var_type);
6234 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6235 == NULL);
6236}
6237
6238
14f9c5c9
AS
6239/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6240 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6241 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6242 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6243
d2e4a39e 6244int
ebf56fd3 6245ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6246 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6247{
6248 int others_clause;
6249 int i;
d2e4a39e 6250 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6251 struct value *outer;
6252 struct value *discrim;
14f9c5c9
AS
6253 LONGEST discrim_val;
6254
0c281816
JB
6255 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6256 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6257 if (discrim == NULL)
14f9c5c9 6258 return -1;
0c281816 6259 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6260
6261 others_clause = -1;
6262 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6263 {
6264 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6265 others_clause = i;
14f9c5c9 6266 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6267 return i;
14f9c5c9
AS
6268 }
6269
6270 return others_clause;
6271}
d2e4a39e 6272\f
14f9c5c9
AS
6273
6274
4c4b4cd2 6275 /* Dynamic-Sized Records */
14f9c5c9
AS
6276
6277/* Strategy: The type ostensibly attached to a value with dynamic size
6278 (i.e., a size that is not statically recorded in the debugging
6279 data) does not accurately reflect the size or layout of the value.
6280 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6281 conventional types that are constructed on the fly. */
14f9c5c9
AS
6282
6283/* There is a subtle and tricky problem here. In general, we cannot
6284 determine the size of dynamic records without its data. However,
6285 the 'struct value' data structure, which GDB uses to represent
6286 quantities in the inferior process (the target), requires the size
6287 of the type at the time of its allocation in order to reserve space
6288 for GDB's internal copy of the data. That's why the
6289 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6290 rather than struct value*s.
14f9c5c9
AS
6291
6292 However, GDB's internal history variables ($1, $2, etc.) are
6293 struct value*s containing internal copies of the data that are not, in
6294 general, the same as the data at their corresponding addresses in
6295 the target. Fortunately, the types we give to these values are all
6296 conventional, fixed-size types (as per the strategy described
6297 above), so that we don't usually have to perform the
6298 'to_fixed_xxx_type' conversions to look at their values.
6299 Unfortunately, there is one exception: if one of the internal
6300 history variables is an array whose elements are unconstrained
6301 records, then we will need to create distinct fixed types for each
6302 element selected. */
6303
6304/* The upshot of all of this is that many routines take a (type, host
6305 address, target address) triple as arguments to represent a value.
6306 The host address, if non-null, is supposed to contain an internal
6307 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6308 target at the target address. */
14f9c5c9
AS
6309
6310/* Assuming that VAL0 represents a pointer value, the result of
6311 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6312 dynamic-sized types. */
14f9c5c9 6313
d2e4a39e
AS
6314struct value *
6315ada_value_ind (struct value *val0)
14f9c5c9 6316{
d2e4a39e 6317 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6318 return ada_to_fixed_value (val);
14f9c5c9
AS
6319}
6320
6321/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6322 qualifiers on VAL0. */
6323
d2e4a39e
AS
6324static struct value *
6325ada_coerce_ref (struct value *val0)
6326{
df407dfe 6327 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6328 {
6329 struct value *val = val0;
994b9211 6330 val = coerce_ref (val);
d2e4a39e 6331 val = unwrap_value (val);
4c4b4cd2 6332 return ada_to_fixed_value (val);
d2e4a39e
AS
6333 }
6334 else
14f9c5c9
AS
6335 return val0;
6336}
6337
6338/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6339 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6340
6341static unsigned int
ebf56fd3 6342align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6343{
6344 return (off + alignment - 1) & ~(alignment - 1);
6345}
6346
4c4b4cd2 6347/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6348
6349static unsigned int
ebf56fd3 6350field_alignment (struct type *type, int f)
14f9c5c9 6351{
d2e4a39e 6352 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6353 int len;
14f9c5c9
AS
6354 int align_offset;
6355
64a1bf19
JB
6356 /* The field name should never be null, unless the debugging information
6357 is somehow malformed. In this case, we assume the field does not
6358 require any alignment. */
6359 if (name == NULL)
6360 return 1;
6361
6362 len = strlen (name);
6363
4c4b4cd2
PH
6364 if (!isdigit (name[len - 1]))
6365 return 1;
14f9c5c9 6366
d2e4a39e 6367 if (isdigit (name[len - 2]))
14f9c5c9
AS
6368 align_offset = len - 2;
6369 else
6370 align_offset = len - 1;
6371
4c4b4cd2 6372 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6373 return TARGET_CHAR_BIT;
6374
4c4b4cd2
PH
6375 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6376}
6377
6378/* Find a symbol named NAME. Ignores ambiguity. */
6379
6380struct symbol *
6381ada_find_any_symbol (const char *name)
6382{
6383 struct symbol *sym;
6384
6385 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6386 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6387 return sym;
6388
6389 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6390 return sym;
14f9c5c9
AS
6391}
6392
dddfab26
UW
6393/* Find a type named NAME. Ignores ambiguity. This routine will look
6394 solely for types defined by debug info, it will not search the GDB
6395 primitive types. */
4c4b4cd2 6396
d2e4a39e 6397struct type *
ebf56fd3 6398ada_find_any_type (const char *name)
14f9c5c9 6399{
4c4b4cd2 6400 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6401
14f9c5c9 6402 if (sym != NULL)
dddfab26 6403 return SYMBOL_TYPE (sym);
14f9c5c9 6404
dddfab26 6405 return NULL;
14f9c5c9
AS
6406}
6407
aeb5907d
JB
6408/* Given NAME and an associated BLOCK, search all symbols for
6409 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6410 associated to NAME. Return this symbol if found, return
6411 NULL otherwise. */
6412
6413struct symbol *
6414ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6415{
6416 struct symbol *sym;
6417
6418 sym = find_old_style_renaming_symbol (name, block);
6419
6420 if (sym != NULL)
6421 return sym;
6422
6423 /* Not right yet. FIXME pnh 7/20/2007. */
6424 sym = ada_find_any_symbol (name);
6425 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6426 return sym;
6427 else
6428 return NULL;
6429}
6430
6431static struct symbol *
6432find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6433{
7f0df278 6434 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6435 char *rename;
6436
6437 if (function_sym != NULL)
6438 {
6439 /* If the symbol is defined inside a function, NAME is not fully
6440 qualified. This means we need to prepend the function name
6441 as well as adding the ``___XR'' suffix to build the name of
6442 the associated renaming symbol. */
6443 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6444 /* Function names sometimes contain suffixes used
6445 for instance to qualify nested subprograms. When building
6446 the XR type name, we need to make sure that this suffix is
6447 not included. So do not include any suffix in the function
6448 name length below. */
69fadcdf 6449 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6450 const int rename_len = function_name_len + 2 /* "__" */
6451 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6452
529cad9c 6453 /* Strip the suffix if necessary. */
69fadcdf
JB
6454 ada_remove_trailing_digits (function_name, &function_name_len);
6455 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6456 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 6457
4c4b4cd2
PH
6458 /* Library-level functions are a special case, as GNAT adds
6459 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6460 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6461 have this prefix, so we need to skip this prefix if present. */
6462 if (function_name_len > 5 /* "_ada_" */
6463 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
6464 {
6465 function_name += 5;
6466 function_name_len -= 5;
6467 }
4c4b4cd2
PH
6468
6469 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
6470 strncpy (rename, function_name, function_name_len);
6471 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6472 "__%s___XR", name);
4c4b4cd2
PH
6473 }
6474 else
6475 {
6476 const int rename_len = strlen (name) + 6;
6477 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6478 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6479 }
6480
6481 return ada_find_any_symbol (rename);
6482}
6483
14f9c5c9 6484/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6485 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6486 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6487 otherwise return 0. */
6488
14f9c5c9 6489int
d2e4a39e 6490ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6491{
6492 if (type1 == NULL)
6493 return 1;
6494 else if (type0 == NULL)
6495 return 0;
6496 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6497 return 1;
6498 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6499 return 0;
4c4b4cd2
PH
6500 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6501 return 1;
ad82864c 6502 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 6503 return 1;
4c4b4cd2
PH
6504 else if (ada_is_array_descriptor_type (type0)
6505 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6506 return 1;
aeb5907d
JB
6507 else
6508 {
6509 const char *type0_name = type_name_no_tag (type0);
6510 const char *type1_name = type_name_no_tag (type1);
6511
6512 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6513 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6514 return 1;
6515 }
14f9c5c9
AS
6516 return 0;
6517}
6518
6519/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6520 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6521
d2e4a39e
AS
6522char *
6523ada_type_name (struct type *type)
14f9c5c9 6524{
d2e4a39e 6525 if (type == NULL)
14f9c5c9
AS
6526 return NULL;
6527 else if (TYPE_NAME (type) != NULL)
6528 return TYPE_NAME (type);
6529 else
6530 return TYPE_TAG_NAME (type);
6531}
6532
b4ba55a1
JB
6533/* Search the list of "descriptive" types associated to TYPE for a type
6534 whose name is NAME. */
6535
6536static struct type *
6537find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6538{
6539 struct type *result;
6540
6541 /* If there no descriptive-type info, then there is no parallel type
6542 to be found. */
6543 if (!HAVE_GNAT_AUX_INFO (type))
6544 return NULL;
6545
6546 result = TYPE_DESCRIPTIVE_TYPE (type);
6547 while (result != NULL)
6548 {
6549 char *result_name = ada_type_name (result);
6550
6551 if (result_name == NULL)
6552 {
6553 warning (_("unexpected null name on descriptive type"));
6554 return NULL;
6555 }
6556
6557 /* If the names match, stop. */
6558 if (strcmp (result_name, name) == 0)
6559 break;
6560
6561 /* Otherwise, look at the next item on the list, if any. */
6562 if (HAVE_GNAT_AUX_INFO (result))
6563 result = TYPE_DESCRIPTIVE_TYPE (result);
6564 else
6565 result = NULL;
6566 }
6567
6568 /* If we didn't find a match, see whether this is a packed array. With
6569 older compilers, the descriptive type information is either absent or
6570 irrelevant when it comes to packed arrays so the above lookup fails.
6571 Fall back to using a parallel lookup by name in this case. */
12ab9e09 6572 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
6573 return ada_find_any_type (name);
6574
6575 return result;
6576}
6577
6578/* Find a parallel type to TYPE with the specified NAME, using the
6579 descriptive type taken from the debugging information, if available,
6580 and otherwise using the (slower) name-based method. */
6581
6582static struct type *
6583ada_find_parallel_type_with_name (struct type *type, const char *name)
6584{
6585 struct type *result = NULL;
6586
6587 if (HAVE_GNAT_AUX_INFO (type))
6588 result = find_parallel_type_by_descriptive_type (type, name);
6589 else
6590 result = ada_find_any_type (name);
6591
6592 return result;
6593}
6594
6595/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 6596 SUFFIX to the name of TYPE. */
14f9c5c9 6597
d2e4a39e 6598struct type *
ebf56fd3 6599ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6600{
b4ba55a1 6601 char *name, *typename = ada_type_name (type);
14f9c5c9 6602 int len;
d2e4a39e 6603
14f9c5c9
AS
6604 if (typename == NULL)
6605 return NULL;
6606
6607 len = strlen (typename);
6608
b4ba55a1 6609 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
6610
6611 strcpy (name, typename);
6612 strcpy (name + len, suffix);
6613
b4ba55a1 6614 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
6615}
6616
14f9c5c9 6617/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6618 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6619
d2e4a39e
AS
6620static struct type *
6621dynamic_template_type (struct type *type)
14f9c5c9 6622{
61ee279c 6623 type = ada_check_typedef (type);
14f9c5c9
AS
6624
6625 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6626 || ada_type_name (type) == NULL)
14f9c5c9 6627 return NULL;
d2e4a39e 6628 else
14f9c5c9
AS
6629 {
6630 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6631 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6632 return type;
14f9c5c9 6633 else
4c4b4cd2 6634 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6635 }
6636}
6637
6638/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6639 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6640
d2e4a39e
AS
6641static int
6642is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6643{
6644 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6645 return name != NULL
14f9c5c9
AS
6646 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6647 && strstr (name, "___XVL") != NULL;
6648}
6649
4c4b4cd2
PH
6650/* The index of the variant field of TYPE, or -1 if TYPE does not
6651 represent a variant record type. */
14f9c5c9 6652
d2e4a39e 6653static int
4c4b4cd2 6654variant_field_index (struct type *type)
14f9c5c9
AS
6655{
6656 int f;
6657
4c4b4cd2
PH
6658 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6659 return -1;
6660
6661 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6662 {
6663 if (ada_is_variant_part (type, f))
6664 return f;
6665 }
6666 return -1;
14f9c5c9
AS
6667}
6668
4c4b4cd2
PH
6669/* A record type with no fields. */
6670
d2e4a39e 6671static struct type *
e9bb382b 6672empty_record (struct type *template)
14f9c5c9 6673{
e9bb382b 6674 struct type *type = alloc_type_copy (template);
14f9c5c9
AS
6675 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6676 TYPE_NFIELDS (type) = 0;
6677 TYPE_FIELDS (type) = NULL;
b1f33ddd 6678 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6679 TYPE_NAME (type) = "<empty>";
6680 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6681 TYPE_LENGTH (type) = 0;
6682 return type;
6683}
6684
6685/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6686 the value of type TYPE at VALADDR or ADDRESS (see comments at
6687 the beginning of this section) VAL according to GNAT conventions.
6688 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6689 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6690 an outer-level type (i.e., as opposed to a branch of a variant.) A
6691 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6692 of the variant.
14f9c5c9 6693
4c4b4cd2
PH
6694 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6695 length are not statically known are discarded. As a consequence,
6696 VALADDR, ADDRESS and DVAL0 are ignored.
6697
6698 NOTE: Limitations: For now, we assume that dynamic fields and
6699 variants occupy whole numbers of bytes. However, they need not be
6700 byte-aligned. */
6701
6702struct type *
10a2c479 6703ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6704 const gdb_byte *valaddr,
4c4b4cd2
PH
6705 CORE_ADDR address, struct value *dval0,
6706 int keep_dynamic_fields)
14f9c5c9 6707{
d2e4a39e
AS
6708 struct value *mark = value_mark ();
6709 struct value *dval;
6710 struct type *rtype;
14f9c5c9 6711 int nfields, bit_len;
4c4b4cd2 6712 int variant_field;
14f9c5c9 6713 long off;
4c4b4cd2 6714 int fld_bit_len, bit_incr;
14f9c5c9
AS
6715 int f;
6716
4c4b4cd2
PH
6717 /* Compute the number of fields in this record type that are going
6718 to be processed: unless keep_dynamic_fields, this includes only
6719 fields whose position and length are static will be processed. */
6720 if (keep_dynamic_fields)
6721 nfields = TYPE_NFIELDS (type);
6722 else
6723 {
6724 nfields = 0;
76a01679 6725 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6726 && !ada_is_variant_part (type, nfields)
6727 && !is_dynamic_field (type, nfields))
6728 nfields++;
6729 }
6730
e9bb382b 6731 rtype = alloc_type_copy (type);
14f9c5c9
AS
6732 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6733 INIT_CPLUS_SPECIFIC (rtype);
6734 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6735 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6736 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6737 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6738 TYPE_NAME (rtype) = ada_type_name (type);
6739 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6740 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6741
d2e4a39e
AS
6742 off = 0;
6743 bit_len = 0;
4c4b4cd2
PH
6744 variant_field = -1;
6745
14f9c5c9
AS
6746 for (f = 0; f < nfields; f += 1)
6747 {
6c038f32
PH
6748 off = align_value (off, field_alignment (type, f))
6749 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6750 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6751 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6752
d2e4a39e 6753 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6754 {
6755 variant_field = f;
6756 fld_bit_len = bit_incr = 0;
6757 }
14f9c5c9 6758 else if (is_dynamic_field (type, f))
4c4b4cd2 6759 {
284614f0
JB
6760 const gdb_byte *field_valaddr = valaddr;
6761 CORE_ADDR field_address = address;
6762 struct type *field_type =
6763 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6764
4c4b4cd2 6765 if (dval0 == NULL)
b5304971
JG
6766 {
6767 /* rtype's length is computed based on the run-time
6768 value of discriminants. If the discriminants are not
6769 initialized, the type size may be completely bogus and
6770 GDB may fail to allocate a value for it. So check the
6771 size first before creating the value. */
6772 check_size (rtype);
6773 dval = value_from_contents_and_address (rtype, valaddr, address);
6774 }
4c4b4cd2
PH
6775 else
6776 dval = dval0;
6777
284614f0
JB
6778 /* If the type referenced by this field is an aligner type, we need
6779 to unwrap that aligner type, because its size might not be set.
6780 Keeping the aligner type would cause us to compute the wrong
6781 size for this field, impacting the offset of the all the fields
6782 that follow this one. */
6783 if (ada_is_aligner_type (field_type))
6784 {
6785 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6786
6787 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6788 field_address = cond_offset_target (field_address, field_offset);
6789 field_type = ada_aligned_type (field_type);
6790 }
6791
6792 field_valaddr = cond_offset_host (field_valaddr,
6793 off / TARGET_CHAR_BIT);
6794 field_address = cond_offset_target (field_address,
6795 off / TARGET_CHAR_BIT);
6796
6797 /* Get the fixed type of the field. Note that, in this case,
6798 we do not want to get the real type out of the tag: if
6799 the current field is the parent part of a tagged record,
6800 we will get the tag of the object. Clearly wrong: the real
6801 type of the parent is not the real type of the child. We
6802 would end up in an infinite loop. */
6803 field_type = ada_get_base_type (field_type);
6804 field_type = ada_to_fixed_type (field_type, field_valaddr,
6805 field_address, dval, 0);
6806
6807 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
6808 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6809 bit_incr = fld_bit_len =
6810 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6811 }
14f9c5c9 6812 else
4c4b4cd2 6813 {
9f0dec2d
JB
6814 struct type *field_type = TYPE_FIELD_TYPE (type, f);
6815
6816 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
6817 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6818 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6819 bit_incr = fld_bit_len =
6820 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6821 else
6822 bit_incr = fld_bit_len =
9f0dec2d 6823 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 6824 }
14f9c5c9 6825 if (off + fld_bit_len > bit_len)
4c4b4cd2 6826 bit_len = off + fld_bit_len;
14f9c5c9 6827 off += bit_incr;
4c4b4cd2
PH
6828 TYPE_LENGTH (rtype) =
6829 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6830 }
4c4b4cd2
PH
6831
6832 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6833 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6834 the record. This can happen in the presence of representation
6835 clauses. */
6836 if (variant_field >= 0)
6837 {
6838 struct type *branch_type;
6839
6840 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6841
6842 if (dval0 == NULL)
6843 dval = value_from_contents_and_address (rtype, valaddr, address);
6844 else
6845 dval = dval0;
6846
6847 branch_type =
6848 to_fixed_variant_branch_type
6849 (TYPE_FIELD_TYPE (type, variant_field),
6850 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6851 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6852 if (branch_type == NULL)
6853 {
6854 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6855 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6856 TYPE_NFIELDS (rtype) -= 1;
6857 }
6858 else
6859 {
6860 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6861 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6862 fld_bit_len =
6863 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6864 TARGET_CHAR_BIT;
6865 if (off + fld_bit_len > bit_len)
6866 bit_len = off + fld_bit_len;
6867 TYPE_LENGTH (rtype) =
6868 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6869 }
6870 }
6871
714e53ab
PH
6872 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6873 should contain the alignment of that record, which should be a strictly
6874 positive value. If null or negative, then something is wrong, most
6875 probably in the debug info. In that case, we don't round up the size
6876 of the resulting type. If this record is not part of another structure,
6877 the current RTYPE length might be good enough for our purposes. */
6878 if (TYPE_LENGTH (type) <= 0)
6879 {
323e0a4a
AC
6880 if (TYPE_NAME (rtype))
6881 warning (_("Invalid type size for `%s' detected: %d."),
6882 TYPE_NAME (rtype), TYPE_LENGTH (type));
6883 else
6884 warning (_("Invalid type size for <unnamed> detected: %d."),
6885 TYPE_LENGTH (type));
714e53ab
PH
6886 }
6887 else
6888 {
6889 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6890 TYPE_LENGTH (type));
6891 }
14f9c5c9
AS
6892
6893 value_free_to_mark (mark);
d2e4a39e 6894 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 6895 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6896 return rtype;
6897}
6898
4c4b4cd2
PH
6899/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6900 of 1. */
14f9c5c9 6901
d2e4a39e 6902static struct type *
fc1a4b47 6903template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
6904 CORE_ADDR address, struct value *dval0)
6905{
6906 return ada_template_to_fixed_record_type_1 (type, valaddr,
6907 address, dval0, 1);
6908}
6909
6910/* An ordinary record type in which ___XVL-convention fields and
6911 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6912 static approximations, containing all possible fields. Uses
6913 no runtime values. Useless for use in values, but that's OK,
6914 since the results are used only for type determinations. Works on both
6915 structs and unions. Representation note: to save space, we memorize
6916 the result of this function in the TYPE_TARGET_TYPE of the
6917 template type. */
6918
6919static struct type *
6920template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
6921{
6922 struct type *type;
6923 int nfields;
6924 int f;
6925
4c4b4cd2
PH
6926 if (TYPE_TARGET_TYPE (type0) != NULL)
6927 return TYPE_TARGET_TYPE (type0);
6928
6929 nfields = TYPE_NFIELDS (type0);
6930 type = type0;
14f9c5c9
AS
6931
6932 for (f = 0; f < nfields; f += 1)
6933 {
61ee279c 6934 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 6935 struct type *new_type;
14f9c5c9 6936
4c4b4cd2
PH
6937 if (is_dynamic_field (type0, f))
6938 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 6939 else
f192137b 6940 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
6941 if (type == type0 && new_type != field_type)
6942 {
e9bb382b 6943 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
6944 TYPE_CODE (type) = TYPE_CODE (type0);
6945 INIT_CPLUS_SPECIFIC (type);
6946 TYPE_NFIELDS (type) = nfields;
6947 TYPE_FIELDS (type) = (struct field *)
6948 TYPE_ALLOC (type, nfields * sizeof (struct field));
6949 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6950 sizeof (struct field) * nfields);
6951 TYPE_NAME (type) = ada_type_name (type0);
6952 TYPE_TAG_NAME (type) = NULL;
876cecd0 6953 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
6954 TYPE_LENGTH (type) = 0;
6955 }
6956 TYPE_FIELD_TYPE (type, f) = new_type;
6957 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 6958 }
14f9c5c9
AS
6959 return type;
6960}
6961
4c4b4cd2 6962/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
6963 whose address in memory is ADDRESS, returns a revision of TYPE,
6964 which should be a non-dynamic-sized record, in which the variant
6965 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
6966 for discriminant values in DVAL0, which can be NULL if the record
6967 contains the necessary discriminant values. */
6968
d2e4a39e 6969static struct type *
fc1a4b47 6970to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 6971 CORE_ADDR address, struct value *dval0)
14f9c5c9 6972{
d2e4a39e 6973 struct value *mark = value_mark ();
4c4b4cd2 6974 struct value *dval;
d2e4a39e 6975 struct type *rtype;
14f9c5c9
AS
6976 struct type *branch_type;
6977 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 6978 int variant_field = variant_field_index (type);
14f9c5c9 6979
4c4b4cd2 6980 if (variant_field == -1)
14f9c5c9
AS
6981 return type;
6982
4c4b4cd2
PH
6983 if (dval0 == NULL)
6984 dval = value_from_contents_and_address (type, valaddr, address);
6985 else
6986 dval = dval0;
6987
e9bb382b 6988 rtype = alloc_type_copy (type);
14f9c5c9 6989 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
6990 INIT_CPLUS_SPECIFIC (rtype);
6991 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
6992 TYPE_FIELDS (rtype) =
6993 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6994 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 6995 sizeof (struct field) * nfields);
14f9c5c9
AS
6996 TYPE_NAME (rtype) = ada_type_name (type);
6997 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6998 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
6999 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7000
4c4b4cd2
PH
7001 branch_type = to_fixed_variant_branch_type
7002 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7003 cond_offset_host (valaddr,
4c4b4cd2
PH
7004 TYPE_FIELD_BITPOS (type, variant_field)
7005 / TARGET_CHAR_BIT),
d2e4a39e 7006 cond_offset_target (address,
4c4b4cd2
PH
7007 TYPE_FIELD_BITPOS (type, variant_field)
7008 / TARGET_CHAR_BIT), dval);
d2e4a39e 7009 if (branch_type == NULL)
14f9c5c9 7010 {
4c4b4cd2
PH
7011 int f;
7012 for (f = variant_field + 1; f < nfields; f += 1)
7013 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7014 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7015 }
7016 else
7017 {
4c4b4cd2
PH
7018 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7019 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7020 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7021 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7022 }
4c4b4cd2 7023 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7024
4c4b4cd2 7025 value_free_to_mark (mark);
14f9c5c9
AS
7026 return rtype;
7027}
7028
7029/* An ordinary record type (with fixed-length fields) that describes
7030 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7031 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7032 should be in DVAL, a record value; it may be NULL if the object
7033 at ADDR itself contains any necessary discriminant values.
7034 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7035 values from the record are needed. Except in the case that DVAL,
7036 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7037 unchecked) is replaced by a particular branch of the variant.
7038
7039 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7040 is questionable and may be removed. It can arise during the
7041 processing of an unconstrained-array-of-record type where all the
7042 variant branches have exactly the same size. This is because in
7043 such cases, the compiler does not bother to use the XVS convention
7044 when encoding the record. I am currently dubious of this
7045 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7046
d2e4a39e 7047static struct type *
fc1a4b47 7048to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7049 CORE_ADDR address, struct value *dval)
14f9c5c9 7050{
d2e4a39e 7051 struct type *templ_type;
14f9c5c9 7052
876cecd0 7053 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7054 return type0;
7055
d2e4a39e 7056 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7057
7058 if (templ_type != NULL)
7059 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7060 else if (variant_field_index (type0) >= 0)
7061 {
7062 if (dval == NULL && valaddr == NULL && address == 0)
7063 return type0;
7064 return to_record_with_fixed_variant_part (type0, valaddr, address,
7065 dval);
7066 }
14f9c5c9
AS
7067 else
7068 {
876cecd0 7069 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7070 return type0;
7071 }
7072
7073}
7074
7075/* An ordinary record type (with fixed-length fields) that describes
7076 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7077 union type. Any necessary discriminants' values should be in DVAL,
7078 a record value. That is, this routine selects the appropriate
7079 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7080 indicated in the union's type name. Returns VAR_TYPE0 itself if
7081 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7082
d2e4a39e 7083static struct type *
fc1a4b47 7084to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7085 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7086{
7087 int which;
d2e4a39e
AS
7088 struct type *templ_type;
7089 struct type *var_type;
14f9c5c9
AS
7090
7091 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7092 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7093 else
14f9c5c9
AS
7094 var_type = var_type0;
7095
7096 templ_type = ada_find_parallel_type (var_type, "___XVU");
7097
7098 if (templ_type != NULL)
7099 var_type = templ_type;
7100
b1f33ddd
JB
7101 if (is_unchecked_variant (var_type, value_type (dval)))
7102 return var_type0;
d2e4a39e
AS
7103 which =
7104 ada_which_variant_applies (var_type,
0fd88904 7105 value_type (dval), value_contents (dval));
14f9c5c9
AS
7106
7107 if (which < 0)
e9bb382b 7108 return empty_record (var_type);
14f9c5c9 7109 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7110 return to_fixed_record_type
d2e4a39e
AS
7111 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7112 valaddr, address, dval);
4c4b4cd2 7113 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7114 return
7115 to_fixed_record_type
7116 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7117 else
7118 return TYPE_FIELD_TYPE (var_type, which);
7119}
7120
7121/* Assuming that TYPE0 is an array type describing the type of a value
7122 at ADDR, and that DVAL describes a record containing any
7123 discriminants used in TYPE0, returns a type for the value that
7124 contains no dynamic components (that is, no components whose sizes
7125 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7126 true, gives an error message if the resulting type's size is over
4c4b4cd2 7127 varsize_limit. */
14f9c5c9 7128
d2e4a39e
AS
7129static struct type *
7130to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7131 int ignore_too_big)
14f9c5c9 7132{
d2e4a39e
AS
7133 struct type *index_type_desc;
7134 struct type *result;
ad82864c 7135 int constrained_packed_array_p;
14f9c5c9 7136
284614f0 7137 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7138 return type0;
14f9c5c9 7139
ad82864c
JB
7140 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7141 if (constrained_packed_array_p)
7142 type0 = decode_constrained_packed_array_type (type0);
284614f0 7143
14f9c5c9
AS
7144 index_type_desc = ada_find_parallel_type (type0, "___XA");
7145 if (index_type_desc == NULL)
7146 {
61ee279c 7147 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7148 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7149 depend on the contents of the array in properly constructed
7150 debugging data. */
529cad9c
PH
7151 /* Create a fixed version of the array element type.
7152 We're not providing the address of an element here,
e1d5a0d2 7153 and thus the actual object value cannot be inspected to do
529cad9c
PH
7154 the conversion. This should not be a problem, since arrays of
7155 unconstrained objects are not allowed. In particular, all
7156 the elements of an array of a tagged type should all be of
7157 the same type specified in the debugging info. No need to
7158 consult the object tag. */
1ed6ede0 7159 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7160
284614f0
JB
7161 /* Make sure we always create a new array type when dealing with
7162 packed array types, since we're going to fix-up the array
7163 type length and element bitsize a little further down. */
ad82864c 7164 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7165 result = type0;
14f9c5c9 7166 else
e9bb382b 7167 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7168 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7169 }
7170 else
7171 {
7172 int i;
7173 struct type *elt_type0;
7174
7175 elt_type0 = type0;
7176 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7177 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7178
7179 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7180 depend on the contents of the array in properly constructed
7181 debugging data. */
529cad9c
PH
7182 /* Create a fixed version of the array element type.
7183 We're not providing the address of an element here,
e1d5a0d2 7184 and thus the actual object value cannot be inspected to do
529cad9c
PH
7185 the conversion. This should not be a problem, since arrays of
7186 unconstrained objects are not allowed. In particular, all
7187 the elements of an array of a tagged type should all be of
7188 the same type specified in the debugging info. No need to
7189 consult the object tag. */
1ed6ede0
JB
7190 result =
7191 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7192
7193 elt_type0 = type0;
14f9c5c9 7194 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7195 {
7196 struct type *range_type =
7197 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
1ce677a4 7198 dval, TYPE_INDEX_TYPE (elt_type0));
e9bb382b 7199 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7200 result, range_type);
1ce677a4 7201 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7202 }
d2e4a39e 7203 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7204 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7205 }
7206
ad82864c 7207 if (constrained_packed_array_p)
284614f0
JB
7208 {
7209 /* So far, the resulting type has been created as if the original
7210 type was a regular (non-packed) array type. As a result, the
7211 bitsize of the array elements needs to be set again, and the array
7212 length needs to be recomputed based on that bitsize. */
7213 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7214 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7215
7216 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7217 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7218 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7219 TYPE_LENGTH (result)++;
7220 }
7221
876cecd0 7222 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7223 return result;
d2e4a39e 7224}
14f9c5c9
AS
7225
7226
7227/* A standard type (containing no dynamically sized components)
7228 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7229 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7230 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7231 ADDRESS or in VALADDR contains these discriminants.
7232
1ed6ede0
JB
7233 If CHECK_TAG is not null, in the case of tagged types, this function
7234 attempts to locate the object's tag and use it to compute the actual
7235 type. However, when ADDRESS is null, we cannot use it to determine the
7236 location of the tag, and therefore compute the tagged type's actual type.
7237 So we return the tagged type without consulting the tag. */
529cad9c 7238
f192137b
JB
7239static struct type *
7240ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7241 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7242{
61ee279c 7243 type = ada_check_typedef (type);
d2e4a39e
AS
7244 switch (TYPE_CODE (type))
7245 {
7246 default:
14f9c5c9 7247 return type;
d2e4a39e 7248 case TYPE_CODE_STRUCT:
4c4b4cd2 7249 {
76a01679 7250 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7251 struct type *fixed_record_type =
7252 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7253 /* If STATIC_TYPE is a tagged type and we know the object's address,
7254 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7255 type from there. Note that we have to use the fixed record
7256 type (the parent part of the record may have dynamic fields
7257 and the way the location of _tag is expressed may depend on
7258 them). */
529cad9c 7259
1ed6ede0 7260 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7261 {
7262 struct type *real_type =
1ed6ede0
JB
7263 type_from_tag (value_tag_from_contents_and_address
7264 (fixed_record_type,
7265 valaddr,
7266 address));
76a01679 7267 if (real_type != NULL)
1ed6ede0 7268 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7269 }
4af88198
JB
7270
7271 /* Check to see if there is a parallel ___XVZ variable.
7272 If there is, then it provides the actual size of our type. */
7273 else if (ada_type_name (fixed_record_type) != NULL)
7274 {
7275 char *name = ada_type_name (fixed_record_type);
7276 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7277 int xvz_found = 0;
7278 LONGEST size;
7279
88c15c34 7280 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7281 size = get_int_var_value (xvz_name, &xvz_found);
7282 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7283 {
7284 fixed_record_type = copy_type (fixed_record_type);
7285 TYPE_LENGTH (fixed_record_type) = size;
7286
7287 /* The FIXED_RECORD_TYPE may have be a stub. We have
7288 observed this when the debugging info is STABS, and
7289 apparently it is something that is hard to fix.
7290
7291 In practice, we don't need the actual type definition
7292 at all, because the presence of the XVZ variable allows us
7293 to assume that there must be a XVS type as well, which we
7294 should be able to use later, when we need the actual type
7295 definition.
7296
7297 In the meantime, pretend that the "fixed" type we are
7298 returning is NOT a stub, because this can cause trouble
7299 when using this type to create new types targeting it.
7300 Indeed, the associated creation routines often check
7301 whether the target type is a stub and will try to replace
7302 it, thus using a type with the wrong size. This, in turn,
7303 might cause the new type to have the wrong size too.
7304 Consider the case of an array, for instance, where the size
7305 of the array is computed from the number of elements in
7306 our array multiplied by the size of its element. */
7307 TYPE_STUB (fixed_record_type) = 0;
7308 }
7309 }
1ed6ede0 7310 return fixed_record_type;
4c4b4cd2 7311 }
d2e4a39e 7312 case TYPE_CODE_ARRAY:
4c4b4cd2 7313 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7314 case TYPE_CODE_UNION:
7315 if (dval == NULL)
4c4b4cd2 7316 return type;
d2e4a39e 7317 else
4c4b4cd2 7318 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7319 }
14f9c5c9
AS
7320}
7321
f192137b
JB
7322/* The same as ada_to_fixed_type_1, except that it preserves the type
7323 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7324 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7325
7326struct type *
7327ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7328 CORE_ADDR address, struct value *dval, int check_tag)
7329
7330{
7331 struct type *fixed_type =
7332 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7333
7334 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7335 && TYPE_TARGET_TYPE (type) == fixed_type)
7336 return type;
7337
7338 return fixed_type;
7339}
7340
14f9c5c9 7341/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7342 TYPE0, but based on no runtime data. */
14f9c5c9 7343
d2e4a39e
AS
7344static struct type *
7345to_static_fixed_type (struct type *type0)
14f9c5c9 7346{
d2e4a39e 7347 struct type *type;
14f9c5c9
AS
7348
7349 if (type0 == NULL)
7350 return NULL;
7351
876cecd0 7352 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7353 return type0;
7354
61ee279c 7355 type0 = ada_check_typedef (type0);
d2e4a39e 7356
14f9c5c9
AS
7357 switch (TYPE_CODE (type0))
7358 {
7359 default:
7360 return type0;
7361 case TYPE_CODE_STRUCT:
7362 type = dynamic_template_type (type0);
d2e4a39e 7363 if (type != NULL)
4c4b4cd2
PH
7364 return template_to_static_fixed_type (type);
7365 else
7366 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7367 case TYPE_CODE_UNION:
7368 type = ada_find_parallel_type (type0, "___XVU");
7369 if (type != NULL)
4c4b4cd2
PH
7370 return template_to_static_fixed_type (type);
7371 else
7372 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7373 }
7374}
7375
4c4b4cd2
PH
7376/* A static approximation of TYPE with all type wrappers removed. */
7377
d2e4a39e
AS
7378static struct type *
7379static_unwrap_type (struct type *type)
14f9c5c9
AS
7380{
7381 if (ada_is_aligner_type (type))
7382 {
61ee279c 7383 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7384 if (ada_type_name (type1) == NULL)
4c4b4cd2 7385 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7386
7387 return static_unwrap_type (type1);
7388 }
d2e4a39e 7389 else
14f9c5c9 7390 {
d2e4a39e
AS
7391 struct type *raw_real_type = ada_get_base_type (type);
7392 if (raw_real_type == type)
4c4b4cd2 7393 return type;
14f9c5c9 7394 else
4c4b4cd2 7395 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7396 }
7397}
7398
7399/* In some cases, incomplete and private types require
4c4b4cd2 7400 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7401 type Foo;
7402 type FooP is access Foo;
7403 V: FooP;
7404 type Foo is array ...;
4c4b4cd2 7405 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7406 cross-references to such types, we instead substitute for FooP a
7407 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7408 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7409
7410/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7411 exists, otherwise TYPE. */
7412
d2e4a39e 7413struct type *
61ee279c 7414ada_check_typedef (struct type *type)
14f9c5c9 7415{
727e3d2e
JB
7416 if (type == NULL)
7417 return NULL;
7418
14f9c5c9
AS
7419 CHECK_TYPEDEF (type);
7420 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7421 || !TYPE_STUB (type)
14f9c5c9
AS
7422 || TYPE_TAG_NAME (type) == NULL)
7423 return type;
d2e4a39e 7424 else
14f9c5c9 7425 {
d2e4a39e
AS
7426 char *name = TYPE_TAG_NAME (type);
7427 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7428 return (type1 == NULL) ? type : type1;
7429 }
7430}
7431
7432/* A value representing the data at VALADDR/ADDRESS as described by
7433 type TYPE0, but with a standard (static-sized) type that correctly
7434 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7435 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7436 creation of struct values]. */
14f9c5c9 7437
4c4b4cd2
PH
7438static struct value *
7439ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7440 struct value *val0)
14f9c5c9 7441{
1ed6ede0 7442 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7443 if (type == type0 && val0 != NULL)
7444 return val0;
d2e4a39e 7445 else
4c4b4cd2
PH
7446 return value_from_contents_and_address (type, 0, address);
7447}
7448
7449/* A value representing VAL, but with a standard (static-sized) type
7450 that correctly describes it. Does not necessarily create a new
7451 value. */
7452
7453static struct value *
7454ada_to_fixed_value (struct value *val)
7455{
df407dfe 7456 return ada_to_fixed_value_create (value_type (val),
42ae5230 7457 value_address (val),
4c4b4cd2 7458 val);
14f9c5c9 7459}
d2e4a39e 7460\f
14f9c5c9 7461
14f9c5c9
AS
7462/* Attributes */
7463
4c4b4cd2
PH
7464/* Table mapping attribute numbers to names.
7465 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7466
d2e4a39e 7467static const char *attribute_names[] = {
14f9c5c9
AS
7468 "<?>",
7469
d2e4a39e 7470 "first",
14f9c5c9
AS
7471 "last",
7472 "length",
7473 "image",
14f9c5c9
AS
7474 "max",
7475 "min",
4c4b4cd2
PH
7476 "modulus",
7477 "pos",
7478 "size",
7479 "tag",
14f9c5c9 7480 "val",
14f9c5c9
AS
7481 0
7482};
7483
d2e4a39e 7484const char *
4c4b4cd2 7485ada_attribute_name (enum exp_opcode n)
14f9c5c9 7486{
4c4b4cd2
PH
7487 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7488 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7489 else
7490 return attribute_names[0];
7491}
7492
4c4b4cd2 7493/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7494
4c4b4cd2
PH
7495static LONGEST
7496pos_atr (struct value *arg)
14f9c5c9 7497{
24209737
PH
7498 struct value *val = coerce_ref (arg);
7499 struct type *type = value_type (val);
14f9c5c9 7500
d2e4a39e 7501 if (!discrete_type_p (type))
323e0a4a 7502 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7503
7504 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7505 {
7506 int i;
24209737 7507 LONGEST v = value_as_long (val);
14f9c5c9 7508
d2e4a39e 7509 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7510 {
7511 if (v == TYPE_FIELD_BITPOS (type, i))
7512 return i;
7513 }
323e0a4a 7514 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7515 }
7516 else
24209737 7517 return value_as_long (val);
4c4b4cd2
PH
7518}
7519
7520static struct value *
3cb382c9 7521value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7522{
3cb382c9 7523 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7524}
7525
4c4b4cd2 7526/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7527
d2e4a39e
AS
7528static struct value *
7529value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7530{
d2e4a39e 7531 if (!discrete_type_p (type))
323e0a4a 7532 error (_("'VAL only defined on discrete types"));
df407dfe 7533 if (!integer_type_p (value_type (arg)))
323e0a4a 7534 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7535
7536 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7537 {
7538 long pos = value_as_long (arg);
7539 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7540 error (_("argument to 'VAL out of range"));
d2e4a39e 7541 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7542 }
7543 else
7544 return value_from_longest (type, value_as_long (arg));
7545}
14f9c5c9 7546\f
d2e4a39e 7547
4c4b4cd2 7548 /* Evaluation */
14f9c5c9 7549
4c4b4cd2
PH
7550/* True if TYPE appears to be an Ada character type.
7551 [At the moment, this is true only for Character and Wide_Character;
7552 It is a heuristic test that could stand improvement]. */
14f9c5c9 7553
d2e4a39e
AS
7554int
7555ada_is_character_type (struct type *type)
14f9c5c9 7556{
7b9f71f2
JB
7557 const char *name;
7558
7559 /* If the type code says it's a character, then assume it really is,
7560 and don't check any further. */
7561 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7562 return 1;
7563
7564 /* Otherwise, assume it's a character type iff it is a discrete type
7565 with a known character type name. */
7566 name = ada_type_name (type);
7567 return (name != NULL
7568 && (TYPE_CODE (type) == TYPE_CODE_INT
7569 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7570 && (strcmp (name, "character") == 0
7571 || strcmp (name, "wide_character") == 0
5a517ebd 7572 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7573 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7574}
7575
4c4b4cd2 7576/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7577
7578int
ebf56fd3 7579ada_is_string_type (struct type *type)
14f9c5c9 7580{
61ee279c 7581 type = ada_check_typedef (type);
d2e4a39e 7582 if (type != NULL
14f9c5c9 7583 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7584 && (ada_is_simple_array_type (type)
7585 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7586 && ada_array_arity (type) == 1)
7587 {
7588 struct type *elttype = ada_array_element_type (type, 1);
7589
7590 return ada_is_character_type (elttype);
7591 }
d2e4a39e 7592 else
14f9c5c9
AS
7593 return 0;
7594}
7595
5bf03f13
JB
7596/* The compiler sometimes provides a parallel XVS type for a given
7597 PAD type. Normally, it is safe to follow the PAD type directly,
7598 but older versions of the compiler have a bug that causes the offset
7599 of its "F" field to be wrong. Following that field in that case
7600 would lead to incorrect results, but this can be worked around
7601 by ignoring the PAD type and using the associated XVS type instead.
7602
7603 Set to True if the debugger should trust the contents of PAD types.
7604 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7605static int trust_pad_over_xvs = 1;
14f9c5c9
AS
7606
7607/* True if TYPE is a struct type introduced by the compiler to force the
7608 alignment of a value. Such types have a single field with a
4c4b4cd2 7609 distinctive name. */
14f9c5c9
AS
7610
7611int
ebf56fd3 7612ada_is_aligner_type (struct type *type)
14f9c5c9 7613{
61ee279c 7614 type = ada_check_typedef (type);
714e53ab 7615
5bf03f13 7616 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
7617 return 0;
7618
14f9c5c9 7619 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7620 && TYPE_NFIELDS (type) == 1
7621 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7622}
7623
7624/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7625 the parallel type. */
14f9c5c9 7626
d2e4a39e
AS
7627struct type *
7628ada_get_base_type (struct type *raw_type)
14f9c5c9 7629{
d2e4a39e
AS
7630 struct type *real_type_namer;
7631 struct type *raw_real_type;
14f9c5c9
AS
7632
7633 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7634 return raw_type;
7635
284614f0
JB
7636 if (ada_is_aligner_type (raw_type))
7637 /* The encoding specifies that we should always use the aligner type.
7638 So, even if this aligner type has an associated XVS type, we should
7639 simply ignore it.
7640
7641 According to the compiler gurus, an XVS type parallel to an aligner
7642 type may exist because of a stabs limitation. In stabs, aligner
7643 types are empty because the field has a variable-sized type, and
7644 thus cannot actually be used as an aligner type. As a result,
7645 we need the associated parallel XVS type to decode the type.
7646 Since the policy in the compiler is to not change the internal
7647 representation based on the debugging info format, we sometimes
7648 end up having a redundant XVS type parallel to the aligner type. */
7649 return raw_type;
7650
14f9c5c9 7651 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7652 if (real_type_namer == NULL
14f9c5c9
AS
7653 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7654 || TYPE_NFIELDS (real_type_namer) != 1)
7655 return raw_type;
7656
f80d3ff2
JB
7657 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7658 {
7659 /* This is an older encoding form where the base type needs to be
7660 looked up by name. We prefer the newer enconding because it is
7661 more efficient. */
7662 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7663 if (raw_real_type == NULL)
7664 return raw_type;
7665 else
7666 return raw_real_type;
7667 }
7668
7669 /* The field in our XVS type is a reference to the base type. */
7670 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 7671}
14f9c5c9 7672
4c4b4cd2 7673/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7674
d2e4a39e
AS
7675struct type *
7676ada_aligned_type (struct type *type)
14f9c5c9
AS
7677{
7678 if (ada_is_aligner_type (type))
7679 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7680 else
7681 return ada_get_base_type (type);
7682}
7683
7684
7685/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7686 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7687
fc1a4b47
AC
7688const gdb_byte *
7689ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7690{
d2e4a39e 7691 if (ada_is_aligner_type (type))
14f9c5c9 7692 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7693 valaddr +
7694 TYPE_FIELD_BITPOS (type,
7695 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7696 else
7697 return valaddr;
7698}
7699
4c4b4cd2
PH
7700
7701
14f9c5c9 7702/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7703 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7704const char *
7705ada_enum_name (const char *name)
14f9c5c9 7706{
4c4b4cd2
PH
7707 static char *result;
7708 static size_t result_len = 0;
d2e4a39e 7709 char *tmp;
14f9c5c9 7710
4c4b4cd2
PH
7711 /* First, unqualify the enumeration name:
7712 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7713 all the preceeding characters, the unqualified name starts
7714 right after that dot.
4c4b4cd2 7715 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7716 translates dots into "__". Search forward for double underscores,
7717 but stop searching when we hit an overloading suffix, which is
7718 of the form "__" followed by digits. */
4c4b4cd2 7719
c3e5cd34
PH
7720 tmp = strrchr (name, '.');
7721 if (tmp != NULL)
4c4b4cd2
PH
7722 name = tmp + 1;
7723 else
14f9c5c9 7724 {
4c4b4cd2
PH
7725 while ((tmp = strstr (name, "__")) != NULL)
7726 {
7727 if (isdigit (tmp[2]))
7728 break;
7729 else
7730 name = tmp + 2;
7731 }
14f9c5c9
AS
7732 }
7733
7734 if (name[0] == 'Q')
7735 {
14f9c5c9
AS
7736 int v;
7737 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7738 {
7739 if (sscanf (name + 2, "%x", &v) != 1)
7740 return name;
7741 }
14f9c5c9 7742 else
4c4b4cd2 7743 return name;
14f9c5c9 7744
4c4b4cd2 7745 GROW_VECT (result, result_len, 16);
14f9c5c9 7746 if (isascii (v) && isprint (v))
88c15c34 7747 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 7748 else if (name[1] == 'U')
88c15c34 7749 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 7750 else
88c15c34 7751 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
7752
7753 return result;
7754 }
d2e4a39e 7755 else
4c4b4cd2 7756 {
c3e5cd34
PH
7757 tmp = strstr (name, "__");
7758 if (tmp == NULL)
7759 tmp = strstr (name, "$");
7760 if (tmp != NULL)
4c4b4cd2
PH
7761 {
7762 GROW_VECT (result, result_len, tmp - name + 1);
7763 strncpy (result, name, tmp - name);
7764 result[tmp - name] = '\0';
7765 return result;
7766 }
7767
7768 return name;
7769 }
14f9c5c9
AS
7770}
7771
14f9c5c9
AS
7772/* Evaluate the subexpression of EXP starting at *POS as for
7773 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7774 expression. */
14f9c5c9 7775
d2e4a39e
AS
7776static struct value *
7777evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7778{
4b27a620 7779 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
7780}
7781
7782/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7783 value it wraps. */
14f9c5c9 7784
d2e4a39e
AS
7785static struct value *
7786unwrap_value (struct value *val)
14f9c5c9 7787{
df407dfe 7788 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7789 if (ada_is_aligner_type (type))
7790 {
de4d072f 7791 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7792 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7793 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7794 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7795
7796 return unwrap_value (v);
7797 }
d2e4a39e 7798 else
14f9c5c9 7799 {
d2e4a39e 7800 struct type *raw_real_type =
61ee279c 7801 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7802
5bf03f13
JB
7803 /* If there is no parallel XVS or XVE type, then the value is
7804 already unwrapped. Return it without further modification. */
7805 if ((type == raw_real_type)
7806 && ada_find_parallel_type (type, "___XVE") == NULL)
7807 return val;
14f9c5c9 7808
d2e4a39e 7809 return
4c4b4cd2
PH
7810 coerce_unspec_val_to_type
7811 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 7812 value_address (val),
1ed6ede0 7813 NULL, 1));
14f9c5c9
AS
7814 }
7815}
d2e4a39e
AS
7816
7817static struct value *
7818cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7819{
7820 LONGEST val;
7821
df407dfe 7822 if (type == value_type (arg))
14f9c5c9 7823 return arg;
df407dfe 7824 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7825 val = ada_float_to_fixed (type,
df407dfe 7826 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7827 value_as_long (arg)));
d2e4a39e 7828 else
14f9c5c9 7829 {
a53b7a21 7830 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7831 val = ada_float_to_fixed (type, argd);
7832 }
7833
7834 return value_from_longest (type, val);
7835}
7836
d2e4a39e 7837static struct value *
a53b7a21 7838cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7839{
df407dfe 7840 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7841 value_as_long (arg));
a53b7a21 7842 return value_from_double (type, val);
14f9c5c9
AS
7843}
7844
4c4b4cd2
PH
7845/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7846 return the converted value. */
7847
d2e4a39e
AS
7848static struct value *
7849coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7850{
df407dfe 7851 struct type *type2 = value_type (val);
14f9c5c9
AS
7852 if (type == type2)
7853 return val;
7854
61ee279c
PH
7855 type2 = ada_check_typedef (type2);
7856 type = ada_check_typedef (type);
14f9c5c9 7857
d2e4a39e
AS
7858 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7859 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7860 {
7861 val = ada_value_ind (val);
df407dfe 7862 type2 = value_type (val);
14f9c5c9
AS
7863 }
7864
d2e4a39e 7865 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7866 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7867 {
7868 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7869 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7870 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7871 error (_("Incompatible types in assignment"));
04624583 7872 deprecated_set_value_type (val, type);
14f9c5c9 7873 }
d2e4a39e 7874 return val;
14f9c5c9
AS
7875}
7876
4c4b4cd2
PH
7877static struct value *
7878ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7879{
7880 struct value *val;
7881 struct type *type1, *type2;
7882 LONGEST v, v1, v2;
7883
994b9211
AC
7884 arg1 = coerce_ref (arg1);
7885 arg2 = coerce_ref (arg2);
df407dfe
AC
7886 type1 = base_type (ada_check_typedef (value_type (arg1)));
7887 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7888
76a01679
JB
7889 if (TYPE_CODE (type1) != TYPE_CODE_INT
7890 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7891 return value_binop (arg1, arg2, op);
7892
76a01679 7893 switch (op)
4c4b4cd2
PH
7894 {
7895 case BINOP_MOD:
7896 case BINOP_DIV:
7897 case BINOP_REM:
7898 break;
7899 default:
7900 return value_binop (arg1, arg2, op);
7901 }
7902
7903 v2 = value_as_long (arg2);
7904 if (v2 == 0)
323e0a4a 7905 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7906
7907 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7908 return value_binop (arg1, arg2, op);
7909
7910 v1 = value_as_long (arg1);
7911 switch (op)
7912 {
7913 case BINOP_DIV:
7914 v = v1 / v2;
76a01679
JB
7915 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7916 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
7917 break;
7918 case BINOP_REM:
7919 v = v1 % v2;
76a01679
JB
7920 if (v * v1 < 0)
7921 v -= v2;
4c4b4cd2
PH
7922 break;
7923 default:
7924 /* Should not reach this point. */
7925 v = 0;
7926 }
7927
7928 val = allocate_value (type1);
990a07ab 7929 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
7930 TYPE_LENGTH (value_type (val)),
7931 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
7932 return val;
7933}
7934
7935static int
7936ada_value_equal (struct value *arg1, struct value *arg2)
7937{
df407dfe
AC
7938 if (ada_is_direct_array_type (value_type (arg1))
7939 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 7940 {
f58b38bf
JB
7941 /* Automatically dereference any array reference before
7942 we attempt to perform the comparison. */
7943 arg1 = ada_coerce_ref (arg1);
7944 arg2 = ada_coerce_ref (arg2);
7945
4c4b4cd2
PH
7946 arg1 = ada_coerce_to_simple_array (arg1);
7947 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
7948 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7949 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 7950 error (_("Attempt to compare array with non-array"));
4c4b4cd2 7951 /* FIXME: The following works only for types whose
76a01679
JB
7952 representations use all bits (no padding or undefined bits)
7953 and do not have user-defined equality. */
7954 return
df407dfe 7955 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 7956 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 7957 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
7958 }
7959 return value_equal (arg1, arg2);
7960}
7961
52ce6436
PH
7962/* Total number of component associations in the aggregate starting at
7963 index PC in EXP. Assumes that index PC is the start of an
7964 OP_AGGREGATE. */
7965
7966static int
7967num_component_specs (struct expression *exp, int pc)
7968{
7969 int n, m, i;
7970 m = exp->elts[pc + 1].longconst;
7971 pc += 3;
7972 n = 0;
7973 for (i = 0; i < m; i += 1)
7974 {
7975 switch (exp->elts[pc].opcode)
7976 {
7977 default:
7978 n += 1;
7979 break;
7980 case OP_CHOICES:
7981 n += exp->elts[pc + 1].longconst;
7982 break;
7983 }
7984 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7985 }
7986 return n;
7987}
7988
7989/* Assign the result of evaluating EXP starting at *POS to the INDEXth
7990 component of LHS (a simple array or a record), updating *POS past
7991 the expression, assuming that LHS is contained in CONTAINER. Does
7992 not modify the inferior's memory, nor does it modify LHS (unless
7993 LHS == CONTAINER). */
7994
7995static void
7996assign_component (struct value *container, struct value *lhs, LONGEST index,
7997 struct expression *exp, int *pos)
7998{
7999 struct value *mark = value_mark ();
8000 struct value *elt;
8001 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8002 {
22601c15
UW
8003 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8004 struct value *index_val = value_from_longest (index_type, index);
52ce6436
PH
8005 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8006 }
8007 else
8008 {
8009 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8010 elt = ada_to_fixed_value (unwrap_value (elt));
8011 }
8012
8013 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8014 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8015 else
8016 value_assign_to_component (container, elt,
8017 ada_evaluate_subexp (NULL, exp, pos,
8018 EVAL_NORMAL));
8019
8020 value_free_to_mark (mark);
8021}
8022
8023/* Assuming that LHS represents an lvalue having a record or array
8024 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8025 of that aggregate's value to LHS, advancing *POS past the
8026 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8027 lvalue containing LHS (possibly LHS itself). Does not modify
8028 the inferior's memory, nor does it modify the contents of
8029 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8030
8031static struct value *
8032assign_aggregate (struct value *container,
8033 struct value *lhs, struct expression *exp,
8034 int *pos, enum noside noside)
8035{
8036 struct type *lhs_type;
8037 int n = exp->elts[*pos+1].longconst;
8038 LONGEST low_index, high_index;
8039 int num_specs;
8040 LONGEST *indices;
8041 int max_indices, num_indices;
8042 int is_array_aggregate;
8043 int i;
8044 struct value *mark = value_mark ();
8045
8046 *pos += 3;
8047 if (noside != EVAL_NORMAL)
8048 {
8049 int i;
8050 for (i = 0; i < n; i += 1)
8051 ada_evaluate_subexp (NULL, exp, pos, noside);
8052 return container;
8053 }
8054
8055 container = ada_coerce_ref (container);
8056 if (ada_is_direct_array_type (value_type (container)))
8057 container = ada_coerce_to_simple_array (container);
8058 lhs = ada_coerce_ref (lhs);
8059 if (!deprecated_value_modifiable (lhs))
8060 error (_("Left operand of assignment is not a modifiable lvalue."));
8061
8062 lhs_type = value_type (lhs);
8063 if (ada_is_direct_array_type (lhs_type))
8064 {
8065 lhs = ada_coerce_to_simple_array (lhs);
8066 lhs_type = value_type (lhs);
8067 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8068 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8069 is_array_aggregate = 1;
8070 }
8071 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8072 {
8073 low_index = 0;
8074 high_index = num_visible_fields (lhs_type) - 1;
8075 is_array_aggregate = 0;
8076 }
8077 else
8078 error (_("Left-hand side must be array or record."));
8079
8080 num_specs = num_component_specs (exp, *pos - 3);
8081 max_indices = 4 * num_specs + 4;
8082 indices = alloca (max_indices * sizeof (indices[0]));
8083 indices[0] = indices[1] = low_index - 1;
8084 indices[2] = indices[3] = high_index + 1;
8085 num_indices = 4;
8086
8087 for (i = 0; i < n; i += 1)
8088 {
8089 switch (exp->elts[*pos].opcode)
8090 {
8091 case OP_CHOICES:
8092 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8093 &num_indices, max_indices,
8094 low_index, high_index);
8095 break;
8096 case OP_POSITIONAL:
8097 aggregate_assign_positional (container, lhs, exp, pos, indices,
8098 &num_indices, max_indices,
8099 low_index, high_index);
8100 break;
8101 case OP_OTHERS:
8102 if (i != n-1)
8103 error (_("Misplaced 'others' clause"));
8104 aggregate_assign_others (container, lhs, exp, pos, indices,
8105 num_indices, low_index, high_index);
8106 break;
8107 default:
8108 error (_("Internal error: bad aggregate clause"));
8109 }
8110 }
8111
8112 return container;
8113}
8114
8115/* Assign into the component of LHS indexed by the OP_POSITIONAL
8116 construct at *POS, updating *POS past the construct, given that
8117 the positions are relative to lower bound LOW, where HIGH is the
8118 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8119 updating *NUM_INDICES as needed. CONTAINER is as for
8120 assign_aggregate. */
8121static void
8122aggregate_assign_positional (struct value *container,
8123 struct value *lhs, struct expression *exp,
8124 int *pos, LONGEST *indices, int *num_indices,
8125 int max_indices, LONGEST low, LONGEST high)
8126{
8127 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8128
8129 if (ind - 1 == high)
e1d5a0d2 8130 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8131 if (ind <= high)
8132 {
8133 add_component_interval (ind, ind, indices, num_indices, max_indices);
8134 *pos += 3;
8135 assign_component (container, lhs, ind, exp, pos);
8136 }
8137 else
8138 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8139}
8140
8141/* Assign into the components of LHS indexed by the OP_CHOICES
8142 construct at *POS, updating *POS past the construct, given that
8143 the allowable indices are LOW..HIGH. Record the indices assigned
8144 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8145 needed. CONTAINER is as for assign_aggregate. */
8146static void
8147aggregate_assign_from_choices (struct value *container,
8148 struct value *lhs, struct expression *exp,
8149 int *pos, LONGEST *indices, int *num_indices,
8150 int max_indices, LONGEST low, LONGEST high)
8151{
8152 int j;
8153 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8154 int choice_pos, expr_pc;
8155 int is_array = ada_is_direct_array_type (value_type (lhs));
8156
8157 choice_pos = *pos += 3;
8158
8159 for (j = 0; j < n_choices; j += 1)
8160 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8161 expr_pc = *pos;
8162 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8163
8164 for (j = 0; j < n_choices; j += 1)
8165 {
8166 LONGEST lower, upper;
8167 enum exp_opcode op = exp->elts[choice_pos].opcode;
8168 if (op == OP_DISCRETE_RANGE)
8169 {
8170 choice_pos += 1;
8171 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8172 EVAL_NORMAL));
8173 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8174 EVAL_NORMAL));
8175 }
8176 else if (is_array)
8177 {
8178 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8179 EVAL_NORMAL));
8180 upper = lower;
8181 }
8182 else
8183 {
8184 int ind;
8185 char *name;
8186 switch (op)
8187 {
8188 case OP_NAME:
8189 name = &exp->elts[choice_pos + 2].string;
8190 break;
8191 case OP_VAR_VALUE:
8192 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8193 break;
8194 default:
8195 error (_("Invalid record component association."));
8196 }
8197 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8198 ind = 0;
8199 if (! find_struct_field (name, value_type (lhs), 0,
8200 NULL, NULL, NULL, NULL, &ind))
8201 error (_("Unknown component name: %s."), name);
8202 lower = upper = ind;
8203 }
8204
8205 if (lower <= upper && (lower < low || upper > high))
8206 error (_("Index in component association out of bounds."));
8207
8208 add_component_interval (lower, upper, indices, num_indices,
8209 max_indices);
8210 while (lower <= upper)
8211 {
8212 int pos1;
8213 pos1 = expr_pc;
8214 assign_component (container, lhs, lower, exp, &pos1);
8215 lower += 1;
8216 }
8217 }
8218}
8219
8220/* Assign the value of the expression in the OP_OTHERS construct in
8221 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8222 have not been previously assigned. The index intervals already assigned
8223 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8224 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8225static void
8226aggregate_assign_others (struct value *container,
8227 struct value *lhs, struct expression *exp,
8228 int *pos, LONGEST *indices, int num_indices,
8229 LONGEST low, LONGEST high)
8230{
8231 int i;
8232 int expr_pc = *pos+1;
8233
8234 for (i = 0; i < num_indices - 2; i += 2)
8235 {
8236 LONGEST ind;
8237 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8238 {
8239 int pos;
8240 pos = expr_pc;
8241 assign_component (container, lhs, ind, exp, &pos);
8242 }
8243 }
8244 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8245}
8246
8247/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8248 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8249 modifying *SIZE as needed. It is an error if *SIZE exceeds
8250 MAX_SIZE. The resulting intervals do not overlap. */
8251static void
8252add_component_interval (LONGEST low, LONGEST high,
8253 LONGEST* indices, int *size, int max_size)
8254{
8255 int i, j;
8256 for (i = 0; i < *size; i += 2) {
8257 if (high >= indices[i] && low <= indices[i + 1])
8258 {
8259 int kh;
8260 for (kh = i + 2; kh < *size; kh += 2)
8261 if (high < indices[kh])
8262 break;
8263 if (low < indices[i])
8264 indices[i] = low;
8265 indices[i + 1] = indices[kh - 1];
8266 if (high > indices[i + 1])
8267 indices[i + 1] = high;
8268 memcpy (indices + i + 2, indices + kh, *size - kh);
8269 *size -= kh - i - 2;
8270 return;
8271 }
8272 else if (high < indices[i])
8273 break;
8274 }
8275
8276 if (*size == max_size)
8277 error (_("Internal error: miscounted aggregate components."));
8278 *size += 2;
8279 for (j = *size-1; j >= i+2; j -= 1)
8280 indices[j] = indices[j - 2];
8281 indices[i] = low;
8282 indices[i + 1] = high;
8283}
8284
6e48bd2c
JB
8285/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8286 is different. */
8287
8288static struct value *
8289ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8290{
8291 if (type == ada_check_typedef (value_type (arg2)))
8292 return arg2;
8293
8294 if (ada_is_fixed_point_type (type))
8295 return (cast_to_fixed (type, arg2));
8296
8297 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8298 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8299
8300 return value_cast (type, arg2);
8301}
8302
284614f0
JB
8303/* Evaluating Ada expressions, and printing their result.
8304 ------------------------------------------------------
8305
21649b50
JB
8306 1. Introduction:
8307 ----------------
8308
284614f0
JB
8309 We usually evaluate an Ada expression in order to print its value.
8310 We also evaluate an expression in order to print its type, which
8311 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8312 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8313 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8314 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8315 similar.
8316
8317 Evaluating expressions is a little more complicated for Ada entities
8318 than it is for entities in languages such as C. The main reason for
8319 this is that Ada provides types whose definition might be dynamic.
8320 One example of such types is variant records. Or another example
8321 would be an array whose bounds can only be known at run time.
8322
8323 The following description is a general guide as to what should be
8324 done (and what should NOT be done) in order to evaluate an expression
8325 involving such types, and when. This does not cover how the semantic
8326 information is encoded by GNAT as this is covered separatly. For the
8327 document used as the reference for the GNAT encoding, see exp_dbug.ads
8328 in the GNAT sources.
8329
8330 Ideally, we should embed each part of this description next to its
8331 associated code. Unfortunately, the amount of code is so vast right
8332 now that it's hard to see whether the code handling a particular
8333 situation might be duplicated or not. One day, when the code is
8334 cleaned up, this guide might become redundant with the comments
8335 inserted in the code, and we might want to remove it.
8336
21649b50
JB
8337 2. ``Fixing'' an Entity, the Simple Case:
8338 -----------------------------------------
8339
284614f0
JB
8340 When evaluating Ada expressions, the tricky issue is that they may
8341 reference entities whose type contents and size are not statically
8342 known. Consider for instance a variant record:
8343
8344 type Rec (Empty : Boolean := True) is record
8345 case Empty is
8346 when True => null;
8347 when False => Value : Integer;
8348 end case;
8349 end record;
8350 Yes : Rec := (Empty => False, Value => 1);
8351 No : Rec := (empty => True);
8352
8353 The size and contents of that record depends on the value of the
8354 descriminant (Rec.Empty). At this point, neither the debugging
8355 information nor the associated type structure in GDB are able to
8356 express such dynamic types. So what the debugger does is to create
8357 "fixed" versions of the type that applies to the specific object.
8358 We also informally refer to this opperation as "fixing" an object,
8359 which means creating its associated fixed type.
8360
8361 Example: when printing the value of variable "Yes" above, its fixed
8362 type would look like this:
8363
8364 type Rec is record
8365 Empty : Boolean;
8366 Value : Integer;
8367 end record;
8368
8369 On the other hand, if we printed the value of "No", its fixed type
8370 would become:
8371
8372 type Rec is record
8373 Empty : Boolean;
8374 end record;
8375
8376 Things become a little more complicated when trying to fix an entity
8377 with a dynamic type that directly contains another dynamic type,
8378 such as an array of variant records, for instance. There are
8379 two possible cases: Arrays, and records.
8380
21649b50
JB
8381 3. ``Fixing'' Arrays:
8382 ---------------------
8383
8384 The type structure in GDB describes an array in terms of its bounds,
8385 and the type of its elements. By design, all elements in the array
8386 have the same type and we cannot represent an array of variant elements
8387 using the current type structure in GDB. When fixing an array,
8388 we cannot fix the array element, as we would potentially need one
8389 fixed type per element of the array. As a result, the best we can do
8390 when fixing an array is to produce an array whose bounds and size
8391 are correct (allowing us to read it from memory), but without having
8392 touched its element type. Fixing each element will be done later,
8393 when (if) necessary.
8394
8395 Arrays are a little simpler to handle than records, because the same
8396 amount of memory is allocated for each element of the array, even if
1b536f04 8397 the amount of space actually used by each element differs from element
21649b50 8398 to element. Consider for instance the following array of type Rec:
284614f0
JB
8399
8400 type Rec_Array is array (1 .. 2) of Rec;
8401
1b536f04
JB
8402 The actual amount of memory occupied by each element might be different
8403 from element to element, depending on the value of their discriminant.
21649b50 8404 But the amount of space reserved for each element in the array remains
1b536f04 8405 fixed regardless. So we simply need to compute that size using
21649b50
JB
8406 the debugging information available, from which we can then determine
8407 the array size (we multiply the number of elements of the array by
8408 the size of each element).
8409
8410 The simplest case is when we have an array of a constrained element
8411 type. For instance, consider the following type declarations:
8412
8413 type Bounded_String (Max_Size : Integer) is
8414 Length : Integer;
8415 Buffer : String (1 .. Max_Size);
8416 end record;
8417 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8418
8419 In this case, the compiler describes the array as an array of
8420 variable-size elements (identified by its XVS suffix) for which
8421 the size can be read in the parallel XVZ variable.
8422
8423 In the case of an array of an unconstrained element type, the compiler
8424 wraps the array element inside a private PAD type. This type should not
8425 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
8426 that we also use the adjective "aligner" in our code to designate
8427 these wrapper types.
8428
1b536f04 8429 In some cases, the size allocated for each element is statically
21649b50
JB
8430 known. In that case, the PAD type already has the correct size,
8431 and the array element should remain unfixed.
8432
8433 But there are cases when this size is not statically known.
8434 For instance, assuming that "Five" is an integer variable:
284614f0
JB
8435
8436 type Dynamic is array (1 .. Five) of Integer;
8437 type Wrapper (Has_Length : Boolean := False) is record
8438 Data : Dynamic;
8439 case Has_Length is
8440 when True => Length : Integer;
8441 when False => null;
8442 end case;
8443 end record;
8444 type Wrapper_Array is array (1 .. 2) of Wrapper;
8445
8446 Hello : Wrapper_Array := (others => (Has_Length => True,
8447 Data => (others => 17),
8448 Length => 1));
8449
8450
8451 The debugging info would describe variable Hello as being an
8452 array of a PAD type. The size of that PAD type is not statically
8453 known, but can be determined using a parallel XVZ variable.
8454 In that case, a copy of the PAD type with the correct size should
8455 be used for the fixed array.
8456
21649b50
JB
8457 3. ``Fixing'' record type objects:
8458 ----------------------------------
8459
8460 Things are slightly different from arrays in the case of dynamic
284614f0
JB
8461 record types. In this case, in order to compute the associated
8462 fixed type, we need to determine the size and offset of each of
8463 its components. This, in turn, requires us to compute the fixed
8464 type of each of these components.
8465
8466 Consider for instance the example:
8467
8468 type Bounded_String (Max_Size : Natural) is record
8469 Str : String (1 .. Max_Size);
8470 Length : Natural;
8471 end record;
8472 My_String : Bounded_String (Max_Size => 10);
8473
8474 In that case, the position of field "Length" depends on the size
8475 of field Str, which itself depends on the value of the Max_Size
21649b50 8476 discriminant. In order to fix the type of variable My_String,
284614f0
JB
8477 we need to fix the type of field Str. Therefore, fixing a variant
8478 record requires us to fix each of its components.
8479
8480 However, if a component does not have a dynamic size, the component
8481 should not be fixed. In particular, fields that use a PAD type
8482 should not fixed. Here is an example where this might happen
8483 (assuming type Rec above):
8484
8485 type Container (Big : Boolean) is record
8486 First : Rec;
8487 After : Integer;
8488 case Big is
8489 when True => Another : Integer;
8490 when False => null;
8491 end case;
8492 end record;
8493 My_Container : Container := (Big => False,
8494 First => (Empty => True),
8495 After => 42);
8496
8497 In that example, the compiler creates a PAD type for component First,
8498 whose size is constant, and then positions the component After just
8499 right after it. The offset of component After is therefore constant
8500 in this case.
8501
8502 The debugger computes the position of each field based on an algorithm
8503 that uses, among other things, the actual position and size of the field
21649b50
JB
8504 preceding it. Let's now imagine that the user is trying to print
8505 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
8506 end up computing the offset of field After based on the size of the
8507 fixed version of field First. And since in our example First has
8508 only one actual field, the size of the fixed type is actually smaller
8509 than the amount of space allocated to that field, and thus we would
8510 compute the wrong offset of field After.
8511
21649b50
JB
8512 To make things more complicated, we need to watch out for dynamic
8513 components of variant records (identified by the ___XVL suffix in
8514 the component name). Even if the target type is a PAD type, the size
8515 of that type might not be statically known. So the PAD type needs
8516 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8517 we might end up with the wrong size for our component. This can be
8518 observed with the following type declarations:
284614f0
JB
8519
8520 type Octal is new Integer range 0 .. 7;
8521 type Octal_Array is array (Positive range <>) of Octal;
8522 pragma Pack (Octal_Array);
8523
8524 type Octal_Buffer (Size : Positive) is record
8525 Buffer : Octal_Array (1 .. Size);
8526 Length : Integer;
8527 end record;
8528
8529 In that case, Buffer is a PAD type whose size is unset and needs
8530 to be computed by fixing the unwrapped type.
8531
21649b50
JB
8532 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8533 ----------------------------------------------------------
8534
8535 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
8536 thus far, be actually fixed?
8537
8538 The answer is: Only when referencing that element. For instance
8539 when selecting one component of a record, this specific component
8540 should be fixed at that point in time. Or when printing the value
8541 of a record, each component should be fixed before its value gets
8542 printed. Similarly for arrays, the element of the array should be
8543 fixed when printing each element of the array, or when extracting
8544 one element out of that array. On the other hand, fixing should
8545 not be performed on the elements when taking a slice of an array!
8546
8547 Note that one of the side-effects of miscomputing the offset and
8548 size of each field is that we end up also miscomputing the size
8549 of the containing type. This can have adverse results when computing
8550 the value of an entity. GDB fetches the value of an entity based
8551 on the size of its type, and thus a wrong size causes GDB to fetch
8552 the wrong amount of memory. In the case where the computed size is
8553 too small, GDB fetches too little data to print the value of our
8554 entiry. Results in this case as unpredicatble, as we usually read
8555 past the buffer containing the data =:-o. */
8556
8557/* Implement the evaluate_exp routine in the exp_descriptor structure
8558 for the Ada language. */
8559
52ce6436 8560static struct value *
ebf56fd3 8561ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8562 int *pos, enum noside noside)
14f9c5c9
AS
8563{
8564 enum exp_opcode op;
14f9c5c9
AS
8565 int tem, tem2, tem3;
8566 int pc;
8567 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8568 struct type *type;
52ce6436 8569 int nargs, oplen;
d2e4a39e 8570 struct value **argvec;
14f9c5c9 8571
d2e4a39e
AS
8572 pc = *pos;
8573 *pos += 1;
14f9c5c9
AS
8574 op = exp->elts[pc].opcode;
8575
d2e4a39e 8576 switch (op)
14f9c5c9
AS
8577 {
8578 default:
8579 *pos -= 1;
6e48bd2c
JB
8580 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8581 arg1 = unwrap_value (arg1);
8582
8583 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8584 then we need to perform the conversion manually, because
8585 evaluate_subexp_standard doesn't do it. This conversion is
8586 necessary in Ada because the different kinds of float/fixed
8587 types in Ada have different representations.
8588
8589 Similarly, we need to perform the conversion from OP_LONG
8590 ourselves. */
8591 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8592 arg1 = ada_value_cast (expect_type, arg1, noside);
8593
8594 return arg1;
4c4b4cd2
PH
8595
8596 case OP_STRING:
8597 {
76a01679
JB
8598 struct value *result;
8599 *pos -= 1;
8600 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8601 /* The result type will have code OP_STRING, bashed there from
8602 OP_ARRAY. Bash it back. */
df407dfe
AC
8603 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8604 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8605 return result;
4c4b4cd2 8606 }
14f9c5c9
AS
8607
8608 case UNOP_CAST:
8609 (*pos) += 2;
8610 type = exp->elts[pc + 1].type;
8611 arg1 = evaluate_subexp (type, exp, pos, noside);
8612 if (noside == EVAL_SKIP)
4c4b4cd2 8613 goto nosideret;
6e48bd2c 8614 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8615 return arg1;
8616
4c4b4cd2
PH
8617 case UNOP_QUAL:
8618 (*pos) += 2;
8619 type = exp->elts[pc + 1].type;
8620 return ada_evaluate_subexp (type, exp, pos, noside);
8621
14f9c5c9
AS
8622 case BINOP_ASSIGN:
8623 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8624 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8625 {
8626 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8627 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8628 return arg1;
8629 return ada_value_assign (arg1, arg1);
8630 }
003f3813
JB
8631 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8632 except if the lhs of our assignment is a convenience variable.
8633 In the case of assigning to a convenience variable, the lhs
8634 should be exactly the result of the evaluation of the rhs. */
8635 type = value_type (arg1);
8636 if (VALUE_LVAL (arg1) == lval_internalvar)
8637 type = NULL;
8638 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8639 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8640 return arg1;
df407dfe
AC
8641 if (ada_is_fixed_point_type (value_type (arg1)))
8642 arg2 = cast_to_fixed (value_type (arg1), arg2);
8643 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8644 error
323e0a4a 8645 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8646 else
df407dfe 8647 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8648 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8649
8650 case BINOP_ADD:
8651 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8652 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8653 if (noside == EVAL_SKIP)
4c4b4cd2 8654 goto nosideret;
2ac8a782
JB
8655 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8656 return (value_from_longest
8657 (value_type (arg1),
8658 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8659 if ((ada_is_fixed_point_type (value_type (arg1))
8660 || ada_is_fixed_point_type (value_type (arg2)))
8661 && value_type (arg1) != value_type (arg2))
323e0a4a 8662 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8663 /* Do the addition, and cast the result to the type of the first
8664 argument. We cannot cast the result to a reference type, so if
8665 ARG1 is a reference type, find its underlying type. */
8666 type = value_type (arg1);
8667 while (TYPE_CODE (type) == TYPE_CODE_REF)
8668 type = TYPE_TARGET_TYPE (type);
f44316fa 8669 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8670 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8671
8672 case BINOP_SUB:
8673 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8674 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8675 if (noside == EVAL_SKIP)
4c4b4cd2 8676 goto nosideret;
2ac8a782
JB
8677 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8678 return (value_from_longest
8679 (value_type (arg1),
8680 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8681 if ((ada_is_fixed_point_type (value_type (arg1))
8682 || ada_is_fixed_point_type (value_type (arg2)))
8683 && value_type (arg1) != value_type (arg2))
323e0a4a 8684 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8685 /* Do the substraction, and cast the result to the type of the first
8686 argument. We cannot cast the result to a reference type, so if
8687 ARG1 is a reference type, find its underlying type. */
8688 type = value_type (arg1);
8689 while (TYPE_CODE (type) == TYPE_CODE_REF)
8690 type = TYPE_TARGET_TYPE (type);
f44316fa 8691 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8692 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8693
8694 case BINOP_MUL:
8695 case BINOP_DIV:
e1578042
JB
8696 case BINOP_REM:
8697 case BINOP_MOD:
14f9c5c9
AS
8698 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8699 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8700 if (noside == EVAL_SKIP)
4c4b4cd2 8701 goto nosideret;
e1578042 8702 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
8703 {
8704 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8705 return value_zero (value_type (arg1), not_lval);
8706 }
14f9c5c9 8707 else
4c4b4cd2 8708 {
a53b7a21 8709 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8710 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8711 arg1 = cast_from_fixed (type, arg1);
df407dfe 8712 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8713 arg2 = cast_from_fixed (type, arg2);
f44316fa 8714 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8715 return ada_value_binop (arg1, arg2, op);
8716 }
8717
4c4b4cd2
PH
8718 case BINOP_EQUAL:
8719 case BINOP_NOTEQUAL:
14f9c5c9 8720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8721 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8722 if (noside == EVAL_SKIP)
76a01679 8723 goto nosideret;
4c4b4cd2 8724 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8725 tem = 0;
4c4b4cd2 8726 else
f44316fa
UW
8727 {
8728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8729 tem = ada_value_equal (arg1, arg2);
8730 }
4c4b4cd2 8731 if (op == BINOP_NOTEQUAL)
76a01679 8732 tem = !tem;
fbb06eb1
UW
8733 type = language_bool_type (exp->language_defn, exp->gdbarch);
8734 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8735
8736 case UNOP_NEG:
8737 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8738 if (noside == EVAL_SKIP)
8739 goto nosideret;
df407dfe
AC
8740 else if (ada_is_fixed_point_type (value_type (arg1)))
8741 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8742 else
f44316fa
UW
8743 {
8744 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8745 return value_neg (arg1);
8746 }
4c4b4cd2 8747
2330c6c6
JB
8748 case BINOP_LOGICAL_AND:
8749 case BINOP_LOGICAL_OR:
8750 case UNOP_LOGICAL_NOT:
000d5124
JB
8751 {
8752 struct value *val;
8753
8754 *pos -= 1;
8755 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8756 type = language_bool_type (exp->language_defn, exp->gdbarch);
8757 return value_cast (type, val);
000d5124 8758 }
2330c6c6
JB
8759
8760 case BINOP_BITWISE_AND:
8761 case BINOP_BITWISE_IOR:
8762 case BINOP_BITWISE_XOR:
000d5124
JB
8763 {
8764 struct value *val;
8765
8766 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8767 *pos = pc;
8768 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8769
8770 return value_cast (value_type (arg1), val);
8771 }
2330c6c6 8772
14f9c5c9
AS
8773 case OP_VAR_VALUE:
8774 *pos -= 1;
6799def4 8775
14f9c5c9 8776 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8777 {
8778 *pos += 4;
8779 goto nosideret;
8780 }
8781 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8782 /* Only encountered when an unresolved symbol occurs in a
8783 context other than a function call, in which case, it is
52ce6436 8784 invalid. */
323e0a4a 8785 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8786 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8787 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8788 {
0c1f74cf 8789 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
8790 /* Check to see if this is a tagged type. We also need to handle
8791 the case where the type is a reference to a tagged type, but
8792 we have to be careful to exclude pointers to tagged types.
8793 The latter should be shown as usual (as a pointer), whereas
8794 a reference should mostly be transparent to the user. */
8795 if (ada_is_tagged_type (type, 0)
8796 || (TYPE_CODE(type) == TYPE_CODE_REF
8797 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
8798 {
8799 /* Tagged types are a little special in the fact that the real
8800 type is dynamic and can only be determined by inspecting the
8801 object's tag. This means that we need to get the object's
8802 value first (EVAL_NORMAL) and then extract the actual object
8803 type from its tag.
8804
8805 Note that we cannot skip the final step where we extract
8806 the object type from its tag, because the EVAL_NORMAL phase
8807 results in dynamic components being resolved into fixed ones.
8808 This can cause problems when trying to print the type
8809 description of tagged types whose parent has a dynamic size:
8810 We use the type name of the "_parent" component in order
8811 to print the name of the ancestor type in the type description.
8812 If that component had a dynamic size, the resolution into
8813 a fixed type would result in the loss of that type name,
8814 thus preventing us from printing the name of the ancestor
8815 type in the type description. */
b79819ba
JB
8816 struct type *actual_type;
8817
0c1f74cf 8818 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
8819 actual_type = type_from_tag (ada_value_tag (arg1));
8820 if (actual_type == NULL)
8821 /* If, for some reason, we were unable to determine
8822 the actual type from the tag, then use the static
8823 approximation that we just computed as a fallback.
8824 This can happen if the debugging information is
8825 incomplete, for instance. */
8826 actual_type = type;
8827
8828 return value_zero (actual_type, not_lval);
0c1f74cf
JB
8829 }
8830
4c4b4cd2
PH
8831 *pos += 4;
8832 return value_zero
8833 (to_static_fixed_type
8834 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8835 not_lval);
8836 }
d2e4a39e 8837 else
4c4b4cd2 8838 {
284614f0
JB
8839 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8840 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
8841 return ada_to_fixed_value (arg1);
8842 }
8843
8844 case OP_FUNCALL:
8845 (*pos) += 2;
8846
8847 /* Allocate arg vector, including space for the function to be
8848 called in argvec[0] and a terminating NULL. */
8849 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8850 argvec =
8851 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8852
8853 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8854 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8855 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8856 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8857 else
8858 {
8859 for (tem = 0; tem <= nargs; tem += 1)
8860 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8861 argvec[tem] = 0;
8862
8863 if (noside == EVAL_SKIP)
8864 goto nosideret;
8865 }
8866
ad82864c
JB
8867 if (ada_is_constrained_packed_array_type
8868 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8869 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
8870 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8871 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8872 /* This is a packed array that has already been fixed, and
8873 therefore already coerced to a simple array. Nothing further
8874 to do. */
8875 ;
df407dfe
AC
8876 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8877 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8878 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8879 argvec[0] = value_addr (argvec[0]);
8880
df407dfe 8881 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8882 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8883 {
61ee279c 8884 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8885 {
8886 case TYPE_CODE_FUNC:
61ee279c 8887 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8888 break;
8889 case TYPE_CODE_ARRAY:
8890 break;
8891 case TYPE_CODE_STRUCT:
8892 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8893 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8894 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8895 break;
8896 default:
323e0a4a 8897 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8898 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8899 break;
8900 }
8901 }
8902
8903 switch (TYPE_CODE (type))
8904 {
8905 case TYPE_CODE_FUNC:
8906 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8907 return allocate_value (TYPE_TARGET_TYPE (type));
8908 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8909 case TYPE_CODE_STRUCT:
8910 {
8911 int arity;
8912
4c4b4cd2
PH
8913 arity = ada_array_arity (type);
8914 type = ada_array_element_type (type, nargs);
8915 if (type == NULL)
323e0a4a 8916 error (_("cannot subscript or call a record"));
4c4b4cd2 8917 if (arity != nargs)
323e0a4a 8918 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8919 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8920 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8921 return
8922 unwrap_value (ada_value_subscript
8923 (argvec[0], nargs, argvec + 1));
8924 }
8925 case TYPE_CODE_ARRAY:
8926 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8927 {
8928 type = ada_array_element_type (type, nargs);
8929 if (type == NULL)
323e0a4a 8930 error (_("element type of array unknown"));
4c4b4cd2 8931 else
0a07e705 8932 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8933 }
8934 return
8935 unwrap_value (ada_value_subscript
8936 (ada_coerce_to_simple_array (argvec[0]),
8937 nargs, argvec + 1));
8938 case TYPE_CODE_PTR: /* Pointer to array */
8939 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8940 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8941 {
8942 type = ada_array_element_type (type, nargs);
8943 if (type == NULL)
323e0a4a 8944 error (_("element type of array unknown"));
4c4b4cd2 8945 else
0a07e705 8946 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8947 }
8948 return
8949 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8950 nargs, argvec + 1));
8951
8952 default:
e1d5a0d2
PH
8953 error (_("Attempt to index or call something other than an "
8954 "array or function"));
4c4b4cd2
PH
8955 }
8956
8957 case TERNOP_SLICE:
8958 {
8959 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8960 struct value *low_bound_val =
8961 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8962 struct value *high_bound_val =
8963 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8964 LONGEST low_bound;
8965 LONGEST high_bound;
994b9211
AC
8966 low_bound_val = coerce_ref (low_bound_val);
8967 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8968 low_bound = pos_atr (low_bound_val);
8969 high_bound = pos_atr (high_bound_val);
963a6417 8970
4c4b4cd2
PH
8971 if (noside == EVAL_SKIP)
8972 goto nosideret;
8973
4c4b4cd2
PH
8974 /* If this is a reference to an aligner type, then remove all
8975 the aligners. */
df407dfe
AC
8976 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8977 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8978 TYPE_TARGET_TYPE (value_type (array)) =
8979 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8980
ad82864c 8981 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 8982 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8983
8984 /* If this is a reference to an array or an array lvalue,
8985 convert to a pointer. */
df407dfe
AC
8986 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8987 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8988 && VALUE_LVAL (array) == lval_memory))
8989 array = value_addr (array);
8990
1265e4aa 8991 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8992 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8993 (value_type (array))))
0b5d8877 8994 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8995
8996 array = ada_coerce_to_simple_array_ptr (array);
8997
714e53ab
PH
8998 /* If we have more than one level of pointer indirection,
8999 dereference the value until we get only one level. */
df407dfe
AC
9000 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9001 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9002 == TYPE_CODE_PTR))
9003 array = value_ind (array);
9004
9005 /* Make sure we really do have an array type before going further,
9006 to avoid a SEGV when trying to get the index type or the target
9007 type later down the road if the debug info generated by
9008 the compiler is incorrect or incomplete. */
df407dfe 9009 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9010 error (_("cannot take slice of non-array"));
714e53ab 9011
df407dfe 9012 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 9013 {
0b5d8877 9014 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9015 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
9016 low_bound);
9017 else
9018 {
9019 struct type *arr_type0 =
df407dfe 9020 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 9021 NULL, 1);
f5938064
JG
9022 return ada_value_slice_from_ptr (array, arr_type0,
9023 longest_to_int (low_bound),
9024 longest_to_int (high_bound));
4c4b4cd2
PH
9025 }
9026 }
9027 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9028 return array;
9029 else if (high_bound < low_bound)
df407dfe 9030 return empty_array (value_type (array), low_bound);
4c4b4cd2 9031 else
529cad9c
PH
9032 return ada_value_slice (array, longest_to_int (low_bound),
9033 longest_to_int (high_bound));
4c4b4cd2 9034 }
14f9c5c9 9035
4c4b4cd2
PH
9036 case UNOP_IN_RANGE:
9037 (*pos) += 2;
9038 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9039 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9040
14f9c5c9 9041 if (noside == EVAL_SKIP)
4c4b4cd2 9042 goto nosideret;
14f9c5c9 9043
4c4b4cd2
PH
9044 switch (TYPE_CODE (type))
9045 {
9046 default:
e1d5a0d2
PH
9047 lim_warning (_("Membership test incompletely implemented; "
9048 "always returns true"));
fbb06eb1
UW
9049 type = language_bool_type (exp->language_defn, exp->gdbarch);
9050 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9051
9052 case TYPE_CODE_RANGE:
030b4912
UW
9053 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9054 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9055 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9056 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9057 type = language_bool_type (exp->language_defn, exp->gdbarch);
9058 return
9059 value_from_longest (type,
4c4b4cd2
PH
9060 (value_less (arg1, arg3)
9061 || value_equal (arg1, arg3))
9062 && (value_less (arg2, arg1)
9063 || value_equal (arg2, arg1)));
9064 }
9065
9066 case BINOP_IN_BOUNDS:
14f9c5c9 9067 (*pos) += 2;
4c4b4cd2
PH
9068 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9069 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9070
4c4b4cd2
PH
9071 if (noside == EVAL_SKIP)
9072 goto nosideret;
14f9c5c9 9073
4c4b4cd2 9074 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9075 {
9076 type = language_bool_type (exp->language_defn, exp->gdbarch);
9077 return value_zero (type, not_lval);
9078 }
14f9c5c9 9079
4c4b4cd2 9080 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9081
1eea4ebd
UW
9082 type = ada_index_type (value_type (arg2), tem, "range");
9083 if (!type)
9084 type = value_type (arg1);
14f9c5c9 9085
1eea4ebd
UW
9086 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9087 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9088
f44316fa
UW
9089 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9090 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9091 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9092 return
fbb06eb1 9093 value_from_longest (type,
4c4b4cd2
PH
9094 (value_less (arg1, arg3)
9095 || value_equal (arg1, arg3))
9096 && (value_less (arg2, arg1)
9097 || value_equal (arg2, arg1)));
9098
9099 case TERNOP_IN_RANGE:
9100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9101 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9102 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9103
9104 if (noside == EVAL_SKIP)
9105 goto nosideret;
9106
f44316fa
UW
9107 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9108 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9109 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9110 return
fbb06eb1 9111 value_from_longest (type,
4c4b4cd2
PH
9112 (value_less (arg1, arg3)
9113 || value_equal (arg1, arg3))
9114 && (value_less (arg2, arg1)
9115 || value_equal (arg2, arg1)));
9116
9117 case OP_ATR_FIRST:
9118 case OP_ATR_LAST:
9119 case OP_ATR_LENGTH:
9120 {
76a01679
JB
9121 struct type *type_arg;
9122 if (exp->elts[*pos].opcode == OP_TYPE)
9123 {
9124 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9125 arg1 = NULL;
5bc23cb3 9126 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9127 }
9128 else
9129 {
9130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9131 type_arg = NULL;
9132 }
9133
9134 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9135 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9136 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9137 *pos += 4;
9138
9139 if (noside == EVAL_SKIP)
9140 goto nosideret;
9141
9142 if (type_arg == NULL)
9143 {
9144 arg1 = ada_coerce_ref (arg1);
9145
ad82864c 9146 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9147 arg1 = ada_coerce_to_simple_array (arg1);
9148
1eea4ebd
UW
9149 type = ada_index_type (value_type (arg1), tem,
9150 ada_attribute_name (op));
9151 if (type == NULL)
9152 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9153
9154 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9155 return allocate_value (type);
76a01679
JB
9156
9157 switch (op)
9158 {
9159 default: /* Should never happen. */
323e0a4a 9160 error (_("unexpected attribute encountered"));
76a01679 9161 case OP_ATR_FIRST:
1eea4ebd
UW
9162 return value_from_longest
9163 (type, ada_array_bound (arg1, tem, 0));
76a01679 9164 case OP_ATR_LAST:
1eea4ebd
UW
9165 return value_from_longest
9166 (type, ada_array_bound (arg1, tem, 1));
76a01679 9167 case OP_ATR_LENGTH:
1eea4ebd
UW
9168 return value_from_longest
9169 (type, ada_array_length (arg1, tem));
76a01679
JB
9170 }
9171 }
9172 else if (discrete_type_p (type_arg))
9173 {
9174 struct type *range_type;
9175 char *name = ada_type_name (type_arg);
9176 range_type = NULL;
9177 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
1ce677a4 9178 range_type = to_fixed_range_type (name, NULL, type_arg);
76a01679
JB
9179 if (range_type == NULL)
9180 range_type = type_arg;
9181 switch (op)
9182 {
9183 default:
323e0a4a 9184 error (_("unexpected attribute encountered"));
76a01679 9185 case OP_ATR_FIRST:
690cc4eb 9186 return value_from_longest
43bbcdc2 9187 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9188 case OP_ATR_LAST:
690cc4eb 9189 return value_from_longest
43bbcdc2 9190 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9191 case OP_ATR_LENGTH:
323e0a4a 9192 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9193 }
9194 }
9195 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9196 error (_("unimplemented type attribute"));
76a01679
JB
9197 else
9198 {
9199 LONGEST low, high;
9200
ad82864c
JB
9201 if (ada_is_constrained_packed_array_type (type_arg))
9202 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9203
1eea4ebd 9204 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9205 if (type == NULL)
1eea4ebd
UW
9206 type = builtin_type (exp->gdbarch)->builtin_int;
9207
76a01679
JB
9208 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9209 return allocate_value (type);
9210
9211 switch (op)
9212 {
9213 default:
323e0a4a 9214 error (_("unexpected attribute encountered"));
76a01679 9215 case OP_ATR_FIRST:
1eea4ebd 9216 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9217 return value_from_longest (type, low);
9218 case OP_ATR_LAST:
1eea4ebd 9219 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9220 return value_from_longest (type, high);
9221 case OP_ATR_LENGTH:
1eea4ebd
UW
9222 low = ada_array_bound_from_type (type_arg, tem, 0);
9223 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9224 return value_from_longest (type, high - low + 1);
9225 }
9226 }
14f9c5c9
AS
9227 }
9228
4c4b4cd2
PH
9229 case OP_ATR_TAG:
9230 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9231 if (noside == EVAL_SKIP)
76a01679 9232 goto nosideret;
4c4b4cd2
PH
9233
9234 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9235 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9236
9237 return ada_value_tag (arg1);
9238
9239 case OP_ATR_MIN:
9240 case OP_ATR_MAX:
9241 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9243 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9244 if (noside == EVAL_SKIP)
76a01679 9245 goto nosideret;
d2e4a39e 9246 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9247 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9248 else
f44316fa
UW
9249 {
9250 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9251 return value_binop (arg1, arg2,
9252 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9253 }
14f9c5c9 9254
4c4b4cd2
PH
9255 case OP_ATR_MODULUS:
9256 {
31dedfee 9257 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679 9258 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9259
76a01679
JB
9260 if (noside == EVAL_SKIP)
9261 goto nosideret;
4c4b4cd2 9262
76a01679 9263 if (!ada_is_modular_type (type_arg))
323e0a4a 9264 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9265
76a01679
JB
9266 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9267 ada_modulus (type_arg));
4c4b4cd2
PH
9268 }
9269
9270
9271 case OP_ATR_POS:
9272 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9273 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9274 if (noside == EVAL_SKIP)
76a01679 9275 goto nosideret;
3cb382c9
UW
9276 type = builtin_type (exp->gdbarch)->builtin_int;
9277 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9278 return value_zero (type, not_lval);
14f9c5c9 9279 else
3cb382c9 9280 return value_pos_atr (type, arg1);
14f9c5c9 9281
4c4b4cd2
PH
9282 case OP_ATR_SIZE:
9283 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9284 type = value_type (arg1);
9285
9286 /* If the argument is a reference, then dereference its type, since
9287 the user is really asking for the size of the actual object,
9288 not the size of the pointer. */
9289 if (TYPE_CODE (type) == TYPE_CODE_REF)
9290 type = TYPE_TARGET_TYPE (type);
9291
4c4b4cd2 9292 if (noside == EVAL_SKIP)
76a01679 9293 goto nosideret;
4c4b4cd2 9294 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9295 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9296 else
22601c15 9297 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9298 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9299
9300 case OP_ATR_VAL:
9301 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9302 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9303 type = exp->elts[pc + 2].type;
14f9c5c9 9304 if (noside == EVAL_SKIP)
76a01679 9305 goto nosideret;
4c4b4cd2 9306 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9307 return value_zero (type, not_lval);
4c4b4cd2 9308 else
76a01679 9309 return value_val_atr (type, arg1);
4c4b4cd2
PH
9310
9311 case BINOP_EXP:
9312 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9313 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9314 if (noside == EVAL_SKIP)
9315 goto nosideret;
9316 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9317 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9318 else
f44316fa
UW
9319 {
9320 /* For integer exponentiation operations,
9321 only promote the first argument. */
9322 if (is_integral_type (value_type (arg2)))
9323 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9324 else
9325 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9326
9327 return value_binop (arg1, arg2, op);
9328 }
4c4b4cd2
PH
9329
9330 case UNOP_PLUS:
9331 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9332 if (noside == EVAL_SKIP)
9333 goto nosideret;
9334 else
9335 return arg1;
9336
9337 case UNOP_ABS:
9338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9339 if (noside == EVAL_SKIP)
9340 goto nosideret;
f44316fa 9341 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9342 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9343 return value_neg (arg1);
14f9c5c9 9344 else
4c4b4cd2 9345 return arg1;
14f9c5c9
AS
9346
9347 case UNOP_IND:
6b0d7253 9348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9349 if (noside == EVAL_SKIP)
4c4b4cd2 9350 goto nosideret;
df407dfe 9351 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9353 {
9354 if (ada_is_array_descriptor_type (type))
9355 /* GDB allows dereferencing GNAT array descriptors. */
9356 {
9357 struct type *arrType = ada_type_of_array (arg1, 0);
9358 if (arrType == NULL)
323e0a4a 9359 error (_("Attempt to dereference null array pointer."));
00a4c844 9360 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9361 }
9362 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9363 || TYPE_CODE (type) == TYPE_CODE_REF
9364 /* In C you can dereference an array to get the 1st elt. */
9365 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9366 {
9367 type = to_static_fixed_type
9368 (ada_aligned_type
9369 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9370 check_size (type);
9371 return value_zero (type, lval_memory);
9372 }
4c4b4cd2 9373 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9374 {
9375 /* GDB allows dereferencing an int. */
9376 if (expect_type == NULL)
9377 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9378 lval_memory);
9379 else
9380 {
9381 expect_type =
9382 to_static_fixed_type (ada_aligned_type (expect_type));
9383 return value_zero (expect_type, lval_memory);
9384 }
9385 }
4c4b4cd2 9386 else
323e0a4a 9387 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9388 }
76a01679 9389 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9390 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9391
96967637
JB
9392 if (TYPE_CODE (type) == TYPE_CODE_INT)
9393 /* GDB allows dereferencing an int. If we were given
9394 the expect_type, then use that as the target type.
9395 Otherwise, assume that the target type is an int. */
9396 {
9397 if (expect_type != NULL)
9398 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9399 arg1));
9400 else
9401 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9402 (CORE_ADDR) value_as_address (arg1));
9403 }
6b0d7253 9404
4c4b4cd2
PH
9405 if (ada_is_array_descriptor_type (type))
9406 /* GDB allows dereferencing GNAT array descriptors. */
9407 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9408 else
4c4b4cd2 9409 return ada_value_ind (arg1);
14f9c5c9
AS
9410
9411 case STRUCTOP_STRUCT:
9412 tem = longest_to_int (exp->elts[pc + 1].longconst);
9413 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9415 if (noside == EVAL_SKIP)
4c4b4cd2 9416 goto nosideret;
14f9c5c9 9417 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9418 {
df407dfe 9419 struct type *type1 = value_type (arg1);
76a01679
JB
9420 if (ada_is_tagged_type (type1, 1))
9421 {
9422 type = ada_lookup_struct_elt_type (type1,
9423 &exp->elts[pc + 2].string,
9424 1, 1, NULL);
9425 if (type == NULL)
9426 /* In this case, we assume that the field COULD exist
9427 in some extension of the type. Return an object of
9428 "type" void, which will match any formal
9429 (see ada_type_match). */
30b15541
UW
9430 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9431 lval_memory);
76a01679
JB
9432 }
9433 else
9434 type =
9435 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9436 0, NULL);
9437
9438 return value_zero (ada_aligned_type (type), lval_memory);
9439 }
14f9c5c9 9440 else
284614f0
JB
9441 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9442 arg1 = unwrap_value (arg1);
9443 return ada_to_fixed_value (arg1);
9444
14f9c5c9 9445 case OP_TYPE:
4c4b4cd2
PH
9446 /* The value is not supposed to be used. This is here to make it
9447 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9448 (*pos) += 2;
9449 if (noside == EVAL_SKIP)
4c4b4cd2 9450 goto nosideret;
14f9c5c9 9451 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9452 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9453 else
323e0a4a 9454 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9455
9456 case OP_AGGREGATE:
9457 case OP_CHOICES:
9458 case OP_OTHERS:
9459 case OP_DISCRETE_RANGE:
9460 case OP_POSITIONAL:
9461 case OP_NAME:
9462 if (noside == EVAL_NORMAL)
9463 switch (op)
9464 {
9465 case OP_NAME:
9466 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9467 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9468 case OP_AGGREGATE:
9469 error (_("Aggregates only allowed on the right of an assignment"));
9470 default:
e1d5a0d2 9471 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9472 }
9473
9474 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9475 *pos += oplen - 1;
9476 for (tem = 0; tem < nargs; tem += 1)
9477 ada_evaluate_subexp (NULL, exp, pos, noside);
9478 goto nosideret;
14f9c5c9
AS
9479 }
9480
9481nosideret:
22601c15 9482 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 9483}
14f9c5c9 9484\f
d2e4a39e 9485
4c4b4cd2 9486 /* Fixed point */
14f9c5c9
AS
9487
9488/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9489 type name that encodes the 'small and 'delta information.
4c4b4cd2 9490 Otherwise, return NULL. */
14f9c5c9 9491
d2e4a39e 9492static const char *
ebf56fd3 9493fixed_type_info (struct type *type)
14f9c5c9 9494{
d2e4a39e 9495 const char *name = ada_type_name (type);
14f9c5c9
AS
9496 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9497
d2e4a39e
AS
9498 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9499 {
14f9c5c9
AS
9500 const char *tail = strstr (name, "___XF_");
9501 if (tail == NULL)
4c4b4cd2 9502 return NULL;
d2e4a39e 9503 else
4c4b4cd2 9504 return tail + 5;
14f9c5c9
AS
9505 }
9506 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9507 return fixed_type_info (TYPE_TARGET_TYPE (type));
9508 else
9509 return NULL;
9510}
9511
4c4b4cd2 9512/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9513
9514int
ebf56fd3 9515ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9516{
9517 return fixed_type_info (type) != NULL;
9518}
9519
4c4b4cd2
PH
9520/* Return non-zero iff TYPE represents a System.Address type. */
9521
9522int
9523ada_is_system_address_type (struct type *type)
9524{
9525 return (TYPE_NAME (type)
9526 && strcmp (TYPE_NAME (type), "system__address") == 0);
9527}
9528
14f9c5c9
AS
9529/* Assuming that TYPE is the representation of an Ada fixed-point
9530 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9531 delta cannot be determined. */
14f9c5c9
AS
9532
9533DOUBLEST
ebf56fd3 9534ada_delta (struct type *type)
14f9c5c9
AS
9535{
9536 const char *encoding = fixed_type_info (type);
facc390f 9537 DOUBLEST num, den;
14f9c5c9 9538
facc390f
JB
9539 /* Strictly speaking, num and den are encoded as integer. However,
9540 they may not fit into a long, and they will have to be converted
9541 to DOUBLEST anyway. So scan them as DOUBLEST. */
9542 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9543 &num, &den) < 2)
14f9c5c9 9544 return -1.0;
d2e4a39e 9545 else
facc390f 9546 return num / den;
14f9c5c9
AS
9547}
9548
9549/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9550 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9551
9552static DOUBLEST
ebf56fd3 9553scaling_factor (struct type *type)
14f9c5c9
AS
9554{
9555 const char *encoding = fixed_type_info (type);
facc390f 9556 DOUBLEST num0, den0, num1, den1;
14f9c5c9 9557 int n;
d2e4a39e 9558
facc390f
JB
9559 /* Strictly speaking, num's and den's are encoded as integer. However,
9560 they may not fit into a long, and they will have to be converted
9561 to DOUBLEST anyway. So scan them as DOUBLEST. */
9562 n = sscanf (encoding,
9563 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9564 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9565 &num0, &den0, &num1, &den1);
14f9c5c9
AS
9566
9567 if (n < 2)
9568 return 1.0;
9569 else if (n == 4)
facc390f 9570 return num1 / den1;
d2e4a39e 9571 else
facc390f 9572 return num0 / den0;
14f9c5c9
AS
9573}
9574
9575
9576/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9577 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9578
9579DOUBLEST
ebf56fd3 9580ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9581{
d2e4a39e 9582 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9583}
9584
4c4b4cd2
PH
9585/* The representation of a fixed-point value of type TYPE
9586 corresponding to the value X. */
14f9c5c9
AS
9587
9588LONGEST
ebf56fd3 9589ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9590{
9591 return (LONGEST) (x / scaling_factor (type) + 0.5);
9592}
9593
14f9c5c9 9594\f
d2e4a39e 9595
4c4b4cd2 9596 /* Range types */
14f9c5c9
AS
9597
9598/* Scan STR beginning at position K for a discriminant name, and
9599 return the value of that discriminant field of DVAL in *PX. If
9600 PNEW_K is not null, put the position of the character beyond the
9601 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9602 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9603
9604static int
07d8f827 9605scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9606 int *pnew_k)
14f9c5c9
AS
9607{
9608 static char *bound_buffer = NULL;
9609 static size_t bound_buffer_len = 0;
9610 char *bound;
9611 char *pend;
d2e4a39e 9612 struct value *bound_val;
14f9c5c9
AS
9613
9614 if (dval == NULL || str == NULL || str[k] == '\0')
9615 return 0;
9616
d2e4a39e 9617 pend = strstr (str + k, "__");
14f9c5c9
AS
9618 if (pend == NULL)
9619 {
d2e4a39e 9620 bound = str + k;
14f9c5c9
AS
9621 k += strlen (bound);
9622 }
d2e4a39e 9623 else
14f9c5c9 9624 {
d2e4a39e 9625 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9626 bound = bound_buffer;
d2e4a39e
AS
9627 strncpy (bound_buffer, str + k, pend - (str + k));
9628 bound[pend - (str + k)] = '\0';
9629 k = pend - str;
14f9c5c9 9630 }
d2e4a39e 9631
df407dfe 9632 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9633 if (bound_val == NULL)
9634 return 0;
9635
9636 *px = value_as_long (bound_val);
9637 if (pnew_k != NULL)
9638 *pnew_k = k;
9639 return 1;
9640}
9641
9642/* Value of variable named NAME in the current environment. If
9643 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9644 otherwise causes an error with message ERR_MSG. */
9645
d2e4a39e
AS
9646static struct value *
9647get_var_value (char *name, char *err_msg)
14f9c5c9 9648{
4c4b4cd2 9649 struct ada_symbol_info *syms;
14f9c5c9
AS
9650 int nsyms;
9651
4c4b4cd2
PH
9652 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9653 &syms);
14f9c5c9
AS
9654
9655 if (nsyms != 1)
9656 {
9657 if (err_msg == NULL)
4c4b4cd2 9658 return 0;
14f9c5c9 9659 else
8a3fe4f8 9660 error (("%s"), err_msg);
14f9c5c9
AS
9661 }
9662
4c4b4cd2 9663 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9664}
d2e4a39e 9665
14f9c5c9 9666/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9667 no such variable found, returns 0, and sets *FLAG to 0. If
9668 successful, sets *FLAG to 1. */
9669
14f9c5c9 9670LONGEST
4c4b4cd2 9671get_int_var_value (char *name, int *flag)
14f9c5c9 9672{
4c4b4cd2 9673 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9674
14f9c5c9
AS
9675 if (var_val == 0)
9676 {
9677 if (flag != NULL)
4c4b4cd2 9678 *flag = 0;
14f9c5c9
AS
9679 return 0;
9680 }
9681 else
9682 {
9683 if (flag != NULL)
4c4b4cd2 9684 *flag = 1;
14f9c5c9
AS
9685 return value_as_long (var_val);
9686 }
9687}
d2e4a39e 9688
14f9c5c9
AS
9689
9690/* Return a range type whose base type is that of the range type named
9691 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9692 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
9693 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9694 corresponding range type from debug information; fall back to using it
9695 if symbol lookup fails. If a new type must be created, allocate it
9696 like ORIG_TYPE was. The bounds information, in general, is encoded
9697 in NAME, the base type given in the named range type. */
14f9c5c9 9698
d2e4a39e 9699static struct type *
1ce677a4 9700to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
14f9c5c9
AS
9701{
9702 struct type *raw_type = ada_find_any_type (name);
9703 struct type *base_type;
d2e4a39e 9704 char *subtype_info;
14f9c5c9 9705
1ce677a4 9706 /* Fall back to the original type if symbol lookup failed. */
dddfab26 9707 if (raw_type == NULL)
1ce677a4 9708 raw_type = orig_type;
dddfab26 9709
1ce677a4 9710 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
9711 base_type = TYPE_TARGET_TYPE (raw_type);
9712 else
9713 base_type = raw_type;
9714
9715 subtype_info = strstr (name, "___XD");
9716 if (subtype_info == NULL)
690cc4eb 9717 {
43bbcdc2
PH
9718 LONGEST L = ada_discrete_type_low_bound (raw_type);
9719 LONGEST U = ada_discrete_type_high_bound (raw_type);
690cc4eb
PH
9720 if (L < INT_MIN || U > INT_MAX)
9721 return raw_type;
9722 else
e9bb382b 9723 return create_range_type (alloc_type_copy (orig_type), raw_type,
43bbcdc2
PH
9724 ada_discrete_type_low_bound (raw_type),
9725 ada_discrete_type_high_bound (raw_type));
690cc4eb 9726 }
14f9c5c9
AS
9727 else
9728 {
9729 static char *name_buf = NULL;
9730 static size_t name_len = 0;
9731 int prefix_len = subtype_info - name;
9732 LONGEST L, U;
9733 struct type *type;
9734 char *bounds_str;
9735 int n;
9736
9737 GROW_VECT (name_buf, name_len, prefix_len + 5);
9738 strncpy (name_buf, name, prefix_len);
9739 name_buf[prefix_len] = '\0';
9740
9741 subtype_info += 5;
9742 bounds_str = strchr (subtype_info, '_');
9743 n = 1;
9744
d2e4a39e 9745 if (*subtype_info == 'L')
4c4b4cd2
PH
9746 {
9747 if (!ada_scan_number (bounds_str, n, &L, &n)
9748 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9749 return raw_type;
9750 if (bounds_str[n] == '_')
9751 n += 2;
9752 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9753 n += 1;
9754 subtype_info += 1;
9755 }
d2e4a39e 9756 else
4c4b4cd2
PH
9757 {
9758 int ok;
9759 strcpy (name_buf + prefix_len, "___L");
9760 L = get_int_var_value (name_buf, &ok);
9761 if (!ok)
9762 {
323e0a4a 9763 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9764 L = 1;
9765 }
9766 }
14f9c5c9 9767
d2e4a39e 9768 if (*subtype_info == 'U')
4c4b4cd2
PH
9769 {
9770 if (!ada_scan_number (bounds_str, n, &U, &n)
9771 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9772 return raw_type;
9773 }
d2e4a39e 9774 else
4c4b4cd2
PH
9775 {
9776 int ok;
9777 strcpy (name_buf + prefix_len, "___U");
9778 U = get_int_var_value (name_buf, &ok);
9779 if (!ok)
9780 {
323e0a4a 9781 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9782 U = L;
9783 }
9784 }
14f9c5c9 9785
e9bb382b 9786 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
d2e4a39e 9787 TYPE_NAME (type) = name;
14f9c5c9
AS
9788 return type;
9789 }
9790}
9791
4c4b4cd2
PH
9792/* True iff NAME is the name of a range type. */
9793
14f9c5c9 9794int
d2e4a39e 9795ada_is_range_type_name (const char *name)
14f9c5c9
AS
9796{
9797 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9798}
14f9c5c9 9799\f
d2e4a39e 9800
4c4b4cd2
PH
9801 /* Modular types */
9802
9803/* True iff TYPE is an Ada modular type. */
14f9c5c9 9804
14f9c5c9 9805int
d2e4a39e 9806ada_is_modular_type (struct type *type)
14f9c5c9 9807{
4c4b4cd2 9808 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9809
9810 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9811 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9812 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9813}
9814
0056e4d5
JB
9815/* Try to determine the lower and upper bounds of the given modular type
9816 using the type name only. Return non-zero and set L and U as the lower
9817 and upper bounds (respectively) if successful. */
9818
9819int
9820ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9821{
9822 char *name = ada_type_name (type);
9823 char *suffix;
9824 int k;
9825 LONGEST U;
9826
9827 if (name == NULL)
9828 return 0;
9829
9830 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9831 we are looking for static bounds, which means an __XDLU suffix.
9832 Moreover, we know that the lower bound of modular types is always
9833 zero, so the actual suffix should start with "__XDLU_0__", and
9834 then be followed by the upper bound value. */
9835 suffix = strstr (name, "__XDLU_0__");
9836 if (suffix == NULL)
9837 return 0;
9838 k = 10;
9839 if (!ada_scan_number (suffix, k, &U, NULL))
9840 return 0;
9841
9842 *modulus = (ULONGEST) U + 1;
9843 return 1;
9844}
9845
4c4b4cd2
PH
9846/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9847
61ee279c 9848ULONGEST
0056e4d5 9849ada_modulus (struct type *type)
14f9c5c9 9850{
43bbcdc2 9851 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9852}
d2e4a39e 9853\f
f7f9143b
JB
9854
9855/* Ada exception catchpoint support:
9856 ---------------------------------
9857
9858 We support 3 kinds of exception catchpoints:
9859 . catchpoints on Ada exceptions
9860 . catchpoints on unhandled Ada exceptions
9861 . catchpoints on failed assertions
9862
9863 Exceptions raised during failed assertions, or unhandled exceptions
9864 could perfectly be caught with the general catchpoint on Ada exceptions.
9865 However, we can easily differentiate these two special cases, and having
9866 the option to distinguish these two cases from the rest can be useful
9867 to zero-in on certain situations.
9868
9869 Exception catchpoints are a specialized form of breakpoint,
9870 since they rely on inserting breakpoints inside known routines
9871 of the GNAT runtime. The implementation therefore uses a standard
9872 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9873 of breakpoint_ops.
9874
0259addd
JB
9875 Support in the runtime for exception catchpoints have been changed
9876 a few times already, and these changes affect the implementation
9877 of these catchpoints. In order to be able to support several
9878 variants of the runtime, we use a sniffer that will determine
9879 the runtime variant used by the program being debugged.
9880
f7f9143b
JB
9881 At this time, we do not support the use of conditions on Ada exception
9882 catchpoints. The COND and COND_STRING fields are therefore set
9883 to NULL (most of the time, see below).
9884
9885 Conditions where EXP_STRING, COND, and COND_STRING are used:
9886
9887 When a user specifies the name of a specific exception in the case
9888 of catchpoints on Ada exceptions, we store the name of that exception
9889 in the EXP_STRING. We then translate this request into an actual
9890 condition stored in COND_STRING, and then parse it into an expression
9891 stored in COND. */
9892
9893/* The different types of catchpoints that we introduced for catching
9894 Ada exceptions. */
9895
9896enum exception_catchpoint_kind
9897{
9898 ex_catch_exception,
9899 ex_catch_exception_unhandled,
9900 ex_catch_assert
9901};
9902
3d0b0fa3
JB
9903/* Ada's standard exceptions. */
9904
9905static char *standard_exc[] = {
9906 "constraint_error",
9907 "program_error",
9908 "storage_error",
9909 "tasking_error"
9910};
9911
0259addd
JB
9912typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9913
9914/* A structure that describes how to support exception catchpoints
9915 for a given executable. */
9916
9917struct exception_support_info
9918{
9919 /* The name of the symbol to break on in order to insert
9920 a catchpoint on exceptions. */
9921 const char *catch_exception_sym;
9922
9923 /* The name of the symbol to break on in order to insert
9924 a catchpoint on unhandled exceptions. */
9925 const char *catch_exception_unhandled_sym;
9926
9927 /* The name of the symbol to break on in order to insert
9928 a catchpoint on failed assertions. */
9929 const char *catch_assert_sym;
9930
9931 /* Assuming that the inferior just triggered an unhandled exception
9932 catchpoint, this function is responsible for returning the address
9933 in inferior memory where the name of that exception is stored.
9934 Return zero if the address could not be computed. */
9935 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9936};
9937
9938static CORE_ADDR ada_unhandled_exception_name_addr (void);
9939static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9940
9941/* The following exception support info structure describes how to
9942 implement exception catchpoints with the latest version of the
9943 Ada runtime (as of 2007-03-06). */
9944
9945static const struct exception_support_info default_exception_support_info =
9946{
9947 "__gnat_debug_raise_exception", /* catch_exception_sym */
9948 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9949 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9950 ada_unhandled_exception_name_addr
9951};
9952
9953/* The following exception support info structure describes how to
9954 implement exception catchpoints with a slightly older version
9955 of the Ada runtime. */
9956
9957static const struct exception_support_info exception_support_info_fallback =
9958{
9959 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9960 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9961 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9962 ada_unhandled_exception_name_addr_from_raise
9963};
9964
9965/* For each executable, we sniff which exception info structure to use
9966 and cache it in the following global variable. */
9967
9968static const struct exception_support_info *exception_info = NULL;
9969
9970/* Inspect the Ada runtime and determine which exception info structure
9971 should be used to provide support for exception catchpoints.
9972
9973 This function will always set exception_info, or raise an error. */
9974
9975static void
9976ada_exception_support_info_sniffer (void)
9977{
9978 struct symbol *sym;
9979
9980 /* If the exception info is already known, then no need to recompute it. */
9981 if (exception_info != NULL)
9982 return;
9983
9984 /* Check the latest (default) exception support info. */
9985 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9986 NULL, VAR_DOMAIN);
9987 if (sym != NULL)
9988 {
9989 exception_info = &default_exception_support_info;
9990 return;
9991 }
9992
9993 /* Try our fallback exception suport info. */
9994 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9995 NULL, VAR_DOMAIN);
9996 if (sym != NULL)
9997 {
9998 exception_info = &exception_support_info_fallback;
9999 return;
10000 }
10001
10002 /* Sometimes, it is normal for us to not be able to find the routine
10003 we are looking for. This happens when the program is linked with
10004 the shared version of the GNAT runtime, and the program has not been
10005 started yet. Inform the user of these two possible causes if
10006 applicable. */
10007
ccefe4c4 10008 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10009 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10010
10011 /* If the symbol does not exist, then check that the program is
10012 already started, to make sure that shared libraries have been
10013 loaded. If it is not started, this may mean that the symbol is
10014 in a shared library. */
10015
10016 if (ptid_get_pid (inferior_ptid) == 0)
10017 error (_("Unable to insert catchpoint. Try to start the program first."));
10018
10019 /* At this point, we know that we are debugging an Ada program and
10020 that the inferior has been started, but we still are not able to
10021 find the run-time symbols. That can mean that we are in
10022 configurable run time mode, or that a-except as been optimized
10023 out by the linker... In any case, at this point it is not worth
10024 supporting this feature. */
10025
10026 error (_("Cannot insert catchpoints in this configuration."));
10027}
10028
10029/* An observer of "executable_changed" events.
10030 Its role is to clear certain cached values that need to be recomputed
10031 each time a new executable is loaded by GDB. */
10032
10033static void
781b42b0 10034ada_executable_changed_observer (void)
0259addd
JB
10035{
10036 /* If the executable changed, then it is possible that the Ada runtime
10037 is different. So we need to invalidate the exception support info
10038 cache. */
10039 exception_info = NULL;
10040}
10041
f7f9143b
JB
10042/* True iff FRAME is very likely to be that of a function that is
10043 part of the runtime system. This is all very heuristic, but is
10044 intended to be used as advice as to what frames are uninteresting
10045 to most users. */
10046
10047static int
10048is_known_support_routine (struct frame_info *frame)
10049{
4ed6b5be 10050 struct symtab_and_line sal;
f7f9143b 10051 char *func_name;
692465f1 10052 enum language func_lang;
f7f9143b 10053 int i;
f7f9143b 10054
4ed6b5be
JB
10055 /* If this code does not have any debugging information (no symtab),
10056 This cannot be any user code. */
f7f9143b 10057
4ed6b5be 10058 find_frame_sal (frame, &sal);
f7f9143b
JB
10059 if (sal.symtab == NULL)
10060 return 1;
10061
4ed6b5be
JB
10062 /* If there is a symtab, but the associated source file cannot be
10063 located, then assume this is not user code: Selecting a frame
10064 for which we cannot display the code would not be very helpful
10065 for the user. This should also take care of case such as VxWorks
10066 where the kernel has some debugging info provided for a few units. */
f7f9143b 10067
9bbc9174 10068 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10069 return 1;
10070
4ed6b5be
JB
10071 /* Check the unit filename againt the Ada runtime file naming.
10072 We also check the name of the objfile against the name of some
10073 known system libraries that sometimes come with debugging info
10074 too. */
10075
f7f9143b
JB
10076 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10077 {
10078 re_comp (known_runtime_file_name_patterns[i]);
10079 if (re_exec (sal.symtab->filename))
10080 return 1;
4ed6b5be
JB
10081 if (sal.symtab->objfile != NULL
10082 && re_exec (sal.symtab->objfile->name))
10083 return 1;
f7f9143b
JB
10084 }
10085
4ed6b5be 10086 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10087
692465f1 10088 find_frame_funname (frame, &func_name, &func_lang);
f7f9143b
JB
10089 if (func_name == NULL)
10090 return 1;
10091
10092 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10093 {
10094 re_comp (known_auxiliary_function_name_patterns[i]);
10095 if (re_exec (func_name))
10096 return 1;
10097 }
10098
10099 return 0;
10100}
10101
10102/* Find the first frame that contains debugging information and that is not
10103 part of the Ada run-time, starting from FI and moving upward. */
10104
0ef643c8 10105void
f7f9143b
JB
10106ada_find_printable_frame (struct frame_info *fi)
10107{
10108 for (; fi != NULL; fi = get_prev_frame (fi))
10109 {
10110 if (!is_known_support_routine (fi))
10111 {
10112 select_frame (fi);
10113 break;
10114 }
10115 }
10116
10117}
10118
10119/* Assuming that the inferior just triggered an unhandled exception
10120 catchpoint, return the address in inferior memory where the name
10121 of the exception is stored.
10122
10123 Return zero if the address could not be computed. */
10124
10125static CORE_ADDR
10126ada_unhandled_exception_name_addr (void)
0259addd
JB
10127{
10128 return parse_and_eval_address ("e.full_name");
10129}
10130
10131/* Same as ada_unhandled_exception_name_addr, except that this function
10132 should be used when the inferior uses an older version of the runtime,
10133 where the exception name needs to be extracted from a specific frame
10134 several frames up in the callstack. */
10135
10136static CORE_ADDR
10137ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10138{
10139 int frame_level;
10140 struct frame_info *fi;
10141
10142 /* To determine the name of this exception, we need to select
10143 the frame corresponding to RAISE_SYM_NAME. This frame is
10144 at least 3 levels up, so we simply skip the first 3 frames
10145 without checking the name of their associated function. */
10146 fi = get_current_frame ();
10147 for (frame_level = 0; frame_level < 3; frame_level += 1)
10148 if (fi != NULL)
10149 fi = get_prev_frame (fi);
10150
10151 while (fi != NULL)
10152 {
692465f1
JB
10153 char *func_name;
10154 enum language func_lang;
10155
10156 find_frame_funname (fi, &func_name, &func_lang);
f7f9143b 10157 if (func_name != NULL
0259addd 10158 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10159 break; /* We found the frame we were looking for... */
10160 fi = get_prev_frame (fi);
10161 }
10162
10163 if (fi == NULL)
10164 return 0;
10165
10166 select_frame (fi);
10167 return parse_and_eval_address ("id.full_name");
10168}
10169
10170/* Assuming the inferior just triggered an Ada exception catchpoint
10171 (of any type), return the address in inferior memory where the name
10172 of the exception is stored, if applicable.
10173
10174 Return zero if the address could not be computed, or if not relevant. */
10175
10176static CORE_ADDR
10177ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10178 struct breakpoint *b)
10179{
10180 switch (ex)
10181 {
10182 case ex_catch_exception:
10183 return (parse_and_eval_address ("e.full_name"));
10184 break;
10185
10186 case ex_catch_exception_unhandled:
0259addd 10187 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10188 break;
10189
10190 case ex_catch_assert:
10191 return 0; /* Exception name is not relevant in this case. */
10192 break;
10193
10194 default:
10195 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10196 break;
10197 }
10198
10199 return 0; /* Should never be reached. */
10200}
10201
10202/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10203 any error that ada_exception_name_addr_1 might cause to be thrown.
10204 When an error is intercepted, a warning with the error message is printed,
10205 and zero is returned. */
10206
10207static CORE_ADDR
10208ada_exception_name_addr (enum exception_catchpoint_kind ex,
10209 struct breakpoint *b)
10210{
10211 struct gdb_exception e;
10212 CORE_ADDR result = 0;
10213
10214 TRY_CATCH (e, RETURN_MASK_ERROR)
10215 {
10216 result = ada_exception_name_addr_1 (ex, b);
10217 }
10218
10219 if (e.reason < 0)
10220 {
10221 warning (_("failed to get exception name: %s"), e.message);
10222 return 0;
10223 }
10224
10225 return result;
10226}
10227
10228/* Implement the PRINT_IT method in the breakpoint_ops structure
10229 for all exception catchpoint kinds. */
10230
10231static enum print_stop_action
10232print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10233{
10234 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10235 char exception_name[256];
10236
10237 if (addr != 0)
10238 {
10239 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10240 exception_name [sizeof (exception_name) - 1] = '\0';
10241 }
10242
10243 ada_find_printable_frame (get_current_frame ());
10244
10245 annotate_catchpoint (b->number);
10246 switch (ex)
10247 {
10248 case ex_catch_exception:
10249 if (addr != 0)
10250 printf_filtered (_("\nCatchpoint %d, %s at "),
10251 b->number, exception_name);
10252 else
10253 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10254 break;
10255 case ex_catch_exception_unhandled:
10256 if (addr != 0)
10257 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10258 b->number, exception_name);
10259 else
10260 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10261 b->number);
10262 break;
10263 case ex_catch_assert:
10264 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10265 b->number);
10266 break;
10267 }
10268
10269 return PRINT_SRC_AND_LOC;
10270}
10271
10272/* Implement the PRINT_ONE method in the breakpoint_ops structure
10273 for all exception catchpoint kinds. */
10274
10275static void
10276print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 10277 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10278{
79a45b7d
TT
10279 struct value_print_options opts;
10280
10281 get_user_print_options (&opts);
10282 if (opts.addressprint)
f7f9143b
JB
10283 {
10284 annotate_field (4);
5af949e3 10285 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
10286 }
10287
10288 annotate_field (5);
a6d9a66e 10289 *last_loc = b->loc;
f7f9143b
JB
10290 switch (ex)
10291 {
10292 case ex_catch_exception:
10293 if (b->exp_string != NULL)
10294 {
10295 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10296
10297 ui_out_field_string (uiout, "what", msg);
10298 xfree (msg);
10299 }
10300 else
10301 ui_out_field_string (uiout, "what", "all Ada exceptions");
10302
10303 break;
10304
10305 case ex_catch_exception_unhandled:
10306 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10307 break;
10308
10309 case ex_catch_assert:
10310 ui_out_field_string (uiout, "what", "failed Ada assertions");
10311 break;
10312
10313 default:
10314 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10315 break;
10316 }
10317}
10318
10319/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10320 for all exception catchpoint kinds. */
10321
10322static void
10323print_mention_exception (enum exception_catchpoint_kind ex,
10324 struct breakpoint *b)
10325{
10326 switch (ex)
10327 {
10328 case ex_catch_exception:
10329 if (b->exp_string != NULL)
10330 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10331 b->number, b->exp_string);
10332 else
10333 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10334
10335 break;
10336
10337 case ex_catch_exception_unhandled:
10338 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10339 b->number);
10340 break;
10341
10342 case ex_catch_assert:
10343 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10344 break;
10345
10346 default:
10347 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10348 break;
10349 }
10350}
10351
10352/* Virtual table for "catch exception" breakpoints. */
10353
10354static enum print_stop_action
10355print_it_catch_exception (struct breakpoint *b)
10356{
10357 return print_it_exception (ex_catch_exception, b);
10358}
10359
10360static void
a6d9a66e 10361print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10362{
a6d9a66e 10363 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
10364}
10365
10366static void
10367print_mention_catch_exception (struct breakpoint *b)
10368{
10369 print_mention_exception (ex_catch_exception, b);
10370}
10371
10372static struct breakpoint_ops catch_exception_breakpoint_ops =
10373{
ce78b96d
JB
10374 NULL, /* insert */
10375 NULL, /* remove */
10376 NULL, /* breakpoint_hit */
f7f9143b
JB
10377 print_it_catch_exception,
10378 print_one_catch_exception,
10379 print_mention_catch_exception
10380};
10381
10382/* Virtual table for "catch exception unhandled" breakpoints. */
10383
10384static enum print_stop_action
10385print_it_catch_exception_unhandled (struct breakpoint *b)
10386{
10387 return print_it_exception (ex_catch_exception_unhandled, b);
10388}
10389
10390static void
a6d9a66e
UW
10391print_one_catch_exception_unhandled (struct breakpoint *b,
10392 struct bp_location **last_loc)
f7f9143b 10393{
a6d9a66e 10394 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
10395}
10396
10397static void
10398print_mention_catch_exception_unhandled (struct breakpoint *b)
10399{
10400 print_mention_exception (ex_catch_exception_unhandled, b);
10401}
10402
10403static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10404 NULL, /* insert */
10405 NULL, /* remove */
10406 NULL, /* breakpoint_hit */
f7f9143b
JB
10407 print_it_catch_exception_unhandled,
10408 print_one_catch_exception_unhandled,
10409 print_mention_catch_exception_unhandled
10410};
10411
10412/* Virtual table for "catch assert" breakpoints. */
10413
10414static enum print_stop_action
10415print_it_catch_assert (struct breakpoint *b)
10416{
10417 return print_it_exception (ex_catch_assert, b);
10418}
10419
10420static void
a6d9a66e 10421print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10422{
a6d9a66e 10423 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
10424}
10425
10426static void
10427print_mention_catch_assert (struct breakpoint *b)
10428{
10429 print_mention_exception (ex_catch_assert, b);
10430}
10431
10432static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10433 NULL, /* insert */
10434 NULL, /* remove */
10435 NULL, /* breakpoint_hit */
f7f9143b
JB
10436 print_it_catch_assert,
10437 print_one_catch_assert,
10438 print_mention_catch_assert
10439};
10440
10441/* Return non-zero if B is an Ada exception catchpoint. */
10442
10443int
10444ada_exception_catchpoint_p (struct breakpoint *b)
10445{
10446 return (b->ops == &catch_exception_breakpoint_ops
10447 || b->ops == &catch_exception_unhandled_breakpoint_ops
10448 || b->ops == &catch_assert_breakpoint_ops);
10449}
10450
f7f9143b
JB
10451/* Return a newly allocated copy of the first space-separated token
10452 in ARGSP, and then adjust ARGSP to point immediately after that
10453 token.
10454
10455 Return NULL if ARGPS does not contain any more tokens. */
10456
10457static char *
10458ada_get_next_arg (char **argsp)
10459{
10460 char *args = *argsp;
10461 char *end;
10462 char *result;
10463
10464 /* Skip any leading white space. */
10465
10466 while (isspace (*args))
10467 args++;
10468
10469 if (args[0] == '\0')
10470 return NULL; /* No more arguments. */
10471
10472 /* Find the end of the current argument. */
10473
10474 end = args;
10475 while (*end != '\0' && !isspace (*end))
10476 end++;
10477
10478 /* Adjust ARGSP to point to the start of the next argument. */
10479
10480 *argsp = end;
10481
10482 /* Make a copy of the current argument and return it. */
10483
10484 result = xmalloc (end - args + 1);
10485 strncpy (result, args, end - args);
10486 result[end - args] = '\0';
10487
10488 return result;
10489}
10490
10491/* Split the arguments specified in a "catch exception" command.
10492 Set EX to the appropriate catchpoint type.
10493 Set EXP_STRING to the name of the specific exception if
10494 specified by the user. */
10495
10496static void
10497catch_ada_exception_command_split (char *args,
10498 enum exception_catchpoint_kind *ex,
10499 char **exp_string)
10500{
10501 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10502 char *exception_name;
10503
10504 exception_name = ada_get_next_arg (&args);
10505 make_cleanup (xfree, exception_name);
10506
10507 /* Check that we do not have any more arguments. Anything else
10508 is unexpected. */
10509
10510 while (isspace (*args))
10511 args++;
10512
10513 if (args[0] != '\0')
10514 error (_("Junk at end of expression"));
10515
10516 discard_cleanups (old_chain);
10517
10518 if (exception_name == NULL)
10519 {
10520 /* Catch all exceptions. */
10521 *ex = ex_catch_exception;
10522 *exp_string = NULL;
10523 }
10524 else if (strcmp (exception_name, "unhandled") == 0)
10525 {
10526 /* Catch unhandled exceptions. */
10527 *ex = ex_catch_exception_unhandled;
10528 *exp_string = NULL;
10529 }
10530 else
10531 {
10532 /* Catch a specific exception. */
10533 *ex = ex_catch_exception;
10534 *exp_string = exception_name;
10535 }
10536}
10537
10538/* Return the name of the symbol on which we should break in order to
10539 implement a catchpoint of the EX kind. */
10540
10541static const char *
10542ada_exception_sym_name (enum exception_catchpoint_kind ex)
10543{
0259addd
JB
10544 gdb_assert (exception_info != NULL);
10545
f7f9143b
JB
10546 switch (ex)
10547 {
10548 case ex_catch_exception:
0259addd 10549 return (exception_info->catch_exception_sym);
f7f9143b
JB
10550 break;
10551 case ex_catch_exception_unhandled:
0259addd 10552 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10553 break;
10554 case ex_catch_assert:
0259addd 10555 return (exception_info->catch_assert_sym);
f7f9143b
JB
10556 break;
10557 default:
10558 internal_error (__FILE__, __LINE__,
10559 _("unexpected catchpoint kind (%d)"), ex);
10560 }
10561}
10562
10563/* Return the breakpoint ops "virtual table" used for catchpoints
10564 of the EX kind. */
10565
10566static struct breakpoint_ops *
4b9eee8c 10567ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10568{
10569 switch (ex)
10570 {
10571 case ex_catch_exception:
10572 return (&catch_exception_breakpoint_ops);
10573 break;
10574 case ex_catch_exception_unhandled:
10575 return (&catch_exception_unhandled_breakpoint_ops);
10576 break;
10577 case ex_catch_assert:
10578 return (&catch_assert_breakpoint_ops);
10579 break;
10580 default:
10581 internal_error (__FILE__, __LINE__,
10582 _("unexpected catchpoint kind (%d)"), ex);
10583 }
10584}
10585
10586/* Return the condition that will be used to match the current exception
10587 being raised with the exception that the user wants to catch. This
10588 assumes that this condition is used when the inferior just triggered
10589 an exception catchpoint.
10590
10591 The string returned is a newly allocated string that needs to be
10592 deallocated later. */
10593
10594static char *
10595ada_exception_catchpoint_cond_string (const char *exp_string)
10596{
3d0b0fa3
JB
10597 int i;
10598
10599 /* The standard exceptions are a special case. They are defined in
10600 runtime units that have been compiled without debugging info; if
10601 EXP_STRING is the not-fully-qualified name of a standard
10602 exception (e.g. "constraint_error") then, during the evaluation
10603 of the condition expression, the symbol lookup on this name would
10604 *not* return this standard exception. The catchpoint condition
10605 may then be set only on user-defined exceptions which have the
10606 same not-fully-qualified name (e.g. my_package.constraint_error).
10607
10608 To avoid this unexcepted behavior, these standard exceptions are
10609 systematically prefixed by "standard". This means that "catch
10610 exception constraint_error" is rewritten into "catch exception
10611 standard.constraint_error".
10612
10613 If an exception named contraint_error is defined in another package of
10614 the inferior program, then the only way to specify this exception as a
10615 breakpoint condition is to use its fully-qualified named:
10616 e.g. my_package.constraint_error. */
10617
10618 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10619 {
10620 if (strcmp (standard_exc [i], exp_string) == 0)
10621 {
10622 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10623 exp_string);
10624 }
10625 }
f7f9143b
JB
10626 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10627}
10628
10629/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10630
10631static struct expression *
10632ada_parse_catchpoint_condition (char *cond_string,
10633 struct symtab_and_line sal)
10634{
10635 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10636}
10637
10638/* Return the symtab_and_line that should be used to insert an exception
10639 catchpoint of the TYPE kind.
10640
10641 EX_STRING should contain the name of a specific exception
10642 that the catchpoint should catch, or NULL otherwise.
10643
10644 The idea behind all the remaining parameters is that their names match
10645 the name of certain fields in the breakpoint structure that are used to
10646 handle exception catchpoints. This function returns the value to which
10647 these fields should be set, depending on the type of catchpoint we need
10648 to create.
10649
10650 If COND and COND_STRING are both non-NULL, any value they might
10651 hold will be free'ed, and then replaced by newly allocated ones.
10652 These parameters are left untouched otherwise. */
10653
10654static struct symtab_and_line
10655ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10656 char **addr_string, char **cond_string,
10657 struct expression **cond, struct breakpoint_ops **ops)
10658{
10659 const char *sym_name;
10660 struct symbol *sym;
10661 struct symtab_and_line sal;
10662
0259addd
JB
10663 /* First, find out which exception support info to use. */
10664 ada_exception_support_info_sniffer ();
10665
10666 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10667 the Ada exceptions requested by the user. */
10668
10669 sym_name = ada_exception_sym_name (ex);
10670 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10671
10672 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10673 that should be compiled with debugging information. As a result, we
10674 expect to find that symbol in the symtabs. If we don't find it, then
10675 the target most likely does not support Ada exceptions, or we cannot
10676 insert exception breakpoints yet, because the GNAT runtime hasn't been
10677 loaded yet. */
10678
10679 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10680 in such a way that no debugging information is produced for the symbol
10681 we are looking for. In this case, we could search the minimal symbols
10682 as a fall-back mechanism. This would still be operating in degraded
10683 mode, however, as we would still be missing the debugging information
10684 that is needed in order to extract the name of the exception being
10685 raised (this name is printed in the catchpoint message, and is also
10686 used when trying to catch a specific exception). We do not handle
10687 this case for now. */
10688
10689 if (sym == NULL)
0259addd 10690 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10691
10692 /* Make sure that the symbol we found corresponds to a function. */
10693 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10694 error (_("Symbol \"%s\" is not a function (class = %d)"),
10695 sym_name, SYMBOL_CLASS (sym));
10696
10697 sal = find_function_start_sal (sym, 1);
10698
10699 /* Set ADDR_STRING. */
10700
10701 *addr_string = xstrdup (sym_name);
10702
10703 /* Set the COND and COND_STRING (if not NULL). */
10704
10705 if (cond_string != NULL && cond != NULL)
10706 {
10707 if (*cond_string != NULL)
10708 {
10709 xfree (*cond_string);
10710 *cond_string = NULL;
10711 }
10712 if (*cond != NULL)
10713 {
10714 xfree (*cond);
10715 *cond = NULL;
10716 }
10717 if (exp_string != NULL)
10718 {
10719 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10720 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10721 }
10722 }
10723
10724 /* Set OPS. */
4b9eee8c 10725 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10726
10727 return sal;
10728}
10729
10730/* Parse the arguments (ARGS) of the "catch exception" command.
10731
10732 Set TYPE to the appropriate exception catchpoint type.
10733 If the user asked the catchpoint to catch only a specific
10734 exception, then save the exception name in ADDR_STRING.
10735
10736 See ada_exception_sal for a description of all the remaining
10737 function arguments of this function. */
10738
10739struct symtab_and_line
10740ada_decode_exception_location (char *args, char **addr_string,
10741 char **exp_string, char **cond_string,
10742 struct expression **cond,
10743 struct breakpoint_ops **ops)
10744{
10745 enum exception_catchpoint_kind ex;
10746
10747 catch_ada_exception_command_split (args, &ex, exp_string);
10748 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10749 cond, ops);
10750}
10751
10752struct symtab_and_line
10753ada_decode_assert_location (char *args, char **addr_string,
10754 struct breakpoint_ops **ops)
10755{
10756 /* Check that no argument where provided at the end of the command. */
10757
10758 if (args != NULL)
10759 {
10760 while (isspace (*args))
10761 args++;
10762 if (*args != '\0')
10763 error (_("Junk at end of arguments."));
10764 }
10765
10766 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10767 ops);
10768}
10769
4c4b4cd2
PH
10770 /* Operators */
10771/* Information about operators given special treatment in functions
10772 below. */
10773/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10774
10775#define ADA_OPERATORS \
10776 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10777 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10778 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10779 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10780 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10781 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10782 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10783 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10784 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10785 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10786 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10787 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10788 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10789 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10790 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10791 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10792 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10793 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10794 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10795
10796static void
10797ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10798{
10799 switch (exp->elts[pc - 1].opcode)
10800 {
76a01679 10801 default:
4c4b4cd2
PH
10802 operator_length_standard (exp, pc, oplenp, argsp);
10803 break;
10804
10805#define OP_DEFN(op, len, args, binop) \
10806 case op: *oplenp = len; *argsp = args; break;
10807 ADA_OPERATORS;
10808#undef OP_DEFN
52ce6436
PH
10809
10810 case OP_AGGREGATE:
10811 *oplenp = 3;
10812 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10813 break;
10814
10815 case OP_CHOICES:
10816 *oplenp = 3;
10817 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10818 break;
4c4b4cd2
PH
10819 }
10820}
10821
10822static char *
10823ada_op_name (enum exp_opcode opcode)
10824{
10825 switch (opcode)
10826 {
76a01679 10827 default:
4c4b4cd2 10828 return op_name_standard (opcode);
52ce6436 10829
4c4b4cd2
PH
10830#define OP_DEFN(op, len, args, binop) case op: return #op;
10831 ADA_OPERATORS;
10832#undef OP_DEFN
52ce6436
PH
10833
10834 case OP_AGGREGATE:
10835 return "OP_AGGREGATE";
10836 case OP_CHOICES:
10837 return "OP_CHOICES";
10838 case OP_NAME:
10839 return "OP_NAME";
4c4b4cd2
PH
10840 }
10841}
10842
10843/* As for operator_length, but assumes PC is pointing at the first
10844 element of the operator, and gives meaningful results only for the
52ce6436 10845 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10846
10847static void
76a01679
JB
10848ada_forward_operator_length (struct expression *exp, int pc,
10849 int *oplenp, int *argsp)
4c4b4cd2 10850{
76a01679 10851 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10852 {
10853 default:
10854 *oplenp = *argsp = 0;
10855 break;
52ce6436 10856
4c4b4cd2
PH
10857#define OP_DEFN(op, len, args, binop) \
10858 case op: *oplenp = len; *argsp = args; break;
10859 ADA_OPERATORS;
10860#undef OP_DEFN
52ce6436
PH
10861
10862 case OP_AGGREGATE:
10863 *oplenp = 3;
10864 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10865 break;
10866
10867 case OP_CHOICES:
10868 *oplenp = 3;
10869 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10870 break;
10871
10872 case OP_STRING:
10873 case OP_NAME:
10874 {
10875 int len = longest_to_int (exp->elts[pc + 1].longconst);
10876 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10877 *argsp = 0;
10878 break;
10879 }
4c4b4cd2
PH
10880 }
10881}
10882
10883static int
10884ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10885{
10886 enum exp_opcode op = exp->elts[elt].opcode;
10887 int oplen, nargs;
10888 int pc = elt;
10889 int i;
76a01679 10890
4c4b4cd2
PH
10891 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10892
76a01679 10893 switch (op)
4c4b4cd2 10894 {
76a01679 10895 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10896 case OP_ATR_FIRST:
10897 case OP_ATR_LAST:
10898 case OP_ATR_LENGTH:
10899 case OP_ATR_IMAGE:
10900 case OP_ATR_MAX:
10901 case OP_ATR_MIN:
10902 case OP_ATR_MODULUS:
10903 case OP_ATR_POS:
10904 case OP_ATR_SIZE:
10905 case OP_ATR_TAG:
10906 case OP_ATR_VAL:
10907 break;
10908
10909 case UNOP_IN_RANGE:
10910 case UNOP_QUAL:
323e0a4a
AC
10911 /* XXX: gdb_sprint_host_address, type_sprint */
10912 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10913 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10914 fprintf_filtered (stream, " (");
10915 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10916 fprintf_filtered (stream, ")");
10917 break;
10918 case BINOP_IN_BOUNDS:
52ce6436
PH
10919 fprintf_filtered (stream, " (%d)",
10920 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10921 break;
10922 case TERNOP_IN_RANGE:
10923 break;
10924
52ce6436
PH
10925 case OP_AGGREGATE:
10926 case OP_OTHERS:
10927 case OP_DISCRETE_RANGE:
10928 case OP_POSITIONAL:
10929 case OP_CHOICES:
10930 break;
10931
10932 case OP_NAME:
10933 case OP_STRING:
10934 {
10935 char *name = &exp->elts[elt + 2].string;
10936 int len = longest_to_int (exp->elts[elt + 1].longconst);
10937 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10938 break;
10939 }
10940
4c4b4cd2
PH
10941 default:
10942 return dump_subexp_body_standard (exp, stream, elt);
10943 }
10944
10945 elt += oplen;
10946 for (i = 0; i < nargs; i += 1)
10947 elt = dump_subexp (exp, stream, elt);
10948
10949 return elt;
10950}
10951
10952/* The Ada extension of print_subexp (q.v.). */
10953
76a01679
JB
10954static void
10955ada_print_subexp (struct expression *exp, int *pos,
10956 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10957{
52ce6436 10958 int oplen, nargs, i;
4c4b4cd2
PH
10959 int pc = *pos;
10960 enum exp_opcode op = exp->elts[pc].opcode;
10961
10962 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10963
52ce6436 10964 *pos += oplen;
4c4b4cd2
PH
10965 switch (op)
10966 {
10967 default:
52ce6436 10968 *pos -= oplen;
4c4b4cd2
PH
10969 print_subexp_standard (exp, pos, stream, prec);
10970 return;
10971
10972 case OP_VAR_VALUE:
4c4b4cd2
PH
10973 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10974 return;
10975
10976 case BINOP_IN_BOUNDS:
323e0a4a 10977 /* XXX: sprint_subexp */
4c4b4cd2 10978 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10979 fputs_filtered (" in ", stream);
4c4b4cd2 10980 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10981 fputs_filtered ("'range", stream);
4c4b4cd2 10982 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
10983 fprintf_filtered (stream, "(%ld)",
10984 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
10985 return;
10986
10987 case TERNOP_IN_RANGE:
4c4b4cd2 10988 if (prec >= PREC_EQUAL)
76a01679 10989 fputs_filtered ("(", stream);
323e0a4a 10990 /* XXX: sprint_subexp */
4c4b4cd2 10991 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10992 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10993 print_subexp (exp, pos, stream, PREC_EQUAL);
10994 fputs_filtered (" .. ", stream);
10995 print_subexp (exp, pos, stream, PREC_EQUAL);
10996 if (prec >= PREC_EQUAL)
76a01679
JB
10997 fputs_filtered (")", stream);
10998 return;
4c4b4cd2
PH
10999
11000 case OP_ATR_FIRST:
11001 case OP_ATR_LAST:
11002 case OP_ATR_LENGTH:
11003 case OP_ATR_IMAGE:
11004 case OP_ATR_MAX:
11005 case OP_ATR_MIN:
11006 case OP_ATR_MODULUS:
11007 case OP_ATR_POS:
11008 case OP_ATR_SIZE:
11009 case OP_ATR_TAG:
11010 case OP_ATR_VAL:
4c4b4cd2 11011 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11012 {
11013 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11014 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11015 *pos += 3;
11016 }
4c4b4cd2 11017 else
76a01679 11018 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11019 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11020 if (nargs > 1)
76a01679
JB
11021 {
11022 int tem;
11023 for (tem = 1; tem < nargs; tem += 1)
11024 {
11025 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11026 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11027 }
11028 fputs_filtered (")", stream);
11029 }
4c4b4cd2 11030 return;
14f9c5c9 11031
4c4b4cd2 11032 case UNOP_QUAL:
4c4b4cd2
PH
11033 type_print (exp->elts[pc + 1].type, "", stream, 0);
11034 fputs_filtered ("'(", stream);
11035 print_subexp (exp, pos, stream, PREC_PREFIX);
11036 fputs_filtered (")", stream);
11037 return;
14f9c5c9 11038
4c4b4cd2 11039 case UNOP_IN_RANGE:
323e0a4a 11040 /* XXX: sprint_subexp */
4c4b4cd2 11041 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11042 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11043 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11044 return;
52ce6436
PH
11045
11046 case OP_DISCRETE_RANGE:
11047 print_subexp (exp, pos, stream, PREC_SUFFIX);
11048 fputs_filtered ("..", stream);
11049 print_subexp (exp, pos, stream, PREC_SUFFIX);
11050 return;
11051
11052 case OP_OTHERS:
11053 fputs_filtered ("others => ", stream);
11054 print_subexp (exp, pos, stream, PREC_SUFFIX);
11055 return;
11056
11057 case OP_CHOICES:
11058 for (i = 0; i < nargs-1; i += 1)
11059 {
11060 if (i > 0)
11061 fputs_filtered ("|", stream);
11062 print_subexp (exp, pos, stream, PREC_SUFFIX);
11063 }
11064 fputs_filtered (" => ", stream);
11065 print_subexp (exp, pos, stream, PREC_SUFFIX);
11066 return;
11067
11068 case OP_POSITIONAL:
11069 print_subexp (exp, pos, stream, PREC_SUFFIX);
11070 return;
11071
11072 case OP_AGGREGATE:
11073 fputs_filtered ("(", stream);
11074 for (i = 0; i < nargs; i += 1)
11075 {
11076 if (i > 0)
11077 fputs_filtered (", ", stream);
11078 print_subexp (exp, pos, stream, PREC_SUFFIX);
11079 }
11080 fputs_filtered (")", stream);
11081 return;
4c4b4cd2
PH
11082 }
11083}
14f9c5c9
AS
11084
11085/* Table mapping opcodes into strings for printing operators
11086 and precedences of the operators. */
11087
d2e4a39e
AS
11088static const struct op_print ada_op_print_tab[] = {
11089 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11090 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11091 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11092 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11093 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11094 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11095 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11096 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11097 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11098 {">=", BINOP_GEQ, PREC_ORDER, 0},
11099 {">", BINOP_GTR, PREC_ORDER, 0},
11100 {"<", BINOP_LESS, PREC_ORDER, 0},
11101 {">>", BINOP_RSH, PREC_SHIFT, 0},
11102 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11103 {"+", BINOP_ADD, PREC_ADD, 0},
11104 {"-", BINOP_SUB, PREC_ADD, 0},
11105 {"&", BINOP_CONCAT, PREC_ADD, 0},
11106 {"*", BINOP_MUL, PREC_MUL, 0},
11107 {"/", BINOP_DIV, PREC_MUL, 0},
11108 {"rem", BINOP_REM, PREC_MUL, 0},
11109 {"mod", BINOP_MOD, PREC_MUL, 0},
11110 {"**", BINOP_EXP, PREC_REPEAT, 0},
11111 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11112 {"-", UNOP_NEG, PREC_PREFIX, 0},
11113 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11114 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11115 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11116 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11117 {".all", UNOP_IND, PREC_SUFFIX, 1},
11118 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11119 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11120 {NULL, 0, 0, 0}
14f9c5c9
AS
11121};
11122\f
72d5681a
PH
11123enum ada_primitive_types {
11124 ada_primitive_type_int,
11125 ada_primitive_type_long,
11126 ada_primitive_type_short,
11127 ada_primitive_type_char,
11128 ada_primitive_type_float,
11129 ada_primitive_type_double,
11130 ada_primitive_type_void,
11131 ada_primitive_type_long_long,
11132 ada_primitive_type_long_double,
11133 ada_primitive_type_natural,
11134 ada_primitive_type_positive,
11135 ada_primitive_type_system_address,
11136 nr_ada_primitive_types
11137};
6c038f32
PH
11138
11139static void
d4a9a881 11140ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11141 struct language_arch_info *lai)
11142{
d4a9a881 11143 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 11144 lai->primitive_type_vector
d4a9a881 11145 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 11146 struct type *);
e9bb382b
UW
11147
11148 lai->primitive_type_vector [ada_primitive_type_int]
11149 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11150 0, "integer");
11151 lai->primitive_type_vector [ada_primitive_type_long]
11152 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11153 0, "long_integer");
11154 lai->primitive_type_vector [ada_primitive_type_short]
11155 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11156 0, "short_integer");
11157 lai->string_char_type
11158 = lai->primitive_type_vector [ada_primitive_type_char]
11159 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11160 lai->primitive_type_vector [ada_primitive_type_float]
11161 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11162 "float", NULL);
11163 lai->primitive_type_vector [ada_primitive_type_double]
11164 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11165 "long_float", NULL);
11166 lai->primitive_type_vector [ada_primitive_type_long_long]
11167 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11168 0, "long_long_integer");
11169 lai->primitive_type_vector [ada_primitive_type_long_double]
11170 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11171 "long_long_float", NULL);
11172 lai->primitive_type_vector [ada_primitive_type_natural]
11173 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11174 0, "natural");
11175 lai->primitive_type_vector [ada_primitive_type_positive]
11176 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11177 0, "positive");
11178 lai->primitive_type_vector [ada_primitive_type_void]
11179 = builtin->builtin_void;
11180
11181 lai->primitive_type_vector [ada_primitive_type_system_address]
11182 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
11183 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11184 = "system__address";
fbb06eb1 11185
47e729a8 11186 lai->bool_type_symbol = NULL;
fbb06eb1 11187 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11188}
6c038f32
PH
11189\f
11190 /* Language vector */
11191
11192/* Not really used, but needed in the ada_language_defn. */
11193
11194static void
6c7a06a3 11195emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11196{
6c7a06a3 11197 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11198}
11199
11200static int
11201parse (void)
11202{
11203 warnings_issued = 0;
11204 return ada_parse ();
11205}
11206
11207static const struct exp_descriptor ada_exp_descriptor = {
11208 ada_print_subexp,
11209 ada_operator_length,
11210 ada_op_name,
11211 ada_dump_subexp_body,
11212 ada_evaluate_subexp
11213};
11214
11215const struct language_defn ada_language_defn = {
11216 "ada", /* Language name */
11217 language_ada,
6c038f32
PH
11218 range_check_off,
11219 type_check_off,
11220 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11221 that's not quite what this means. */
6c038f32 11222 array_row_major,
9a044a89 11223 macro_expansion_no,
6c038f32
PH
11224 &ada_exp_descriptor,
11225 parse,
11226 ada_error,
11227 resolve,
11228 ada_printchar, /* Print a character constant */
11229 ada_printstr, /* Function to print string constant */
11230 emit_char, /* Function to print single char (not used) */
6c038f32 11231 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11232 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11233 ada_val_print, /* Print a value using appropriate syntax */
11234 ada_value_print, /* Print a top-level value */
11235 NULL, /* Language specific skip_trampoline */
2b2d9e11 11236 NULL, /* name_of_this */
6c038f32
PH
11237 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11238 basic_lookup_transparent_type, /* lookup_transparent_type */
11239 ada_la_decode, /* Language specific symbol demangler */
11240 NULL, /* Language specific class_name_from_physname */
11241 ada_op_print_tab, /* expression operators for printing */
11242 0, /* c-style arrays */
11243 1, /* String lower bound */
6c038f32 11244 ada_get_gdb_completer_word_break_characters,
41d27058 11245 ada_make_symbol_completion_list,
72d5681a 11246 ada_language_arch_info,
e79af960 11247 ada_print_array_index,
41f1b697 11248 default_pass_by_reference,
ae6a3a4c 11249 c_get_string,
6c038f32
PH
11250 LANG_MAGIC
11251};
11252
2c0b251b
PA
11253/* Provide a prototype to silence -Wmissing-prototypes. */
11254extern initialize_file_ftype _initialize_ada_language;
11255
5bf03f13
JB
11256/* Command-list for the "set/show ada" prefix command. */
11257static struct cmd_list_element *set_ada_list;
11258static struct cmd_list_element *show_ada_list;
11259
11260/* Implement the "set ada" prefix command. */
11261
11262static void
11263set_ada_command (char *arg, int from_tty)
11264{
11265 printf_unfiltered (_(\
11266"\"set ada\" must be followed by the name of a setting.\n"));
11267 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11268}
11269
11270/* Implement the "show ada" prefix command. */
11271
11272static void
11273show_ada_command (char *args, int from_tty)
11274{
11275 cmd_show_list (show_ada_list, from_tty, "");
11276}
11277
d2e4a39e 11278void
6c038f32 11279_initialize_ada_language (void)
14f9c5c9 11280{
6c038f32
PH
11281 add_language (&ada_language_defn);
11282
5bf03f13
JB
11283 add_prefix_cmd ("ada", no_class, set_ada_command,
11284 _("Prefix command for changing Ada-specfic settings"),
11285 &set_ada_list, "set ada ", 0, &setlist);
11286
11287 add_prefix_cmd ("ada", no_class, show_ada_command,
11288 _("Generic command for showing Ada-specific settings."),
11289 &show_ada_list, "show ada ", 0, &showlist);
11290
11291 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11292 &trust_pad_over_xvs, _("\
11293Enable or disable an optimization trusting PAD types over XVS types"), _("\
11294Show whether an optimization trusting PAD types over XVS types is activated"),
11295 _("\
11296This is related to the encoding used by the GNAT compiler. The debugger\n\
11297should normally trust the contents of PAD types, but certain older versions\n\
11298of GNAT have a bug that sometimes causes the information in the PAD type\n\
11299to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11300work around this bug. It is always safe to turn this option \"off\", but\n\
11301this incurs a slight performance penalty, so it is recommended to NOT change\n\
11302this option to \"off\" unless necessary."),
11303 NULL, NULL, &set_ada_list, &show_ada_list);
11304
6c038f32 11305 varsize_limit = 65536;
6c038f32
PH
11306
11307 obstack_init (&symbol_list_obstack);
11308
11309 decoded_names_store = htab_create_alloc
11310 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11311 NULL, xcalloc, xfree);
6b69afc4
JB
11312
11313 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11314}
This page took 2.120732 seconds and 4 git commands to generate.