Make current_source_* per-program-space
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
d55e5aa6 24#include "gdb_regex.h"
4de283e4
TT
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
14f9c5c9 28#include "gdbcmd.h"
4de283e4
TT
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
14f9c5c9 38#include "gdbcore.h"
4c4b4cd2 39#include "hashtab.h"
4de283e4
TT
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
04714b91 46#include "infcall.h"
4de283e4
TT
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
d55e5aa6 50#include "source.h"
4de283e4 51#include "observable.h"
268a13a5 52#include "gdbsupport/vec.h"
692465f1 53#include "stack.h"
268a13a5 54#include "gdbsupport/gdb_vecs.h"
79d43c61 55#include "typeprint.h"
4de283e4 56#include "namespace.h"
7f6aba03 57#include "cli/cli-style.h"
4de283e4
TT
58
59#include "psymtab.h"
40bc484c 60#include "value.h"
4de283e4
TT
61#include "mi/mi-common.h"
62#include "arch-utils.h"
63#include "cli/cli-utils.h"
268a13a5
TT
64#include "gdbsupport/function-view.h"
65#include "gdbsupport/byte-vector.h"
4de283e4 66#include <algorithm>
2ff0a947 67#include <map>
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40bc484c 109static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 110
4c4b4cd2 111static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
112 const struct block *,
113 const lookup_name_info &lookup_name,
114 domain_enum, struct objfile *);
14f9c5c9 115
22cee43f 116static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
117 const lookup_name_info &lookup_name,
118 domain_enum, int, int *);
22cee43f 119
d12307c1 120static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 121
76a01679 122static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 123 const struct block *);
14f9c5c9 124
4c4b4cd2
PH
125static int num_defns_collected (struct obstack *);
126
d12307c1 127static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 128
e9d9f57e 129static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
130 struct type *, int,
131 innermost_block_tracker *);
14f9c5c9 132
e9d9f57e 133static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 134 struct symbol *, const struct block *);
14f9c5c9 135
d2e4a39e 136static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 137
a121b7c1 138static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
139
140static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 141
d2e4a39e 142static int numeric_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int integer_type_p (struct type *);
14f9c5c9 145
d2e4a39e 146static int scalar_type_p (struct type *);
14f9c5c9 147
d2e4a39e 148static int discrete_type_p (struct type *);
14f9c5c9 149
a121b7c1 150static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 151 int, int);
4c4b4cd2 152
d2e4a39e 153static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 154
b4ba55a1
JB
155static struct type *ada_find_parallel_type_with_name (struct type *,
156 const char *);
157
d2e4a39e 158static int is_dynamic_field (struct type *, int);
14f9c5c9 159
10a2c479 160static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 161 const gdb_byte *,
4c4b4cd2
PH
162 CORE_ADDR, struct value *);
163
164static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 165
28c85d6c 166static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 167
d2e4a39e 168static struct type *to_static_fixed_type (struct type *);
f192137b 169static struct type *static_unwrap_type (struct type *type);
14f9c5c9 170
d2e4a39e 171static struct value *unwrap_value (struct value *);
14f9c5c9 172
ad82864c 173static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 174
ad82864c 175static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 176
ad82864c
JB
177static long decode_packed_array_bitsize (struct type *);
178
179static struct value *decode_constrained_packed_array (struct value *);
180
181static int ada_is_packed_array_type (struct type *);
182
183static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 184
d2e4a39e 185static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 186 struct value **);
14f9c5c9 187
4c4b4cd2
PH
188static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
14f9c5c9 190
d2e4a39e 191static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 192
d2e4a39e 193static int equiv_types (struct type *, struct type *);
14f9c5c9 194
d2e4a39e 195static int is_name_suffix (const char *);
14f9c5c9 196
73589123
PH
197static int advance_wild_match (const char **, const char *, int);
198
b5ec771e 199static bool wild_match (const char *name, const char *patn);
14f9c5c9 200
d2e4a39e 201static struct value *ada_coerce_ref (struct value *);
14f9c5c9 202
4c4b4cd2
PH
203static LONGEST pos_atr (struct value *);
204
3cb382c9 205static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 206
d2e4a39e 207static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static struct symbol *standard_lookup (const char *, const struct block *,
210 domain_enum);
14f9c5c9 211
108d56a4 212static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
213 struct type *);
214
215static struct value *ada_value_primitive_field (struct value *, int, int,
216 struct type *);
217
0d5cff50 218static int find_struct_field (const char *, struct type *, int,
52ce6436 219 struct type **, int *, int *, int *, int *);
4c4b4cd2 220
d12307c1 221static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 222 struct value **, int, const char *,
2a612529 223 struct type *, int);
4c4b4cd2 224
4c4b4cd2
PH
225static int ada_is_direct_array_type (struct type *);
226
72d5681a
PH
227static void ada_language_arch_info (struct gdbarch *,
228 struct language_arch_info *);
714e53ab 229
52ce6436
PH
230static struct value *ada_index_struct_field (int, struct value *, int,
231 struct type *);
232
233static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
234 struct expression *,
235 int *, enum noside);
52ce6436
PH
236
237static void aggregate_assign_from_choices (struct value *, struct value *,
238 struct expression *,
239 int *, LONGEST *, int *,
240 int, LONGEST, LONGEST);
241
242static void aggregate_assign_positional (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *, int,
245 LONGEST, LONGEST);
246
247
248static void aggregate_assign_others (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int, LONGEST, LONGEST);
251
252
253static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
254
255
256static struct value *ada_evaluate_subexp (struct type *, struct expression *,
257 int *, enum noside);
258
259static void ada_forward_operator_length (struct expression *, int, int *,
260 int *);
852dff6c
JB
261
262static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
263
264static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
265 (const lookup_name_info &lookup_name);
266
4c4b4cd2
PH
267\f
268
ee01b665
JB
269/* The result of a symbol lookup to be stored in our symbol cache. */
270
271struct cache_entry
272{
273 /* The name used to perform the lookup. */
274 const char *name;
275 /* The namespace used during the lookup. */
fe978cb0 276 domain_enum domain;
ee01b665
JB
277 /* The symbol returned by the lookup, or NULL if no matching symbol
278 was found. */
279 struct symbol *sym;
280 /* The block where the symbol was found, or NULL if no matching
281 symbol was found. */
282 const struct block *block;
283 /* A pointer to the next entry with the same hash. */
284 struct cache_entry *next;
285};
286
287/* The Ada symbol cache, used to store the result of Ada-mode symbol
288 lookups in the course of executing the user's commands.
289
290 The cache is implemented using a simple, fixed-sized hash.
291 The size is fixed on the grounds that there are not likely to be
292 all that many symbols looked up during any given session, regardless
293 of the size of the symbol table. If we decide to go to a resizable
294 table, let's just use the stuff from libiberty instead. */
295
296#define HASH_SIZE 1009
297
298struct ada_symbol_cache
299{
300 /* An obstack used to store the entries in our cache. */
301 struct obstack cache_space;
302
303 /* The root of the hash table used to implement our symbol cache. */
304 struct cache_entry *root[HASH_SIZE];
305};
306
307static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 308
4c4b4cd2 309/* Maximum-sized dynamic type. */
14f9c5c9
AS
310static unsigned int varsize_limit;
311
67cb5b2d 312static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
313#ifdef VMS
314 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
315#else
14f9c5c9 316 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 317#endif
14f9c5c9 318
4c4b4cd2 319/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 320static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 321 = "__gnat_ada_main_program_name";
14f9c5c9 322
4c4b4cd2
PH
323/* Limit on the number of warnings to raise per expression evaluation. */
324static int warning_limit = 2;
325
326/* Number of warning messages issued; reset to 0 by cleanups after
327 expression evaluation. */
328static int warnings_issued = 0;
329
330static const char *known_runtime_file_name_patterns[] = {
331 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
332};
333
334static const char *known_auxiliary_function_name_patterns[] = {
335 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
336};
337
c6044dd1
JB
338/* Maintenance-related settings for this module. */
339
340static struct cmd_list_element *maint_set_ada_cmdlist;
341static struct cmd_list_element *maint_show_ada_cmdlist;
342
343/* Implement the "maintenance set ada" (prefix) command. */
344
345static void
981a3fb3 346maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 347{
635c7e8a
TT
348 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
349 gdb_stdout);
c6044dd1
JB
350}
351
352/* Implement the "maintenance show ada" (prefix) command. */
353
354static void
981a3fb3 355maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
356{
357 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
358}
359
360/* The "maintenance ada set/show ignore-descriptive-type" value. */
361
491144b5 362static bool ada_ignore_descriptive_types_p = false;
c6044dd1 363
e802dbe0
JB
364 /* Inferior-specific data. */
365
366/* Per-inferior data for this module. */
367
368struct ada_inferior_data
369{
370 /* The ada__tags__type_specific_data type, which is used when decoding
371 tagged types. With older versions of GNAT, this type was directly
372 accessible through a component ("tsd") in the object tag. But this
373 is no longer the case, so we cache it for each inferior. */
f37b313d 374 struct type *tsd_type = nullptr;
3eecfa55
JB
375
376 /* The exception_support_info data. This data is used to determine
377 how to implement support for Ada exception catchpoints in a given
378 inferior. */
f37b313d 379 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
380};
381
382/* Our key to this module's inferior data. */
f37b313d 383static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
384
385/* Return our inferior data for the given inferior (INF).
386
387 This function always returns a valid pointer to an allocated
388 ada_inferior_data structure. If INF's inferior data has not
389 been previously set, this functions creates a new one with all
390 fields set to zero, sets INF's inferior to it, and then returns
391 a pointer to that newly allocated ada_inferior_data. */
392
393static struct ada_inferior_data *
394get_ada_inferior_data (struct inferior *inf)
395{
396 struct ada_inferior_data *data;
397
f37b313d 398 data = ada_inferior_data.get (inf);
e802dbe0 399 if (data == NULL)
f37b313d 400 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
401
402 return data;
403}
404
405/* Perform all necessary cleanups regarding our module's inferior data
406 that is required after the inferior INF just exited. */
407
408static void
409ada_inferior_exit (struct inferior *inf)
410{
f37b313d 411 ada_inferior_data.clear (inf);
e802dbe0
JB
412}
413
ee01b665
JB
414
415 /* program-space-specific data. */
416
417/* This module's per-program-space data. */
418struct ada_pspace_data
419{
f37b313d
TT
420 ~ada_pspace_data ()
421 {
422 if (sym_cache != NULL)
423 ada_free_symbol_cache (sym_cache);
424 }
425
ee01b665 426 /* The Ada symbol cache. */
f37b313d 427 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
428};
429
430/* Key to our per-program-space data. */
f37b313d 431static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
432
433/* Return this module's data for the given program space (PSPACE).
434 If not is found, add a zero'ed one now.
435
436 This function always returns a valid object. */
437
438static struct ada_pspace_data *
439get_ada_pspace_data (struct program_space *pspace)
440{
441 struct ada_pspace_data *data;
442
f37b313d 443 data = ada_pspace_data_handle.get (pspace);
ee01b665 444 if (data == NULL)
f37b313d 445 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
446
447 return data;
448}
449
4c4b4cd2
PH
450 /* Utilities */
451
720d1a40 452/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 453 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
454
455 Normally, we really expect a typedef type to only have 1 typedef layer.
456 In other words, we really expect the target type of a typedef type to be
457 a non-typedef type. This is particularly true for Ada units, because
458 the language does not have a typedef vs not-typedef distinction.
459 In that respect, the Ada compiler has been trying to eliminate as many
460 typedef definitions in the debugging information, since they generally
461 do not bring any extra information (we still use typedef under certain
462 circumstances related mostly to the GNAT encoding).
463
464 Unfortunately, we have seen situations where the debugging information
465 generated by the compiler leads to such multiple typedef layers. For
466 instance, consider the following example with stabs:
467
468 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
469 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
470
471 This is an error in the debugging information which causes type
472 pck__float_array___XUP to be defined twice, and the second time,
473 it is defined as a typedef of a typedef.
474
475 This is on the fringe of legality as far as debugging information is
476 concerned, and certainly unexpected. But it is easy to handle these
477 situations correctly, so we can afford to be lenient in this case. */
478
479static struct type *
480ada_typedef_target_type (struct type *type)
481{
482 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
483 type = TYPE_TARGET_TYPE (type);
484 return type;
485}
486
41d27058
JB
487/* Given DECODED_NAME a string holding a symbol name in its
488 decoded form (ie using the Ada dotted notation), returns
489 its unqualified name. */
490
491static const char *
492ada_unqualified_name (const char *decoded_name)
493{
2b0f535a
JB
494 const char *result;
495
496 /* If the decoded name starts with '<', it means that the encoded
497 name does not follow standard naming conventions, and thus that
498 it is not your typical Ada symbol name. Trying to unqualify it
499 is therefore pointless and possibly erroneous. */
500 if (decoded_name[0] == '<')
501 return decoded_name;
502
503 result = strrchr (decoded_name, '.');
41d27058
JB
504 if (result != NULL)
505 result++; /* Skip the dot... */
506 else
507 result = decoded_name;
508
509 return result;
510}
511
39e7af3e 512/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 513
39e7af3e 514static std::string
41d27058
JB
515add_angle_brackets (const char *str)
516{
39e7af3e 517 return string_printf ("<%s>", str);
41d27058 518}
96d887e8 519
67cb5b2d 520static const char *
4c4b4cd2
PH
521ada_get_gdb_completer_word_break_characters (void)
522{
523 return ada_completer_word_break_characters;
524}
525
e79af960
JB
526/* Print an array element index using the Ada syntax. */
527
528static void
529ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 530 const struct value_print_options *options)
e79af960 531{
79a45b7d 532 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
533 fprintf_filtered (stream, " => ");
534}
535
e2b7af72
JB
536/* la_watch_location_expression for Ada. */
537
538gdb::unique_xmalloc_ptr<char>
539ada_watch_location_expression (struct type *type, CORE_ADDR addr)
540{
541 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
542 std::string name = type_to_string (type);
543 return gdb::unique_xmalloc_ptr<char>
544 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
545}
546
f27cf670 547/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 548 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 549 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 550
f27cf670
AS
551void *
552grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 553{
d2e4a39e
AS
554 if (*size < min_size)
555 {
556 *size *= 2;
557 if (*size < min_size)
4c4b4cd2 558 *size = min_size;
f27cf670 559 vect = xrealloc (vect, *size * element_size);
d2e4a39e 560 }
f27cf670 561 return vect;
14f9c5c9
AS
562}
563
564/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 565 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
566
567static int
ebf56fd3 568field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
569{
570 int len = strlen (target);
5b4ee69b 571
d2e4a39e 572 return
4c4b4cd2
PH
573 (strncmp (field_name, target, len) == 0
574 && (field_name[len] == '\0'
61012eef 575 || (startswith (field_name + len, "___")
76a01679
JB
576 && strcmp (field_name + strlen (field_name) - 6,
577 "___XVN") != 0)));
14f9c5c9
AS
578}
579
580
872c8b51
JB
581/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
582 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
583 and return its index. This function also handles fields whose name
584 have ___ suffixes because the compiler sometimes alters their name
585 by adding such a suffix to represent fields with certain constraints.
586 If the field could not be found, return a negative number if
587 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
588
589int
590ada_get_field_index (const struct type *type, const char *field_name,
591 int maybe_missing)
592{
593 int fieldno;
872c8b51
JB
594 struct type *struct_type = check_typedef ((struct type *) type);
595
596 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
597 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
598 return fieldno;
599
600 if (!maybe_missing)
323e0a4a 601 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 602 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
603
604 return -1;
605}
606
607/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
608
609int
d2e4a39e 610ada_name_prefix_len (const char *name)
14f9c5c9
AS
611{
612 if (name == NULL)
613 return 0;
d2e4a39e 614 else
14f9c5c9 615 {
d2e4a39e 616 const char *p = strstr (name, "___");
5b4ee69b 617
14f9c5c9 618 if (p == NULL)
4c4b4cd2 619 return strlen (name);
14f9c5c9 620 else
4c4b4cd2 621 return p - name;
14f9c5c9
AS
622 }
623}
624
4c4b4cd2
PH
625/* Return non-zero if SUFFIX is a suffix of STR.
626 Return zero if STR is null. */
627
14f9c5c9 628static int
d2e4a39e 629is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
630{
631 int len1, len2;
5b4ee69b 632
14f9c5c9
AS
633 if (str == NULL)
634 return 0;
635 len1 = strlen (str);
636 len2 = strlen (suffix);
4c4b4cd2 637 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
638}
639
4c4b4cd2
PH
640/* The contents of value VAL, treated as a value of type TYPE. The
641 result is an lval in memory if VAL is. */
14f9c5c9 642
d2e4a39e 643static struct value *
4c4b4cd2 644coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 645{
61ee279c 646 type = ada_check_typedef (type);
df407dfe 647 if (value_type (val) == type)
4c4b4cd2 648 return val;
d2e4a39e 649 else
14f9c5c9 650 {
4c4b4cd2
PH
651 struct value *result;
652
653 /* Make sure that the object size is not unreasonable before
654 trying to allocate some memory for it. */
c1b5a1a6 655 ada_ensure_varsize_limit (type);
4c4b4cd2 656
41e8491f
JK
657 if (value_lazy (val)
658 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
659 result = allocate_value_lazy (type);
660 else
661 {
662 result = allocate_value (type);
9a0dc9e3 663 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 664 }
74bcbdf3 665 set_value_component_location (result, val);
9bbda503
AC
666 set_value_bitsize (result, value_bitsize (val));
667 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
668 if (VALUE_LVAL (result) == lval_memory)
669 set_value_address (result, value_address (val));
14f9c5c9
AS
670 return result;
671 }
672}
673
fc1a4b47
AC
674static const gdb_byte *
675cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
676{
677 if (valaddr == NULL)
678 return NULL;
679 else
680 return valaddr + offset;
681}
682
683static CORE_ADDR
ebf56fd3 684cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
685{
686 if (address == 0)
687 return 0;
d2e4a39e 688 else
14f9c5c9
AS
689 return address + offset;
690}
691
4c4b4cd2
PH
692/* Issue a warning (as for the definition of warning in utils.c, but
693 with exactly one argument rather than ...), unless the limit on the
694 number of warnings has passed during the evaluation of the current
695 expression. */
a2249542 696
77109804
AC
697/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
698 provided by "complaint". */
a0b31db1 699static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 700
14f9c5c9 701static void
a2249542 702lim_warning (const char *format, ...)
14f9c5c9 703{
a2249542 704 va_list args;
a2249542 705
5b4ee69b 706 va_start (args, format);
4c4b4cd2
PH
707 warnings_issued += 1;
708 if (warnings_issued <= warning_limit)
a2249542
MK
709 vwarning (format, args);
710
711 va_end (args);
4c4b4cd2
PH
712}
713
714e53ab
PH
714/* Issue an error if the size of an object of type T is unreasonable,
715 i.e. if it would be a bad idea to allocate a value of this type in
716 GDB. */
717
c1b5a1a6
JB
718void
719ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
720{
721 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 722 error (_("object size is larger than varsize-limit"));
714e53ab
PH
723}
724
0963b4bd 725/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 726static LONGEST
c3e5cd34 727max_of_size (int size)
4c4b4cd2 728{
76a01679 729 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 730
76a01679 731 return top_bit | (top_bit - 1);
4c4b4cd2
PH
732}
733
0963b4bd 734/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 735static LONGEST
c3e5cd34 736min_of_size (int size)
4c4b4cd2 737{
c3e5cd34 738 return -max_of_size (size) - 1;
4c4b4cd2
PH
739}
740
0963b4bd 741/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 742static ULONGEST
c3e5cd34 743umax_of_size (int size)
4c4b4cd2 744{
76a01679 745 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 746
76a01679 747 return top_bit | (top_bit - 1);
4c4b4cd2
PH
748}
749
0963b4bd 750/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
751static LONGEST
752max_of_type (struct type *t)
4c4b4cd2 753{
c3e5cd34
PH
754 if (TYPE_UNSIGNED (t))
755 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
756 else
757 return max_of_size (TYPE_LENGTH (t));
758}
759
0963b4bd 760/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
761static LONGEST
762min_of_type (struct type *t)
763{
764 if (TYPE_UNSIGNED (t))
765 return 0;
766 else
767 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
768}
769
770/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
771LONGEST
772ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 773{
c3345124 774 type = resolve_dynamic_type (type, NULL, 0);
76a01679 775 switch (TYPE_CODE (type))
4c4b4cd2
PH
776 {
777 case TYPE_CODE_RANGE:
690cc4eb 778 return TYPE_HIGH_BOUND (type);
4c4b4cd2 779 case TYPE_CODE_ENUM:
14e75d8e 780 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
781 case TYPE_CODE_BOOL:
782 return 1;
783 case TYPE_CODE_CHAR:
76a01679 784 case TYPE_CODE_INT:
690cc4eb 785 return max_of_type (type);
4c4b4cd2 786 default:
43bbcdc2 787 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
788 }
789}
790
14e75d8e 791/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
792LONGEST
793ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 794{
c3345124 795 type = resolve_dynamic_type (type, NULL, 0);
76a01679 796 switch (TYPE_CODE (type))
4c4b4cd2
PH
797 {
798 case TYPE_CODE_RANGE:
690cc4eb 799 return TYPE_LOW_BOUND (type);
4c4b4cd2 800 case TYPE_CODE_ENUM:
14e75d8e 801 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
802 case TYPE_CODE_BOOL:
803 return 0;
804 case TYPE_CODE_CHAR:
76a01679 805 case TYPE_CODE_INT:
690cc4eb 806 return min_of_type (type);
4c4b4cd2 807 default:
43bbcdc2 808 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
809 }
810}
811
812/* The identity on non-range types. For range types, the underlying
76a01679 813 non-range scalar type. */
4c4b4cd2
PH
814
815static struct type *
18af8284 816get_base_type (struct type *type)
4c4b4cd2
PH
817{
818 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
819 {
76a01679
JB
820 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
821 return type;
4c4b4cd2
PH
822 type = TYPE_TARGET_TYPE (type);
823 }
824 return type;
14f9c5c9 825}
41246937
JB
826
827/* Return a decoded version of the given VALUE. This means returning
828 a value whose type is obtained by applying all the GNAT-specific
829 encondings, making the resulting type a static but standard description
830 of the initial type. */
831
832struct value *
833ada_get_decoded_value (struct value *value)
834{
835 struct type *type = ada_check_typedef (value_type (value));
836
837 if (ada_is_array_descriptor_type (type)
838 || (ada_is_constrained_packed_array_type (type)
839 && TYPE_CODE (type) != TYPE_CODE_PTR))
840 {
841 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
842 value = ada_coerce_to_simple_array_ptr (value);
843 else
844 value = ada_coerce_to_simple_array (value);
845 }
846 else
847 value = ada_to_fixed_value (value);
848
849 return value;
850}
851
852/* Same as ada_get_decoded_value, but with the given TYPE.
853 Because there is no associated actual value for this type,
854 the resulting type might be a best-effort approximation in
855 the case of dynamic types. */
856
857struct type *
858ada_get_decoded_type (struct type *type)
859{
860 type = to_static_fixed_type (type);
861 if (ada_is_constrained_packed_array_type (type))
862 type = ada_coerce_to_simple_array_type (type);
863 return type;
864}
865
4c4b4cd2 866\f
76a01679 867
4c4b4cd2 868 /* Language Selection */
14f9c5c9
AS
869
870/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 871 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 872
14f9c5c9 873enum language
ccefe4c4 874ada_update_initial_language (enum language lang)
14f9c5c9 875{
cafb3438 876 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 877 return language_ada;
14f9c5c9
AS
878
879 return lang;
880}
96d887e8
PH
881
882/* If the main procedure is written in Ada, then return its name.
883 The result is good until the next call. Return NULL if the main
884 procedure doesn't appear to be in Ada. */
885
886char *
887ada_main_name (void)
888{
3b7344d5 889 struct bound_minimal_symbol msym;
e83e4e24 890 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 891
96d887e8
PH
892 /* For Ada, the name of the main procedure is stored in a specific
893 string constant, generated by the binder. Look for that symbol,
894 extract its address, and then read that string. If we didn't find
895 that string, then most probably the main procedure is not written
896 in Ada. */
897 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
898
3b7344d5 899 if (msym.minsym != NULL)
96d887e8 900 {
f9bc20b9
JB
901 CORE_ADDR main_program_name_addr;
902 int err_code;
903
77e371c0 904 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 905 if (main_program_name_addr == 0)
323e0a4a 906 error (_("Invalid address for Ada main program name."));
96d887e8 907
f9bc20b9
JB
908 target_read_string (main_program_name_addr, &main_program_name,
909 1024, &err_code);
910
911 if (err_code != 0)
912 return NULL;
e83e4e24 913 return main_program_name.get ();
96d887e8
PH
914 }
915
916 /* The main procedure doesn't seem to be in Ada. */
917 return NULL;
918}
14f9c5c9 919\f
4c4b4cd2 920 /* Symbols */
d2e4a39e 921
4c4b4cd2
PH
922/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
923 of NULLs. */
14f9c5c9 924
d2e4a39e
AS
925const struct ada_opname_map ada_opname_table[] = {
926 {"Oadd", "\"+\"", BINOP_ADD},
927 {"Osubtract", "\"-\"", BINOP_SUB},
928 {"Omultiply", "\"*\"", BINOP_MUL},
929 {"Odivide", "\"/\"", BINOP_DIV},
930 {"Omod", "\"mod\"", BINOP_MOD},
931 {"Orem", "\"rem\"", BINOP_REM},
932 {"Oexpon", "\"**\"", BINOP_EXP},
933 {"Olt", "\"<\"", BINOP_LESS},
934 {"Ole", "\"<=\"", BINOP_LEQ},
935 {"Ogt", "\">\"", BINOP_GTR},
936 {"Oge", "\">=\"", BINOP_GEQ},
937 {"Oeq", "\"=\"", BINOP_EQUAL},
938 {"One", "\"/=\"", BINOP_NOTEQUAL},
939 {"Oand", "\"and\"", BINOP_BITWISE_AND},
940 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
941 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
942 {"Oconcat", "\"&\"", BINOP_CONCAT},
943 {"Oabs", "\"abs\"", UNOP_ABS},
944 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
945 {"Oadd", "\"+\"", UNOP_PLUS},
946 {"Osubtract", "\"-\"", UNOP_NEG},
947 {NULL, NULL}
14f9c5c9
AS
948};
949
b5ec771e
PA
950/* The "encoded" form of DECODED, according to GNAT conventions. The
951 result is valid until the next call to ada_encode. If
952 THROW_ERRORS, throw an error if invalid operator name is found.
953 Otherwise, return NULL in that case. */
4c4b4cd2 954
b5ec771e
PA
955static char *
956ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 957{
4c4b4cd2
PH
958 static char *encoding_buffer = NULL;
959 static size_t encoding_buffer_size = 0;
d2e4a39e 960 const char *p;
14f9c5c9 961 int k;
d2e4a39e 962
4c4b4cd2 963 if (decoded == NULL)
14f9c5c9
AS
964 return NULL;
965
4c4b4cd2
PH
966 GROW_VECT (encoding_buffer, encoding_buffer_size,
967 2 * strlen (decoded) + 10);
14f9c5c9
AS
968
969 k = 0;
4c4b4cd2 970 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 971 {
cdc7bb92 972 if (*p == '.')
4c4b4cd2
PH
973 {
974 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
975 k += 2;
976 }
14f9c5c9 977 else if (*p == '"')
4c4b4cd2
PH
978 {
979 const struct ada_opname_map *mapping;
980
981 for (mapping = ada_opname_table;
1265e4aa 982 mapping->encoded != NULL
61012eef 983 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
984 ;
985 if (mapping->encoded == NULL)
b5ec771e
PA
986 {
987 if (throw_errors)
988 error (_("invalid Ada operator name: %s"), p);
989 else
990 return NULL;
991 }
4c4b4cd2
PH
992 strcpy (encoding_buffer + k, mapping->encoded);
993 k += strlen (mapping->encoded);
994 break;
995 }
d2e4a39e 996 else
4c4b4cd2
PH
997 {
998 encoding_buffer[k] = *p;
999 k += 1;
1000 }
14f9c5c9
AS
1001 }
1002
4c4b4cd2
PH
1003 encoding_buffer[k] = '\0';
1004 return encoding_buffer;
14f9c5c9
AS
1005}
1006
b5ec771e
PA
1007/* The "encoded" form of DECODED, according to GNAT conventions.
1008 The result is valid until the next call to ada_encode. */
1009
1010char *
1011ada_encode (const char *decoded)
1012{
1013 return ada_encode_1 (decoded, true);
1014}
1015
14f9c5c9 1016/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1017 quotes, unfolded, but with the quotes stripped away. Result good
1018 to next call. */
1019
d2e4a39e
AS
1020char *
1021ada_fold_name (const char *name)
14f9c5c9 1022{
d2e4a39e 1023 static char *fold_buffer = NULL;
14f9c5c9
AS
1024 static size_t fold_buffer_size = 0;
1025
1026 int len = strlen (name);
d2e4a39e 1027 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1028
1029 if (name[0] == '\'')
1030 {
d2e4a39e
AS
1031 strncpy (fold_buffer, name + 1, len - 2);
1032 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1033 }
1034 else
1035 {
1036 int i;
5b4ee69b 1037
14f9c5c9 1038 for (i = 0; i <= len; i += 1)
4c4b4cd2 1039 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1040 }
1041
1042 return fold_buffer;
1043}
1044
529cad9c
PH
1045/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1046
1047static int
1048is_lower_alphanum (const char c)
1049{
1050 return (isdigit (c) || (isalpha (c) && islower (c)));
1051}
1052
c90092fe
JB
1053/* ENCODED is the linkage name of a symbol and LEN contains its length.
1054 This function saves in LEN the length of that same symbol name but
1055 without either of these suffixes:
29480c32
JB
1056 . .{DIGIT}+
1057 . ${DIGIT}+
1058 . ___{DIGIT}+
1059 . __{DIGIT}+.
c90092fe 1060
29480c32
JB
1061 These are suffixes introduced by the compiler for entities such as
1062 nested subprogram for instance, in order to avoid name clashes.
1063 They do not serve any purpose for the debugger. */
1064
1065static void
1066ada_remove_trailing_digits (const char *encoded, int *len)
1067{
1068 if (*len > 1 && isdigit (encoded[*len - 1]))
1069 {
1070 int i = *len - 2;
5b4ee69b 1071
29480c32
JB
1072 while (i > 0 && isdigit (encoded[i]))
1073 i--;
1074 if (i >= 0 && encoded[i] == '.')
1075 *len = i;
1076 else if (i >= 0 && encoded[i] == '$')
1077 *len = i;
61012eef 1078 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1079 *len = i - 2;
61012eef 1080 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1081 *len = i - 1;
1082 }
1083}
1084
1085/* Remove the suffix introduced by the compiler for protected object
1086 subprograms. */
1087
1088static void
1089ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1090{
1091 /* Remove trailing N. */
1092
1093 /* Protected entry subprograms are broken into two
1094 separate subprograms: The first one is unprotected, and has
1095 a 'N' suffix; the second is the protected version, and has
0963b4bd 1096 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1097 the protection. Since the P subprograms are internally generated,
1098 we leave these names undecoded, giving the user a clue that this
1099 entity is internal. */
1100
1101 if (*len > 1
1102 && encoded[*len - 1] == 'N'
1103 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1104 *len = *len - 1;
1105}
1106
1107/* If ENCODED follows the GNAT entity encoding conventions, then return
1108 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1109 replaced by ENCODED. */
14f9c5c9 1110
f945dedf 1111std::string
4c4b4cd2 1112ada_decode (const char *encoded)
14f9c5c9
AS
1113{
1114 int i, j;
1115 int len0;
d2e4a39e 1116 const char *p;
14f9c5c9 1117 int at_start_name;
f945dedf 1118 std::string decoded;
d2e4a39e 1119
0d81f350
JG
1120 /* With function descriptors on PPC64, the value of a symbol named
1121 ".FN", if it exists, is the entry point of the function "FN". */
1122 if (encoded[0] == '.')
1123 encoded += 1;
1124
29480c32
JB
1125 /* The name of the Ada main procedure starts with "_ada_".
1126 This prefix is not part of the decoded name, so skip this part
1127 if we see this prefix. */
61012eef 1128 if (startswith (encoded, "_ada_"))
4c4b4cd2 1129 encoded += 5;
14f9c5c9 1130
29480c32
JB
1131 /* If the name starts with '_', then it is not a properly encoded
1132 name, so do not attempt to decode it. Similarly, if the name
1133 starts with '<', the name should not be decoded. */
4c4b4cd2 1134 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1135 goto Suppress;
1136
4c4b4cd2 1137 len0 = strlen (encoded);
4c4b4cd2 1138
29480c32
JB
1139 ada_remove_trailing_digits (encoded, &len0);
1140 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1141
4c4b4cd2
PH
1142 /* Remove the ___X.* suffix if present. Do not forget to verify that
1143 the suffix is located before the current "end" of ENCODED. We want
1144 to avoid re-matching parts of ENCODED that have previously been
1145 marked as discarded (by decrementing LEN0). */
1146 p = strstr (encoded, "___");
1147 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1148 {
1149 if (p[3] == 'X')
4c4b4cd2 1150 len0 = p - encoded;
14f9c5c9 1151 else
4c4b4cd2 1152 goto Suppress;
14f9c5c9 1153 }
4c4b4cd2 1154
29480c32
JB
1155 /* Remove any trailing TKB suffix. It tells us that this symbol
1156 is for the body of a task, but that information does not actually
1157 appear in the decoded name. */
1158
61012eef 1159 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1160 len0 -= 3;
76a01679 1161
a10967fa
JB
1162 /* Remove any trailing TB suffix. The TB suffix is slightly different
1163 from the TKB suffix because it is used for non-anonymous task
1164 bodies. */
1165
61012eef 1166 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1167 len0 -= 2;
1168
29480c32
JB
1169 /* Remove trailing "B" suffixes. */
1170 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1171
61012eef 1172 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1173 len0 -= 1;
1174
4c4b4cd2 1175 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1176
f945dedf 1177 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1178
29480c32
JB
1179 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1180
4c4b4cd2 1181 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1182 {
4c4b4cd2
PH
1183 i = len0 - 2;
1184 while ((i >= 0 && isdigit (encoded[i]))
1185 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1186 i -= 1;
1187 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1188 len0 = i - 1;
1189 else if (encoded[i] == '$')
1190 len0 = i;
d2e4a39e 1191 }
14f9c5c9 1192
29480c32
JB
1193 /* The first few characters that are not alphabetic are not part
1194 of any encoding we use, so we can copy them over verbatim. */
1195
4c4b4cd2
PH
1196 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1197 decoded[j] = encoded[i];
14f9c5c9
AS
1198
1199 at_start_name = 1;
1200 while (i < len0)
1201 {
29480c32 1202 /* Is this a symbol function? */
4c4b4cd2
PH
1203 if (at_start_name && encoded[i] == 'O')
1204 {
1205 int k;
5b4ee69b 1206
4c4b4cd2
PH
1207 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1208 {
1209 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1210 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1211 op_len - 1) == 0)
1212 && !isalnum (encoded[i + op_len]))
4c4b4cd2 1213 {
f945dedf 1214 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
4c4b4cd2
PH
1215 at_start_name = 0;
1216 i += op_len;
1217 j += strlen (ada_opname_table[k].decoded);
1218 break;
1219 }
1220 }
1221 if (ada_opname_table[k].encoded != NULL)
1222 continue;
1223 }
14f9c5c9
AS
1224 at_start_name = 0;
1225
529cad9c
PH
1226 /* Replace "TK__" with "__", which will eventually be translated
1227 into "." (just below). */
1228
61012eef 1229 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1230 i += 2;
529cad9c 1231
29480c32
JB
1232 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1233 be translated into "." (just below). These are internal names
1234 generated for anonymous blocks inside which our symbol is nested. */
1235
1236 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1237 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1238 && isdigit (encoded [i+4]))
1239 {
1240 int k = i + 5;
1241
1242 while (k < len0 && isdigit (encoded[k]))
1243 k++; /* Skip any extra digit. */
1244
1245 /* Double-check that the "__B_{DIGITS}+" sequence we found
1246 is indeed followed by "__". */
1247 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1248 i = k;
1249 }
1250
529cad9c
PH
1251 /* Remove _E{DIGITS}+[sb] */
1252
1253 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1254 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1255 one implements the actual entry code, and has a suffix following
1256 the convention above; the second one implements the barrier and
1257 uses the same convention as above, except that the 'E' is replaced
1258 by a 'B'.
1259
1260 Just as above, we do not decode the name of barrier functions
1261 to give the user a clue that the code he is debugging has been
1262 internally generated. */
1263
1264 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1265 && isdigit (encoded[i+2]))
1266 {
1267 int k = i + 3;
1268
1269 while (k < len0 && isdigit (encoded[k]))
1270 k++;
1271
1272 if (k < len0
1273 && (encoded[k] == 'b' || encoded[k] == 's'))
1274 {
1275 k++;
1276 /* Just as an extra precaution, make sure that if this
1277 suffix is followed by anything else, it is a '_'.
1278 Otherwise, we matched this sequence by accident. */
1279 if (k == len0
1280 || (k < len0 && encoded[k] == '_'))
1281 i = k;
1282 }
1283 }
1284
1285 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1286 the GNAT front-end in protected object subprograms. */
1287
1288 if (i < len0 + 3
1289 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1290 {
1291 /* Backtrack a bit up until we reach either the begining of
1292 the encoded name, or "__". Make sure that we only find
1293 digits or lowercase characters. */
1294 const char *ptr = encoded + i - 1;
1295
1296 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1297 ptr--;
1298 if (ptr < encoded
1299 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1300 i++;
1301 }
1302
4c4b4cd2
PH
1303 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1304 {
29480c32
JB
1305 /* This is a X[bn]* sequence not separated from the previous
1306 part of the name with a non-alpha-numeric character (in other
1307 words, immediately following an alpha-numeric character), then
1308 verify that it is placed at the end of the encoded name. If
1309 not, then the encoding is not valid and we should abort the
1310 decoding. Otherwise, just skip it, it is used in body-nested
1311 package names. */
4c4b4cd2
PH
1312 do
1313 i += 1;
1314 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1315 if (i < len0)
1316 goto Suppress;
1317 }
cdc7bb92 1318 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1319 {
29480c32 1320 /* Replace '__' by '.'. */
4c4b4cd2
PH
1321 decoded[j] = '.';
1322 at_start_name = 1;
1323 i += 2;
1324 j += 1;
1325 }
14f9c5c9 1326 else
4c4b4cd2 1327 {
29480c32
JB
1328 /* It's a character part of the decoded name, so just copy it
1329 over. */
4c4b4cd2
PH
1330 decoded[j] = encoded[i];
1331 i += 1;
1332 j += 1;
1333 }
14f9c5c9 1334 }
f945dedf 1335 decoded.resize (j);
14f9c5c9 1336
29480c32
JB
1337 /* Decoded names should never contain any uppercase character.
1338 Double-check this, and abort the decoding if we find one. */
1339
f945dedf 1340 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1341 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1342 goto Suppress;
1343
f945dedf 1344 return decoded;
14f9c5c9
AS
1345
1346Suppress:
4c4b4cd2 1347 if (encoded[0] == '<')
f945dedf 1348 decoded = encoded;
14f9c5c9 1349 else
f945dedf 1350 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1351 return decoded;
1352
1353}
1354
1355/* Table for keeping permanent unique copies of decoded names. Once
1356 allocated, names in this table are never released. While this is a
1357 storage leak, it should not be significant unless there are massive
1358 changes in the set of decoded names in successive versions of a
1359 symbol table loaded during a single session. */
1360static struct htab *decoded_names_store;
1361
1362/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1363 in the language-specific part of GSYMBOL, if it has not been
1364 previously computed. Tries to save the decoded name in the same
1365 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1366 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1367 GSYMBOL).
4c4b4cd2
PH
1368 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1369 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1370 when a decoded name is cached in it. */
4c4b4cd2 1371
45e6c716 1372const char *
f85f34ed 1373ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1374{
f85f34ed
TT
1375 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1376 const char **resultp =
615b3f62 1377 &gsymbol->language_specific.demangled_name;
5b4ee69b 1378
f85f34ed 1379 if (!gsymbol->ada_mangled)
4c4b4cd2 1380 {
f945dedf 1381 std::string decoded = ada_decode (gsymbol->name);
f85f34ed 1382 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1383
f85f34ed 1384 gsymbol->ada_mangled = 1;
5b4ee69b 1385
f85f34ed 1386 if (obstack != NULL)
f945dedf 1387 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1388 else
76a01679 1389 {
f85f34ed
TT
1390 /* Sometimes, we can't find a corresponding objfile, in
1391 which case, we put the result on the heap. Since we only
1392 decode when needed, we hope this usually does not cause a
1393 significant memory leak (FIXME). */
1394
76a01679 1395 char **slot = (char **) htab_find_slot (decoded_names_store,
f945dedf 1396 decoded.c_str (), INSERT);
5b4ee69b 1397
76a01679 1398 if (*slot == NULL)
f945dedf 1399 *slot = xstrdup (decoded.c_str ());
76a01679
JB
1400 *resultp = *slot;
1401 }
4c4b4cd2 1402 }
14f9c5c9 1403
4c4b4cd2
PH
1404 return *resultp;
1405}
76a01679 1406
2c0b251b 1407static char *
76a01679 1408ada_la_decode (const char *encoded, int options)
4c4b4cd2 1409{
f945dedf 1410 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1411}
1412
8b302db8
TT
1413/* Implement la_sniff_from_mangled_name for Ada. */
1414
1415static int
1416ada_sniff_from_mangled_name (const char *mangled, char **out)
1417{
f945dedf 1418 std::string demangled = ada_decode (mangled);
8b302db8
TT
1419
1420 *out = NULL;
1421
f945dedf 1422 if (demangled != mangled && demangled[0] != '<')
8b302db8
TT
1423 {
1424 /* Set the gsymbol language to Ada, but still return 0.
1425 Two reasons for that:
1426
1427 1. For Ada, we prefer computing the symbol's decoded name
1428 on the fly rather than pre-compute it, in order to save
1429 memory (Ada projects are typically very large).
1430
1431 2. There are some areas in the definition of the GNAT
1432 encoding where, with a bit of bad luck, we might be able
1433 to decode a non-Ada symbol, generating an incorrect
1434 demangled name (Eg: names ending with "TB" for instance
1435 are identified as task bodies and so stripped from
1436 the decoded name returned).
1437
1438 Returning 1, here, but not setting *DEMANGLED, helps us get a
1439 little bit of the best of both worlds. Because we're last,
1440 we should not affect any of the other languages that were
1441 able to demangle the symbol before us; we get to correctly
1442 tag Ada symbols as such; and even if we incorrectly tagged a
1443 non-Ada symbol, which should be rare, any routing through the
1444 Ada language should be transparent (Ada tries to behave much
1445 like C/C++ with non-Ada symbols). */
1446 return 1;
1447 }
1448
1449 return 0;
1450}
1451
14f9c5c9 1452\f
d2e4a39e 1453
4c4b4cd2 1454 /* Arrays */
14f9c5c9 1455
28c85d6c
JB
1456/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1457 generated by the GNAT compiler to describe the index type used
1458 for each dimension of an array, check whether it follows the latest
1459 known encoding. If not, fix it up to conform to the latest encoding.
1460 Otherwise, do nothing. This function also does nothing if
1461 INDEX_DESC_TYPE is NULL.
1462
1463 The GNAT encoding used to describle the array index type evolved a bit.
1464 Initially, the information would be provided through the name of each
1465 field of the structure type only, while the type of these fields was
1466 described as unspecified and irrelevant. The debugger was then expected
1467 to perform a global type lookup using the name of that field in order
1468 to get access to the full index type description. Because these global
1469 lookups can be very expensive, the encoding was later enhanced to make
1470 the global lookup unnecessary by defining the field type as being
1471 the full index type description.
1472
1473 The purpose of this routine is to allow us to support older versions
1474 of the compiler by detecting the use of the older encoding, and by
1475 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1476 we essentially replace each field's meaningless type by the associated
1477 index subtype). */
1478
1479void
1480ada_fixup_array_indexes_type (struct type *index_desc_type)
1481{
1482 int i;
1483
1484 if (index_desc_type == NULL)
1485 return;
1486 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1487
1488 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1489 to check one field only, no need to check them all). If not, return
1490 now.
1491
1492 If our INDEX_DESC_TYPE was generated using the older encoding,
1493 the field type should be a meaningless integer type whose name
1494 is not equal to the field name. */
1495 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1496 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1497 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1498 return;
1499
1500 /* Fixup each field of INDEX_DESC_TYPE. */
1501 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1502 {
0d5cff50 1503 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1504 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1505
1506 if (raw_type)
1507 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1508 }
1509}
1510
4c4b4cd2 1511/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1512
a121b7c1 1513static const char *bound_name[] = {
d2e4a39e 1514 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1515 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1516};
1517
1518/* Maximum number of array dimensions we are prepared to handle. */
1519
4c4b4cd2 1520#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1521
14f9c5c9 1522
4c4b4cd2
PH
1523/* The desc_* routines return primitive portions of array descriptors
1524 (fat pointers). */
14f9c5c9
AS
1525
1526/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1527 level of indirection, if needed. */
1528
d2e4a39e
AS
1529static struct type *
1530desc_base_type (struct type *type)
14f9c5c9
AS
1531{
1532 if (type == NULL)
1533 return NULL;
61ee279c 1534 type = ada_check_typedef (type);
720d1a40
JB
1535 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1536 type = ada_typedef_target_type (type);
1537
1265e4aa
JB
1538 if (type != NULL
1539 && (TYPE_CODE (type) == TYPE_CODE_PTR
1540 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1541 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1542 else
1543 return type;
1544}
1545
4c4b4cd2
PH
1546/* True iff TYPE indicates a "thin" array pointer type. */
1547
14f9c5c9 1548static int
d2e4a39e 1549is_thin_pntr (struct type *type)
14f9c5c9 1550{
d2e4a39e 1551 return
14f9c5c9
AS
1552 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1553 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1554}
1555
4c4b4cd2
PH
1556/* The descriptor type for thin pointer type TYPE. */
1557
d2e4a39e
AS
1558static struct type *
1559thin_descriptor_type (struct type *type)
14f9c5c9 1560{
d2e4a39e 1561 struct type *base_type = desc_base_type (type);
5b4ee69b 1562
14f9c5c9
AS
1563 if (base_type == NULL)
1564 return NULL;
1565 if (is_suffix (ada_type_name (base_type), "___XVE"))
1566 return base_type;
d2e4a39e 1567 else
14f9c5c9 1568 {
d2e4a39e 1569 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1570
14f9c5c9 1571 if (alt_type == NULL)
4c4b4cd2 1572 return base_type;
14f9c5c9 1573 else
4c4b4cd2 1574 return alt_type;
14f9c5c9
AS
1575 }
1576}
1577
4c4b4cd2
PH
1578/* A pointer to the array data for thin-pointer value VAL. */
1579
d2e4a39e
AS
1580static struct value *
1581thin_data_pntr (struct value *val)
14f9c5c9 1582{
828292f2 1583 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1584 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1585
556bdfd4
UW
1586 data_type = lookup_pointer_type (data_type);
1587
14f9c5c9 1588 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1589 return value_cast (data_type, value_copy (val));
d2e4a39e 1590 else
42ae5230 1591 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1592}
1593
4c4b4cd2
PH
1594/* True iff TYPE indicates a "thick" array pointer type. */
1595
14f9c5c9 1596static int
d2e4a39e 1597is_thick_pntr (struct type *type)
14f9c5c9
AS
1598{
1599 type = desc_base_type (type);
1600 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1601 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1602}
1603
4c4b4cd2
PH
1604/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1605 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1606
d2e4a39e
AS
1607static struct type *
1608desc_bounds_type (struct type *type)
14f9c5c9 1609{
d2e4a39e 1610 struct type *r;
14f9c5c9
AS
1611
1612 type = desc_base_type (type);
1613
1614 if (type == NULL)
1615 return NULL;
1616 else if (is_thin_pntr (type))
1617 {
1618 type = thin_descriptor_type (type);
1619 if (type == NULL)
4c4b4cd2 1620 return NULL;
14f9c5c9
AS
1621 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1622 if (r != NULL)
61ee279c 1623 return ada_check_typedef (r);
14f9c5c9
AS
1624 }
1625 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1626 {
1627 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1628 if (r != NULL)
61ee279c 1629 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1630 }
1631 return NULL;
1632}
1633
1634/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1635 one, a pointer to its bounds data. Otherwise NULL. */
1636
d2e4a39e
AS
1637static struct value *
1638desc_bounds (struct value *arr)
14f9c5c9 1639{
df407dfe 1640 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1641
d2e4a39e 1642 if (is_thin_pntr (type))
14f9c5c9 1643 {
d2e4a39e 1644 struct type *bounds_type =
4c4b4cd2 1645 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1646 LONGEST addr;
1647
4cdfadb1 1648 if (bounds_type == NULL)
323e0a4a 1649 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1650
1651 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1652 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1653 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1654 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1655 addr = value_as_long (arr);
d2e4a39e 1656 else
42ae5230 1657 addr = value_address (arr);
14f9c5c9 1658
d2e4a39e 1659 return
4c4b4cd2
PH
1660 value_from_longest (lookup_pointer_type (bounds_type),
1661 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1662 }
1663
1664 else if (is_thick_pntr (type))
05e522ef
JB
1665 {
1666 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1667 _("Bad GNAT array descriptor"));
1668 struct type *p_bounds_type = value_type (p_bounds);
1669
1670 if (p_bounds_type
1671 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1672 {
1673 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1674
1675 if (TYPE_STUB (target_type))
1676 p_bounds = value_cast (lookup_pointer_type
1677 (ada_check_typedef (target_type)),
1678 p_bounds);
1679 }
1680 else
1681 error (_("Bad GNAT array descriptor"));
1682
1683 return p_bounds;
1684 }
14f9c5c9
AS
1685 else
1686 return NULL;
1687}
1688
4c4b4cd2
PH
1689/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1690 position of the field containing the address of the bounds data. */
1691
14f9c5c9 1692static int
d2e4a39e 1693fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1694{
1695 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1696}
1697
1698/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1699 size of the field containing the address of the bounds data. */
1700
14f9c5c9 1701static int
d2e4a39e 1702fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1703{
1704 type = desc_base_type (type);
1705
d2e4a39e 1706 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1707 return TYPE_FIELD_BITSIZE (type, 1);
1708 else
61ee279c 1709 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1710}
1711
4c4b4cd2 1712/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1713 pointer to one, the type of its array data (a array-with-no-bounds type);
1714 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1715 data. */
4c4b4cd2 1716
d2e4a39e 1717static struct type *
556bdfd4 1718desc_data_target_type (struct type *type)
14f9c5c9
AS
1719{
1720 type = desc_base_type (type);
1721
4c4b4cd2 1722 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1723 if (is_thin_pntr (type))
556bdfd4 1724 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1725 else if (is_thick_pntr (type))
556bdfd4
UW
1726 {
1727 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1728
1729 if (data_type
1730 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1731 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1732 }
1733
1734 return NULL;
14f9c5c9
AS
1735}
1736
1737/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1738 its array data. */
4c4b4cd2 1739
d2e4a39e
AS
1740static struct value *
1741desc_data (struct value *arr)
14f9c5c9 1742{
df407dfe 1743 struct type *type = value_type (arr);
5b4ee69b 1744
14f9c5c9
AS
1745 if (is_thin_pntr (type))
1746 return thin_data_pntr (arr);
1747 else if (is_thick_pntr (type))
d2e4a39e 1748 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1749 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1750 else
1751 return NULL;
1752}
1753
1754
1755/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1756 position of the field containing the address of the data. */
1757
14f9c5c9 1758static int
d2e4a39e 1759fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1760{
1761 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1762}
1763
1764/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1765 size of the field containing the address of the data. */
1766
14f9c5c9 1767static int
d2e4a39e 1768fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1769{
1770 type = desc_base_type (type);
1771
1772 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1773 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1774 else
14f9c5c9
AS
1775 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1776}
1777
4c4b4cd2 1778/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1779 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1780 bound, if WHICH is 1. The first bound is I=1. */
1781
d2e4a39e
AS
1782static struct value *
1783desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1784{
d2e4a39e 1785 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1786 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1787}
1788
1789/* If BOUNDS is an array-bounds structure type, return the bit position
1790 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1791 bound, if WHICH is 1. The first bound is I=1. */
1792
14f9c5c9 1793static int
d2e4a39e 1794desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1795{
d2e4a39e 1796 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1797}
1798
1799/* If BOUNDS is an array-bounds structure type, return the bit field size
1800 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1801 bound, if WHICH is 1. The first bound is I=1. */
1802
76a01679 1803static int
d2e4a39e 1804desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1805{
1806 type = desc_base_type (type);
1807
d2e4a39e
AS
1808 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1809 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1810 else
1811 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1812}
1813
1814/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1815 Ith bound (numbering from 1). Otherwise, NULL. */
1816
d2e4a39e
AS
1817static struct type *
1818desc_index_type (struct type *type, int i)
14f9c5c9
AS
1819{
1820 type = desc_base_type (type);
1821
1822 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1823 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1824 else
14f9c5c9
AS
1825 return NULL;
1826}
1827
4c4b4cd2
PH
1828/* The number of index positions in the array-bounds type TYPE.
1829 Return 0 if TYPE is NULL. */
1830
14f9c5c9 1831static int
d2e4a39e 1832desc_arity (struct type *type)
14f9c5c9
AS
1833{
1834 type = desc_base_type (type);
1835
1836 if (type != NULL)
1837 return TYPE_NFIELDS (type) / 2;
1838 return 0;
1839}
1840
4c4b4cd2
PH
1841/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1842 an array descriptor type (representing an unconstrained array
1843 type). */
1844
76a01679
JB
1845static int
1846ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1847{
1848 if (type == NULL)
1849 return 0;
61ee279c 1850 type = ada_check_typedef (type);
4c4b4cd2 1851 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1852 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1853}
1854
52ce6436 1855/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1856 * to one. */
52ce6436 1857
2c0b251b 1858static int
52ce6436
PH
1859ada_is_array_type (struct type *type)
1860{
1861 while (type != NULL
1862 && (TYPE_CODE (type) == TYPE_CODE_PTR
1863 || TYPE_CODE (type) == TYPE_CODE_REF))
1864 type = TYPE_TARGET_TYPE (type);
1865 return ada_is_direct_array_type (type);
1866}
1867
4c4b4cd2 1868/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1869
14f9c5c9 1870int
4c4b4cd2 1871ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1872{
1873 if (type == NULL)
1874 return 0;
61ee279c 1875 type = ada_check_typedef (type);
14f9c5c9 1876 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1877 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1878 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1879 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1880}
1881
4c4b4cd2
PH
1882/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1883
14f9c5c9 1884int
4c4b4cd2 1885ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1886{
556bdfd4 1887 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1888
1889 if (type == NULL)
1890 return 0;
61ee279c 1891 type = ada_check_typedef (type);
556bdfd4
UW
1892 return (data_type != NULL
1893 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1894 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1895}
1896
1897/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1898 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1899 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1900 is still needed. */
1901
14f9c5c9 1902int
ebf56fd3 1903ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1904{
d2e4a39e 1905 return
14f9c5c9
AS
1906 type != NULL
1907 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1908 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1909 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1910 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1911}
1912
1913
4c4b4cd2 1914/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1915 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1916 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1917 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1918 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1919 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1920 a descriptor. */
d2e4a39e
AS
1921struct type *
1922ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1923{
ad82864c
JB
1924 if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1926
df407dfe
AC
1927 if (!ada_is_array_descriptor_type (value_type (arr)))
1928 return value_type (arr);
d2e4a39e
AS
1929
1930 if (!bounds)
ad82864c
JB
1931 {
1932 struct type *array_type =
1933 ada_check_typedef (desc_data_target_type (value_type (arr)));
1934
1935 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1936 TYPE_FIELD_BITSIZE (array_type, 0) =
1937 decode_packed_array_bitsize (value_type (arr));
1938
1939 return array_type;
1940 }
14f9c5c9
AS
1941 else
1942 {
d2e4a39e 1943 struct type *elt_type;
14f9c5c9 1944 int arity;
d2e4a39e 1945 struct value *descriptor;
14f9c5c9 1946
df407dfe
AC
1947 elt_type = ada_array_element_type (value_type (arr), -1);
1948 arity = ada_array_arity (value_type (arr));
14f9c5c9 1949
d2e4a39e 1950 if (elt_type == NULL || arity == 0)
df407dfe 1951 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1952
1953 descriptor = desc_bounds (arr);
d2e4a39e 1954 if (value_as_long (descriptor) == 0)
4c4b4cd2 1955 return NULL;
d2e4a39e 1956 while (arity > 0)
4c4b4cd2 1957 {
e9bb382b
UW
1958 struct type *range_type = alloc_type_copy (value_type (arr));
1959 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1960 struct value *low = desc_one_bound (descriptor, arity, 0);
1961 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1962
5b4ee69b 1963 arity -= 1;
0c9c3474
SA
1964 create_static_range_type (range_type, value_type (low),
1965 longest_to_int (value_as_long (low)),
1966 longest_to_int (value_as_long (high)));
4c4b4cd2 1967 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1968
1969 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1970 {
1971 /* We need to store the element packed bitsize, as well as
1972 recompute the array size, because it was previously
1973 computed based on the unpacked element size. */
1974 LONGEST lo = value_as_long (low);
1975 LONGEST hi = value_as_long (high);
1976
1977 TYPE_FIELD_BITSIZE (elt_type, 0) =
1978 decode_packed_array_bitsize (value_type (arr));
1979 /* If the array has no element, then the size is already
1980 zero, and does not need to be recomputed. */
1981 if (lo < hi)
1982 {
1983 int array_bitsize =
1984 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1985
1986 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1987 }
1988 }
4c4b4cd2 1989 }
14f9c5c9
AS
1990
1991 return lookup_pointer_type (elt_type);
1992 }
1993}
1994
1995/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1996 Otherwise, returns either a standard GDB array with bounds set
1997 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1998 GDB array. Returns NULL if ARR is a null fat pointer. */
1999
d2e4a39e
AS
2000struct value *
2001ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2002{
df407dfe 2003 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2004 {
d2e4a39e 2005 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2006
14f9c5c9 2007 if (arrType == NULL)
4c4b4cd2 2008 return NULL;
14f9c5c9
AS
2009 return value_cast (arrType, value_copy (desc_data (arr)));
2010 }
ad82864c
JB
2011 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2012 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2013 else
2014 return arr;
2015}
2016
2017/* If ARR does not represent an array, returns ARR unchanged.
2018 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2019 be ARR itself if it already is in the proper form). */
2020
720d1a40 2021struct value *
d2e4a39e 2022ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2023{
df407dfe 2024 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2025 {
d2e4a39e 2026 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2027
14f9c5c9 2028 if (arrVal == NULL)
323e0a4a 2029 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2030 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2031 return value_ind (arrVal);
2032 }
ad82864c
JB
2033 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2034 return decode_constrained_packed_array (arr);
d2e4a39e 2035 else
14f9c5c9
AS
2036 return arr;
2037}
2038
2039/* If TYPE represents a GNAT array type, return it translated to an
2040 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2041 packing). For other types, is the identity. */
2042
d2e4a39e
AS
2043struct type *
2044ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2045{
ad82864c
JB
2046 if (ada_is_constrained_packed_array_type (type))
2047 return decode_constrained_packed_array_type (type);
17280b9f
UW
2048
2049 if (ada_is_array_descriptor_type (type))
556bdfd4 2050 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2051
2052 return type;
14f9c5c9
AS
2053}
2054
4c4b4cd2
PH
2055/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2056
ad82864c
JB
2057static int
2058ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2059{
2060 if (type == NULL)
2061 return 0;
4c4b4cd2 2062 type = desc_base_type (type);
61ee279c 2063 type = ada_check_typedef (type);
d2e4a39e 2064 return
14f9c5c9
AS
2065 ada_type_name (type) != NULL
2066 && strstr (ada_type_name (type), "___XP") != NULL;
2067}
2068
ad82864c
JB
2069/* Non-zero iff TYPE represents a standard GNAT constrained
2070 packed-array type. */
2071
2072int
2073ada_is_constrained_packed_array_type (struct type *type)
2074{
2075 return ada_is_packed_array_type (type)
2076 && !ada_is_array_descriptor_type (type);
2077}
2078
2079/* Non-zero iff TYPE represents an array descriptor for a
2080 unconstrained packed-array type. */
2081
2082static int
2083ada_is_unconstrained_packed_array_type (struct type *type)
2084{
2085 return ada_is_packed_array_type (type)
2086 && ada_is_array_descriptor_type (type);
2087}
2088
2089/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2090 return the size of its elements in bits. */
2091
2092static long
2093decode_packed_array_bitsize (struct type *type)
2094{
0d5cff50
DE
2095 const char *raw_name;
2096 const char *tail;
ad82864c
JB
2097 long bits;
2098
720d1a40
JB
2099 /* Access to arrays implemented as fat pointers are encoded as a typedef
2100 of the fat pointer type. We need the name of the fat pointer type
2101 to do the decoding, so strip the typedef layer. */
2102 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2103 type = ada_typedef_target_type (type);
2104
2105 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2106 if (!raw_name)
2107 raw_name = ada_type_name (desc_base_type (type));
2108
2109 if (!raw_name)
2110 return 0;
2111
2112 tail = strstr (raw_name, "___XP");
720d1a40 2113 gdb_assert (tail != NULL);
ad82864c
JB
2114
2115 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2116 {
2117 lim_warning
2118 (_("could not understand bit size information on packed array"));
2119 return 0;
2120 }
2121
2122 return bits;
2123}
2124
14f9c5c9
AS
2125/* Given that TYPE is a standard GDB array type with all bounds filled
2126 in, and that the element size of its ultimate scalar constituents
2127 (that is, either its elements, or, if it is an array of arrays, its
2128 elements' elements, etc.) is *ELT_BITS, return an identical type,
2129 but with the bit sizes of its elements (and those of any
2130 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2131 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2132 in bits.
2133
2134 Note that, for arrays whose index type has an XA encoding where
2135 a bound references a record discriminant, getting that discriminant,
2136 and therefore the actual value of that bound, is not possible
2137 because none of the given parameters gives us access to the record.
2138 This function assumes that it is OK in the context where it is being
2139 used to return an array whose bounds are still dynamic and where
2140 the length is arbitrary. */
4c4b4cd2 2141
d2e4a39e 2142static struct type *
ad82864c 2143constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2144{
d2e4a39e
AS
2145 struct type *new_elt_type;
2146 struct type *new_type;
99b1c762
JB
2147 struct type *index_type_desc;
2148 struct type *index_type;
14f9c5c9
AS
2149 LONGEST low_bound, high_bound;
2150
61ee279c 2151 type = ada_check_typedef (type);
14f9c5c9
AS
2152 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2153 return type;
2154
99b1c762
JB
2155 index_type_desc = ada_find_parallel_type (type, "___XA");
2156 if (index_type_desc)
2157 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2158 NULL);
2159 else
2160 index_type = TYPE_INDEX_TYPE (type);
2161
e9bb382b 2162 new_type = alloc_type_copy (type);
ad82864c
JB
2163 new_elt_type =
2164 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2165 elt_bits);
99b1c762 2166 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2167 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2168 TYPE_NAME (new_type) = ada_type_name (type);
2169
4a46959e
JB
2170 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2171 && is_dynamic_type (check_typedef (index_type)))
2172 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2173 low_bound = high_bound = 0;
2174 if (high_bound < low_bound)
2175 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2176 else
14f9c5c9
AS
2177 {
2178 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2179 TYPE_LENGTH (new_type) =
4c4b4cd2 2180 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2181 }
2182
876cecd0 2183 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2184 return new_type;
2185}
2186
ad82864c
JB
2187/* The array type encoded by TYPE, where
2188 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2189
d2e4a39e 2190static struct type *
ad82864c 2191decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2192{
0d5cff50 2193 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2194 char *name;
0d5cff50 2195 const char *tail;
d2e4a39e 2196 struct type *shadow_type;
14f9c5c9 2197 long bits;
14f9c5c9 2198
727e3d2e
JB
2199 if (!raw_name)
2200 raw_name = ada_type_name (desc_base_type (type));
2201
2202 if (!raw_name)
2203 return NULL;
2204
2205 name = (char *) alloca (strlen (raw_name) + 1);
2206 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2207 type = desc_base_type (type);
2208
14f9c5c9
AS
2209 memcpy (name, raw_name, tail - raw_name);
2210 name[tail - raw_name] = '\000';
2211
b4ba55a1
JB
2212 shadow_type = ada_find_parallel_type_with_name (type, name);
2213
2214 if (shadow_type == NULL)
14f9c5c9 2215 {
323e0a4a 2216 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2217 return NULL;
2218 }
f168693b 2219 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2220
2221 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2222 {
0963b4bd
MS
2223 lim_warning (_("could not understand bounds "
2224 "information on packed array"));
14f9c5c9
AS
2225 return NULL;
2226 }
d2e4a39e 2227
ad82864c
JB
2228 bits = decode_packed_array_bitsize (type);
2229 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2230}
2231
ad82864c
JB
2232/* Given that ARR is a struct value *indicating a GNAT constrained packed
2233 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2234 standard GDB array type except that the BITSIZEs of the array
2235 target types are set to the number of bits in each element, and the
4c4b4cd2 2236 type length is set appropriately. */
14f9c5c9 2237
d2e4a39e 2238static struct value *
ad82864c 2239decode_constrained_packed_array (struct value *arr)
14f9c5c9 2240{
4c4b4cd2 2241 struct type *type;
14f9c5c9 2242
11aa919a
PMR
2243 /* If our value is a pointer, then dereference it. Likewise if
2244 the value is a reference. Make sure that this operation does not
2245 cause the target type to be fixed, as this would indirectly cause
2246 this array to be decoded. The rest of the routine assumes that
2247 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2248 and "value_ind" routines to perform the dereferencing, as opposed
2249 to using "ada_coerce_ref" or "ada_value_ind". */
2250 arr = coerce_ref (arr);
828292f2 2251 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2252 arr = value_ind (arr);
4c4b4cd2 2253
ad82864c 2254 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2255 if (type == NULL)
2256 {
323e0a4a 2257 error (_("can't unpack array"));
14f9c5c9
AS
2258 return NULL;
2259 }
61ee279c 2260
50810684 2261 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2262 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2263 {
2264 /* This is a (right-justified) modular type representing a packed
2265 array with no wrapper. In order to interpret the value through
2266 the (left-justified) packed array type we just built, we must
2267 first left-justify it. */
2268 int bit_size, bit_pos;
2269 ULONGEST mod;
2270
df407dfe 2271 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2272 bit_size = 0;
2273 while (mod > 0)
2274 {
2275 bit_size += 1;
2276 mod >>= 1;
2277 }
df407dfe 2278 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2279 arr = ada_value_primitive_packed_val (arr, NULL,
2280 bit_pos / HOST_CHAR_BIT,
2281 bit_pos % HOST_CHAR_BIT,
2282 bit_size,
2283 type);
2284 }
2285
4c4b4cd2 2286 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2287}
2288
2289
2290/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2291 given in IND. ARR must be a simple array. */
14f9c5c9 2292
d2e4a39e
AS
2293static struct value *
2294value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2295{
2296 int i;
2297 int bits, elt_off, bit_off;
2298 long elt_total_bit_offset;
d2e4a39e
AS
2299 struct type *elt_type;
2300 struct value *v;
14f9c5c9
AS
2301
2302 bits = 0;
2303 elt_total_bit_offset = 0;
df407dfe 2304 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2305 for (i = 0; i < arity; i += 1)
14f9c5c9 2306 {
d2e4a39e 2307 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2308 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2309 error
0963b4bd
MS
2310 (_("attempt to do packed indexing of "
2311 "something other than a packed array"));
14f9c5c9 2312 else
4c4b4cd2
PH
2313 {
2314 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2315 LONGEST lowerbound, upperbound;
2316 LONGEST idx;
2317
2318 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2319 {
323e0a4a 2320 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2321 lowerbound = upperbound = 0;
2322 }
2323
3cb382c9 2324 idx = pos_atr (ind[i]);
4c4b4cd2 2325 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2326 lim_warning (_("packed array index %ld out of bounds"),
2327 (long) idx);
4c4b4cd2
PH
2328 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2329 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2330 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2331 }
14f9c5c9
AS
2332 }
2333 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2334 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2335
2336 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2337 bits, elt_type);
14f9c5c9
AS
2338 return v;
2339}
2340
4c4b4cd2 2341/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2342
2343static int
d2e4a39e 2344has_negatives (struct type *type)
14f9c5c9 2345{
d2e4a39e
AS
2346 switch (TYPE_CODE (type))
2347 {
2348 default:
2349 return 0;
2350 case TYPE_CODE_INT:
2351 return !TYPE_UNSIGNED (type);
2352 case TYPE_CODE_RANGE:
4e962e74 2353 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2354 }
14f9c5c9 2355}
d2e4a39e 2356
f93fca70 2357/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2358 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2359 the unpacked buffer.
14f9c5c9 2360
5b639dea
JB
2361 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2362 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2363
f93fca70
JB
2364 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2365 zero otherwise.
14f9c5c9 2366
f93fca70 2367 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2368
f93fca70
JB
2369 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2370
2371static void
2372ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2373 gdb_byte *unpacked, int unpacked_len,
2374 int is_big_endian, int is_signed_type,
2375 int is_scalar)
2376{
a1c95e6b
JB
2377 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2378 int src_idx; /* Index into the source area */
2379 int src_bytes_left; /* Number of source bytes left to process. */
2380 int srcBitsLeft; /* Number of source bits left to move */
2381 int unusedLS; /* Number of bits in next significant
2382 byte of source that are unused */
2383
a1c95e6b
JB
2384 int unpacked_idx; /* Index into the unpacked buffer */
2385 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2386
4c4b4cd2 2387 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2388 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2389 unsigned char sign;
a1c95e6b 2390
4c4b4cd2
PH
2391 /* Transmit bytes from least to most significant; delta is the direction
2392 the indices move. */
f93fca70 2393 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2394
5b639dea
JB
2395 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2396 bits from SRC. .*/
2397 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2398 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2399 bit_size, unpacked_len);
2400
14f9c5c9 2401 srcBitsLeft = bit_size;
086ca51f 2402 src_bytes_left = src_len;
f93fca70 2403 unpacked_bytes_left = unpacked_len;
14f9c5c9 2404 sign = 0;
f93fca70
JB
2405
2406 if (is_big_endian)
14f9c5c9 2407 {
086ca51f 2408 src_idx = src_len - 1;
f93fca70
JB
2409 if (is_signed_type
2410 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2411 sign = ~0;
d2e4a39e
AS
2412
2413 unusedLS =
4c4b4cd2
PH
2414 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2415 % HOST_CHAR_BIT;
14f9c5c9 2416
f93fca70
JB
2417 if (is_scalar)
2418 {
2419 accumSize = 0;
2420 unpacked_idx = unpacked_len - 1;
2421 }
2422 else
2423 {
4c4b4cd2
PH
2424 /* Non-scalar values must be aligned at a byte boundary... */
2425 accumSize =
2426 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2427 /* ... And are placed at the beginning (most-significant) bytes
2428 of the target. */
086ca51f
JB
2429 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2430 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2431 }
14f9c5c9 2432 }
d2e4a39e 2433 else
14f9c5c9
AS
2434 {
2435 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2436
086ca51f 2437 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2438 unusedLS = bit_offset;
2439 accumSize = 0;
2440
f93fca70 2441 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2442 sign = ~0;
14f9c5c9 2443 }
d2e4a39e 2444
14f9c5c9 2445 accum = 0;
086ca51f 2446 while (src_bytes_left > 0)
14f9c5c9
AS
2447 {
2448 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2449 part of the value. */
d2e4a39e 2450 unsigned int unusedMSMask =
4c4b4cd2
PH
2451 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2452 1;
2453 /* Sign-extend bits for this byte. */
14f9c5c9 2454 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2455
d2e4a39e 2456 accum |=
086ca51f 2457 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2458 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2459 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2460 {
db297a65 2461 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2462 accumSize -= HOST_CHAR_BIT;
2463 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2464 unpacked_bytes_left -= 1;
2465 unpacked_idx += delta;
4c4b4cd2 2466 }
14f9c5c9
AS
2467 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2468 unusedLS = 0;
086ca51f
JB
2469 src_bytes_left -= 1;
2470 src_idx += delta;
14f9c5c9 2471 }
086ca51f 2472 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2473 {
2474 accum |= sign << accumSize;
db297a65 2475 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2476 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2477 if (accumSize < 0)
2478 accumSize = 0;
14f9c5c9 2479 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2480 unpacked_bytes_left -= 1;
2481 unpacked_idx += delta;
14f9c5c9 2482 }
f93fca70
JB
2483}
2484
2485/* Create a new value of type TYPE from the contents of OBJ starting
2486 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2487 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2488 assigning through the result will set the field fetched from.
2489 VALADDR is ignored unless OBJ is NULL, in which case,
2490 VALADDR+OFFSET must address the start of storage containing the
2491 packed value. The value returned in this case is never an lval.
2492 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2493
2494struct value *
2495ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2496 long offset, int bit_offset, int bit_size,
2497 struct type *type)
2498{
2499 struct value *v;
bfb1c796 2500 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2501 gdb_byte *unpacked;
220475ed 2502 const int is_scalar = is_scalar_type (type);
d0a9e810 2503 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2504 gdb::byte_vector staging;
f93fca70
JB
2505
2506 type = ada_check_typedef (type);
2507
d0a9e810 2508 if (obj == NULL)
bfb1c796 2509 src = valaddr + offset;
d0a9e810 2510 else
bfb1c796 2511 src = value_contents (obj) + offset;
d0a9e810
JB
2512
2513 if (is_dynamic_type (type))
2514 {
2515 /* The length of TYPE might by dynamic, so we need to resolve
2516 TYPE in order to know its actual size, which we then use
2517 to create the contents buffer of the value we return.
2518 The difficulty is that the data containing our object is
2519 packed, and therefore maybe not at a byte boundary. So, what
2520 we do, is unpack the data into a byte-aligned buffer, and then
2521 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2522 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2523 staging.resize (staging_len);
d0a9e810
JB
2524
2525 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2526 staging.data (), staging.size (),
d0a9e810
JB
2527 is_big_endian, has_negatives (type),
2528 is_scalar);
d5722aa2 2529 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2530 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2531 {
2532 /* This happens when the length of the object is dynamic,
2533 and is actually smaller than the space reserved for it.
2534 For instance, in an array of variant records, the bit_size
2535 we're given is the array stride, which is constant and
2536 normally equal to the maximum size of its element.
2537 But, in reality, each element only actually spans a portion
2538 of that stride. */
2539 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2540 }
d0a9e810
JB
2541 }
2542
f93fca70
JB
2543 if (obj == NULL)
2544 {
2545 v = allocate_value (type);
bfb1c796 2546 src = valaddr + offset;
f93fca70
JB
2547 }
2548 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2549 {
0cafa88c 2550 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2551 gdb_byte *buf;
0cafa88c 2552
f93fca70 2553 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2554 buf = (gdb_byte *) alloca (src_len);
2555 read_memory (value_address (v), buf, src_len);
2556 src = buf;
f93fca70
JB
2557 }
2558 else
2559 {
2560 v = allocate_value (type);
bfb1c796 2561 src = value_contents (obj) + offset;
f93fca70
JB
2562 }
2563
2564 if (obj != NULL)
2565 {
2566 long new_offset = offset;
2567
2568 set_value_component_location (v, obj);
2569 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2570 set_value_bitsize (v, bit_size);
2571 if (value_bitpos (v) >= HOST_CHAR_BIT)
2572 {
2573 ++new_offset;
2574 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2575 }
2576 set_value_offset (v, new_offset);
2577
2578 /* Also set the parent value. This is needed when trying to
2579 assign a new value (in inferior memory). */
2580 set_value_parent (v, obj);
2581 }
2582 else
2583 set_value_bitsize (v, bit_size);
bfb1c796 2584 unpacked = value_contents_writeable (v);
f93fca70
JB
2585
2586 if (bit_size == 0)
2587 {
2588 memset (unpacked, 0, TYPE_LENGTH (type));
2589 return v;
2590 }
2591
d5722aa2 2592 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2593 {
d0a9e810
JB
2594 /* Small short-cut: If we've unpacked the data into a buffer
2595 of the same size as TYPE's length, then we can reuse that,
2596 instead of doing the unpacking again. */
d5722aa2 2597 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2598 }
d0a9e810
JB
2599 else
2600 ada_unpack_from_contents (src, bit_offset, bit_size,
2601 unpacked, TYPE_LENGTH (type),
2602 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2603
14f9c5c9
AS
2604 return v;
2605}
d2e4a39e 2606
14f9c5c9
AS
2607/* Store the contents of FROMVAL into the location of TOVAL.
2608 Return a new value with the location of TOVAL and contents of
2609 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2610 floating-point or non-scalar types. */
14f9c5c9 2611
d2e4a39e
AS
2612static struct value *
2613ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2614{
df407dfe
AC
2615 struct type *type = value_type (toval);
2616 int bits = value_bitsize (toval);
14f9c5c9 2617
52ce6436
PH
2618 toval = ada_coerce_ref (toval);
2619 fromval = ada_coerce_ref (fromval);
2620
2621 if (ada_is_direct_array_type (value_type (toval)))
2622 toval = ada_coerce_to_simple_array (toval);
2623 if (ada_is_direct_array_type (value_type (fromval)))
2624 fromval = ada_coerce_to_simple_array (fromval);
2625
88e3b34b 2626 if (!deprecated_value_modifiable (toval))
323e0a4a 2627 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2628
d2e4a39e 2629 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2630 && bits > 0
d2e4a39e 2631 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2632 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2633 {
df407dfe
AC
2634 int len = (value_bitpos (toval)
2635 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2636 int from_size;
224c3ddb 2637 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2638 struct value *val;
42ae5230 2639 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2640
2641 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2642 fromval = value_cast (type, fromval);
14f9c5c9 2643
52ce6436 2644 read_memory (to_addr, buffer, len);
aced2898
PH
2645 from_size = value_bitsize (fromval);
2646 if (from_size == 0)
2647 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4
TT
2648
2649 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2650 ULONGEST from_offset = 0;
2651 if (is_big_endian && is_scalar_type (value_type (fromval)))
2652 from_offset = from_size - bits;
2653 copy_bitwise (buffer, value_bitpos (toval),
2654 value_contents (fromval), from_offset,
2655 bits, is_big_endian);
972daa01 2656 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2657
14f9c5c9 2658 val = value_copy (toval);
0fd88904 2659 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2660 TYPE_LENGTH (type));
04624583 2661 deprecated_set_value_type (val, type);
d2e4a39e 2662
14f9c5c9
AS
2663 return val;
2664 }
2665
2666 return value_assign (toval, fromval);
2667}
2668
2669
7c512744
JB
2670/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2671 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2672 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2673 COMPONENT, and not the inferior's memory. The current contents
2674 of COMPONENT are ignored.
2675
2676 Although not part of the initial design, this function also works
2677 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2678 had a null address, and COMPONENT had an address which is equal to
2679 its offset inside CONTAINER. */
2680
52ce6436
PH
2681static void
2682value_assign_to_component (struct value *container, struct value *component,
2683 struct value *val)
2684{
2685 LONGEST offset_in_container =
42ae5230 2686 (LONGEST) (value_address (component) - value_address (container));
7c512744 2687 int bit_offset_in_container =
52ce6436
PH
2688 value_bitpos (component) - value_bitpos (container);
2689 int bits;
7c512744 2690
52ce6436
PH
2691 val = value_cast (value_type (component), val);
2692
2693 if (value_bitsize (component) == 0)
2694 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2695 else
2696 bits = value_bitsize (component);
2697
50810684 2698 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2699 {
2700 int src_offset;
2701
2702 if (is_scalar_type (check_typedef (value_type (component))))
2703 src_offset
2704 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2705 else
2706 src_offset = 0;
a99bc3d2
JB
2707 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2708 value_bitpos (container) + bit_offset_in_container,
2709 value_contents (val), src_offset, bits, 1);
2a62dfa9 2710 }
52ce6436 2711 else
a99bc3d2
JB
2712 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2713 value_bitpos (container) + bit_offset_in_container,
2714 value_contents (val), 0, bits, 0);
7c512744
JB
2715}
2716
736ade86
XR
2717/* Determine if TYPE is an access to an unconstrained array. */
2718
d91e9ea8 2719bool
736ade86
XR
2720ada_is_access_to_unconstrained_array (struct type *type)
2721{
2722 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2723 && is_thick_pntr (ada_typedef_target_type (type)));
2724}
2725
4c4b4cd2
PH
2726/* The value of the element of array ARR at the ARITY indices given in IND.
2727 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2728 thereto. */
2729
d2e4a39e
AS
2730struct value *
2731ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2732{
2733 int k;
d2e4a39e
AS
2734 struct value *elt;
2735 struct type *elt_type;
14f9c5c9
AS
2736
2737 elt = ada_coerce_to_simple_array (arr);
2738
df407dfe 2739 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2740 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2741 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2742 return value_subscript_packed (elt, arity, ind);
2743
2744 for (k = 0; k < arity; k += 1)
2745 {
b9c50e9a
XR
2746 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2747
14f9c5c9 2748 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2749 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2750
2497b498 2751 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2752
2753 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2754 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2755 {
2756 /* The element is a typedef to an unconstrained array,
2757 except that the value_subscript call stripped the
2758 typedef layer. The typedef layer is GNAT's way to
2759 specify that the element is, at the source level, an
2760 access to the unconstrained array, rather than the
2761 unconstrained array. So, we need to restore that
2762 typedef layer, which we can do by forcing the element's
2763 type back to its original type. Otherwise, the returned
2764 value is going to be printed as the array, rather
2765 than as an access. Another symptom of the same issue
2766 would be that an expression trying to dereference the
2767 element would also be improperly rejected. */
2768 deprecated_set_value_type (elt, saved_elt_type);
2769 }
2770
2771 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2772 }
b9c50e9a 2773
14f9c5c9
AS
2774 return elt;
2775}
2776
deede10c
JB
2777/* Assuming ARR is a pointer to a GDB array, the value of the element
2778 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2779 Does not read the entire array into memory.
2780
2781 Note: Unlike what one would expect, this function is used instead of
2782 ada_value_subscript for basically all non-packed array types. The reason
2783 for this is that a side effect of doing our own pointer arithmetics instead
2784 of relying on value_subscript is that there is no implicit typedef peeling.
2785 This is important for arrays of array accesses, where it allows us to
2786 preserve the fact that the array's element is an array access, where the
2787 access part os encoded in a typedef layer. */
14f9c5c9 2788
2c0b251b 2789static struct value *
deede10c 2790ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2791{
2792 int k;
919e6dbe 2793 struct value *array_ind = ada_value_ind (arr);
deede10c 2794 struct type *type
919e6dbe
PMR
2795 = check_typedef (value_enclosing_type (array_ind));
2796
2797 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2798 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2799 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2800
2801 for (k = 0; k < arity; k += 1)
2802 {
2803 LONGEST lwb, upb;
aa715135 2804 struct value *lwb_value;
14f9c5c9
AS
2805
2806 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2807 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2808 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2809 value_copy (arr));
14f9c5c9 2810 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2811 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2812 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2813 type = TYPE_TARGET_TYPE (type);
2814 }
2815
2816 return value_ind (arr);
2817}
2818
0b5d8877 2819/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2820 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2821 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2822 this array is LOW, as per Ada rules. */
0b5d8877 2823static struct value *
f5938064
JG
2824ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2825 int low, int high)
0b5d8877 2826{
b0dd7688 2827 struct type *type0 = ada_check_typedef (type);
aa715135 2828 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2829 struct type *index_type
aa715135 2830 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2831 struct type *slice_type = create_array_type_with_stride
2832 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2833 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2834 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2835 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2836 LONGEST base_low_pos, low_pos;
2837 CORE_ADDR base;
2838
2839 if (!discrete_position (base_index_type, low, &low_pos)
2840 || !discrete_position (base_index_type, base_low, &base_low_pos))
2841 {
2842 warning (_("unable to get positions in slice, use bounds instead"));
2843 low_pos = low;
2844 base_low_pos = base_low;
2845 }
5b4ee69b 2846
aa715135
JG
2847 base = value_as_address (array_ptr)
2848 + ((low_pos - base_low_pos)
2849 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2850 return value_at_lazy (slice_type, base);
0b5d8877
PH
2851}
2852
2853
2854static struct value *
2855ada_value_slice (struct value *array, int low, int high)
2856{
b0dd7688 2857 struct type *type = ada_check_typedef (value_type (array));
aa715135 2858 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2859 struct type *index_type
2860 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2861 struct type *slice_type = create_array_type_with_stride
2862 (NULL, TYPE_TARGET_TYPE (type), index_type,
2863 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2864 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2865 LONGEST low_pos, high_pos;
5b4ee69b 2866
aa715135
JG
2867 if (!discrete_position (base_index_type, low, &low_pos)
2868 || !discrete_position (base_index_type, high, &high_pos))
2869 {
2870 warning (_("unable to get positions in slice, use bounds instead"));
2871 low_pos = low;
2872 high_pos = high;
2873 }
2874
2875 return value_cast (slice_type,
2876 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2877}
2878
14f9c5c9
AS
2879/* If type is a record type in the form of a standard GNAT array
2880 descriptor, returns the number of dimensions for type. If arr is a
2881 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2882 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2883
2884int
d2e4a39e 2885ada_array_arity (struct type *type)
14f9c5c9
AS
2886{
2887 int arity;
2888
2889 if (type == NULL)
2890 return 0;
2891
2892 type = desc_base_type (type);
2893
2894 arity = 0;
d2e4a39e 2895 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2896 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2897 else
2898 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2899 {
4c4b4cd2 2900 arity += 1;
61ee279c 2901 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2902 }
d2e4a39e 2903
14f9c5c9
AS
2904 return arity;
2905}
2906
2907/* If TYPE is a record type in the form of a standard GNAT array
2908 descriptor or a simple array type, returns the element type for
2909 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2910 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2911
d2e4a39e
AS
2912struct type *
2913ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2914{
2915 type = desc_base_type (type);
2916
d2e4a39e 2917 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2918 {
2919 int k;
d2e4a39e 2920 struct type *p_array_type;
14f9c5c9 2921
556bdfd4 2922 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2923
2924 k = ada_array_arity (type);
2925 if (k == 0)
4c4b4cd2 2926 return NULL;
d2e4a39e 2927
4c4b4cd2 2928 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2929 if (nindices >= 0 && k > nindices)
4c4b4cd2 2930 k = nindices;
d2e4a39e 2931 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2932 {
61ee279c 2933 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2934 k -= 1;
2935 }
14f9c5c9
AS
2936 return p_array_type;
2937 }
2938 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2939 {
2940 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2941 {
2942 type = TYPE_TARGET_TYPE (type);
2943 nindices -= 1;
2944 }
14f9c5c9
AS
2945 return type;
2946 }
2947
2948 return NULL;
2949}
2950
4c4b4cd2 2951/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2952 Does not examine memory. Throws an error if N is invalid or TYPE
2953 is not an array type. NAME is the name of the Ada attribute being
2954 evaluated ('range, 'first, 'last, or 'length); it is used in building
2955 the error message. */
14f9c5c9 2956
1eea4ebd
UW
2957static struct type *
2958ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2959{
4c4b4cd2
PH
2960 struct type *result_type;
2961
14f9c5c9
AS
2962 type = desc_base_type (type);
2963
1eea4ebd
UW
2964 if (n < 0 || n > ada_array_arity (type))
2965 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2966
4c4b4cd2 2967 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2968 {
2969 int i;
2970
2971 for (i = 1; i < n; i += 1)
4c4b4cd2 2972 type = TYPE_TARGET_TYPE (type);
262452ec 2973 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2974 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2975 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2976 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2977 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2978 result_type = NULL;
14f9c5c9 2979 }
d2e4a39e 2980 else
1eea4ebd
UW
2981 {
2982 result_type = desc_index_type (desc_bounds_type (type), n);
2983 if (result_type == NULL)
2984 error (_("attempt to take bound of something that is not an array"));
2985 }
2986
2987 return result_type;
14f9c5c9
AS
2988}
2989
2990/* Given that arr is an array type, returns the lower bound of the
2991 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2992 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2993 array-descriptor type. It works for other arrays with bounds supplied
2994 by run-time quantities other than discriminants. */
14f9c5c9 2995
abb68b3e 2996static LONGEST
fb5e3d5c 2997ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2998{
8a48ac95 2999 struct type *type, *index_type_desc, *index_type;
1ce677a4 3000 int i;
262452ec
JK
3001
3002 gdb_assert (which == 0 || which == 1);
14f9c5c9 3003
ad82864c
JB
3004 if (ada_is_constrained_packed_array_type (arr_type))
3005 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3006
4c4b4cd2 3007 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3008 return (LONGEST) - which;
14f9c5c9
AS
3009
3010 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3011 type = TYPE_TARGET_TYPE (arr_type);
3012 else
3013 type = arr_type;
3014
bafffb51
JB
3015 if (TYPE_FIXED_INSTANCE (type))
3016 {
3017 /* The array has already been fixed, so we do not need to
3018 check the parallel ___XA type again. That encoding has
3019 already been applied, so ignore it now. */
3020 index_type_desc = NULL;
3021 }
3022 else
3023 {
3024 index_type_desc = ada_find_parallel_type (type, "___XA");
3025 ada_fixup_array_indexes_type (index_type_desc);
3026 }
3027
262452ec 3028 if (index_type_desc != NULL)
28c85d6c
JB
3029 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3030 NULL);
262452ec 3031 else
8a48ac95
JB
3032 {
3033 struct type *elt_type = check_typedef (type);
3034
3035 for (i = 1; i < n; i++)
3036 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3037
3038 index_type = TYPE_INDEX_TYPE (elt_type);
3039 }
262452ec 3040
43bbcdc2
PH
3041 return
3042 (LONGEST) (which == 0
3043 ? ada_discrete_type_low_bound (index_type)
3044 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3045}
3046
3047/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3048 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3049 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3050 supplied by run-time quantities other than discriminants. */
14f9c5c9 3051
1eea4ebd 3052static LONGEST
4dc81987 3053ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3054{
eb479039
JB
3055 struct type *arr_type;
3056
3057 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3058 arr = value_ind (arr);
3059 arr_type = value_enclosing_type (arr);
14f9c5c9 3060
ad82864c
JB
3061 if (ada_is_constrained_packed_array_type (arr_type))
3062 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3063 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3064 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3065 else
1eea4ebd 3066 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3067}
3068
3069/* Given that arr is an array value, returns the length of the
3070 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3071 supplied by run-time quantities other than discriminants.
3072 Does not work for arrays indexed by enumeration types with representation
3073 clauses at the moment. */
14f9c5c9 3074
1eea4ebd 3075static LONGEST
d2e4a39e 3076ada_array_length (struct value *arr, int n)
14f9c5c9 3077{
aa715135
JG
3078 struct type *arr_type, *index_type;
3079 int low, high;
eb479039
JB
3080
3081 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3082 arr = value_ind (arr);
3083 arr_type = value_enclosing_type (arr);
14f9c5c9 3084
ad82864c
JB
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3087
4c4b4cd2 3088 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3089 {
3090 low = ada_array_bound_from_type (arr_type, n, 0);
3091 high = ada_array_bound_from_type (arr_type, n, 1);
3092 }
14f9c5c9 3093 else
aa715135
JG
3094 {
3095 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3096 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3097 }
3098
f168693b 3099 arr_type = check_typedef (arr_type);
7150d33c 3100 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3101 if (index_type != NULL)
3102 {
3103 struct type *base_type;
3104 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3105 base_type = TYPE_TARGET_TYPE (index_type);
3106 else
3107 base_type = index_type;
3108
3109 low = pos_atr (value_from_longest (base_type, low));
3110 high = pos_atr (value_from_longest (base_type, high));
3111 }
3112 return high - low + 1;
4c4b4cd2
PH
3113}
3114
bff8c71f
TT
3115/* An array whose type is that of ARR_TYPE (an array type), with
3116 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3117 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3118
3119static struct value *
bff8c71f 3120empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3121{
b0dd7688 3122 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3123 struct type *index_type
3124 = create_static_range_type
bff8c71f
TT
3125 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3126 high < low ? low - 1 : high);
b0dd7688 3127 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3128
0b5d8877 3129 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3130}
14f9c5c9 3131\f
d2e4a39e 3132
4c4b4cd2 3133 /* Name resolution */
14f9c5c9 3134
4c4b4cd2
PH
3135/* The "decoded" name for the user-definable Ada operator corresponding
3136 to OP. */
14f9c5c9 3137
d2e4a39e 3138static const char *
4c4b4cd2 3139ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3140{
3141 int i;
3142
4c4b4cd2 3143 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3144 {
3145 if (ada_opname_table[i].op == op)
4c4b4cd2 3146 return ada_opname_table[i].decoded;
14f9c5c9 3147 }
323e0a4a 3148 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3149}
3150
3151
4c4b4cd2
PH
3152/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3153 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3154 undefined namespace) and converts operators that are
3155 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3156 non-null, it provides a preferred result type [at the moment, only
3157 type void has any effect---causing procedures to be preferred over
3158 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3159 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3160
4c4b4cd2 3161static void
699bd4cf
TT
3162resolve (expression_up *expp, int void_context_p, int parse_completion,
3163 innermost_block_tracker *tracker)
14f9c5c9 3164{
30b15541
UW
3165 struct type *context_type = NULL;
3166 int pc = 0;
3167
3168 if (void_context_p)
3169 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3170
699bd4cf 3171 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
14f9c5c9
AS
3172}
3173
4c4b4cd2
PH
3174/* Resolve the operator of the subexpression beginning at
3175 position *POS of *EXPP. "Resolving" consists of replacing
3176 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3177 with their resolutions, replacing built-in operators with
3178 function calls to user-defined operators, where appropriate, and,
3179 when DEPROCEDURE_P is non-zero, converting function-valued variables
3180 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3181 are as in ada_resolve, above. */
14f9c5c9 3182
d2e4a39e 3183static struct value *
e9d9f57e 3184resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
699bd4cf
TT
3185 struct type *context_type, int parse_completion,
3186 innermost_block_tracker *tracker)
14f9c5c9
AS
3187{
3188 int pc = *pos;
3189 int i;
4c4b4cd2 3190 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3191 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3192 struct value **argvec; /* Vector of operand types (alloca'ed). */
3193 int nargs; /* Number of operands. */
52ce6436 3194 int oplen;
14f9c5c9
AS
3195
3196 argvec = NULL;
3197 nargs = 0;
e9d9f57e 3198 exp = expp->get ();
14f9c5c9 3199
52ce6436
PH
3200 /* Pass one: resolve operands, saving their types and updating *pos,
3201 if needed. */
14f9c5c9
AS
3202 switch (op)
3203 {
4c4b4cd2
PH
3204 case OP_FUNCALL:
3205 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3206 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3207 *pos += 7;
4c4b4cd2
PH
3208 else
3209 {
3210 *pos += 3;
699bd4cf 3211 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3212 }
3213 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3214 break;
3215
14f9c5c9 3216 case UNOP_ADDR:
4c4b4cd2 3217 *pos += 1;
699bd4cf 3218 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3219 break;
3220
52ce6436
PH
3221 case UNOP_QUAL:
3222 *pos += 3;
2a612529 3223 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
699bd4cf 3224 parse_completion, tracker);
4c4b4cd2
PH
3225 break;
3226
52ce6436 3227 case OP_ATR_MODULUS:
4c4b4cd2
PH
3228 case OP_ATR_SIZE:
3229 case OP_ATR_TAG:
4c4b4cd2
PH
3230 case OP_ATR_FIRST:
3231 case OP_ATR_LAST:
3232 case OP_ATR_LENGTH:
3233 case OP_ATR_POS:
3234 case OP_ATR_VAL:
4c4b4cd2
PH
3235 case OP_ATR_MIN:
3236 case OP_ATR_MAX:
52ce6436
PH
3237 case TERNOP_IN_RANGE:
3238 case BINOP_IN_BOUNDS:
3239 case UNOP_IN_RANGE:
3240 case OP_AGGREGATE:
3241 case OP_OTHERS:
3242 case OP_CHOICES:
3243 case OP_POSITIONAL:
3244 case OP_DISCRETE_RANGE:
3245 case OP_NAME:
3246 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3247 *pos += oplen;
14f9c5c9
AS
3248 break;
3249
3250 case BINOP_ASSIGN:
3251 {
4c4b4cd2
PH
3252 struct value *arg1;
3253
3254 *pos += 1;
699bd4cf 3255 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3256 if (arg1 == NULL)
699bd4cf 3257 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
4c4b4cd2 3258 else
699bd4cf
TT
3259 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3260 tracker);
4c4b4cd2 3261 break;
14f9c5c9
AS
3262 }
3263
4c4b4cd2 3264 case UNOP_CAST:
4c4b4cd2
PH
3265 *pos += 3;
3266 nargs = 1;
3267 break;
14f9c5c9 3268
4c4b4cd2
PH
3269 case BINOP_ADD:
3270 case BINOP_SUB:
3271 case BINOP_MUL:
3272 case BINOP_DIV:
3273 case BINOP_REM:
3274 case BINOP_MOD:
3275 case BINOP_EXP:
3276 case BINOP_CONCAT:
3277 case BINOP_LOGICAL_AND:
3278 case BINOP_LOGICAL_OR:
3279 case BINOP_BITWISE_AND:
3280 case BINOP_BITWISE_IOR:
3281 case BINOP_BITWISE_XOR:
14f9c5c9 3282
4c4b4cd2
PH
3283 case BINOP_EQUAL:
3284 case BINOP_NOTEQUAL:
3285 case BINOP_LESS:
3286 case BINOP_GTR:
3287 case BINOP_LEQ:
3288 case BINOP_GEQ:
14f9c5c9 3289
4c4b4cd2
PH
3290 case BINOP_REPEAT:
3291 case BINOP_SUBSCRIPT:
3292 case BINOP_COMMA:
40c8aaa9
JB
3293 *pos += 1;
3294 nargs = 2;
3295 break;
14f9c5c9 3296
4c4b4cd2
PH
3297 case UNOP_NEG:
3298 case UNOP_PLUS:
3299 case UNOP_LOGICAL_NOT:
3300 case UNOP_ABS:
3301 case UNOP_IND:
3302 *pos += 1;
3303 nargs = 1;
3304 break;
14f9c5c9 3305
4c4b4cd2 3306 case OP_LONG:
edd079d9 3307 case OP_FLOAT:
4c4b4cd2 3308 case OP_VAR_VALUE:
74ea4be4 3309 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3310 *pos += 4;
3311 break;
14f9c5c9 3312
4c4b4cd2
PH
3313 case OP_TYPE:
3314 case OP_BOOL:
3315 case OP_LAST:
4c4b4cd2
PH
3316 case OP_INTERNALVAR:
3317 *pos += 3;
3318 break;
14f9c5c9 3319
4c4b4cd2
PH
3320 case UNOP_MEMVAL:
3321 *pos += 3;
3322 nargs = 1;
3323 break;
3324
67f3407f
DJ
3325 case OP_REGISTER:
3326 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3327 break;
3328
4c4b4cd2
PH
3329 case STRUCTOP_STRUCT:
3330 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3331 nargs = 1;
3332 break;
3333
4c4b4cd2 3334 case TERNOP_SLICE:
4c4b4cd2
PH
3335 *pos += 1;
3336 nargs = 3;
3337 break;
3338
52ce6436 3339 case OP_STRING:
14f9c5c9 3340 break;
4c4b4cd2
PH
3341
3342 default:
323e0a4a 3343 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3344 }
3345
8d749320 3346 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2 3347 for (i = 0; i < nargs; i += 1)
699bd4cf
TT
3348 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3349 tracker);
4c4b4cd2 3350 argvec[i] = NULL;
e9d9f57e 3351 exp = expp->get ();
4c4b4cd2
PH
3352
3353 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3354 switch (op)
3355 {
3356 default:
3357 break;
3358
14f9c5c9 3359 case OP_VAR_VALUE:
4c4b4cd2 3360 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3361 {
54d343a2 3362 std::vector<struct block_symbol> candidates;
76a01679
JB
3363 int n_candidates;
3364
3365 n_candidates =
3366 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3367 (exp->elts[pc + 2].symbol),
3368 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3369 &candidates);
76a01679
JB
3370
3371 if (n_candidates > 1)
3372 {
3373 /* Types tend to get re-introduced locally, so if there
3374 are any local symbols that are not types, first filter
3375 out all types. */
3376 int j;
3377 for (j = 0; j < n_candidates; j += 1)
d12307c1 3378 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3379 {
3380 case LOC_REGISTER:
3381 case LOC_ARG:
3382 case LOC_REF_ARG:
76a01679
JB
3383 case LOC_REGPARM_ADDR:
3384 case LOC_LOCAL:
76a01679 3385 case LOC_COMPUTED:
76a01679
JB
3386 goto FoundNonType;
3387 default:
3388 break;
3389 }
3390 FoundNonType:
3391 if (j < n_candidates)
3392 {
3393 j = 0;
3394 while (j < n_candidates)
3395 {
d12307c1 3396 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3397 {
3398 candidates[j] = candidates[n_candidates - 1];
3399 n_candidates -= 1;
3400 }
3401 else
3402 j += 1;
3403 }
3404 }
3405 }
3406
3407 if (n_candidates == 0)
323e0a4a 3408 error (_("No definition found for %s"),
76a01679
JB
3409 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3410 else if (n_candidates == 1)
3411 i = 0;
3412 else if (deprocedure_p
54d343a2 3413 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3414 {
06d5cf63 3415 i = ada_resolve_function
54d343a2 3416 (candidates.data (), n_candidates, NULL, 0,
06d5cf63 3417 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2a612529 3418 context_type, parse_completion);
76a01679 3419 if (i < 0)
323e0a4a 3420 error (_("Could not find a match for %s"),
76a01679
JB
3421 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3422 }
3423 else
3424 {
323e0a4a 3425 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3426 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3427 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3428 i = 0;
3429 }
3430
3431 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3432 exp->elts[pc + 2].symbol = candidates[i].symbol;
699bd4cf 3433 tracker->update (candidates[i]);
76a01679
JB
3434 }
3435
3436 if (deprocedure_p
3437 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3438 == TYPE_CODE_FUNC))
3439 {
424da6cf 3440 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3441 exp->elts[pc + 2].symbol,
3442 exp->elts[pc + 1].block);
e9d9f57e 3443 exp = expp->get ();
76a01679 3444 }
14f9c5c9
AS
3445 break;
3446
3447 case OP_FUNCALL:
3448 {
4c4b4cd2 3449 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3450 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3451 {
54d343a2 3452 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3453 int n_candidates;
3454
3455 n_candidates =
76a01679
JB
3456 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3457 (exp->elts[pc + 5].symbol),
3458 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3459 &candidates);
ec6a20c2 3460
4c4b4cd2
PH
3461 if (n_candidates == 1)
3462 i = 0;
3463 else
3464 {
06d5cf63 3465 i = ada_resolve_function
54d343a2 3466 (candidates.data (), n_candidates,
06d5cf63
JB
3467 argvec, nargs,
3468 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2a612529 3469 context_type, parse_completion);
4c4b4cd2 3470 if (i < 0)
323e0a4a 3471 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3472 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3473 }
3474
3475 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3476 exp->elts[pc + 5].symbol = candidates[i].symbol;
699bd4cf 3477 tracker->update (candidates[i]);
4c4b4cd2 3478 }
14f9c5c9
AS
3479 }
3480 break;
3481 case BINOP_ADD:
3482 case BINOP_SUB:
3483 case BINOP_MUL:
3484 case BINOP_DIV:
3485 case BINOP_REM:
3486 case BINOP_MOD:
3487 case BINOP_CONCAT:
3488 case BINOP_BITWISE_AND:
3489 case BINOP_BITWISE_IOR:
3490 case BINOP_BITWISE_XOR:
3491 case BINOP_EQUAL:
3492 case BINOP_NOTEQUAL:
3493 case BINOP_LESS:
3494 case BINOP_GTR:
3495 case BINOP_LEQ:
3496 case BINOP_GEQ:
3497 case BINOP_EXP:
3498 case UNOP_NEG:
3499 case UNOP_PLUS:
3500 case UNOP_LOGICAL_NOT:
3501 case UNOP_ABS:
3502 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3503 {
54d343a2 3504 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3505 int n_candidates;
3506
3507 n_candidates =
b5ec771e 3508 ada_lookup_symbol_list (ada_decoded_op_name (op),
582942f4 3509 NULL, VAR_DOMAIN,
4eeaa230 3510 &candidates);
ec6a20c2 3511
54d343a2 3512 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
2a612529
TT
3513 nargs, ada_decoded_op_name (op), NULL,
3514 parse_completion);
4c4b4cd2
PH
3515 if (i < 0)
3516 break;
3517
d12307c1
PMR
3518 replace_operator_with_call (expp, pc, nargs, 1,
3519 candidates[i].symbol,
3520 candidates[i].block);
e9d9f57e 3521 exp = expp->get ();
4c4b4cd2 3522 }
14f9c5c9 3523 break;
4c4b4cd2
PH
3524
3525 case OP_TYPE:
b3dbf008 3526 case OP_REGISTER:
4c4b4cd2 3527 return NULL;
14f9c5c9
AS
3528 }
3529
3530 *pos = pc;
ced9779b
JB
3531 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3532 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3533 exp->elts[pc + 1].objfile,
3534 exp->elts[pc + 2].msymbol);
3535 else
3536 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3537}
3538
3539/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3540 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3541 a non-pointer. */
14f9c5c9 3542/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3543 liberal. */
14f9c5c9
AS
3544
3545static int
4dc81987 3546ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3547{
61ee279c
PH
3548 ftype = ada_check_typedef (ftype);
3549 atype = ada_check_typedef (atype);
14f9c5c9
AS
3550
3551 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3552 ftype = TYPE_TARGET_TYPE (ftype);
3553 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3554 atype = TYPE_TARGET_TYPE (atype);
3555
d2e4a39e 3556 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3557 {
3558 default:
5b3d5b7d 3559 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3560 case TYPE_CODE_PTR:
3561 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3562 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3563 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3564 else
1265e4aa
JB
3565 return (may_deref
3566 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3567 case TYPE_CODE_INT:
3568 case TYPE_CODE_ENUM:
3569 case TYPE_CODE_RANGE:
3570 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3571 {
3572 case TYPE_CODE_INT:
3573 case TYPE_CODE_ENUM:
3574 case TYPE_CODE_RANGE:
3575 return 1;
3576 default:
3577 return 0;
3578 }
14f9c5c9
AS
3579
3580 case TYPE_CODE_ARRAY:
d2e4a39e 3581 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3582 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3583
3584 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3585 if (ada_is_array_descriptor_type (ftype))
3586 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3587 || ada_is_array_descriptor_type (atype));
14f9c5c9 3588 else
4c4b4cd2
PH
3589 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3590 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3591
3592 case TYPE_CODE_UNION:
3593 case TYPE_CODE_FLT:
3594 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3595 }
3596}
3597
3598/* Return non-zero if the formals of FUNC "sufficiently match" the
3599 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3600 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3601 argument function. */
14f9c5c9
AS
3602
3603static int
d2e4a39e 3604ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3605{
3606 int i;
d2e4a39e 3607 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3608
1265e4aa
JB
3609 if (SYMBOL_CLASS (func) == LOC_CONST
3610 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3611 return (n_actuals == 0);
3612 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3613 return 0;
3614
3615 if (TYPE_NFIELDS (func_type) != n_actuals)
3616 return 0;
3617
3618 for (i = 0; i < n_actuals; i += 1)
3619 {
4c4b4cd2 3620 if (actuals[i] == NULL)
76a01679
JB
3621 return 0;
3622 else
3623 {
5b4ee69b
MS
3624 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3625 i));
df407dfe 3626 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3627
76a01679
JB
3628 if (!ada_type_match (ftype, atype, 1))
3629 return 0;
3630 }
14f9c5c9
AS
3631 }
3632 return 1;
3633}
3634
3635/* False iff function type FUNC_TYPE definitely does not produce a value
3636 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3637 FUNC_TYPE is not a valid function type with a non-null return type
3638 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3639
3640static int
d2e4a39e 3641return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3642{
d2e4a39e 3643 struct type *return_type;
14f9c5c9
AS
3644
3645 if (func_type == NULL)
3646 return 1;
3647
4c4b4cd2 3648 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3649 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3650 else
18af8284 3651 return_type = get_base_type (func_type);
14f9c5c9
AS
3652 if (return_type == NULL)
3653 return 1;
3654
18af8284 3655 context_type = get_base_type (context_type);
14f9c5c9
AS
3656
3657 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3658 return context_type == NULL || return_type == context_type;
3659 else if (context_type == NULL)
3660 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3661 else
3662 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3663}
3664
3665
4c4b4cd2 3666/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3667 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3668 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3669 that returns that type, then eliminate matches that don't. If
3670 CONTEXT_TYPE is void and there is at least one match that does not
3671 return void, eliminate all matches that do.
3672
14f9c5c9
AS
3673 Asks the user if there is more than one match remaining. Returns -1
3674 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3675 solely for messages. May re-arrange and modify SYMS in
3676 the process; the index returned is for the modified vector. */
14f9c5c9 3677
4c4b4cd2 3678static int
d12307c1 3679ada_resolve_function (struct block_symbol syms[],
4c4b4cd2 3680 int nsyms, struct value **args, int nargs,
2a612529
TT
3681 const char *name, struct type *context_type,
3682 int parse_completion)
14f9c5c9 3683{
30b15541 3684 int fallback;
14f9c5c9 3685 int k;
4c4b4cd2 3686 int m; /* Number of hits */
14f9c5c9 3687
d2e4a39e 3688 m = 0;
30b15541
UW
3689 /* In the first pass of the loop, we only accept functions matching
3690 context_type. If none are found, we add a second pass of the loop
3691 where every function is accepted. */
3692 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3693 {
3694 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3695 {
d12307c1 3696 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3697
d12307c1 3698 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3699 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3700 {
3701 syms[m] = syms[k];
3702 m += 1;
3703 }
3704 }
14f9c5c9
AS
3705 }
3706
dc5c8746
PMR
3707 /* If we got multiple matches, ask the user which one to use. Don't do this
3708 interactive thing during completion, though, as the purpose of the
3709 completion is providing a list of all possible matches. Prompting the
3710 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3711 if (m == 0)
3712 return -1;
dc5c8746 3713 else if (m > 1 && !parse_completion)
14f9c5c9 3714 {
323e0a4a 3715 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3716 user_select_syms (syms, m, 1);
14f9c5c9
AS
3717 return 0;
3718 }
3719 return 0;
3720}
3721
4c4b4cd2
PH
3722/* Returns true (non-zero) iff decoded name N0 should appear before N1
3723 in a listing of choices during disambiguation (see sort_choices, below).
3724 The idea is that overloadings of a subprogram name from the
3725 same package should sort in their source order. We settle for ordering
3726 such symbols by their trailing number (__N or $N). */
3727
14f9c5c9 3728static int
0d5cff50 3729encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3730{
3731 if (N1 == NULL)
3732 return 0;
3733 else if (N0 == NULL)
3734 return 1;
3735 else
3736 {
3737 int k0, k1;
5b4ee69b 3738
d2e4a39e 3739 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3740 ;
d2e4a39e 3741 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3742 ;
d2e4a39e 3743 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3744 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3745 {
3746 int n0, n1;
5b4ee69b 3747
4c4b4cd2
PH
3748 n0 = k0;
3749 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3750 n0 -= 1;
3751 n1 = k1;
3752 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3753 n1 -= 1;
3754 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3755 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3756 }
14f9c5c9
AS
3757 return (strcmp (N0, N1) < 0);
3758 }
3759}
d2e4a39e 3760
4c4b4cd2
PH
3761/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3762 encoded names. */
3763
d2e4a39e 3764static void
d12307c1 3765sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3766{
4c4b4cd2 3767 int i;
5b4ee69b 3768
d2e4a39e 3769 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3770 {
d12307c1 3771 struct block_symbol sym = syms[i];
14f9c5c9
AS
3772 int j;
3773
d2e4a39e 3774 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3775 {
d12307c1
PMR
3776 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3777 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3778 break;
3779 syms[j + 1] = syms[j];
3780 }
d2e4a39e 3781 syms[j + 1] = sym;
14f9c5c9
AS
3782 }
3783}
3784
d72413e6
PMR
3785/* Whether GDB should display formals and return types for functions in the
3786 overloads selection menu. */
491144b5 3787static bool print_signatures = true;
d72413e6
PMR
3788
3789/* Print the signature for SYM on STREAM according to the FLAGS options. For
3790 all but functions, the signature is just the name of the symbol. For
3791 functions, this is the name of the function, the list of types for formals
3792 and the return type (if any). */
3793
3794static void
3795ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3796 const struct type_print_options *flags)
3797{
3798 struct type *type = SYMBOL_TYPE (sym);
3799
3800 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3801 if (!print_signatures
3802 || type == NULL
3803 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3804 return;
3805
3806 if (TYPE_NFIELDS (type) > 0)
3807 {
3808 int i;
3809
3810 fprintf_filtered (stream, " (");
3811 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3812 {
3813 if (i > 0)
3814 fprintf_filtered (stream, "; ");
3815 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3816 flags);
3817 }
3818 fprintf_filtered (stream, ")");
3819 }
3820 if (TYPE_TARGET_TYPE (type) != NULL
3821 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3822 {
3823 fprintf_filtered (stream, " return ");
3824 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3825 }
3826}
3827
4c4b4cd2
PH
3828/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3829 by asking the user (if necessary), returning the number selected,
3830 and setting the first elements of SYMS items. Error if no symbols
3831 selected. */
14f9c5c9
AS
3832
3833/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3834 to be re-integrated one of these days. */
14f9c5c9
AS
3835
3836int
d12307c1 3837user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3838{
3839 int i;
8d749320 3840 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3841 int n_chosen;
3842 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3843 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3844
3845 if (max_results < 1)
323e0a4a 3846 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3847 if (nsyms <= 1)
3848 return nsyms;
3849
717d2f5a
JB
3850 if (select_mode == multiple_symbols_cancel)
3851 error (_("\
3852canceled because the command is ambiguous\n\
3853See set/show multiple-symbol."));
a0087920 3854
717d2f5a
JB
3855 /* If select_mode is "all", then return all possible symbols.
3856 Only do that if more than one symbol can be selected, of course.
3857 Otherwise, display the menu as usual. */
3858 if (select_mode == multiple_symbols_all && max_results > 1)
3859 return nsyms;
3860
a0087920 3861 printf_filtered (_("[0] cancel\n"));
14f9c5c9 3862 if (max_results > 1)
a0087920 3863 printf_filtered (_("[1] all\n"));
14f9c5c9 3864
4c4b4cd2 3865 sort_choices (syms, nsyms);
14f9c5c9
AS
3866
3867 for (i = 0; i < nsyms; i += 1)
3868 {
d12307c1 3869 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3870 continue;
3871
d12307c1 3872 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3873 {
76a01679 3874 struct symtab_and_line sal =
d12307c1 3875 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3876
a0087920 3877 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3878 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3879 &type_print_raw_options);
323e0a4a 3880 if (sal.symtab == NULL)
7f6aba03
TT
3881 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3882 metadata_style.style ().ptr (), nullptr, sal.line);
323e0a4a 3883 else
9d636d67
TT
3884 printf_filtered
3885 (_(" at %ps:%d\n"),
3886 styled_string (file_name_style.style (),
3887 symtab_to_filename_for_display (sal.symtab)),
3888 sal.line);
4c4b4cd2
PH
3889 continue;
3890 }
d2e4a39e 3891 else
4c4b4cd2
PH
3892 {
3893 int is_enumeral =
d12307c1
PMR
3894 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3895 && SYMBOL_TYPE (syms[i].symbol) != NULL
3896 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3897 struct symtab *symtab = NULL;
3898
d12307c1
PMR
3899 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3900 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3901
d12307c1 3902 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6 3903 {
a0087920 3904 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3905 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3906 &type_print_raw_options);
a0087920
TT
3907 printf_filtered (_(" at %s:%d\n"),
3908 symtab_to_filename_for_display (symtab),
3909 SYMBOL_LINE (syms[i].symbol));
d72413e6 3910 }
76a01679 3911 else if (is_enumeral
d12307c1 3912 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3913 {
a0087920 3914 printf_filtered (("[%d] "), i + first_choice);
d12307c1 3915 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3916 gdb_stdout, -1, 0, &type_print_raw_options);
a0087920
TT
3917 printf_filtered (_("'(%s) (enumeral)\n"),
3918 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3919 }
d72413e6
PMR
3920 else
3921 {
a0087920 3922 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3923 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3924 &type_print_raw_options);
3925
3926 if (symtab != NULL)
a0087920
TT
3927 printf_filtered (is_enumeral
3928 ? _(" in %s (enumeral)\n")
3929 : _(" at %s:?\n"),
3930 symtab_to_filename_for_display (symtab));
d72413e6 3931 else
a0087920
TT
3932 printf_filtered (is_enumeral
3933 ? _(" (enumeral)\n")
3934 : _(" at ?\n"));
d72413e6 3935 }
4c4b4cd2 3936 }
14f9c5c9 3937 }
d2e4a39e 3938
14f9c5c9 3939 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3940 "overload-choice");
14f9c5c9
AS
3941
3942 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3943 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3944
3945 return n_chosen;
3946}
3947
3948/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3949 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3950 order in CHOICES[0 .. N-1], and return N.
3951
3952 The user types choices as a sequence of numbers on one line
3953 separated by blanks, encoding them as follows:
3954
4c4b4cd2 3955 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3956 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3957 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3958
4c4b4cd2 3959 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3960
3961 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3962 prompts (for use with the -f switch). */
14f9c5c9
AS
3963
3964int
d2e4a39e 3965get_selections (int *choices, int n_choices, int max_results,
a121b7c1 3966 int is_all_choice, const char *annotation_suffix)
14f9c5c9 3967{
d2e4a39e 3968 char *args;
a121b7c1 3969 const char *prompt;
14f9c5c9
AS
3970 int n_chosen;
3971 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3972
14f9c5c9
AS
3973 prompt = getenv ("PS2");
3974 if (prompt == NULL)
0bcd0149 3975 prompt = "> ";
14f9c5c9 3976
89fbedf3 3977 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 3978
14f9c5c9 3979 if (args == NULL)
323e0a4a 3980 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3981
3982 n_chosen = 0;
76a01679 3983
4c4b4cd2
PH
3984 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3985 order, as given in args. Choices are validated. */
14f9c5c9
AS
3986 while (1)
3987 {
d2e4a39e 3988 char *args2;
14f9c5c9
AS
3989 int choice, j;
3990
0fcd72ba 3991 args = skip_spaces (args);
14f9c5c9 3992 if (*args == '\0' && n_chosen == 0)
323e0a4a 3993 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3994 else if (*args == '\0')
4c4b4cd2 3995 break;
14f9c5c9
AS
3996
3997 choice = strtol (args, &args2, 10);
d2e4a39e 3998 if (args == args2 || choice < 0
4c4b4cd2 3999 || choice > n_choices + first_choice - 1)
323e0a4a 4000 error (_("Argument must be choice number"));
14f9c5c9
AS
4001 args = args2;
4002
d2e4a39e 4003 if (choice == 0)
323e0a4a 4004 error (_("cancelled"));
14f9c5c9
AS
4005
4006 if (choice < first_choice)
4c4b4cd2
PH
4007 {
4008 n_chosen = n_choices;
4009 for (j = 0; j < n_choices; j += 1)
4010 choices[j] = j;
4011 break;
4012 }
14f9c5c9
AS
4013 choice -= first_choice;
4014
d2e4a39e 4015 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4016 {
4017 }
14f9c5c9
AS
4018
4019 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4020 {
4021 int k;
5b4ee69b 4022
4c4b4cd2
PH
4023 for (k = n_chosen - 1; k > j; k -= 1)
4024 choices[k + 1] = choices[k];
4025 choices[j + 1] = choice;
4026 n_chosen += 1;
4027 }
14f9c5c9
AS
4028 }
4029
4030 if (n_chosen > max_results)
323e0a4a 4031 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4032
14f9c5c9
AS
4033 return n_chosen;
4034}
4035
4c4b4cd2
PH
4036/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4037 on the function identified by SYM and BLOCK, and taking NARGS
4038 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4039
4040static void
e9d9f57e 4041replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4042 int oplen, struct symbol *sym,
270140bd 4043 const struct block *block)
14f9c5c9
AS
4044{
4045 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4046 symbol, -oplen for operator being replaced). */
d2e4a39e 4047 struct expression *newexp = (struct expression *)
8c1a34e7 4048 xzalloc (sizeof (struct expression)
4c4b4cd2 4049 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4050 struct expression *exp = expp->get ();
14f9c5c9
AS
4051
4052 newexp->nelts = exp->nelts + 7 - oplen;
4053 newexp->language_defn = exp->language_defn;
3489610d 4054 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4055 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4056 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4057 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4058
4059 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4060 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4061
4062 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4063 newexp->elts[pc + 4].block = block;
4064 newexp->elts[pc + 5].symbol = sym;
4065
e9d9f57e 4066 expp->reset (newexp);
d2e4a39e 4067}
14f9c5c9
AS
4068
4069/* Type-class predicates */
4070
4c4b4cd2
PH
4071/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4072 or FLOAT). */
14f9c5c9
AS
4073
4074static int
d2e4a39e 4075numeric_type_p (struct type *type)
14f9c5c9
AS
4076{
4077 if (type == NULL)
4078 return 0;
d2e4a39e
AS
4079 else
4080 {
4081 switch (TYPE_CODE (type))
4c4b4cd2
PH
4082 {
4083 case TYPE_CODE_INT:
4084 case TYPE_CODE_FLT:
4085 return 1;
4086 case TYPE_CODE_RANGE:
4087 return (type == TYPE_TARGET_TYPE (type)
4088 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4089 default:
4090 return 0;
4091 }
d2e4a39e 4092 }
14f9c5c9
AS
4093}
4094
4c4b4cd2 4095/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4096
4097static int
d2e4a39e 4098integer_type_p (struct type *type)
14f9c5c9
AS
4099{
4100 if (type == NULL)
4101 return 0;
d2e4a39e
AS
4102 else
4103 {
4104 switch (TYPE_CODE (type))
4c4b4cd2
PH
4105 {
4106 case TYPE_CODE_INT:
4107 return 1;
4108 case TYPE_CODE_RANGE:
4109 return (type == TYPE_TARGET_TYPE (type)
4110 || integer_type_p (TYPE_TARGET_TYPE (type)));
4111 default:
4112 return 0;
4113 }
d2e4a39e 4114 }
14f9c5c9
AS
4115}
4116
4c4b4cd2 4117/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4118
4119static int
d2e4a39e 4120scalar_type_p (struct type *type)
14f9c5c9
AS
4121{
4122 if (type == NULL)
4123 return 0;
d2e4a39e
AS
4124 else
4125 {
4126 switch (TYPE_CODE (type))
4c4b4cd2
PH
4127 {
4128 case TYPE_CODE_INT:
4129 case TYPE_CODE_RANGE:
4130 case TYPE_CODE_ENUM:
4131 case TYPE_CODE_FLT:
4132 return 1;
4133 default:
4134 return 0;
4135 }
d2e4a39e 4136 }
14f9c5c9
AS
4137}
4138
4c4b4cd2 4139/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4140
4141static int
d2e4a39e 4142discrete_type_p (struct type *type)
14f9c5c9
AS
4143{
4144 if (type == NULL)
4145 return 0;
d2e4a39e
AS
4146 else
4147 {
4148 switch (TYPE_CODE (type))
4c4b4cd2
PH
4149 {
4150 case TYPE_CODE_INT:
4151 case TYPE_CODE_RANGE:
4152 case TYPE_CODE_ENUM:
872f0337 4153 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4154 return 1;
4155 default:
4156 return 0;
4157 }
d2e4a39e 4158 }
14f9c5c9
AS
4159}
4160
4c4b4cd2
PH
4161/* Returns non-zero if OP with operands in the vector ARGS could be
4162 a user-defined function. Errs on the side of pre-defined operators
4163 (i.e., result 0). */
14f9c5c9
AS
4164
4165static int
d2e4a39e 4166possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4167{
76a01679 4168 struct type *type0 =
df407dfe 4169 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4170 struct type *type1 =
df407dfe 4171 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4172
4c4b4cd2
PH
4173 if (type0 == NULL)
4174 return 0;
4175
14f9c5c9
AS
4176 switch (op)
4177 {
4178 default:
4179 return 0;
4180
4181 case BINOP_ADD:
4182 case BINOP_SUB:
4183 case BINOP_MUL:
4184 case BINOP_DIV:
d2e4a39e 4185 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4186
4187 case BINOP_REM:
4188 case BINOP_MOD:
4189 case BINOP_BITWISE_AND:
4190 case BINOP_BITWISE_IOR:
4191 case BINOP_BITWISE_XOR:
d2e4a39e 4192 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4193
4194 case BINOP_EQUAL:
4195 case BINOP_NOTEQUAL:
4196 case BINOP_LESS:
4197 case BINOP_GTR:
4198 case BINOP_LEQ:
4199 case BINOP_GEQ:
d2e4a39e 4200 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4201
4202 case BINOP_CONCAT:
ee90b9ab 4203 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4204
4205 case BINOP_EXP:
d2e4a39e 4206 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4207
4208 case UNOP_NEG:
4209 case UNOP_PLUS:
4210 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4211 case UNOP_ABS:
4212 return (!numeric_type_p (type0));
14f9c5c9
AS
4213
4214 }
4215}
4216\f
4c4b4cd2 4217 /* Renaming */
14f9c5c9 4218
aeb5907d
JB
4219/* NOTES:
4220
4221 1. In the following, we assume that a renaming type's name may
4222 have an ___XD suffix. It would be nice if this went away at some
4223 point.
4224 2. We handle both the (old) purely type-based representation of
4225 renamings and the (new) variable-based encoding. At some point,
4226 it is devoutly to be hoped that the former goes away
4227 (FIXME: hilfinger-2007-07-09).
4228 3. Subprogram renamings are not implemented, although the XRS
4229 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4230
4231/* If SYM encodes a renaming,
4232
4233 <renaming> renames <renamed entity>,
4234
4235 sets *LEN to the length of the renamed entity's name,
4236 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4237 the string describing the subcomponent selected from the renamed
0963b4bd 4238 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4239 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4240 are undefined). Otherwise, returns a value indicating the category
4241 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4242 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4243 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4244 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4245 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4246 may be NULL, in which case they are not assigned.
4247
4248 [Currently, however, GCC does not generate subprogram renamings.] */
4249
4250enum ada_renaming_category
4251ada_parse_renaming (struct symbol *sym,
4252 const char **renamed_entity, int *len,
4253 const char **renaming_expr)
4254{
4255 enum ada_renaming_category kind;
4256 const char *info;
4257 const char *suffix;
4258
4259 if (sym == NULL)
4260 return ADA_NOT_RENAMING;
4261 switch (SYMBOL_CLASS (sym))
14f9c5c9 4262 {
aeb5907d
JB
4263 default:
4264 return ADA_NOT_RENAMING;
aeb5907d
JB
4265 case LOC_LOCAL:
4266 case LOC_STATIC:
4267 case LOC_COMPUTED:
4268 case LOC_OPTIMIZED_OUT:
4269 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4270 if (info == NULL)
4271 return ADA_NOT_RENAMING;
4272 switch (info[5])
4273 {
4274 case '_':
4275 kind = ADA_OBJECT_RENAMING;
4276 info += 6;
4277 break;
4278 case 'E':
4279 kind = ADA_EXCEPTION_RENAMING;
4280 info += 7;
4281 break;
4282 case 'P':
4283 kind = ADA_PACKAGE_RENAMING;
4284 info += 7;
4285 break;
4286 case 'S':
4287 kind = ADA_SUBPROGRAM_RENAMING;
4288 info += 7;
4289 break;
4290 default:
4291 return ADA_NOT_RENAMING;
4292 }
14f9c5c9 4293 }
4c4b4cd2 4294
aeb5907d
JB
4295 if (renamed_entity != NULL)
4296 *renamed_entity = info;
4297 suffix = strstr (info, "___XE");
4298 if (suffix == NULL || suffix == info)
4299 return ADA_NOT_RENAMING;
4300 if (len != NULL)
4301 *len = strlen (info) - strlen (suffix);
4302 suffix += 5;
4303 if (renaming_expr != NULL)
4304 *renaming_expr = suffix;
4305 return kind;
4306}
4307
a5ee536b
JB
4308/* Compute the value of the given RENAMING_SYM, which is expected to
4309 be a symbol encoding a renaming expression. BLOCK is the block
4310 used to evaluate the renaming. */
52ce6436 4311
a5ee536b
JB
4312static struct value *
4313ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4314 const struct block *block)
a5ee536b 4315{
bbc13ae3 4316 const char *sym_name;
a5ee536b 4317
bbc13ae3 4318 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4319 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4320 return evaluate_expression (expr.get ());
a5ee536b 4321}
14f9c5c9 4322\f
d2e4a39e 4323
4c4b4cd2 4324 /* Evaluation: Function Calls */
14f9c5c9 4325
4c4b4cd2 4326/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4327 lvalues, and otherwise has the side-effect of allocating memory
4328 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4329
d2e4a39e 4330static struct value *
40bc484c 4331ensure_lval (struct value *val)
14f9c5c9 4332{
40bc484c
JB
4333 if (VALUE_LVAL (val) == not_lval
4334 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4335 {
df407dfe 4336 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4337 const CORE_ADDR addr =
4338 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4339
a84a8a0d 4340 VALUE_LVAL (val) = lval_memory;
1a088441 4341 set_value_address (val, addr);
40bc484c 4342 write_memory (addr, value_contents (val), len);
c3e5cd34 4343 }
14f9c5c9
AS
4344
4345 return val;
4346}
4347
4348/* Return the value ACTUAL, converted to be an appropriate value for a
4349 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4350 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4351 values not residing in memory, updating it as needed. */
14f9c5c9 4352
a93c0eb6 4353struct value *
40bc484c 4354ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4355{
df407dfe 4356 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4357 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4358 struct type *formal_target =
4359 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4360 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4361 struct type *actual_target =
4362 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4363 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4364
4c4b4cd2 4365 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4366 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4367 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4368 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4369 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4370 {
a84a8a0d 4371 struct value *result;
5b4ee69b 4372
14f9c5c9 4373 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4374 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4375 result = desc_data (actual);
cb923fcc 4376 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4377 {
4378 if (VALUE_LVAL (actual) != lval_memory)
4379 {
4380 struct value *val;
5b4ee69b 4381
df407dfe 4382 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4383 val = allocate_value (actual_type);
990a07ab 4384 memcpy ((char *) value_contents_raw (val),
0fd88904 4385 (char *) value_contents (actual),
4c4b4cd2 4386 TYPE_LENGTH (actual_type));
40bc484c 4387 actual = ensure_lval (val);
4c4b4cd2 4388 }
a84a8a0d 4389 result = value_addr (actual);
4c4b4cd2 4390 }
a84a8a0d
JB
4391 else
4392 return actual;
b1af9e97 4393 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4394 }
4395 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4396 return ada_value_ind (actual);
8344af1e
JB
4397 else if (ada_is_aligner_type (formal_type))
4398 {
4399 /* We need to turn this parameter into an aligner type
4400 as well. */
4401 struct value *aligner = allocate_value (formal_type);
4402 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4403
4404 value_assign_to_component (aligner, component, actual);
4405 return aligner;
4406 }
14f9c5c9
AS
4407
4408 return actual;
4409}
4410
438c98a1
JB
4411/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4412 type TYPE. This is usually an inefficient no-op except on some targets
4413 (such as AVR) where the representation of a pointer and an address
4414 differs. */
4415
4416static CORE_ADDR
4417value_pointer (struct value *value, struct type *type)
4418{
4419 struct gdbarch *gdbarch = get_type_arch (type);
4420 unsigned len = TYPE_LENGTH (type);
224c3ddb 4421 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4422 CORE_ADDR addr;
4423
4424 addr = value_address (value);
4425 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4426 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4427 return addr;
4428}
4429
14f9c5c9 4430
4c4b4cd2
PH
4431/* Push a descriptor of type TYPE for array value ARR on the stack at
4432 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4433 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4434 to-descriptor type rather than a descriptor type), a struct value *
4435 representing a pointer to this descriptor. */
14f9c5c9 4436
d2e4a39e 4437static struct value *
40bc484c 4438make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4439{
d2e4a39e
AS
4440 struct type *bounds_type = desc_bounds_type (type);
4441 struct type *desc_type = desc_base_type (type);
4442 struct value *descriptor = allocate_value (desc_type);
4443 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4444 int i;
d2e4a39e 4445
0963b4bd
MS
4446 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4447 i > 0; i -= 1)
14f9c5c9 4448 {
19f220c3
JK
4449 modify_field (value_type (bounds), value_contents_writeable (bounds),
4450 ada_array_bound (arr, i, 0),
4451 desc_bound_bitpos (bounds_type, i, 0),
4452 desc_bound_bitsize (bounds_type, i, 0));
4453 modify_field (value_type (bounds), value_contents_writeable (bounds),
4454 ada_array_bound (arr, i, 1),
4455 desc_bound_bitpos (bounds_type, i, 1),
4456 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4457 }
d2e4a39e 4458
40bc484c 4459 bounds = ensure_lval (bounds);
d2e4a39e 4460
19f220c3
JK
4461 modify_field (value_type (descriptor),
4462 value_contents_writeable (descriptor),
4463 value_pointer (ensure_lval (arr),
4464 TYPE_FIELD_TYPE (desc_type, 0)),
4465 fat_pntr_data_bitpos (desc_type),
4466 fat_pntr_data_bitsize (desc_type));
4467
4468 modify_field (value_type (descriptor),
4469 value_contents_writeable (descriptor),
4470 value_pointer (bounds,
4471 TYPE_FIELD_TYPE (desc_type, 1)),
4472 fat_pntr_bounds_bitpos (desc_type),
4473 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4474
40bc484c 4475 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4476
4477 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4478 return value_addr (descriptor);
4479 else
4480 return descriptor;
4481}
14f9c5c9 4482\f
3d9434b5
JB
4483 /* Symbol Cache Module */
4484
3d9434b5 4485/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4486 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4487 on the type of entity being printed, the cache can make it as much
4488 as an order of magnitude faster than without it.
4489
4490 The descriptive type DWARF extension has significantly reduced
4491 the need for this cache, at least when DWARF is being used. However,
4492 even in this case, some expensive name-based symbol searches are still
4493 sometimes necessary - to find an XVZ variable, mostly. */
4494
ee01b665 4495/* Initialize the contents of SYM_CACHE. */
3d9434b5 4496
ee01b665
JB
4497static void
4498ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4499{
4500 obstack_init (&sym_cache->cache_space);
4501 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4502}
3d9434b5 4503
ee01b665
JB
4504/* Free the memory used by SYM_CACHE. */
4505
4506static void
4507ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4508{
ee01b665
JB
4509 obstack_free (&sym_cache->cache_space, NULL);
4510 xfree (sym_cache);
4511}
3d9434b5 4512
ee01b665
JB
4513/* Return the symbol cache associated to the given program space PSPACE.
4514 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4515
ee01b665
JB
4516static struct ada_symbol_cache *
4517ada_get_symbol_cache (struct program_space *pspace)
4518{
4519 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4520
66c168ae 4521 if (pspace_data->sym_cache == NULL)
ee01b665 4522 {
66c168ae
JB
4523 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4524 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4525 }
4526
66c168ae 4527 return pspace_data->sym_cache;
ee01b665 4528}
3d9434b5
JB
4529
4530/* Clear all entries from the symbol cache. */
4531
4532static void
4533ada_clear_symbol_cache (void)
4534{
ee01b665
JB
4535 struct ada_symbol_cache *sym_cache
4536 = ada_get_symbol_cache (current_program_space);
4537
4538 obstack_free (&sym_cache->cache_space, NULL);
4539 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4540}
4541
fe978cb0 4542/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4543 Return it if found, or NULL otherwise. */
4544
4545static struct cache_entry **
fe978cb0 4546find_entry (const char *name, domain_enum domain)
3d9434b5 4547{
ee01b665
JB
4548 struct ada_symbol_cache *sym_cache
4549 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4550 int h = msymbol_hash (name) % HASH_SIZE;
4551 struct cache_entry **e;
4552
ee01b665 4553 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4554 {
fe978cb0 4555 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4556 return e;
4557 }
4558 return NULL;
4559}
4560
fe978cb0 4561/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4562 Return 1 if found, 0 otherwise.
4563
4564 If an entry was found and SYM is not NULL, set *SYM to the entry's
4565 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4566
96d887e8 4567static int
fe978cb0 4568lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4569 struct symbol **sym, const struct block **block)
96d887e8 4570{
fe978cb0 4571 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4572
4573 if (e == NULL)
4574 return 0;
4575 if (sym != NULL)
4576 *sym = (*e)->sym;
4577 if (block != NULL)
4578 *block = (*e)->block;
4579 return 1;
96d887e8
PH
4580}
4581
3d9434b5 4582/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4583 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4584
96d887e8 4585static void
fe978cb0 4586cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4587 const struct block *block)
96d887e8 4588{
ee01b665
JB
4589 struct ada_symbol_cache *sym_cache
4590 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4591 int h;
4592 char *copy;
4593 struct cache_entry *e;
4594
1994afbf
DE
4595 /* Symbols for builtin types don't have a block.
4596 For now don't cache such symbols. */
4597 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4598 return;
4599
3d9434b5
JB
4600 /* If the symbol is a local symbol, then do not cache it, as a search
4601 for that symbol depends on the context. To determine whether
4602 the symbol is local or not, we check the block where we found it
4603 against the global and static blocks of its associated symtab. */
4604 if (sym
08be3fe3 4605 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4606 GLOBAL_BLOCK) != block
08be3fe3 4607 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4608 STATIC_BLOCK) != block)
3d9434b5
JB
4609 return;
4610
4611 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4612 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4613 e->next = sym_cache->root[h];
4614 sym_cache->root[h] = e;
224c3ddb
SM
4615 e->name = copy
4616 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4617 strcpy (copy, name);
4618 e->sym = sym;
fe978cb0 4619 e->domain = domain;
3d9434b5 4620 e->block = block;
96d887e8 4621}
4c4b4cd2
PH
4622\f
4623 /* Symbol Lookup */
4624
b5ec771e
PA
4625/* Return the symbol name match type that should be used used when
4626 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4627
4628 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4629 for Ada lookups. */
c0431670 4630
b5ec771e
PA
4631static symbol_name_match_type
4632name_match_type_from_name (const char *lookup_name)
c0431670 4633{
b5ec771e
PA
4634 return (strstr (lookup_name, "__") == NULL
4635 ? symbol_name_match_type::WILD
4636 : symbol_name_match_type::FULL);
c0431670
JB
4637}
4638
4c4b4cd2
PH
4639/* Return the result of a standard (literal, C-like) lookup of NAME in
4640 given DOMAIN, visible from lexical block BLOCK. */
4641
4642static struct symbol *
4643standard_lookup (const char *name, const struct block *block,
4644 domain_enum domain)
4645{
acbd605d 4646 /* Initialize it just to avoid a GCC false warning. */
6640a367 4647 struct block_symbol sym = {};
4c4b4cd2 4648
d12307c1
PMR
4649 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4650 return sym.symbol;
a2cd4f14 4651 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4652 cache_symbol (name, domain, sym.symbol, sym.block);
4653 return sym.symbol;
4c4b4cd2
PH
4654}
4655
4656
4657/* Non-zero iff there is at least one non-function/non-enumeral symbol
4658 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4659 since they contend in overloading in the same way. */
4660static int
d12307c1 4661is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4662{
4663 int i;
4664
4665 for (i = 0; i < n; i += 1)
d12307c1
PMR
4666 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4667 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4668 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4669 return 1;
4670
4671 return 0;
4672}
4673
4674/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4675 struct types. Otherwise, they may not. */
14f9c5c9
AS
4676
4677static int
d2e4a39e 4678equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4679{
d2e4a39e 4680 if (type0 == type1)
14f9c5c9 4681 return 1;
d2e4a39e 4682 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4683 || TYPE_CODE (type0) != TYPE_CODE (type1))
4684 return 0;
d2e4a39e 4685 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4686 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4687 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4688 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4689 return 1;
d2e4a39e 4690
14f9c5c9
AS
4691 return 0;
4692}
4693
4694/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4695 no more defined than that of SYM1. */
14f9c5c9
AS
4696
4697static int
d2e4a39e 4698lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4699{
4700 if (sym0 == sym1)
4701 return 1;
176620f1 4702 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4703 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4704 return 0;
4705
d2e4a39e 4706 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4707 {
4708 case LOC_UNDEF:
4709 return 1;
4710 case LOC_TYPEDEF:
4711 {
4c4b4cd2
PH
4712 struct type *type0 = SYMBOL_TYPE (sym0);
4713 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4714 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4715 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4716 int len0 = strlen (name0);
5b4ee69b 4717
4c4b4cd2
PH
4718 return
4719 TYPE_CODE (type0) == TYPE_CODE (type1)
4720 && (equiv_types (type0, type1)
4721 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4722 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4723 }
4724 case LOC_CONST:
4725 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4726 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4727 default:
4728 return 0;
14f9c5c9
AS
4729 }
4730}
4731
d12307c1 4732/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4733 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4734
4735static void
76a01679
JB
4736add_defn_to_vec (struct obstack *obstackp,
4737 struct symbol *sym,
f0c5f9b2 4738 const struct block *block)
14f9c5c9
AS
4739{
4740 int i;
d12307c1 4741 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4742
529cad9c
PH
4743 /* Do not try to complete stub types, as the debugger is probably
4744 already scanning all symbols matching a certain name at the
4745 time when this function is called. Trying to replace the stub
4746 type by its associated full type will cause us to restart a scan
4747 which may lead to an infinite recursion. Instead, the client
4748 collecting the matching symbols will end up collecting several
4749 matches, with at least one of them complete. It can then filter
4750 out the stub ones if needed. */
4751
4c4b4cd2
PH
4752 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4753 {
d12307c1 4754 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4755 return;
d12307c1 4756 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4757 {
d12307c1 4758 prevDefns[i].symbol = sym;
4c4b4cd2 4759 prevDefns[i].block = block;
4c4b4cd2 4760 return;
76a01679 4761 }
4c4b4cd2
PH
4762 }
4763
4764 {
d12307c1 4765 struct block_symbol info;
4c4b4cd2 4766
d12307c1 4767 info.symbol = sym;
4c4b4cd2 4768 info.block = block;
d12307c1 4769 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4770 }
4771}
4772
d12307c1
PMR
4773/* Number of block_symbol structures currently collected in current vector in
4774 OBSTACKP. */
4c4b4cd2 4775
76a01679
JB
4776static int
4777num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4778{
d12307c1 4779 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4780}
4781
d12307c1
PMR
4782/* Vector of block_symbol structures currently collected in current vector in
4783 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4784
d12307c1 4785static struct block_symbol *
4c4b4cd2
PH
4786defns_collected (struct obstack *obstackp, int finish)
4787{
4788 if (finish)
224c3ddb 4789 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4790 else
d12307c1 4791 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4792}
4793
7c7b6655
TT
4794/* Return a bound minimal symbol matching NAME according to Ada
4795 decoding rules. Returns an invalid symbol if there is no such
4796 minimal symbol. Names prefixed with "standard__" are handled
4797 specially: "standard__" is first stripped off, and only static and
4798 global symbols are searched. */
4c4b4cd2 4799
7c7b6655 4800struct bound_minimal_symbol
96d887e8 4801ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4802{
7c7b6655 4803 struct bound_minimal_symbol result;
4c4b4cd2 4804
7c7b6655
TT
4805 memset (&result, 0, sizeof (result));
4806
b5ec771e
PA
4807 symbol_name_match_type match_type = name_match_type_from_name (name);
4808 lookup_name_info lookup_name (name, match_type);
4809
4810 symbol_name_matcher_ftype *match_name
4811 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4812
2030c079 4813 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4814 {
7932255d 4815 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
4816 {
4817 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4818 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4819 {
4820 result.minsym = msymbol;
4821 result.objfile = objfile;
4822 break;
4823 }
4824 }
4825 }
4c4b4cd2 4826
7c7b6655 4827 return result;
96d887e8 4828}
4c4b4cd2 4829
2ff0a947
TT
4830/* Return all the bound minimal symbols matching NAME according to Ada
4831 decoding rules. Returns an empty vector if there is no such
4832 minimal symbol. Names prefixed with "standard__" are handled
4833 specially: "standard__" is first stripped off, and only static and
4834 global symbols are searched. */
4835
4836static std::vector<struct bound_minimal_symbol>
4837ada_lookup_simple_minsyms (const char *name)
4838{
4839 std::vector<struct bound_minimal_symbol> result;
4840
4841 symbol_name_match_type match_type = name_match_type_from_name (name);
4842 lookup_name_info lookup_name (name, match_type);
4843
4844 symbol_name_matcher_ftype *match_name
4845 = ada_get_symbol_name_matcher (lookup_name);
4846
4847 for (objfile *objfile : current_program_space->objfiles ())
4848 {
4849 for (minimal_symbol *msymbol : objfile->msymbols ())
4850 {
4851 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4852 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4853 result.push_back ({msymbol, objfile});
4854 }
4855 }
4856
4857 return result;
4858}
4859
96d887e8
PH
4860/* For all subprograms that statically enclose the subprogram of the
4861 selected frame, add symbols matching identifier NAME in DOMAIN
4862 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4863 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4864 with a wildcard prefix. */
4c4b4cd2 4865
96d887e8
PH
4866static void
4867add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4868 const lookup_name_info &lookup_name,
4869 domain_enum domain)
96d887e8 4870{
96d887e8 4871}
14f9c5c9 4872
96d887e8
PH
4873/* True if TYPE is definitely an artificial type supplied to a symbol
4874 for which no debugging information was given in the symbol file. */
14f9c5c9 4875
96d887e8
PH
4876static int
4877is_nondebugging_type (struct type *type)
4878{
0d5cff50 4879 const char *name = ada_type_name (type);
5b4ee69b 4880
96d887e8
PH
4881 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4882}
4c4b4cd2 4883
8f17729f
JB
4884/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4885 that are deemed "identical" for practical purposes.
4886
4887 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4888 types and that their number of enumerals is identical (in other
4889 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4890
4891static int
4892ada_identical_enum_types_p (struct type *type1, struct type *type2)
4893{
4894 int i;
4895
4896 /* The heuristic we use here is fairly conservative. We consider
4897 that 2 enumerate types are identical if they have the same
4898 number of enumerals and that all enumerals have the same
4899 underlying value and name. */
4900
4901 /* All enums in the type should have an identical underlying value. */
4902 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4903 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4904 return 0;
4905
4906 /* All enumerals should also have the same name (modulo any numerical
4907 suffix). */
4908 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4909 {
0d5cff50
DE
4910 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4911 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4912 int len_1 = strlen (name_1);
4913 int len_2 = strlen (name_2);
4914
4915 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4916 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4917 if (len_1 != len_2
4918 || strncmp (TYPE_FIELD_NAME (type1, i),
4919 TYPE_FIELD_NAME (type2, i),
4920 len_1) != 0)
4921 return 0;
4922 }
4923
4924 return 1;
4925}
4926
4927/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4928 that are deemed "identical" for practical purposes. Sometimes,
4929 enumerals are not strictly identical, but their types are so similar
4930 that they can be considered identical.
4931
4932 For instance, consider the following code:
4933
4934 type Color is (Black, Red, Green, Blue, White);
4935 type RGB_Color is new Color range Red .. Blue;
4936
4937 Type RGB_Color is a subrange of an implicit type which is a copy
4938 of type Color. If we call that implicit type RGB_ColorB ("B" is
4939 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4940 As a result, when an expression references any of the enumeral
4941 by name (Eg. "print green"), the expression is technically
4942 ambiguous and the user should be asked to disambiguate. But
4943 doing so would only hinder the user, since it wouldn't matter
4944 what choice he makes, the outcome would always be the same.
4945 So, for practical purposes, we consider them as the same. */
4946
4947static int
54d343a2 4948symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4949{
4950 int i;
4951
4952 /* Before performing a thorough comparison check of each type,
4953 we perform a series of inexpensive checks. We expect that these
4954 checks will quickly fail in the vast majority of cases, and thus
4955 help prevent the unnecessary use of a more expensive comparison.
4956 Said comparison also expects us to make some of these checks
4957 (see ada_identical_enum_types_p). */
4958
4959 /* Quick check: All symbols should have an enum type. */
54d343a2 4960 for (i = 0; i < syms.size (); i++)
d12307c1 4961 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
4962 return 0;
4963
4964 /* Quick check: They should all have the same value. */
54d343a2 4965 for (i = 1; i < syms.size (); i++)
d12307c1 4966 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4967 return 0;
4968
4969 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4970 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4971 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4972 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4973 return 0;
4974
4975 /* All the sanity checks passed, so we might have a set of
4976 identical enumeration types. Perform a more complete
4977 comparison of the type of each symbol. */
54d343a2 4978 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4979 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4980 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4981 return 0;
4982
4983 return 1;
4984}
4985
54d343a2 4986/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
4987 duplicate other symbols in the list (The only case I know of where
4988 this happens is when object files containing stabs-in-ecoff are
4989 linked with files containing ordinary ecoff debugging symbols (or no
4990 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4991 Returns the number of items in the modified list. */
4c4b4cd2 4992
96d887e8 4993static int
54d343a2 4994remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
4995{
4996 int i, j;
4c4b4cd2 4997
8f17729f
JB
4998 /* We should never be called with less than 2 symbols, as there
4999 cannot be any extra symbol in that case. But it's easy to
5000 handle, since we have nothing to do in that case. */
54d343a2
TT
5001 if (syms->size () < 2)
5002 return syms->size ();
8f17729f 5003
96d887e8 5004 i = 0;
54d343a2 5005 while (i < syms->size ())
96d887e8 5006 {
a35ddb44 5007 int remove_p = 0;
339c13b6
JB
5008
5009 /* If two symbols have the same name and one of them is a stub type,
5010 the get rid of the stub. */
5011
54d343a2
TT
5012 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5013 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5014 {
54d343a2 5015 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5016 {
5017 if (j != i
54d343a2
TT
5018 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5019 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5020 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5021 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5022 remove_p = 1;
339c13b6
JB
5023 }
5024 }
5025
5026 /* Two symbols with the same name, same class and same address
5027 should be identical. */
5028
54d343a2
TT
5029 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5030 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5031 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5032 {
54d343a2 5033 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5034 {
5035 if (i != j
54d343a2
TT
5036 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5037 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5038 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5039 && SYMBOL_CLASS ((*syms)[i].symbol)
5040 == SYMBOL_CLASS ((*syms)[j].symbol)
5041 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5042 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5043 remove_p = 1;
4c4b4cd2 5044 }
4c4b4cd2 5045 }
339c13b6 5046
a35ddb44 5047 if (remove_p)
54d343a2 5048 syms->erase (syms->begin () + i);
339c13b6 5049
96d887e8 5050 i += 1;
14f9c5c9 5051 }
8f17729f
JB
5052
5053 /* If all the remaining symbols are identical enumerals, then
5054 just keep the first one and discard the rest.
5055
5056 Unlike what we did previously, we do not discard any entry
5057 unless they are ALL identical. This is because the symbol
5058 comparison is not a strict comparison, but rather a practical
5059 comparison. If all symbols are considered identical, then
5060 we can just go ahead and use the first one and discard the rest.
5061 But if we cannot reduce the list to a single element, we have
5062 to ask the user to disambiguate anyways. And if we have to
5063 present a multiple-choice menu, it's less confusing if the list
5064 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5065 if (symbols_are_identical_enums (*syms))
5066 syms->resize (1);
8f17729f 5067
54d343a2 5068 return syms->size ();
14f9c5c9
AS
5069}
5070
96d887e8
PH
5071/* Given a type that corresponds to a renaming entity, use the type name
5072 to extract the scope (package name or function name, fully qualified,
5073 and following the GNAT encoding convention) where this renaming has been
49d83361 5074 defined. */
4c4b4cd2 5075
49d83361 5076static std::string
96d887e8 5077xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5078{
96d887e8 5079 /* The renaming types adhere to the following convention:
0963b4bd 5080 <scope>__<rename>___<XR extension>.
96d887e8
PH
5081 So, to extract the scope, we search for the "___XR" extension,
5082 and then backtrack until we find the first "__". */
76a01679 5083
a737d952 5084 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5085 const char *suffix = strstr (name, "___XR");
5086 const char *last;
14f9c5c9 5087
96d887e8
PH
5088 /* Now, backtrack a bit until we find the first "__". Start looking
5089 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5090
96d887e8
PH
5091 for (last = suffix - 3; last > name; last--)
5092 if (last[0] == '_' && last[1] == '_')
5093 break;
76a01679 5094
96d887e8 5095 /* Make a copy of scope and return it. */
49d83361 5096 return std::string (name, last);
4c4b4cd2
PH
5097}
5098
96d887e8 5099/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5100
96d887e8
PH
5101static int
5102is_package_name (const char *name)
4c4b4cd2 5103{
96d887e8
PH
5104 /* Here, We take advantage of the fact that no symbols are generated
5105 for packages, while symbols are generated for each function.
5106 So the condition for NAME represent a package becomes equivalent
5107 to NAME not existing in our list of symbols. There is only one
5108 small complication with library-level functions (see below). */
4c4b4cd2 5109
96d887e8
PH
5110 /* If it is a function that has not been defined at library level,
5111 then we should be able to look it up in the symbols. */
5112 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5113 return 0;
14f9c5c9 5114
96d887e8
PH
5115 /* Library-level function names start with "_ada_". See if function
5116 "_ada_" followed by NAME can be found. */
14f9c5c9 5117
96d887e8 5118 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5119 functions names cannot contain "__" in them. */
96d887e8
PH
5120 if (strstr (name, "__") != NULL)
5121 return 0;
4c4b4cd2 5122
528e1572 5123 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5124
528e1572 5125 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5126}
14f9c5c9 5127
96d887e8 5128/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5129 not visible from FUNCTION_NAME. */
14f9c5c9 5130
96d887e8 5131static int
0d5cff50 5132old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5133{
aeb5907d
JB
5134 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5135 return 0;
5136
49d83361 5137 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5138
96d887e8 5139 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5140 if (is_package_name (scope.c_str ()))
5141 return 0;
14f9c5c9 5142
96d887e8
PH
5143 /* Check that the rename is in the current function scope by checking
5144 that its name starts with SCOPE. */
76a01679 5145
96d887e8
PH
5146 /* If the function name starts with "_ada_", it means that it is
5147 a library-level function. Strip this prefix before doing the
5148 comparison, as the encoding for the renaming does not contain
5149 this prefix. */
61012eef 5150 if (startswith (function_name, "_ada_"))
96d887e8 5151 function_name += 5;
f26caa11 5152
49d83361 5153 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5154}
5155
aeb5907d
JB
5156/* Remove entries from SYMS that corresponds to a renaming entity that
5157 is not visible from the function associated with CURRENT_BLOCK or
5158 that is superfluous due to the presence of more specific renaming
5159 information. Places surviving symbols in the initial entries of
5160 SYMS and returns the number of surviving symbols.
96d887e8
PH
5161
5162 Rationale:
aeb5907d
JB
5163 First, in cases where an object renaming is implemented as a
5164 reference variable, GNAT may produce both the actual reference
5165 variable and the renaming encoding. In this case, we discard the
5166 latter.
5167
5168 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5169 entity. Unfortunately, STABS currently does not support the definition
5170 of types that are local to a given lexical block, so all renamings types
5171 are emitted at library level. As a consequence, if an application
5172 contains two renaming entities using the same name, and a user tries to
5173 print the value of one of these entities, the result of the ada symbol
5174 lookup will also contain the wrong renaming type.
f26caa11 5175
96d887e8
PH
5176 This function partially covers for this limitation by attempting to
5177 remove from the SYMS list renaming symbols that should be visible
5178 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5179 method with the current information available. The implementation
5180 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5181
5182 - When the user tries to print a rename in a function while there
5183 is another rename entity defined in a package: Normally, the
5184 rename in the function has precedence over the rename in the
5185 package, so the latter should be removed from the list. This is
5186 currently not the case.
5187
5188 - This function will incorrectly remove valid renames if
5189 the CURRENT_BLOCK corresponds to a function which symbol name
5190 has been changed by an "Export" pragma. As a consequence,
5191 the user will be unable to print such rename entities. */
4c4b4cd2 5192
14f9c5c9 5193static int
54d343a2
TT
5194remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5195 const struct block *current_block)
4c4b4cd2
PH
5196{
5197 struct symbol *current_function;
0d5cff50 5198 const char *current_function_name;
4c4b4cd2 5199 int i;
aeb5907d
JB
5200 int is_new_style_renaming;
5201
5202 /* If there is both a renaming foo___XR... encoded as a variable and
5203 a simple variable foo in the same block, discard the latter.
0963b4bd 5204 First, zero out such symbols, then compress. */
aeb5907d 5205 is_new_style_renaming = 0;
54d343a2 5206 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5207 {
54d343a2
TT
5208 struct symbol *sym = (*syms)[i].symbol;
5209 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5210 const char *name;
5211 const char *suffix;
5212
5213 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5214 continue;
5215 name = SYMBOL_LINKAGE_NAME (sym);
5216 suffix = strstr (name, "___XR");
5217
5218 if (suffix != NULL)
5219 {
5220 int name_len = suffix - name;
5221 int j;
5b4ee69b 5222
aeb5907d 5223 is_new_style_renaming = 1;
54d343a2
TT
5224 for (j = 0; j < syms->size (); j += 1)
5225 if (i != j && (*syms)[j].symbol != NULL
5226 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5227 name_len) == 0
54d343a2
TT
5228 && block == (*syms)[j].block)
5229 (*syms)[j].symbol = NULL;
aeb5907d
JB
5230 }
5231 }
5232 if (is_new_style_renaming)
5233 {
5234 int j, k;
5235
54d343a2
TT
5236 for (j = k = 0; j < syms->size (); j += 1)
5237 if ((*syms)[j].symbol != NULL)
aeb5907d 5238 {
54d343a2 5239 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5240 k += 1;
5241 }
5242 return k;
5243 }
4c4b4cd2
PH
5244
5245 /* Extract the function name associated to CURRENT_BLOCK.
5246 Abort if unable to do so. */
76a01679 5247
4c4b4cd2 5248 if (current_block == NULL)
54d343a2 5249 return syms->size ();
76a01679 5250
7f0df278 5251 current_function = block_linkage_function (current_block);
4c4b4cd2 5252 if (current_function == NULL)
54d343a2 5253 return syms->size ();
4c4b4cd2
PH
5254
5255 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5256 if (current_function_name == NULL)
54d343a2 5257 return syms->size ();
4c4b4cd2
PH
5258
5259 /* Check each of the symbols, and remove it from the list if it is
5260 a type corresponding to a renaming that is out of the scope of
5261 the current block. */
5262
5263 i = 0;
54d343a2 5264 while (i < syms->size ())
4c4b4cd2 5265 {
54d343a2 5266 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5267 == ADA_OBJECT_RENAMING
54d343a2
TT
5268 && old_renaming_is_invisible ((*syms)[i].symbol,
5269 current_function_name))
5270 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5271 else
5272 i += 1;
5273 }
5274
54d343a2 5275 return syms->size ();
4c4b4cd2
PH
5276}
5277
339c13b6
JB
5278/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5279 whose name and domain match NAME and DOMAIN respectively.
5280 If no match was found, then extend the search to "enclosing"
5281 routines (in other words, if we're inside a nested function,
5282 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5283 If WILD_MATCH_P is nonzero, perform the naming matching in
5284 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5285
5286 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5287
5288static void
b5ec771e
PA
5289ada_add_local_symbols (struct obstack *obstackp,
5290 const lookup_name_info &lookup_name,
5291 const struct block *block, domain_enum domain)
339c13b6
JB
5292{
5293 int block_depth = 0;
5294
5295 while (block != NULL)
5296 {
5297 block_depth += 1;
b5ec771e 5298 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5299
5300 /* If we found a non-function match, assume that's the one. */
5301 if (is_nonfunction (defns_collected (obstackp, 0),
5302 num_defns_collected (obstackp)))
5303 return;
5304
5305 block = BLOCK_SUPERBLOCK (block);
5306 }
5307
5308 /* If no luck so far, try to find NAME as a local symbol in some lexically
5309 enclosing subprogram. */
5310 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5311 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5312}
5313
ccefe4c4 5314/* An object of this type is used as the user_data argument when
40658b94 5315 calling the map_matching_symbols method. */
ccefe4c4 5316
40658b94 5317struct match_data
ccefe4c4 5318{
40658b94 5319 struct objfile *objfile;
ccefe4c4 5320 struct obstack *obstackp;
40658b94
PH
5321 struct symbol *arg_sym;
5322 int found_sym;
ccefe4c4
TT
5323};
5324
199b4314
TT
5325/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5326 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5327 containing the obstack that collects the symbol list, the file that SYM
5328 must come from, a flag indicating whether a non-argument symbol has
5329 been found in the current block, and the last argument symbol
5330 passed in SYM within the current block (if any). When SYM is null,
5331 marking the end of a block, the argument symbol is added if no
5332 other has been found. */
ccefe4c4 5333
199b4314
TT
5334static bool
5335aux_add_nonlocal_symbols (struct block_symbol *bsym,
5336 struct match_data *data)
ccefe4c4 5337{
199b4314
TT
5338 const struct block *block = bsym->block;
5339 struct symbol *sym = bsym->symbol;
5340
40658b94
PH
5341 if (sym == NULL)
5342 {
5343 if (!data->found_sym && data->arg_sym != NULL)
5344 add_defn_to_vec (data->obstackp,
5345 fixup_symbol_section (data->arg_sym, data->objfile),
5346 block);
5347 data->found_sym = 0;
5348 data->arg_sym = NULL;
5349 }
5350 else
5351 {
5352 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5353 return true;
40658b94
PH
5354 else if (SYMBOL_IS_ARGUMENT (sym))
5355 data->arg_sym = sym;
5356 else
5357 {
5358 data->found_sym = 1;
5359 add_defn_to_vec (data->obstackp,
5360 fixup_symbol_section (sym, data->objfile),
5361 block);
5362 }
5363 }
199b4314 5364 return true;
40658b94
PH
5365}
5366
b5ec771e
PA
5367/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5368 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5369 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5370
5371static int
5372ada_add_block_renamings (struct obstack *obstackp,
5373 const struct block *block,
b5ec771e
PA
5374 const lookup_name_info &lookup_name,
5375 domain_enum domain)
22cee43f
PMR
5376{
5377 struct using_direct *renaming;
5378 int defns_mark = num_defns_collected (obstackp);
5379
b5ec771e
PA
5380 symbol_name_matcher_ftype *name_match
5381 = ada_get_symbol_name_matcher (lookup_name);
5382
22cee43f
PMR
5383 for (renaming = block_using (block);
5384 renaming != NULL;
5385 renaming = renaming->next)
5386 {
5387 const char *r_name;
22cee43f
PMR
5388
5389 /* Avoid infinite recursions: skip this renaming if we are actually
5390 already traversing it.
5391
5392 Currently, symbol lookup in Ada don't use the namespace machinery from
5393 C++/Fortran support: skip namespace imports that use them. */
5394 if (renaming->searched
5395 || (renaming->import_src != NULL
5396 && renaming->import_src[0] != '\0')
5397 || (renaming->import_dest != NULL
5398 && renaming->import_dest[0] != '\0'))
5399 continue;
5400 renaming->searched = 1;
5401
5402 /* TODO: here, we perform another name-based symbol lookup, which can
5403 pull its own multiple overloads. In theory, we should be able to do
5404 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5405 not a simple name. But in order to do this, we would need to enhance
5406 the DWARF reader to associate a symbol to this renaming, instead of a
5407 name. So, for now, we do something simpler: re-use the C++/Fortran
5408 namespace machinery. */
5409 r_name = (renaming->alias != NULL
5410 ? renaming->alias
5411 : renaming->declaration);
b5ec771e
PA
5412 if (name_match (r_name, lookup_name, NULL))
5413 {
5414 lookup_name_info decl_lookup_name (renaming->declaration,
5415 lookup_name.match_type ());
5416 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5417 1, NULL);
5418 }
22cee43f
PMR
5419 renaming->searched = 0;
5420 }
5421 return num_defns_collected (obstackp) != defns_mark;
5422}
5423
db230ce3
JB
5424/* Implements compare_names, but only applying the comparision using
5425 the given CASING. */
5b4ee69b 5426
40658b94 5427static int
db230ce3
JB
5428compare_names_with_case (const char *string1, const char *string2,
5429 enum case_sensitivity casing)
40658b94
PH
5430{
5431 while (*string1 != '\0' && *string2 != '\0')
5432 {
db230ce3
JB
5433 char c1, c2;
5434
40658b94
PH
5435 if (isspace (*string1) || isspace (*string2))
5436 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5437
5438 if (casing == case_sensitive_off)
5439 {
5440 c1 = tolower (*string1);
5441 c2 = tolower (*string2);
5442 }
5443 else
5444 {
5445 c1 = *string1;
5446 c2 = *string2;
5447 }
5448 if (c1 != c2)
40658b94 5449 break;
db230ce3 5450
40658b94
PH
5451 string1 += 1;
5452 string2 += 1;
5453 }
db230ce3 5454
40658b94
PH
5455 switch (*string1)
5456 {
5457 case '(':
5458 return strcmp_iw_ordered (string1, string2);
5459 case '_':
5460 if (*string2 == '\0')
5461 {
052874e8 5462 if (is_name_suffix (string1))
40658b94
PH
5463 return 0;
5464 else
1a1d5513 5465 return 1;
40658b94 5466 }
dbb8534f 5467 /* FALLTHROUGH */
40658b94
PH
5468 default:
5469 if (*string2 == '(')
5470 return strcmp_iw_ordered (string1, string2);
5471 else
db230ce3
JB
5472 {
5473 if (casing == case_sensitive_off)
5474 return tolower (*string1) - tolower (*string2);
5475 else
5476 return *string1 - *string2;
5477 }
40658b94 5478 }
ccefe4c4
TT
5479}
5480
db230ce3
JB
5481/* Compare STRING1 to STRING2, with results as for strcmp.
5482 Compatible with strcmp_iw_ordered in that...
5483
5484 strcmp_iw_ordered (STRING1, STRING2) <= 0
5485
5486 ... implies...
5487
5488 compare_names (STRING1, STRING2) <= 0
5489
5490 (they may differ as to what symbols compare equal). */
5491
5492static int
5493compare_names (const char *string1, const char *string2)
5494{
5495 int result;
5496
5497 /* Similar to what strcmp_iw_ordered does, we need to perform
5498 a case-insensitive comparison first, and only resort to
5499 a second, case-sensitive, comparison if the first one was
5500 not sufficient to differentiate the two strings. */
5501
5502 result = compare_names_with_case (string1, string2, case_sensitive_off);
5503 if (result == 0)
5504 result = compare_names_with_case (string1, string2, case_sensitive_on);
5505
5506 return result;
5507}
5508
b5ec771e
PA
5509/* Convenience function to get at the Ada encoded lookup name for
5510 LOOKUP_NAME, as a C string. */
5511
5512static const char *
5513ada_lookup_name (const lookup_name_info &lookup_name)
5514{
5515 return lookup_name.ada ().lookup_name ().c_str ();
5516}
5517
339c13b6 5518/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5519 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5520 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5521 symbols otherwise. */
339c13b6
JB
5522
5523static void
b5ec771e
PA
5524add_nonlocal_symbols (struct obstack *obstackp,
5525 const lookup_name_info &lookup_name,
5526 domain_enum domain, int global)
339c13b6 5527{
40658b94 5528 struct match_data data;
339c13b6 5529
6475f2fe 5530 memset (&data, 0, sizeof data);
ccefe4c4 5531 data.obstackp = obstackp;
339c13b6 5532
b5ec771e
PA
5533 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5534
199b4314
TT
5535 auto callback = [&] (struct block_symbol *bsym)
5536 {
5537 return aux_add_nonlocal_symbols (bsym, &data);
5538 };
5539
2030c079 5540 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5541 {
5542 data.objfile = objfile;
5543
b054970d
TT
5544 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5545 domain, global, callback,
5546 (is_wild_match
5547 ? NULL : compare_names));
22cee43f 5548
b669c953 5549 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5550 {
5551 const struct block *global_block
5552 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5553
b5ec771e
PA
5554 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5555 domain))
22cee43f
PMR
5556 data.found_sym = 1;
5557 }
40658b94
PH
5558 }
5559
5560 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5561 {
b5ec771e 5562 const char *name = ada_lookup_name (lookup_name);
b054970d
TT
5563 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5564 symbol_name_match_type::FULL);
b5ec771e 5565
2030c079 5566 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5567 {
40658b94 5568 data.objfile = objfile;
b054970d 5569 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5570 domain, global, callback,
b5ec771e 5571 compare_names);
40658b94
PH
5572 }
5573 }
339c13b6
JB
5574}
5575
b5ec771e
PA
5576/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5577 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5578 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5579
22cee43f
PMR
5580 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5581 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5582 is the one match returned (no other matches in that or
d9680e73 5583 enclosing blocks is returned). If there are any matches in or
22cee43f 5584 surrounding BLOCK, then these alone are returned.
4eeaa230 5585
b5ec771e
PA
5586 Names prefixed with "standard__" are handled specially:
5587 "standard__" is first stripped off (by the lookup_name
5588 constructor), and only static and global symbols are searched.
14f9c5c9 5589
22cee43f
PMR
5590 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5591 to lookup global symbols. */
5592
5593static void
5594ada_add_all_symbols (struct obstack *obstackp,
5595 const struct block *block,
b5ec771e 5596 const lookup_name_info &lookup_name,
22cee43f
PMR
5597 domain_enum domain,
5598 int full_search,
5599 int *made_global_lookup_p)
14f9c5c9
AS
5600{
5601 struct symbol *sym;
14f9c5c9 5602
22cee43f
PMR
5603 if (made_global_lookup_p)
5604 *made_global_lookup_p = 0;
339c13b6
JB
5605
5606 /* Special case: If the user specifies a symbol name inside package
5607 Standard, do a non-wild matching of the symbol name without
5608 the "standard__" prefix. This was primarily introduced in order
5609 to allow the user to specifically access the standard exceptions
5610 using, for instance, Standard.Constraint_Error when Constraint_Error
5611 is ambiguous (due to the user defining its own Constraint_Error
5612 entity inside its program). */
b5ec771e
PA
5613 if (lookup_name.ada ().standard_p ())
5614 block = NULL;
4c4b4cd2 5615
339c13b6 5616 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5617
4eeaa230
DE
5618 if (block != NULL)
5619 {
5620 if (full_search)
b5ec771e 5621 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5622 else
5623 {
5624 /* In the !full_search case we're are being called by
5625 ada_iterate_over_symbols, and we don't want to search
5626 superblocks. */
b5ec771e 5627 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5628 }
22cee43f
PMR
5629 if (num_defns_collected (obstackp) > 0 || !full_search)
5630 return;
4eeaa230 5631 }
d2e4a39e 5632
339c13b6
JB
5633 /* No non-global symbols found. Check our cache to see if we have
5634 already performed this search before. If we have, then return
5635 the same result. */
5636
b5ec771e
PA
5637 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5638 domain, &sym, &block))
4c4b4cd2
PH
5639 {
5640 if (sym != NULL)
b5ec771e 5641 add_defn_to_vec (obstackp, sym, block);
22cee43f 5642 return;
4c4b4cd2 5643 }
14f9c5c9 5644
22cee43f
PMR
5645 if (made_global_lookup_p)
5646 *made_global_lookup_p = 1;
b1eedac9 5647
339c13b6
JB
5648 /* Search symbols from all global blocks. */
5649
b5ec771e 5650 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5651
4c4b4cd2 5652 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5653 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5654
22cee43f 5655 if (num_defns_collected (obstackp) == 0)
b5ec771e 5656 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5657}
5658
b5ec771e
PA
5659/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5660 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5661 matches.
54d343a2
TT
5662 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5663 found and the blocks and symbol tables (if any) in which they were
5664 found.
22cee43f
PMR
5665
5666 When full_search is non-zero, any non-function/non-enumeral
5667 symbol match within the nest of blocks whose innermost member is BLOCK,
5668 is the one match returned (no other matches in that or
5669 enclosing blocks is returned). If there are any matches in or
5670 surrounding BLOCK, then these alone are returned.
5671
5672 Names prefixed with "standard__" are handled specially: "standard__"
5673 is first stripped off, and only static and global symbols are searched. */
5674
5675static int
b5ec771e
PA
5676ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5677 const struct block *block,
22cee43f 5678 domain_enum domain,
54d343a2 5679 std::vector<struct block_symbol> *results,
22cee43f
PMR
5680 int full_search)
5681{
22cee43f
PMR
5682 int syms_from_global_search;
5683 int ndefns;
ec6a20c2 5684 auto_obstack obstack;
22cee43f 5685
ec6a20c2 5686 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5687 domain, full_search, &syms_from_global_search);
14f9c5c9 5688
ec6a20c2
JB
5689 ndefns = num_defns_collected (&obstack);
5690
54d343a2
TT
5691 struct block_symbol *base = defns_collected (&obstack, 1);
5692 for (int i = 0; i < ndefns; ++i)
5693 results->push_back (base[i]);
4c4b4cd2 5694
54d343a2 5695 ndefns = remove_extra_symbols (results);
4c4b4cd2 5696
b1eedac9 5697 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5698 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5699
b1eedac9 5700 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5701 cache_symbol (ada_lookup_name (lookup_name), domain,
5702 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5703
54d343a2 5704 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5705
14f9c5c9
AS
5706 return ndefns;
5707}
5708
b5ec771e 5709/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5710 in global scopes, returning the number of matches, and filling *RESULTS
5711 with (SYM,BLOCK) tuples.
ec6a20c2 5712
4eeaa230
DE
5713 See ada_lookup_symbol_list_worker for further details. */
5714
5715int
b5ec771e 5716ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5717 domain_enum domain,
5718 std::vector<struct block_symbol> *results)
4eeaa230 5719{
b5ec771e
PA
5720 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5721 lookup_name_info lookup_name (name, name_match_type);
5722
5723 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5724}
5725
5726/* Implementation of the la_iterate_over_symbols method. */
5727
6969f124 5728static bool
14bc53a8 5729ada_iterate_over_symbols
b5ec771e
PA
5730 (const struct block *block, const lookup_name_info &name,
5731 domain_enum domain,
14bc53a8 5732 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5733{
5734 int ndefs, i;
54d343a2 5735 std::vector<struct block_symbol> results;
4eeaa230
DE
5736
5737 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5738
4eeaa230
DE
5739 for (i = 0; i < ndefs; ++i)
5740 {
7e41c8db 5741 if (!callback (&results[i]))
6969f124 5742 return false;
4eeaa230 5743 }
6969f124
TT
5744
5745 return true;
4eeaa230
DE
5746}
5747
4e5c77fe
JB
5748/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5749 to 1, but choosing the first symbol found if there are multiple
5750 choices.
5751
5e2336be
JB
5752 The result is stored in *INFO, which must be non-NULL.
5753 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5754
5755void
5756ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5757 domain_enum domain,
d12307c1 5758 struct block_symbol *info)
14f9c5c9 5759{
b5ec771e
PA
5760 /* Since we already have an encoded name, wrap it in '<>' to force a
5761 verbatim match. Otherwise, if the name happens to not look like
5762 an encoded name (because it doesn't include a "__"),
5763 ada_lookup_name_info would re-encode/fold it again, and that
5764 would e.g., incorrectly lowercase object renaming names like
5765 "R28b" -> "r28b". */
5766 std::string verbatim = std::string ("<") + name + '>';
5767
5e2336be 5768 gdb_assert (info != NULL);
65392b3e 5769 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5770}
aeb5907d
JB
5771
5772/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5773 scope and in global scopes, or NULL if none. NAME is folded and
5774 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5775 choosing the first symbol if there are multiple choices. */
4e5c77fe 5776
d12307c1 5777struct block_symbol
aeb5907d 5778ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5779 domain_enum domain)
aeb5907d 5780{
54d343a2 5781 std::vector<struct block_symbol> candidates;
f98fc17b 5782 int n_candidates;
f98fc17b
PA
5783
5784 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5785
5786 if (n_candidates == 0)
54d343a2 5787 return {};
f98fc17b
PA
5788
5789 block_symbol info = candidates[0];
5790 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5791 return info;
4c4b4cd2 5792}
14f9c5c9 5793
d12307c1 5794static struct block_symbol
f606139a
DE
5795ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5796 const char *name,
76a01679 5797 const struct block *block,
21b556f4 5798 const domain_enum domain)
4c4b4cd2 5799{
d12307c1 5800 struct block_symbol sym;
04dccad0 5801
65392b3e 5802 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5803 if (sym.symbol != NULL)
04dccad0
JB
5804 return sym;
5805
5806 /* If we haven't found a match at this point, try the primitive
5807 types. In other languages, this search is performed before
5808 searching for global symbols in order to short-circuit that
5809 global-symbol search if it happens that the name corresponds
5810 to a primitive type. But we cannot do the same in Ada, because
5811 it is perfectly legitimate for a program to declare a type which
5812 has the same name as a standard type. If looking up a type in
5813 that situation, we have traditionally ignored the primitive type
5814 in favor of user-defined types. This is why, unlike most other
5815 languages, we search the primitive types this late and only after
5816 having searched the global symbols without success. */
5817
5818 if (domain == VAR_DOMAIN)
5819 {
5820 struct gdbarch *gdbarch;
5821
5822 if (block == NULL)
5823 gdbarch = target_gdbarch ();
5824 else
5825 gdbarch = block_gdbarch (block);
d12307c1
PMR
5826 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5827 if (sym.symbol != NULL)
04dccad0
JB
5828 return sym;
5829 }
5830
6640a367 5831 return {};
14f9c5c9
AS
5832}
5833
5834
4c4b4cd2
PH
5835/* True iff STR is a possible encoded suffix of a normal Ada name
5836 that is to be ignored for matching purposes. Suffixes of parallel
5837 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5838 are given by any of the regular expressions:
4c4b4cd2 5839
babe1480
JB
5840 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5841 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5842 TKB [subprogram suffix for task bodies]
babe1480 5843 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5844 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5845
5846 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5847 match is performed. This sequence is used to differentiate homonyms,
5848 is an optional part of a valid name suffix. */
4c4b4cd2 5849
14f9c5c9 5850static int
d2e4a39e 5851is_name_suffix (const char *str)
14f9c5c9
AS
5852{
5853 int k;
4c4b4cd2
PH
5854 const char *matching;
5855 const int len = strlen (str);
5856
babe1480
JB
5857 /* Skip optional leading __[0-9]+. */
5858
4c4b4cd2
PH
5859 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5860 {
babe1480
JB
5861 str += 3;
5862 while (isdigit (str[0]))
5863 str += 1;
4c4b4cd2 5864 }
babe1480
JB
5865
5866 /* [.$][0-9]+ */
4c4b4cd2 5867
babe1480 5868 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5869 {
babe1480 5870 matching = str + 1;
4c4b4cd2
PH
5871 while (isdigit (matching[0]))
5872 matching += 1;
5873 if (matching[0] == '\0')
5874 return 1;
5875 }
5876
5877 /* ___[0-9]+ */
babe1480 5878
4c4b4cd2
PH
5879 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5880 {
5881 matching = str + 3;
5882 while (isdigit (matching[0]))
5883 matching += 1;
5884 if (matching[0] == '\0')
5885 return 1;
5886 }
5887
9ac7f98e
JB
5888 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5889
5890 if (strcmp (str, "TKB") == 0)
5891 return 1;
5892
529cad9c
PH
5893#if 0
5894 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5895 with a N at the end. Unfortunately, the compiler uses the same
5896 convention for other internal types it creates. So treating
529cad9c 5897 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5898 some regressions. For instance, consider the case of an enumerated
5899 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5900 name ends with N.
5901 Having a single character like this as a suffix carrying some
0963b4bd 5902 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5903 to be something like "_N" instead. In the meantime, do not do
5904 the following check. */
5905 /* Protected Object Subprograms */
5906 if (len == 1 && str [0] == 'N')
5907 return 1;
5908#endif
5909
5910 /* _E[0-9]+[bs]$ */
5911 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5912 {
5913 matching = str + 3;
5914 while (isdigit (matching[0]))
5915 matching += 1;
5916 if ((matching[0] == 'b' || matching[0] == 's')
5917 && matching [1] == '\0')
5918 return 1;
5919 }
5920
4c4b4cd2
PH
5921 /* ??? We should not modify STR directly, as we are doing below. This
5922 is fine in this case, but may become problematic later if we find
5923 that this alternative did not work, and want to try matching
5924 another one from the begining of STR. Since we modified it, we
5925 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5926 if (str[0] == 'X')
5927 {
5928 str += 1;
d2e4a39e 5929 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5930 {
5931 if (str[0] != 'n' && str[0] != 'b')
5932 return 0;
5933 str += 1;
5934 }
14f9c5c9 5935 }
babe1480 5936
14f9c5c9
AS
5937 if (str[0] == '\000')
5938 return 1;
babe1480 5939
d2e4a39e 5940 if (str[0] == '_')
14f9c5c9
AS
5941 {
5942 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5943 return 0;
d2e4a39e 5944 if (str[2] == '_')
4c4b4cd2 5945 {
61ee279c
PH
5946 if (strcmp (str + 3, "JM") == 0)
5947 return 1;
5948 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5949 the LJM suffix in favor of the JM one. But we will
5950 still accept LJM as a valid suffix for a reasonable
5951 amount of time, just to allow ourselves to debug programs
5952 compiled using an older version of GNAT. */
4c4b4cd2
PH
5953 if (strcmp (str + 3, "LJM") == 0)
5954 return 1;
5955 if (str[3] != 'X')
5956 return 0;
1265e4aa
JB
5957 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5958 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5959 return 1;
5960 if (str[4] == 'R' && str[5] != 'T')
5961 return 1;
5962 return 0;
5963 }
5964 if (!isdigit (str[2]))
5965 return 0;
5966 for (k = 3; str[k] != '\0'; k += 1)
5967 if (!isdigit (str[k]) && str[k] != '_')
5968 return 0;
14f9c5c9
AS
5969 return 1;
5970 }
4c4b4cd2 5971 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5972 {
4c4b4cd2
PH
5973 for (k = 2; str[k] != '\0'; k += 1)
5974 if (!isdigit (str[k]) && str[k] != '_')
5975 return 0;
14f9c5c9
AS
5976 return 1;
5977 }
5978 return 0;
5979}
d2e4a39e 5980
aeb5907d
JB
5981/* Return non-zero if the string starting at NAME and ending before
5982 NAME_END contains no capital letters. */
529cad9c
PH
5983
5984static int
5985is_valid_name_for_wild_match (const char *name0)
5986{
f945dedf 5987 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5988 int i;
5989
5823c3ef
JB
5990 /* If the decoded name starts with an angle bracket, it means that
5991 NAME0 does not follow the GNAT encoding format. It should then
5992 not be allowed as a possible wild match. */
5993 if (decoded_name[0] == '<')
5994 return 0;
5995
529cad9c
PH
5996 for (i=0; decoded_name[i] != '\0'; i++)
5997 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5998 return 0;
5999
6000 return 1;
6001}
6002
73589123
PH
6003/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6004 that could start a simple name. Assumes that *NAMEP points into
6005 the string beginning at NAME0. */
4c4b4cd2 6006
14f9c5c9 6007static int
73589123 6008advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6009{
73589123 6010 const char *name = *namep;
5b4ee69b 6011
5823c3ef 6012 while (1)
14f9c5c9 6013 {
aa27d0b3 6014 int t0, t1;
73589123
PH
6015
6016 t0 = *name;
6017 if (t0 == '_')
6018 {
6019 t1 = name[1];
6020 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6021 {
6022 name += 1;
61012eef 6023 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6024 break;
6025 else
6026 name += 1;
6027 }
aa27d0b3
JB
6028 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6029 || name[2] == target0))
73589123
PH
6030 {
6031 name += 2;
6032 break;
6033 }
6034 else
6035 return 0;
6036 }
6037 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6038 name += 1;
6039 else
5823c3ef 6040 return 0;
73589123
PH
6041 }
6042
6043 *namep = name;
6044 return 1;
6045}
6046
b5ec771e
PA
6047/* Return true iff NAME encodes a name of the form prefix.PATN.
6048 Ignores any informational suffixes of NAME (i.e., for which
6049 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6050 simple name. */
73589123 6051
b5ec771e 6052static bool
73589123
PH
6053wild_match (const char *name, const char *patn)
6054{
22e048c9 6055 const char *p;
73589123
PH
6056 const char *name0 = name;
6057
6058 while (1)
6059 {
6060 const char *match = name;
6061
6062 if (*name == *patn)
6063 {
6064 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6065 if (*p != *name)
6066 break;
6067 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6068 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6069
6070 if (name[-1] == '_')
6071 name -= 1;
6072 }
6073 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6074 return false;
96d887e8 6075 }
96d887e8
PH
6076}
6077
b5ec771e
PA
6078/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6079 any trailing suffixes that encode debugging information or leading
6080 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6081 information that is ignored). */
40658b94 6082
b5ec771e 6083static bool
c4d840bd
PH
6084full_match (const char *sym_name, const char *search_name)
6085{
b5ec771e
PA
6086 size_t search_name_len = strlen (search_name);
6087
6088 if (strncmp (sym_name, search_name, search_name_len) == 0
6089 && is_name_suffix (sym_name + search_name_len))
6090 return true;
6091
6092 if (startswith (sym_name, "_ada_")
6093 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6094 && is_name_suffix (sym_name + search_name_len + 5))
6095 return true;
c4d840bd 6096
b5ec771e
PA
6097 return false;
6098}
c4d840bd 6099
b5ec771e
PA
6100/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6101 *defn_symbols, updating the list of symbols in OBSTACKP (if
6102 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6103
6104static void
6105ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6106 const struct block *block,
6107 const lookup_name_info &lookup_name,
6108 domain_enum domain, struct objfile *objfile)
96d887e8 6109{
8157b174 6110 struct block_iterator iter;
96d887e8
PH
6111 /* A matching argument symbol, if any. */
6112 struct symbol *arg_sym;
6113 /* Set true when we find a matching non-argument symbol. */
6114 int found_sym;
6115 struct symbol *sym;
6116
6117 arg_sym = NULL;
6118 found_sym = 0;
b5ec771e
PA
6119 for (sym = block_iter_match_first (block, lookup_name, &iter);
6120 sym != NULL;
6121 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6122 {
b5ec771e
PA
6123 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6124 SYMBOL_DOMAIN (sym), domain))
6125 {
6126 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6127 {
6128 if (SYMBOL_IS_ARGUMENT (sym))
6129 arg_sym = sym;
6130 else
6131 {
6132 found_sym = 1;
6133 add_defn_to_vec (obstackp,
6134 fixup_symbol_section (sym, objfile),
6135 block);
6136 }
6137 }
6138 }
96d887e8
PH
6139 }
6140
22cee43f
PMR
6141 /* Handle renamings. */
6142
b5ec771e 6143 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6144 found_sym = 1;
6145
96d887e8
PH
6146 if (!found_sym && arg_sym != NULL)
6147 {
76a01679
JB
6148 add_defn_to_vec (obstackp,
6149 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6150 block);
96d887e8
PH
6151 }
6152
b5ec771e 6153 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6154 {
6155 arg_sym = NULL;
6156 found_sym = 0;
b5ec771e
PA
6157 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6158 const char *name = ada_lookup_name.c_str ();
6159 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6160
6161 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6162 {
4186eb54
KS
6163 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6164 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6165 {
6166 int cmp;
6167
6168 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6169 if (cmp == 0)
6170 {
61012eef 6171 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6172 if (cmp == 0)
6173 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6174 name_len);
6175 }
6176
6177 if (cmp == 0
6178 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6179 {
2a2d4dc3
AS
6180 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6181 {
6182 if (SYMBOL_IS_ARGUMENT (sym))
6183 arg_sym = sym;
6184 else
6185 {
6186 found_sym = 1;
6187 add_defn_to_vec (obstackp,
6188 fixup_symbol_section (sym, objfile),
6189 block);
6190 }
6191 }
76a01679
JB
6192 }
6193 }
76a01679 6194 }
96d887e8
PH
6195
6196 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6197 They aren't parameters, right? */
6198 if (!found_sym && arg_sym != NULL)
6199 {
6200 add_defn_to_vec (obstackp,
76a01679 6201 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6202 block);
96d887e8
PH
6203 }
6204 }
6205}
6206\f
41d27058
JB
6207
6208 /* Symbol Completion */
6209
b5ec771e 6210/* See symtab.h. */
41d27058 6211
b5ec771e
PA
6212bool
6213ada_lookup_name_info::matches
6214 (const char *sym_name,
6215 symbol_name_match_type match_type,
a207cff2 6216 completion_match_result *comp_match_res) const
41d27058 6217{
b5ec771e
PA
6218 bool match = false;
6219 const char *text = m_encoded_name.c_str ();
6220 size_t text_len = m_encoded_name.size ();
41d27058
JB
6221
6222 /* First, test against the fully qualified name of the symbol. */
6223
6224 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6225 match = true;
41d27058 6226
f945dedf 6227 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6228 if (match && !m_encoded_p)
41d27058
JB
6229 {
6230 /* One needed check before declaring a positive match is to verify
6231 that iff we are doing a verbatim match, the decoded version
6232 of the symbol name starts with '<'. Otherwise, this symbol name
6233 is not a suitable completion. */
41d27058 6234
f945dedf 6235 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6236 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6237 }
6238
b5ec771e 6239 if (match && !m_verbatim_p)
41d27058
JB
6240 {
6241 /* When doing non-verbatim match, another check that needs to
6242 be done is to verify that the potentially matching symbol name
6243 does not include capital letters, because the ada-mode would
6244 not be able to understand these symbol names without the
6245 angle bracket notation. */
6246 const char *tmp;
6247
6248 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6249 if (*tmp != '\0')
b5ec771e 6250 match = false;
41d27058
JB
6251 }
6252
6253 /* Second: Try wild matching... */
6254
b5ec771e 6255 if (!match && m_wild_match_p)
41d27058
JB
6256 {
6257 /* Since we are doing wild matching, this means that TEXT
6258 may represent an unqualified symbol name. We therefore must
6259 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6260 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6261
6262 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6263 match = true;
41d27058
JB
6264 }
6265
b5ec771e 6266 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6267
6268 if (!match)
b5ec771e 6269 return false;
41d27058 6270
a207cff2 6271 if (comp_match_res != NULL)
b5ec771e 6272 {
a207cff2 6273 std::string &match_str = comp_match_res->match.storage ();
41d27058 6274
b5ec771e 6275 if (!m_encoded_p)
a207cff2 6276 match_str = ada_decode (sym_name);
b5ec771e
PA
6277 else
6278 {
6279 if (m_verbatim_p)
6280 match_str = add_angle_brackets (sym_name);
6281 else
6282 match_str = sym_name;
41d27058 6283
b5ec771e 6284 }
a207cff2
PA
6285
6286 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6287 }
6288
b5ec771e 6289 return true;
41d27058
JB
6290}
6291
b5ec771e 6292/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6293 WORD is the entire command on which completion is made. */
41d27058 6294
eb3ff9a5
PA
6295static void
6296ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6297 complete_symbol_mode mode,
b5ec771e
PA
6298 symbol_name_match_type name_match_type,
6299 const char *text, const char *word,
eb3ff9a5 6300 enum type_code code)
41d27058 6301{
41d27058 6302 struct symbol *sym;
3977b71f 6303 const struct block *b, *surrounding_static_block = 0;
8157b174 6304 struct block_iterator iter;
41d27058 6305
2f68a895
TT
6306 gdb_assert (code == TYPE_CODE_UNDEF);
6307
1b026119 6308 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6309
6310 /* First, look at the partial symtab symbols. */
14bc53a8 6311 expand_symtabs_matching (NULL,
b5ec771e
PA
6312 lookup_name,
6313 NULL,
14bc53a8
PA
6314 NULL,
6315 ALL_DOMAIN);
41d27058
JB
6316
6317 /* At this point scan through the misc symbol vectors and add each
6318 symbol you find to the list. Eventually we want to ignore
6319 anything that isn't a text symbol (everything else will be
6320 handled by the psymtab code above). */
6321
2030c079 6322 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6323 {
7932255d 6324 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6325 {
6326 QUIT;
6327
6328 if (completion_skip_symbol (mode, msymbol))
6329 continue;
6330
6331 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6332
6333 /* Ada minimal symbols won't have their language set to Ada. If
6334 we let completion_list_add_name compare using the
6335 default/C-like matcher, then when completing e.g., symbols in a
6336 package named "pck", we'd match internal Ada symbols like
6337 "pckS", which are invalid in an Ada expression, unless you wrap
6338 them in '<' '>' to request a verbatim match.
6339
6340 Unfortunately, some Ada encoded names successfully demangle as
6341 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6342 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6343 with the wrong language set. Paper over that issue here. */
6344 if (symbol_language == language_auto
6345 || symbol_language == language_cplus)
6346 symbol_language = language_ada;
6347
6348 completion_list_add_name (tracker,
6349 symbol_language,
6350 MSYMBOL_LINKAGE_NAME (msymbol),
6351 lookup_name, text, word);
6352 }
6353 }
41d27058
JB
6354
6355 /* Search upwards from currently selected frame (so that we can
6356 complete on local vars. */
6357
6358 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6359 {
6360 if (!BLOCK_SUPERBLOCK (b))
6361 surrounding_static_block = b; /* For elmin of dups */
6362
6363 ALL_BLOCK_SYMBOLS (b, iter, sym)
6364 {
f9d67a22
PA
6365 if (completion_skip_symbol (mode, sym))
6366 continue;
6367
b5ec771e
PA
6368 completion_list_add_name (tracker,
6369 SYMBOL_LANGUAGE (sym),
6370 SYMBOL_LINKAGE_NAME (sym),
1b026119 6371 lookup_name, text, word);
41d27058
JB
6372 }
6373 }
6374
6375 /* Go through the symtabs and check the externs and statics for
43f3e411 6376 symbols which match. */
41d27058 6377
2030c079 6378 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6379 {
b669c953 6380 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6381 {
6382 QUIT;
6383 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6384 ALL_BLOCK_SYMBOLS (b, iter, sym)
6385 {
6386 if (completion_skip_symbol (mode, sym))
6387 continue;
f9d67a22 6388
d8aeb77f
TT
6389 completion_list_add_name (tracker,
6390 SYMBOL_LANGUAGE (sym),
6391 SYMBOL_LINKAGE_NAME (sym),
6392 lookup_name, text, word);
6393 }
6394 }
41d27058 6395 }
41d27058 6396
2030c079 6397 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6398 {
b669c953 6399 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6400 {
6401 QUIT;
6402 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6403 /* Don't do this block twice. */
6404 if (b == surrounding_static_block)
6405 continue;
6406 ALL_BLOCK_SYMBOLS (b, iter, sym)
6407 {
6408 if (completion_skip_symbol (mode, sym))
6409 continue;
f9d67a22 6410
d8aeb77f
TT
6411 completion_list_add_name (tracker,
6412 SYMBOL_LANGUAGE (sym),
6413 SYMBOL_LINKAGE_NAME (sym),
6414 lookup_name, text, word);
6415 }
6416 }
41d27058 6417 }
41d27058
JB
6418}
6419
963a6417 6420 /* Field Access */
96d887e8 6421
73fb9985
JB
6422/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6423 for tagged types. */
6424
6425static int
6426ada_is_dispatch_table_ptr_type (struct type *type)
6427{
0d5cff50 6428 const char *name;
73fb9985
JB
6429
6430 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6431 return 0;
6432
6433 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6434 if (name == NULL)
6435 return 0;
6436
6437 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6438}
6439
ac4a2da4
JG
6440/* Return non-zero if TYPE is an interface tag. */
6441
6442static int
6443ada_is_interface_tag (struct type *type)
6444{
6445 const char *name = TYPE_NAME (type);
6446
6447 if (name == NULL)
6448 return 0;
6449
6450 return (strcmp (name, "ada__tags__interface_tag") == 0);
6451}
6452
963a6417
PH
6453/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6454 to be invisible to users. */
96d887e8 6455
963a6417
PH
6456int
6457ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6458{
963a6417
PH
6459 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6460 return 1;
ffde82bf 6461
73fb9985
JB
6462 /* Check the name of that field. */
6463 {
6464 const char *name = TYPE_FIELD_NAME (type, field_num);
6465
6466 /* Anonymous field names should not be printed.
6467 brobecker/2007-02-20: I don't think this can actually happen
6468 but we don't want to print the value of annonymous fields anyway. */
6469 if (name == NULL)
6470 return 1;
6471
ffde82bf
JB
6472 /* Normally, fields whose name start with an underscore ("_")
6473 are fields that have been internally generated by the compiler,
6474 and thus should not be printed. The "_parent" field is special,
6475 however: This is a field internally generated by the compiler
6476 for tagged types, and it contains the components inherited from
6477 the parent type. This field should not be printed as is, but
6478 should not be ignored either. */
61012eef 6479 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6480 return 1;
6481 }
6482
ac4a2da4
JG
6483 /* If this is the dispatch table of a tagged type or an interface tag,
6484 then ignore. */
73fb9985 6485 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6486 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6487 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6488 return 1;
6489
6490 /* Not a special field, so it should not be ignored. */
6491 return 0;
963a6417 6492}
96d887e8 6493
963a6417 6494/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6495 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6496
963a6417
PH
6497int
6498ada_is_tagged_type (struct type *type, int refok)
6499{
988f6b3d 6500 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6501}
96d887e8 6502
963a6417 6503/* True iff TYPE represents the type of X'Tag */
96d887e8 6504
963a6417
PH
6505int
6506ada_is_tag_type (struct type *type)
6507{
460efde1
JB
6508 type = ada_check_typedef (type);
6509
963a6417
PH
6510 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6511 return 0;
6512 else
96d887e8 6513 {
963a6417 6514 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6515
963a6417
PH
6516 return (name != NULL
6517 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6518 }
96d887e8
PH
6519}
6520
963a6417 6521/* The type of the tag on VAL. */
76a01679 6522
963a6417
PH
6523struct type *
6524ada_tag_type (struct value *val)
96d887e8 6525{
988f6b3d 6526 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6527}
96d887e8 6528
b50d69b5
JG
6529/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6530 retired at Ada 05). */
6531
6532static int
6533is_ada95_tag (struct value *tag)
6534{
6535 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6536}
6537
963a6417 6538/* The value of the tag on VAL. */
96d887e8 6539
963a6417
PH
6540struct value *
6541ada_value_tag (struct value *val)
6542{
03ee6b2e 6543 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6544}
6545
963a6417
PH
6546/* The value of the tag on the object of type TYPE whose contents are
6547 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6548 ADDRESS. */
96d887e8 6549
963a6417 6550static struct value *
10a2c479 6551value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6552 const gdb_byte *valaddr,
963a6417 6553 CORE_ADDR address)
96d887e8 6554{
b5385fc0 6555 int tag_byte_offset;
963a6417 6556 struct type *tag_type;
5b4ee69b 6557
963a6417 6558 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6559 NULL, NULL, NULL))
96d887e8 6560 {
fc1a4b47 6561 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6562 ? NULL
6563 : valaddr + tag_byte_offset);
963a6417 6564 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6565
963a6417 6566 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6567 }
963a6417
PH
6568 return NULL;
6569}
96d887e8 6570
963a6417
PH
6571static struct type *
6572type_from_tag (struct value *tag)
6573{
6574 const char *type_name = ada_tag_name (tag);
5b4ee69b 6575
963a6417
PH
6576 if (type_name != NULL)
6577 return ada_find_any_type (ada_encode (type_name));
6578 return NULL;
6579}
96d887e8 6580
b50d69b5
JG
6581/* Given a value OBJ of a tagged type, return a value of this
6582 type at the base address of the object. The base address, as
6583 defined in Ada.Tags, it is the address of the primary tag of
6584 the object, and therefore where the field values of its full
6585 view can be fetched. */
6586
6587struct value *
6588ada_tag_value_at_base_address (struct value *obj)
6589{
b50d69b5
JG
6590 struct value *val;
6591 LONGEST offset_to_top = 0;
6592 struct type *ptr_type, *obj_type;
6593 struct value *tag;
6594 CORE_ADDR base_address;
6595
6596 obj_type = value_type (obj);
6597
6598 /* It is the responsability of the caller to deref pointers. */
6599
6600 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6601 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6602 return obj;
6603
6604 tag = ada_value_tag (obj);
6605 if (!tag)
6606 return obj;
6607
6608 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6609
6610 if (is_ada95_tag (tag))
6611 return obj;
6612
08f49010
XR
6613 ptr_type = language_lookup_primitive_type
6614 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6615 ptr_type = lookup_pointer_type (ptr_type);
6616 val = value_cast (ptr_type, tag);
6617 if (!val)
6618 return obj;
6619
6620 /* It is perfectly possible that an exception be raised while
6621 trying to determine the base address, just like for the tag;
6622 see ada_tag_name for more details. We do not print the error
6623 message for the same reason. */
6624
a70b8144 6625 try
b50d69b5
JG
6626 {
6627 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6628 }
6629
230d2906 6630 catch (const gdb_exception_error &e)
492d29ea
PA
6631 {
6632 return obj;
6633 }
b50d69b5
JG
6634
6635 /* If offset is null, nothing to do. */
6636
6637 if (offset_to_top == 0)
6638 return obj;
6639
6640 /* -1 is a special case in Ada.Tags; however, what should be done
6641 is not quite clear from the documentation. So do nothing for
6642 now. */
6643
6644 if (offset_to_top == -1)
6645 return obj;
6646
08f49010
XR
6647 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6648 from the base address. This was however incompatible with
6649 C++ dispatch table: C++ uses a *negative* value to *add*
6650 to the base address. Ada's convention has therefore been
6651 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6652 use the same convention. Here, we support both cases by
6653 checking the sign of OFFSET_TO_TOP. */
6654
6655 if (offset_to_top > 0)
6656 offset_to_top = -offset_to_top;
6657
6658 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6659 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6660
6661 /* Make sure that we have a proper tag at the new address.
6662 Otherwise, offset_to_top is bogus (which can happen when
6663 the object is not initialized yet). */
6664
6665 if (!tag)
6666 return obj;
6667
6668 obj_type = type_from_tag (tag);
6669
6670 if (!obj_type)
6671 return obj;
6672
6673 return value_from_contents_and_address (obj_type, NULL, base_address);
6674}
6675
1b611343
JB
6676/* Return the "ada__tags__type_specific_data" type. */
6677
6678static struct type *
6679ada_get_tsd_type (struct inferior *inf)
963a6417 6680{
1b611343 6681 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6682
1b611343
JB
6683 if (data->tsd_type == 0)
6684 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6685 return data->tsd_type;
6686}
529cad9c 6687
1b611343
JB
6688/* Return the TSD (type-specific data) associated to the given TAG.
6689 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6690
1b611343 6691 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6692
1b611343
JB
6693static struct value *
6694ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6695{
4c4b4cd2 6696 struct value *val;
1b611343 6697 struct type *type;
5b4ee69b 6698
1b611343
JB
6699 /* First option: The TSD is simply stored as a field of our TAG.
6700 Only older versions of GNAT would use this format, but we have
6701 to test it first, because there are no visible markers for
6702 the current approach except the absence of that field. */
529cad9c 6703
1b611343
JB
6704 val = ada_value_struct_elt (tag, "tsd", 1);
6705 if (val)
6706 return val;
e802dbe0 6707
1b611343
JB
6708 /* Try the second representation for the dispatch table (in which
6709 there is no explicit 'tsd' field in the referent of the tag pointer,
6710 and instead the tsd pointer is stored just before the dispatch
6711 table. */
e802dbe0 6712
1b611343
JB
6713 type = ada_get_tsd_type (current_inferior());
6714 if (type == NULL)
6715 return NULL;
6716 type = lookup_pointer_type (lookup_pointer_type (type));
6717 val = value_cast (type, tag);
6718 if (val == NULL)
6719 return NULL;
6720 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6721}
6722
1b611343
JB
6723/* Given the TSD of a tag (type-specific data), return a string
6724 containing the name of the associated type.
6725
6726 The returned value is good until the next call. May return NULL
6727 if we are unable to determine the tag name. */
6728
6729static char *
6730ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6731{
529cad9c
PH
6732 static char name[1024];
6733 char *p;
1b611343 6734 struct value *val;
529cad9c 6735
1b611343 6736 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6737 if (val == NULL)
1b611343 6738 return NULL;
4c4b4cd2
PH
6739 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6740 for (p = name; *p != '\0'; p += 1)
6741 if (isalpha (*p))
6742 *p = tolower (*p);
1b611343 6743 return name;
4c4b4cd2
PH
6744}
6745
6746/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6747 a C string.
6748
6749 Return NULL if the TAG is not an Ada tag, or if we were unable to
6750 determine the name of that tag. The result is good until the next
6751 call. */
4c4b4cd2
PH
6752
6753const char *
6754ada_tag_name (struct value *tag)
6755{
1b611343 6756 char *name = NULL;
5b4ee69b 6757
df407dfe 6758 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6759 return NULL;
1b611343
JB
6760
6761 /* It is perfectly possible that an exception be raised while trying
6762 to determine the TAG's name, even under normal circumstances:
6763 The associated variable may be uninitialized or corrupted, for
6764 instance. We do not let any exception propagate past this point.
6765 instead we return NULL.
6766
6767 We also do not print the error message either (which often is very
6768 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6769 the caller print a more meaningful message if necessary. */
a70b8144 6770 try
1b611343
JB
6771 {
6772 struct value *tsd = ada_get_tsd_from_tag (tag);
6773
6774 if (tsd != NULL)
6775 name = ada_tag_name_from_tsd (tsd);
6776 }
230d2906 6777 catch (const gdb_exception_error &e)
492d29ea
PA
6778 {
6779 }
1b611343
JB
6780
6781 return name;
4c4b4cd2
PH
6782}
6783
6784/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6785
d2e4a39e 6786struct type *
ebf56fd3 6787ada_parent_type (struct type *type)
14f9c5c9
AS
6788{
6789 int i;
6790
61ee279c 6791 type = ada_check_typedef (type);
14f9c5c9
AS
6792
6793 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6794 return NULL;
6795
6796 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6797 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6798 {
6799 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6800
6801 /* If the _parent field is a pointer, then dereference it. */
6802 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6803 parent_type = TYPE_TARGET_TYPE (parent_type);
6804 /* If there is a parallel XVS type, get the actual base type. */
6805 parent_type = ada_get_base_type (parent_type);
6806
6807 return ada_check_typedef (parent_type);
6808 }
14f9c5c9
AS
6809
6810 return NULL;
6811}
6812
4c4b4cd2
PH
6813/* True iff field number FIELD_NUM of structure type TYPE contains the
6814 parent-type (inherited) fields of a derived type. Assumes TYPE is
6815 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6816
6817int
ebf56fd3 6818ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6819{
61ee279c 6820 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6821
4c4b4cd2 6822 return (name != NULL
61012eef
GB
6823 && (startswith (name, "PARENT")
6824 || startswith (name, "_parent")));
14f9c5c9
AS
6825}
6826
4c4b4cd2 6827/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6828 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6829 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6830 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6831 structures. */
14f9c5c9
AS
6832
6833int
ebf56fd3 6834ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6835{
d2e4a39e 6836 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6837
dddc0e16
JB
6838 if (name != NULL && strcmp (name, "RETVAL") == 0)
6839 {
6840 /* This happens in functions with "out" or "in out" parameters
6841 which are passed by copy. For such functions, GNAT describes
6842 the function's return type as being a struct where the return
6843 value is in a field called RETVAL, and where the other "out"
6844 or "in out" parameters are fields of that struct. This is not
6845 a wrapper. */
6846 return 0;
6847 }
6848
d2e4a39e 6849 return (name != NULL
61012eef 6850 && (startswith (name, "PARENT")
4c4b4cd2 6851 || strcmp (name, "REP") == 0
61012eef 6852 || startswith (name, "_parent")
4c4b4cd2 6853 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6854}
6855
4c4b4cd2
PH
6856/* True iff field number FIELD_NUM of structure or union type TYPE
6857 is a variant wrapper. Assumes TYPE is a structure type with at least
6858 FIELD_NUM+1 fields. */
14f9c5c9
AS
6859
6860int
ebf56fd3 6861ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6862{
8ecb59f8
TT
6863 /* Only Ada types are eligible. */
6864 if (!ADA_TYPE_P (type))
6865 return 0;
6866
d2e4a39e 6867 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6868
14f9c5c9 6869 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6870 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6871 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6872 == TYPE_CODE_UNION)));
14f9c5c9
AS
6873}
6874
6875/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6876 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6877 returns the type of the controlling discriminant for the variant.
6878 May return NULL if the type could not be found. */
14f9c5c9 6879
d2e4a39e 6880struct type *
ebf56fd3 6881ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6882{
a121b7c1 6883 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6884
988f6b3d 6885 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6886}
6887
4c4b4cd2 6888/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6889 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6890 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6891
6892int
ebf56fd3 6893ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6894{
d2e4a39e 6895 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6896
14f9c5c9
AS
6897 return (name != NULL && name[0] == 'O');
6898}
6899
6900/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6901 returns the name of the discriminant controlling the variant.
6902 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6903
a121b7c1 6904const char *
ebf56fd3 6905ada_variant_discrim_name (struct type *type0)
14f9c5c9 6906{
d2e4a39e 6907 static char *result = NULL;
14f9c5c9 6908 static size_t result_len = 0;
d2e4a39e
AS
6909 struct type *type;
6910 const char *name;
6911 const char *discrim_end;
6912 const char *discrim_start;
14f9c5c9
AS
6913
6914 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6915 type = TYPE_TARGET_TYPE (type0);
6916 else
6917 type = type0;
6918
6919 name = ada_type_name (type);
6920
6921 if (name == NULL || name[0] == '\000')
6922 return "";
6923
6924 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6925 discrim_end -= 1)
6926 {
61012eef 6927 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6928 break;
14f9c5c9
AS
6929 }
6930 if (discrim_end == name)
6931 return "";
6932
d2e4a39e 6933 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6934 discrim_start -= 1)
6935 {
d2e4a39e 6936 if (discrim_start == name + 1)
4c4b4cd2 6937 return "";
76a01679 6938 if ((discrim_start > name + 3
61012eef 6939 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6940 || discrim_start[-1] == '.')
6941 break;
14f9c5c9
AS
6942 }
6943
6944 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6945 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6946 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6947 return result;
6948}
6949
4c4b4cd2
PH
6950/* Scan STR for a subtype-encoded number, beginning at position K.
6951 Put the position of the character just past the number scanned in
6952 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6953 Return 1 if there was a valid number at the given position, and 0
6954 otherwise. A "subtype-encoded" number consists of the absolute value
6955 in decimal, followed by the letter 'm' to indicate a negative number.
6956 Assumes 0m does not occur. */
14f9c5c9
AS
6957
6958int
d2e4a39e 6959ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6960{
6961 ULONGEST RU;
6962
d2e4a39e 6963 if (!isdigit (str[k]))
14f9c5c9
AS
6964 return 0;
6965
4c4b4cd2 6966 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6967 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6968 LONGEST. */
14f9c5c9
AS
6969 RU = 0;
6970 while (isdigit (str[k]))
6971 {
d2e4a39e 6972 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6973 k += 1;
6974 }
6975
d2e4a39e 6976 if (str[k] == 'm')
14f9c5c9
AS
6977 {
6978 if (R != NULL)
4c4b4cd2 6979 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6980 k += 1;
6981 }
6982 else if (R != NULL)
6983 *R = (LONGEST) RU;
6984
4c4b4cd2 6985 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6986 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6987 number representable as a LONGEST (although either would probably work
6988 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6989 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6990
6991 if (new_k != NULL)
6992 *new_k = k;
6993 return 1;
6994}
6995
4c4b4cd2
PH
6996/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6997 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6998 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6999
d2e4a39e 7000int
ebf56fd3 7001ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7002{
d2e4a39e 7003 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7004 int p;
7005
7006 p = 0;
7007 while (1)
7008 {
d2e4a39e 7009 switch (name[p])
4c4b4cd2
PH
7010 {
7011 case '\0':
7012 return 0;
7013 case 'S':
7014 {
7015 LONGEST W;
5b4ee69b 7016
4c4b4cd2
PH
7017 if (!ada_scan_number (name, p + 1, &W, &p))
7018 return 0;
7019 if (val == W)
7020 return 1;
7021 break;
7022 }
7023 case 'R':
7024 {
7025 LONGEST L, U;
5b4ee69b 7026
4c4b4cd2
PH
7027 if (!ada_scan_number (name, p + 1, &L, &p)
7028 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7029 return 0;
7030 if (val >= L && val <= U)
7031 return 1;
7032 break;
7033 }
7034 case 'O':
7035 return 1;
7036 default:
7037 return 0;
7038 }
7039 }
7040}
7041
0963b4bd 7042/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7043
7044/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7045 ARG_TYPE, extract and return the value of one of its (non-static)
7046 fields. FIELDNO says which field. Differs from value_primitive_field
7047 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7048
4c4b4cd2 7049static struct value *
d2e4a39e 7050ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7051 struct type *arg_type)
14f9c5c9 7052{
14f9c5c9
AS
7053 struct type *type;
7054
61ee279c 7055 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7056 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7057
4504bbde
TT
7058 /* Handle packed fields. It might be that the field is not packed
7059 relative to its containing structure, but the structure itself is
7060 packed; in this case we must take the bit-field path. */
7061 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7062 {
7063 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7064 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7065
0fd88904 7066 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7067 offset + bit_pos / 8,
7068 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7069 }
7070 else
7071 return value_primitive_field (arg1, offset, fieldno, arg_type);
7072}
7073
52ce6436
PH
7074/* Find field with name NAME in object of type TYPE. If found,
7075 set the following for each argument that is non-null:
7076 - *FIELD_TYPE_P to the field's type;
7077 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7078 an object of that type;
7079 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7080 - *BIT_SIZE_P to its size in bits if the field is packed, and
7081 0 otherwise;
7082 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7083 fields up to but not including the desired field, or by the total
7084 number of fields if not found. A NULL value of NAME never
7085 matches; the function just counts visible fields in this case.
7086
828d5846
XR
7087 Notice that we need to handle when a tagged record hierarchy
7088 has some components with the same name, like in this scenario:
7089
7090 type Top_T is tagged record
7091 N : Integer := 1;
7092 U : Integer := 974;
7093 A : Integer := 48;
7094 end record;
7095
7096 type Middle_T is new Top.Top_T with record
7097 N : Character := 'a';
7098 C : Integer := 3;
7099 end record;
7100
7101 type Bottom_T is new Middle.Middle_T with record
7102 N : Float := 4.0;
7103 C : Character := '5';
7104 X : Integer := 6;
7105 A : Character := 'J';
7106 end record;
7107
7108 Let's say we now have a variable declared and initialized as follow:
7109
7110 TC : Top_A := new Bottom_T;
7111
7112 And then we use this variable to call this function
7113
7114 procedure Assign (Obj: in out Top_T; TV : Integer);
7115
7116 as follow:
7117
7118 Assign (Top_T (B), 12);
7119
7120 Now, we're in the debugger, and we're inside that procedure
7121 then and we want to print the value of obj.c:
7122
7123 Usually, the tagged record or one of the parent type owns the
7124 component to print and there's no issue but in this particular
7125 case, what does it mean to ask for Obj.C? Since the actual
7126 type for object is type Bottom_T, it could mean two things: type
7127 component C from the Middle_T view, but also component C from
7128 Bottom_T. So in that "undefined" case, when the component is
7129 not found in the non-resolved type (which includes all the
7130 components of the parent type), then resolve it and see if we
7131 get better luck once expanded.
7132
7133 In the case of homonyms in the derived tagged type, we don't
7134 guaranty anything, and pick the one that's easiest for us
7135 to program.
7136
0963b4bd 7137 Returns 1 if found, 0 otherwise. */
52ce6436 7138
4c4b4cd2 7139static int
0d5cff50 7140find_struct_field (const char *name, struct type *type, int offset,
76a01679 7141 struct type **field_type_p,
52ce6436
PH
7142 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7143 int *index_p)
4c4b4cd2
PH
7144{
7145 int i;
828d5846 7146 int parent_offset = -1;
4c4b4cd2 7147
61ee279c 7148 type = ada_check_typedef (type);
76a01679 7149
52ce6436
PH
7150 if (field_type_p != NULL)
7151 *field_type_p = NULL;
7152 if (byte_offset_p != NULL)
d5d6fca5 7153 *byte_offset_p = 0;
52ce6436
PH
7154 if (bit_offset_p != NULL)
7155 *bit_offset_p = 0;
7156 if (bit_size_p != NULL)
7157 *bit_size_p = 0;
7158
7159 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7160 {
7161 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7162 int fld_offset = offset + bit_pos / 8;
0d5cff50 7163 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7164
4c4b4cd2
PH
7165 if (t_field_name == NULL)
7166 continue;
7167
828d5846
XR
7168 else if (ada_is_parent_field (type, i))
7169 {
7170 /* This is a field pointing us to the parent type of a tagged
7171 type. As hinted in this function's documentation, we give
7172 preference to fields in the current record first, so what
7173 we do here is just record the index of this field before
7174 we skip it. If it turns out we couldn't find our field
7175 in the current record, then we'll get back to it and search
7176 inside it whether the field might exist in the parent. */
7177
7178 parent_offset = i;
7179 continue;
7180 }
7181
52ce6436 7182 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7183 {
7184 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7185
52ce6436
PH
7186 if (field_type_p != NULL)
7187 *field_type_p = TYPE_FIELD_TYPE (type, i);
7188 if (byte_offset_p != NULL)
7189 *byte_offset_p = fld_offset;
7190 if (bit_offset_p != NULL)
7191 *bit_offset_p = bit_pos % 8;
7192 if (bit_size_p != NULL)
7193 *bit_size_p = bit_size;
76a01679
JB
7194 return 1;
7195 }
4c4b4cd2
PH
7196 else if (ada_is_wrapper_field (type, i))
7197 {
52ce6436
PH
7198 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7199 field_type_p, byte_offset_p, bit_offset_p,
7200 bit_size_p, index_p))
76a01679
JB
7201 return 1;
7202 }
4c4b4cd2
PH
7203 else if (ada_is_variant_part (type, i))
7204 {
52ce6436
PH
7205 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7206 fixed type?? */
4c4b4cd2 7207 int j;
52ce6436
PH
7208 struct type *field_type
7209 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7210
52ce6436 7211 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7212 {
76a01679
JB
7213 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7214 fld_offset
7215 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7216 field_type_p, byte_offset_p,
52ce6436 7217 bit_offset_p, bit_size_p, index_p))
76a01679 7218 return 1;
4c4b4cd2
PH
7219 }
7220 }
52ce6436
PH
7221 else if (index_p != NULL)
7222 *index_p += 1;
4c4b4cd2 7223 }
828d5846
XR
7224
7225 /* Field not found so far. If this is a tagged type which
7226 has a parent, try finding that field in the parent now. */
7227
7228 if (parent_offset != -1)
7229 {
7230 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7231 int fld_offset = offset + bit_pos / 8;
7232
7233 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7234 fld_offset, field_type_p, byte_offset_p,
7235 bit_offset_p, bit_size_p, index_p))
7236 return 1;
7237 }
7238
4c4b4cd2
PH
7239 return 0;
7240}
7241
0963b4bd 7242/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7243
52ce6436
PH
7244static int
7245num_visible_fields (struct type *type)
7246{
7247 int n;
5b4ee69b 7248
52ce6436
PH
7249 n = 0;
7250 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7251 return n;
7252}
14f9c5c9 7253
4c4b4cd2 7254/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7255 and search in it assuming it has (class) type TYPE.
7256 If found, return value, else return NULL.
7257
828d5846
XR
7258 Searches recursively through wrapper fields (e.g., '_parent').
7259
7260 In the case of homonyms in the tagged types, please refer to the
7261 long explanation in find_struct_field's function documentation. */
14f9c5c9 7262
4c4b4cd2 7263static struct value *
108d56a4 7264ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7265 struct type *type)
14f9c5c9
AS
7266{
7267 int i;
828d5846 7268 int parent_offset = -1;
14f9c5c9 7269
5b4ee69b 7270 type = ada_check_typedef (type);
52ce6436 7271 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7272 {
0d5cff50 7273 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7274
7275 if (t_field_name == NULL)
4c4b4cd2 7276 continue;
14f9c5c9 7277
828d5846
XR
7278 else if (ada_is_parent_field (type, i))
7279 {
7280 /* This is a field pointing us to the parent type of a tagged
7281 type. As hinted in this function's documentation, we give
7282 preference to fields in the current record first, so what
7283 we do here is just record the index of this field before
7284 we skip it. If it turns out we couldn't find our field
7285 in the current record, then we'll get back to it and search
7286 inside it whether the field might exist in the parent. */
7287
7288 parent_offset = i;
7289 continue;
7290 }
7291
14f9c5c9 7292 else if (field_name_match (t_field_name, name))
4c4b4cd2 7293 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7294
7295 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7296 {
0963b4bd 7297 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7298 ada_search_struct_field (name, arg,
7299 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7300 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7301
4c4b4cd2
PH
7302 if (v != NULL)
7303 return v;
7304 }
14f9c5c9
AS
7305
7306 else if (ada_is_variant_part (type, i))
4c4b4cd2 7307 {
0963b4bd 7308 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7309 int j;
5b4ee69b
MS
7310 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7311 i));
4c4b4cd2
PH
7312 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7313
52ce6436 7314 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7315 {
0963b4bd
MS
7316 struct value *v = ada_search_struct_field /* Force line
7317 break. */
06d5cf63
JB
7318 (name, arg,
7319 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7320 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7321
4c4b4cd2
PH
7322 if (v != NULL)
7323 return v;
7324 }
7325 }
14f9c5c9 7326 }
828d5846
XR
7327
7328 /* Field not found so far. If this is a tagged type which
7329 has a parent, try finding that field in the parent now. */
7330
7331 if (parent_offset != -1)
7332 {
7333 struct value *v = ada_search_struct_field (
7334 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7335 TYPE_FIELD_TYPE (type, parent_offset));
7336
7337 if (v != NULL)
7338 return v;
7339 }
7340
14f9c5c9
AS
7341 return NULL;
7342}
d2e4a39e 7343
52ce6436
PH
7344static struct value *ada_index_struct_field_1 (int *, struct value *,
7345 int, struct type *);
7346
7347
7348/* Return field #INDEX in ARG, where the index is that returned by
7349 * find_struct_field through its INDEX_P argument. Adjust the address
7350 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7351 * If found, return value, else return NULL. */
52ce6436
PH
7352
7353static struct value *
7354ada_index_struct_field (int index, struct value *arg, int offset,
7355 struct type *type)
7356{
7357 return ada_index_struct_field_1 (&index, arg, offset, type);
7358}
7359
7360
7361/* Auxiliary function for ada_index_struct_field. Like
7362 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7363 * *INDEX_P. */
52ce6436
PH
7364
7365static struct value *
7366ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7367 struct type *type)
7368{
7369 int i;
7370 type = ada_check_typedef (type);
7371
7372 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7373 {
7374 if (TYPE_FIELD_NAME (type, i) == NULL)
7375 continue;
7376 else if (ada_is_wrapper_field (type, i))
7377 {
0963b4bd 7378 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7379 ada_index_struct_field_1 (index_p, arg,
7380 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7381 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7382
52ce6436
PH
7383 if (v != NULL)
7384 return v;
7385 }
7386
7387 else if (ada_is_variant_part (type, i))
7388 {
7389 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7390 find_struct_field. */
52ce6436
PH
7391 error (_("Cannot assign this kind of variant record"));
7392 }
7393 else if (*index_p == 0)
7394 return ada_value_primitive_field (arg, offset, i, type);
7395 else
7396 *index_p -= 1;
7397 }
7398 return NULL;
7399}
7400
4c4b4cd2
PH
7401/* Given ARG, a value of type (pointer or reference to a)*
7402 structure/union, extract the component named NAME from the ultimate
7403 target structure/union and return it as a value with its
f5938064 7404 appropriate type.
14f9c5c9 7405
4c4b4cd2
PH
7406 The routine searches for NAME among all members of the structure itself
7407 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7408 (e.g., '_parent').
7409
03ee6b2e
PH
7410 If NO_ERR, then simply return NULL in case of error, rather than
7411 calling error. */
14f9c5c9 7412
d2e4a39e 7413struct value *
a121b7c1 7414ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7415{
4c4b4cd2 7416 struct type *t, *t1;
d2e4a39e 7417 struct value *v;
1f5d1570 7418 int check_tag;
14f9c5c9 7419
4c4b4cd2 7420 v = NULL;
df407dfe 7421 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7422 if (TYPE_CODE (t) == TYPE_CODE_REF)
7423 {
7424 t1 = TYPE_TARGET_TYPE (t);
7425 if (t1 == NULL)
03ee6b2e 7426 goto BadValue;
61ee279c 7427 t1 = ada_check_typedef (t1);
4c4b4cd2 7428 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7429 {
994b9211 7430 arg = coerce_ref (arg);
76a01679
JB
7431 t = t1;
7432 }
4c4b4cd2 7433 }
14f9c5c9 7434
4c4b4cd2
PH
7435 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7436 {
7437 t1 = TYPE_TARGET_TYPE (t);
7438 if (t1 == NULL)
03ee6b2e 7439 goto BadValue;
61ee279c 7440 t1 = ada_check_typedef (t1);
4c4b4cd2 7441 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7442 {
7443 arg = value_ind (arg);
7444 t = t1;
7445 }
4c4b4cd2 7446 else
76a01679 7447 break;
4c4b4cd2 7448 }
14f9c5c9 7449
4c4b4cd2 7450 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7451 goto BadValue;
14f9c5c9 7452
4c4b4cd2
PH
7453 if (t1 == t)
7454 v = ada_search_struct_field (name, arg, 0, t);
7455 else
7456 {
7457 int bit_offset, bit_size, byte_offset;
7458 struct type *field_type;
7459 CORE_ADDR address;
7460
76a01679 7461 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7462 address = value_address (ada_value_ind (arg));
4c4b4cd2 7463 else
b50d69b5 7464 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7465
828d5846
XR
7466 /* Check to see if this is a tagged type. We also need to handle
7467 the case where the type is a reference to a tagged type, but
7468 we have to be careful to exclude pointers to tagged types.
7469 The latter should be shown as usual (as a pointer), whereas
7470 a reference should mostly be transparent to the user. */
7471
7472 if (ada_is_tagged_type (t1, 0)
7473 || (TYPE_CODE (t1) == TYPE_CODE_REF
7474 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7475 {
7476 /* We first try to find the searched field in the current type.
7477 If not found then let's look in the fixed type. */
7478
7479 if (!find_struct_field (name, t1, 0,
7480 &field_type, &byte_offset, &bit_offset,
7481 &bit_size, NULL))
1f5d1570
JG
7482 check_tag = 1;
7483 else
7484 check_tag = 0;
828d5846
XR
7485 }
7486 else
1f5d1570
JG
7487 check_tag = 0;
7488
7489 /* Convert to fixed type in all cases, so that we have proper
7490 offsets to each field in unconstrained record types. */
7491 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7492 address, NULL, check_tag);
828d5846 7493
76a01679
JB
7494 if (find_struct_field (name, t1, 0,
7495 &field_type, &byte_offset, &bit_offset,
52ce6436 7496 &bit_size, NULL))
76a01679
JB
7497 {
7498 if (bit_size != 0)
7499 {
714e53ab
PH
7500 if (TYPE_CODE (t) == TYPE_CODE_REF)
7501 arg = ada_coerce_ref (arg);
7502 else
7503 arg = ada_value_ind (arg);
76a01679
JB
7504 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7505 bit_offset, bit_size,
7506 field_type);
7507 }
7508 else
f5938064 7509 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7510 }
7511 }
7512
03ee6b2e
PH
7513 if (v != NULL || no_err)
7514 return v;
7515 else
323e0a4a 7516 error (_("There is no member named %s."), name);
14f9c5c9 7517
03ee6b2e
PH
7518 BadValue:
7519 if (no_err)
7520 return NULL;
7521 else
0963b4bd
MS
7522 error (_("Attempt to extract a component of "
7523 "a value that is not a record."));
14f9c5c9
AS
7524}
7525
3b4de39c 7526/* Return a string representation of type TYPE. */
99bbb428 7527
3b4de39c 7528static std::string
99bbb428
PA
7529type_as_string (struct type *type)
7530{
d7e74731 7531 string_file tmp_stream;
99bbb428 7532
d7e74731 7533 type_print (type, "", &tmp_stream, -1);
99bbb428 7534
d7e74731 7535 return std::move (tmp_stream.string ());
99bbb428
PA
7536}
7537
14f9c5c9 7538/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7539 If DISPP is non-null, add its byte displacement from the beginning of a
7540 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7541 work for packed fields).
7542
7543 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7544 followed by "___".
14f9c5c9 7545
0963b4bd 7546 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7547 be a (pointer or reference)+ to a struct or union, and the
7548 ultimate target type will be searched.
14f9c5c9
AS
7549
7550 Looks recursively into variant clauses and parent types.
7551
828d5846
XR
7552 In the case of homonyms in the tagged types, please refer to the
7553 long explanation in find_struct_field's function documentation.
7554
4c4b4cd2
PH
7555 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7556 TYPE is not a type of the right kind. */
14f9c5c9 7557
4c4b4cd2 7558static struct type *
a121b7c1 7559ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7560 int noerr)
14f9c5c9
AS
7561{
7562 int i;
828d5846 7563 int parent_offset = -1;
14f9c5c9
AS
7564
7565 if (name == NULL)
7566 goto BadName;
7567
76a01679 7568 if (refok && type != NULL)
4c4b4cd2
PH
7569 while (1)
7570 {
61ee279c 7571 type = ada_check_typedef (type);
76a01679
JB
7572 if (TYPE_CODE (type) != TYPE_CODE_PTR
7573 && TYPE_CODE (type) != TYPE_CODE_REF)
7574 break;
7575 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7576 }
14f9c5c9 7577
76a01679 7578 if (type == NULL
1265e4aa
JB
7579 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7580 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7581 {
4c4b4cd2 7582 if (noerr)
76a01679 7583 return NULL;
99bbb428 7584
3b4de39c
PA
7585 error (_("Type %s is not a structure or union type"),
7586 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7587 }
7588
7589 type = to_static_fixed_type (type);
7590
7591 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7592 {
0d5cff50 7593 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7594 struct type *t;
d2e4a39e 7595
14f9c5c9 7596 if (t_field_name == NULL)
4c4b4cd2 7597 continue;
14f9c5c9 7598
828d5846
XR
7599 else if (ada_is_parent_field (type, i))
7600 {
7601 /* This is a field pointing us to the parent type of a tagged
7602 type. As hinted in this function's documentation, we give
7603 preference to fields in the current record first, so what
7604 we do here is just record the index of this field before
7605 we skip it. If it turns out we couldn't find our field
7606 in the current record, then we'll get back to it and search
7607 inside it whether the field might exist in the parent. */
7608
7609 parent_offset = i;
7610 continue;
7611 }
7612
14f9c5c9 7613 else if (field_name_match (t_field_name, name))
988f6b3d 7614 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7615
7616 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7617 {
4c4b4cd2 7618 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7619 0, 1);
4c4b4cd2 7620 if (t != NULL)
988f6b3d 7621 return t;
4c4b4cd2 7622 }
14f9c5c9
AS
7623
7624 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7625 {
7626 int j;
5b4ee69b
MS
7627 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7628 i));
4c4b4cd2
PH
7629
7630 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7631 {
b1f33ddd
JB
7632 /* FIXME pnh 2008/01/26: We check for a field that is
7633 NOT wrapped in a struct, since the compiler sometimes
7634 generates these for unchecked variant types. Revisit
0963b4bd 7635 if the compiler changes this practice. */
0d5cff50 7636 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7637
b1f33ddd
JB
7638 if (v_field_name != NULL
7639 && field_name_match (v_field_name, name))
460efde1 7640 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7641 else
0963b4bd
MS
7642 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7643 j),
988f6b3d 7644 name, 0, 1);
b1f33ddd 7645
4c4b4cd2 7646 if (t != NULL)
988f6b3d 7647 return t;
4c4b4cd2
PH
7648 }
7649 }
14f9c5c9
AS
7650
7651 }
7652
828d5846
XR
7653 /* Field not found so far. If this is a tagged type which
7654 has a parent, try finding that field in the parent now. */
7655
7656 if (parent_offset != -1)
7657 {
7658 struct type *t;
7659
7660 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7661 name, 0, 1);
7662 if (t != NULL)
7663 return t;
7664 }
7665
14f9c5c9 7666BadName:
d2e4a39e 7667 if (!noerr)
14f9c5c9 7668 {
2b2798cc 7669 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7670
7671 error (_("Type %s has no component named %s"),
3b4de39c 7672 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7673 }
7674
7675 return NULL;
7676}
7677
b1f33ddd
JB
7678/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7679 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7680 represents an unchecked union (that is, the variant part of a
0963b4bd 7681 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7682
7683static int
7684is_unchecked_variant (struct type *var_type, struct type *outer_type)
7685{
a121b7c1 7686 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7687
988f6b3d 7688 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7689}
7690
7691
14f9c5c9
AS
7692/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7693 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7694 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7695 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7696
d2e4a39e 7697int
ebf56fd3 7698ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7699 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7700{
7701 int others_clause;
7702 int i;
a121b7c1 7703 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7704 struct value *outer;
7705 struct value *discrim;
14f9c5c9
AS
7706 LONGEST discrim_val;
7707
012370f6
TT
7708 /* Using plain value_from_contents_and_address here causes problems
7709 because we will end up trying to resolve a type that is currently
7710 being constructed. */
7711 outer = value_from_contents_and_address_unresolved (outer_type,
7712 outer_valaddr, 0);
0c281816
JB
7713 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7714 if (discrim == NULL)
14f9c5c9 7715 return -1;
0c281816 7716 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7717
7718 others_clause = -1;
7719 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7720 {
7721 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7722 others_clause = i;
14f9c5c9 7723 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7724 return i;
14f9c5c9
AS
7725 }
7726
7727 return others_clause;
7728}
d2e4a39e 7729\f
14f9c5c9
AS
7730
7731
4c4b4cd2 7732 /* Dynamic-Sized Records */
14f9c5c9
AS
7733
7734/* Strategy: The type ostensibly attached to a value with dynamic size
7735 (i.e., a size that is not statically recorded in the debugging
7736 data) does not accurately reflect the size or layout of the value.
7737 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7738 conventional types that are constructed on the fly. */
14f9c5c9
AS
7739
7740/* There is a subtle and tricky problem here. In general, we cannot
7741 determine the size of dynamic records without its data. However,
7742 the 'struct value' data structure, which GDB uses to represent
7743 quantities in the inferior process (the target), requires the size
7744 of the type at the time of its allocation in order to reserve space
7745 for GDB's internal copy of the data. That's why the
7746 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7747 rather than struct value*s.
14f9c5c9
AS
7748
7749 However, GDB's internal history variables ($1, $2, etc.) are
7750 struct value*s containing internal copies of the data that are not, in
7751 general, the same as the data at their corresponding addresses in
7752 the target. Fortunately, the types we give to these values are all
7753 conventional, fixed-size types (as per the strategy described
7754 above), so that we don't usually have to perform the
7755 'to_fixed_xxx_type' conversions to look at their values.
7756 Unfortunately, there is one exception: if one of the internal
7757 history variables is an array whose elements are unconstrained
7758 records, then we will need to create distinct fixed types for each
7759 element selected. */
7760
7761/* The upshot of all of this is that many routines take a (type, host
7762 address, target address) triple as arguments to represent a value.
7763 The host address, if non-null, is supposed to contain an internal
7764 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7765 target at the target address. */
14f9c5c9
AS
7766
7767/* Assuming that VAL0 represents a pointer value, the result of
7768 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7769 dynamic-sized types. */
14f9c5c9 7770
d2e4a39e
AS
7771struct value *
7772ada_value_ind (struct value *val0)
14f9c5c9 7773{
c48db5ca 7774 struct value *val = value_ind (val0);
5b4ee69b 7775
b50d69b5
JG
7776 if (ada_is_tagged_type (value_type (val), 0))
7777 val = ada_tag_value_at_base_address (val);
7778
4c4b4cd2 7779 return ada_to_fixed_value (val);
14f9c5c9
AS
7780}
7781
7782/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7783 qualifiers on VAL0. */
7784
d2e4a39e
AS
7785static struct value *
7786ada_coerce_ref (struct value *val0)
7787{
df407dfe 7788 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7789 {
7790 struct value *val = val0;
5b4ee69b 7791
994b9211 7792 val = coerce_ref (val);
b50d69b5
JG
7793
7794 if (ada_is_tagged_type (value_type (val), 0))
7795 val = ada_tag_value_at_base_address (val);
7796
4c4b4cd2 7797 return ada_to_fixed_value (val);
d2e4a39e
AS
7798 }
7799 else
14f9c5c9
AS
7800 return val0;
7801}
7802
7803/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7804 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7805
7806static unsigned int
ebf56fd3 7807align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7808{
7809 return (off + alignment - 1) & ~(alignment - 1);
7810}
7811
4c4b4cd2 7812/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7813
7814static unsigned int
ebf56fd3 7815field_alignment (struct type *type, int f)
14f9c5c9 7816{
d2e4a39e 7817 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7818 int len;
14f9c5c9
AS
7819 int align_offset;
7820
64a1bf19
JB
7821 /* The field name should never be null, unless the debugging information
7822 is somehow malformed. In this case, we assume the field does not
7823 require any alignment. */
7824 if (name == NULL)
7825 return 1;
7826
7827 len = strlen (name);
7828
4c4b4cd2
PH
7829 if (!isdigit (name[len - 1]))
7830 return 1;
14f9c5c9 7831
d2e4a39e 7832 if (isdigit (name[len - 2]))
14f9c5c9
AS
7833 align_offset = len - 2;
7834 else
7835 align_offset = len - 1;
7836
61012eef 7837 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7838 return TARGET_CHAR_BIT;
7839
4c4b4cd2
PH
7840 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7841}
7842
852dff6c 7843/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7844
852dff6c
JB
7845static struct symbol *
7846ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7847{
7848 struct symbol *sym;
7849
7850 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7851 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7852 return sym;
7853
4186eb54
KS
7854 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7855 return sym;
14f9c5c9
AS
7856}
7857
dddfab26
UW
7858/* Find a type named NAME. Ignores ambiguity. This routine will look
7859 solely for types defined by debug info, it will not search the GDB
7860 primitive types. */
4c4b4cd2 7861
852dff6c 7862static struct type *
ebf56fd3 7863ada_find_any_type (const char *name)
14f9c5c9 7864{
852dff6c 7865 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7866
14f9c5c9 7867 if (sym != NULL)
dddfab26 7868 return SYMBOL_TYPE (sym);
14f9c5c9 7869
dddfab26 7870 return NULL;
14f9c5c9
AS
7871}
7872
739593e0
JB
7873/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7874 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7875 symbol, in which case it is returned. Otherwise, this looks for
7876 symbols whose name is that of NAME_SYM suffixed with "___XR".
7877 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7878
c0e70c62
TT
7879static bool
7880ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7881{
739593e0 7882 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
c0e70c62 7883 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7884}
7885
14f9c5c9 7886/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7887 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7888 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7889 otherwise return 0. */
7890
14f9c5c9 7891int
d2e4a39e 7892ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7893{
7894 if (type1 == NULL)
7895 return 1;
7896 else if (type0 == NULL)
7897 return 0;
7898 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7899 return 1;
7900 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7901 return 0;
4c4b4cd2
PH
7902 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7903 return 1;
ad82864c 7904 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7905 return 1;
4c4b4cd2
PH
7906 else if (ada_is_array_descriptor_type (type0)
7907 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7908 return 1;
aeb5907d
JB
7909 else
7910 {
a737d952
TT
7911 const char *type0_name = TYPE_NAME (type0);
7912 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
7913
7914 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7915 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7916 return 1;
7917 }
14f9c5c9
AS
7918 return 0;
7919}
7920
e86ca25f
TT
7921/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7922 null. */
4c4b4cd2 7923
0d5cff50 7924const char *
d2e4a39e 7925ada_type_name (struct type *type)
14f9c5c9 7926{
d2e4a39e 7927 if (type == NULL)
14f9c5c9 7928 return NULL;
e86ca25f 7929 return TYPE_NAME (type);
14f9c5c9
AS
7930}
7931
b4ba55a1
JB
7932/* Search the list of "descriptive" types associated to TYPE for a type
7933 whose name is NAME. */
7934
7935static struct type *
7936find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7937{
931e5bc3 7938 struct type *result, *tmp;
b4ba55a1 7939
c6044dd1
JB
7940 if (ada_ignore_descriptive_types_p)
7941 return NULL;
7942
b4ba55a1
JB
7943 /* If there no descriptive-type info, then there is no parallel type
7944 to be found. */
7945 if (!HAVE_GNAT_AUX_INFO (type))
7946 return NULL;
7947
7948 result = TYPE_DESCRIPTIVE_TYPE (type);
7949 while (result != NULL)
7950 {
0d5cff50 7951 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7952
7953 if (result_name == NULL)
7954 {
7955 warning (_("unexpected null name on descriptive type"));
7956 return NULL;
7957 }
7958
7959 /* If the names match, stop. */
7960 if (strcmp (result_name, name) == 0)
7961 break;
7962
7963 /* Otherwise, look at the next item on the list, if any. */
7964 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7965 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7966 else
7967 tmp = NULL;
7968
7969 /* If not found either, try after having resolved the typedef. */
7970 if (tmp != NULL)
7971 result = tmp;
b4ba55a1 7972 else
931e5bc3 7973 {
f168693b 7974 result = check_typedef (result);
931e5bc3
JG
7975 if (HAVE_GNAT_AUX_INFO (result))
7976 result = TYPE_DESCRIPTIVE_TYPE (result);
7977 else
7978 result = NULL;
7979 }
b4ba55a1
JB
7980 }
7981
7982 /* If we didn't find a match, see whether this is a packed array. With
7983 older compilers, the descriptive type information is either absent or
7984 irrelevant when it comes to packed arrays so the above lookup fails.
7985 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7986 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7987 return ada_find_any_type (name);
7988
7989 return result;
7990}
7991
7992/* Find a parallel type to TYPE with the specified NAME, using the
7993 descriptive type taken from the debugging information, if available,
7994 and otherwise using the (slower) name-based method. */
7995
7996static struct type *
7997ada_find_parallel_type_with_name (struct type *type, const char *name)
7998{
7999 struct type *result = NULL;
8000
8001 if (HAVE_GNAT_AUX_INFO (type))
8002 result = find_parallel_type_by_descriptive_type (type, name);
8003 else
8004 result = ada_find_any_type (name);
8005
8006 return result;
8007}
8008
8009/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8010 SUFFIX to the name of TYPE. */
14f9c5c9 8011
d2e4a39e 8012struct type *
ebf56fd3 8013ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8014{
0d5cff50 8015 char *name;
fe978cb0 8016 const char *type_name = ada_type_name (type);
14f9c5c9 8017 int len;
d2e4a39e 8018
fe978cb0 8019 if (type_name == NULL)
14f9c5c9
AS
8020 return NULL;
8021
fe978cb0 8022 len = strlen (type_name);
14f9c5c9 8023
b4ba55a1 8024 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8025
fe978cb0 8026 strcpy (name, type_name);
14f9c5c9
AS
8027 strcpy (name + len, suffix);
8028
b4ba55a1 8029 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8030}
8031
14f9c5c9 8032/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8033 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8034
d2e4a39e
AS
8035static struct type *
8036dynamic_template_type (struct type *type)
14f9c5c9 8037{
61ee279c 8038 type = ada_check_typedef (type);
14f9c5c9
AS
8039
8040 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8041 || ada_type_name (type) == NULL)
14f9c5c9 8042 return NULL;
d2e4a39e 8043 else
14f9c5c9
AS
8044 {
8045 int len = strlen (ada_type_name (type));
5b4ee69b 8046
4c4b4cd2
PH
8047 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8048 return type;
14f9c5c9 8049 else
4c4b4cd2 8050 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8051 }
8052}
8053
8054/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8055 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8056
d2e4a39e
AS
8057static int
8058is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8059{
8060 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8061
d2e4a39e 8062 return name != NULL
14f9c5c9
AS
8063 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8064 && strstr (name, "___XVL") != NULL;
8065}
8066
4c4b4cd2
PH
8067/* The index of the variant field of TYPE, or -1 if TYPE does not
8068 represent a variant record type. */
14f9c5c9 8069
d2e4a39e 8070static int
4c4b4cd2 8071variant_field_index (struct type *type)
14f9c5c9
AS
8072{
8073 int f;
8074
4c4b4cd2
PH
8075 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8076 return -1;
8077
8078 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8079 {
8080 if (ada_is_variant_part (type, f))
8081 return f;
8082 }
8083 return -1;
14f9c5c9
AS
8084}
8085
4c4b4cd2
PH
8086/* A record type with no fields. */
8087
d2e4a39e 8088static struct type *
fe978cb0 8089empty_record (struct type *templ)
14f9c5c9 8090{
fe978cb0 8091 struct type *type = alloc_type_copy (templ);
5b4ee69b 8092
14f9c5c9
AS
8093 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8094 TYPE_NFIELDS (type) = 0;
8095 TYPE_FIELDS (type) = NULL;
8ecb59f8 8096 INIT_NONE_SPECIFIC (type);
14f9c5c9 8097 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8098 TYPE_LENGTH (type) = 0;
8099 return type;
8100}
8101
8102/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8103 the value of type TYPE at VALADDR or ADDRESS (see comments at
8104 the beginning of this section) VAL according to GNAT conventions.
8105 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8106 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8107 an outer-level type (i.e., as opposed to a branch of a variant.) A
8108 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8109 of the variant.
14f9c5c9 8110
4c4b4cd2
PH
8111 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8112 length are not statically known are discarded. As a consequence,
8113 VALADDR, ADDRESS and DVAL0 are ignored.
8114
8115 NOTE: Limitations: For now, we assume that dynamic fields and
8116 variants occupy whole numbers of bytes. However, they need not be
8117 byte-aligned. */
8118
8119struct type *
10a2c479 8120ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8121 const gdb_byte *valaddr,
4c4b4cd2
PH
8122 CORE_ADDR address, struct value *dval0,
8123 int keep_dynamic_fields)
14f9c5c9 8124{
d2e4a39e
AS
8125 struct value *mark = value_mark ();
8126 struct value *dval;
8127 struct type *rtype;
14f9c5c9 8128 int nfields, bit_len;
4c4b4cd2 8129 int variant_field;
14f9c5c9 8130 long off;
d94e4f4f 8131 int fld_bit_len;
14f9c5c9
AS
8132 int f;
8133
4c4b4cd2
PH
8134 /* Compute the number of fields in this record type that are going
8135 to be processed: unless keep_dynamic_fields, this includes only
8136 fields whose position and length are static will be processed. */
8137 if (keep_dynamic_fields)
8138 nfields = TYPE_NFIELDS (type);
8139 else
8140 {
8141 nfields = 0;
76a01679 8142 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8143 && !ada_is_variant_part (type, nfields)
8144 && !is_dynamic_field (type, nfields))
8145 nfields++;
8146 }
8147
e9bb382b 8148 rtype = alloc_type_copy (type);
14f9c5c9 8149 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8150 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8151 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8152 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8153 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8154 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8155 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8156 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8157
d2e4a39e
AS
8158 off = 0;
8159 bit_len = 0;
4c4b4cd2
PH
8160 variant_field = -1;
8161
14f9c5c9
AS
8162 for (f = 0; f < nfields; f += 1)
8163 {
6c038f32
PH
8164 off = align_value (off, field_alignment (type, f))
8165 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8166 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8167 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8168
d2e4a39e 8169 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8170 {
8171 variant_field = f;
d94e4f4f 8172 fld_bit_len = 0;
4c4b4cd2 8173 }
14f9c5c9 8174 else if (is_dynamic_field (type, f))
4c4b4cd2 8175 {
284614f0
JB
8176 const gdb_byte *field_valaddr = valaddr;
8177 CORE_ADDR field_address = address;
8178 struct type *field_type =
8179 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8180
4c4b4cd2 8181 if (dval0 == NULL)
b5304971
JG
8182 {
8183 /* rtype's length is computed based on the run-time
8184 value of discriminants. If the discriminants are not
8185 initialized, the type size may be completely bogus and
0963b4bd 8186 GDB may fail to allocate a value for it. So check the
b5304971 8187 size first before creating the value. */
c1b5a1a6 8188 ada_ensure_varsize_limit (rtype);
012370f6
TT
8189 /* Using plain value_from_contents_and_address here
8190 causes problems because we will end up trying to
8191 resolve a type that is currently being
8192 constructed. */
8193 dval = value_from_contents_and_address_unresolved (rtype,
8194 valaddr,
8195 address);
9f1f738a 8196 rtype = value_type (dval);
b5304971 8197 }
4c4b4cd2
PH
8198 else
8199 dval = dval0;
8200
284614f0
JB
8201 /* If the type referenced by this field is an aligner type, we need
8202 to unwrap that aligner type, because its size might not be set.
8203 Keeping the aligner type would cause us to compute the wrong
8204 size for this field, impacting the offset of the all the fields
8205 that follow this one. */
8206 if (ada_is_aligner_type (field_type))
8207 {
8208 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8209
8210 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8211 field_address = cond_offset_target (field_address, field_offset);
8212 field_type = ada_aligned_type (field_type);
8213 }
8214
8215 field_valaddr = cond_offset_host (field_valaddr,
8216 off / TARGET_CHAR_BIT);
8217 field_address = cond_offset_target (field_address,
8218 off / TARGET_CHAR_BIT);
8219
8220 /* Get the fixed type of the field. Note that, in this case,
8221 we do not want to get the real type out of the tag: if
8222 the current field is the parent part of a tagged record,
8223 we will get the tag of the object. Clearly wrong: the real
8224 type of the parent is not the real type of the child. We
8225 would end up in an infinite loop. */
8226 field_type = ada_get_base_type (field_type);
8227 field_type = ada_to_fixed_type (field_type, field_valaddr,
8228 field_address, dval, 0);
27f2a97b
JB
8229 /* If the field size is already larger than the maximum
8230 object size, then the record itself will necessarily
8231 be larger than the maximum object size. We need to make
8232 this check now, because the size might be so ridiculously
8233 large (due to an uninitialized variable in the inferior)
8234 that it would cause an overflow when adding it to the
8235 record size. */
c1b5a1a6 8236 ada_ensure_varsize_limit (field_type);
284614f0
JB
8237
8238 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8239 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8240 /* The multiplication can potentially overflow. But because
8241 the field length has been size-checked just above, and
8242 assuming that the maximum size is a reasonable value,
8243 an overflow should not happen in practice. So rather than
8244 adding overflow recovery code to this already complex code,
8245 we just assume that it's not going to happen. */
d94e4f4f 8246 fld_bit_len =
4c4b4cd2
PH
8247 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8248 }
14f9c5c9 8249 else
4c4b4cd2 8250 {
5ded5331
JB
8251 /* Note: If this field's type is a typedef, it is important
8252 to preserve the typedef layer.
8253
8254 Otherwise, we might be transforming a typedef to a fat
8255 pointer (encoding a pointer to an unconstrained array),
8256 into a basic fat pointer (encoding an unconstrained
8257 array). As both types are implemented using the same
8258 structure, the typedef is the only clue which allows us
8259 to distinguish between the two options. Stripping it
8260 would prevent us from printing this field appropriately. */
8261 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8262 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8263 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8264 fld_bit_len =
4c4b4cd2
PH
8265 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8266 else
5ded5331
JB
8267 {
8268 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8269
8270 /* We need to be careful of typedefs when computing
8271 the length of our field. If this is a typedef,
8272 get the length of the target type, not the length
8273 of the typedef. */
8274 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8275 field_type = ada_typedef_target_type (field_type);
8276
8277 fld_bit_len =
8278 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8279 }
4c4b4cd2 8280 }
14f9c5c9 8281 if (off + fld_bit_len > bit_len)
4c4b4cd2 8282 bit_len = off + fld_bit_len;
d94e4f4f 8283 off += fld_bit_len;
4c4b4cd2
PH
8284 TYPE_LENGTH (rtype) =
8285 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8286 }
4c4b4cd2
PH
8287
8288 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8289 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8290 the record. This can happen in the presence of representation
8291 clauses. */
8292 if (variant_field >= 0)
8293 {
8294 struct type *branch_type;
8295
8296 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8297
8298 if (dval0 == NULL)
9f1f738a 8299 {
012370f6
TT
8300 /* Using plain value_from_contents_and_address here causes
8301 problems because we will end up trying to resolve a type
8302 that is currently being constructed. */
8303 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8304 address);
9f1f738a
SA
8305 rtype = value_type (dval);
8306 }
4c4b4cd2
PH
8307 else
8308 dval = dval0;
8309
8310 branch_type =
8311 to_fixed_variant_branch_type
8312 (TYPE_FIELD_TYPE (type, variant_field),
8313 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8314 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8315 if (branch_type == NULL)
8316 {
8317 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8318 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8319 TYPE_NFIELDS (rtype) -= 1;
8320 }
8321 else
8322 {
8323 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8324 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8325 fld_bit_len =
8326 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8327 TARGET_CHAR_BIT;
8328 if (off + fld_bit_len > bit_len)
8329 bit_len = off + fld_bit_len;
8330 TYPE_LENGTH (rtype) =
8331 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8332 }
8333 }
8334
714e53ab
PH
8335 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8336 should contain the alignment of that record, which should be a strictly
8337 positive value. If null or negative, then something is wrong, most
8338 probably in the debug info. In that case, we don't round up the size
0963b4bd 8339 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8340 the current RTYPE length might be good enough for our purposes. */
8341 if (TYPE_LENGTH (type) <= 0)
8342 {
323e0a4a 8343 if (TYPE_NAME (rtype))
cc1defb1
KS
8344 warning (_("Invalid type size for `%s' detected: %s."),
8345 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8346 else
cc1defb1
KS
8347 warning (_("Invalid type size for <unnamed> detected: %s."),
8348 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8349 }
8350 else
8351 {
8352 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8353 TYPE_LENGTH (type));
8354 }
14f9c5c9
AS
8355
8356 value_free_to_mark (mark);
d2e4a39e 8357 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8358 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8359 return rtype;
8360}
8361
4c4b4cd2
PH
8362/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8363 of 1. */
14f9c5c9 8364
d2e4a39e 8365static struct type *
fc1a4b47 8366template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8367 CORE_ADDR address, struct value *dval0)
8368{
8369 return ada_template_to_fixed_record_type_1 (type, valaddr,
8370 address, dval0, 1);
8371}
8372
8373/* An ordinary record type in which ___XVL-convention fields and
8374 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8375 static approximations, containing all possible fields. Uses
8376 no runtime values. Useless for use in values, but that's OK,
8377 since the results are used only for type determinations. Works on both
8378 structs and unions. Representation note: to save space, we memorize
8379 the result of this function in the TYPE_TARGET_TYPE of the
8380 template type. */
8381
8382static struct type *
8383template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8384{
8385 struct type *type;
8386 int nfields;
8387 int f;
8388
9e195661
PMR
8389 /* No need no do anything if the input type is already fixed. */
8390 if (TYPE_FIXED_INSTANCE (type0))
8391 return type0;
8392
8393 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8394 if (TYPE_TARGET_TYPE (type0) != NULL)
8395 return TYPE_TARGET_TYPE (type0);
8396
9e195661 8397 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8398 type = type0;
9e195661
PMR
8399 nfields = TYPE_NFIELDS (type0);
8400
8401 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8402 recompute all over next time. */
8403 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8404
8405 for (f = 0; f < nfields; f += 1)
8406 {
460efde1 8407 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8408 struct type *new_type;
14f9c5c9 8409
4c4b4cd2 8410 if (is_dynamic_field (type0, f))
460efde1
JB
8411 {
8412 field_type = ada_check_typedef (field_type);
8413 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8414 }
14f9c5c9 8415 else
f192137b 8416 new_type = static_unwrap_type (field_type);
9e195661
PMR
8417
8418 if (new_type != field_type)
8419 {
8420 /* Clone TYPE0 only the first time we get a new field type. */
8421 if (type == type0)
8422 {
8423 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8424 TYPE_CODE (type) = TYPE_CODE (type0);
8ecb59f8 8425 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8426 TYPE_NFIELDS (type) = nfields;
8427 TYPE_FIELDS (type) = (struct field *)
8428 TYPE_ALLOC (type, nfields * sizeof (struct field));
8429 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8430 sizeof (struct field) * nfields);
8431 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8432 TYPE_FIXED_INSTANCE (type) = 1;
8433 TYPE_LENGTH (type) = 0;
8434 }
8435 TYPE_FIELD_TYPE (type, f) = new_type;
8436 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8437 }
14f9c5c9 8438 }
9e195661 8439
14f9c5c9
AS
8440 return type;
8441}
8442
4c4b4cd2 8443/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8444 whose address in memory is ADDRESS, returns a revision of TYPE,
8445 which should be a non-dynamic-sized record, in which the variant
8446 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8447 for discriminant values in DVAL0, which can be NULL if the record
8448 contains the necessary discriminant values. */
8449
d2e4a39e 8450static struct type *
fc1a4b47 8451to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8452 CORE_ADDR address, struct value *dval0)
14f9c5c9 8453{
d2e4a39e 8454 struct value *mark = value_mark ();
4c4b4cd2 8455 struct value *dval;
d2e4a39e 8456 struct type *rtype;
14f9c5c9
AS
8457 struct type *branch_type;
8458 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8459 int variant_field = variant_field_index (type);
14f9c5c9 8460
4c4b4cd2 8461 if (variant_field == -1)
14f9c5c9
AS
8462 return type;
8463
4c4b4cd2 8464 if (dval0 == NULL)
9f1f738a
SA
8465 {
8466 dval = value_from_contents_and_address (type, valaddr, address);
8467 type = value_type (dval);
8468 }
4c4b4cd2
PH
8469 else
8470 dval = dval0;
8471
e9bb382b 8472 rtype = alloc_type_copy (type);
14f9c5c9 8473 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8474 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8475 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8476 TYPE_FIELDS (rtype) =
8477 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8478 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8479 sizeof (struct field) * nfields);
14f9c5c9 8480 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8481 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8482 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8483
4c4b4cd2
PH
8484 branch_type = to_fixed_variant_branch_type
8485 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8486 cond_offset_host (valaddr,
4c4b4cd2
PH
8487 TYPE_FIELD_BITPOS (type, variant_field)
8488 / TARGET_CHAR_BIT),
d2e4a39e 8489 cond_offset_target (address,
4c4b4cd2
PH
8490 TYPE_FIELD_BITPOS (type, variant_field)
8491 / TARGET_CHAR_BIT), dval);
d2e4a39e 8492 if (branch_type == NULL)
14f9c5c9 8493 {
4c4b4cd2 8494 int f;
5b4ee69b 8495
4c4b4cd2
PH
8496 for (f = variant_field + 1; f < nfields; f += 1)
8497 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8498 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8499 }
8500 else
8501 {
4c4b4cd2
PH
8502 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8503 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8504 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8505 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8506 }
4c4b4cd2 8507 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8508
4c4b4cd2 8509 value_free_to_mark (mark);
14f9c5c9
AS
8510 return rtype;
8511}
8512
8513/* An ordinary record type (with fixed-length fields) that describes
8514 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8515 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8516 should be in DVAL, a record value; it may be NULL if the object
8517 at ADDR itself contains any necessary discriminant values.
8518 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8519 values from the record are needed. Except in the case that DVAL,
8520 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8521 unchecked) is replaced by a particular branch of the variant.
8522
8523 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8524 is questionable and may be removed. It can arise during the
8525 processing of an unconstrained-array-of-record type where all the
8526 variant branches have exactly the same size. This is because in
8527 such cases, the compiler does not bother to use the XVS convention
8528 when encoding the record. I am currently dubious of this
8529 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8530
d2e4a39e 8531static struct type *
fc1a4b47 8532to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8533 CORE_ADDR address, struct value *dval)
14f9c5c9 8534{
d2e4a39e 8535 struct type *templ_type;
14f9c5c9 8536
876cecd0 8537 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8538 return type0;
8539
d2e4a39e 8540 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8541
8542 if (templ_type != NULL)
8543 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8544 else if (variant_field_index (type0) >= 0)
8545 {
8546 if (dval == NULL && valaddr == NULL && address == 0)
8547 return type0;
8548 return to_record_with_fixed_variant_part (type0, valaddr, address,
8549 dval);
8550 }
14f9c5c9
AS
8551 else
8552 {
876cecd0 8553 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8554 return type0;
8555 }
8556
8557}
8558
8559/* An ordinary record type (with fixed-length fields) that describes
8560 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8561 union type. Any necessary discriminants' values should be in DVAL,
8562 a record value. That is, this routine selects the appropriate
8563 branch of the union at ADDR according to the discriminant value
b1f33ddd 8564 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8565 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8566
d2e4a39e 8567static struct type *
fc1a4b47 8568to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8569 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8570{
8571 int which;
d2e4a39e
AS
8572 struct type *templ_type;
8573 struct type *var_type;
14f9c5c9
AS
8574
8575 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8576 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8577 else
14f9c5c9
AS
8578 var_type = var_type0;
8579
8580 templ_type = ada_find_parallel_type (var_type, "___XVU");
8581
8582 if (templ_type != NULL)
8583 var_type = templ_type;
8584
b1f33ddd
JB
8585 if (is_unchecked_variant (var_type, value_type (dval)))
8586 return var_type0;
d2e4a39e
AS
8587 which =
8588 ada_which_variant_applies (var_type,
0fd88904 8589 value_type (dval), value_contents (dval));
14f9c5c9
AS
8590
8591 if (which < 0)
e9bb382b 8592 return empty_record (var_type);
14f9c5c9 8593 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8594 return to_fixed_record_type
d2e4a39e
AS
8595 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8596 valaddr, address, dval);
4c4b4cd2 8597 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8598 return
8599 to_fixed_record_type
8600 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8601 else
8602 return TYPE_FIELD_TYPE (var_type, which);
8603}
8604
8908fca5
JB
8605/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8606 ENCODING_TYPE, a type following the GNAT conventions for discrete
8607 type encodings, only carries redundant information. */
8608
8609static int
8610ada_is_redundant_range_encoding (struct type *range_type,
8611 struct type *encoding_type)
8612{
108d56a4 8613 const char *bounds_str;
8908fca5
JB
8614 int n;
8615 LONGEST lo, hi;
8616
8617 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8618
005e2509
JB
8619 if (TYPE_CODE (get_base_type (range_type))
8620 != TYPE_CODE (get_base_type (encoding_type)))
8621 {
8622 /* The compiler probably used a simple base type to describe
8623 the range type instead of the range's actual base type,
8624 expecting us to get the real base type from the encoding
8625 anyway. In this situation, the encoding cannot be ignored
8626 as redundant. */
8627 return 0;
8628 }
8629
8908fca5
JB
8630 if (is_dynamic_type (range_type))
8631 return 0;
8632
8633 if (TYPE_NAME (encoding_type) == NULL)
8634 return 0;
8635
8636 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8637 if (bounds_str == NULL)
8638 return 0;
8639
8640 n = 8; /* Skip "___XDLU_". */
8641 if (!ada_scan_number (bounds_str, n, &lo, &n))
8642 return 0;
8643 if (TYPE_LOW_BOUND (range_type) != lo)
8644 return 0;
8645
8646 n += 2; /* Skip the "__" separator between the two bounds. */
8647 if (!ada_scan_number (bounds_str, n, &hi, &n))
8648 return 0;
8649 if (TYPE_HIGH_BOUND (range_type) != hi)
8650 return 0;
8651
8652 return 1;
8653}
8654
8655/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8656 a type following the GNAT encoding for describing array type
8657 indices, only carries redundant information. */
8658
8659static int
8660ada_is_redundant_index_type_desc (struct type *array_type,
8661 struct type *desc_type)
8662{
8663 struct type *this_layer = check_typedef (array_type);
8664 int i;
8665
8666 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8667 {
8668 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8669 TYPE_FIELD_TYPE (desc_type, i)))
8670 return 0;
8671 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8672 }
8673
8674 return 1;
8675}
8676
14f9c5c9
AS
8677/* Assuming that TYPE0 is an array type describing the type of a value
8678 at ADDR, and that DVAL describes a record containing any
8679 discriminants used in TYPE0, returns a type for the value that
8680 contains no dynamic components (that is, no components whose sizes
8681 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8682 true, gives an error message if the resulting type's size is over
4c4b4cd2 8683 varsize_limit. */
14f9c5c9 8684
d2e4a39e
AS
8685static struct type *
8686to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8687 int ignore_too_big)
14f9c5c9 8688{
d2e4a39e
AS
8689 struct type *index_type_desc;
8690 struct type *result;
ad82864c 8691 int constrained_packed_array_p;
931e5bc3 8692 static const char *xa_suffix = "___XA";
14f9c5c9 8693
b0dd7688 8694 type0 = ada_check_typedef (type0);
284614f0 8695 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8696 return type0;
14f9c5c9 8697
ad82864c
JB
8698 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8699 if (constrained_packed_array_p)
8700 type0 = decode_constrained_packed_array_type (type0);
284614f0 8701
931e5bc3
JG
8702 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8703
8704 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8705 encoding suffixed with 'P' may still be generated. If so,
8706 it should be used to find the XA type. */
8707
8708 if (index_type_desc == NULL)
8709 {
1da0522e 8710 const char *type_name = ada_type_name (type0);
931e5bc3 8711
1da0522e 8712 if (type_name != NULL)
931e5bc3 8713 {
1da0522e 8714 const int len = strlen (type_name);
931e5bc3
JG
8715 char *name = (char *) alloca (len + strlen (xa_suffix));
8716
1da0522e 8717 if (type_name[len - 1] == 'P')
931e5bc3 8718 {
1da0522e 8719 strcpy (name, type_name);
931e5bc3
JG
8720 strcpy (name + len - 1, xa_suffix);
8721 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8722 }
8723 }
8724 }
8725
28c85d6c 8726 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8727 if (index_type_desc != NULL
8728 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8729 {
8730 /* Ignore this ___XA parallel type, as it does not bring any
8731 useful information. This allows us to avoid creating fixed
8732 versions of the array's index types, which would be identical
8733 to the original ones. This, in turn, can also help avoid
8734 the creation of fixed versions of the array itself. */
8735 index_type_desc = NULL;
8736 }
8737
14f9c5c9
AS
8738 if (index_type_desc == NULL)
8739 {
61ee279c 8740 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8741
14f9c5c9 8742 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8743 depend on the contents of the array in properly constructed
8744 debugging data. */
529cad9c
PH
8745 /* Create a fixed version of the array element type.
8746 We're not providing the address of an element here,
e1d5a0d2 8747 and thus the actual object value cannot be inspected to do
529cad9c
PH
8748 the conversion. This should not be a problem, since arrays of
8749 unconstrained objects are not allowed. In particular, all
8750 the elements of an array of a tagged type should all be of
8751 the same type specified in the debugging info. No need to
8752 consult the object tag. */
1ed6ede0 8753 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8754
284614f0
JB
8755 /* Make sure we always create a new array type when dealing with
8756 packed array types, since we're going to fix-up the array
8757 type length and element bitsize a little further down. */
ad82864c 8758 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8759 result = type0;
14f9c5c9 8760 else
e9bb382b 8761 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8762 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8763 }
8764 else
8765 {
8766 int i;
8767 struct type *elt_type0;
8768
8769 elt_type0 = type0;
8770 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8771 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8772
8773 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8774 depend on the contents of the array in properly constructed
8775 debugging data. */
529cad9c
PH
8776 /* Create a fixed version of the array element type.
8777 We're not providing the address of an element here,
e1d5a0d2 8778 and thus the actual object value cannot be inspected to do
529cad9c
PH
8779 the conversion. This should not be a problem, since arrays of
8780 unconstrained objects are not allowed. In particular, all
8781 the elements of an array of a tagged type should all be of
8782 the same type specified in the debugging info. No need to
8783 consult the object tag. */
1ed6ede0
JB
8784 result =
8785 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8786
8787 elt_type0 = type0;
14f9c5c9 8788 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8789 {
8790 struct type *range_type =
28c85d6c 8791 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8792
e9bb382b 8793 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8794 result, range_type);
1ce677a4 8795 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8796 }
d2e4a39e 8797 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8798 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8799 }
8800
2e6fda7d
JB
8801 /* We want to preserve the type name. This can be useful when
8802 trying to get the type name of a value that has already been
8803 printed (for instance, if the user did "print VAR; whatis $". */
8804 TYPE_NAME (result) = TYPE_NAME (type0);
8805
ad82864c 8806 if (constrained_packed_array_p)
284614f0
JB
8807 {
8808 /* So far, the resulting type has been created as if the original
8809 type was a regular (non-packed) array type. As a result, the
8810 bitsize of the array elements needs to be set again, and the array
8811 length needs to be recomputed based on that bitsize. */
8812 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8813 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8814
8815 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8816 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8817 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8818 TYPE_LENGTH (result)++;
8819 }
8820
876cecd0 8821 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8822 return result;
d2e4a39e 8823}
14f9c5c9
AS
8824
8825
8826/* A standard type (containing no dynamically sized components)
8827 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8828 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8829 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8830 ADDRESS or in VALADDR contains these discriminants.
8831
1ed6ede0
JB
8832 If CHECK_TAG is not null, in the case of tagged types, this function
8833 attempts to locate the object's tag and use it to compute the actual
8834 type. However, when ADDRESS is null, we cannot use it to determine the
8835 location of the tag, and therefore compute the tagged type's actual type.
8836 So we return the tagged type without consulting the tag. */
529cad9c 8837
f192137b
JB
8838static struct type *
8839ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8840 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8841{
61ee279c 8842 type = ada_check_typedef (type);
8ecb59f8
TT
8843
8844 /* Only un-fixed types need to be handled here. */
8845 if (!HAVE_GNAT_AUX_INFO (type))
8846 return type;
8847
d2e4a39e
AS
8848 switch (TYPE_CODE (type))
8849 {
8850 default:
14f9c5c9 8851 return type;
d2e4a39e 8852 case TYPE_CODE_STRUCT:
4c4b4cd2 8853 {
76a01679 8854 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8855 struct type *fixed_record_type =
8856 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8857
529cad9c
PH
8858 /* If STATIC_TYPE is a tagged type and we know the object's address,
8859 then we can determine its tag, and compute the object's actual
0963b4bd 8860 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8861 type (the parent part of the record may have dynamic fields
8862 and the way the location of _tag is expressed may depend on
8863 them). */
529cad9c 8864
1ed6ede0 8865 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8866 {
b50d69b5
JG
8867 struct value *tag =
8868 value_tag_from_contents_and_address
8869 (fixed_record_type,
8870 valaddr,
8871 address);
8872 struct type *real_type = type_from_tag (tag);
8873 struct value *obj =
8874 value_from_contents_and_address (fixed_record_type,
8875 valaddr,
8876 address);
9f1f738a 8877 fixed_record_type = value_type (obj);
76a01679 8878 if (real_type != NULL)
b50d69b5
JG
8879 return to_fixed_record_type
8880 (real_type, NULL,
8881 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8882 }
4af88198
JB
8883
8884 /* Check to see if there is a parallel ___XVZ variable.
8885 If there is, then it provides the actual size of our type. */
8886 else if (ada_type_name (fixed_record_type) != NULL)
8887 {
0d5cff50 8888 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8889 char *xvz_name
8890 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8891 bool xvz_found = false;
4af88198
JB
8892 LONGEST size;
8893
88c15c34 8894 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8895 try
eccab96d
JB
8896 {
8897 xvz_found = get_int_var_value (xvz_name, size);
8898 }
230d2906 8899 catch (const gdb_exception_error &except)
eccab96d
JB
8900 {
8901 /* We found the variable, but somehow failed to read
8902 its value. Rethrow the same error, but with a little
8903 bit more information, to help the user understand
8904 what went wrong (Eg: the variable might have been
8905 optimized out). */
8906 throw_error (except.error,
8907 _("unable to read value of %s (%s)"),
3d6e9d23 8908 xvz_name, except.what ());
eccab96d 8909 }
eccab96d
JB
8910
8911 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8912 {
8913 fixed_record_type = copy_type (fixed_record_type);
8914 TYPE_LENGTH (fixed_record_type) = size;
8915
8916 /* The FIXED_RECORD_TYPE may have be a stub. We have
8917 observed this when the debugging info is STABS, and
8918 apparently it is something that is hard to fix.
8919
8920 In practice, we don't need the actual type definition
8921 at all, because the presence of the XVZ variable allows us
8922 to assume that there must be a XVS type as well, which we
8923 should be able to use later, when we need the actual type
8924 definition.
8925
8926 In the meantime, pretend that the "fixed" type we are
8927 returning is NOT a stub, because this can cause trouble
8928 when using this type to create new types targeting it.
8929 Indeed, the associated creation routines often check
8930 whether the target type is a stub and will try to replace
0963b4bd 8931 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8932 might cause the new type to have the wrong size too.
8933 Consider the case of an array, for instance, where the size
8934 of the array is computed from the number of elements in
8935 our array multiplied by the size of its element. */
8936 TYPE_STUB (fixed_record_type) = 0;
8937 }
8938 }
1ed6ede0 8939 return fixed_record_type;
4c4b4cd2 8940 }
d2e4a39e 8941 case TYPE_CODE_ARRAY:
4c4b4cd2 8942 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8943 case TYPE_CODE_UNION:
8944 if (dval == NULL)
4c4b4cd2 8945 return type;
d2e4a39e 8946 else
4c4b4cd2 8947 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8948 }
14f9c5c9
AS
8949}
8950
f192137b
JB
8951/* The same as ada_to_fixed_type_1, except that it preserves the type
8952 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8953
8954 The typedef layer needs be preserved in order to differentiate between
8955 arrays and array pointers when both types are implemented using the same
8956 fat pointer. In the array pointer case, the pointer is encoded as
8957 a typedef of the pointer type. For instance, considering:
8958
8959 type String_Access is access String;
8960 S1 : String_Access := null;
8961
8962 To the debugger, S1 is defined as a typedef of type String. But
8963 to the user, it is a pointer. So if the user tries to print S1,
8964 we should not dereference the array, but print the array address
8965 instead.
8966
8967 If we didn't preserve the typedef layer, we would lose the fact that
8968 the type is to be presented as a pointer (needs de-reference before
8969 being printed). And we would also use the source-level type name. */
f192137b
JB
8970
8971struct type *
8972ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8973 CORE_ADDR address, struct value *dval, int check_tag)
8974
8975{
8976 struct type *fixed_type =
8977 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8978
96dbd2c1
JB
8979 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8980 then preserve the typedef layer.
8981
8982 Implementation note: We can only check the main-type portion of
8983 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8984 from TYPE now returns a type that has the same instance flags
8985 as TYPE. For instance, if TYPE is a "typedef const", and its
8986 target type is a "struct", then the typedef elimination will return
8987 a "const" version of the target type. See check_typedef for more
8988 details about how the typedef layer elimination is done.
8989
8990 brobecker/2010-11-19: It seems to me that the only case where it is
8991 useful to preserve the typedef layer is when dealing with fat pointers.
8992 Perhaps, we could add a check for that and preserve the typedef layer
8993 only in that situation. But this seems unecessary so far, probably
8994 because we call check_typedef/ada_check_typedef pretty much everywhere.
8995 */
f192137b 8996 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8997 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8998 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8999 return type;
9000
9001 return fixed_type;
9002}
9003
14f9c5c9 9004/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9005 TYPE0, but based on no runtime data. */
14f9c5c9 9006
d2e4a39e
AS
9007static struct type *
9008to_static_fixed_type (struct type *type0)
14f9c5c9 9009{
d2e4a39e 9010 struct type *type;
14f9c5c9
AS
9011
9012 if (type0 == NULL)
9013 return NULL;
9014
876cecd0 9015 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9016 return type0;
9017
61ee279c 9018 type0 = ada_check_typedef (type0);
d2e4a39e 9019
14f9c5c9
AS
9020 switch (TYPE_CODE (type0))
9021 {
9022 default:
9023 return type0;
9024 case TYPE_CODE_STRUCT:
9025 type = dynamic_template_type (type0);
d2e4a39e 9026 if (type != NULL)
4c4b4cd2
PH
9027 return template_to_static_fixed_type (type);
9028 else
9029 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9030 case TYPE_CODE_UNION:
9031 type = ada_find_parallel_type (type0, "___XVU");
9032 if (type != NULL)
4c4b4cd2
PH
9033 return template_to_static_fixed_type (type);
9034 else
9035 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9036 }
9037}
9038
4c4b4cd2
PH
9039/* A static approximation of TYPE with all type wrappers removed. */
9040
d2e4a39e
AS
9041static struct type *
9042static_unwrap_type (struct type *type)
14f9c5c9
AS
9043{
9044 if (ada_is_aligner_type (type))
9045 {
61ee279c 9046 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9047 if (ada_type_name (type1) == NULL)
4c4b4cd2 9048 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9049
9050 return static_unwrap_type (type1);
9051 }
d2e4a39e 9052 else
14f9c5c9 9053 {
d2e4a39e 9054 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9055
d2e4a39e 9056 if (raw_real_type == type)
4c4b4cd2 9057 return type;
14f9c5c9 9058 else
4c4b4cd2 9059 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9060 }
9061}
9062
9063/* In some cases, incomplete and private types require
4c4b4cd2 9064 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9065 type Foo;
9066 type FooP is access Foo;
9067 V: FooP;
9068 type Foo is array ...;
4c4b4cd2 9069 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9070 cross-references to such types, we instead substitute for FooP a
9071 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9072 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9073
9074/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9075 exists, otherwise TYPE. */
9076
d2e4a39e 9077struct type *
61ee279c 9078ada_check_typedef (struct type *type)
14f9c5c9 9079{
727e3d2e
JB
9080 if (type == NULL)
9081 return NULL;
9082
736ade86
XR
9083 /* If our type is an access to an unconstrained array, which is encoded
9084 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9085 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9086 what allows us to distinguish between fat pointers that represent
9087 array types, and fat pointers that represent array access types
9088 (in both cases, the compiler implements them as fat pointers). */
736ade86 9089 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9090 return type;
9091
f168693b 9092 type = check_typedef (type);
14f9c5c9 9093 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9094 || !TYPE_STUB (type)
e86ca25f 9095 || TYPE_NAME (type) == NULL)
14f9c5c9 9096 return type;
d2e4a39e 9097 else
14f9c5c9 9098 {
e86ca25f 9099 const char *name = TYPE_NAME (type);
d2e4a39e 9100 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9101
05e522ef
JB
9102 if (type1 == NULL)
9103 return type;
9104
9105 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9106 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9107 types, only for the typedef-to-array types). If that's the case,
9108 strip the typedef layer. */
9109 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9110 type1 = ada_check_typedef (type1);
9111
9112 return type1;
14f9c5c9
AS
9113 }
9114}
9115
9116/* A value representing the data at VALADDR/ADDRESS as described by
9117 type TYPE0, but with a standard (static-sized) type that correctly
9118 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9119 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9120 creation of struct values]. */
14f9c5c9 9121
4c4b4cd2
PH
9122static struct value *
9123ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9124 struct value *val0)
14f9c5c9 9125{
1ed6ede0 9126 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9127
14f9c5c9
AS
9128 if (type == type0 && val0 != NULL)
9129 return val0;
cc0e770c
JB
9130
9131 if (VALUE_LVAL (val0) != lval_memory)
9132 {
9133 /* Our value does not live in memory; it could be a convenience
9134 variable, for instance. Create a not_lval value using val0's
9135 contents. */
9136 return value_from_contents (type, value_contents (val0));
9137 }
9138
9139 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9140}
9141
9142/* A value representing VAL, but with a standard (static-sized) type
9143 that correctly describes it. Does not necessarily create a new
9144 value. */
9145
0c3acc09 9146struct value *
4c4b4cd2
PH
9147ada_to_fixed_value (struct value *val)
9148{
c48db5ca 9149 val = unwrap_value (val);
d8ce9127 9150 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9151 return val;
14f9c5c9 9152}
d2e4a39e 9153\f
14f9c5c9 9154
14f9c5c9
AS
9155/* Attributes */
9156
4c4b4cd2
PH
9157/* Table mapping attribute numbers to names.
9158 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9159
d2e4a39e 9160static const char *attribute_names[] = {
14f9c5c9
AS
9161 "<?>",
9162
d2e4a39e 9163 "first",
14f9c5c9
AS
9164 "last",
9165 "length",
9166 "image",
14f9c5c9
AS
9167 "max",
9168 "min",
4c4b4cd2
PH
9169 "modulus",
9170 "pos",
9171 "size",
9172 "tag",
14f9c5c9 9173 "val",
14f9c5c9
AS
9174 0
9175};
9176
d2e4a39e 9177const char *
4c4b4cd2 9178ada_attribute_name (enum exp_opcode n)
14f9c5c9 9179{
4c4b4cd2
PH
9180 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9181 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9182 else
9183 return attribute_names[0];
9184}
9185
4c4b4cd2 9186/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9187
4c4b4cd2
PH
9188static LONGEST
9189pos_atr (struct value *arg)
14f9c5c9 9190{
24209737
PH
9191 struct value *val = coerce_ref (arg);
9192 struct type *type = value_type (val);
aa715135 9193 LONGEST result;
14f9c5c9 9194
d2e4a39e 9195 if (!discrete_type_p (type))
323e0a4a 9196 error (_("'POS only defined on discrete types"));
14f9c5c9 9197
aa715135
JG
9198 if (!discrete_position (type, value_as_long (val), &result))
9199 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9200
aa715135 9201 return result;
4c4b4cd2
PH
9202}
9203
9204static struct value *
3cb382c9 9205value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9206{
3cb382c9 9207 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9208}
9209
4c4b4cd2 9210/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9211
d2e4a39e
AS
9212static struct value *
9213value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9214{
d2e4a39e 9215 if (!discrete_type_p (type))
323e0a4a 9216 error (_("'VAL only defined on discrete types"));
df407dfe 9217 if (!integer_type_p (value_type (arg)))
323e0a4a 9218 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9219
9220 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9221 {
9222 long pos = value_as_long (arg);
5b4ee69b 9223
14f9c5c9 9224 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9225 error (_("argument to 'VAL out of range"));
14e75d8e 9226 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9227 }
9228 else
9229 return value_from_longest (type, value_as_long (arg));
9230}
14f9c5c9 9231\f
d2e4a39e 9232
4c4b4cd2 9233 /* Evaluation */
14f9c5c9 9234
4c4b4cd2
PH
9235/* True if TYPE appears to be an Ada character type.
9236 [At the moment, this is true only for Character and Wide_Character;
9237 It is a heuristic test that could stand improvement]. */
14f9c5c9 9238
fc913e53 9239bool
d2e4a39e 9240ada_is_character_type (struct type *type)
14f9c5c9 9241{
7b9f71f2
JB
9242 const char *name;
9243
9244 /* If the type code says it's a character, then assume it really is,
9245 and don't check any further. */
9246 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
fc913e53 9247 return true;
7b9f71f2
JB
9248
9249 /* Otherwise, assume it's a character type iff it is a discrete type
9250 with a known character type name. */
9251 name = ada_type_name (type);
9252 return (name != NULL
9253 && (TYPE_CODE (type) == TYPE_CODE_INT
9254 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9255 && (strcmp (name, "character") == 0
9256 || strcmp (name, "wide_character") == 0
5a517ebd 9257 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9258 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9259}
9260
4c4b4cd2 9261/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9262
fc913e53 9263bool
ebf56fd3 9264ada_is_string_type (struct type *type)
14f9c5c9 9265{
61ee279c 9266 type = ada_check_typedef (type);
d2e4a39e 9267 if (type != NULL
14f9c5c9 9268 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9269 && (ada_is_simple_array_type (type)
9270 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9271 && ada_array_arity (type) == 1)
9272 {
9273 struct type *elttype = ada_array_element_type (type, 1);
9274
9275 return ada_is_character_type (elttype);
9276 }
d2e4a39e 9277 else
fc913e53 9278 return false;
14f9c5c9
AS
9279}
9280
5bf03f13
JB
9281/* The compiler sometimes provides a parallel XVS type for a given
9282 PAD type. Normally, it is safe to follow the PAD type directly,
9283 but older versions of the compiler have a bug that causes the offset
9284 of its "F" field to be wrong. Following that field in that case
9285 would lead to incorrect results, but this can be worked around
9286 by ignoring the PAD type and using the associated XVS type instead.
9287
9288 Set to True if the debugger should trust the contents of PAD types.
9289 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9290static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9291
9292/* True if TYPE is a struct type introduced by the compiler to force the
9293 alignment of a value. Such types have a single field with a
4c4b4cd2 9294 distinctive name. */
14f9c5c9
AS
9295
9296int
ebf56fd3 9297ada_is_aligner_type (struct type *type)
14f9c5c9 9298{
61ee279c 9299 type = ada_check_typedef (type);
714e53ab 9300
5bf03f13 9301 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9302 return 0;
9303
14f9c5c9 9304 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9305 && TYPE_NFIELDS (type) == 1
9306 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9307}
9308
9309/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9310 the parallel type. */
14f9c5c9 9311
d2e4a39e
AS
9312struct type *
9313ada_get_base_type (struct type *raw_type)
14f9c5c9 9314{
d2e4a39e
AS
9315 struct type *real_type_namer;
9316 struct type *raw_real_type;
14f9c5c9
AS
9317
9318 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9319 return raw_type;
9320
284614f0
JB
9321 if (ada_is_aligner_type (raw_type))
9322 /* The encoding specifies that we should always use the aligner type.
9323 So, even if this aligner type has an associated XVS type, we should
9324 simply ignore it.
9325
9326 According to the compiler gurus, an XVS type parallel to an aligner
9327 type may exist because of a stabs limitation. In stabs, aligner
9328 types are empty because the field has a variable-sized type, and
9329 thus cannot actually be used as an aligner type. As a result,
9330 we need the associated parallel XVS type to decode the type.
9331 Since the policy in the compiler is to not change the internal
9332 representation based on the debugging info format, we sometimes
9333 end up having a redundant XVS type parallel to the aligner type. */
9334 return raw_type;
9335
14f9c5c9 9336 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9337 if (real_type_namer == NULL
14f9c5c9
AS
9338 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9339 || TYPE_NFIELDS (real_type_namer) != 1)
9340 return raw_type;
9341
f80d3ff2
JB
9342 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9343 {
9344 /* This is an older encoding form where the base type needs to be
9345 looked up by name. We prefer the newer enconding because it is
9346 more efficient. */
9347 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9348 if (raw_real_type == NULL)
9349 return raw_type;
9350 else
9351 return raw_real_type;
9352 }
9353
9354 /* The field in our XVS type is a reference to the base type. */
9355 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9356}
14f9c5c9 9357
4c4b4cd2 9358/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9359
d2e4a39e
AS
9360struct type *
9361ada_aligned_type (struct type *type)
14f9c5c9
AS
9362{
9363 if (ada_is_aligner_type (type))
9364 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9365 else
9366 return ada_get_base_type (type);
9367}
9368
9369
9370/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9371 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9372
fc1a4b47
AC
9373const gdb_byte *
9374ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9375{
d2e4a39e 9376 if (ada_is_aligner_type (type))
14f9c5c9 9377 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9378 valaddr +
9379 TYPE_FIELD_BITPOS (type,
9380 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9381 else
9382 return valaddr;
9383}
9384
4c4b4cd2
PH
9385
9386
14f9c5c9 9387/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9388 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9389const char *
9390ada_enum_name (const char *name)
14f9c5c9 9391{
4c4b4cd2
PH
9392 static char *result;
9393 static size_t result_len = 0;
e6a959d6 9394 const char *tmp;
14f9c5c9 9395
4c4b4cd2
PH
9396 /* First, unqualify the enumeration name:
9397 1. Search for the last '.' character. If we find one, then skip
177b42fe 9398 all the preceding characters, the unqualified name starts
76a01679 9399 right after that dot.
4c4b4cd2 9400 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9401 translates dots into "__". Search forward for double underscores,
9402 but stop searching when we hit an overloading suffix, which is
9403 of the form "__" followed by digits. */
4c4b4cd2 9404
c3e5cd34
PH
9405 tmp = strrchr (name, '.');
9406 if (tmp != NULL)
4c4b4cd2
PH
9407 name = tmp + 1;
9408 else
14f9c5c9 9409 {
4c4b4cd2
PH
9410 while ((tmp = strstr (name, "__")) != NULL)
9411 {
9412 if (isdigit (tmp[2]))
9413 break;
9414 else
9415 name = tmp + 2;
9416 }
14f9c5c9
AS
9417 }
9418
9419 if (name[0] == 'Q')
9420 {
14f9c5c9 9421 int v;
5b4ee69b 9422
14f9c5c9 9423 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9424 {
9425 if (sscanf (name + 2, "%x", &v) != 1)
9426 return name;
9427 }
272560b5
TT
9428 else if (((name[1] >= '0' && name[1] <= '9')
9429 || (name[1] >= 'a' && name[1] <= 'z'))
9430 && name[2] == '\0')
9431 {
9432 GROW_VECT (result, result_len, 4);
9433 xsnprintf (result, result_len, "'%c'", name[1]);
9434 return result;
9435 }
14f9c5c9 9436 else
4c4b4cd2 9437 return name;
14f9c5c9 9438
4c4b4cd2 9439 GROW_VECT (result, result_len, 16);
14f9c5c9 9440 if (isascii (v) && isprint (v))
88c15c34 9441 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9442 else if (name[1] == 'U')
88c15c34 9443 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9444 else
88c15c34 9445 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9446
9447 return result;
9448 }
d2e4a39e 9449 else
4c4b4cd2 9450 {
c3e5cd34
PH
9451 tmp = strstr (name, "__");
9452 if (tmp == NULL)
9453 tmp = strstr (name, "$");
9454 if (tmp != NULL)
4c4b4cd2
PH
9455 {
9456 GROW_VECT (result, result_len, tmp - name + 1);
9457 strncpy (result, name, tmp - name);
9458 result[tmp - name] = '\0';
9459 return result;
9460 }
9461
9462 return name;
9463 }
14f9c5c9
AS
9464}
9465
14f9c5c9
AS
9466/* Evaluate the subexpression of EXP starting at *POS as for
9467 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9468 expression. */
14f9c5c9 9469
d2e4a39e
AS
9470static struct value *
9471evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9472{
4b27a620 9473 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9474}
9475
9476/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9477 value it wraps. */
14f9c5c9 9478
d2e4a39e
AS
9479static struct value *
9480unwrap_value (struct value *val)
14f9c5c9 9481{
df407dfe 9482 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9483
14f9c5c9
AS
9484 if (ada_is_aligner_type (type))
9485 {
de4d072f 9486 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9487 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9488
14f9c5c9 9489 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9490 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9491
9492 return unwrap_value (v);
9493 }
d2e4a39e 9494 else
14f9c5c9 9495 {
d2e4a39e 9496 struct type *raw_real_type =
61ee279c 9497 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9498
5bf03f13
JB
9499 /* If there is no parallel XVS or XVE type, then the value is
9500 already unwrapped. Return it without further modification. */
9501 if ((type == raw_real_type)
9502 && ada_find_parallel_type (type, "___XVE") == NULL)
9503 return val;
14f9c5c9 9504
d2e4a39e 9505 return
4c4b4cd2
PH
9506 coerce_unspec_val_to_type
9507 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9508 value_address (val),
1ed6ede0 9509 NULL, 1));
14f9c5c9
AS
9510 }
9511}
d2e4a39e
AS
9512
9513static struct value *
50eff16b 9514cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9515{
50eff16b
UW
9516 struct value *scale = ada_scaling_factor (value_type (arg));
9517 arg = value_cast (value_type (scale), arg);
14f9c5c9 9518
50eff16b
UW
9519 arg = value_binop (arg, scale, BINOP_MUL);
9520 return value_cast (type, arg);
14f9c5c9
AS
9521}
9522
d2e4a39e 9523static struct value *
50eff16b 9524cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9525{
50eff16b
UW
9526 if (type == value_type (arg))
9527 return arg;
5b4ee69b 9528
50eff16b
UW
9529 struct value *scale = ada_scaling_factor (type);
9530 if (ada_is_fixed_point_type (value_type (arg)))
9531 arg = cast_from_fixed (value_type (scale), arg);
9532 else
9533 arg = value_cast (value_type (scale), arg);
9534
9535 arg = value_binop (arg, scale, BINOP_DIV);
9536 return value_cast (type, arg);
14f9c5c9
AS
9537}
9538
d99dcf51
JB
9539/* Given two array types T1 and T2, return nonzero iff both arrays
9540 contain the same number of elements. */
9541
9542static int
9543ada_same_array_size_p (struct type *t1, struct type *t2)
9544{
9545 LONGEST lo1, hi1, lo2, hi2;
9546
9547 /* Get the array bounds in order to verify that the size of
9548 the two arrays match. */
9549 if (!get_array_bounds (t1, &lo1, &hi1)
9550 || !get_array_bounds (t2, &lo2, &hi2))
9551 error (_("unable to determine array bounds"));
9552
9553 /* To make things easier for size comparison, normalize a bit
9554 the case of empty arrays by making sure that the difference
9555 between upper bound and lower bound is always -1. */
9556 if (lo1 > hi1)
9557 hi1 = lo1 - 1;
9558 if (lo2 > hi2)
9559 hi2 = lo2 - 1;
9560
9561 return (hi1 - lo1 == hi2 - lo2);
9562}
9563
9564/* Assuming that VAL is an array of integrals, and TYPE represents
9565 an array with the same number of elements, but with wider integral
9566 elements, return an array "casted" to TYPE. In practice, this
9567 means that the returned array is built by casting each element
9568 of the original array into TYPE's (wider) element type. */
9569
9570static struct value *
9571ada_promote_array_of_integrals (struct type *type, struct value *val)
9572{
9573 struct type *elt_type = TYPE_TARGET_TYPE (type);
9574 LONGEST lo, hi;
9575 struct value *res;
9576 LONGEST i;
9577
9578 /* Verify that both val and type are arrays of scalars, and
9579 that the size of val's elements is smaller than the size
9580 of type's element. */
9581 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9582 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9583 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9584 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9585 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9586 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9587
9588 if (!get_array_bounds (type, &lo, &hi))
9589 error (_("unable to determine array bounds"));
9590
9591 res = allocate_value (type);
9592
9593 /* Promote each array element. */
9594 for (i = 0; i < hi - lo + 1; i++)
9595 {
9596 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9597
9598 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9599 value_contents_all (elt), TYPE_LENGTH (elt_type));
9600 }
9601
9602 return res;
9603}
9604
4c4b4cd2
PH
9605/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9606 return the converted value. */
9607
d2e4a39e
AS
9608static struct value *
9609coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9610{
df407dfe 9611 struct type *type2 = value_type (val);
5b4ee69b 9612
14f9c5c9
AS
9613 if (type == type2)
9614 return val;
9615
61ee279c
PH
9616 type2 = ada_check_typedef (type2);
9617 type = ada_check_typedef (type);
14f9c5c9 9618
d2e4a39e
AS
9619 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9620 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9621 {
9622 val = ada_value_ind (val);
df407dfe 9623 type2 = value_type (val);
14f9c5c9
AS
9624 }
9625
d2e4a39e 9626 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9627 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9628 {
d99dcf51
JB
9629 if (!ada_same_array_size_p (type, type2))
9630 error (_("cannot assign arrays of different length"));
9631
9632 if (is_integral_type (TYPE_TARGET_TYPE (type))
9633 && is_integral_type (TYPE_TARGET_TYPE (type2))
9634 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9635 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9636 {
9637 /* Allow implicit promotion of the array elements to
9638 a wider type. */
9639 return ada_promote_array_of_integrals (type, val);
9640 }
9641
9642 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9643 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9644 error (_("Incompatible types in assignment"));
04624583 9645 deprecated_set_value_type (val, type);
14f9c5c9 9646 }
d2e4a39e 9647 return val;
14f9c5c9
AS
9648}
9649
4c4b4cd2
PH
9650static struct value *
9651ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9652{
9653 struct value *val;
9654 struct type *type1, *type2;
9655 LONGEST v, v1, v2;
9656
994b9211
AC
9657 arg1 = coerce_ref (arg1);
9658 arg2 = coerce_ref (arg2);
18af8284
JB
9659 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9660 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9661
76a01679
JB
9662 if (TYPE_CODE (type1) != TYPE_CODE_INT
9663 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9664 return value_binop (arg1, arg2, op);
9665
76a01679 9666 switch (op)
4c4b4cd2
PH
9667 {
9668 case BINOP_MOD:
9669 case BINOP_DIV:
9670 case BINOP_REM:
9671 break;
9672 default:
9673 return value_binop (arg1, arg2, op);
9674 }
9675
9676 v2 = value_as_long (arg2);
9677 if (v2 == 0)
323e0a4a 9678 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9679
9680 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9681 return value_binop (arg1, arg2, op);
9682
9683 v1 = value_as_long (arg1);
9684 switch (op)
9685 {
9686 case BINOP_DIV:
9687 v = v1 / v2;
76a01679
JB
9688 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9689 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9690 break;
9691 case BINOP_REM:
9692 v = v1 % v2;
76a01679
JB
9693 if (v * v1 < 0)
9694 v -= v2;
4c4b4cd2
PH
9695 break;
9696 default:
9697 /* Should not reach this point. */
9698 v = 0;
9699 }
9700
9701 val = allocate_value (type1);
990a07ab 9702 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9703 TYPE_LENGTH (value_type (val)),
9704 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9705 return val;
9706}
9707
9708static int
9709ada_value_equal (struct value *arg1, struct value *arg2)
9710{
df407dfe
AC
9711 if (ada_is_direct_array_type (value_type (arg1))
9712 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9713 {
79e8fcaa
JB
9714 struct type *arg1_type, *arg2_type;
9715
f58b38bf
JB
9716 /* Automatically dereference any array reference before
9717 we attempt to perform the comparison. */
9718 arg1 = ada_coerce_ref (arg1);
9719 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9720
4c4b4cd2
PH
9721 arg1 = ada_coerce_to_simple_array (arg1);
9722 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9723
9724 arg1_type = ada_check_typedef (value_type (arg1));
9725 arg2_type = ada_check_typedef (value_type (arg2));
9726
9727 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9728 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9729 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9730 /* FIXME: The following works only for types whose
76a01679
JB
9731 representations use all bits (no padding or undefined bits)
9732 and do not have user-defined equality. */
79e8fcaa
JB
9733 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9734 && memcmp (value_contents (arg1), value_contents (arg2),
9735 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9736 }
9737 return value_equal (arg1, arg2);
9738}
9739
52ce6436
PH
9740/* Total number of component associations in the aggregate starting at
9741 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9742 OP_AGGREGATE. */
52ce6436
PH
9743
9744static int
9745num_component_specs (struct expression *exp, int pc)
9746{
9747 int n, m, i;
5b4ee69b 9748
52ce6436
PH
9749 m = exp->elts[pc + 1].longconst;
9750 pc += 3;
9751 n = 0;
9752 for (i = 0; i < m; i += 1)
9753 {
9754 switch (exp->elts[pc].opcode)
9755 {
9756 default:
9757 n += 1;
9758 break;
9759 case OP_CHOICES:
9760 n += exp->elts[pc + 1].longconst;
9761 break;
9762 }
9763 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9764 }
9765 return n;
9766}
9767
9768/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9769 component of LHS (a simple array or a record), updating *POS past
9770 the expression, assuming that LHS is contained in CONTAINER. Does
9771 not modify the inferior's memory, nor does it modify LHS (unless
9772 LHS == CONTAINER). */
9773
9774static void
9775assign_component (struct value *container, struct value *lhs, LONGEST index,
9776 struct expression *exp, int *pos)
9777{
9778 struct value *mark = value_mark ();
9779 struct value *elt;
0e2da9f0 9780 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9781
0e2da9f0 9782 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9783 {
22601c15
UW
9784 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9785 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9786
52ce6436
PH
9787 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9788 }
9789 else
9790 {
9791 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9792 elt = ada_to_fixed_value (elt);
52ce6436
PH
9793 }
9794
9795 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9796 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9797 else
9798 value_assign_to_component (container, elt,
9799 ada_evaluate_subexp (NULL, exp, pos,
9800 EVAL_NORMAL));
9801
9802 value_free_to_mark (mark);
9803}
9804
9805/* Assuming that LHS represents an lvalue having a record or array
9806 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9807 of that aggregate's value to LHS, advancing *POS past the
9808 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9809 lvalue containing LHS (possibly LHS itself). Does not modify
9810 the inferior's memory, nor does it modify the contents of
0963b4bd 9811 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9812
9813static struct value *
9814assign_aggregate (struct value *container,
9815 struct value *lhs, struct expression *exp,
9816 int *pos, enum noside noside)
9817{
9818 struct type *lhs_type;
9819 int n = exp->elts[*pos+1].longconst;
9820 LONGEST low_index, high_index;
9821 int num_specs;
9822 LONGEST *indices;
9823 int max_indices, num_indices;
52ce6436 9824 int i;
52ce6436
PH
9825
9826 *pos += 3;
9827 if (noside != EVAL_NORMAL)
9828 {
52ce6436
PH
9829 for (i = 0; i < n; i += 1)
9830 ada_evaluate_subexp (NULL, exp, pos, noside);
9831 return container;
9832 }
9833
9834 container = ada_coerce_ref (container);
9835 if (ada_is_direct_array_type (value_type (container)))
9836 container = ada_coerce_to_simple_array (container);
9837 lhs = ada_coerce_ref (lhs);
9838 if (!deprecated_value_modifiable (lhs))
9839 error (_("Left operand of assignment is not a modifiable lvalue."));
9840
0e2da9f0 9841 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9842 if (ada_is_direct_array_type (lhs_type))
9843 {
9844 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9845 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9846 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9847 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9848 }
9849 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9850 {
9851 low_index = 0;
9852 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9853 }
9854 else
9855 error (_("Left-hand side must be array or record."));
9856
9857 num_specs = num_component_specs (exp, *pos - 3);
9858 max_indices = 4 * num_specs + 4;
8d749320 9859 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9860 indices[0] = indices[1] = low_index - 1;
9861 indices[2] = indices[3] = high_index + 1;
9862 num_indices = 4;
9863
9864 for (i = 0; i < n; i += 1)
9865 {
9866 switch (exp->elts[*pos].opcode)
9867 {
1fbf5ada
JB
9868 case OP_CHOICES:
9869 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9870 &num_indices, max_indices,
9871 low_index, high_index);
9872 break;
9873 case OP_POSITIONAL:
9874 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9875 &num_indices, max_indices,
9876 low_index, high_index);
1fbf5ada
JB
9877 break;
9878 case OP_OTHERS:
9879 if (i != n-1)
9880 error (_("Misplaced 'others' clause"));
9881 aggregate_assign_others (container, lhs, exp, pos, indices,
9882 num_indices, low_index, high_index);
9883 break;
9884 default:
9885 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9886 }
9887 }
9888
9889 return container;
9890}
9891
9892/* Assign into the component of LHS indexed by the OP_POSITIONAL
9893 construct at *POS, updating *POS past the construct, given that
9894 the positions are relative to lower bound LOW, where HIGH is the
9895 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9896 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9897 assign_aggregate. */
52ce6436
PH
9898static void
9899aggregate_assign_positional (struct value *container,
9900 struct value *lhs, struct expression *exp,
9901 int *pos, LONGEST *indices, int *num_indices,
9902 int max_indices, LONGEST low, LONGEST high)
9903{
9904 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9905
9906 if (ind - 1 == high)
e1d5a0d2 9907 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9908 if (ind <= high)
9909 {
9910 add_component_interval (ind, ind, indices, num_indices, max_indices);
9911 *pos += 3;
9912 assign_component (container, lhs, ind, exp, pos);
9913 }
9914 else
9915 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9916}
9917
9918/* Assign into the components of LHS indexed by the OP_CHOICES
9919 construct at *POS, updating *POS past the construct, given that
9920 the allowable indices are LOW..HIGH. Record the indices assigned
9921 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9922 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9923static void
9924aggregate_assign_from_choices (struct value *container,
9925 struct value *lhs, struct expression *exp,
9926 int *pos, LONGEST *indices, int *num_indices,
9927 int max_indices, LONGEST low, LONGEST high)
9928{
9929 int j;
9930 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9931 int choice_pos, expr_pc;
9932 int is_array = ada_is_direct_array_type (value_type (lhs));
9933
9934 choice_pos = *pos += 3;
9935
9936 for (j = 0; j < n_choices; j += 1)
9937 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9938 expr_pc = *pos;
9939 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9940
9941 for (j = 0; j < n_choices; j += 1)
9942 {
9943 LONGEST lower, upper;
9944 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9945
52ce6436
PH
9946 if (op == OP_DISCRETE_RANGE)
9947 {
9948 choice_pos += 1;
9949 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9950 EVAL_NORMAL));
9951 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9952 EVAL_NORMAL));
9953 }
9954 else if (is_array)
9955 {
9956 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9957 EVAL_NORMAL));
9958 upper = lower;
9959 }
9960 else
9961 {
9962 int ind;
0d5cff50 9963 const char *name;
5b4ee69b 9964
52ce6436
PH
9965 switch (op)
9966 {
9967 case OP_NAME:
9968 name = &exp->elts[choice_pos + 2].string;
9969 break;
9970 case OP_VAR_VALUE:
9971 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9972 break;
9973 default:
9974 error (_("Invalid record component association."));
9975 }
9976 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9977 ind = 0;
9978 if (! find_struct_field (name, value_type (lhs), 0,
9979 NULL, NULL, NULL, NULL, &ind))
9980 error (_("Unknown component name: %s."), name);
9981 lower = upper = ind;
9982 }
9983
9984 if (lower <= upper && (lower < low || upper > high))
9985 error (_("Index in component association out of bounds."));
9986
9987 add_component_interval (lower, upper, indices, num_indices,
9988 max_indices);
9989 while (lower <= upper)
9990 {
9991 int pos1;
5b4ee69b 9992
52ce6436
PH
9993 pos1 = expr_pc;
9994 assign_component (container, lhs, lower, exp, &pos1);
9995 lower += 1;
9996 }
9997 }
9998}
9999
10000/* Assign the value of the expression in the OP_OTHERS construct in
10001 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10002 have not been previously assigned. The index intervals already assigned
10003 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10004 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10005static void
10006aggregate_assign_others (struct value *container,
10007 struct value *lhs, struct expression *exp,
10008 int *pos, LONGEST *indices, int num_indices,
10009 LONGEST low, LONGEST high)
10010{
10011 int i;
5ce64950 10012 int expr_pc = *pos + 1;
52ce6436
PH
10013
10014 for (i = 0; i < num_indices - 2; i += 2)
10015 {
10016 LONGEST ind;
5b4ee69b 10017
52ce6436
PH
10018 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10019 {
5ce64950 10020 int localpos;
5b4ee69b 10021
5ce64950
MS
10022 localpos = expr_pc;
10023 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10024 }
10025 }
10026 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10027}
10028
10029/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10030 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10031 modifying *SIZE as needed. It is an error if *SIZE exceeds
10032 MAX_SIZE. The resulting intervals do not overlap. */
10033static void
10034add_component_interval (LONGEST low, LONGEST high,
10035 LONGEST* indices, int *size, int max_size)
10036{
10037 int i, j;
5b4ee69b 10038
52ce6436
PH
10039 for (i = 0; i < *size; i += 2) {
10040 if (high >= indices[i] && low <= indices[i + 1])
10041 {
10042 int kh;
5b4ee69b 10043
52ce6436
PH
10044 for (kh = i + 2; kh < *size; kh += 2)
10045 if (high < indices[kh])
10046 break;
10047 if (low < indices[i])
10048 indices[i] = low;
10049 indices[i + 1] = indices[kh - 1];
10050 if (high > indices[i + 1])
10051 indices[i + 1] = high;
10052 memcpy (indices + i + 2, indices + kh, *size - kh);
10053 *size -= kh - i - 2;
10054 return;
10055 }
10056 else if (high < indices[i])
10057 break;
10058 }
10059
10060 if (*size == max_size)
10061 error (_("Internal error: miscounted aggregate components."));
10062 *size += 2;
10063 for (j = *size-1; j >= i+2; j -= 1)
10064 indices[j] = indices[j - 2];
10065 indices[i] = low;
10066 indices[i + 1] = high;
10067}
10068
6e48bd2c
JB
10069/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10070 is different. */
10071
10072static struct value *
b7e22850 10073ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10074{
10075 if (type == ada_check_typedef (value_type (arg2)))
10076 return arg2;
10077
10078 if (ada_is_fixed_point_type (type))
95f39a5b 10079 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10080
10081 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10082 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10083
10084 return value_cast (type, arg2);
10085}
10086
284614f0
JB
10087/* Evaluating Ada expressions, and printing their result.
10088 ------------------------------------------------------
10089
21649b50
JB
10090 1. Introduction:
10091 ----------------
10092
284614f0
JB
10093 We usually evaluate an Ada expression in order to print its value.
10094 We also evaluate an expression in order to print its type, which
10095 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10096 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10097 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10098 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10099 similar.
10100
10101 Evaluating expressions is a little more complicated for Ada entities
10102 than it is for entities in languages such as C. The main reason for
10103 this is that Ada provides types whose definition might be dynamic.
10104 One example of such types is variant records. Or another example
10105 would be an array whose bounds can only be known at run time.
10106
10107 The following description is a general guide as to what should be
10108 done (and what should NOT be done) in order to evaluate an expression
10109 involving such types, and when. This does not cover how the semantic
10110 information is encoded by GNAT as this is covered separatly. For the
10111 document used as the reference for the GNAT encoding, see exp_dbug.ads
10112 in the GNAT sources.
10113
10114 Ideally, we should embed each part of this description next to its
10115 associated code. Unfortunately, the amount of code is so vast right
10116 now that it's hard to see whether the code handling a particular
10117 situation might be duplicated or not. One day, when the code is
10118 cleaned up, this guide might become redundant with the comments
10119 inserted in the code, and we might want to remove it.
10120
21649b50
JB
10121 2. ``Fixing'' an Entity, the Simple Case:
10122 -----------------------------------------
10123
284614f0
JB
10124 When evaluating Ada expressions, the tricky issue is that they may
10125 reference entities whose type contents and size are not statically
10126 known. Consider for instance a variant record:
10127
10128 type Rec (Empty : Boolean := True) is record
10129 case Empty is
10130 when True => null;
10131 when False => Value : Integer;
10132 end case;
10133 end record;
10134 Yes : Rec := (Empty => False, Value => 1);
10135 No : Rec := (empty => True);
10136
10137 The size and contents of that record depends on the value of the
10138 descriminant (Rec.Empty). At this point, neither the debugging
10139 information nor the associated type structure in GDB are able to
10140 express such dynamic types. So what the debugger does is to create
10141 "fixed" versions of the type that applies to the specific object.
10142 We also informally refer to this opperation as "fixing" an object,
10143 which means creating its associated fixed type.
10144
10145 Example: when printing the value of variable "Yes" above, its fixed
10146 type would look like this:
10147
10148 type Rec is record
10149 Empty : Boolean;
10150 Value : Integer;
10151 end record;
10152
10153 On the other hand, if we printed the value of "No", its fixed type
10154 would become:
10155
10156 type Rec is record
10157 Empty : Boolean;
10158 end record;
10159
10160 Things become a little more complicated when trying to fix an entity
10161 with a dynamic type that directly contains another dynamic type,
10162 such as an array of variant records, for instance. There are
10163 two possible cases: Arrays, and records.
10164
21649b50
JB
10165 3. ``Fixing'' Arrays:
10166 ---------------------
10167
10168 The type structure in GDB describes an array in terms of its bounds,
10169 and the type of its elements. By design, all elements in the array
10170 have the same type and we cannot represent an array of variant elements
10171 using the current type structure in GDB. When fixing an array,
10172 we cannot fix the array element, as we would potentially need one
10173 fixed type per element of the array. As a result, the best we can do
10174 when fixing an array is to produce an array whose bounds and size
10175 are correct (allowing us to read it from memory), but without having
10176 touched its element type. Fixing each element will be done later,
10177 when (if) necessary.
10178
10179 Arrays are a little simpler to handle than records, because the same
10180 amount of memory is allocated for each element of the array, even if
1b536f04 10181 the amount of space actually used by each element differs from element
21649b50 10182 to element. Consider for instance the following array of type Rec:
284614f0
JB
10183
10184 type Rec_Array is array (1 .. 2) of Rec;
10185
1b536f04
JB
10186 The actual amount of memory occupied by each element might be different
10187 from element to element, depending on the value of their discriminant.
21649b50 10188 But the amount of space reserved for each element in the array remains
1b536f04 10189 fixed regardless. So we simply need to compute that size using
21649b50
JB
10190 the debugging information available, from which we can then determine
10191 the array size (we multiply the number of elements of the array by
10192 the size of each element).
10193
10194 The simplest case is when we have an array of a constrained element
10195 type. For instance, consider the following type declarations:
10196
10197 type Bounded_String (Max_Size : Integer) is
10198 Length : Integer;
10199 Buffer : String (1 .. Max_Size);
10200 end record;
10201 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10202
10203 In this case, the compiler describes the array as an array of
10204 variable-size elements (identified by its XVS suffix) for which
10205 the size can be read in the parallel XVZ variable.
10206
10207 In the case of an array of an unconstrained element type, the compiler
10208 wraps the array element inside a private PAD type. This type should not
10209 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10210 that we also use the adjective "aligner" in our code to designate
10211 these wrapper types.
10212
1b536f04 10213 In some cases, the size allocated for each element is statically
21649b50
JB
10214 known. In that case, the PAD type already has the correct size,
10215 and the array element should remain unfixed.
10216
10217 But there are cases when this size is not statically known.
10218 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10219
10220 type Dynamic is array (1 .. Five) of Integer;
10221 type Wrapper (Has_Length : Boolean := False) is record
10222 Data : Dynamic;
10223 case Has_Length is
10224 when True => Length : Integer;
10225 when False => null;
10226 end case;
10227 end record;
10228 type Wrapper_Array is array (1 .. 2) of Wrapper;
10229
10230 Hello : Wrapper_Array := (others => (Has_Length => True,
10231 Data => (others => 17),
10232 Length => 1));
10233
10234
10235 The debugging info would describe variable Hello as being an
10236 array of a PAD type. The size of that PAD type is not statically
10237 known, but can be determined using a parallel XVZ variable.
10238 In that case, a copy of the PAD type with the correct size should
10239 be used for the fixed array.
10240
21649b50
JB
10241 3. ``Fixing'' record type objects:
10242 ----------------------------------
10243
10244 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10245 record types. In this case, in order to compute the associated
10246 fixed type, we need to determine the size and offset of each of
10247 its components. This, in turn, requires us to compute the fixed
10248 type of each of these components.
10249
10250 Consider for instance the example:
10251
10252 type Bounded_String (Max_Size : Natural) is record
10253 Str : String (1 .. Max_Size);
10254 Length : Natural;
10255 end record;
10256 My_String : Bounded_String (Max_Size => 10);
10257
10258 In that case, the position of field "Length" depends on the size
10259 of field Str, which itself depends on the value of the Max_Size
21649b50 10260 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10261 we need to fix the type of field Str. Therefore, fixing a variant
10262 record requires us to fix each of its components.
10263
10264 However, if a component does not have a dynamic size, the component
10265 should not be fixed. In particular, fields that use a PAD type
10266 should not fixed. Here is an example where this might happen
10267 (assuming type Rec above):
10268
10269 type Container (Big : Boolean) is record
10270 First : Rec;
10271 After : Integer;
10272 case Big is
10273 when True => Another : Integer;
10274 when False => null;
10275 end case;
10276 end record;
10277 My_Container : Container := (Big => False,
10278 First => (Empty => True),
10279 After => 42);
10280
10281 In that example, the compiler creates a PAD type for component First,
10282 whose size is constant, and then positions the component After just
10283 right after it. The offset of component After is therefore constant
10284 in this case.
10285
10286 The debugger computes the position of each field based on an algorithm
10287 that uses, among other things, the actual position and size of the field
21649b50
JB
10288 preceding it. Let's now imagine that the user is trying to print
10289 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10290 end up computing the offset of field After based on the size of the
10291 fixed version of field First. And since in our example First has
10292 only one actual field, the size of the fixed type is actually smaller
10293 than the amount of space allocated to that field, and thus we would
10294 compute the wrong offset of field After.
10295
21649b50
JB
10296 To make things more complicated, we need to watch out for dynamic
10297 components of variant records (identified by the ___XVL suffix in
10298 the component name). Even if the target type is a PAD type, the size
10299 of that type might not be statically known. So the PAD type needs
10300 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10301 we might end up with the wrong size for our component. This can be
10302 observed with the following type declarations:
284614f0
JB
10303
10304 type Octal is new Integer range 0 .. 7;
10305 type Octal_Array is array (Positive range <>) of Octal;
10306 pragma Pack (Octal_Array);
10307
10308 type Octal_Buffer (Size : Positive) is record
10309 Buffer : Octal_Array (1 .. Size);
10310 Length : Integer;
10311 end record;
10312
10313 In that case, Buffer is a PAD type whose size is unset and needs
10314 to be computed by fixing the unwrapped type.
10315
21649b50
JB
10316 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10317 ----------------------------------------------------------
10318
10319 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10320 thus far, be actually fixed?
10321
10322 The answer is: Only when referencing that element. For instance
10323 when selecting one component of a record, this specific component
10324 should be fixed at that point in time. Or when printing the value
10325 of a record, each component should be fixed before its value gets
10326 printed. Similarly for arrays, the element of the array should be
10327 fixed when printing each element of the array, or when extracting
10328 one element out of that array. On the other hand, fixing should
10329 not be performed on the elements when taking a slice of an array!
10330
31432a67 10331 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10332 size of each field is that we end up also miscomputing the size
10333 of the containing type. This can have adverse results when computing
10334 the value of an entity. GDB fetches the value of an entity based
10335 on the size of its type, and thus a wrong size causes GDB to fetch
10336 the wrong amount of memory. In the case where the computed size is
10337 too small, GDB fetches too little data to print the value of our
31432a67 10338 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10339 past the buffer containing the data =:-o. */
10340
ced9779b
JB
10341/* Evaluate a subexpression of EXP, at index *POS, and return a value
10342 for that subexpression cast to TO_TYPE. Advance *POS over the
10343 subexpression. */
10344
10345static value *
10346ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10347 enum noside noside, struct type *to_type)
10348{
10349 int pc = *pos;
10350
10351 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10352 || exp->elts[pc].opcode == OP_VAR_VALUE)
10353 {
10354 (*pos) += 4;
10355
10356 value *val;
10357 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10358 {
10359 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10360 return value_zero (to_type, not_lval);
10361
10362 val = evaluate_var_msym_value (noside,
10363 exp->elts[pc + 1].objfile,
10364 exp->elts[pc + 2].msymbol);
10365 }
10366 else
10367 val = evaluate_var_value (noside,
10368 exp->elts[pc + 1].block,
10369 exp->elts[pc + 2].symbol);
10370
10371 if (noside == EVAL_SKIP)
10372 return eval_skip_value (exp);
10373
10374 val = ada_value_cast (to_type, val);
10375
10376 /* Follow the Ada language semantics that do not allow taking
10377 an address of the result of a cast (view conversion in Ada). */
10378 if (VALUE_LVAL (val) == lval_memory)
10379 {
10380 if (value_lazy (val))
10381 value_fetch_lazy (val);
10382 VALUE_LVAL (val) = not_lval;
10383 }
10384 return val;
10385 }
10386
10387 value *val = evaluate_subexp (to_type, exp, pos, noside);
10388 if (noside == EVAL_SKIP)
10389 return eval_skip_value (exp);
10390 return ada_value_cast (to_type, val);
10391}
10392
284614f0
JB
10393/* Implement the evaluate_exp routine in the exp_descriptor structure
10394 for the Ada language. */
10395
52ce6436 10396static struct value *
ebf56fd3 10397ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10398 int *pos, enum noside noside)
14f9c5c9
AS
10399{
10400 enum exp_opcode op;
b5385fc0 10401 int tem;
14f9c5c9 10402 int pc;
5ec18f2b 10403 int preeval_pos;
14f9c5c9
AS
10404 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10405 struct type *type;
52ce6436 10406 int nargs, oplen;
d2e4a39e 10407 struct value **argvec;
14f9c5c9 10408
d2e4a39e
AS
10409 pc = *pos;
10410 *pos += 1;
14f9c5c9
AS
10411 op = exp->elts[pc].opcode;
10412
d2e4a39e 10413 switch (op)
14f9c5c9
AS
10414 {
10415 default:
10416 *pos -= 1;
6e48bd2c 10417 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10418
10419 if (noside == EVAL_NORMAL)
10420 arg1 = unwrap_value (arg1);
6e48bd2c 10421
edd079d9 10422 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10423 then we need to perform the conversion manually, because
10424 evaluate_subexp_standard doesn't do it. This conversion is
10425 necessary in Ada because the different kinds of float/fixed
10426 types in Ada have different representations.
10427
10428 Similarly, we need to perform the conversion from OP_LONG
10429 ourselves. */
edd079d9 10430 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10431 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10432
10433 return arg1;
4c4b4cd2
PH
10434
10435 case OP_STRING:
10436 {
76a01679 10437 struct value *result;
5b4ee69b 10438
76a01679
JB
10439 *pos -= 1;
10440 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10441 /* The result type will have code OP_STRING, bashed there from
10442 OP_ARRAY. Bash it back. */
df407dfe
AC
10443 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10444 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10445 return result;
4c4b4cd2 10446 }
14f9c5c9
AS
10447
10448 case UNOP_CAST:
10449 (*pos) += 2;
10450 type = exp->elts[pc + 1].type;
ced9779b 10451 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10452
4c4b4cd2
PH
10453 case UNOP_QUAL:
10454 (*pos) += 2;
10455 type = exp->elts[pc + 1].type;
10456 return ada_evaluate_subexp (type, exp, pos, noside);
10457
14f9c5c9
AS
10458 case BINOP_ASSIGN:
10459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10460 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10461 {
10462 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10463 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10464 return arg1;
10465 return ada_value_assign (arg1, arg1);
10466 }
003f3813
JB
10467 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10468 except if the lhs of our assignment is a convenience variable.
10469 In the case of assigning to a convenience variable, the lhs
10470 should be exactly the result of the evaluation of the rhs. */
10471 type = value_type (arg1);
10472 if (VALUE_LVAL (arg1) == lval_internalvar)
10473 type = NULL;
10474 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10475 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10476 return arg1;
f411722c
TT
10477 if (VALUE_LVAL (arg1) == lval_internalvar)
10478 {
10479 /* Nothing. */
10480 }
10481 else if (ada_is_fixed_point_type (value_type (arg1)))
df407dfe
AC
10482 arg2 = cast_to_fixed (value_type (arg1), arg2);
10483 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10484 error
323e0a4a 10485 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10486 else
df407dfe 10487 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10488 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10489
10490 case BINOP_ADD:
10491 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10492 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10493 if (noside == EVAL_SKIP)
4c4b4cd2 10494 goto nosideret;
2ac8a782
JB
10495 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10496 return (value_from_longest
10497 (value_type (arg1),
10498 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10499 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10500 return (value_from_longest
10501 (value_type (arg2),
10502 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10503 if ((ada_is_fixed_point_type (value_type (arg1))
10504 || ada_is_fixed_point_type (value_type (arg2)))
10505 && value_type (arg1) != value_type (arg2))
323e0a4a 10506 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10507 /* Do the addition, and cast the result to the type of the first
10508 argument. We cannot cast the result to a reference type, so if
10509 ARG1 is a reference type, find its underlying type. */
10510 type = value_type (arg1);
10511 while (TYPE_CODE (type) == TYPE_CODE_REF)
10512 type = TYPE_TARGET_TYPE (type);
f44316fa 10513 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10514 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10515
10516 case BINOP_SUB:
10517 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10518 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10519 if (noside == EVAL_SKIP)
4c4b4cd2 10520 goto nosideret;
2ac8a782
JB
10521 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10522 return (value_from_longest
10523 (value_type (arg1),
10524 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10525 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10526 return (value_from_longest
10527 (value_type (arg2),
10528 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10529 if ((ada_is_fixed_point_type (value_type (arg1))
10530 || ada_is_fixed_point_type (value_type (arg2)))
10531 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10532 error (_("Operands of fixed-point subtraction "
10533 "must have the same type"));
b7789565
JB
10534 /* Do the substraction, and cast the result to the type of the first
10535 argument. We cannot cast the result to a reference type, so if
10536 ARG1 is a reference type, find its underlying type. */
10537 type = value_type (arg1);
10538 while (TYPE_CODE (type) == TYPE_CODE_REF)
10539 type = TYPE_TARGET_TYPE (type);
f44316fa 10540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10541 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10542
10543 case BINOP_MUL:
10544 case BINOP_DIV:
e1578042
JB
10545 case BINOP_REM:
10546 case BINOP_MOD:
14f9c5c9
AS
10547 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10548 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10549 if (noside == EVAL_SKIP)
4c4b4cd2 10550 goto nosideret;
e1578042 10551 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10552 {
10553 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10554 return value_zero (value_type (arg1), not_lval);
10555 }
14f9c5c9 10556 else
4c4b4cd2 10557 {
a53b7a21 10558 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10559 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10560 arg1 = cast_from_fixed (type, arg1);
df407dfe 10561 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10562 arg2 = cast_from_fixed (type, arg2);
f44316fa 10563 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10564 return ada_value_binop (arg1, arg2, op);
10565 }
10566
4c4b4cd2
PH
10567 case BINOP_EQUAL:
10568 case BINOP_NOTEQUAL:
14f9c5c9 10569 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10570 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10571 if (noside == EVAL_SKIP)
76a01679 10572 goto nosideret;
4c4b4cd2 10573 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10574 tem = 0;
4c4b4cd2 10575 else
f44316fa
UW
10576 {
10577 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10578 tem = ada_value_equal (arg1, arg2);
10579 }
4c4b4cd2 10580 if (op == BINOP_NOTEQUAL)
76a01679 10581 tem = !tem;
fbb06eb1
UW
10582 type = language_bool_type (exp->language_defn, exp->gdbarch);
10583 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10584
10585 case UNOP_NEG:
10586 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10587 if (noside == EVAL_SKIP)
10588 goto nosideret;
df407dfe
AC
10589 else if (ada_is_fixed_point_type (value_type (arg1)))
10590 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10591 else
f44316fa
UW
10592 {
10593 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10594 return value_neg (arg1);
10595 }
4c4b4cd2 10596
2330c6c6
JB
10597 case BINOP_LOGICAL_AND:
10598 case BINOP_LOGICAL_OR:
10599 case UNOP_LOGICAL_NOT:
000d5124
JB
10600 {
10601 struct value *val;
10602
10603 *pos -= 1;
10604 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10605 type = language_bool_type (exp->language_defn, exp->gdbarch);
10606 return value_cast (type, val);
000d5124 10607 }
2330c6c6
JB
10608
10609 case BINOP_BITWISE_AND:
10610 case BINOP_BITWISE_IOR:
10611 case BINOP_BITWISE_XOR:
000d5124
JB
10612 {
10613 struct value *val;
10614
10615 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10616 *pos = pc;
10617 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10618
10619 return value_cast (value_type (arg1), val);
10620 }
2330c6c6 10621
14f9c5c9
AS
10622 case OP_VAR_VALUE:
10623 *pos -= 1;
6799def4 10624
14f9c5c9 10625 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10626 {
10627 *pos += 4;
10628 goto nosideret;
10629 }
da5c522f
JB
10630
10631 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10632 /* Only encountered when an unresolved symbol occurs in a
10633 context other than a function call, in which case, it is
52ce6436 10634 invalid. */
323e0a4a 10635 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10636 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10637
10638 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10639 {
0c1f74cf 10640 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10641 /* Check to see if this is a tagged type. We also need to handle
10642 the case where the type is a reference to a tagged type, but
10643 we have to be careful to exclude pointers to tagged types.
10644 The latter should be shown as usual (as a pointer), whereas
10645 a reference should mostly be transparent to the user. */
10646 if (ada_is_tagged_type (type, 0)
023db19c 10647 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10648 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10649 {
10650 /* Tagged types are a little special in the fact that the real
10651 type is dynamic and can only be determined by inspecting the
10652 object's tag. This means that we need to get the object's
10653 value first (EVAL_NORMAL) and then extract the actual object
10654 type from its tag.
10655
10656 Note that we cannot skip the final step where we extract
10657 the object type from its tag, because the EVAL_NORMAL phase
10658 results in dynamic components being resolved into fixed ones.
10659 This can cause problems when trying to print the type
10660 description of tagged types whose parent has a dynamic size:
10661 We use the type name of the "_parent" component in order
10662 to print the name of the ancestor type in the type description.
10663 If that component had a dynamic size, the resolution into
10664 a fixed type would result in the loss of that type name,
10665 thus preventing us from printing the name of the ancestor
10666 type in the type description. */
10667 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10668
10669 if (TYPE_CODE (type) != TYPE_CODE_REF)
10670 {
10671 struct type *actual_type;
10672
10673 actual_type = type_from_tag (ada_value_tag (arg1));
10674 if (actual_type == NULL)
10675 /* If, for some reason, we were unable to determine
10676 the actual type from the tag, then use the static
10677 approximation that we just computed as a fallback.
10678 This can happen if the debugging information is
10679 incomplete, for instance. */
10680 actual_type = type;
10681 return value_zero (actual_type, not_lval);
10682 }
10683 else
10684 {
10685 /* In the case of a ref, ada_coerce_ref takes care
10686 of determining the actual type. But the evaluation
10687 should return a ref as it should be valid to ask
10688 for its address; so rebuild a ref after coerce. */
10689 arg1 = ada_coerce_ref (arg1);
a65cfae5 10690 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10691 }
10692 }
0c1f74cf 10693
84754697
JB
10694 /* Records and unions for which GNAT encodings have been
10695 generated need to be statically fixed as well.
10696 Otherwise, non-static fixing produces a type where
10697 all dynamic properties are removed, which prevents "ptype"
10698 from being able to completely describe the type.
10699 For instance, a case statement in a variant record would be
10700 replaced by the relevant components based on the actual
10701 value of the discriminants. */
10702 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10703 && dynamic_template_type (type) != NULL)
10704 || (TYPE_CODE (type) == TYPE_CODE_UNION
10705 && ada_find_parallel_type (type, "___XVU") != NULL))
10706 {
10707 *pos += 4;
10708 return value_zero (to_static_fixed_type (type), not_lval);
10709 }
4c4b4cd2 10710 }
da5c522f
JB
10711
10712 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10713 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10714
10715 case OP_FUNCALL:
10716 (*pos) += 2;
10717
10718 /* Allocate arg vector, including space for the function to be
10719 called in argvec[0] and a terminating NULL. */
10720 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10721 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10722
10723 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10724 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10725 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10726 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10727 else
10728 {
10729 for (tem = 0; tem <= nargs; tem += 1)
10730 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10731 argvec[tem] = 0;
10732
10733 if (noside == EVAL_SKIP)
10734 goto nosideret;
10735 }
10736
ad82864c
JB
10737 if (ada_is_constrained_packed_array_type
10738 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10739 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10740 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10741 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10742 /* This is a packed array that has already been fixed, and
10743 therefore already coerced to a simple array. Nothing further
10744 to do. */
10745 ;
e6c2c623
PMR
10746 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10747 {
10748 /* Make sure we dereference references so that all the code below
10749 feels like it's really handling the referenced value. Wrapping
10750 types (for alignment) may be there, so make sure we strip them as
10751 well. */
10752 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10753 }
10754 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10755 && VALUE_LVAL (argvec[0]) == lval_memory)
10756 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10757
df407dfe 10758 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10759
10760 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10761 them. So, if this is an array typedef (encoding use for array
10762 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10763 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10764 type = ada_typedef_target_type (type);
10765
4c4b4cd2
PH
10766 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10767 {
61ee279c 10768 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10769 {
10770 case TYPE_CODE_FUNC:
61ee279c 10771 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10772 break;
10773 case TYPE_CODE_ARRAY:
10774 break;
10775 case TYPE_CODE_STRUCT:
10776 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10777 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10778 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10779 break;
10780 default:
323e0a4a 10781 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10782 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10783 break;
10784 }
10785 }
10786
10787 switch (TYPE_CODE (type))
10788 {
10789 case TYPE_CODE_FUNC:
10790 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10791 {
7022349d
PA
10792 if (TYPE_TARGET_TYPE (type) == NULL)
10793 error_call_unknown_return_type (NULL);
10794 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10795 }
e71585ff
PA
10796 return call_function_by_hand (argvec[0], NULL,
10797 gdb::make_array_view (argvec + 1,
10798 nargs));
c8ea1972
PH
10799 case TYPE_CODE_INTERNAL_FUNCTION:
10800 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10801 /* We don't know anything about what the internal
10802 function might return, but we have to return
10803 something. */
10804 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10805 not_lval);
10806 else
10807 return call_internal_function (exp->gdbarch, exp->language_defn,
10808 argvec[0], nargs, argvec + 1);
10809
4c4b4cd2
PH
10810 case TYPE_CODE_STRUCT:
10811 {
10812 int arity;
10813
4c4b4cd2
PH
10814 arity = ada_array_arity (type);
10815 type = ada_array_element_type (type, nargs);
10816 if (type == NULL)
323e0a4a 10817 error (_("cannot subscript or call a record"));
4c4b4cd2 10818 if (arity != nargs)
323e0a4a 10819 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10820 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10821 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10822 return
10823 unwrap_value (ada_value_subscript
10824 (argvec[0], nargs, argvec + 1));
10825 }
10826 case TYPE_CODE_ARRAY:
10827 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10828 {
10829 type = ada_array_element_type (type, nargs);
10830 if (type == NULL)
323e0a4a 10831 error (_("element type of array unknown"));
4c4b4cd2 10832 else
0a07e705 10833 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10834 }
10835 return
10836 unwrap_value (ada_value_subscript
10837 (ada_coerce_to_simple_array (argvec[0]),
10838 nargs, argvec + 1));
10839 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10840 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10841 {
deede10c 10842 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10843 type = ada_array_element_type (type, nargs);
10844 if (type == NULL)
323e0a4a 10845 error (_("element type of array unknown"));
4c4b4cd2 10846 else
0a07e705 10847 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10848 }
10849 return
deede10c
JB
10850 unwrap_value (ada_value_ptr_subscript (argvec[0],
10851 nargs, argvec + 1));
4c4b4cd2
PH
10852
10853 default:
e1d5a0d2
PH
10854 error (_("Attempt to index or call something other than an "
10855 "array or function"));
4c4b4cd2
PH
10856 }
10857
10858 case TERNOP_SLICE:
10859 {
10860 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10861 struct value *low_bound_val =
10862 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10863 struct value *high_bound_val =
10864 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10865 LONGEST low_bound;
10866 LONGEST high_bound;
5b4ee69b 10867
994b9211
AC
10868 low_bound_val = coerce_ref (low_bound_val);
10869 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10870 low_bound = value_as_long (low_bound_val);
10871 high_bound = value_as_long (high_bound_val);
963a6417 10872
4c4b4cd2
PH
10873 if (noside == EVAL_SKIP)
10874 goto nosideret;
10875
4c4b4cd2
PH
10876 /* If this is a reference to an aligner type, then remove all
10877 the aligners. */
df407dfe
AC
10878 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10879 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10880 TYPE_TARGET_TYPE (value_type (array)) =
10881 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10882
ad82864c 10883 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10884 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10885
10886 /* If this is a reference to an array or an array lvalue,
10887 convert to a pointer. */
df407dfe
AC
10888 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10889 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10890 && VALUE_LVAL (array) == lval_memory))
10891 array = value_addr (array);
10892
1265e4aa 10893 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10894 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10895 (value_type (array))))
bff8c71f
TT
10896 return empty_array (ada_type_of_array (array, 0), low_bound,
10897 high_bound);
4c4b4cd2
PH
10898
10899 array = ada_coerce_to_simple_array_ptr (array);
10900
714e53ab
PH
10901 /* If we have more than one level of pointer indirection,
10902 dereference the value until we get only one level. */
df407dfe
AC
10903 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10904 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10905 == TYPE_CODE_PTR))
10906 array = value_ind (array);
10907
10908 /* Make sure we really do have an array type before going further,
10909 to avoid a SEGV when trying to get the index type or the target
10910 type later down the road if the debug info generated by
10911 the compiler is incorrect or incomplete. */
df407dfe 10912 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10913 error (_("cannot take slice of non-array"));
714e53ab 10914
828292f2
JB
10915 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10916 == TYPE_CODE_PTR)
4c4b4cd2 10917 {
828292f2
JB
10918 struct type *type0 = ada_check_typedef (value_type (array));
10919
0b5d8877 10920 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10921 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10922 else
10923 {
10924 struct type *arr_type0 =
828292f2 10925 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10926
f5938064
JG
10927 return ada_value_slice_from_ptr (array, arr_type0,
10928 longest_to_int (low_bound),
10929 longest_to_int (high_bound));
4c4b4cd2
PH
10930 }
10931 }
10932 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10933 return array;
10934 else if (high_bound < low_bound)
bff8c71f 10935 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10936 else
529cad9c
PH
10937 return ada_value_slice (array, longest_to_int (low_bound),
10938 longest_to_int (high_bound));
4c4b4cd2 10939 }
14f9c5c9 10940
4c4b4cd2
PH
10941 case UNOP_IN_RANGE:
10942 (*pos) += 2;
10943 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10944 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10945
14f9c5c9 10946 if (noside == EVAL_SKIP)
4c4b4cd2 10947 goto nosideret;
14f9c5c9 10948
4c4b4cd2
PH
10949 switch (TYPE_CODE (type))
10950 {
10951 default:
e1d5a0d2
PH
10952 lim_warning (_("Membership test incompletely implemented; "
10953 "always returns true"));
fbb06eb1
UW
10954 type = language_bool_type (exp->language_defn, exp->gdbarch);
10955 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10956
10957 case TYPE_CODE_RANGE:
030b4912
UW
10958 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10959 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10960 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10961 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10962 type = language_bool_type (exp->language_defn, exp->gdbarch);
10963 return
10964 value_from_longest (type,
4c4b4cd2
PH
10965 (value_less (arg1, arg3)
10966 || value_equal (arg1, arg3))
10967 && (value_less (arg2, arg1)
10968 || value_equal (arg2, arg1)));
10969 }
10970
10971 case BINOP_IN_BOUNDS:
14f9c5c9 10972 (*pos) += 2;
4c4b4cd2
PH
10973 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10974 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10975
4c4b4cd2
PH
10976 if (noside == EVAL_SKIP)
10977 goto nosideret;
14f9c5c9 10978
4c4b4cd2 10979 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10980 {
10981 type = language_bool_type (exp->language_defn, exp->gdbarch);
10982 return value_zero (type, not_lval);
10983 }
14f9c5c9 10984
4c4b4cd2 10985 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10986
1eea4ebd
UW
10987 type = ada_index_type (value_type (arg2), tem, "range");
10988 if (!type)
10989 type = value_type (arg1);
14f9c5c9 10990
1eea4ebd
UW
10991 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10992 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10993
f44316fa
UW
10994 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10995 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10996 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10997 return
fbb06eb1 10998 value_from_longest (type,
4c4b4cd2
PH
10999 (value_less (arg1, arg3)
11000 || value_equal (arg1, arg3))
11001 && (value_less (arg2, arg1)
11002 || value_equal (arg2, arg1)));
11003
11004 case TERNOP_IN_RANGE:
11005 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11006 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11007 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11008
11009 if (noside == EVAL_SKIP)
11010 goto nosideret;
11011
f44316fa
UW
11012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11013 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11014 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11015 return
fbb06eb1 11016 value_from_longest (type,
4c4b4cd2
PH
11017 (value_less (arg1, arg3)
11018 || value_equal (arg1, arg3))
11019 && (value_less (arg2, arg1)
11020 || value_equal (arg2, arg1)));
11021
11022 case OP_ATR_FIRST:
11023 case OP_ATR_LAST:
11024 case OP_ATR_LENGTH:
11025 {
76a01679 11026 struct type *type_arg;
5b4ee69b 11027
76a01679
JB
11028 if (exp->elts[*pos].opcode == OP_TYPE)
11029 {
11030 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11031 arg1 = NULL;
5bc23cb3 11032 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11033 }
11034 else
11035 {
11036 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11037 type_arg = NULL;
11038 }
11039
11040 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11041 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11042 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11043 *pos += 4;
11044
11045 if (noside == EVAL_SKIP)
11046 goto nosideret;
680e1bee
TT
11047 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11048 {
11049 if (type_arg == NULL)
11050 type_arg = value_type (arg1);
76a01679 11051
680e1bee
TT
11052 if (ada_is_constrained_packed_array_type (type_arg))
11053 type_arg = decode_constrained_packed_array_type (type_arg);
11054
11055 if (!discrete_type_p (type_arg))
11056 {
11057 switch (op)
11058 {
11059 default: /* Should never happen. */
11060 error (_("unexpected attribute encountered"));
11061 case OP_ATR_FIRST:
11062 case OP_ATR_LAST:
11063 type_arg = ada_index_type (type_arg, tem,
11064 ada_attribute_name (op));
11065 break;
11066 case OP_ATR_LENGTH:
11067 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11068 break;
11069 }
11070 }
11071
11072 return value_zero (type_arg, not_lval);
11073 }
11074 else if (type_arg == NULL)
76a01679
JB
11075 {
11076 arg1 = ada_coerce_ref (arg1);
11077
ad82864c 11078 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11079 arg1 = ada_coerce_to_simple_array (arg1);
11080
aa4fb036 11081 if (op == OP_ATR_LENGTH)
1eea4ebd 11082 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11083 else
11084 {
11085 type = ada_index_type (value_type (arg1), tem,
11086 ada_attribute_name (op));
11087 if (type == NULL)
11088 type = builtin_type (exp->gdbarch)->builtin_int;
11089 }
76a01679 11090
76a01679
JB
11091 switch (op)
11092 {
11093 default: /* Should never happen. */
323e0a4a 11094 error (_("unexpected attribute encountered"));
76a01679 11095 case OP_ATR_FIRST:
1eea4ebd
UW
11096 return value_from_longest
11097 (type, ada_array_bound (arg1, tem, 0));
76a01679 11098 case OP_ATR_LAST:
1eea4ebd
UW
11099 return value_from_longest
11100 (type, ada_array_bound (arg1, tem, 1));
76a01679 11101 case OP_ATR_LENGTH:
1eea4ebd
UW
11102 return value_from_longest
11103 (type, ada_array_length (arg1, tem));
76a01679
JB
11104 }
11105 }
11106 else if (discrete_type_p (type_arg))
11107 {
11108 struct type *range_type;
0d5cff50 11109 const char *name = ada_type_name (type_arg);
5b4ee69b 11110
76a01679
JB
11111 range_type = NULL;
11112 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11113 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11114 if (range_type == NULL)
11115 range_type = type_arg;
11116 switch (op)
11117 {
11118 default:
323e0a4a 11119 error (_("unexpected attribute encountered"));
76a01679 11120 case OP_ATR_FIRST:
690cc4eb 11121 return value_from_longest
43bbcdc2 11122 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11123 case OP_ATR_LAST:
690cc4eb 11124 return value_from_longest
43bbcdc2 11125 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11126 case OP_ATR_LENGTH:
323e0a4a 11127 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11128 }
11129 }
11130 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11131 error (_("unimplemented type attribute"));
76a01679
JB
11132 else
11133 {
11134 LONGEST low, high;
11135
ad82864c
JB
11136 if (ada_is_constrained_packed_array_type (type_arg))
11137 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11138
aa4fb036 11139 if (op == OP_ATR_LENGTH)
1eea4ebd 11140 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11141 else
11142 {
11143 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11144 if (type == NULL)
11145 type = builtin_type (exp->gdbarch)->builtin_int;
11146 }
1eea4ebd 11147
76a01679
JB
11148 switch (op)
11149 {
11150 default:
323e0a4a 11151 error (_("unexpected attribute encountered"));
76a01679 11152 case OP_ATR_FIRST:
1eea4ebd 11153 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11154 return value_from_longest (type, low);
11155 case OP_ATR_LAST:
1eea4ebd 11156 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11157 return value_from_longest (type, high);
11158 case OP_ATR_LENGTH:
1eea4ebd
UW
11159 low = ada_array_bound_from_type (type_arg, tem, 0);
11160 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11161 return value_from_longest (type, high - low + 1);
11162 }
11163 }
14f9c5c9
AS
11164 }
11165
4c4b4cd2
PH
11166 case OP_ATR_TAG:
11167 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11168 if (noside == EVAL_SKIP)
76a01679 11169 goto nosideret;
4c4b4cd2
PH
11170
11171 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11172 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11173
11174 return ada_value_tag (arg1);
11175
11176 case OP_ATR_MIN:
11177 case OP_ATR_MAX:
11178 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11180 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11181 if (noside == EVAL_SKIP)
76a01679 11182 goto nosideret;
d2e4a39e 11183 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11184 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11185 else
f44316fa
UW
11186 {
11187 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11188 return value_binop (arg1, arg2,
11189 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11190 }
14f9c5c9 11191
4c4b4cd2
PH
11192 case OP_ATR_MODULUS:
11193 {
31dedfee 11194 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11195
5b4ee69b 11196 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11197 if (noside == EVAL_SKIP)
11198 goto nosideret;
4c4b4cd2 11199
76a01679 11200 if (!ada_is_modular_type (type_arg))
323e0a4a 11201 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11202
76a01679
JB
11203 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11204 ada_modulus (type_arg));
4c4b4cd2
PH
11205 }
11206
11207
11208 case OP_ATR_POS:
11209 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11210 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11211 if (noside == EVAL_SKIP)
76a01679 11212 goto nosideret;
3cb382c9
UW
11213 type = builtin_type (exp->gdbarch)->builtin_int;
11214 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11215 return value_zero (type, not_lval);
14f9c5c9 11216 else
3cb382c9 11217 return value_pos_atr (type, arg1);
14f9c5c9 11218
4c4b4cd2
PH
11219 case OP_ATR_SIZE:
11220 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11221 type = value_type (arg1);
11222
11223 /* If the argument is a reference, then dereference its type, since
11224 the user is really asking for the size of the actual object,
11225 not the size of the pointer. */
11226 if (TYPE_CODE (type) == TYPE_CODE_REF)
11227 type = TYPE_TARGET_TYPE (type);
11228
4c4b4cd2 11229 if (noside == EVAL_SKIP)
76a01679 11230 goto nosideret;
4c4b4cd2 11231 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11232 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11233 else
22601c15 11234 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11235 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11236
11237 case OP_ATR_VAL:
11238 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11240 type = exp->elts[pc + 2].type;
14f9c5c9 11241 if (noside == EVAL_SKIP)
76a01679 11242 goto nosideret;
4c4b4cd2 11243 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11244 return value_zero (type, not_lval);
4c4b4cd2 11245 else
76a01679 11246 return value_val_atr (type, arg1);
4c4b4cd2
PH
11247
11248 case BINOP_EXP:
11249 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11250 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11251 if (noside == EVAL_SKIP)
11252 goto nosideret;
11253 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11254 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11255 else
f44316fa
UW
11256 {
11257 /* For integer exponentiation operations,
11258 only promote the first argument. */
11259 if (is_integral_type (value_type (arg2)))
11260 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11261 else
11262 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11263
11264 return value_binop (arg1, arg2, op);
11265 }
4c4b4cd2
PH
11266
11267 case UNOP_PLUS:
11268 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11269 if (noside == EVAL_SKIP)
11270 goto nosideret;
11271 else
11272 return arg1;
11273
11274 case UNOP_ABS:
11275 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11276 if (noside == EVAL_SKIP)
11277 goto nosideret;
f44316fa 11278 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11279 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11280 return value_neg (arg1);
14f9c5c9 11281 else
4c4b4cd2 11282 return arg1;
14f9c5c9
AS
11283
11284 case UNOP_IND:
5ec18f2b 11285 preeval_pos = *pos;
6b0d7253 11286 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11287 if (noside == EVAL_SKIP)
4c4b4cd2 11288 goto nosideret;
df407dfe 11289 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11290 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11291 {
11292 if (ada_is_array_descriptor_type (type))
11293 /* GDB allows dereferencing GNAT array descriptors. */
11294 {
11295 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11296
4c4b4cd2 11297 if (arrType == NULL)
323e0a4a 11298 error (_("Attempt to dereference null array pointer."));
00a4c844 11299 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11300 }
11301 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11302 || TYPE_CODE (type) == TYPE_CODE_REF
11303 /* In C you can dereference an array to get the 1st elt. */
11304 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11305 {
5ec18f2b
JG
11306 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11307 only be determined by inspecting the object's tag.
11308 This means that we need to evaluate completely the
11309 expression in order to get its type. */
11310
023db19c
JB
11311 if ((TYPE_CODE (type) == TYPE_CODE_REF
11312 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11313 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11314 {
11315 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11316 EVAL_NORMAL);
11317 type = value_type (ada_value_ind (arg1));
11318 }
11319 else
11320 {
11321 type = to_static_fixed_type
11322 (ada_aligned_type
11323 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11324 }
c1b5a1a6 11325 ada_ensure_varsize_limit (type);
714e53ab
PH
11326 return value_zero (type, lval_memory);
11327 }
4c4b4cd2 11328 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11329 {
11330 /* GDB allows dereferencing an int. */
11331 if (expect_type == NULL)
11332 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11333 lval_memory);
11334 else
11335 {
11336 expect_type =
11337 to_static_fixed_type (ada_aligned_type (expect_type));
11338 return value_zero (expect_type, lval_memory);
11339 }
11340 }
4c4b4cd2 11341 else
323e0a4a 11342 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11343 }
0963b4bd 11344 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11345 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11346
96967637
JB
11347 if (TYPE_CODE (type) == TYPE_CODE_INT)
11348 /* GDB allows dereferencing an int. If we were given
11349 the expect_type, then use that as the target type.
11350 Otherwise, assume that the target type is an int. */
11351 {
11352 if (expect_type != NULL)
11353 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11354 arg1));
11355 else
11356 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11357 (CORE_ADDR) value_as_address (arg1));
11358 }
6b0d7253 11359
4c4b4cd2
PH
11360 if (ada_is_array_descriptor_type (type))
11361 /* GDB allows dereferencing GNAT array descriptors. */
11362 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11363 else
4c4b4cd2 11364 return ada_value_ind (arg1);
14f9c5c9
AS
11365
11366 case STRUCTOP_STRUCT:
11367 tem = longest_to_int (exp->elts[pc + 1].longconst);
11368 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11369 preeval_pos = *pos;
14f9c5c9
AS
11370 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11371 if (noside == EVAL_SKIP)
4c4b4cd2 11372 goto nosideret;
14f9c5c9 11373 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11374 {
df407dfe 11375 struct type *type1 = value_type (arg1);
5b4ee69b 11376
76a01679
JB
11377 if (ada_is_tagged_type (type1, 1))
11378 {
11379 type = ada_lookup_struct_elt_type (type1,
11380 &exp->elts[pc + 2].string,
988f6b3d 11381 1, 1);
5ec18f2b
JG
11382
11383 /* If the field is not found, check if it exists in the
11384 extension of this object's type. This means that we
11385 need to evaluate completely the expression. */
11386
76a01679 11387 if (type == NULL)
5ec18f2b
JG
11388 {
11389 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11390 EVAL_NORMAL);
11391 arg1 = ada_value_struct_elt (arg1,
11392 &exp->elts[pc + 2].string,
11393 0);
11394 arg1 = unwrap_value (arg1);
11395 type = value_type (ada_to_fixed_value (arg1));
11396 }
76a01679
JB
11397 }
11398 else
11399 type =
11400 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11401 0);
76a01679
JB
11402
11403 return value_zero (ada_aligned_type (type), lval_memory);
11404 }
14f9c5c9 11405 else
a579cd9a
MW
11406 {
11407 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11408 arg1 = unwrap_value (arg1);
11409 return ada_to_fixed_value (arg1);
11410 }
284614f0 11411
14f9c5c9 11412 case OP_TYPE:
4c4b4cd2
PH
11413 /* The value is not supposed to be used. This is here to make it
11414 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11415 (*pos) += 2;
11416 if (noside == EVAL_SKIP)
4c4b4cd2 11417 goto nosideret;
14f9c5c9 11418 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11419 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11420 else
323e0a4a 11421 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11422
11423 case OP_AGGREGATE:
11424 case OP_CHOICES:
11425 case OP_OTHERS:
11426 case OP_DISCRETE_RANGE:
11427 case OP_POSITIONAL:
11428 case OP_NAME:
11429 if (noside == EVAL_NORMAL)
11430 switch (op)
11431 {
11432 case OP_NAME:
11433 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11434 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11435 case OP_AGGREGATE:
11436 error (_("Aggregates only allowed on the right of an assignment"));
11437 default:
0963b4bd
MS
11438 internal_error (__FILE__, __LINE__,
11439 _("aggregate apparently mangled"));
52ce6436
PH
11440 }
11441
11442 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11443 *pos += oplen - 1;
11444 for (tem = 0; tem < nargs; tem += 1)
11445 ada_evaluate_subexp (NULL, exp, pos, noside);
11446 goto nosideret;
14f9c5c9
AS
11447 }
11448
11449nosideret:
ced9779b 11450 return eval_skip_value (exp);
14f9c5c9 11451}
14f9c5c9 11452\f
d2e4a39e 11453
4c4b4cd2 11454 /* Fixed point */
14f9c5c9
AS
11455
11456/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11457 type name that encodes the 'small and 'delta information.
4c4b4cd2 11458 Otherwise, return NULL. */
14f9c5c9 11459
d2e4a39e 11460static const char *
ebf56fd3 11461fixed_type_info (struct type *type)
14f9c5c9 11462{
d2e4a39e 11463 const char *name = ada_type_name (type);
14f9c5c9
AS
11464 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11465
d2e4a39e
AS
11466 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11467 {
14f9c5c9 11468 const char *tail = strstr (name, "___XF_");
5b4ee69b 11469
14f9c5c9 11470 if (tail == NULL)
4c4b4cd2 11471 return NULL;
d2e4a39e 11472 else
4c4b4cd2 11473 return tail + 5;
14f9c5c9
AS
11474 }
11475 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11476 return fixed_type_info (TYPE_TARGET_TYPE (type));
11477 else
11478 return NULL;
11479}
11480
4c4b4cd2 11481/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11482
11483int
ebf56fd3 11484ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11485{
11486 return fixed_type_info (type) != NULL;
11487}
11488
4c4b4cd2
PH
11489/* Return non-zero iff TYPE represents a System.Address type. */
11490
11491int
11492ada_is_system_address_type (struct type *type)
11493{
11494 return (TYPE_NAME (type)
11495 && strcmp (TYPE_NAME (type), "system__address") == 0);
11496}
11497
14f9c5c9 11498/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11499 type, return the target floating-point type to be used to represent
11500 of this type during internal computation. */
11501
11502static struct type *
11503ada_scaling_type (struct type *type)
11504{
11505 return builtin_type (get_type_arch (type))->builtin_long_double;
11506}
11507
11508/* Assuming that TYPE is the representation of an Ada fixed-point
11509 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11510 delta cannot be determined. */
14f9c5c9 11511
50eff16b 11512struct value *
ebf56fd3 11513ada_delta (struct type *type)
14f9c5c9
AS
11514{
11515 const char *encoding = fixed_type_info (type);
50eff16b
UW
11516 struct type *scale_type = ada_scaling_type (type);
11517
11518 long long num, den;
11519
11520 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11521 return nullptr;
d2e4a39e 11522 else
50eff16b
UW
11523 return value_binop (value_from_longest (scale_type, num),
11524 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11525}
11526
11527/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11528 factor ('SMALL value) associated with the type. */
14f9c5c9 11529
50eff16b
UW
11530struct value *
11531ada_scaling_factor (struct type *type)
14f9c5c9
AS
11532{
11533 const char *encoding = fixed_type_info (type);
50eff16b
UW
11534 struct type *scale_type = ada_scaling_type (type);
11535
11536 long long num0, den0, num1, den1;
14f9c5c9 11537 int n;
d2e4a39e 11538
50eff16b 11539 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11540 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11541
11542 if (n < 2)
50eff16b 11543 return value_from_longest (scale_type, 1);
14f9c5c9 11544 else if (n == 4)
50eff16b
UW
11545 return value_binop (value_from_longest (scale_type, num1),
11546 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11547 else
50eff16b
UW
11548 return value_binop (value_from_longest (scale_type, num0),
11549 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11550}
11551
14f9c5c9 11552\f
d2e4a39e 11553
4c4b4cd2 11554 /* Range types */
14f9c5c9
AS
11555
11556/* Scan STR beginning at position K for a discriminant name, and
11557 return the value of that discriminant field of DVAL in *PX. If
11558 PNEW_K is not null, put the position of the character beyond the
11559 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11560 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11561
11562static int
108d56a4 11563scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11564 int *pnew_k)
14f9c5c9
AS
11565{
11566 static char *bound_buffer = NULL;
11567 static size_t bound_buffer_len = 0;
5da1a4d3 11568 const char *pstart, *pend, *bound;
d2e4a39e 11569 struct value *bound_val;
14f9c5c9
AS
11570
11571 if (dval == NULL || str == NULL || str[k] == '\0')
11572 return 0;
11573
5da1a4d3
SM
11574 pstart = str + k;
11575 pend = strstr (pstart, "__");
14f9c5c9
AS
11576 if (pend == NULL)
11577 {
5da1a4d3 11578 bound = pstart;
14f9c5c9
AS
11579 k += strlen (bound);
11580 }
d2e4a39e 11581 else
14f9c5c9 11582 {
5da1a4d3
SM
11583 int len = pend - pstart;
11584
11585 /* Strip __ and beyond. */
11586 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11587 strncpy (bound_buffer, pstart, len);
11588 bound_buffer[len] = '\0';
11589
14f9c5c9 11590 bound = bound_buffer;
d2e4a39e 11591 k = pend - str;
14f9c5c9 11592 }
d2e4a39e 11593
df407dfe 11594 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11595 if (bound_val == NULL)
11596 return 0;
11597
11598 *px = value_as_long (bound_val);
11599 if (pnew_k != NULL)
11600 *pnew_k = k;
11601 return 1;
11602}
11603
11604/* Value of variable named NAME in the current environment. If
11605 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11606 otherwise causes an error with message ERR_MSG. */
11607
d2e4a39e 11608static struct value *
edb0c9cb 11609get_var_value (const char *name, const char *err_msg)
14f9c5c9 11610{
b5ec771e 11611 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11612
54d343a2 11613 std::vector<struct block_symbol> syms;
b5ec771e
PA
11614 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11615 get_selected_block (0),
11616 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11617
11618 if (nsyms != 1)
11619 {
11620 if (err_msg == NULL)
4c4b4cd2 11621 return 0;
14f9c5c9 11622 else
8a3fe4f8 11623 error (("%s"), err_msg);
14f9c5c9
AS
11624 }
11625
54d343a2 11626 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11627}
d2e4a39e 11628
edb0c9cb
PA
11629/* Value of integer variable named NAME in the current environment.
11630 If no such variable is found, returns false. Otherwise, sets VALUE
11631 to the variable's value and returns true. */
4c4b4cd2 11632
edb0c9cb
PA
11633bool
11634get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11635{
4c4b4cd2 11636 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11637
14f9c5c9 11638 if (var_val == 0)
edb0c9cb
PA
11639 return false;
11640
11641 value = value_as_long (var_val);
11642 return true;
14f9c5c9 11643}
d2e4a39e 11644
14f9c5c9
AS
11645
11646/* Return a range type whose base type is that of the range type named
11647 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11648 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11649 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11650 corresponding range type from debug information; fall back to using it
11651 if symbol lookup fails. If a new type must be created, allocate it
11652 like ORIG_TYPE was. The bounds information, in general, is encoded
11653 in NAME, the base type given in the named range type. */
14f9c5c9 11654
d2e4a39e 11655static struct type *
28c85d6c 11656to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11657{
0d5cff50 11658 const char *name;
14f9c5c9 11659 struct type *base_type;
108d56a4 11660 const char *subtype_info;
14f9c5c9 11661
28c85d6c
JB
11662 gdb_assert (raw_type != NULL);
11663 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11664
1ce677a4 11665 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11666 base_type = TYPE_TARGET_TYPE (raw_type);
11667 else
11668 base_type = raw_type;
11669
28c85d6c 11670 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11671 subtype_info = strstr (name, "___XD");
11672 if (subtype_info == NULL)
690cc4eb 11673 {
43bbcdc2
PH
11674 LONGEST L = ada_discrete_type_low_bound (raw_type);
11675 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11676
690cc4eb
PH
11677 if (L < INT_MIN || U > INT_MAX)
11678 return raw_type;
11679 else
0c9c3474
SA
11680 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11681 L, U);
690cc4eb 11682 }
14f9c5c9
AS
11683 else
11684 {
11685 static char *name_buf = NULL;
11686 static size_t name_len = 0;
11687 int prefix_len = subtype_info - name;
11688 LONGEST L, U;
11689 struct type *type;
108d56a4 11690 const char *bounds_str;
14f9c5c9
AS
11691 int n;
11692
11693 GROW_VECT (name_buf, name_len, prefix_len + 5);
11694 strncpy (name_buf, name, prefix_len);
11695 name_buf[prefix_len] = '\0';
11696
11697 subtype_info += 5;
11698 bounds_str = strchr (subtype_info, '_');
11699 n = 1;
11700
d2e4a39e 11701 if (*subtype_info == 'L')
4c4b4cd2
PH
11702 {
11703 if (!ada_scan_number (bounds_str, n, &L, &n)
11704 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11705 return raw_type;
11706 if (bounds_str[n] == '_')
11707 n += 2;
0963b4bd 11708 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11709 n += 1;
11710 subtype_info += 1;
11711 }
d2e4a39e 11712 else
4c4b4cd2 11713 {
4c4b4cd2 11714 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11715 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11716 {
323e0a4a 11717 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11718 L = 1;
11719 }
11720 }
14f9c5c9 11721
d2e4a39e 11722 if (*subtype_info == 'U')
4c4b4cd2
PH
11723 {
11724 if (!ada_scan_number (bounds_str, n, &U, &n)
11725 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11726 return raw_type;
11727 }
d2e4a39e 11728 else
4c4b4cd2 11729 {
4c4b4cd2 11730 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11731 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11732 {
323e0a4a 11733 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11734 U = L;
11735 }
11736 }
14f9c5c9 11737
0c9c3474
SA
11738 type = create_static_range_type (alloc_type_copy (raw_type),
11739 base_type, L, U);
f5a91472
JB
11740 /* create_static_range_type alters the resulting type's length
11741 to match the size of the base_type, which is not what we want.
11742 Set it back to the original range type's length. */
11743 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11744 TYPE_NAME (type) = name;
14f9c5c9
AS
11745 return type;
11746 }
11747}
11748
4c4b4cd2
PH
11749/* True iff NAME is the name of a range type. */
11750
14f9c5c9 11751int
d2e4a39e 11752ada_is_range_type_name (const char *name)
14f9c5c9
AS
11753{
11754 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11755}
14f9c5c9 11756\f
d2e4a39e 11757
4c4b4cd2
PH
11758 /* Modular types */
11759
11760/* True iff TYPE is an Ada modular type. */
14f9c5c9 11761
14f9c5c9 11762int
d2e4a39e 11763ada_is_modular_type (struct type *type)
14f9c5c9 11764{
18af8284 11765 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11766
11767 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11768 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11769 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11770}
11771
4c4b4cd2
PH
11772/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11773
61ee279c 11774ULONGEST
0056e4d5 11775ada_modulus (struct type *type)
14f9c5c9 11776{
43bbcdc2 11777 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11778}
d2e4a39e 11779\f
f7f9143b
JB
11780
11781/* Ada exception catchpoint support:
11782 ---------------------------------
11783
11784 We support 3 kinds of exception catchpoints:
11785 . catchpoints on Ada exceptions
11786 . catchpoints on unhandled Ada exceptions
11787 . catchpoints on failed assertions
11788
11789 Exceptions raised during failed assertions, or unhandled exceptions
11790 could perfectly be caught with the general catchpoint on Ada exceptions.
11791 However, we can easily differentiate these two special cases, and having
11792 the option to distinguish these two cases from the rest can be useful
11793 to zero-in on certain situations.
11794
11795 Exception catchpoints are a specialized form of breakpoint,
11796 since they rely on inserting breakpoints inside known routines
11797 of the GNAT runtime. The implementation therefore uses a standard
11798 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11799 of breakpoint_ops.
11800
0259addd
JB
11801 Support in the runtime for exception catchpoints have been changed
11802 a few times already, and these changes affect the implementation
11803 of these catchpoints. In order to be able to support several
11804 variants of the runtime, we use a sniffer that will determine
28010a5d 11805 the runtime variant used by the program being debugged. */
f7f9143b 11806
82eacd52
JB
11807/* Ada's standard exceptions.
11808
11809 The Ada 83 standard also defined Numeric_Error. But there so many
11810 situations where it was unclear from the Ada 83 Reference Manual
11811 (RM) whether Constraint_Error or Numeric_Error should be raised,
11812 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11813 Interpretation saying that anytime the RM says that Numeric_Error
11814 should be raised, the implementation may raise Constraint_Error.
11815 Ada 95 went one step further and pretty much removed Numeric_Error
11816 from the list of standard exceptions (it made it a renaming of
11817 Constraint_Error, to help preserve compatibility when compiling
11818 an Ada83 compiler). As such, we do not include Numeric_Error from
11819 this list of standard exceptions. */
3d0b0fa3 11820
a121b7c1 11821static const char *standard_exc[] = {
3d0b0fa3
JB
11822 "constraint_error",
11823 "program_error",
11824 "storage_error",
11825 "tasking_error"
11826};
11827
0259addd
JB
11828typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11829
11830/* A structure that describes how to support exception catchpoints
11831 for a given executable. */
11832
11833struct exception_support_info
11834{
11835 /* The name of the symbol to break on in order to insert
11836 a catchpoint on exceptions. */
11837 const char *catch_exception_sym;
11838
11839 /* The name of the symbol to break on in order to insert
11840 a catchpoint on unhandled exceptions. */
11841 const char *catch_exception_unhandled_sym;
11842
11843 /* The name of the symbol to break on in order to insert
11844 a catchpoint on failed assertions. */
11845 const char *catch_assert_sym;
11846
9f757bf7
XR
11847 /* The name of the symbol to break on in order to insert
11848 a catchpoint on exception handling. */
11849 const char *catch_handlers_sym;
11850
0259addd
JB
11851 /* Assuming that the inferior just triggered an unhandled exception
11852 catchpoint, this function is responsible for returning the address
11853 in inferior memory where the name of that exception is stored.
11854 Return zero if the address could not be computed. */
11855 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11856};
11857
11858static CORE_ADDR ada_unhandled_exception_name_addr (void);
11859static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11860
11861/* The following exception support info structure describes how to
11862 implement exception catchpoints with the latest version of the
ca683e3a 11863 Ada runtime (as of 2019-08-??). */
0259addd
JB
11864
11865static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11866{
11867 "__gnat_debug_raise_exception", /* catch_exception_sym */
11868 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11869 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11870 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11871 ada_unhandled_exception_name_addr
11872};
11873
11874/* The following exception support info structure describes how to
11875 implement exception catchpoints with an earlier version of the
11876 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11877
11878static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11879{
11880 "__gnat_debug_raise_exception", /* catch_exception_sym */
11881 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11882 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11883 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11884 ada_unhandled_exception_name_addr
11885};
11886
11887/* The following exception support info structure describes how to
11888 implement exception catchpoints with a slightly older version
11889 of the Ada runtime. */
11890
11891static const struct exception_support_info exception_support_info_fallback =
11892{
11893 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11894 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11895 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11896 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11897 ada_unhandled_exception_name_addr_from_raise
11898};
11899
f17011e0
JB
11900/* Return nonzero if we can detect the exception support routines
11901 described in EINFO.
11902
11903 This function errors out if an abnormal situation is detected
11904 (for instance, if we find the exception support routines, but
11905 that support is found to be incomplete). */
11906
11907static int
11908ada_has_this_exception_support (const struct exception_support_info *einfo)
11909{
11910 struct symbol *sym;
11911
11912 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11913 that should be compiled with debugging information. As a result, we
11914 expect to find that symbol in the symtabs. */
11915
11916 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11917 if (sym == NULL)
a6af7abe
JB
11918 {
11919 /* Perhaps we did not find our symbol because the Ada runtime was
11920 compiled without debugging info, or simply stripped of it.
11921 It happens on some GNU/Linux distributions for instance, where
11922 users have to install a separate debug package in order to get
11923 the runtime's debugging info. In that situation, let the user
11924 know why we cannot insert an Ada exception catchpoint.
11925
11926 Note: Just for the purpose of inserting our Ada exception
11927 catchpoint, we could rely purely on the associated minimal symbol.
11928 But we would be operating in degraded mode anyway, since we are
11929 still lacking the debugging info needed later on to extract
11930 the name of the exception being raised (this name is printed in
11931 the catchpoint message, and is also used when trying to catch
11932 a specific exception). We do not handle this case for now. */
3b7344d5 11933 struct bound_minimal_symbol msym
1c8e84b0
JB
11934 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11935
3b7344d5 11936 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11937 error (_("Your Ada runtime appears to be missing some debugging "
11938 "information.\nCannot insert Ada exception catchpoint "
11939 "in this configuration."));
11940
11941 return 0;
11942 }
f17011e0
JB
11943
11944 /* Make sure that the symbol we found corresponds to a function. */
11945
11946 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11947 {
11948 error (_("Symbol \"%s\" is not a function (class = %d)"),
11949 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11950 return 0;
11951 }
11952
11953 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11954 if (sym == NULL)
11955 {
11956 struct bound_minimal_symbol msym
11957 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11958
11959 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11960 error (_("Your Ada runtime appears to be missing some debugging "
11961 "information.\nCannot insert Ada exception catchpoint "
11962 "in this configuration."));
11963
11964 return 0;
11965 }
11966
11967 /* Make sure that the symbol we found corresponds to a function. */
11968
11969 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11970 {
11971 error (_("Symbol \"%s\" is not a function (class = %d)"),
11972 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11973 return 0;
11974 }
f17011e0
JB
11975
11976 return 1;
11977}
11978
0259addd
JB
11979/* Inspect the Ada runtime and determine which exception info structure
11980 should be used to provide support for exception catchpoints.
11981
3eecfa55
JB
11982 This function will always set the per-inferior exception_info,
11983 or raise an error. */
0259addd
JB
11984
11985static void
11986ada_exception_support_info_sniffer (void)
11987{
3eecfa55 11988 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11989
11990 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11991 if (data->exception_info != NULL)
0259addd
JB
11992 return;
11993
11994 /* Check the latest (default) exception support info. */
f17011e0 11995 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11996 {
3eecfa55 11997 data->exception_info = &default_exception_support_info;
0259addd
JB
11998 return;
11999 }
12000
ca683e3a
AO
12001 /* Try the v0 exception suport info. */
12002 if (ada_has_this_exception_support (&exception_support_info_v0))
12003 {
12004 data->exception_info = &exception_support_info_v0;
12005 return;
12006 }
12007
0259addd 12008 /* Try our fallback exception suport info. */
f17011e0 12009 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12010 {
3eecfa55 12011 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12012 return;
12013 }
12014
12015 /* Sometimes, it is normal for us to not be able to find the routine
12016 we are looking for. This happens when the program is linked with
12017 the shared version of the GNAT runtime, and the program has not been
12018 started yet. Inform the user of these two possible causes if
12019 applicable. */
12020
ccefe4c4 12021 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12022 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12023
12024 /* If the symbol does not exist, then check that the program is
12025 already started, to make sure that shared libraries have been
12026 loaded. If it is not started, this may mean that the symbol is
12027 in a shared library. */
12028
e99b03dc 12029 if (inferior_ptid.pid () == 0)
0259addd
JB
12030 error (_("Unable to insert catchpoint. Try to start the program first."));
12031
12032 /* At this point, we know that we are debugging an Ada program and
12033 that the inferior has been started, but we still are not able to
0963b4bd 12034 find the run-time symbols. That can mean that we are in
0259addd
JB
12035 configurable run time mode, or that a-except as been optimized
12036 out by the linker... In any case, at this point it is not worth
12037 supporting this feature. */
12038
7dda8cff 12039 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12040}
12041
f7f9143b
JB
12042/* True iff FRAME is very likely to be that of a function that is
12043 part of the runtime system. This is all very heuristic, but is
12044 intended to be used as advice as to what frames are uninteresting
12045 to most users. */
12046
12047static int
12048is_known_support_routine (struct frame_info *frame)
12049{
692465f1 12050 enum language func_lang;
f7f9143b 12051 int i;
f35a17b5 12052 const char *fullname;
f7f9143b 12053
4ed6b5be
JB
12054 /* If this code does not have any debugging information (no symtab),
12055 This cannot be any user code. */
f7f9143b 12056
51abb421 12057 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12058 if (sal.symtab == NULL)
12059 return 1;
12060
4ed6b5be
JB
12061 /* If there is a symtab, but the associated source file cannot be
12062 located, then assume this is not user code: Selecting a frame
12063 for which we cannot display the code would not be very helpful
12064 for the user. This should also take care of case such as VxWorks
12065 where the kernel has some debugging info provided for a few units. */
f7f9143b 12066
f35a17b5
JK
12067 fullname = symtab_to_fullname (sal.symtab);
12068 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12069 return 1;
12070
4ed6b5be
JB
12071 /* Check the unit filename againt the Ada runtime file naming.
12072 We also check the name of the objfile against the name of some
12073 known system libraries that sometimes come with debugging info
12074 too. */
12075
f7f9143b
JB
12076 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12077 {
12078 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12079 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12080 return 1;
eb822aa6
DE
12081 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12082 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12083 return 1;
f7f9143b
JB
12084 }
12085
4ed6b5be 12086 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12087
c6dc63a1
TT
12088 gdb::unique_xmalloc_ptr<char> func_name
12089 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12090 if (func_name == NULL)
12091 return 1;
12092
12093 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12094 {
12095 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12096 if (re_exec (func_name.get ()))
12097 return 1;
f7f9143b
JB
12098 }
12099
12100 return 0;
12101}
12102
12103/* Find the first frame that contains debugging information and that is not
12104 part of the Ada run-time, starting from FI and moving upward. */
12105
0ef643c8 12106void
f7f9143b
JB
12107ada_find_printable_frame (struct frame_info *fi)
12108{
12109 for (; fi != NULL; fi = get_prev_frame (fi))
12110 {
12111 if (!is_known_support_routine (fi))
12112 {
12113 select_frame (fi);
12114 break;
12115 }
12116 }
12117
12118}
12119
12120/* Assuming that the inferior just triggered an unhandled exception
12121 catchpoint, return the address in inferior memory where the name
12122 of the exception is stored.
12123
12124 Return zero if the address could not be computed. */
12125
12126static CORE_ADDR
12127ada_unhandled_exception_name_addr (void)
0259addd
JB
12128{
12129 return parse_and_eval_address ("e.full_name");
12130}
12131
12132/* Same as ada_unhandled_exception_name_addr, except that this function
12133 should be used when the inferior uses an older version of the runtime,
12134 where the exception name needs to be extracted from a specific frame
12135 several frames up in the callstack. */
12136
12137static CORE_ADDR
12138ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12139{
12140 int frame_level;
12141 struct frame_info *fi;
3eecfa55 12142 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12143
12144 /* To determine the name of this exception, we need to select
12145 the frame corresponding to RAISE_SYM_NAME. This frame is
12146 at least 3 levels up, so we simply skip the first 3 frames
12147 without checking the name of their associated function. */
12148 fi = get_current_frame ();
12149 for (frame_level = 0; frame_level < 3; frame_level += 1)
12150 if (fi != NULL)
12151 fi = get_prev_frame (fi);
12152
12153 while (fi != NULL)
12154 {
692465f1
JB
12155 enum language func_lang;
12156
c6dc63a1
TT
12157 gdb::unique_xmalloc_ptr<char> func_name
12158 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12159 if (func_name != NULL)
12160 {
c6dc63a1 12161 if (strcmp (func_name.get (),
55b87a52
KS
12162 data->exception_info->catch_exception_sym) == 0)
12163 break; /* We found the frame we were looking for... */
55b87a52 12164 }
fb44b1a7 12165 fi = get_prev_frame (fi);
f7f9143b
JB
12166 }
12167
12168 if (fi == NULL)
12169 return 0;
12170
12171 select_frame (fi);
12172 return parse_and_eval_address ("id.full_name");
12173}
12174
12175/* Assuming the inferior just triggered an Ada exception catchpoint
12176 (of any type), return the address in inferior memory where the name
12177 of the exception is stored, if applicable.
12178
45db7c09
PA
12179 Assumes the selected frame is the current frame.
12180
f7f9143b
JB
12181 Return zero if the address could not be computed, or if not relevant. */
12182
12183static CORE_ADDR
761269c8 12184ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12185 struct breakpoint *b)
12186{
3eecfa55
JB
12187 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12188
f7f9143b
JB
12189 switch (ex)
12190 {
761269c8 12191 case ada_catch_exception:
f7f9143b
JB
12192 return (parse_and_eval_address ("e.full_name"));
12193 break;
12194
761269c8 12195 case ada_catch_exception_unhandled:
3eecfa55 12196 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12197 break;
9f757bf7
XR
12198
12199 case ada_catch_handlers:
12200 return 0; /* The runtimes does not provide access to the exception
12201 name. */
12202 break;
12203
761269c8 12204 case ada_catch_assert:
f7f9143b
JB
12205 return 0; /* Exception name is not relevant in this case. */
12206 break;
12207
12208 default:
12209 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12210 break;
12211 }
12212
12213 return 0; /* Should never be reached. */
12214}
12215
e547c119
JB
12216/* Assuming the inferior is stopped at an exception catchpoint,
12217 return the message which was associated to the exception, if
12218 available. Return NULL if the message could not be retrieved.
12219
e547c119
JB
12220 Note: The exception message can be associated to an exception
12221 either through the use of the Raise_Exception function, or
12222 more simply (Ada 2005 and later), via:
12223
12224 raise Exception_Name with "exception message";
12225
12226 */
12227
6f46ac85 12228static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12229ada_exception_message_1 (void)
12230{
12231 struct value *e_msg_val;
e547c119 12232 int e_msg_len;
e547c119
JB
12233
12234 /* For runtimes that support this feature, the exception message
12235 is passed as an unbounded string argument called "message". */
12236 e_msg_val = parse_and_eval ("message");
12237 if (e_msg_val == NULL)
12238 return NULL; /* Exception message not supported. */
12239
12240 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12241 gdb_assert (e_msg_val != NULL);
12242 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12243
12244 /* If the message string is empty, then treat it as if there was
12245 no exception message. */
12246 if (e_msg_len <= 0)
12247 return NULL;
12248
6f46ac85
TT
12249 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12250 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12251 e_msg.get ()[e_msg_len] = '\0';
e547c119 12252
e547c119
JB
12253 return e_msg;
12254}
12255
12256/* Same as ada_exception_message_1, except that all exceptions are
12257 contained here (returning NULL instead). */
12258
6f46ac85 12259static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12260ada_exception_message (void)
12261{
6f46ac85 12262 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12263
a70b8144 12264 try
e547c119
JB
12265 {
12266 e_msg = ada_exception_message_1 ();
12267 }
230d2906 12268 catch (const gdb_exception_error &e)
e547c119 12269 {
6f46ac85 12270 e_msg.reset (nullptr);
e547c119 12271 }
e547c119
JB
12272
12273 return e_msg;
12274}
12275
f7f9143b
JB
12276/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12277 any error that ada_exception_name_addr_1 might cause to be thrown.
12278 When an error is intercepted, a warning with the error message is printed,
12279 and zero is returned. */
12280
12281static CORE_ADDR
761269c8 12282ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12283 struct breakpoint *b)
12284{
f7f9143b
JB
12285 CORE_ADDR result = 0;
12286
a70b8144 12287 try
f7f9143b
JB
12288 {
12289 result = ada_exception_name_addr_1 (ex, b);
12290 }
12291
230d2906 12292 catch (const gdb_exception_error &e)
f7f9143b 12293 {
3d6e9d23 12294 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12295 return 0;
12296 }
12297
12298 return result;
12299}
12300
cb7de75e 12301static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12302 (const char *excep_string,
12303 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12304
12305/* Ada catchpoints.
12306
12307 In the case of catchpoints on Ada exceptions, the catchpoint will
12308 stop the target on every exception the program throws. When a user
12309 specifies the name of a specific exception, we translate this
12310 request into a condition expression (in text form), and then parse
12311 it into an expression stored in each of the catchpoint's locations.
12312 We then use this condition to check whether the exception that was
12313 raised is the one the user is interested in. If not, then the
12314 target is resumed again. We store the name of the requested
12315 exception, in order to be able to re-set the condition expression
12316 when symbols change. */
12317
12318/* An instance of this type is used to represent an Ada catchpoint
5625a286 12319 breakpoint location. */
28010a5d 12320
5625a286 12321class ada_catchpoint_location : public bp_location
28010a5d 12322{
5625a286 12323public:
5f486660 12324 ada_catchpoint_location (breakpoint *owner)
f06f1252 12325 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12326 {}
28010a5d
PA
12327
12328 /* The condition that checks whether the exception that was raised
12329 is the specific exception the user specified on catchpoint
12330 creation. */
4d01a485 12331 expression_up excep_cond_expr;
28010a5d
PA
12332};
12333
c1fc2657 12334/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12335
c1fc2657 12336struct ada_catchpoint : public breakpoint
28010a5d 12337{
28010a5d 12338 /* The name of the specific exception the user specified. */
bc18fbb5 12339 std::string excep_string;
28010a5d
PA
12340};
12341
12342/* Parse the exception condition string in the context of each of the
12343 catchpoint's locations, and store them for later evaluation. */
12344
12345static void
9f757bf7
XR
12346create_excep_cond_exprs (struct ada_catchpoint *c,
12347 enum ada_exception_catchpoint_kind ex)
28010a5d 12348{
28010a5d 12349 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12350 if (c->excep_string.empty ())
28010a5d
PA
12351 return;
12352
12353 /* Same if there are no locations... */
c1fc2657 12354 if (c->loc == NULL)
28010a5d
PA
12355 return;
12356
2ff0a947
TT
12357 /* We have to compute the expression once for each program space,
12358 because the expression may hold the addresses of multiple symbols
12359 in some cases. */
12360 std::multimap<program_space *, struct bp_location *> loc_map;
bde09ab7 12361 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
2ff0a947 12362 loc_map.emplace (bl->pspace, bl);
28010a5d 12363
2ff0a947
TT
12364 scoped_restore_current_program_space save_pspace;
12365
12366 std::string cond_string;
12367 program_space *last_ps = nullptr;
12368 for (auto iter : loc_map)
28010a5d
PA
12369 {
12370 struct ada_catchpoint_location *ada_loc
2ff0a947
TT
12371 = (struct ada_catchpoint_location *) iter.second;
12372
12373 if (ada_loc->pspace != last_ps)
12374 {
12375 last_ps = ada_loc->pspace;
12376 set_current_program_space (last_ps);
12377
12378 /* Compute the condition expression in text form, from the
12379 specific expection we want to catch. */
12380 cond_string
12381 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12382 ex);
12383 }
12384
4d01a485 12385 expression_up exp;
28010a5d 12386
2ff0a947 12387 if (!ada_loc->shlib_disabled)
28010a5d 12388 {
bbc13ae3 12389 const char *s;
28010a5d 12390
cb7de75e 12391 s = cond_string.c_str ();
a70b8144 12392 try
28010a5d 12393 {
2ff0a947
TT
12394 exp = parse_exp_1 (&s, ada_loc->address,
12395 block_for_pc (ada_loc->address),
036e657b 12396 0);
28010a5d 12397 }
230d2906 12398 catch (const gdb_exception_error &e)
849f2b52
JB
12399 {
12400 warning (_("failed to reevaluate internal exception condition "
12401 "for catchpoint %d: %s"),
3d6e9d23 12402 c->number, e.what ());
849f2b52 12403 }
28010a5d
PA
12404 }
12405
b22e99fd 12406 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12407 }
28010a5d
PA
12408}
12409
28010a5d
PA
12410/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12411 structure for all exception catchpoint kinds. */
12412
12413static struct bp_location *
761269c8 12414allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12415 struct breakpoint *self)
12416{
5f486660 12417 return new ada_catchpoint_location (self);
28010a5d
PA
12418}
12419
12420/* Implement the RE_SET method in the breakpoint_ops structure for all
12421 exception catchpoint kinds. */
12422
12423static void
761269c8 12424re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12425{
12426 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12427
12428 /* Call the base class's method. This updates the catchpoint's
12429 locations. */
2060206e 12430 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12431
12432 /* Reparse the exception conditional expressions. One for each
12433 location. */
9f757bf7 12434 create_excep_cond_exprs (c, ex);
28010a5d
PA
12435}
12436
12437/* Returns true if we should stop for this breakpoint hit. If the
12438 user specified a specific exception, we only want to cause a stop
12439 if the program thrown that exception. */
12440
12441static int
12442should_stop_exception (const struct bp_location *bl)
12443{
12444 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12445 const struct ada_catchpoint_location *ada_loc
12446 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12447 int stop;
12448
12449 /* With no specific exception, should always stop. */
bc18fbb5 12450 if (c->excep_string.empty ())
28010a5d
PA
12451 return 1;
12452
12453 if (ada_loc->excep_cond_expr == NULL)
12454 {
12455 /* We will have a NULL expression if back when we were creating
12456 the expressions, this location's had failed to parse. */
12457 return 1;
12458 }
12459
12460 stop = 1;
a70b8144 12461 try
28010a5d
PA
12462 {
12463 struct value *mark;
12464
12465 mark = value_mark ();
4d01a485 12466 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12467 value_free_to_mark (mark);
12468 }
230d2906 12469 catch (const gdb_exception &ex)
492d29ea
PA
12470 {
12471 exception_fprintf (gdb_stderr, ex,
12472 _("Error in testing exception condition:\n"));
12473 }
492d29ea 12474
28010a5d
PA
12475 return stop;
12476}
12477
12478/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12479 for all exception catchpoint kinds. */
12480
12481static void
761269c8 12482check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12483{
12484 bs->stop = should_stop_exception (bs->bp_location_at);
12485}
12486
f7f9143b
JB
12487/* Implement the PRINT_IT method in the breakpoint_ops structure
12488 for all exception catchpoint kinds. */
12489
12490static enum print_stop_action
761269c8 12491print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12492{
79a45e25 12493 struct ui_out *uiout = current_uiout;
348d480f
PA
12494 struct breakpoint *b = bs->breakpoint_at;
12495
956a9fb9 12496 annotate_catchpoint (b->number);
f7f9143b 12497
112e8700 12498 if (uiout->is_mi_like_p ())
f7f9143b 12499 {
112e8700 12500 uiout->field_string ("reason",
956a9fb9 12501 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12502 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12503 }
12504
112e8700
SM
12505 uiout->text (b->disposition == disp_del
12506 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12507 uiout->field_signed ("bkptno", b->number);
112e8700 12508 uiout->text (", ");
f7f9143b 12509
45db7c09
PA
12510 /* ada_exception_name_addr relies on the selected frame being the
12511 current frame. Need to do this here because this function may be
12512 called more than once when printing a stop, and below, we'll
12513 select the first frame past the Ada run-time (see
12514 ada_find_printable_frame). */
12515 select_frame (get_current_frame ());
12516
f7f9143b
JB
12517 switch (ex)
12518 {
761269c8
JB
12519 case ada_catch_exception:
12520 case ada_catch_exception_unhandled:
9f757bf7 12521 case ada_catch_handlers:
956a9fb9
JB
12522 {
12523 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12524 char exception_name[256];
12525
12526 if (addr != 0)
12527 {
c714b426
PA
12528 read_memory (addr, (gdb_byte *) exception_name,
12529 sizeof (exception_name) - 1);
956a9fb9
JB
12530 exception_name [sizeof (exception_name) - 1] = '\0';
12531 }
12532 else
12533 {
12534 /* For some reason, we were unable to read the exception
12535 name. This could happen if the Runtime was compiled
12536 without debugging info, for instance. In that case,
12537 just replace the exception name by the generic string
12538 "exception" - it will read as "an exception" in the
12539 notification we are about to print. */
967cff16 12540 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12541 }
12542 /* In the case of unhandled exception breakpoints, we print
12543 the exception name as "unhandled EXCEPTION_NAME", to make
12544 it clearer to the user which kind of catchpoint just got
12545 hit. We used ui_out_text to make sure that this extra
12546 info does not pollute the exception name in the MI case. */
761269c8 12547 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12548 uiout->text ("unhandled ");
12549 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12550 }
12551 break;
761269c8 12552 case ada_catch_assert:
956a9fb9
JB
12553 /* In this case, the name of the exception is not really
12554 important. Just print "failed assertion" to make it clearer
12555 that his program just hit an assertion-failure catchpoint.
12556 We used ui_out_text because this info does not belong in
12557 the MI output. */
112e8700 12558 uiout->text ("failed assertion");
956a9fb9 12559 break;
f7f9143b 12560 }
e547c119 12561
6f46ac85 12562 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12563 if (exception_message != NULL)
12564 {
e547c119 12565 uiout->text (" (");
6f46ac85 12566 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12567 uiout->text (")");
e547c119
JB
12568 }
12569
112e8700 12570 uiout->text (" at ");
956a9fb9 12571 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12572
12573 return PRINT_SRC_AND_LOC;
12574}
12575
12576/* Implement the PRINT_ONE method in the breakpoint_ops structure
12577 for all exception catchpoint kinds. */
12578
12579static void
761269c8 12580print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12581 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12582{
79a45e25 12583 struct ui_out *uiout = current_uiout;
28010a5d 12584 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12585 struct value_print_options opts;
12586
12587 get_user_print_options (&opts);
f06f1252 12588
79a45b7d 12589 if (opts.addressprint)
f06f1252 12590 uiout->field_skip ("addr");
f7f9143b
JB
12591
12592 annotate_field (5);
f7f9143b
JB
12593 switch (ex)
12594 {
761269c8 12595 case ada_catch_exception:
bc18fbb5 12596 if (!c->excep_string.empty ())
f7f9143b 12597 {
bc18fbb5
TT
12598 std::string msg = string_printf (_("`%s' Ada exception"),
12599 c->excep_string.c_str ());
28010a5d 12600
112e8700 12601 uiout->field_string ("what", msg);
f7f9143b
JB
12602 }
12603 else
112e8700 12604 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12605
12606 break;
12607
761269c8 12608 case ada_catch_exception_unhandled:
112e8700 12609 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12610 break;
12611
9f757bf7 12612 case ada_catch_handlers:
bc18fbb5 12613 if (!c->excep_string.empty ())
9f757bf7
XR
12614 {
12615 uiout->field_fmt ("what",
12616 _("`%s' Ada exception handlers"),
bc18fbb5 12617 c->excep_string.c_str ());
9f757bf7
XR
12618 }
12619 else
12620 uiout->field_string ("what", "all Ada exceptions handlers");
12621 break;
12622
761269c8 12623 case ada_catch_assert:
112e8700 12624 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12625 break;
12626
12627 default:
12628 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12629 break;
12630 }
12631}
12632
12633/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12634 for all exception catchpoint kinds. */
12635
12636static void
761269c8 12637print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12638 struct breakpoint *b)
12639{
28010a5d 12640 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12641 struct ui_out *uiout = current_uiout;
28010a5d 12642
112e8700 12643 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12644 : _("Catchpoint "));
381befee 12645 uiout->field_signed ("bkptno", b->number);
112e8700 12646 uiout->text (": ");
00eb2c4a 12647
f7f9143b
JB
12648 switch (ex)
12649 {
761269c8 12650 case ada_catch_exception:
bc18fbb5 12651 if (!c->excep_string.empty ())
00eb2c4a 12652 {
862d101a 12653 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12654 c->excep_string.c_str ());
862d101a 12655 uiout->text (info.c_str ());
00eb2c4a 12656 }
f7f9143b 12657 else
112e8700 12658 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12659 break;
12660
761269c8 12661 case ada_catch_exception_unhandled:
112e8700 12662 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12663 break;
9f757bf7
XR
12664
12665 case ada_catch_handlers:
bc18fbb5 12666 if (!c->excep_string.empty ())
9f757bf7
XR
12667 {
12668 std::string info
12669 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12670 c->excep_string.c_str ());
9f757bf7
XR
12671 uiout->text (info.c_str ());
12672 }
12673 else
12674 uiout->text (_("all Ada exceptions handlers"));
12675 break;
12676
761269c8 12677 case ada_catch_assert:
112e8700 12678 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12679 break;
12680
12681 default:
12682 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12683 break;
12684 }
12685}
12686
6149aea9
PA
12687/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12688 for all exception catchpoint kinds. */
12689
12690static void
761269c8 12691print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12692 struct breakpoint *b, struct ui_file *fp)
12693{
28010a5d
PA
12694 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12695
6149aea9
PA
12696 switch (ex)
12697 {
761269c8 12698 case ada_catch_exception:
6149aea9 12699 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12700 if (!c->excep_string.empty ())
12701 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12702 break;
12703
761269c8 12704 case ada_catch_exception_unhandled:
78076abc 12705 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12706 break;
12707
9f757bf7
XR
12708 case ada_catch_handlers:
12709 fprintf_filtered (fp, "catch handlers");
12710 break;
12711
761269c8 12712 case ada_catch_assert:
6149aea9
PA
12713 fprintf_filtered (fp, "catch assert");
12714 break;
12715
12716 default:
12717 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12718 }
d9b3f62e 12719 print_recreate_thread (b, fp);
6149aea9
PA
12720}
12721
f7f9143b
JB
12722/* Virtual table for "catch exception" breakpoints. */
12723
28010a5d
PA
12724static struct bp_location *
12725allocate_location_catch_exception (struct breakpoint *self)
12726{
761269c8 12727 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12728}
12729
12730static void
12731re_set_catch_exception (struct breakpoint *b)
12732{
761269c8 12733 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12734}
12735
12736static void
12737check_status_catch_exception (bpstat bs)
12738{
761269c8 12739 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12740}
12741
f7f9143b 12742static enum print_stop_action
348d480f 12743print_it_catch_exception (bpstat bs)
f7f9143b 12744{
761269c8 12745 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12746}
12747
12748static void
a6d9a66e 12749print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12750{
761269c8 12751 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12752}
12753
12754static void
12755print_mention_catch_exception (struct breakpoint *b)
12756{
761269c8 12757 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12758}
12759
6149aea9
PA
12760static void
12761print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12762{
761269c8 12763 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12764}
12765
2060206e 12766static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12767
12768/* Virtual table for "catch exception unhandled" breakpoints. */
12769
28010a5d
PA
12770static struct bp_location *
12771allocate_location_catch_exception_unhandled (struct breakpoint *self)
12772{
761269c8 12773 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12774}
12775
12776static void
12777re_set_catch_exception_unhandled (struct breakpoint *b)
12778{
761269c8 12779 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12780}
12781
12782static void
12783check_status_catch_exception_unhandled (bpstat bs)
12784{
761269c8 12785 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12786}
12787
f7f9143b 12788static enum print_stop_action
348d480f 12789print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12790{
761269c8 12791 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12792}
12793
12794static void
a6d9a66e
UW
12795print_one_catch_exception_unhandled (struct breakpoint *b,
12796 struct bp_location **last_loc)
f7f9143b 12797{
761269c8 12798 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12799}
12800
12801static void
12802print_mention_catch_exception_unhandled (struct breakpoint *b)
12803{
761269c8 12804 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12805}
12806
6149aea9
PA
12807static void
12808print_recreate_catch_exception_unhandled (struct breakpoint *b,
12809 struct ui_file *fp)
12810{
761269c8 12811 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12812}
12813
2060206e 12814static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12815
12816/* Virtual table for "catch assert" breakpoints. */
12817
28010a5d
PA
12818static struct bp_location *
12819allocate_location_catch_assert (struct breakpoint *self)
12820{
761269c8 12821 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12822}
12823
12824static void
12825re_set_catch_assert (struct breakpoint *b)
12826{
761269c8 12827 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12828}
12829
12830static void
12831check_status_catch_assert (bpstat bs)
12832{
761269c8 12833 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12834}
12835
f7f9143b 12836static enum print_stop_action
348d480f 12837print_it_catch_assert (bpstat bs)
f7f9143b 12838{
761269c8 12839 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12840}
12841
12842static void
a6d9a66e 12843print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12844{
761269c8 12845 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12846}
12847
12848static void
12849print_mention_catch_assert (struct breakpoint *b)
12850{
761269c8 12851 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12852}
12853
6149aea9
PA
12854static void
12855print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12856{
761269c8 12857 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12858}
12859
2060206e 12860static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12861
9f757bf7
XR
12862/* Virtual table for "catch handlers" breakpoints. */
12863
12864static struct bp_location *
12865allocate_location_catch_handlers (struct breakpoint *self)
12866{
12867 return allocate_location_exception (ada_catch_handlers, self);
12868}
12869
12870static void
12871re_set_catch_handlers (struct breakpoint *b)
12872{
12873 re_set_exception (ada_catch_handlers, b);
12874}
12875
12876static void
12877check_status_catch_handlers (bpstat bs)
12878{
12879 check_status_exception (ada_catch_handlers, bs);
12880}
12881
12882static enum print_stop_action
12883print_it_catch_handlers (bpstat bs)
12884{
12885 return print_it_exception (ada_catch_handlers, bs);
12886}
12887
12888static void
12889print_one_catch_handlers (struct breakpoint *b,
12890 struct bp_location **last_loc)
12891{
12892 print_one_exception (ada_catch_handlers, b, last_loc);
12893}
12894
12895static void
12896print_mention_catch_handlers (struct breakpoint *b)
12897{
12898 print_mention_exception (ada_catch_handlers, b);
12899}
12900
12901static void
12902print_recreate_catch_handlers (struct breakpoint *b,
12903 struct ui_file *fp)
12904{
12905 print_recreate_exception (ada_catch_handlers, b, fp);
12906}
12907
12908static struct breakpoint_ops catch_handlers_breakpoint_ops;
12909
f06f1252
TT
12910/* See ada-lang.h. */
12911
12912bool
12913is_ada_exception_catchpoint (breakpoint *bp)
12914{
12915 return (bp->ops == &catch_exception_breakpoint_ops
12916 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12917 || bp->ops == &catch_assert_breakpoint_ops
12918 || bp->ops == &catch_handlers_breakpoint_ops);
12919}
12920
f7f9143b
JB
12921/* Split the arguments specified in a "catch exception" command.
12922 Set EX to the appropriate catchpoint type.
28010a5d 12923 Set EXCEP_STRING to the name of the specific exception if
5845583d 12924 specified by the user.
9f757bf7
XR
12925 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12926 "catch handlers" command. False otherwise.
5845583d
JB
12927 If a condition is found at the end of the arguments, the condition
12928 expression is stored in COND_STRING (memory must be deallocated
12929 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12930
12931static void
a121b7c1 12932catch_ada_exception_command_split (const char *args,
9f757bf7 12933 bool is_catch_handlers_cmd,
761269c8 12934 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12935 std::string *excep_string,
12936 std::string *cond_string)
f7f9143b 12937{
bc18fbb5 12938 std::string exception_name;
f7f9143b 12939
bc18fbb5
TT
12940 exception_name = extract_arg (&args);
12941 if (exception_name == "if")
5845583d
JB
12942 {
12943 /* This is not an exception name; this is the start of a condition
12944 expression for a catchpoint on all exceptions. So, "un-get"
12945 this token, and set exception_name to NULL. */
bc18fbb5 12946 exception_name.clear ();
5845583d
JB
12947 args -= 2;
12948 }
f7f9143b 12949
5845583d 12950 /* Check to see if we have a condition. */
f7f9143b 12951
f1735a53 12952 args = skip_spaces (args);
61012eef 12953 if (startswith (args, "if")
5845583d
JB
12954 && (isspace (args[2]) || args[2] == '\0'))
12955 {
12956 args += 2;
f1735a53 12957 args = skip_spaces (args);
5845583d
JB
12958
12959 if (args[0] == '\0')
12960 error (_("Condition missing after `if' keyword"));
bc18fbb5 12961 *cond_string = args;
5845583d
JB
12962
12963 args += strlen (args);
12964 }
12965
12966 /* Check that we do not have any more arguments. Anything else
12967 is unexpected. */
f7f9143b
JB
12968
12969 if (args[0] != '\0')
12970 error (_("Junk at end of expression"));
12971
9f757bf7
XR
12972 if (is_catch_handlers_cmd)
12973 {
12974 /* Catch handling of exceptions. */
12975 *ex = ada_catch_handlers;
12976 *excep_string = exception_name;
12977 }
bc18fbb5 12978 else if (exception_name.empty ())
f7f9143b
JB
12979 {
12980 /* Catch all exceptions. */
761269c8 12981 *ex = ada_catch_exception;
bc18fbb5 12982 excep_string->clear ();
f7f9143b 12983 }
bc18fbb5 12984 else if (exception_name == "unhandled")
f7f9143b
JB
12985 {
12986 /* Catch unhandled exceptions. */
761269c8 12987 *ex = ada_catch_exception_unhandled;
bc18fbb5 12988 excep_string->clear ();
f7f9143b
JB
12989 }
12990 else
12991 {
12992 /* Catch a specific exception. */
761269c8 12993 *ex = ada_catch_exception;
28010a5d 12994 *excep_string = exception_name;
f7f9143b
JB
12995 }
12996}
12997
12998/* Return the name of the symbol on which we should break in order to
12999 implement a catchpoint of the EX kind. */
13000
13001static const char *
761269c8 13002ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13003{
3eecfa55
JB
13004 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13005
13006 gdb_assert (data->exception_info != NULL);
0259addd 13007
f7f9143b
JB
13008 switch (ex)
13009 {
761269c8 13010 case ada_catch_exception:
3eecfa55 13011 return (data->exception_info->catch_exception_sym);
f7f9143b 13012 break;
761269c8 13013 case ada_catch_exception_unhandled:
3eecfa55 13014 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13015 break;
761269c8 13016 case ada_catch_assert:
3eecfa55 13017 return (data->exception_info->catch_assert_sym);
f7f9143b 13018 break;
9f757bf7
XR
13019 case ada_catch_handlers:
13020 return (data->exception_info->catch_handlers_sym);
13021 break;
f7f9143b
JB
13022 default:
13023 internal_error (__FILE__, __LINE__,
13024 _("unexpected catchpoint kind (%d)"), ex);
13025 }
13026}
13027
13028/* Return the breakpoint ops "virtual table" used for catchpoints
13029 of the EX kind. */
13030
c0a91b2b 13031static const struct breakpoint_ops *
761269c8 13032ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13033{
13034 switch (ex)
13035 {
761269c8 13036 case ada_catch_exception:
f7f9143b
JB
13037 return (&catch_exception_breakpoint_ops);
13038 break;
761269c8 13039 case ada_catch_exception_unhandled:
f7f9143b
JB
13040 return (&catch_exception_unhandled_breakpoint_ops);
13041 break;
761269c8 13042 case ada_catch_assert:
f7f9143b
JB
13043 return (&catch_assert_breakpoint_ops);
13044 break;
9f757bf7
XR
13045 case ada_catch_handlers:
13046 return (&catch_handlers_breakpoint_ops);
13047 break;
f7f9143b
JB
13048 default:
13049 internal_error (__FILE__, __LINE__,
13050 _("unexpected catchpoint kind (%d)"), ex);
13051 }
13052}
13053
13054/* Return the condition that will be used to match the current exception
13055 being raised with the exception that the user wants to catch. This
13056 assumes that this condition is used when the inferior just triggered
13057 an exception catchpoint.
cb7de75e 13058 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13059
cb7de75e 13060static std::string
9f757bf7
XR
13061ada_exception_catchpoint_cond_string (const char *excep_string,
13062 enum ada_exception_catchpoint_kind ex)
f7f9143b 13063{
3d0b0fa3 13064 int i;
cb7de75e 13065 std::string result;
2ff0a947 13066 const char *name;
9f757bf7
XR
13067
13068 if (ex == ada_catch_handlers)
13069 {
13070 /* For exception handlers catchpoints, the condition string does
13071 not use the same parameter as for the other exceptions. */
2ff0a947
TT
13072 name = ("long_integer (GNAT_GCC_exception_Access"
13073 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13074 }
13075 else
2ff0a947 13076 name = "long_integer (e)";
3d0b0fa3 13077
0963b4bd 13078 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13079 runtime units that have been compiled without debugging info; if
28010a5d 13080 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13081 exception (e.g. "constraint_error") then, during the evaluation
13082 of the condition expression, the symbol lookup on this name would
0963b4bd 13083 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13084 may then be set only on user-defined exceptions which have the
13085 same not-fully-qualified name (e.g. my_package.constraint_error).
13086
13087 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13088 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13089 exception constraint_error" is rewritten into "catch exception
13090 standard.constraint_error".
13091
13092 If an exception named contraint_error is defined in another package of
13093 the inferior program, then the only way to specify this exception as a
13094 breakpoint condition is to use its fully-qualified named:
2ff0a947
TT
13095 e.g. my_package.constraint_error.
13096
13097 Furthermore, in some situations a standard exception's symbol may
13098 be present in more than one objfile, because the compiler may
13099 choose to emit copy relocations for them. So, we have to compare
13100 against all the possible addresses. */
3d0b0fa3 13101
2ff0a947
TT
13102 /* Storage for a rewritten symbol name. */
13103 std::string std_name;
3d0b0fa3
JB
13104 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13105 {
28010a5d 13106 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13107 {
2ff0a947
TT
13108 std_name = std::string ("standard.") + excep_string;
13109 excep_string = std_name.c_str ();
9f757bf7 13110 break;
3d0b0fa3
JB
13111 }
13112 }
9f757bf7 13113
2ff0a947
TT
13114 excep_string = ada_encode (excep_string);
13115 std::vector<struct bound_minimal_symbol> symbols
13116 = ada_lookup_simple_minsyms (excep_string);
bde09ab7 13117 for (const bound_minimal_symbol &msym : symbols)
2ff0a947
TT
13118 {
13119 if (!result.empty ())
13120 result += " or ";
13121 string_appendf (result, "%s = %s", name,
13122 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13123 }
9f757bf7 13124
9f757bf7 13125 return result;
f7f9143b
JB
13126}
13127
13128/* Return the symtab_and_line that should be used to insert an exception
13129 catchpoint of the TYPE kind.
13130
28010a5d
PA
13131 ADDR_STRING returns the name of the function where the real
13132 breakpoint that implements the catchpoints is set, depending on the
13133 type of catchpoint we need to create. */
f7f9143b
JB
13134
13135static struct symtab_and_line
bc18fbb5 13136ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 13137 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13138{
13139 const char *sym_name;
13140 struct symbol *sym;
f7f9143b 13141
0259addd
JB
13142 /* First, find out which exception support info to use. */
13143 ada_exception_support_info_sniffer ();
13144
13145 /* Then lookup the function on which we will break in order to catch
f7f9143b 13146 the Ada exceptions requested by the user. */
f7f9143b
JB
13147 sym_name = ada_exception_sym_name (ex);
13148 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13149
57aff202
JB
13150 if (sym == NULL)
13151 error (_("Catchpoint symbol not found: %s"), sym_name);
13152
13153 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13154 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13155
13156 /* Set ADDR_STRING. */
cc12f4a8 13157 *addr_string = sym_name;
f7f9143b 13158
f7f9143b 13159 /* Set OPS. */
4b9eee8c 13160 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13161
f17011e0 13162 return find_function_start_sal (sym, 1);
f7f9143b
JB
13163}
13164
b4a5b78b 13165/* Create an Ada exception catchpoint.
f7f9143b 13166
b4a5b78b 13167 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13168
bc18fbb5 13169 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13170 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13171 of the exception to which this catchpoint applies.
2df4d1d5 13172
bc18fbb5 13173 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13174
b4a5b78b
JB
13175 TEMPFLAG, if nonzero, means that the underlying breakpoint
13176 should be temporary.
28010a5d 13177
b4a5b78b 13178 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13179
349774ef 13180void
28010a5d 13181create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13182 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13183 const std::string &excep_string,
56ecd069 13184 const std::string &cond_string,
28010a5d 13185 int tempflag,
349774ef 13186 int disabled,
28010a5d
PA
13187 int from_tty)
13188{
cc12f4a8 13189 std::string addr_string;
b4a5b78b 13190 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13191 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13192
b270e6f9 13193 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
cc12f4a8 13194 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 13195 ops, tempflag, disabled, from_tty);
28010a5d 13196 c->excep_string = excep_string;
9f757bf7 13197 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13198 if (!cond_string.empty ())
13199 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13200 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13201}
13202
9ac4176b
PA
13203/* Implement the "catch exception" command. */
13204
13205static void
eb4c3f4a 13206catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13207 struct cmd_list_element *command)
13208{
a121b7c1 13209 const char *arg = arg_entry;
9ac4176b
PA
13210 struct gdbarch *gdbarch = get_current_arch ();
13211 int tempflag;
761269c8 13212 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13213 std::string excep_string;
56ecd069 13214 std::string cond_string;
9ac4176b
PA
13215
13216 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13217
13218 if (!arg)
13219 arg = "";
9f757bf7 13220 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13221 &cond_string);
9f757bf7
XR
13222 create_ada_exception_catchpoint (gdbarch, ex_kind,
13223 excep_string, cond_string,
13224 tempflag, 1 /* enabled */,
13225 from_tty);
13226}
13227
13228/* Implement the "catch handlers" command. */
13229
13230static void
13231catch_ada_handlers_command (const char *arg_entry, int from_tty,
13232 struct cmd_list_element *command)
13233{
13234 const char *arg = arg_entry;
13235 struct gdbarch *gdbarch = get_current_arch ();
13236 int tempflag;
13237 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13238 std::string excep_string;
56ecd069 13239 std::string cond_string;
9f757bf7
XR
13240
13241 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13242
13243 if (!arg)
13244 arg = "";
13245 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13246 &cond_string);
b4a5b78b
JB
13247 create_ada_exception_catchpoint (gdbarch, ex_kind,
13248 excep_string, cond_string,
349774ef
JB
13249 tempflag, 1 /* enabled */,
13250 from_tty);
9ac4176b
PA
13251}
13252
71bed2db
TT
13253/* Completion function for the Ada "catch" commands. */
13254
13255static void
13256catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13257 const char *text, const char *word)
13258{
13259 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13260
13261 for (const ada_exc_info &info : exceptions)
13262 {
13263 if (startswith (info.name, word))
b02f78f9 13264 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
13265 }
13266}
13267
b4a5b78b 13268/* Split the arguments specified in a "catch assert" command.
5845583d 13269
b4a5b78b
JB
13270 ARGS contains the command's arguments (or the empty string if
13271 no arguments were passed).
5845583d
JB
13272
13273 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13274 (the memory needs to be deallocated after use). */
5845583d 13275
b4a5b78b 13276static void
56ecd069 13277catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13278{
f1735a53 13279 args = skip_spaces (args);
f7f9143b 13280
5845583d 13281 /* Check whether a condition was provided. */
61012eef 13282 if (startswith (args, "if")
5845583d 13283 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13284 {
5845583d 13285 args += 2;
f1735a53 13286 args = skip_spaces (args);
5845583d
JB
13287 if (args[0] == '\0')
13288 error (_("condition missing after `if' keyword"));
56ecd069 13289 cond_string.assign (args);
f7f9143b
JB
13290 }
13291
5845583d
JB
13292 /* Otherwise, there should be no other argument at the end of
13293 the command. */
13294 else if (args[0] != '\0')
13295 error (_("Junk at end of arguments."));
f7f9143b
JB
13296}
13297
9ac4176b
PA
13298/* Implement the "catch assert" command. */
13299
13300static void
eb4c3f4a 13301catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13302 struct cmd_list_element *command)
13303{
a121b7c1 13304 const char *arg = arg_entry;
9ac4176b
PA
13305 struct gdbarch *gdbarch = get_current_arch ();
13306 int tempflag;
56ecd069 13307 std::string cond_string;
9ac4176b
PA
13308
13309 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13310
13311 if (!arg)
13312 arg = "";
56ecd069 13313 catch_ada_assert_command_split (arg, cond_string);
761269c8 13314 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13315 "", cond_string,
349774ef
JB
13316 tempflag, 1 /* enabled */,
13317 from_tty);
9ac4176b 13318}
778865d3
JB
13319
13320/* Return non-zero if the symbol SYM is an Ada exception object. */
13321
13322static int
13323ada_is_exception_sym (struct symbol *sym)
13324{
a737d952 13325 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13326
13327 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13328 && SYMBOL_CLASS (sym) != LOC_BLOCK
13329 && SYMBOL_CLASS (sym) != LOC_CONST
13330 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13331 && type_name != NULL && strcmp (type_name, "exception") == 0);
13332}
13333
13334/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13335 Ada exception object. This matches all exceptions except the ones
13336 defined by the Ada language. */
13337
13338static int
13339ada_is_non_standard_exception_sym (struct symbol *sym)
13340{
13341 int i;
13342
13343 if (!ada_is_exception_sym (sym))
13344 return 0;
13345
13346 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13347 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13348 return 0; /* A standard exception. */
13349
13350 /* Numeric_Error is also a standard exception, so exclude it.
13351 See the STANDARD_EXC description for more details as to why
13352 this exception is not listed in that array. */
13353 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13354 return 0;
13355
13356 return 1;
13357}
13358
ab816a27 13359/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13360 objects.
13361
13362 The comparison is determined first by exception name, and then
13363 by exception address. */
13364
ab816a27 13365bool
cc536b21 13366ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13367{
778865d3
JB
13368 int result;
13369
ab816a27
TT
13370 result = strcmp (name, other.name);
13371 if (result < 0)
13372 return true;
13373 if (result == 0 && addr < other.addr)
13374 return true;
13375 return false;
13376}
778865d3 13377
ab816a27 13378bool
cc536b21 13379ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13380{
13381 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13382}
13383
13384/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13385 routine, but keeping the first SKIP elements untouched.
13386
13387 All duplicates are also removed. */
13388
13389static void
ab816a27 13390sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13391 int skip)
13392{
ab816a27
TT
13393 std::sort (exceptions->begin () + skip, exceptions->end ());
13394 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13395 exceptions->end ());
778865d3
JB
13396}
13397
778865d3
JB
13398/* Add all exceptions defined by the Ada standard whose name match
13399 a regular expression.
13400
13401 If PREG is not NULL, then this regexp_t object is used to
13402 perform the symbol name matching. Otherwise, no name-based
13403 filtering is performed.
13404
13405 EXCEPTIONS is a vector of exceptions to which matching exceptions
13406 gets pushed. */
13407
13408static void
2d7cc5c7 13409ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13410 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13411{
13412 int i;
13413
13414 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13415 {
13416 if (preg == NULL
2d7cc5c7 13417 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13418 {
13419 struct bound_minimal_symbol msymbol
13420 = ada_lookup_simple_minsym (standard_exc[i]);
13421
13422 if (msymbol.minsym != NULL)
13423 {
13424 struct ada_exc_info info
77e371c0 13425 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13426
ab816a27 13427 exceptions->push_back (info);
778865d3
JB
13428 }
13429 }
13430 }
13431}
13432
13433/* Add all Ada exceptions defined locally and accessible from the given
13434 FRAME.
13435
13436 If PREG is not NULL, then this regexp_t object is used to
13437 perform the symbol name matching. Otherwise, no name-based
13438 filtering is performed.
13439
13440 EXCEPTIONS is a vector of exceptions to which matching exceptions
13441 gets pushed. */
13442
13443static void
2d7cc5c7
PA
13444ada_add_exceptions_from_frame (compiled_regex *preg,
13445 struct frame_info *frame,
ab816a27 13446 std::vector<ada_exc_info> *exceptions)
778865d3 13447{
3977b71f 13448 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13449
13450 while (block != 0)
13451 {
13452 struct block_iterator iter;
13453 struct symbol *sym;
13454
13455 ALL_BLOCK_SYMBOLS (block, iter, sym)
13456 {
13457 switch (SYMBOL_CLASS (sym))
13458 {
13459 case LOC_TYPEDEF:
13460 case LOC_BLOCK:
13461 case LOC_CONST:
13462 break;
13463 default:
13464 if (ada_is_exception_sym (sym))
13465 {
13466 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13467 SYMBOL_VALUE_ADDRESS (sym)};
13468
ab816a27 13469 exceptions->push_back (info);
778865d3
JB
13470 }
13471 }
13472 }
13473 if (BLOCK_FUNCTION (block) != NULL)
13474 break;
13475 block = BLOCK_SUPERBLOCK (block);
13476 }
13477}
13478
14bc53a8
PA
13479/* Return true if NAME matches PREG or if PREG is NULL. */
13480
13481static bool
2d7cc5c7 13482name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13483{
13484 return (preg == NULL
f945dedf 13485 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13486}
13487
778865d3
JB
13488/* Add all exceptions defined globally whose name name match
13489 a regular expression, excluding standard exceptions.
13490
13491 The reason we exclude standard exceptions is that they need
13492 to be handled separately: Standard exceptions are defined inside
13493 a runtime unit which is normally not compiled with debugging info,
13494 and thus usually do not show up in our symbol search. However,
13495 if the unit was in fact built with debugging info, we need to
13496 exclude them because they would duplicate the entry we found
13497 during the special loop that specifically searches for those
13498 standard exceptions.
13499
13500 If PREG is not NULL, then this regexp_t object is used to
13501 perform the symbol name matching. Otherwise, no name-based
13502 filtering is performed.
13503
13504 EXCEPTIONS is a vector of exceptions to which matching exceptions
13505 gets pushed. */
13506
13507static void
2d7cc5c7 13508ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13509 std::vector<ada_exc_info> *exceptions)
778865d3 13510{
14bc53a8
PA
13511 /* In Ada, the symbol "search name" is a linkage name, whereas the
13512 regular expression used to do the matching refers to the natural
13513 name. So match against the decoded name. */
13514 expand_symtabs_matching (NULL,
b5ec771e 13515 lookup_name_info::match_any (),
14bc53a8
PA
13516 [&] (const char *search_name)
13517 {
f945dedf
CB
13518 std::string decoded = ada_decode (search_name);
13519 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13520 },
13521 NULL,
13522 VARIABLES_DOMAIN);
778865d3 13523
2030c079 13524 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13525 {
b669c953 13526 for (compunit_symtab *s : objfile->compunits ())
778865d3 13527 {
d8aeb77f
TT
13528 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13529 int i;
778865d3 13530
d8aeb77f
TT
13531 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13532 {
582942f4 13533 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13534 struct block_iterator iter;
13535 struct symbol *sym;
778865d3 13536
d8aeb77f
TT
13537 ALL_BLOCK_SYMBOLS (b, iter, sym)
13538 if (ada_is_non_standard_exception_sym (sym)
13539 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13540 {
13541 struct ada_exc_info info
13542 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13543
13544 exceptions->push_back (info);
13545 }
13546 }
778865d3
JB
13547 }
13548 }
13549}
13550
13551/* Implements ada_exceptions_list with the regular expression passed
13552 as a regex_t, rather than a string.
13553
13554 If not NULL, PREG is used to filter out exceptions whose names
13555 do not match. Otherwise, all exceptions are listed. */
13556
ab816a27 13557static std::vector<ada_exc_info>
2d7cc5c7 13558ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13559{
ab816a27 13560 std::vector<ada_exc_info> result;
778865d3
JB
13561 int prev_len;
13562
13563 /* First, list the known standard exceptions. These exceptions
13564 need to be handled separately, as they are usually defined in
13565 runtime units that have been compiled without debugging info. */
13566
13567 ada_add_standard_exceptions (preg, &result);
13568
13569 /* Next, find all exceptions whose scope is local and accessible
13570 from the currently selected frame. */
13571
13572 if (has_stack_frames ())
13573 {
ab816a27 13574 prev_len = result.size ();
778865d3
JB
13575 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13576 &result);
ab816a27 13577 if (result.size () > prev_len)
778865d3
JB
13578 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13579 }
13580
13581 /* Add all exceptions whose scope is global. */
13582
ab816a27 13583 prev_len = result.size ();
778865d3 13584 ada_add_global_exceptions (preg, &result);
ab816a27 13585 if (result.size () > prev_len)
778865d3
JB
13586 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13587
778865d3
JB
13588 return result;
13589}
13590
13591/* Return a vector of ada_exc_info.
13592
13593 If REGEXP is NULL, all exceptions are included in the result.
13594 Otherwise, it should contain a valid regular expression,
13595 and only the exceptions whose names match that regular expression
13596 are included in the result.
13597
13598 The exceptions are sorted in the following order:
13599 - Standard exceptions (defined by the Ada language), in
13600 alphabetical order;
13601 - Exceptions only visible from the current frame, in
13602 alphabetical order;
13603 - Exceptions whose scope is global, in alphabetical order. */
13604
ab816a27 13605std::vector<ada_exc_info>
778865d3
JB
13606ada_exceptions_list (const char *regexp)
13607{
2d7cc5c7
PA
13608 if (regexp == NULL)
13609 return ada_exceptions_list_1 (NULL);
778865d3 13610
2d7cc5c7
PA
13611 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13612 return ada_exceptions_list_1 (&reg);
778865d3
JB
13613}
13614
13615/* Implement the "info exceptions" command. */
13616
13617static void
1d12d88f 13618info_exceptions_command (const char *regexp, int from_tty)
778865d3 13619{
778865d3 13620 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13621
ab816a27 13622 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13623
13624 if (regexp != NULL)
13625 printf_filtered
13626 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13627 else
13628 printf_filtered (_("All defined Ada exceptions:\n"));
13629
ab816a27
TT
13630 for (const ada_exc_info &info : exceptions)
13631 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13632}
13633
4c4b4cd2
PH
13634 /* Operators */
13635/* Information about operators given special treatment in functions
13636 below. */
13637/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13638
13639#define ADA_OPERATORS \
13640 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13641 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13642 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13643 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13644 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13645 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13646 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13647 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13648 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13649 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13650 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13651 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13652 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13653 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13654 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13655 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13656 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13657 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13658 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13659
13660static void
554794dc
SDJ
13661ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13662 int *argsp)
4c4b4cd2
PH
13663{
13664 switch (exp->elts[pc - 1].opcode)
13665 {
76a01679 13666 default:
4c4b4cd2
PH
13667 operator_length_standard (exp, pc, oplenp, argsp);
13668 break;
13669
13670#define OP_DEFN(op, len, args, binop) \
13671 case op: *oplenp = len; *argsp = args; break;
13672 ADA_OPERATORS;
13673#undef OP_DEFN
52ce6436
PH
13674
13675 case OP_AGGREGATE:
13676 *oplenp = 3;
13677 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13678 break;
13679
13680 case OP_CHOICES:
13681 *oplenp = 3;
13682 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13683 break;
4c4b4cd2
PH
13684 }
13685}
13686
c0201579
JK
13687/* Implementation of the exp_descriptor method operator_check. */
13688
13689static int
13690ada_operator_check (struct expression *exp, int pos,
13691 int (*objfile_func) (struct objfile *objfile, void *data),
13692 void *data)
13693{
13694 const union exp_element *const elts = exp->elts;
13695 struct type *type = NULL;
13696
13697 switch (elts[pos].opcode)
13698 {
13699 case UNOP_IN_RANGE:
13700 case UNOP_QUAL:
13701 type = elts[pos + 1].type;
13702 break;
13703
13704 default:
13705 return operator_check_standard (exp, pos, objfile_func, data);
13706 }
13707
13708 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13709
13710 if (type && TYPE_OBJFILE (type)
13711 && (*objfile_func) (TYPE_OBJFILE (type), data))
13712 return 1;
13713
13714 return 0;
13715}
13716
a121b7c1 13717static const char *
4c4b4cd2
PH
13718ada_op_name (enum exp_opcode opcode)
13719{
13720 switch (opcode)
13721 {
76a01679 13722 default:
4c4b4cd2 13723 return op_name_standard (opcode);
52ce6436 13724
4c4b4cd2
PH
13725#define OP_DEFN(op, len, args, binop) case op: return #op;
13726 ADA_OPERATORS;
13727#undef OP_DEFN
52ce6436
PH
13728
13729 case OP_AGGREGATE:
13730 return "OP_AGGREGATE";
13731 case OP_CHOICES:
13732 return "OP_CHOICES";
13733 case OP_NAME:
13734 return "OP_NAME";
4c4b4cd2
PH
13735 }
13736}
13737
13738/* As for operator_length, but assumes PC is pointing at the first
13739 element of the operator, and gives meaningful results only for the
52ce6436 13740 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13741
13742static void
76a01679
JB
13743ada_forward_operator_length (struct expression *exp, int pc,
13744 int *oplenp, int *argsp)
4c4b4cd2 13745{
76a01679 13746 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13747 {
13748 default:
13749 *oplenp = *argsp = 0;
13750 break;
52ce6436 13751
4c4b4cd2
PH
13752#define OP_DEFN(op, len, args, binop) \
13753 case op: *oplenp = len; *argsp = args; break;
13754 ADA_OPERATORS;
13755#undef OP_DEFN
52ce6436
PH
13756
13757 case OP_AGGREGATE:
13758 *oplenp = 3;
13759 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13760 break;
13761
13762 case OP_CHOICES:
13763 *oplenp = 3;
13764 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13765 break;
13766
13767 case OP_STRING:
13768 case OP_NAME:
13769 {
13770 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13771
52ce6436
PH
13772 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13773 *argsp = 0;
13774 break;
13775 }
4c4b4cd2
PH
13776 }
13777}
13778
13779static int
13780ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13781{
13782 enum exp_opcode op = exp->elts[elt].opcode;
13783 int oplen, nargs;
13784 int pc = elt;
13785 int i;
76a01679 13786
4c4b4cd2
PH
13787 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13788
76a01679 13789 switch (op)
4c4b4cd2 13790 {
76a01679 13791 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13792 case OP_ATR_FIRST:
13793 case OP_ATR_LAST:
13794 case OP_ATR_LENGTH:
13795 case OP_ATR_IMAGE:
13796 case OP_ATR_MAX:
13797 case OP_ATR_MIN:
13798 case OP_ATR_MODULUS:
13799 case OP_ATR_POS:
13800 case OP_ATR_SIZE:
13801 case OP_ATR_TAG:
13802 case OP_ATR_VAL:
13803 break;
13804
13805 case UNOP_IN_RANGE:
13806 case UNOP_QUAL:
323e0a4a
AC
13807 /* XXX: gdb_sprint_host_address, type_sprint */
13808 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13809 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13810 fprintf_filtered (stream, " (");
13811 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13812 fprintf_filtered (stream, ")");
13813 break;
13814 case BINOP_IN_BOUNDS:
52ce6436
PH
13815 fprintf_filtered (stream, " (%d)",
13816 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13817 break;
13818 case TERNOP_IN_RANGE:
13819 break;
13820
52ce6436
PH
13821 case OP_AGGREGATE:
13822 case OP_OTHERS:
13823 case OP_DISCRETE_RANGE:
13824 case OP_POSITIONAL:
13825 case OP_CHOICES:
13826 break;
13827
13828 case OP_NAME:
13829 case OP_STRING:
13830 {
13831 char *name = &exp->elts[elt + 2].string;
13832 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13833
52ce6436
PH
13834 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13835 break;
13836 }
13837
4c4b4cd2
PH
13838 default:
13839 return dump_subexp_body_standard (exp, stream, elt);
13840 }
13841
13842 elt += oplen;
13843 for (i = 0; i < nargs; i += 1)
13844 elt = dump_subexp (exp, stream, elt);
13845
13846 return elt;
13847}
13848
13849/* The Ada extension of print_subexp (q.v.). */
13850
76a01679
JB
13851static void
13852ada_print_subexp (struct expression *exp, int *pos,
13853 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13854{
52ce6436 13855 int oplen, nargs, i;
4c4b4cd2
PH
13856 int pc = *pos;
13857 enum exp_opcode op = exp->elts[pc].opcode;
13858
13859 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13860
52ce6436 13861 *pos += oplen;
4c4b4cd2
PH
13862 switch (op)
13863 {
13864 default:
52ce6436 13865 *pos -= oplen;
4c4b4cd2
PH
13866 print_subexp_standard (exp, pos, stream, prec);
13867 return;
13868
13869 case OP_VAR_VALUE:
4c4b4cd2
PH
13870 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13871 return;
13872
13873 case BINOP_IN_BOUNDS:
323e0a4a 13874 /* XXX: sprint_subexp */
4c4b4cd2 13875 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13876 fputs_filtered (" in ", stream);
4c4b4cd2 13877 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13878 fputs_filtered ("'range", stream);
4c4b4cd2 13879 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13880 fprintf_filtered (stream, "(%ld)",
13881 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13882 return;
13883
13884 case TERNOP_IN_RANGE:
4c4b4cd2 13885 if (prec >= PREC_EQUAL)
76a01679 13886 fputs_filtered ("(", stream);
323e0a4a 13887 /* XXX: sprint_subexp */
4c4b4cd2 13888 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13889 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13890 print_subexp (exp, pos, stream, PREC_EQUAL);
13891 fputs_filtered (" .. ", stream);
13892 print_subexp (exp, pos, stream, PREC_EQUAL);
13893 if (prec >= PREC_EQUAL)
76a01679
JB
13894 fputs_filtered (")", stream);
13895 return;
4c4b4cd2
PH
13896
13897 case OP_ATR_FIRST:
13898 case OP_ATR_LAST:
13899 case OP_ATR_LENGTH:
13900 case OP_ATR_IMAGE:
13901 case OP_ATR_MAX:
13902 case OP_ATR_MIN:
13903 case OP_ATR_MODULUS:
13904 case OP_ATR_POS:
13905 case OP_ATR_SIZE:
13906 case OP_ATR_TAG:
13907 case OP_ATR_VAL:
4c4b4cd2 13908 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13909 {
13910 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13911 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13912 &type_print_raw_options);
76a01679
JB
13913 *pos += 3;
13914 }
4c4b4cd2 13915 else
76a01679 13916 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13917 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13918 if (nargs > 1)
76a01679
JB
13919 {
13920 int tem;
5b4ee69b 13921
76a01679
JB
13922 for (tem = 1; tem < nargs; tem += 1)
13923 {
13924 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13925 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13926 }
13927 fputs_filtered (")", stream);
13928 }
4c4b4cd2 13929 return;
14f9c5c9 13930
4c4b4cd2 13931 case UNOP_QUAL:
4c4b4cd2
PH
13932 type_print (exp->elts[pc + 1].type, "", stream, 0);
13933 fputs_filtered ("'(", stream);
13934 print_subexp (exp, pos, stream, PREC_PREFIX);
13935 fputs_filtered (")", stream);
13936 return;
14f9c5c9 13937
4c4b4cd2 13938 case UNOP_IN_RANGE:
323e0a4a 13939 /* XXX: sprint_subexp */
4c4b4cd2 13940 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13941 fputs_filtered (" in ", stream);
79d43c61
TT
13942 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13943 &type_print_raw_options);
4c4b4cd2 13944 return;
52ce6436
PH
13945
13946 case OP_DISCRETE_RANGE:
13947 print_subexp (exp, pos, stream, PREC_SUFFIX);
13948 fputs_filtered ("..", stream);
13949 print_subexp (exp, pos, stream, PREC_SUFFIX);
13950 return;
13951
13952 case OP_OTHERS:
13953 fputs_filtered ("others => ", stream);
13954 print_subexp (exp, pos, stream, PREC_SUFFIX);
13955 return;
13956
13957 case OP_CHOICES:
13958 for (i = 0; i < nargs-1; i += 1)
13959 {
13960 if (i > 0)
13961 fputs_filtered ("|", stream);
13962 print_subexp (exp, pos, stream, PREC_SUFFIX);
13963 }
13964 fputs_filtered (" => ", stream);
13965 print_subexp (exp, pos, stream, PREC_SUFFIX);
13966 return;
13967
13968 case OP_POSITIONAL:
13969 print_subexp (exp, pos, stream, PREC_SUFFIX);
13970 return;
13971
13972 case OP_AGGREGATE:
13973 fputs_filtered ("(", stream);
13974 for (i = 0; i < nargs; i += 1)
13975 {
13976 if (i > 0)
13977 fputs_filtered (", ", stream);
13978 print_subexp (exp, pos, stream, PREC_SUFFIX);
13979 }
13980 fputs_filtered (")", stream);
13981 return;
4c4b4cd2
PH
13982 }
13983}
14f9c5c9
AS
13984
13985/* Table mapping opcodes into strings for printing operators
13986 and precedences of the operators. */
13987
d2e4a39e
AS
13988static const struct op_print ada_op_print_tab[] = {
13989 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13990 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13991 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13992 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13993 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13994 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13995 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13996 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13997 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13998 {">=", BINOP_GEQ, PREC_ORDER, 0},
13999 {">", BINOP_GTR, PREC_ORDER, 0},
14000 {"<", BINOP_LESS, PREC_ORDER, 0},
14001 {">>", BINOP_RSH, PREC_SHIFT, 0},
14002 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14003 {"+", BINOP_ADD, PREC_ADD, 0},
14004 {"-", BINOP_SUB, PREC_ADD, 0},
14005 {"&", BINOP_CONCAT, PREC_ADD, 0},
14006 {"*", BINOP_MUL, PREC_MUL, 0},
14007 {"/", BINOP_DIV, PREC_MUL, 0},
14008 {"rem", BINOP_REM, PREC_MUL, 0},
14009 {"mod", BINOP_MOD, PREC_MUL, 0},
14010 {"**", BINOP_EXP, PREC_REPEAT, 0},
14011 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14012 {"-", UNOP_NEG, PREC_PREFIX, 0},
14013 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14014 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14015 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14016 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14017 {".all", UNOP_IND, PREC_SUFFIX, 1},
14018 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14019 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14020 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14021};
14022\f
72d5681a
PH
14023enum ada_primitive_types {
14024 ada_primitive_type_int,
14025 ada_primitive_type_long,
14026 ada_primitive_type_short,
14027 ada_primitive_type_char,
14028 ada_primitive_type_float,
14029 ada_primitive_type_double,
14030 ada_primitive_type_void,
14031 ada_primitive_type_long_long,
14032 ada_primitive_type_long_double,
14033 ada_primitive_type_natural,
14034 ada_primitive_type_positive,
14035 ada_primitive_type_system_address,
08f49010 14036 ada_primitive_type_storage_offset,
72d5681a
PH
14037 nr_ada_primitive_types
14038};
6c038f32
PH
14039
14040static void
d4a9a881 14041ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14042 struct language_arch_info *lai)
14043{
d4a9a881 14044 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14045
72d5681a 14046 lai->primitive_type_vector
d4a9a881 14047 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14048 struct type *);
e9bb382b
UW
14049
14050 lai->primitive_type_vector [ada_primitive_type_int]
14051 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14052 0, "integer");
14053 lai->primitive_type_vector [ada_primitive_type_long]
14054 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14055 0, "long_integer");
14056 lai->primitive_type_vector [ada_primitive_type_short]
14057 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14058 0, "short_integer");
14059 lai->string_char_type
14060 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14061 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14062 lai->primitive_type_vector [ada_primitive_type_float]
14063 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14064 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14065 lai->primitive_type_vector [ada_primitive_type_double]
14066 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14067 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14068 lai->primitive_type_vector [ada_primitive_type_long_long]
14069 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14070 0, "long_long_integer");
14071 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14072 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14073 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14074 lai->primitive_type_vector [ada_primitive_type_natural]
14075 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14076 0, "natural");
14077 lai->primitive_type_vector [ada_primitive_type_positive]
14078 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14079 0, "positive");
14080 lai->primitive_type_vector [ada_primitive_type_void]
14081 = builtin->builtin_void;
14082
14083 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14084 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14085 "void"));
72d5681a
PH
14086 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14087 = "system__address";
fbb06eb1 14088
08f49010
XR
14089 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14090 type. This is a signed integral type whose size is the same as
14091 the size of addresses. */
14092 {
14093 unsigned int addr_length = TYPE_LENGTH
14094 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14095
14096 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14097 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14098 "storage_offset");
14099 }
14100
47e729a8 14101 lai->bool_type_symbol = NULL;
fbb06eb1 14102 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14103}
6c038f32
PH
14104\f
14105 /* Language vector */
14106
14107/* Not really used, but needed in the ada_language_defn. */
14108
14109static void
6c7a06a3 14110emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14111{
6c7a06a3 14112 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14113}
14114
14115static int
410a0ff2 14116parse (struct parser_state *ps)
6c038f32
PH
14117{
14118 warnings_issued = 0;
410a0ff2 14119 return ada_parse (ps);
6c038f32
PH
14120}
14121
14122static const struct exp_descriptor ada_exp_descriptor = {
14123 ada_print_subexp,
14124 ada_operator_length,
c0201579 14125 ada_operator_check,
6c038f32
PH
14126 ada_op_name,
14127 ada_dump_subexp_body,
14128 ada_evaluate_subexp
14129};
14130
b5ec771e
PA
14131/* symbol_name_matcher_ftype adapter for wild_match. */
14132
14133static bool
14134do_wild_match (const char *symbol_search_name,
14135 const lookup_name_info &lookup_name,
a207cff2 14136 completion_match_result *comp_match_res)
b5ec771e
PA
14137{
14138 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14139}
14140
14141/* symbol_name_matcher_ftype adapter for full_match. */
14142
14143static bool
14144do_full_match (const char *symbol_search_name,
14145 const lookup_name_info &lookup_name,
a207cff2 14146 completion_match_result *comp_match_res)
b5ec771e
PA
14147{
14148 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14149}
14150
a2cd4f14
JB
14151/* symbol_name_matcher_ftype for exact (verbatim) matches. */
14152
14153static bool
14154do_exact_match (const char *symbol_search_name,
14155 const lookup_name_info &lookup_name,
14156 completion_match_result *comp_match_res)
14157{
14158 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14159}
14160
b5ec771e
PA
14161/* Build the Ada lookup name for LOOKUP_NAME. */
14162
14163ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14164{
14165 const std::string &user_name = lookup_name.name ();
14166
14167 if (user_name[0] == '<')
14168 {
14169 if (user_name.back () == '>')
14170 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14171 else
14172 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14173 m_encoded_p = true;
14174 m_verbatim_p = true;
14175 m_wild_match_p = false;
14176 m_standard_p = false;
14177 }
14178 else
14179 {
14180 m_verbatim_p = false;
14181
14182 m_encoded_p = user_name.find ("__") != std::string::npos;
14183
14184 if (!m_encoded_p)
14185 {
14186 const char *folded = ada_fold_name (user_name.c_str ());
14187 const char *encoded = ada_encode_1 (folded, false);
14188 if (encoded != NULL)
14189 m_encoded_name = encoded;
14190 else
14191 m_encoded_name = user_name;
14192 }
14193 else
14194 m_encoded_name = user_name;
14195
14196 /* Handle the 'package Standard' special case. See description
14197 of m_standard_p. */
14198 if (startswith (m_encoded_name.c_str (), "standard__"))
14199 {
14200 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14201 m_standard_p = true;
14202 }
14203 else
14204 m_standard_p = false;
74ccd7f5 14205
b5ec771e
PA
14206 /* If the name contains a ".", then the user is entering a fully
14207 qualified entity name, and the match must not be done in wild
14208 mode. Similarly, if the user wants to complete what looks
14209 like an encoded name, the match must not be done in wild
14210 mode. Also, in the standard__ special case always do
14211 non-wild matching. */
14212 m_wild_match_p
14213 = (lookup_name.match_type () != symbol_name_match_type::FULL
14214 && !m_encoded_p
14215 && !m_standard_p
14216 && user_name.find ('.') == std::string::npos);
14217 }
14218}
14219
14220/* symbol_name_matcher_ftype method for Ada. This only handles
14221 completion mode. */
14222
14223static bool
14224ada_symbol_name_matches (const char *symbol_search_name,
14225 const lookup_name_info &lookup_name,
a207cff2 14226 completion_match_result *comp_match_res)
74ccd7f5 14227{
b5ec771e
PA
14228 return lookup_name.ada ().matches (symbol_search_name,
14229 lookup_name.match_type (),
a207cff2 14230 comp_match_res);
b5ec771e
PA
14231}
14232
de63c46b
PA
14233/* A name matcher that matches the symbol name exactly, with
14234 strcmp. */
14235
14236static bool
14237literal_symbol_name_matcher (const char *symbol_search_name,
14238 const lookup_name_info &lookup_name,
14239 completion_match_result *comp_match_res)
14240{
14241 const std::string &name = lookup_name.name ();
14242
14243 int cmp = (lookup_name.completion_mode ()
14244 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14245 : strcmp (symbol_search_name, name.c_str ()));
14246 if (cmp == 0)
14247 {
14248 if (comp_match_res != NULL)
14249 comp_match_res->set_match (symbol_search_name);
14250 return true;
14251 }
14252 else
14253 return false;
14254}
14255
b5ec771e
PA
14256/* Implement the "la_get_symbol_name_matcher" language_defn method for
14257 Ada. */
14258
14259static symbol_name_matcher_ftype *
14260ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14261{
de63c46b
PA
14262 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14263 return literal_symbol_name_matcher;
14264
b5ec771e
PA
14265 if (lookup_name.completion_mode ())
14266 return ada_symbol_name_matches;
74ccd7f5 14267 else
b5ec771e
PA
14268 {
14269 if (lookup_name.ada ().wild_match_p ())
14270 return do_wild_match;
a2cd4f14
JB
14271 else if (lookup_name.ada ().verbatim_p ())
14272 return do_exact_match;
b5ec771e
PA
14273 else
14274 return do_full_match;
14275 }
74ccd7f5
JB
14276}
14277
a5ee536b
JB
14278/* Implement the "la_read_var_value" language_defn method for Ada. */
14279
14280static struct value *
63e43d3a
PMR
14281ada_read_var_value (struct symbol *var, const struct block *var_block,
14282 struct frame_info *frame)
a5ee536b 14283{
a5ee536b
JB
14284 /* The only case where default_read_var_value is not sufficient
14285 is when VAR is a renaming... */
c0e70c62
TT
14286 if (frame != nullptr)
14287 {
14288 const struct block *frame_block = get_frame_block (frame, NULL);
14289 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14290 return ada_read_renaming_var_value (var, frame_block);
14291 }
a5ee536b
JB
14292
14293 /* This is a typical case where we expect the default_read_var_value
14294 function to work. */
63e43d3a 14295 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14296}
14297
56618e20
TT
14298static const char *ada_extensions[] =
14299{
14300 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14301};
14302
47e77640 14303extern const struct language_defn ada_language_defn = {
6c038f32 14304 "ada", /* Language name */
6abde28f 14305 "Ada",
6c038f32 14306 language_ada,
6c038f32 14307 range_check_off,
6c038f32
PH
14308 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14309 that's not quite what this means. */
6c038f32 14310 array_row_major,
9a044a89 14311 macro_expansion_no,
56618e20 14312 ada_extensions,
6c038f32
PH
14313 &ada_exp_descriptor,
14314 parse,
6c038f32
PH
14315 resolve,
14316 ada_printchar, /* Print a character constant */
14317 ada_printstr, /* Function to print string constant */
14318 emit_char, /* Function to print single char (not used) */
6c038f32 14319 ada_print_type, /* Print a type using appropriate syntax */
be942545 14320 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14321 ada_val_print, /* Print a value using appropriate syntax */
14322 ada_value_print, /* Print a top-level value */
a5ee536b 14323 ada_read_var_value, /* la_read_var_value */
6c038f32 14324 NULL, /* Language specific skip_trampoline */
2b2d9e11 14325 NULL, /* name_of_this */
59cc4834 14326 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14327 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14328 basic_lookup_transparent_type, /* lookup_transparent_type */
14329 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14330 ada_sniff_from_mangled_name,
0963b4bd
MS
14331 NULL, /* Language specific
14332 class_name_from_physname */
6c038f32
PH
14333 ada_op_print_tab, /* expression operators for printing */
14334 0, /* c-style arrays */
14335 1, /* String lower bound */
6c038f32 14336 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14337 ada_collect_symbol_completion_matches,
72d5681a 14338 ada_language_arch_info,
e79af960 14339 ada_print_array_index,
41f1b697 14340 default_pass_by_reference,
ae6a3a4c 14341 c_get_string,
e2b7af72 14342 ada_watch_location_expression,
b5ec771e 14343 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14344 ada_iterate_over_symbols,
5ffa0793 14345 default_search_name_hash,
a53b64ea 14346 &ada_varobj_ops,
bb2ec1b3 14347 NULL,
721b08c6 14348 NULL,
4be290b2 14349 ada_is_string_type,
721b08c6 14350 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14351};
14352
5bf03f13
JB
14353/* Command-list for the "set/show ada" prefix command. */
14354static struct cmd_list_element *set_ada_list;
14355static struct cmd_list_element *show_ada_list;
14356
14357/* Implement the "set ada" prefix command. */
14358
14359static void
981a3fb3 14360set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14361{
14362 printf_unfiltered (_(\
14363"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14364 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14365}
14366
14367/* Implement the "show ada" prefix command. */
14368
14369static void
981a3fb3 14370show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14371{
14372 cmd_show_list (show_ada_list, from_tty, "");
14373}
14374
2060206e
PA
14375static void
14376initialize_ada_catchpoint_ops (void)
14377{
14378 struct breakpoint_ops *ops;
14379
14380 initialize_breakpoint_ops ();
14381
14382 ops = &catch_exception_breakpoint_ops;
14383 *ops = bkpt_breakpoint_ops;
2060206e
PA
14384 ops->allocate_location = allocate_location_catch_exception;
14385 ops->re_set = re_set_catch_exception;
14386 ops->check_status = check_status_catch_exception;
14387 ops->print_it = print_it_catch_exception;
14388 ops->print_one = print_one_catch_exception;
14389 ops->print_mention = print_mention_catch_exception;
14390 ops->print_recreate = print_recreate_catch_exception;
14391
14392 ops = &catch_exception_unhandled_breakpoint_ops;
14393 *ops = bkpt_breakpoint_ops;
2060206e
PA
14394 ops->allocate_location = allocate_location_catch_exception_unhandled;
14395 ops->re_set = re_set_catch_exception_unhandled;
14396 ops->check_status = check_status_catch_exception_unhandled;
14397 ops->print_it = print_it_catch_exception_unhandled;
14398 ops->print_one = print_one_catch_exception_unhandled;
14399 ops->print_mention = print_mention_catch_exception_unhandled;
14400 ops->print_recreate = print_recreate_catch_exception_unhandled;
14401
14402 ops = &catch_assert_breakpoint_ops;
14403 *ops = bkpt_breakpoint_ops;
2060206e
PA
14404 ops->allocate_location = allocate_location_catch_assert;
14405 ops->re_set = re_set_catch_assert;
14406 ops->check_status = check_status_catch_assert;
14407 ops->print_it = print_it_catch_assert;
14408 ops->print_one = print_one_catch_assert;
14409 ops->print_mention = print_mention_catch_assert;
14410 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14411
14412 ops = &catch_handlers_breakpoint_ops;
14413 *ops = bkpt_breakpoint_ops;
14414 ops->allocate_location = allocate_location_catch_handlers;
14415 ops->re_set = re_set_catch_handlers;
14416 ops->check_status = check_status_catch_handlers;
14417 ops->print_it = print_it_catch_handlers;
14418 ops->print_one = print_one_catch_handlers;
14419 ops->print_mention = print_mention_catch_handlers;
14420 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14421}
14422
3d9434b5
JB
14423/* This module's 'new_objfile' observer. */
14424
14425static void
14426ada_new_objfile_observer (struct objfile *objfile)
14427{
14428 ada_clear_symbol_cache ();
14429}
14430
14431/* This module's 'free_objfile' observer. */
14432
14433static void
14434ada_free_objfile_observer (struct objfile *objfile)
14435{
14436 ada_clear_symbol_cache ();
14437}
14438
d2e4a39e 14439void
6c038f32 14440_initialize_ada_language (void)
14f9c5c9 14441{
2060206e
PA
14442 initialize_ada_catchpoint_ops ();
14443
5bf03f13 14444 add_prefix_cmd ("ada", no_class, set_ada_command,
590042fc 14445 _("Prefix command for changing Ada-specific settings."),
5bf03f13
JB
14446 &set_ada_list, "set ada ", 0, &setlist);
14447
14448 add_prefix_cmd ("ada", no_class, show_ada_command,
14449 _("Generic command for showing Ada-specific settings."),
14450 &show_ada_list, "show ada ", 0, &showlist);
14451
14452 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14453 &trust_pad_over_xvs, _("\
590042fc
PW
14454Enable or disable an optimization trusting PAD types over XVS types."), _("\
14455Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14456 _("\
14457This is related to the encoding used by the GNAT compiler. The debugger\n\
14458should normally trust the contents of PAD types, but certain older versions\n\
14459of GNAT have a bug that sometimes causes the information in the PAD type\n\
14460to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14461work around this bug. It is always safe to turn this option \"off\", but\n\
14462this incurs a slight performance penalty, so it is recommended to NOT change\n\
14463this option to \"off\" unless necessary."),
14464 NULL, NULL, &set_ada_list, &show_ada_list);
14465
d72413e6
PMR
14466 add_setshow_boolean_cmd ("print-signatures", class_vars,
14467 &print_signatures, _("\
14468Enable or disable the output of formal and return types for functions in the \
590042fc 14469overloads selection menu."), _("\
d72413e6 14470Show whether the output of formal and return types for functions in the \
590042fc 14471overloads selection menu is activated."),
d72413e6
PMR
14472 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14473
9ac4176b
PA
14474 add_catch_command ("exception", _("\
14475Catch Ada exceptions, when raised.\n\
9bf7038b 14476Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14477Without any argument, stop when any Ada exception is raised.\n\
14478If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14479being raised does not have a handler (and will therefore lead to the task's\n\
14480termination).\n\
14481Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14482raised is the same as ARG.\n\
14483CONDITION is a boolean expression that is evaluated to see whether the\n\
14484exception should cause a stop."),
9ac4176b 14485 catch_ada_exception_command,
71bed2db 14486 catch_ada_completer,
9ac4176b
PA
14487 CATCH_PERMANENT,
14488 CATCH_TEMPORARY);
9f757bf7
XR
14489
14490 add_catch_command ("handlers", _("\
14491Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14492Usage: catch handlers [ARG] [if CONDITION]\n\
14493Without any argument, stop when any Ada exception is handled.\n\
14494With an argument, catch only exceptions with the given name.\n\
14495CONDITION is a boolean expression that is evaluated to see whether the\n\
14496exception should cause a stop."),
9f757bf7 14497 catch_ada_handlers_command,
71bed2db 14498 catch_ada_completer,
9f757bf7
XR
14499 CATCH_PERMANENT,
14500 CATCH_TEMPORARY);
9ac4176b
PA
14501 add_catch_command ("assert", _("\
14502Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14503Usage: catch assert [if CONDITION]\n\
14504CONDITION is a boolean expression that is evaluated to see whether the\n\
14505exception should cause a stop."),
9ac4176b
PA
14506 catch_assert_command,
14507 NULL,
14508 CATCH_PERMANENT,
14509 CATCH_TEMPORARY);
14510
6c038f32 14511 varsize_limit = 65536;
3fcded8f
JB
14512 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14513 &varsize_limit, _("\
14514Set the maximum number of bytes allowed in a variable-size object."), _("\
14515Show the maximum number of bytes allowed in a variable-size object."), _("\
14516Attempts to access an object whose size is not a compile-time constant\n\
14517and exceeds this limit will cause an error."),
14518 NULL, NULL, &setlist, &showlist);
6c038f32 14519
778865d3
JB
14520 add_info ("exceptions", info_exceptions_command,
14521 _("\
14522List all Ada exception names.\n\
9bf7038b 14523Usage: info exceptions [REGEXP]\n\
778865d3
JB
14524If a regular expression is passed as an argument, only those matching\n\
14525the regular expression are listed."));
14526
c6044dd1
JB
14527 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14528 _("Set Ada maintenance-related variables."),
14529 &maint_set_ada_cmdlist, "maintenance set ada ",
14530 0/*allow-unknown*/, &maintenance_set_cmdlist);
14531
14532 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
590042fc 14533 _("Show Ada maintenance-related variables."),
c6044dd1
JB
14534 &maint_show_ada_cmdlist, "maintenance show ada ",
14535 0/*allow-unknown*/, &maintenance_show_cmdlist);
14536
14537 add_setshow_boolean_cmd
14538 ("ignore-descriptive-types", class_maintenance,
14539 &ada_ignore_descriptive_types_p,
14540 _("Set whether descriptive types generated by GNAT should be ignored."),
14541 _("Show whether descriptive types generated by GNAT should be ignored."),
14542 _("\
14543When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14544DWARF attribute."),
14545 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14546
459a2e4c
TT
14547 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14548 NULL, xcalloc, xfree);
6b69afc4 14549
3d9434b5 14550 /* The ada-lang observers. */
76727919
TT
14551 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14552 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14553 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14554}
This page took 3.629493 seconds and 4 git commands to generate.