gdb:
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
0b302171
JB
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
fa864999 60#include "gdb_vecs.h"
14f9c5c9 61
ccefe4c4 62#include "psymtab.h"
40bc484c 63#include "value.h"
956a9fb9 64#include "mi/mi-common.h"
9ac4176b 65#include "arch-utils.h"
28010a5d 66#include "exceptions.h"
0fcd72ba 67#include "cli/cli-utils.h"
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40658b94
PH
109static int full_match (const char *, const char *);
110
40bc484c 111static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 112
4c4b4cd2 113static void ada_add_block_symbols (struct obstack *,
76a01679 114 struct block *, const char *,
2570f2b7 115 domain_enum, struct objfile *, int);
14f9c5c9 116
4c4b4cd2 117static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 118
76a01679 119static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 120 struct block *);
14f9c5c9 121
4c4b4cd2
PH
122static int num_defns_collected (struct obstack *);
123
124static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 125
4c4b4cd2 126static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 127 struct type *);
14f9c5c9 128
d2e4a39e 129static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 130 struct symbol *, struct block *);
14f9c5c9 131
d2e4a39e 132static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 133
4c4b4cd2
PH
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 137
d2e4a39e 138static int numeric_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int integer_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int scalar_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int discrete_type_p (struct type *);
14f9c5c9 145
aeb5907d
JB
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
4c4b4cd2 154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 155 int, int, int *);
4c4b4cd2 156
d2e4a39e 157static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 158
b4ba55a1
JB
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
28c85d6c 170static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 171
d2e4a39e 172static struct type *to_static_fixed_type (struct type *);
f192137b 173static struct type *static_unwrap_type (struct type *type);
14f9c5c9 174
d2e4a39e 175static struct value *unwrap_value (struct value *);
14f9c5c9 176
ad82864c 177static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 178
ad82864c 179static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 180
ad82864c
JB
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
50810684 192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
73589123
PH
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
14f9c5c9 208
d2e4a39e 209static struct value *ada_coerce_ref (struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static LONGEST pos_atr (struct value *);
212
3cb382c9 213static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 214
d2e4a39e 215static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 216
4c4b4cd2
PH
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
14f9c5c9 219
4c4b4cd2
PH
220static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
0d5cff50 226static int find_struct_field (const char *, struct type *, int,
52ce6436 227 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
4c4b4cd2
PH
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab
PH
240
241static void check_size (const struct type *);
52ce6436
PH
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
247 struct expression *,
248 int *, enum noside);
52ce6436
PH
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
852dff6c
JB
274
275static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
276\f
277
76a01679 278
4c4b4cd2 279/* Maximum-sized dynamic type. */
14f9c5c9
AS
280static unsigned int varsize_limit;
281
4c4b4cd2
PH
282/* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284static char *ada_completer_word_break_characters =
285#ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287#else
14f9c5c9 288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 289#endif
14f9c5c9 290
4c4b4cd2 291/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 292static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 293 = "__gnat_ada_main_program_name";
14f9c5c9 294
4c4b4cd2
PH
295/* Limit on the number of warnings to raise per expression evaluation. */
296static int warning_limit = 2;
297
298/* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300static int warnings_issued = 0;
301
302static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304};
305
306static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308};
309
310/* Space for allocating results of ada_lookup_symbol_list. */
311static struct obstack symbol_list_obstack;
312
e802dbe0
JB
313 /* Inferior-specific data. */
314
315/* Per-inferior data for this module. */
316
317struct ada_inferior_data
318{
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
3eecfa55
JB
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
e802dbe0
JB
329};
330
331/* Our key to this module's inferior data. */
332static const struct inferior_data *ada_inferior_data;
333
334/* A cleanup routine for our inferior data. */
335static void
336ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337{
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343}
344
345/* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353static struct ada_inferior_data *
354get_ada_inferior_data (struct inferior *inf)
355{
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366}
367
368/* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371static void
372ada_inferior_exit (struct inferior *inf)
373{
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376}
377
4c4b4cd2
PH
378 /* Utilities */
379
720d1a40 380/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 381 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407static struct type *
408ada_typedef_target_type (struct type *type)
409{
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413}
414
41d27058
JB
415/* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419static const char *
420ada_unqualified_name (const char *decoded_name)
421{
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430}
431
432/* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435static char *
436add_angle_brackets (const char *str)
437{
438 static char *result = NULL;
439
440 xfree (result);
88c15c34 441 result = xstrprintf ("<%s>", str);
41d27058
JB
442 return result;
443}
96d887e8 444
4c4b4cd2
PH
445static char *
446ada_get_gdb_completer_word_break_characters (void)
447{
448 return ada_completer_word_break_characters;
449}
450
e79af960
JB
451/* Print an array element index using the Ada syntax. */
452
453static void
454ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 455 const struct value_print_options *options)
e79af960 456{
79a45b7d 457 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
458 fprintf_filtered (stream, " => ");
459}
460
f27cf670 461/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 463 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 464
f27cf670
AS
465void *
466grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 467{
d2e4a39e
AS
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
4c4b4cd2 472 *size = min_size;
f27cf670 473 vect = xrealloc (vect, *size * element_size);
d2e4a39e 474 }
f27cf670 475 return vect;
14f9c5c9
AS
476}
477
478/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 479 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
480
481static int
ebf56fd3 482field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
483{
484 int len = strlen (target);
5b4ee69b 485
d2e4a39e 486 return
4c4b4cd2
PH
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
14f9c5c9
AS
492}
493
494
872c8b51
JB
495/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
502
503int
504ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506{
507 int fieldno;
872c8b51
JB
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
512 return fieldno;
513
514 if (!maybe_missing)
323e0a4a 515 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 516 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
517
518 return -1;
519}
520
521/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
522
523int
d2e4a39e 524ada_name_prefix_len (const char *name)
14f9c5c9
AS
525{
526 if (name == NULL)
527 return 0;
d2e4a39e 528 else
14f9c5c9 529 {
d2e4a39e 530 const char *p = strstr (name, "___");
5b4ee69b 531
14f9c5c9 532 if (p == NULL)
4c4b4cd2 533 return strlen (name);
14f9c5c9 534 else
4c4b4cd2 535 return p - name;
14f9c5c9
AS
536 }
537}
538
4c4b4cd2
PH
539/* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
14f9c5c9 542static int
d2e4a39e 543is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
544{
545 int len1, len2;
5b4ee69b 546
14f9c5c9
AS
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
4c4b4cd2 551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
552}
553
4c4b4cd2
PH
554/* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
14f9c5c9 556
d2e4a39e 557static struct value *
4c4b4cd2 558coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 559{
61ee279c 560 type = ada_check_typedef (type);
df407dfe 561 if (value_type (val) == type)
4c4b4cd2 562 return val;
d2e4a39e 563 else
14f9c5c9 564 {
4c4b4cd2
PH
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
714e53ab 569 check_size (type);
4c4b4cd2 570
41e8491f
JK
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
74bcbdf3 580 set_value_component_location (result, val);
9bbda503
AC
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
42ae5230 583 set_value_address (result, value_address (val));
14f9c5c9
AS
584 return result;
585 }
586}
587
fc1a4b47
AC
588static const gdb_byte *
589cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
590{
591 if (valaddr == NULL)
592 return NULL;
593 else
594 return valaddr + offset;
595}
596
597static CORE_ADDR
ebf56fd3 598cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
599{
600 if (address == 0)
601 return 0;
d2e4a39e 602 else
14f9c5c9
AS
603 return address + offset;
604}
605
4c4b4cd2
PH
606/* Issue a warning (as for the definition of warning in utils.c, but
607 with exactly one argument rather than ...), unless the limit on the
608 number of warnings has passed during the evaluation of the current
609 expression. */
a2249542 610
77109804
AC
611/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
612 provided by "complaint". */
a0b31db1 613static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 614
14f9c5c9 615static void
a2249542 616lim_warning (const char *format, ...)
14f9c5c9 617{
a2249542 618 va_list args;
a2249542 619
5b4ee69b 620 va_start (args, format);
4c4b4cd2
PH
621 warnings_issued += 1;
622 if (warnings_issued <= warning_limit)
a2249542
MK
623 vwarning (format, args);
624
625 va_end (args);
4c4b4cd2
PH
626}
627
714e53ab
PH
628/* Issue an error if the size of an object of type T is unreasonable,
629 i.e. if it would be a bad idea to allocate a value of this type in
630 GDB. */
631
632static void
633check_size (const struct type *type)
634{
635 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 636 error (_("object size is larger than varsize-limit"));
714e53ab
PH
637}
638
0963b4bd 639/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 640static LONGEST
c3e5cd34 641max_of_size (int size)
4c4b4cd2 642{
76a01679 643 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 644
76a01679 645 return top_bit | (top_bit - 1);
4c4b4cd2
PH
646}
647
0963b4bd 648/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 649static LONGEST
c3e5cd34 650min_of_size (int size)
4c4b4cd2 651{
c3e5cd34 652 return -max_of_size (size) - 1;
4c4b4cd2
PH
653}
654
0963b4bd 655/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 656static ULONGEST
c3e5cd34 657umax_of_size (int size)
4c4b4cd2 658{
76a01679 659 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 660
76a01679 661 return top_bit | (top_bit - 1);
4c4b4cd2
PH
662}
663
0963b4bd 664/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
665static LONGEST
666max_of_type (struct type *t)
4c4b4cd2 667{
c3e5cd34
PH
668 if (TYPE_UNSIGNED (t))
669 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
670 else
671 return max_of_size (TYPE_LENGTH (t));
672}
673
0963b4bd 674/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
675static LONGEST
676min_of_type (struct type *t)
677{
678 if (TYPE_UNSIGNED (t))
679 return 0;
680 else
681 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
682}
683
684/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
685LONGEST
686ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 687{
76a01679 688 switch (TYPE_CODE (type))
4c4b4cd2
PH
689 {
690 case TYPE_CODE_RANGE:
690cc4eb 691 return TYPE_HIGH_BOUND (type);
4c4b4cd2 692 case TYPE_CODE_ENUM:
690cc4eb
PH
693 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
694 case TYPE_CODE_BOOL:
695 return 1;
696 case TYPE_CODE_CHAR:
76a01679 697 case TYPE_CODE_INT:
690cc4eb 698 return max_of_type (type);
4c4b4cd2 699 default:
43bbcdc2 700 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
701 }
702}
703
704/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
705LONGEST
706ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 707{
76a01679 708 switch (TYPE_CODE (type))
4c4b4cd2
PH
709 {
710 case TYPE_CODE_RANGE:
690cc4eb 711 return TYPE_LOW_BOUND (type);
4c4b4cd2 712 case TYPE_CODE_ENUM:
690cc4eb
PH
713 return TYPE_FIELD_BITPOS (type, 0);
714 case TYPE_CODE_BOOL:
715 return 0;
716 case TYPE_CODE_CHAR:
76a01679 717 case TYPE_CODE_INT:
690cc4eb 718 return min_of_type (type);
4c4b4cd2 719 default:
43bbcdc2 720 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
721 }
722}
723
724/* The identity on non-range types. For range types, the underlying
76a01679 725 non-range scalar type. */
4c4b4cd2
PH
726
727static struct type *
18af8284 728get_base_type (struct type *type)
4c4b4cd2
PH
729{
730 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
731 {
76a01679
JB
732 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
733 return type;
4c4b4cd2
PH
734 type = TYPE_TARGET_TYPE (type);
735 }
736 return type;
14f9c5c9 737}
41246937
JB
738
739/* Return a decoded version of the given VALUE. This means returning
740 a value whose type is obtained by applying all the GNAT-specific
741 encondings, making the resulting type a static but standard description
742 of the initial type. */
743
744struct value *
745ada_get_decoded_value (struct value *value)
746{
747 struct type *type = ada_check_typedef (value_type (value));
748
749 if (ada_is_array_descriptor_type (type)
750 || (ada_is_constrained_packed_array_type (type)
751 && TYPE_CODE (type) != TYPE_CODE_PTR))
752 {
753 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
754 value = ada_coerce_to_simple_array_ptr (value);
755 else
756 value = ada_coerce_to_simple_array (value);
757 }
758 else
759 value = ada_to_fixed_value (value);
760
761 return value;
762}
763
764/* Same as ada_get_decoded_value, but with the given TYPE.
765 Because there is no associated actual value for this type,
766 the resulting type might be a best-effort approximation in
767 the case of dynamic types. */
768
769struct type *
770ada_get_decoded_type (struct type *type)
771{
772 type = to_static_fixed_type (type);
773 if (ada_is_constrained_packed_array_type (type))
774 type = ada_coerce_to_simple_array_type (type);
775 return type;
776}
777
4c4b4cd2 778\f
76a01679 779
4c4b4cd2 780 /* Language Selection */
14f9c5c9
AS
781
782/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 783 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 784
14f9c5c9 785enum language
ccefe4c4 786ada_update_initial_language (enum language lang)
14f9c5c9 787{
d2e4a39e 788 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
789 (struct objfile *) NULL) != NULL)
790 return language_ada;
14f9c5c9
AS
791
792 return lang;
793}
96d887e8
PH
794
795/* If the main procedure is written in Ada, then return its name.
796 The result is good until the next call. Return NULL if the main
797 procedure doesn't appear to be in Ada. */
798
799char *
800ada_main_name (void)
801{
802 struct minimal_symbol *msym;
f9bc20b9 803 static char *main_program_name = NULL;
6c038f32 804
96d887e8
PH
805 /* For Ada, the name of the main procedure is stored in a specific
806 string constant, generated by the binder. Look for that symbol,
807 extract its address, and then read that string. If we didn't find
808 that string, then most probably the main procedure is not written
809 in Ada. */
810 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
811
812 if (msym != NULL)
813 {
f9bc20b9
JB
814 CORE_ADDR main_program_name_addr;
815 int err_code;
816
96d887e8
PH
817 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
818 if (main_program_name_addr == 0)
323e0a4a 819 error (_("Invalid address for Ada main program name."));
96d887e8 820
f9bc20b9
JB
821 xfree (main_program_name);
822 target_read_string (main_program_name_addr, &main_program_name,
823 1024, &err_code);
824
825 if (err_code != 0)
826 return NULL;
96d887e8
PH
827 return main_program_name;
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832}
14f9c5c9 833\f
4c4b4cd2 834 /* Symbols */
d2e4a39e 835
4c4b4cd2
PH
836/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
14f9c5c9 838
d2e4a39e
AS
839const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
14f9c5c9
AS
862};
863
4c4b4cd2
PH
864/* The "encoded" form of DECODED, according to GNAT conventions.
865 The result is valid until the next call to ada_encode. */
866
14f9c5c9 867char *
4c4b4cd2 868ada_encode (const char *decoded)
14f9c5c9 869{
4c4b4cd2
PH
870 static char *encoding_buffer = NULL;
871 static size_t encoding_buffer_size = 0;
d2e4a39e 872 const char *p;
14f9c5c9 873 int k;
d2e4a39e 874
4c4b4cd2 875 if (decoded == NULL)
14f9c5c9
AS
876 return NULL;
877
4c4b4cd2
PH
878 GROW_VECT (encoding_buffer, encoding_buffer_size,
879 2 * strlen (decoded) + 10);
14f9c5c9
AS
880
881 k = 0;
4c4b4cd2 882 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 883 {
cdc7bb92 884 if (*p == '.')
4c4b4cd2
PH
885 {
886 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
887 k += 2;
888 }
14f9c5c9 889 else if (*p == '"')
4c4b4cd2
PH
890 {
891 const struct ada_opname_map *mapping;
892
893 for (mapping = ada_opname_table;
1265e4aa
JB
894 mapping->encoded != NULL
895 && strncmp (mapping->decoded, p,
896 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
897 ;
898 if (mapping->encoded == NULL)
323e0a4a 899 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
900 strcpy (encoding_buffer + k, mapping->encoded);
901 k += strlen (mapping->encoded);
902 break;
903 }
d2e4a39e 904 else
4c4b4cd2
PH
905 {
906 encoding_buffer[k] = *p;
907 k += 1;
908 }
14f9c5c9
AS
909 }
910
4c4b4cd2
PH
911 encoding_buffer[k] = '\0';
912 return encoding_buffer;
14f9c5c9
AS
913}
914
915/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
916 quotes, unfolded, but with the quotes stripped away. Result good
917 to next call. */
918
d2e4a39e
AS
919char *
920ada_fold_name (const char *name)
14f9c5c9 921{
d2e4a39e 922 static char *fold_buffer = NULL;
14f9c5c9
AS
923 static size_t fold_buffer_size = 0;
924
925 int len = strlen (name);
d2e4a39e 926 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
927
928 if (name[0] == '\'')
929 {
d2e4a39e
AS
930 strncpy (fold_buffer, name + 1, len - 2);
931 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
932 }
933 else
934 {
935 int i;
5b4ee69b 936
14f9c5c9 937 for (i = 0; i <= len; i += 1)
4c4b4cd2 938 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
939 }
940
941 return fold_buffer;
942}
943
529cad9c
PH
944/* Return nonzero if C is either a digit or a lowercase alphabet character. */
945
946static int
947is_lower_alphanum (const char c)
948{
949 return (isdigit (c) || (isalpha (c) && islower (c)));
950}
951
c90092fe
JB
952/* ENCODED is the linkage name of a symbol and LEN contains its length.
953 This function saves in LEN the length of that same symbol name but
954 without either of these suffixes:
29480c32
JB
955 . .{DIGIT}+
956 . ${DIGIT}+
957 . ___{DIGIT}+
958 . __{DIGIT}+.
c90092fe 959
29480c32
JB
960 These are suffixes introduced by the compiler for entities such as
961 nested subprogram for instance, in order to avoid name clashes.
962 They do not serve any purpose for the debugger. */
963
964static void
965ada_remove_trailing_digits (const char *encoded, int *len)
966{
967 if (*len > 1 && isdigit (encoded[*len - 1]))
968 {
969 int i = *len - 2;
5b4ee69b 970
29480c32
JB
971 while (i > 0 && isdigit (encoded[i]))
972 i--;
973 if (i >= 0 && encoded[i] == '.')
974 *len = i;
975 else if (i >= 0 && encoded[i] == '$')
976 *len = i;
977 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
978 *len = i - 2;
979 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
980 *len = i - 1;
981 }
982}
983
984/* Remove the suffix introduced by the compiler for protected object
985 subprograms. */
986
987static void
988ada_remove_po_subprogram_suffix (const char *encoded, int *len)
989{
990 /* Remove trailing N. */
991
992 /* Protected entry subprograms are broken into two
993 separate subprograms: The first one is unprotected, and has
994 a 'N' suffix; the second is the protected version, and has
0963b4bd 995 the 'P' suffix. The second calls the first one after handling
29480c32
JB
996 the protection. Since the P subprograms are internally generated,
997 we leave these names undecoded, giving the user a clue that this
998 entity is internal. */
999
1000 if (*len > 1
1001 && encoded[*len - 1] == 'N'
1002 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1003 *len = *len - 1;
1004}
1005
69fadcdf
JB
1006/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1007
1008static void
1009ada_remove_Xbn_suffix (const char *encoded, int *len)
1010{
1011 int i = *len - 1;
1012
1013 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1014 i--;
1015
1016 if (encoded[i] != 'X')
1017 return;
1018
1019 if (i == 0)
1020 return;
1021
1022 if (isalnum (encoded[i-1]))
1023 *len = i;
1024}
1025
29480c32
JB
1026/* If ENCODED follows the GNAT entity encoding conventions, then return
1027 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1028 replaced by ENCODED.
14f9c5c9 1029
4c4b4cd2 1030 The resulting string is valid until the next call of ada_decode.
29480c32 1031 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1032 is returned. */
1033
1034const char *
1035ada_decode (const char *encoded)
14f9c5c9
AS
1036{
1037 int i, j;
1038 int len0;
d2e4a39e 1039 const char *p;
4c4b4cd2 1040 char *decoded;
14f9c5c9 1041 int at_start_name;
4c4b4cd2
PH
1042 static char *decoding_buffer = NULL;
1043 static size_t decoding_buffer_size = 0;
d2e4a39e 1044
29480c32
JB
1045 /* The name of the Ada main procedure starts with "_ada_".
1046 This prefix is not part of the decoded name, so skip this part
1047 if we see this prefix. */
4c4b4cd2
PH
1048 if (strncmp (encoded, "_ada_", 5) == 0)
1049 encoded += 5;
14f9c5c9 1050
29480c32
JB
1051 /* If the name starts with '_', then it is not a properly encoded
1052 name, so do not attempt to decode it. Similarly, if the name
1053 starts with '<', the name should not be decoded. */
4c4b4cd2 1054 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1055 goto Suppress;
1056
4c4b4cd2 1057 len0 = strlen (encoded);
4c4b4cd2 1058
29480c32
JB
1059 ada_remove_trailing_digits (encoded, &len0);
1060 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1061
4c4b4cd2
PH
1062 /* Remove the ___X.* suffix if present. Do not forget to verify that
1063 the suffix is located before the current "end" of ENCODED. We want
1064 to avoid re-matching parts of ENCODED that have previously been
1065 marked as discarded (by decrementing LEN0). */
1066 p = strstr (encoded, "___");
1067 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1068 {
1069 if (p[3] == 'X')
4c4b4cd2 1070 len0 = p - encoded;
14f9c5c9 1071 else
4c4b4cd2 1072 goto Suppress;
14f9c5c9 1073 }
4c4b4cd2 1074
29480c32
JB
1075 /* Remove any trailing TKB suffix. It tells us that this symbol
1076 is for the body of a task, but that information does not actually
1077 appear in the decoded name. */
1078
4c4b4cd2 1079 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1080 len0 -= 3;
76a01679 1081
a10967fa
JB
1082 /* Remove any trailing TB suffix. The TB suffix is slightly different
1083 from the TKB suffix because it is used for non-anonymous task
1084 bodies. */
1085
1086 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1087 len0 -= 2;
1088
29480c32
JB
1089 /* Remove trailing "B" suffixes. */
1090 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1091
4c4b4cd2 1092 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1093 len0 -= 1;
1094
4c4b4cd2 1095 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1096
4c4b4cd2
PH
1097 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1098 decoded = decoding_buffer;
14f9c5c9 1099
29480c32
JB
1100 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1101
4c4b4cd2 1102 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1103 {
4c4b4cd2
PH
1104 i = len0 - 2;
1105 while ((i >= 0 && isdigit (encoded[i]))
1106 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1107 i -= 1;
1108 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1109 len0 = i - 1;
1110 else if (encoded[i] == '$')
1111 len0 = i;
d2e4a39e 1112 }
14f9c5c9 1113
29480c32
JB
1114 /* The first few characters that are not alphabetic are not part
1115 of any encoding we use, so we can copy them over verbatim. */
1116
4c4b4cd2
PH
1117 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1118 decoded[j] = encoded[i];
14f9c5c9
AS
1119
1120 at_start_name = 1;
1121 while (i < len0)
1122 {
29480c32 1123 /* Is this a symbol function? */
4c4b4cd2
PH
1124 if (at_start_name && encoded[i] == 'O')
1125 {
1126 int k;
5b4ee69b 1127
4c4b4cd2
PH
1128 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1129 {
1130 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1131 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1132 op_len - 1) == 0)
1133 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1134 {
1135 strcpy (decoded + j, ada_opname_table[k].decoded);
1136 at_start_name = 0;
1137 i += op_len;
1138 j += strlen (ada_opname_table[k].decoded);
1139 break;
1140 }
1141 }
1142 if (ada_opname_table[k].encoded != NULL)
1143 continue;
1144 }
14f9c5c9
AS
1145 at_start_name = 0;
1146
529cad9c
PH
1147 /* Replace "TK__" with "__", which will eventually be translated
1148 into "." (just below). */
1149
4c4b4cd2
PH
1150 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1151 i += 2;
529cad9c 1152
29480c32
JB
1153 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1154 be translated into "." (just below). These are internal names
1155 generated for anonymous blocks inside which our symbol is nested. */
1156
1157 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1158 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1159 && isdigit (encoded [i+4]))
1160 {
1161 int k = i + 5;
1162
1163 while (k < len0 && isdigit (encoded[k]))
1164 k++; /* Skip any extra digit. */
1165
1166 /* Double-check that the "__B_{DIGITS}+" sequence we found
1167 is indeed followed by "__". */
1168 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1169 i = k;
1170 }
1171
529cad9c
PH
1172 /* Remove _E{DIGITS}+[sb] */
1173
1174 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1175 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1176 one implements the actual entry code, and has a suffix following
1177 the convention above; the second one implements the barrier and
1178 uses the same convention as above, except that the 'E' is replaced
1179 by a 'B'.
1180
1181 Just as above, we do not decode the name of barrier functions
1182 to give the user a clue that the code he is debugging has been
1183 internally generated. */
1184
1185 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1186 && isdigit (encoded[i+2]))
1187 {
1188 int k = i + 3;
1189
1190 while (k < len0 && isdigit (encoded[k]))
1191 k++;
1192
1193 if (k < len0
1194 && (encoded[k] == 'b' || encoded[k] == 's'))
1195 {
1196 k++;
1197 /* Just as an extra precaution, make sure that if this
1198 suffix is followed by anything else, it is a '_'.
1199 Otherwise, we matched this sequence by accident. */
1200 if (k == len0
1201 || (k < len0 && encoded[k] == '_'))
1202 i = k;
1203 }
1204 }
1205
1206 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1207 the GNAT front-end in protected object subprograms. */
1208
1209 if (i < len0 + 3
1210 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1211 {
1212 /* Backtrack a bit up until we reach either the begining of
1213 the encoded name, or "__". Make sure that we only find
1214 digits or lowercase characters. */
1215 const char *ptr = encoded + i - 1;
1216
1217 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1218 ptr--;
1219 if (ptr < encoded
1220 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1221 i++;
1222 }
1223
4c4b4cd2
PH
1224 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1225 {
29480c32
JB
1226 /* This is a X[bn]* sequence not separated from the previous
1227 part of the name with a non-alpha-numeric character (in other
1228 words, immediately following an alpha-numeric character), then
1229 verify that it is placed at the end of the encoded name. If
1230 not, then the encoding is not valid and we should abort the
1231 decoding. Otherwise, just skip it, it is used in body-nested
1232 package names. */
4c4b4cd2
PH
1233 do
1234 i += 1;
1235 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1236 if (i < len0)
1237 goto Suppress;
1238 }
cdc7bb92 1239 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1240 {
29480c32 1241 /* Replace '__' by '.'. */
4c4b4cd2
PH
1242 decoded[j] = '.';
1243 at_start_name = 1;
1244 i += 2;
1245 j += 1;
1246 }
14f9c5c9 1247 else
4c4b4cd2 1248 {
29480c32
JB
1249 /* It's a character part of the decoded name, so just copy it
1250 over. */
4c4b4cd2
PH
1251 decoded[j] = encoded[i];
1252 i += 1;
1253 j += 1;
1254 }
14f9c5c9 1255 }
4c4b4cd2 1256 decoded[j] = '\000';
14f9c5c9 1257
29480c32
JB
1258 /* Decoded names should never contain any uppercase character.
1259 Double-check this, and abort the decoding if we find one. */
1260
4c4b4cd2
PH
1261 for (i = 0; decoded[i] != '\0'; i += 1)
1262 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1263 goto Suppress;
1264
4c4b4cd2
PH
1265 if (strcmp (decoded, encoded) == 0)
1266 return encoded;
1267 else
1268 return decoded;
14f9c5c9
AS
1269
1270Suppress:
4c4b4cd2
PH
1271 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1272 decoded = decoding_buffer;
1273 if (encoded[0] == '<')
1274 strcpy (decoded, encoded);
14f9c5c9 1275 else
88c15c34 1276 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1277 return decoded;
1278
1279}
1280
1281/* Table for keeping permanent unique copies of decoded names. Once
1282 allocated, names in this table are never released. While this is a
1283 storage leak, it should not be significant unless there are massive
1284 changes in the set of decoded names in successive versions of a
1285 symbol table loaded during a single session. */
1286static struct htab *decoded_names_store;
1287
1288/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1289 in the language-specific part of GSYMBOL, if it has not been
1290 previously computed. Tries to save the decoded name in the same
1291 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1292 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1293 GSYMBOL).
4c4b4cd2
PH
1294 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1295 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1296 when a decoded name is cached in it. */
4c4b4cd2 1297
76a01679
JB
1298char *
1299ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1300{
76a01679 1301 char **resultp =
afa16725 1302 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1303
4c4b4cd2
PH
1304 if (*resultp == NULL)
1305 {
1306 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1307
714835d5 1308 if (gsymbol->obj_section != NULL)
76a01679 1309 {
714835d5 1310 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1311
714835d5
UW
1312 *resultp = obsavestring (decoded, strlen (decoded),
1313 &objf->objfile_obstack);
76a01679 1314 }
4c4b4cd2 1315 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1316 case, we put the result on the heap. Since we only decode
1317 when needed, we hope this usually does not cause a
1318 significant memory leak (FIXME). */
4c4b4cd2 1319 if (*resultp == NULL)
76a01679
JB
1320 {
1321 char **slot = (char **) htab_find_slot (decoded_names_store,
1322 decoded, INSERT);
5b4ee69b 1323
76a01679
JB
1324 if (*slot == NULL)
1325 *slot = xstrdup (decoded);
1326 *resultp = *slot;
1327 }
4c4b4cd2 1328 }
14f9c5c9 1329
4c4b4cd2
PH
1330 return *resultp;
1331}
76a01679 1332
2c0b251b 1333static char *
76a01679 1334ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1335{
1336 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1337}
1338
1339/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1340 suffixes that encode debugging information or leading _ada_ on
1341 SYM_NAME (see is_name_suffix commentary for the debugging
1342 information that is ignored). If WILD, then NAME need only match a
1343 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1344 either argument is NULL. */
14f9c5c9 1345
2c0b251b 1346static int
40658b94 1347match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1348{
1349 if (sym_name == NULL || name == NULL)
1350 return 0;
1351 else if (wild)
73589123 1352 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1353 else
1354 {
1355 int len_name = strlen (name);
5b4ee69b 1356
4c4b4cd2
PH
1357 return (strncmp (sym_name, name, len_name) == 0
1358 && is_name_suffix (sym_name + len_name))
1359 || (strncmp (sym_name, "_ada_", 5) == 0
1360 && strncmp (sym_name + 5, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1362 }
14f9c5c9 1363}
14f9c5c9 1364\f
d2e4a39e 1365
4c4b4cd2 1366 /* Arrays */
14f9c5c9 1367
28c85d6c
JB
1368/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describle the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391void
1392ada_fixup_array_indexes_type (struct type *index_desc_type)
1393{
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1408 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1414 {
0d5cff50 1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1420 }
1421}
1422
4c4b4cd2 1423/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1424
d2e4a39e
AS
1425static char *bound_name[] = {
1426 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1427 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1428};
1429
1430/* Maximum number of array dimensions we are prepared to handle. */
1431
4c4b4cd2 1432#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1433
14f9c5c9 1434
4c4b4cd2
PH
1435/* The desc_* routines return primitive portions of array descriptors
1436 (fat pointers). */
14f9c5c9
AS
1437
1438/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1439 level of indirection, if needed. */
1440
d2e4a39e
AS
1441static struct type *
1442desc_base_type (struct type *type)
14f9c5c9
AS
1443{
1444 if (type == NULL)
1445 return NULL;
61ee279c 1446 type = ada_check_typedef (type);
720d1a40
JB
1447 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1448 type = ada_typedef_target_type (type);
1449
1265e4aa
JB
1450 if (type != NULL
1451 && (TYPE_CODE (type) == TYPE_CODE_PTR
1452 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1453 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1454 else
1455 return type;
1456}
1457
4c4b4cd2
PH
1458/* True iff TYPE indicates a "thin" array pointer type. */
1459
14f9c5c9 1460static int
d2e4a39e 1461is_thin_pntr (struct type *type)
14f9c5c9 1462{
d2e4a39e 1463 return
14f9c5c9
AS
1464 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1465 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1466}
1467
4c4b4cd2
PH
1468/* The descriptor type for thin pointer type TYPE. */
1469
d2e4a39e
AS
1470static struct type *
1471thin_descriptor_type (struct type *type)
14f9c5c9 1472{
d2e4a39e 1473 struct type *base_type = desc_base_type (type);
5b4ee69b 1474
14f9c5c9
AS
1475 if (base_type == NULL)
1476 return NULL;
1477 if (is_suffix (ada_type_name (base_type), "___XVE"))
1478 return base_type;
d2e4a39e 1479 else
14f9c5c9 1480 {
d2e4a39e 1481 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1482
14f9c5c9 1483 if (alt_type == NULL)
4c4b4cd2 1484 return base_type;
14f9c5c9 1485 else
4c4b4cd2 1486 return alt_type;
14f9c5c9
AS
1487 }
1488}
1489
4c4b4cd2
PH
1490/* A pointer to the array data for thin-pointer value VAL. */
1491
d2e4a39e
AS
1492static struct value *
1493thin_data_pntr (struct value *val)
14f9c5c9 1494{
828292f2 1495 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1496 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1497
556bdfd4
UW
1498 data_type = lookup_pointer_type (data_type);
1499
14f9c5c9 1500 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1501 return value_cast (data_type, value_copy (val));
d2e4a39e 1502 else
42ae5230 1503 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1504}
1505
4c4b4cd2
PH
1506/* True iff TYPE indicates a "thick" array pointer type. */
1507
14f9c5c9 1508static int
d2e4a39e 1509is_thick_pntr (struct type *type)
14f9c5c9
AS
1510{
1511 type = desc_base_type (type);
1512 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1513 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1514}
1515
4c4b4cd2
PH
1516/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1517 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1518
d2e4a39e
AS
1519static struct type *
1520desc_bounds_type (struct type *type)
14f9c5c9 1521{
d2e4a39e 1522 struct type *r;
14f9c5c9
AS
1523
1524 type = desc_base_type (type);
1525
1526 if (type == NULL)
1527 return NULL;
1528 else if (is_thin_pntr (type))
1529 {
1530 type = thin_descriptor_type (type);
1531 if (type == NULL)
4c4b4cd2 1532 return NULL;
14f9c5c9
AS
1533 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1534 if (r != NULL)
61ee279c 1535 return ada_check_typedef (r);
14f9c5c9
AS
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 {
1539 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1540 if (r != NULL)
61ee279c 1541 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1542 }
1543 return NULL;
1544}
1545
1546/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1547 one, a pointer to its bounds data. Otherwise NULL. */
1548
d2e4a39e
AS
1549static struct value *
1550desc_bounds (struct value *arr)
14f9c5c9 1551{
df407dfe 1552 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1553
d2e4a39e 1554 if (is_thin_pntr (type))
14f9c5c9 1555 {
d2e4a39e 1556 struct type *bounds_type =
4c4b4cd2 1557 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1558 LONGEST addr;
1559
4cdfadb1 1560 if (bounds_type == NULL)
323e0a4a 1561 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1562
1563 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1564 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1565 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1567 addr = value_as_long (arr);
d2e4a39e 1568 else
42ae5230 1569 addr = value_address (arr);
14f9c5c9 1570
d2e4a39e 1571 return
4c4b4cd2
PH
1572 value_from_longest (lookup_pointer_type (bounds_type),
1573 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1574 }
1575
1576 else if (is_thick_pntr (type))
05e522ef
JB
1577 {
1578 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1579 _("Bad GNAT array descriptor"));
1580 struct type *p_bounds_type = value_type (p_bounds);
1581
1582 if (p_bounds_type
1583 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1584 {
1585 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1586
1587 if (TYPE_STUB (target_type))
1588 p_bounds = value_cast (lookup_pointer_type
1589 (ada_check_typedef (target_type)),
1590 p_bounds);
1591 }
1592 else
1593 error (_("Bad GNAT array descriptor"));
1594
1595 return p_bounds;
1596 }
14f9c5c9
AS
1597 else
1598 return NULL;
1599}
1600
4c4b4cd2
PH
1601/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 position of the field containing the address of the bounds data. */
1603
14f9c5c9 1604static int
d2e4a39e 1605fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1606{
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1608}
1609
1610/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1611 size of the field containing the address of the bounds data. */
1612
14f9c5c9 1613static int
d2e4a39e 1614fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1615{
1616 type = desc_base_type (type);
1617
d2e4a39e 1618 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1619 return TYPE_FIELD_BITSIZE (type, 1);
1620 else
61ee279c 1621 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1622}
1623
4c4b4cd2 1624/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1625 pointer to one, the type of its array data (a array-with-no-bounds type);
1626 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1627 data. */
4c4b4cd2 1628
d2e4a39e 1629static struct type *
556bdfd4 1630desc_data_target_type (struct type *type)
14f9c5c9
AS
1631{
1632 type = desc_base_type (type);
1633
4c4b4cd2 1634 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1635 if (is_thin_pntr (type))
556bdfd4 1636 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1637 else if (is_thick_pntr (type))
556bdfd4
UW
1638 {
1639 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1640
1641 if (data_type
1642 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1643 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1644 }
1645
1646 return NULL;
14f9c5c9
AS
1647}
1648
1649/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1650 its array data. */
4c4b4cd2 1651
d2e4a39e
AS
1652static struct value *
1653desc_data (struct value *arr)
14f9c5c9 1654{
df407dfe 1655 struct type *type = value_type (arr);
5b4ee69b 1656
14f9c5c9
AS
1657 if (is_thin_pntr (type))
1658 return thin_data_pntr (arr);
1659 else if (is_thick_pntr (type))
d2e4a39e 1660 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1661 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1662 else
1663 return NULL;
1664}
1665
1666
1667/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1668 position of the field containing the address of the data. */
1669
14f9c5c9 1670static int
d2e4a39e 1671fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1672{
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1674}
1675
1676/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1677 size of the field containing the address of the data. */
1678
14f9c5c9 1679static int
d2e4a39e 1680fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1681{
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1686 else
14f9c5c9
AS
1687 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1688}
1689
4c4b4cd2 1690/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1691 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
d2e4a39e
AS
1694static struct value *
1695desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1696{
d2e4a39e 1697 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1698 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1699}
1700
1701/* If BOUNDS is an array-bounds structure type, return the bit position
1702 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1703 bound, if WHICH is 1. The first bound is I=1. */
1704
14f9c5c9 1705static int
d2e4a39e 1706desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1707{
d2e4a39e 1708 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1709}
1710
1711/* If BOUNDS is an array-bounds structure type, return the bit field size
1712 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1713 bound, if WHICH is 1. The first bound is I=1. */
1714
76a01679 1715static int
d2e4a39e 1716desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1717{
1718 type = desc_base_type (type);
1719
d2e4a39e
AS
1720 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1721 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1722 else
1723 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1724}
1725
1726/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1727 Ith bound (numbering from 1). Otherwise, NULL. */
1728
d2e4a39e
AS
1729static struct type *
1730desc_index_type (struct type *type, int i)
14f9c5c9
AS
1731{
1732 type = desc_base_type (type);
1733
1734 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1735 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1736 else
14f9c5c9
AS
1737 return NULL;
1738}
1739
4c4b4cd2
PH
1740/* The number of index positions in the array-bounds type TYPE.
1741 Return 0 if TYPE is NULL. */
1742
14f9c5c9 1743static int
d2e4a39e 1744desc_arity (struct type *type)
14f9c5c9
AS
1745{
1746 type = desc_base_type (type);
1747
1748 if (type != NULL)
1749 return TYPE_NFIELDS (type) / 2;
1750 return 0;
1751}
1752
4c4b4cd2
PH
1753/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1754 an array descriptor type (representing an unconstrained array
1755 type). */
1756
76a01679
JB
1757static int
1758ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1759{
1760 if (type == NULL)
1761 return 0;
61ee279c 1762 type = ada_check_typedef (type);
4c4b4cd2 1763 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1764 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1765}
1766
52ce6436 1767/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1768 * to one. */
52ce6436 1769
2c0b251b 1770static int
52ce6436
PH
1771ada_is_array_type (struct type *type)
1772{
1773 while (type != NULL
1774 && (TYPE_CODE (type) == TYPE_CODE_PTR
1775 || TYPE_CODE (type) == TYPE_CODE_REF))
1776 type = TYPE_TARGET_TYPE (type);
1777 return ada_is_direct_array_type (type);
1778}
1779
4c4b4cd2 1780/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1781
14f9c5c9 1782int
4c4b4cd2 1783ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1784{
1785 if (type == NULL)
1786 return 0;
61ee279c 1787 type = ada_check_typedef (type);
14f9c5c9 1788 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1789 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1790 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1791 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1792}
1793
4c4b4cd2
PH
1794/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1795
14f9c5c9 1796int
4c4b4cd2 1797ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1798{
556bdfd4 1799 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1800
1801 if (type == NULL)
1802 return 0;
61ee279c 1803 type = ada_check_typedef (type);
556bdfd4
UW
1804 return (data_type != NULL
1805 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1806 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1807}
1808
1809/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1810 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1811 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1812 is still needed. */
1813
14f9c5c9 1814int
ebf56fd3 1815ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1816{
d2e4a39e 1817 return
14f9c5c9
AS
1818 type != NULL
1819 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1821 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1822 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1823}
1824
1825
4c4b4cd2 1826/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1827 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1828 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1829 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1830 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1831 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1832 a descriptor. */
d2e4a39e
AS
1833struct type *
1834ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1835{
ad82864c
JB
1836 if (ada_is_constrained_packed_array_type (value_type (arr)))
1837 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1838
df407dfe
AC
1839 if (!ada_is_array_descriptor_type (value_type (arr)))
1840 return value_type (arr);
d2e4a39e
AS
1841
1842 if (!bounds)
ad82864c
JB
1843 {
1844 struct type *array_type =
1845 ada_check_typedef (desc_data_target_type (value_type (arr)));
1846
1847 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 TYPE_FIELD_BITSIZE (array_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850
1851 return array_type;
1852 }
14f9c5c9
AS
1853 else
1854 {
d2e4a39e 1855 struct type *elt_type;
14f9c5c9 1856 int arity;
d2e4a39e 1857 struct value *descriptor;
14f9c5c9 1858
df407dfe
AC
1859 elt_type = ada_array_element_type (value_type (arr), -1);
1860 arity = ada_array_arity (value_type (arr));
14f9c5c9 1861
d2e4a39e 1862 if (elt_type == NULL || arity == 0)
df407dfe 1863 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1864
1865 descriptor = desc_bounds (arr);
d2e4a39e 1866 if (value_as_long (descriptor) == 0)
4c4b4cd2 1867 return NULL;
d2e4a39e 1868 while (arity > 0)
4c4b4cd2 1869 {
e9bb382b
UW
1870 struct type *range_type = alloc_type_copy (value_type (arr));
1871 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1872 struct value *low = desc_one_bound (descriptor, arity, 0);
1873 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1874
5b4ee69b 1875 arity -= 1;
df407dfe 1876 create_range_type (range_type, value_type (low),
529cad9c
PH
1877 longest_to_int (value_as_long (low)),
1878 longest_to_int (value_as_long (high)));
4c4b4cd2 1879 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1880
1881 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1882 {
1883 /* We need to store the element packed bitsize, as well as
1884 recompute the array size, because it was previously
1885 computed based on the unpacked element size. */
1886 LONGEST lo = value_as_long (low);
1887 LONGEST hi = value_as_long (high);
1888
1889 TYPE_FIELD_BITSIZE (elt_type, 0) =
1890 decode_packed_array_bitsize (value_type (arr));
1891 /* If the array has no element, then the size is already
1892 zero, and does not need to be recomputed. */
1893 if (lo < hi)
1894 {
1895 int array_bitsize =
1896 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1897
1898 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1899 }
1900 }
4c4b4cd2 1901 }
14f9c5c9
AS
1902
1903 return lookup_pointer_type (elt_type);
1904 }
1905}
1906
1907/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1908 Otherwise, returns either a standard GDB array with bounds set
1909 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1910 GDB array. Returns NULL if ARR is a null fat pointer. */
1911
d2e4a39e
AS
1912struct value *
1913ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1914{
df407dfe 1915 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1916 {
d2e4a39e 1917 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1918
14f9c5c9 1919 if (arrType == NULL)
4c4b4cd2 1920 return NULL;
14f9c5c9
AS
1921 return value_cast (arrType, value_copy (desc_data (arr)));
1922 }
ad82864c
JB
1923 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1925 else
1926 return arr;
1927}
1928
1929/* If ARR does not represent an array, returns ARR unchanged.
1930 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1931 be ARR itself if it already is in the proper form). */
1932
720d1a40 1933struct value *
d2e4a39e 1934ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1935{
df407dfe 1936 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1937 {
d2e4a39e 1938 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1939
14f9c5c9 1940 if (arrVal == NULL)
323e0a4a 1941 error (_("Bounds unavailable for null array pointer."));
529cad9c 1942 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1943 return value_ind (arrVal);
1944 }
ad82864c
JB
1945 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array (arr);
d2e4a39e 1947 else
14f9c5c9
AS
1948 return arr;
1949}
1950
1951/* If TYPE represents a GNAT array type, return it translated to an
1952 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1953 packing). For other types, is the identity. */
1954
d2e4a39e
AS
1955struct type *
1956ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1957{
ad82864c
JB
1958 if (ada_is_constrained_packed_array_type (type))
1959 return decode_constrained_packed_array_type (type);
17280b9f
UW
1960
1961 if (ada_is_array_descriptor_type (type))
556bdfd4 1962 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1963
1964 return type;
14f9c5c9
AS
1965}
1966
4c4b4cd2
PH
1967/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1968
ad82864c
JB
1969static int
1970ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1971{
1972 if (type == NULL)
1973 return 0;
4c4b4cd2 1974 type = desc_base_type (type);
61ee279c 1975 type = ada_check_typedef (type);
d2e4a39e 1976 return
14f9c5c9
AS
1977 ada_type_name (type) != NULL
1978 && strstr (ada_type_name (type), "___XP") != NULL;
1979}
1980
ad82864c
JB
1981/* Non-zero iff TYPE represents a standard GNAT constrained
1982 packed-array type. */
1983
1984int
1985ada_is_constrained_packed_array_type (struct type *type)
1986{
1987 return ada_is_packed_array_type (type)
1988 && !ada_is_array_descriptor_type (type);
1989}
1990
1991/* Non-zero iff TYPE represents an array descriptor for a
1992 unconstrained packed-array type. */
1993
1994static int
1995ada_is_unconstrained_packed_array_type (struct type *type)
1996{
1997 return ada_is_packed_array_type (type)
1998 && ada_is_array_descriptor_type (type);
1999}
2000
2001/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2002 return the size of its elements in bits. */
2003
2004static long
2005decode_packed_array_bitsize (struct type *type)
2006{
0d5cff50
DE
2007 const char *raw_name;
2008 const char *tail;
ad82864c
JB
2009 long bits;
2010
720d1a40
JB
2011 /* Access to arrays implemented as fat pointers are encoded as a typedef
2012 of the fat pointer type. We need the name of the fat pointer type
2013 to do the decoding, so strip the typedef layer. */
2014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2015 type = ada_typedef_target_type (type);
2016
2017 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return 0;
2023
2024 tail = strstr (raw_name, "___XP");
720d1a40 2025 gdb_assert (tail != NULL);
ad82864c
JB
2026
2027 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2028 {
2029 lim_warning
2030 (_("could not understand bit size information on packed array"));
2031 return 0;
2032 }
2033
2034 return bits;
2035}
2036
14f9c5c9
AS
2037/* Given that TYPE is a standard GDB array type with all bounds filled
2038 in, and that the element size of its ultimate scalar constituents
2039 (that is, either its elements, or, if it is an array of arrays, its
2040 elements' elements, etc.) is *ELT_BITS, return an identical type,
2041 but with the bit sizes of its elements (and those of any
2042 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2043 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2044 in bits. */
2045
d2e4a39e 2046static struct type *
ad82864c 2047constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2048{
d2e4a39e
AS
2049 struct type *new_elt_type;
2050 struct type *new_type;
99b1c762
JB
2051 struct type *index_type_desc;
2052 struct type *index_type;
14f9c5c9
AS
2053 LONGEST low_bound, high_bound;
2054
61ee279c 2055 type = ada_check_typedef (type);
14f9c5c9
AS
2056 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2057 return type;
2058
99b1c762
JB
2059 index_type_desc = ada_find_parallel_type (type, "___XA");
2060 if (index_type_desc)
2061 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2062 NULL);
2063 else
2064 index_type = TYPE_INDEX_TYPE (type);
2065
e9bb382b 2066 new_type = alloc_type_copy (type);
ad82864c
JB
2067 new_elt_type =
2068 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2069 elt_bits);
99b1c762 2070 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2071 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2072 TYPE_NAME (new_type) = ada_type_name (type);
2073
99b1c762 2074 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2075 low_bound = high_bound = 0;
2076 if (high_bound < low_bound)
2077 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2078 else
14f9c5c9
AS
2079 {
2080 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2081 TYPE_LENGTH (new_type) =
4c4b4cd2 2082 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2083 }
2084
876cecd0 2085 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2086 return new_type;
2087}
2088
ad82864c
JB
2089/* The array type encoded by TYPE, where
2090 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2091
d2e4a39e 2092static struct type *
ad82864c 2093decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2094{
0d5cff50 2095 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2096 char *name;
0d5cff50 2097 const char *tail;
d2e4a39e 2098 struct type *shadow_type;
14f9c5c9 2099 long bits;
14f9c5c9 2100
727e3d2e
JB
2101 if (!raw_name)
2102 raw_name = ada_type_name (desc_base_type (type));
2103
2104 if (!raw_name)
2105 return NULL;
2106
2107 name = (char *) alloca (strlen (raw_name) + 1);
2108 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2109 type = desc_base_type (type);
2110
14f9c5c9
AS
2111 memcpy (name, raw_name, tail - raw_name);
2112 name[tail - raw_name] = '\000';
2113
b4ba55a1
JB
2114 shadow_type = ada_find_parallel_type_with_name (type, name);
2115
2116 if (shadow_type == NULL)
14f9c5c9 2117 {
323e0a4a 2118 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2119 return NULL;
2120 }
cb249c71 2121 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2122
2123 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2124 {
0963b4bd
MS
2125 lim_warning (_("could not understand bounds "
2126 "information on packed array"));
14f9c5c9
AS
2127 return NULL;
2128 }
d2e4a39e 2129
ad82864c
JB
2130 bits = decode_packed_array_bitsize (type);
2131 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2132}
2133
ad82864c
JB
2134/* Given that ARR is a struct value *indicating a GNAT constrained packed
2135 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2136 standard GDB array type except that the BITSIZEs of the array
2137 target types are set to the number of bits in each element, and the
4c4b4cd2 2138 type length is set appropriately. */
14f9c5c9 2139
d2e4a39e 2140static struct value *
ad82864c 2141decode_constrained_packed_array (struct value *arr)
14f9c5c9 2142{
4c4b4cd2 2143 struct type *type;
14f9c5c9 2144
4c4b4cd2 2145 arr = ada_coerce_ref (arr);
284614f0
JB
2146
2147 /* If our value is a pointer, then dererence it. Make sure that
2148 this operation does not cause the target type to be fixed, as
2149 this would indirectly cause this array to be decoded. The rest
2150 of the routine assumes that the array hasn't been decoded yet,
2151 so we use the basic "value_ind" routine to perform the dereferencing,
2152 as opposed to using "ada_value_ind". */
828292f2 2153 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2154 arr = value_ind (arr);
4c4b4cd2 2155
ad82864c 2156 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2157 if (type == NULL)
2158 {
323e0a4a 2159 error (_("can't unpack array"));
14f9c5c9
AS
2160 return NULL;
2161 }
61ee279c 2162
50810684 2163 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2164 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2165 {
2166 /* This is a (right-justified) modular type representing a packed
2167 array with no wrapper. In order to interpret the value through
2168 the (left-justified) packed array type we just built, we must
2169 first left-justify it. */
2170 int bit_size, bit_pos;
2171 ULONGEST mod;
2172
df407dfe 2173 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2174 bit_size = 0;
2175 while (mod > 0)
2176 {
2177 bit_size += 1;
2178 mod >>= 1;
2179 }
df407dfe 2180 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2181 arr = ada_value_primitive_packed_val (arr, NULL,
2182 bit_pos / HOST_CHAR_BIT,
2183 bit_pos % HOST_CHAR_BIT,
2184 bit_size,
2185 type);
2186 }
2187
4c4b4cd2 2188 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2189}
2190
2191
2192/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2193 given in IND. ARR must be a simple array. */
14f9c5c9 2194
d2e4a39e
AS
2195static struct value *
2196value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2197{
2198 int i;
2199 int bits, elt_off, bit_off;
2200 long elt_total_bit_offset;
d2e4a39e
AS
2201 struct type *elt_type;
2202 struct value *v;
14f9c5c9
AS
2203
2204 bits = 0;
2205 elt_total_bit_offset = 0;
df407dfe 2206 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2207 for (i = 0; i < arity; i += 1)
14f9c5c9 2208 {
d2e4a39e 2209 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2210 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2211 error
0963b4bd
MS
2212 (_("attempt to do packed indexing of "
2213 "something other than a packed array"));
14f9c5c9 2214 else
4c4b4cd2
PH
2215 {
2216 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2217 LONGEST lowerbound, upperbound;
2218 LONGEST idx;
2219
2220 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2221 {
323e0a4a 2222 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2223 lowerbound = upperbound = 0;
2224 }
2225
3cb382c9 2226 idx = pos_atr (ind[i]);
4c4b4cd2 2227 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2228 lim_warning (_("packed array index %ld out of bounds"),
2229 (long) idx);
4c4b4cd2
PH
2230 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2231 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2232 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2233 }
14f9c5c9
AS
2234 }
2235 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2236 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2237
2238 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2239 bits, elt_type);
14f9c5c9
AS
2240 return v;
2241}
2242
4c4b4cd2 2243/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2244
2245static int
d2e4a39e 2246has_negatives (struct type *type)
14f9c5c9 2247{
d2e4a39e
AS
2248 switch (TYPE_CODE (type))
2249 {
2250 default:
2251 return 0;
2252 case TYPE_CODE_INT:
2253 return !TYPE_UNSIGNED (type);
2254 case TYPE_CODE_RANGE:
2255 return TYPE_LOW_BOUND (type) < 0;
2256 }
14f9c5c9 2257}
d2e4a39e 2258
14f9c5c9
AS
2259
2260/* Create a new value of type TYPE from the contents of OBJ starting
2261 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2262 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2263 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2264 VALADDR is ignored unless OBJ is NULL, in which case,
2265 VALADDR+OFFSET must address the start of storage containing the
2266 packed value. The value returned in this case is never an lval.
2267 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2268
d2e4a39e 2269struct value *
fc1a4b47 2270ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2271 long offset, int bit_offset, int bit_size,
4c4b4cd2 2272 struct type *type)
14f9c5c9 2273{
d2e4a39e 2274 struct value *v;
4c4b4cd2
PH
2275 int src, /* Index into the source area */
2276 targ, /* Index into the target area */
2277 srcBitsLeft, /* Number of source bits left to move */
2278 nsrc, ntarg, /* Number of source and target bytes */
2279 unusedLS, /* Number of bits in next significant
2280 byte of source that are unused */
2281 accumSize; /* Number of meaningful bits in accum */
2282 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2283 unsigned char *unpacked;
4c4b4cd2 2284 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2285 unsigned char sign;
2286 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2287 /* Transmit bytes from least to most significant; delta is the direction
2288 the indices move. */
50810684 2289 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2290
61ee279c 2291 type = ada_check_typedef (type);
14f9c5c9
AS
2292
2293 if (obj == NULL)
2294 {
2295 v = allocate_value (type);
d2e4a39e 2296 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2297 }
9214ee5f 2298 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2299 {
2300 v = value_at (type,
42ae5230 2301 value_address (obj) + offset);
d2e4a39e 2302 bytes = (unsigned char *) alloca (len);
42ae5230 2303 read_memory (value_address (v), bytes, len);
14f9c5c9 2304 }
d2e4a39e 2305 else
14f9c5c9
AS
2306 {
2307 v = allocate_value (type);
0fd88904 2308 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2309 }
d2e4a39e
AS
2310
2311 if (obj != NULL)
14f9c5c9 2312 {
42ae5230 2313 CORE_ADDR new_addr;
5b4ee69b 2314
74bcbdf3 2315 set_value_component_location (v, obj);
42ae5230 2316 new_addr = value_address (obj) + offset;
9bbda503
AC
2317 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2318 set_value_bitsize (v, bit_size);
df407dfe 2319 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2320 {
42ae5230 2321 ++new_addr;
9bbda503 2322 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2323 }
42ae5230 2324 set_value_address (v, new_addr);
14f9c5c9
AS
2325 }
2326 else
9bbda503 2327 set_value_bitsize (v, bit_size);
0fd88904 2328 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2329
2330 srcBitsLeft = bit_size;
2331 nsrc = len;
2332 ntarg = TYPE_LENGTH (type);
2333 sign = 0;
2334 if (bit_size == 0)
2335 {
2336 memset (unpacked, 0, TYPE_LENGTH (type));
2337 return v;
2338 }
50810684 2339 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2340 {
d2e4a39e 2341 src = len - 1;
1265e4aa
JB
2342 if (has_negatives (type)
2343 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2344 sign = ~0;
d2e4a39e
AS
2345
2346 unusedLS =
4c4b4cd2
PH
2347 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2348 % HOST_CHAR_BIT;
14f9c5c9
AS
2349
2350 switch (TYPE_CODE (type))
4c4b4cd2
PH
2351 {
2352 case TYPE_CODE_ARRAY:
2353 case TYPE_CODE_UNION:
2354 case TYPE_CODE_STRUCT:
2355 /* Non-scalar values must be aligned at a byte boundary... */
2356 accumSize =
2357 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2358 /* ... And are placed at the beginning (most-significant) bytes
2359 of the target. */
529cad9c 2360 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2361 ntarg = targ + 1;
4c4b4cd2
PH
2362 break;
2363 default:
2364 accumSize = 0;
2365 targ = TYPE_LENGTH (type) - 1;
2366 break;
2367 }
14f9c5c9 2368 }
d2e4a39e 2369 else
14f9c5c9
AS
2370 {
2371 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2372
2373 src = targ = 0;
2374 unusedLS = bit_offset;
2375 accumSize = 0;
2376
d2e4a39e 2377 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2378 sign = ~0;
14f9c5c9 2379 }
d2e4a39e 2380
14f9c5c9
AS
2381 accum = 0;
2382 while (nsrc > 0)
2383 {
2384 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2385 part of the value. */
d2e4a39e 2386 unsigned int unusedMSMask =
4c4b4cd2
PH
2387 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2388 1;
2389 /* Sign-extend bits for this byte. */
14f9c5c9 2390 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2391
d2e4a39e 2392 accum |=
4c4b4cd2 2393 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2394 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2395 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2396 {
2397 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2398 accumSize -= HOST_CHAR_BIT;
2399 accum >>= HOST_CHAR_BIT;
2400 ntarg -= 1;
2401 targ += delta;
2402 }
14f9c5c9
AS
2403 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2404 unusedLS = 0;
2405 nsrc -= 1;
2406 src += delta;
2407 }
2408 while (ntarg > 0)
2409 {
2410 accum |= sign << accumSize;
2411 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2412 accumSize -= HOST_CHAR_BIT;
2413 accum >>= HOST_CHAR_BIT;
2414 ntarg -= 1;
2415 targ += delta;
2416 }
2417
2418 return v;
2419}
d2e4a39e 2420
14f9c5c9
AS
2421/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2422 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2423 not overlap. */
14f9c5c9 2424static void
fc1a4b47 2425move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2426 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2427{
2428 unsigned int accum, mask;
2429 int accum_bits, chunk_size;
2430
2431 target += targ_offset / HOST_CHAR_BIT;
2432 targ_offset %= HOST_CHAR_BIT;
2433 source += src_offset / HOST_CHAR_BIT;
2434 src_offset %= HOST_CHAR_BIT;
50810684 2435 if (bits_big_endian_p)
14f9c5c9
AS
2436 {
2437 accum = (unsigned char) *source;
2438 source += 1;
2439 accum_bits = HOST_CHAR_BIT - src_offset;
2440
d2e4a39e 2441 while (n > 0)
4c4b4cd2
PH
2442 {
2443 int unused_right;
5b4ee69b 2444
4c4b4cd2
PH
2445 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2446 accum_bits += HOST_CHAR_BIT;
2447 source += 1;
2448 chunk_size = HOST_CHAR_BIT - targ_offset;
2449 if (chunk_size > n)
2450 chunk_size = n;
2451 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2452 mask = ((1 << chunk_size) - 1) << unused_right;
2453 *target =
2454 (*target & ~mask)
2455 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2456 n -= chunk_size;
2457 accum_bits -= chunk_size;
2458 target += 1;
2459 targ_offset = 0;
2460 }
14f9c5c9
AS
2461 }
2462 else
2463 {
2464 accum = (unsigned char) *source >> src_offset;
2465 source += 1;
2466 accum_bits = HOST_CHAR_BIT - src_offset;
2467
d2e4a39e 2468 while (n > 0)
4c4b4cd2
PH
2469 {
2470 accum = accum + ((unsigned char) *source << accum_bits);
2471 accum_bits += HOST_CHAR_BIT;
2472 source += 1;
2473 chunk_size = HOST_CHAR_BIT - targ_offset;
2474 if (chunk_size > n)
2475 chunk_size = n;
2476 mask = ((1 << chunk_size) - 1) << targ_offset;
2477 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2478 n -= chunk_size;
2479 accum_bits -= chunk_size;
2480 accum >>= chunk_size;
2481 target += 1;
2482 targ_offset = 0;
2483 }
14f9c5c9
AS
2484 }
2485}
2486
14f9c5c9
AS
2487/* Store the contents of FROMVAL into the location of TOVAL.
2488 Return a new value with the location of TOVAL and contents of
2489 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2490 floating-point or non-scalar types. */
14f9c5c9 2491
d2e4a39e
AS
2492static struct value *
2493ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2494{
df407dfe
AC
2495 struct type *type = value_type (toval);
2496 int bits = value_bitsize (toval);
14f9c5c9 2497
52ce6436
PH
2498 toval = ada_coerce_ref (toval);
2499 fromval = ada_coerce_ref (fromval);
2500
2501 if (ada_is_direct_array_type (value_type (toval)))
2502 toval = ada_coerce_to_simple_array (toval);
2503 if (ada_is_direct_array_type (value_type (fromval)))
2504 fromval = ada_coerce_to_simple_array (fromval);
2505
88e3b34b 2506 if (!deprecated_value_modifiable (toval))
323e0a4a 2507 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2508
d2e4a39e 2509 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2510 && bits > 0
d2e4a39e 2511 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2512 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2513 {
df407dfe
AC
2514 int len = (value_bitpos (toval)
2515 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2516 int from_size;
d2e4a39e
AS
2517 char *buffer = (char *) alloca (len);
2518 struct value *val;
42ae5230 2519 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2520
2521 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2522 fromval = value_cast (type, fromval);
14f9c5c9 2523
52ce6436 2524 read_memory (to_addr, buffer, len);
aced2898
PH
2525 from_size = value_bitsize (fromval);
2526 if (from_size == 0)
2527 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2528 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2529 move_bits (buffer, value_bitpos (toval),
50810684 2530 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2531 else
50810684
UW
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), 0, bits, 0);
52ce6436 2534 write_memory (to_addr, buffer, len);
8cebebb9
PP
2535 observer_notify_memory_changed (to_addr, len, buffer);
2536
14f9c5c9 2537 val = value_copy (toval);
0fd88904 2538 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2539 TYPE_LENGTH (type));
04624583 2540 deprecated_set_value_type (val, type);
d2e4a39e 2541
14f9c5c9
AS
2542 return val;
2543 }
2544
2545 return value_assign (toval, fromval);
2546}
2547
2548
52ce6436
PH
2549/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2550 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2551 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2552 * COMPONENT, and not the inferior's memory. The current contents
2553 * of COMPONENT are ignored. */
2554static void
2555value_assign_to_component (struct value *container, struct value *component,
2556 struct value *val)
2557{
2558 LONGEST offset_in_container =
42ae5230 2559 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2560 int bit_offset_in_container =
2561 value_bitpos (component) - value_bitpos (container);
2562 int bits;
2563
2564 val = value_cast (value_type (component), val);
2565
2566 if (value_bitsize (component) == 0)
2567 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2568 else
2569 bits = value_bitsize (component);
2570
50810684 2571 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2572 move_bits (value_contents_writeable (container) + offset_in_container,
2573 value_bitpos (container) + bit_offset_in_container,
2574 value_contents (val),
2575 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2576 bits, 1);
52ce6436
PH
2577 else
2578 move_bits (value_contents_writeable (container) + offset_in_container,
2579 value_bitpos (container) + bit_offset_in_container,
50810684 2580 value_contents (val), 0, bits, 0);
52ce6436
PH
2581}
2582
4c4b4cd2
PH
2583/* The value of the element of array ARR at the ARITY indices given in IND.
2584 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2585 thereto. */
2586
d2e4a39e
AS
2587struct value *
2588ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2589{
2590 int k;
d2e4a39e
AS
2591 struct value *elt;
2592 struct type *elt_type;
14f9c5c9
AS
2593
2594 elt = ada_coerce_to_simple_array (arr);
2595
df407dfe 2596 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2597 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2598 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2599 return value_subscript_packed (elt, arity, ind);
2600
2601 for (k = 0; k < arity; k += 1)
2602 {
2603 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2604 error (_("too many subscripts (%d expected)"), k);
2497b498 2605 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2606 }
2607 return elt;
2608}
2609
2610/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2611 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2612 IND. Does not read the entire array into memory. */
14f9c5c9 2613
2c0b251b 2614static struct value *
d2e4a39e 2615ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2616 struct value **ind)
14f9c5c9
AS
2617{
2618 int k;
2619
2620 for (k = 0; k < arity; k += 1)
2621 {
2622 LONGEST lwb, upb;
14f9c5c9
AS
2623
2624 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2625 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2626 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2627 value_copy (arr));
14f9c5c9 2628 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2629 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2630 type = TYPE_TARGET_TYPE (type);
2631 }
2632
2633 return value_ind (arr);
2634}
2635
0b5d8877 2636/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2637 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2638 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2639 per Ada rules. */
0b5d8877 2640static struct value *
f5938064
JG
2641ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2642 int low, int high)
0b5d8877 2643{
b0dd7688 2644 struct type *type0 = ada_check_typedef (type);
6c038f32 2645 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2646 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2647 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2648 struct type *index_type =
b0dd7688 2649 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2650 low, high);
6c038f32 2651 struct type *slice_type =
b0dd7688 2652 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2653
f5938064 2654 return value_at_lazy (slice_type, base);
0b5d8877
PH
2655}
2656
2657
2658static struct value *
2659ada_value_slice (struct value *array, int low, int high)
2660{
b0dd7688 2661 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2662 struct type *index_type =
0b5d8877 2663 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2664 struct type *slice_type =
0b5d8877 2665 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2666
6c038f32 2667 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2668}
2669
14f9c5c9
AS
2670/* If type is a record type in the form of a standard GNAT array
2671 descriptor, returns the number of dimensions for type. If arr is a
2672 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2673 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2674
2675int
d2e4a39e 2676ada_array_arity (struct type *type)
14f9c5c9
AS
2677{
2678 int arity;
2679
2680 if (type == NULL)
2681 return 0;
2682
2683 type = desc_base_type (type);
2684
2685 arity = 0;
d2e4a39e 2686 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2687 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2688 else
2689 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2690 {
4c4b4cd2 2691 arity += 1;
61ee279c 2692 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2693 }
d2e4a39e 2694
14f9c5c9
AS
2695 return arity;
2696}
2697
2698/* If TYPE is a record type in the form of a standard GNAT array
2699 descriptor or a simple array type, returns the element type for
2700 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2701 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2702
d2e4a39e
AS
2703struct type *
2704ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2705{
2706 type = desc_base_type (type);
2707
d2e4a39e 2708 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2709 {
2710 int k;
d2e4a39e 2711 struct type *p_array_type;
14f9c5c9 2712
556bdfd4 2713 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2714
2715 k = ada_array_arity (type);
2716 if (k == 0)
4c4b4cd2 2717 return NULL;
d2e4a39e 2718
4c4b4cd2 2719 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2720 if (nindices >= 0 && k > nindices)
4c4b4cd2 2721 k = nindices;
d2e4a39e 2722 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2723 {
61ee279c 2724 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2725 k -= 1;
2726 }
14f9c5c9
AS
2727 return p_array_type;
2728 }
2729 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2730 {
2731 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2732 {
2733 type = TYPE_TARGET_TYPE (type);
2734 nindices -= 1;
2735 }
14f9c5c9
AS
2736 return type;
2737 }
2738
2739 return NULL;
2740}
2741
4c4b4cd2 2742/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2743 Does not examine memory. Throws an error if N is invalid or TYPE
2744 is not an array type. NAME is the name of the Ada attribute being
2745 evaluated ('range, 'first, 'last, or 'length); it is used in building
2746 the error message. */
14f9c5c9 2747
1eea4ebd
UW
2748static struct type *
2749ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2750{
4c4b4cd2
PH
2751 struct type *result_type;
2752
14f9c5c9
AS
2753 type = desc_base_type (type);
2754
1eea4ebd
UW
2755 if (n < 0 || n > ada_array_arity (type))
2756 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2757
4c4b4cd2 2758 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2759 {
2760 int i;
2761
2762 for (i = 1; i < n; i += 1)
4c4b4cd2 2763 type = TYPE_TARGET_TYPE (type);
262452ec 2764 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2765 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2766 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2767 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2768 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2769 result_type = NULL;
14f9c5c9 2770 }
d2e4a39e 2771 else
1eea4ebd
UW
2772 {
2773 result_type = desc_index_type (desc_bounds_type (type), n);
2774 if (result_type == NULL)
2775 error (_("attempt to take bound of something that is not an array"));
2776 }
2777
2778 return result_type;
14f9c5c9
AS
2779}
2780
2781/* Given that arr is an array type, returns the lower bound of the
2782 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2783 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2784 array-descriptor type. It works for other arrays with bounds supplied
2785 by run-time quantities other than discriminants. */
14f9c5c9 2786
abb68b3e 2787static LONGEST
1eea4ebd 2788ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2789{
1ce677a4 2790 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2791 int i;
262452ec
JK
2792
2793 gdb_assert (which == 0 || which == 1);
14f9c5c9 2794
ad82864c
JB
2795 if (ada_is_constrained_packed_array_type (arr_type))
2796 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2797
4c4b4cd2 2798 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2799 return (LONGEST) - which;
14f9c5c9
AS
2800
2801 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2802 type = TYPE_TARGET_TYPE (arr_type);
2803 else
2804 type = arr_type;
2805
1ce677a4
UW
2806 elt_type = type;
2807 for (i = n; i > 1; i--)
2808 elt_type = TYPE_TARGET_TYPE (type);
2809
14f9c5c9 2810 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2811 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2812 if (index_type_desc != NULL)
28c85d6c
JB
2813 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2814 NULL);
262452ec 2815 else
1ce677a4 2816 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2817
43bbcdc2
PH
2818 return
2819 (LONGEST) (which == 0
2820 ? ada_discrete_type_low_bound (index_type)
2821 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2822}
2823
2824/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2825 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2826 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2827 supplied by run-time quantities other than discriminants. */
14f9c5c9 2828
1eea4ebd 2829static LONGEST
4dc81987 2830ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2831{
df407dfe 2832 struct type *arr_type = value_type (arr);
14f9c5c9 2833
ad82864c
JB
2834 if (ada_is_constrained_packed_array_type (arr_type))
2835 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2836 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2837 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2838 else
1eea4ebd 2839 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2840}
2841
2842/* Given that arr is an array value, returns the length of the
2843 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2844 supplied by run-time quantities other than discriminants.
2845 Does not work for arrays indexed by enumeration types with representation
2846 clauses at the moment. */
14f9c5c9 2847
1eea4ebd 2848static LONGEST
d2e4a39e 2849ada_array_length (struct value *arr, int n)
14f9c5c9 2850{
df407dfe 2851 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2852
ad82864c
JB
2853 if (ada_is_constrained_packed_array_type (arr_type))
2854 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2855
4c4b4cd2 2856 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2857 return (ada_array_bound_from_type (arr_type, n, 1)
2858 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2859 else
1eea4ebd
UW
2860 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2861 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2862}
2863
2864/* An empty array whose type is that of ARR_TYPE (an array type),
2865 with bounds LOW to LOW-1. */
2866
2867static struct value *
2868empty_array (struct type *arr_type, int low)
2869{
b0dd7688 2870 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2871 struct type *index_type =
b0dd7688 2872 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2873 low, low - 1);
b0dd7688 2874 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2875
0b5d8877 2876 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2877}
14f9c5c9 2878\f
d2e4a39e 2879
4c4b4cd2 2880 /* Name resolution */
14f9c5c9 2881
4c4b4cd2
PH
2882/* The "decoded" name for the user-definable Ada operator corresponding
2883 to OP. */
14f9c5c9 2884
d2e4a39e 2885static const char *
4c4b4cd2 2886ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2887{
2888 int i;
2889
4c4b4cd2 2890 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2891 {
2892 if (ada_opname_table[i].op == op)
4c4b4cd2 2893 return ada_opname_table[i].decoded;
14f9c5c9 2894 }
323e0a4a 2895 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2896}
2897
2898
4c4b4cd2
PH
2899/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2900 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2901 undefined namespace) and converts operators that are
2902 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2903 non-null, it provides a preferred result type [at the moment, only
2904 type void has any effect---causing procedures to be preferred over
2905 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2906 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2907
4c4b4cd2
PH
2908static void
2909resolve (struct expression **expp, int void_context_p)
14f9c5c9 2910{
30b15541
UW
2911 struct type *context_type = NULL;
2912 int pc = 0;
2913
2914 if (void_context_p)
2915 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2916
2917 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2918}
2919
4c4b4cd2
PH
2920/* Resolve the operator of the subexpression beginning at
2921 position *POS of *EXPP. "Resolving" consists of replacing
2922 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2923 with their resolutions, replacing built-in operators with
2924 function calls to user-defined operators, where appropriate, and,
2925 when DEPROCEDURE_P is non-zero, converting function-valued variables
2926 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2927 are as in ada_resolve, above. */
14f9c5c9 2928
d2e4a39e 2929static struct value *
4c4b4cd2 2930resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2931 struct type *context_type)
14f9c5c9
AS
2932{
2933 int pc = *pos;
2934 int i;
4c4b4cd2 2935 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2936 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2937 struct value **argvec; /* Vector of operand types (alloca'ed). */
2938 int nargs; /* Number of operands. */
52ce6436 2939 int oplen;
14f9c5c9
AS
2940
2941 argvec = NULL;
2942 nargs = 0;
2943 exp = *expp;
2944
52ce6436
PH
2945 /* Pass one: resolve operands, saving their types and updating *pos,
2946 if needed. */
14f9c5c9
AS
2947 switch (op)
2948 {
4c4b4cd2
PH
2949 case OP_FUNCALL:
2950 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2951 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2952 *pos += 7;
4c4b4cd2
PH
2953 else
2954 {
2955 *pos += 3;
2956 resolve_subexp (expp, pos, 0, NULL);
2957 }
2958 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2959 break;
2960
14f9c5c9 2961 case UNOP_ADDR:
4c4b4cd2
PH
2962 *pos += 1;
2963 resolve_subexp (expp, pos, 0, NULL);
2964 break;
2965
52ce6436
PH
2966 case UNOP_QUAL:
2967 *pos += 3;
17466c1a 2968 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2969 break;
2970
52ce6436 2971 case OP_ATR_MODULUS:
4c4b4cd2
PH
2972 case OP_ATR_SIZE:
2973 case OP_ATR_TAG:
4c4b4cd2
PH
2974 case OP_ATR_FIRST:
2975 case OP_ATR_LAST:
2976 case OP_ATR_LENGTH:
2977 case OP_ATR_POS:
2978 case OP_ATR_VAL:
4c4b4cd2
PH
2979 case OP_ATR_MIN:
2980 case OP_ATR_MAX:
52ce6436
PH
2981 case TERNOP_IN_RANGE:
2982 case BINOP_IN_BOUNDS:
2983 case UNOP_IN_RANGE:
2984 case OP_AGGREGATE:
2985 case OP_OTHERS:
2986 case OP_CHOICES:
2987 case OP_POSITIONAL:
2988 case OP_DISCRETE_RANGE:
2989 case OP_NAME:
2990 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2991 *pos += oplen;
14f9c5c9
AS
2992 break;
2993
2994 case BINOP_ASSIGN:
2995 {
4c4b4cd2
PH
2996 struct value *arg1;
2997
2998 *pos += 1;
2999 arg1 = resolve_subexp (expp, pos, 0, NULL);
3000 if (arg1 == NULL)
3001 resolve_subexp (expp, pos, 1, NULL);
3002 else
df407dfe 3003 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3004 break;
14f9c5c9
AS
3005 }
3006
4c4b4cd2 3007 case UNOP_CAST:
4c4b4cd2
PH
3008 *pos += 3;
3009 nargs = 1;
3010 break;
14f9c5c9 3011
4c4b4cd2
PH
3012 case BINOP_ADD:
3013 case BINOP_SUB:
3014 case BINOP_MUL:
3015 case BINOP_DIV:
3016 case BINOP_REM:
3017 case BINOP_MOD:
3018 case BINOP_EXP:
3019 case BINOP_CONCAT:
3020 case BINOP_LOGICAL_AND:
3021 case BINOP_LOGICAL_OR:
3022 case BINOP_BITWISE_AND:
3023 case BINOP_BITWISE_IOR:
3024 case BINOP_BITWISE_XOR:
14f9c5c9 3025
4c4b4cd2
PH
3026 case BINOP_EQUAL:
3027 case BINOP_NOTEQUAL:
3028 case BINOP_LESS:
3029 case BINOP_GTR:
3030 case BINOP_LEQ:
3031 case BINOP_GEQ:
14f9c5c9 3032
4c4b4cd2
PH
3033 case BINOP_REPEAT:
3034 case BINOP_SUBSCRIPT:
3035 case BINOP_COMMA:
40c8aaa9
JB
3036 *pos += 1;
3037 nargs = 2;
3038 break;
14f9c5c9 3039
4c4b4cd2
PH
3040 case UNOP_NEG:
3041 case UNOP_PLUS:
3042 case UNOP_LOGICAL_NOT:
3043 case UNOP_ABS:
3044 case UNOP_IND:
3045 *pos += 1;
3046 nargs = 1;
3047 break;
14f9c5c9 3048
4c4b4cd2
PH
3049 case OP_LONG:
3050 case OP_DOUBLE:
3051 case OP_VAR_VALUE:
3052 *pos += 4;
3053 break;
14f9c5c9 3054
4c4b4cd2
PH
3055 case OP_TYPE:
3056 case OP_BOOL:
3057 case OP_LAST:
4c4b4cd2
PH
3058 case OP_INTERNALVAR:
3059 *pos += 3;
3060 break;
14f9c5c9 3061
4c4b4cd2
PH
3062 case UNOP_MEMVAL:
3063 *pos += 3;
3064 nargs = 1;
3065 break;
3066
67f3407f
DJ
3067 case OP_REGISTER:
3068 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3069 break;
3070
4c4b4cd2
PH
3071 case STRUCTOP_STRUCT:
3072 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3073 nargs = 1;
3074 break;
3075
4c4b4cd2 3076 case TERNOP_SLICE:
4c4b4cd2
PH
3077 *pos += 1;
3078 nargs = 3;
3079 break;
3080
52ce6436 3081 case OP_STRING:
14f9c5c9 3082 break;
4c4b4cd2
PH
3083
3084 default:
323e0a4a 3085 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3086 }
3087
76a01679 3088 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3089 for (i = 0; i < nargs; i += 1)
3090 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3091 argvec[i] = NULL;
3092 exp = *expp;
3093
3094 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3095 switch (op)
3096 {
3097 default:
3098 break;
3099
14f9c5c9 3100 case OP_VAR_VALUE:
4c4b4cd2 3101 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3102 {
3103 struct ada_symbol_info *candidates;
3104 int n_candidates;
3105
3106 n_candidates =
3107 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3108 (exp->elts[pc + 2].symbol),
3109 exp->elts[pc + 1].block, VAR_DOMAIN,
d9680e73 3110 &candidates, 1);
76a01679
JB
3111
3112 if (n_candidates > 1)
3113 {
3114 /* Types tend to get re-introduced locally, so if there
3115 are any local symbols that are not types, first filter
3116 out all types. */
3117 int j;
3118 for (j = 0; j < n_candidates; j += 1)
3119 switch (SYMBOL_CLASS (candidates[j].sym))
3120 {
3121 case LOC_REGISTER:
3122 case LOC_ARG:
3123 case LOC_REF_ARG:
76a01679
JB
3124 case LOC_REGPARM_ADDR:
3125 case LOC_LOCAL:
76a01679 3126 case LOC_COMPUTED:
76a01679
JB
3127 goto FoundNonType;
3128 default:
3129 break;
3130 }
3131 FoundNonType:
3132 if (j < n_candidates)
3133 {
3134 j = 0;
3135 while (j < n_candidates)
3136 {
3137 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3138 {
3139 candidates[j] = candidates[n_candidates - 1];
3140 n_candidates -= 1;
3141 }
3142 else
3143 j += 1;
3144 }
3145 }
3146 }
3147
3148 if (n_candidates == 0)
323e0a4a 3149 error (_("No definition found for %s"),
76a01679
JB
3150 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3151 else if (n_candidates == 1)
3152 i = 0;
3153 else if (deprocedure_p
3154 && !is_nonfunction (candidates, n_candidates))
3155 {
06d5cf63
JB
3156 i = ada_resolve_function
3157 (candidates, n_candidates, NULL, 0,
3158 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3159 context_type);
76a01679 3160 if (i < 0)
323e0a4a 3161 error (_("Could not find a match for %s"),
76a01679
JB
3162 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3163 }
3164 else
3165 {
323e0a4a 3166 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3167 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3168 user_select_syms (candidates, n_candidates, 1);
3169 i = 0;
3170 }
3171
3172 exp->elts[pc + 1].block = candidates[i].block;
3173 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3174 if (innermost_block == NULL
3175 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3176 innermost_block = candidates[i].block;
3177 }
3178
3179 if (deprocedure_p
3180 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3181 == TYPE_CODE_FUNC))
3182 {
3183 replace_operator_with_call (expp, pc, 0, 0,
3184 exp->elts[pc + 2].symbol,
3185 exp->elts[pc + 1].block);
3186 exp = *expp;
3187 }
14f9c5c9
AS
3188 break;
3189
3190 case OP_FUNCALL:
3191 {
4c4b4cd2 3192 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3193 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3194 {
3195 struct ada_symbol_info *candidates;
3196 int n_candidates;
3197
3198 n_candidates =
76a01679
JB
3199 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3200 (exp->elts[pc + 5].symbol),
3201 exp->elts[pc + 4].block, VAR_DOMAIN,
d9680e73 3202 &candidates, 1);
4c4b4cd2
PH
3203 if (n_candidates == 1)
3204 i = 0;
3205 else
3206 {
06d5cf63
JB
3207 i = ada_resolve_function
3208 (candidates, n_candidates,
3209 argvec, nargs,
3210 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3211 context_type);
4c4b4cd2 3212 if (i < 0)
323e0a4a 3213 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3214 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3215 }
3216
3217 exp->elts[pc + 4].block = candidates[i].block;
3218 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3219 if (innermost_block == NULL
3220 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3221 innermost_block = candidates[i].block;
3222 }
14f9c5c9
AS
3223 }
3224 break;
3225 case BINOP_ADD:
3226 case BINOP_SUB:
3227 case BINOP_MUL:
3228 case BINOP_DIV:
3229 case BINOP_REM:
3230 case BINOP_MOD:
3231 case BINOP_CONCAT:
3232 case BINOP_BITWISE_AND:
3233 case BINOP_BITWISE_IOR:
3234 case BINOP_BITWISE_XOR:
3235 case BINOP_EQUAL:
3236 case BINOP_NOTEQUAL:
3237 case BINOP_LESS:
3238 case BINOP_GTR:
3239 case BINOP_LEQ:
3240 case BINOP_GEQ:
3241 case BINOP_EXP:
3242 case UNOP_NEG:
3243 case UNOP_PLUS:
3244 case UNOP_LOGICAL_NOT:
3245 case UNOP_ABS:
3246 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3247 {
3248 struct ada_symbol_info *candidates;
3249 int n_candidates;
3250
3251 n_candidates =
3252 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3253 (struct block *) NULL, VAR_DOMAIN,
d9680e73 3254 &candidates, 1);
4c4b4cd2 3255 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3256 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3257 if (i < 0)
3258 break;
3259
76a01679
JB
3260 replace_operator_with_call (expp, pc, nargs, 1,
3261 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3262 exp = *expp;
3263 }
14f9c5c9 3264 break;
4c4b4cd2
PH
3265
3266 case OP_TYPE:
b3dbf008 3267 case OP_REGISTER:
4c4b4cd2 3268 return NULL;
14f9c5c9
AS
3269 }
3270
3271 *pos = pc;
3272 return evaluate_subexp_type (exp, pos);
3273}
3274
3275/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3276 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3277 a non-pointer. */
14f9c5c9 3278/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3279 liberal. */
14f9c5c9
AS
3280
3281static int
4dc81987 3282ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3283{
61ee279c
PH
3284 ftype = ada_check_typedef (ftype);
3285 atype = ada_check_typedef (atype);
14f9c5c9
AS
3286
3287 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3288 ftype = TYPE_TARGET_TYPE (ftype);
3289 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3290 atype = TYPE_TARGET_TYPE (atype);
3291
d2e4a39e 3292 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3293 {
3294 default:
5b3d5b7d 3295 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3296 case TYPE_CODE_PTR:
3297 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3298 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3299 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3300 else
1265e4aa
JB
3301 return (may_deref
3302 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3303 case TYPE_CODE_INT:
3304 case TYPE_CODE_ENUM:
3305 case TYPE_CODE_RANGE:
3306 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3307 {
3308 case TYPE_CODE_INT:
3309 case TYPE_CODE_ENUM:
3310 case TYPE_CODE_RANGE:
3311 return 1;
3312 default:
3313 return 0;
3314 }
14f9c5c9
AS
3315
3316 case TYPE_CODE_ARRAY:
d2e4a39e 3317 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3318 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3319
3320 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3321 if (ada_is_array_descriptor_type (ftype))
3322 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3323 || ada_is_array_descriptor_type (atype));
14f9c5c9 3324 else
4c4b4cd2
PH
3325 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3326 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3327
3328 case TYPE_CODE_UNION:
3329 case TYPE_CODE_FLT:
3330 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3331 }
3332}
3333
3334/* Return non-zero if the formals of FUNC "sufficiently match" the
3335 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3336 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3337 argument function. */
14f9c5c9
AS
3338
3339static int
d2e4a39e 3340ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3341{
3342 int i;
d2e4a39e 3343 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3344
1265e4aa
JB
3345 if (SYMBOL_CLASS (func) == LOC_CONST
3346 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3347 return (n_actuals == 0);
3348 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3349 return 0;
3350
3351 if (TYPE_NFIELDS (func_type) != n_actuals)
3352 return 0;
3353
3354 for (i = 0; i < n_actuals; i += 1)
3355 {
4c4b4cd2 3356 if (actuals[i] == NULL)
76a01679
JB
3357 return 0;
3358 else
3359 {
5b4ee69b
MS
3360 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3361 i));
df407dfe 3362 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3363
76a01679
JB
3364 if (!ada_type_match (ftype, atype, 1))
3365 return 0;
3366 }
14f9c5c9
AS
3367 }
3368 return 1;
3369}
3370
3371/* False iff function type FUNC_TYPE definitely does not produce a value
3372 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3373 FUNC_TYPE is not a valid function type with a non-null return type
3374 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3375
3376static int
d2e4a39e 3377return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3378{
d2e4a39e 3379 struct type *return_type;
14f9c5c9
AS
3380
3381 if (func_type == NULL)
3382 return 1;
3383
4c4b4cd2 3384 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3385 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3386 else
18af8284 3387 return_type = get_base_type (func_type);
14f9c5c9
AS
3388 if (return_type == NULL)
3389 return 1;
3390
18af8284 3391 context_type = get_base_type (context_type);
14f9c5c9
AS
3392
3393 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3394 return context_type == NULL || return_type == context_type;
3395 else if (context_type == NULL)
3396 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3397 else
3398 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3399}
3400
3401
4c4b4cd2 3402/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3403 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3404 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3405 that returns that type, then eliminate matches that don't. If
3406 CONTEXT_TYPE is void and there is at least one match that does not
3407 return void, eliminate all matches that do.
3408
14f9c5c9
AS
3409 Asks the user if there is more than one match remaining. Returns -1
3410 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3411 solely for messages. May re-arrange and modify SYMS in
3412 the process; the index returned is for the modified vector. */
14f9c5c9 3413
4c4b4cd2
PH
3414static int
3415ada_resolve_function (struct ada_symbol_info syms[],
3416 int nsyms, struct value **args, int nargs,
3417 const char *name, struct type *context_type)
14f9c5c9 3418{
30b15541 3419 int fallback;
14f9c5c9 3420 int k;
4c4b4cd2 3421 int m; /* Number of hits */
14f9c5c9 3422
d2e4a39e 3423 m = 0;
30b15541
UW
3424 /* In the first pass of the loop, we only accept functions matching
3425 context_type. If none are found, we add a second pass of the loop
3426 where every function is accepted. */
3427 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3428 {
3429 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3430 {
61ee279c 3431 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3432
3433 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3434 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3435 {
3436 syms[m] = syms[k];
3437 m += 1;
3438 }
3439 }
14f9c5c9
AS
3440 }
3441
3442 if (m == 0)
3443 return -1;
3444 else if (m > 1)
3445 {
323e0a4a 3446 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3447 user_select_syms (syms, m, 1);
14f9c5c9
AS
3448 return 0;
3449 }
3450 return 0;
3451}
3452
4c4b4cd2
PH
3453/* Returns true (non-zero) iff decoded name N0 should appear before N1
3454 in a listing of choices during disambiguation (see sort_choices, below).
3455 The idea is that overloadings of a subprogram name from the
3456 same package should sort in their source order. We settle for ordering
3457 such symbols by their trailing number (__N or $N). */
3458
14f9c5c9 3459static int
0d5cff50 3460encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3461{
3462 if (N1 == NULL)
3463 return 0;
3464 else if (N0 == NULL)
3465 return 1;
3466 else
3467 {
3468 int k0, k1;
5b4ee69b 3469
d2e4a39e 3470 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3471 ;
d2e4a39e 3472 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3473 ;
d2e4a39e 3474 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3475 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3476 {
3477 int n0, n1;
5b4ee69b 3478
4c4b4cd2
PH
3479 n0 = k0;
3480 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3481 n0 -= 1;
3482 n1 = k1;
3483 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3484 n1 -= 1;
3485 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3486 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3487 }
14f9c5c9
AS
3488 return (strcmp (N0, N1) < 0);
3489 }
3490}
d2e4a39e 3491
4c4b4cd2
PH
3492/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3493 encoded names. */
3494
d2e4a39e 3495static void
4c4b4cd2 3496sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3497{
4c4b4cd2 3498 int i;
5b4ee69b 3499
d2e4a39e 3500 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3501 {
4c4b4cd2 3502 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3503 int j;
3504
d2e4a39e 3505 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3506 {
3507 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3508 SYMBOL_LINKAGE_NAME (sym.sym)))
3509 break;
3510 syms[j + 1] = syms[j];
3511 }
d2e4a39e 3512 syms[j + 1] = sym;
14f9c5c9
AS
3513 }
3514}
3515
4c4b4cd2
PH
3516/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3517 by asking the user (if necessary), returning the number selected,
3518 and setting the first elements of SYMS items. Error if no symbols
3519 selected. */
14f9c5c9
AS
3520
3521/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3522 to be re-integrated one of these days. */
14f9c5c9
AS
3523
3524int
4c4b4cd2 3525user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3526{
3527 int i;
d2e4a39e 3528 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3529 int n_chosen;
3530 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3531 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3532
3533 if (max_results < 1)
323e0a4a 3534 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3535 if (nsyms <= 1)
3536 return nsyms;
3537
717d2f5a
JB
3538 if (select_mode == multiple_symbols_cancel)
3539 error (_("\
3540canceled because the command is ambiguous\n\
3541See set/show multiple-symbol."));
3542
3543 /* If select_mode is "all", then return all possible symbols.
3544 Only do that if more than one symbol can be selected, of course.
3545 Otherwise, display the menu as usual. */
3546 if (select_mode == multiple_symbols_all && max_results > 1)
3547 return nsyms;
3548
323e0a4a 3549 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3550 if (max_results > 1)
323e0a4a 3551 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3552
4c4b4cd2 3553 sort_choices (syms, nsyms);
14f9c5c9
AS
3554
3555 for (i = 0; i < nsyms; i += 1)
3556 {
4c4b4cd2
PH
3557 if (syms[i].sym == NULL)
3558 continue;
3559
3560 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3561 {
76a01679
JB
3562 struct symtab_and_line sal =
3563 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3564
323e0a4a
AC
3565 if (sal.symtab == NULL)
3566 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3567 i + first_choice,
3568 SYMBOL_PRINT_NAME (syms[i].sym),
3569 sal.line);
3570 else
3571 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3572 SYMBOL_PRINT_NAME (syms[i].sym),
3573 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3574 continue;
3575 }
d2e4a39e 3576 else
4c4b4cd2
PH
3577 {
3578 int is_enumeral =
3579 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3580 && SYMBOL_TYPE (syms[i].sym) != NULL
3581 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3582 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3583
3584 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3585 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3586 i + first_choice,
3587 SYMBOL_PRINT_NAME (syms[i].sym),
3588 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3589 else if (is_enumeral
3590 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3591 {
a3f17187 3592 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3593 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3594 gdb_stdout, -1, 0);
323e0a4a 3595 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3596 SYMBOL_PRINT_NAME (syms[i].sym));
3597 }
3598 else if (symtab != NULL)
3599 printf_unfiltered (is_enumeral
323e0a4a
AC
3600 ? _("[%d] %s in %s (enumeral)\n")
3601 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3602 i + first_choice,
3603 SYMBOL_PRINT_NAME (syms[i].sym),
3604 symtab->filename);
3605 else
3606 printf_unfiltered (is_enumeral
323e0a4a
AC
3607 ? _("[%d] %s (enumeral)\n")
3608 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3609 i + first_choice,
3610 SYMBOL_PRINT_NAME (syms[i].sym));
3611 }
14f9c5c9 3612 }
d2e4a39e 3613
14f9c5c9 3614 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3615 "overload-choice");
14f9c5c9
AS
3616
3617 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3618 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3619
3620 return n_chosen;
3621}
3622
3623/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3624 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3625 order in CHOICES[0 .. N-1], and return N.
3626
3627 The user types choices as a sequence of numbers on one line
3628 separated by blanks, encoding them as follows:
3629
4c4b4cd2 3630 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3631 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3632 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3633
4c4b4cd2 3634 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3635
3636 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3637 prompts (for use with the -f switch). */
14f9c5c9
AS
3638
3639int
d2e4a39e 3640get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3641 int is_all_choice, char *annotation_suffix)
14f9c5c9 3642{
d2e4a39e 3643 char *args;
0bcd0149 3644 char *prompt;
14f9c5c9
AS
3645 int n_chosen;
3646 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3647
14f9c5c9
AS
3648 prompt = getenv ("PS2");
3649 if (prompt == NULL)
0bcd0149 3650 prompt = "> ";
14f9c5c9 3651
0bcd0149 3652 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3653
14f9c5c9 3654 if (args == NULL)
323e0a4a 3655 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3656
3657 n_chosen = 0;
76a01679 3658
4c4b4cd2
PH
3659 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3660 order, as given in args. Choices are validated. */
14f9c5c9
AS
3661 while (1)
3662 {
d2e4a39e 3663 char *args2;
14f9c5c9
AS
3664 int choice, j;
3665
0fcd72ba 3666 args = skip_spaces (args);
14f9c5c9 3667 if (*args == '\0' && n_chosen == 0)
323e0a4a 3668 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3669 else if (*args == '\0')
4c4b4cd2 3670 break;
14f9c5c9
AS
3671
3672 choice = strtol (args, &args2, 10);
d2e4a39e 3673 if (args == args2 || choice < 0
4c4b4cd2 3674 || choice > n_choices + first_choice - 1)
323e0a4a 3675 error (_("Argument must be choice number"));
14f9c5c9
AS
3676 args = args2;
3677
d2e4a39e 3678 if (choice == 0)
323e0a4a 3679 error (_("cancelled"));
14f9c5c9
AS
3680
3681 if (choice < first_choice)
4c4b4cd2
PH
3682 {
3683 n_chosen = n_choices;
3684 for (j = 0; j < n_choices; j += 1)
3685 choices[j] = j;
3686 break;
3687 }
14f9c5c9
AS
3688 choice -= first_choice;
3689
d2e4a39e 3690 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3691 {
3692 }
14f9c5c9
AS
3693
3694 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3695 {
3696 int k;
5b4ee69b 3697
4c4b4cd2
PH
3698 for (k = n_chosen - 1; k > j; k -= 1)
3699 choices[k + 1] = choices[k];
3700 choices[j + 1] = choice;
3701 n_chosen += 1;
3702 }
14f9c5c9
AS
3703 }
3704
3705 if (n_chosen > max_results)
323e0a4a 3706 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3707
14f9c5c9
AS
3708 return n_chosen;
3709}
3710
4c4b4cd2
PH
3711/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3712 on the function identified by SYM and BLOCK, and taking NARGS
3713 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3714
3715static void
d2e4a39e 3716replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3717 int oplen, struct symbol *sym,
3718 struct block *block)
14f9c5c9
AS
3719{
3720 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3721 symbol, -oplen for operator being replaced). */
d2e4a39e 3722 struct expression *newexp = (struct expression *)
8c1a34e7 3723 xzalloc (sizeof (struct expression)
4c4b4cd2 3724 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3725 struct expression *exp = *expp;
14f9c5c9
AS
3726
3727 newexp->nelts = exp->nelts + 7 - oplen;
3728 newexp->language_defn = exp->language_defn;
3489610d 3729 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3730 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3731 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3732 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3733
3734 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3735 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3736
3737 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3738 newexp->elts[pc + 4].block = block;
3739 newexp->elts[pc + 5].symbol = sym;
3740
3741 *expp = newexp;
aacb1f0a 3742 xfree (exp);
d2e4a39e 3743}
14f9c5c9
AS
3744
3745/* Type-class predicates */
3746
4c4b4cd2
PH
3747/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3748 or FLOAT). */
14f9c5c9
AS
3749
3750static int
d2e4a39e 3751numeric_type_p (struct type *type)
14f9c5c9
AS
3752{
3753 if (type == NULL)
3754 return 0;
d2e4a39e
AS
3755 else
3756 {
3757 switch (TYPE_CODE (type))
4c4b4cd2
PH
3758 {
3759 case TYPE_CODE_INT:
3760 case TYPE_CODE_FLT:
3761 return 1;
3762 case TYPE_CODE_RANGE:
3763 return (type == TYPE_TARGET_TYPE (type)
3764 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3765 default:
3766 return 0;
3767 }
d2e4a39e 3768 }
14f9c5c9
AS
3769}
3770
4c4b4cd2 3771/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3772
3773static int
d2e4a39e 3774integer_type_p (struct type *type)
14f9c5c9
AS
3775{
3776 if (type == NULL)
3777 return 0;
d2e4a39e
AS
3778 else
3779 {
3780 switch (TYPE_CODE (type))
4c4b4cd2
PH
3781 {
3782 case TYPE_CODE_INT:
3783 return 1;
3784 case TYPE_CODE_RANGE:
3785 return (type == TYPE_TARGET_TYPE (type)
3786 || integer_type_p (TYPE_TARGET_TYPE (type)));
3787 default:
3788 return 0;
3789 }
d2e4a39e 3790 }
14f9c5c9
AS
3791}
3792
4c4b4cd2 3793/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3794
3795static int
d2e4a39e 3796scalar_type_p (struct type *type)
14f9c5c9
AS
3797{
3798 if (type == NULL)
3799 return 0;
d2e4a39e
AS
3800 else
3801 {
3802 switch (TYPE_CODE (type))
4c4b4cd2
PH
3803 {
3804 case TYPE_CODE_INT:
3805 case TYPE_CODE_RANGE:
3806 case TYPE_CODE_ENUM:
3807 case TYPE_CODE_FLT:
3808 return 1;
3809 default:
3810 return 0;
3811 }
d2e4a39e 3812 }
14f9c5c9
AS
3813}
3814
4c4b4cd2 3815/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3816
3817static int
d2e4a39e 3818discrete_type_p (struct type *type)
14f9c5c9
AS
3819{
3820 if (type == NULL)
3821 return 0;
d2e4a39e
AS
3822 else
3823 {
3824 switch (TYPE_CODE (type))
4c4b4cd2
PH
3825 {
3826 case TYPE_CODE_INT:
3827 case TYPE_CODE_RANGE:
3828 case TYPE_CODE_ENUM:
872f0337 3829 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3830 return 1;
3831 default:
3832 return 0;
3833 }
d2e4a39e 3834 }
14f9c5c9
AS
3835}
3836
4c4b4cd2
PH
3837/* Returns non-zero if OP with operands in the vector ARGS could be
3838 a user-defined function. Errs on the side of pre-defined operators
3839 (i.e., result 0). */
14f9c5c9
AS
3840
3841static int
d2e4a39e 3842possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3843{
76a01679 3844 struct type *type0 =
df407dfe 3845 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3846 struct type *type1 =
df407dfe 3847 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3848
4c4b4cd2
PH
3849 if (type0 == NULL)
3850 return 0;
3851
14f9c5c9
AS
3852 switch (op)
3853 {
3854 default:
3855 return 0;
3856
3857 case BINOP_ADD:
3858 case BINOP_SUB:
3859 case BINOP_MUL:
3860 case BINOP_DIV:
d2e4a39e 3861 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3862
3863 case BINOP_REM:
3864 case BINOP_MOD:
3865 case BINOP_BITWISE_AND:
3866 case BINOP_BITWISE_IOR:
3867 case BINOP_BITWISE_XOR:
d2e4a39e 3868 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3869
3870 case BINOP_EQUAL:
3871 case BINOP_NOTEQUAL:
3872 case BINOP_LESS:
3873 case BINOP_GTR:
3874 case BINOP_LEQ:
3875 case BINOP_GEQ:
d2e4a39e 3876 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3877
3878 case BINOP_CONCAT:
ee90b9ab 3879 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3880
3881 case BINOP_EXP:
d2e4a39e 3882 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3883
3884 case UNOP_NEG:
3885 case UNOP_PLUS:
3886 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3887 case UNOP_ABS:
3888 return (!numeric_type_p (type0));
14f9c5c9
AS
3889
3890 }
3891}
3892\f
4c4b4cd2 3893 /* Renaming */
14f9c5c9 3894
aeb5907d
JB
3895/* NOTES:
3896
3897 1. In the following, we assume that a renaming type's name may
3898 have an ___XD suffix. It would be nice if this went away at some
3899 point.
3900 2. We handle both the (old) purely type-based representation of
3901 renamings and the (new) variable-based encoding. At some point,
3902 it is devoutly to be hoped that the former goes away
3903 (FIXME: hilfinger-2007-07-09).
3904 3. Subprogram renamings are not implemented, although the XRS
3905 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3906
3907/* If SYM encodes a renaming,
3908
3909 <renaming> renames <renamed entity>,
3910
3911 sets *LEN to the length of the renamed entity's name,
3912 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3913 the string describing the subcomponent selected from the renamed
0963b4bd 3914 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3915 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3916 are undefined). Otherwise, returns a value indicating the category
3917 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3918 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3919 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3920 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3921 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3922 may be NULL, in which case they are not assigned.
3923
3924 [Currently, however, GCC does not generate subprogram renamings.] */
3925
3926enum ada_renaming_category
3927ada_parse_renaming (struct symbol *sym,
3928 const char **renamed_entity, int *len,
3929 const char **renaming_expr)
3930{
3931 enum ada_renaming_category kind;
3932 const char *info;
3933 const char *suffix;
3934
3935 if (sym == NULL)
3936 return ADA_NOT_RENAMING;
3937 switch (SYMBOL_CLASS (sym))
14f9c5c9 3938 {
aeb5907d
JB
3939 default:
3940 return ADA_NOT_RENAMING;
3941 case LOC_TYPEDEF:
3942 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3943 renamed_entity, len, renaming_expr);
3944 case LOC_LOCAL:
3945 case LOC_STATIC:
3946 case LOC_COMPUTED:
3947 case LOC_OPTIMIZED_OUT:
3948 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3949 if (info == NULL)
3950 return ADA_NOT_RENAMING;
3951 switch (info[5])
3952 {
3953 case '_':
3954 kind = ADA_OBJECT_RENAMING;
3955 info += 6;
3956 break;
3957 case 'E':
3958 kind = ADA_EXCEPTION_RENAMING;
3959 info += 7;
3960 break;
3961 case 'P':
3962 kind = ADA_PACKAGE_RENAMING;
3963 info += 7;
3964 break;
3965 case 'S':
3966 kind = ADA_SUBPROGRAM_RENAMING;
3967 info += 7;
3968 break;
3969 default:
3970 return ADA_NOT_RENAMING;
3971 }
14f9c5c9 3972 }
4c4b4cd2 3973
aeb5907d
JB
3974 if (renamed_entity != NULL)
3975 *renamed_entity = info;
3976 suffix = strstr (info, "___XE");
3977 if (suffix == NULL || suffix == info)
3978 return ADA_NOT_RENAMING;
3979 if (len != NULL)
3980 *len = strlen (info) - strlen (suffix);
3981 suffix += 5;
3982 if (renaming_expr != NULL)
3983 *renaming_expr = suffix;
3984 return kind;
3985}
3986
3987/* Assuming TYPE encodes a renaming according to the old encoding in
3988 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3989 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3990 ADA_NOT_RENAMING otherwise. */
3991static enum ada_renaming_category
3992parse_old_style_renaming (struct type *type,
3993 const char **renamed_entity, int *len,
3994 const char **renaming_expr)
3995{
3996 enum ada_renaming_category kind;
3997 const char *name;
3998 const char *info;
3999 const char *suffix;
14f9c5c9 4000
aeb5907d
JB
4001 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4002 || TYPE_NFIELDS (type) != 1)
4003 return ADA_NOT_RENAMING;
14f9c5c9 4004
aeb5907d
JB
4005 name = type_name_no_tag (type);
4006 if (name == NULL)
4007 return ADA_NOT_RENAMING;
4008
4009 name = strstr (name, "___XR");
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012 switch (name[5])
4013 {
4014 case '\0':
4015 case '_':
4016 kind = ADA_OBJECT_RENAMING;
4017 break;
4018 case 'E':
4019 kind = ADA_EXCEPTION_RENAMING;
4020 break;
4021 case 'P':
4022 kind = ADA_PACKAGE_RENAMING;
4023 break;
4024 case 'S':
4025 kind = ADA_SUBPROGRAM_RENAMING;
4026 break;
4027 default:
4028 return ADA_NOT_RENAMING;
4029 }
14f9c5c9 4030
aeb5907d
JB
4031 info = TYPE_FIELD_NAME (type, 0);
4032 if (info == NULL)
4033 return ADA_NOT_RENAMING;
4034 if (renamed_entity != NULL)
4035 *renamed_entity = info;
4036 suffix = strstr (info, "___XE");
4037 if (renaming_expr != NULL)
4038 *renaming_expr = suffix + 5;
4039 if (suffix == NULL || suffix == info)
4040 return ADA_NOT_RENAMING;
4041 if (len != NULL)
4042 *len = suffix - info;
4043 return kind;
a5ee536b
JB
4044}
4045
4046/* Compute the value of the given RENAMING_SYM, which is expected to
4047 be a symbol encoding a renaming expression. BLOCK is the block
4048 used to evaluate the renaming. */
52ce6436 4049
a5ee536b
JB
4050static struct value *
4051ada_read_renaming_var_value (struct symbol *renaming_sym,
4052 struct block *block)
4053{
4054 char *sym_name;
4055 struct expression *expr;
4056 struct value *value;
4057 struct cleanup *old_chain = NULL;
4058
4059 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4060 old_chain = make_cleanup (xfree, sym_name);
4061 expr = parse_exp_1 (&sym_name, block, 0);
4062 make_cleanup (free_current_contents, &expr);
4063 value = evaluate_expression (expr);
4064
4065 do_cleanups (old_chain);
4066 return value;
4067}
14f9c5c9 4068\f
d2e4a39e 4069
4c4b4cd2 4070 /* Evaluation: Function Calls */
14f9c5c9 4071
4c4b4cd2 4072/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4073 lvalues, and otherwise has the side-effect of allocating memory
4074 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4075
d2e4a39e 4076static struct value *
40bc484c 4077ensure_lval (struct value *val)
14f9c5c9 4078{
40bc484c
JB
4079 if (VALUE_LVAL (val) == not_lval
4080 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4081 {
df407dfe 4082 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4083 const CORE_ADDR addr =
4084 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4085
40bc484c 4086 set_value_address (val, addr);
a84a8a0d 4087 VALUE_LVAL (val) = lval_memory;
40bc484c 4088 write_memory (addr, value_contents (val), len);
c3e5cd34 4089 }
14f9c5c9
AS
4090
4091 return val;
4092}
4093
4094/* Return the value ACTUAL, converted to be an appropriate value for a
4095 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4096 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4097 values not residing in memory, updating it as needed. */
14f9c5c9 4098
a93c0eb6 4099struct value *
40bc484c 4100ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4101{
df407dfe 4102 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4103 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4104 struct type *formal_target =
4105 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4106 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4107 struct type *actual_target =
4108 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4109 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4110
4c4b4cd2 4111 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4112 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4113 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4114 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4115 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4116 {
a84a8a0d 4117 struct value *result;
5b4ee69b 4118
14f9c5c9 4119 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4120 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4121 result = desc_data (actual);
14f9c5c9 4122 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4123 {
4124 if (VALUE_LVAL (actual) != lval_memory)
4125 {
4126 struct value *val;
5b4ee69b 4127
df407dfe 4128 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4129 val = allocate_value (actual_type);
990a07ab 4130 memcpy ((char *) value_contents_raw (val),
0fd88904 4131 (char *) value_contents (actual),
4c4b4cd2 4132 TYPE_LENGTH (actual_type));
40bc484c 4133 actual = ensure_lval (val);
4c4b4cd2 4134 }
a84a8a0d 4135 result = value_addr (actual);
4c4b4cd2 4136 }
a84a8a0d
JB
4137 else
4138 return actual;
4139 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
4140 }
4141 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4142 return ada_value_ind (actual);
4143
4144 return actual;
4145}
4146
438c98a1
JB
4147/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4148 type TYPE. This is usually an inefficient no-op except on some targets
4149 (such as AVR) where the representation of a pointer and an address
4150 differs. */
4151
4152static CORE_ADDR
4153value_pointer (struct value *value, struct type *type)
4154{
4155 struct gdbarch *gdbarch = get_type_arch (type);
4156 unsigned len = TYPE_LENGTH (type);
4157 gdb_byte *buf = alloca (len);
4158 CORE_ADDR addr;
4159
4160 addr = value_address (value);
4161 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4162 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4163 return addr;
4164}
4165
14f9c5c9 4166
4c4b4cd2
PH
4167/* Push a descriptor of type TYPE for array value ARR on the stack at
4168 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4169 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4170 to-descriptor type rather than a descriptor type), a struct value *
4171 representing a pointer to this descriptor. */
14f9c5c9 4172
d2e4a39e 4173static struct value *
40bc484c 4174make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4175{
d2e4a39e
AS
4176 struct type *bounds_type = desc_bounds_type (type);
4177 struct type *desc_type = desc_base_type (type);
4178 struct value *descriptor = allocate_value (desc_type);
4179 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4180 int i;
d2e4a39e 4181
0963b4bd
MS
4182 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4183 i > 0; i -= 1)
14f9c5c9 4184 {
19f220c3
JK
4185 modify_field (value_type (bounds), value_contents_writeable (bounds),
4186 ada_array_bound (arr, i, 0),
4187 desc_bound_bitpos (bounds_type, i, 0),
4188 desc_bound_bitsize (bounds_type, i, 0));
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 1),
4191 desc_bound_bitpos (bounds_type, i, 1),
4192 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4193 }
d2e4a39e 4194
40bc484c 4195 bounds = ensure_lval (bounds);
d2e4a39e 4196
19f220c3
JK
4197 modify_field (value_type (descriptor),
4198 value_contents_writeable (descriptor),
4199 value_pointer (ensure_lval (arr),
4200 TYPE_FIELD_TYPE (desc_type, 0)),
4201 fat_pntr_data_bitpos (desc_type),
4202 fat_pntr_data_bitsize (desc_type));
4203
4204 modify_field (value_type (descriptor),
4205 value_contents_writeable (descriptor),
4206 value_pointer (bounds,
4207 TYPE_FIELD_TYPE (desc_type, 1)),
4208 fat_pntr_bounds_bitpos (desc_type),
4209 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4210
40bc484c 4211 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4212
4213 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4214 return value_addr (descriptor);
4215 else
4216 return descriptor;
4217}
14f9c5c9 4218\f
963a6417 4219/* Dummy definitions for an experimental caching module that is not
0963b4bd 4220 * used in the public sources. */
96d887e8 4221
96d887e8
PH
4222static int
4223lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4224 struct symbol **sym, struct block **block)
96d887e8
PH
4225{
4226 return 0;
4227}
4228
4229static void
4230cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4231 struct block *block)
96d887e8
PH
4232{
4233}
4c4b4cd2
PH
4234\f
4235 /* Symbol Lookup */
4236
c0431670
JB
4237/* Return nonzero if wild matching should be used when searching for
4238 all symbols matching LOOKUP_NAME.
4239
4240 LOOKUP_NAME is expected to be a symbol name after transformation
4241 for Ada lookups (see ada_name_for_lookup). */
4242
4243static int
4244should_use_wild_match (const char *lookup_name)
4245{
4246 return (strstr (lookup_name, "__") == NULL);
4247}
4248
4c4b4cd2
PH
4249/* Return the result of a standard (literal, C-like) lookup of NAME in
4250 given DOMAIN, visible from lexical block BLOCK. */
4251
4252static struct symbol *
4253standard_lookup (const char *name, const struct block *block,
4254 domain_enum domain)
4255{
4256 struct symbol *sym;
4c4b4cd2 4257
2570f2b7 4258 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4259 return sym;
2570f2b7
UW
4260 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4261 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4262 return sym;
4263}
4264
4265
4266/* Non-zero iff there is at least one non-function/non-enumeral symbol
4267 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4268 since they contend in overloading in the same way. */
4269static int
4270is_nonfunction (struct ada_symbol_info syms[], int n)
4271{
4272 int i;
4273
4274 for (i = 0; i < n; i += 1)
4275 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4276 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4277 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4278 return 1;
4279
4280 return 0;
4281}
4282
4283/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4284 struct types. Otherwise, they may not. */
14f9c5c9
AS
4285
4286static int
d2e4a39e 4287equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4288{
d2e4a39e 4289 if (type0 == type1)
14f9c5c9 4290 return 1;
d2e4a39e 4291 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4292 || TYPE_CODE (type0) != TYPE_CODE (type1))
4293 return 0;
d2e4a39e 4294 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4295 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4296 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4297 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4298 return 1;
d2e4a39e 4299
14f9c5c9
AS
4300 return 0;
4301}
4302
4303/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4304 no more defined than that of SYM1. */
14f9c5c9
AS
4305
4306static int
d2e4a39e 4307lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4308{
4309 if (sym0 == sym1)
4310 return 1;
176620f1 4311 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4312 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4313 return 0;
4314
d2e4a39e 4315 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4316 {
4317 case LOC_UNDEF:
4318 return 1;
4319 case LOC_TYPEDEF:
4320 {
4c4b4cd2
PH
4321 struct type *type0 = SYMBOL_TYPE (sym0);
4322 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4323 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4324 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4325 int len0 = strlen (name0);
5b4ee69b 4326
4c4b4cd2
PH
4327 return
4328 TYPE_CODE (type0) == TYPE_CODE (type1)
4329 && (equiv_types (type0, type1)
4330 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4331 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4332 }
4333 case LOC_CONST:
4334 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4335 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4336 default:
4337 return 0;
14f9c5c9
AS
4338 }
4339}
4340
4c4b4cd2
PH
4341/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4342 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4343
4344static void
76a01679
JB
4345add_defn_to_vec (struct obstack *obstackp,
4346 struct symbol *sym,
2570f2b7 4347 struct block *block)
14f9c5c9
AS
4348{
4349 int i;
4c4b4cd2 4350 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4351
529cad9c
PH
4352 /* Do not try to complete stub types, as the debugger is probably
4353 already scanning all symbols matching a certain name at the
4354 time when this function is called. Trying to replace the stub
4355 type by its associated full type will cause us to restart a scan
4356 which may lead to an infinite recursion. Instead, the client
4357 collecting the matching symbols will end up collecting several
4358 matches, with at least one of them complete. It can then filter
4359 out the stub ones if needed. */
4360
4c4b4cd2
PH
4361 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4362 {
4363 if (lesseq_defined_than (sym, prevDefns[i].sym))
4364 return;
4365 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4366 {
4367 prevDefns[i].sym = sym;
4368 prevDefns[i].block = block;
4c4b4cd2 4369 return;
76a01679 4370 }
4c4b4cd2
PH
4371 }
4372
4373 {
4374 struct ada_symbol_info info;
4375
4376 info.sym = sym;
4377 info.block = block;
4c4b4cd2
PH
4378 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4379 }
4380}
4381
4382/* Number of ada_symbol_info structures currently collected in
4383 current vector in *OBSTACKP. */
4384
76a01679
JB
4385static int
4386num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4387{
4388 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4389}
4390
4391/* Vector of ada_symbol_info structures currently collected in current
4392 vector in *OBSTACKP. If FINISH, close off the vector and return
4393 its final address. */
4394
76a01679 4395static struct ada_symbol_info *
4c4b4cd2
PH
4396defns_collected (struct obstack *obstackp, int finish)
4397{
4398 if (finish)
4399 return obstack_finish (obstackp);
4400 else
4401 return (struct ada_symbol_info *) obstack_base (obstackp);
4402}
4403
96d887e8
PH
4404/* Return a minimal symbol matching NAME according to Ada decoding
4405 rules. Returns NULL if there is no such minimal symbol. Names
4406 prefixed with "standard__" are handled specially: "standard__" is
4407 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4408
96d887e8
PH
4409struct minimal_symbol *
4410ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4411{
4c4b4cd2 4412 struct objfile *objfile;
96d887e8 4413 struct minimal_symbol *msymbol;
c0431670 4414 const int wild_match = should_use_wild_match (name);
4c4b4cd2 4415
c0431670
JB
4416 /* Special case: If the user specifies a symbol name inside package
4417 Standard, do a non-wild matching of the symbol name without
4418 the "standard__" prefix. This was primarily introduced in order
4419 to allow the user to specifically access the standard exceptions
4420 using, for instance, Standard.Constraint_Error when Constraint_Error
4421 is ambiguous (due to the user defining its own Constraint_Error
4422 entity inside its program). */
96d887e8 4423 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4424 name += sizeof ("standard__") - 1;
4c4b4cd2 4425
96d887e8
PH
4426 ALL_MSYMBOLS (objfile, msymbol)
4427 {
40658b94 4428 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
96d887e8
PH
4429 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4430 return msymbol;
4431 }
4c4b4cd2 4432
96d887e8
PH
4433 return NULL;
4434}
4c4b4cd2 4435
96d887e8
PH
4436/* For all subprograms that statically enclose the subprogram of the
4437 selected frame, add symbols matching identifier NAME in DOMAIN
4438 and their blocks to the list of data in OBSTACKP, as for
4439 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4440 wildcard prefix. */
4c4b4cd2 4441
96d887e8
PH
4442static void
4443add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4444 const char *name, domain_enum namespace,
96d887e8
PH
4445 int wild_match)
4446{
96d887e8 4447}
14f9c5c9 4448
96d887e8
PH
4449/* True if TYPE is definitely an artificial type supplied to a symbol
4450 for which no debugging information was given in the symbol file. */
14f9c5c9 4451
96d887e8
PH
4452static int
4453is_nondebugging_type (struct type *type)
4454{
0d5cff50 4455 const char *name = ada_type_name (type);
5b4ee69b 4456
96d887e8
PH
4457 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4458}
4c4b4cd2 4459
8f17729f
JB
4460/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4461 that are deemed "identical" for practical purposes.
4462
4463 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4464 types and that their number of enumerals is identical (in other
4465 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4466
4467static int
4468ada_identical_enum_types_p (struct type *type1, struct type *type2)
4469{
4470 int i;
4471
4472 /* The heuristic we use here is fairly conservative. We consider
4473 that 2 enumerate types are identical if they have the same
4474 number of enumerals and that all enumerals have the same
4475 underlying value and name. */
4476
4477 /* All enums in the type should have an identical underlying value. */
4478 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4479 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4480 return 0;
4481
4482 /* All enumerals should also have the same name (modulo any numerical
4483 suffix). */
4484 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4485 {
0d5cff50
DE
4486 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4487 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4488 int len_1 = strlen (name_1);
4489 int len_2 = strlen (name_2);
4490
4491 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4492 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4493 if (len_1 != len_2
4494 || strncmp (TYPE_FIELD_NAME (type1, i),
4495 TYPE_FIELD_NAME (type2, i),
4496 len_1) != 0)
4497 return 0;
4498 }
4499
4500 return 1;
4501}
4502
4503/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4504 that are deemed "identical" for practical purposes. Sometimes,
4505 enumerals are not strictly identical, but their types are so similar
4506 that they can be considered identical.
4507
4508 For instance, consider the following code:
4509
4510 type Color is (Black, Red, Green, Blue, White);
4511 type RGB_Color is new Color range Red .. Blue;
4512
4513 Type RGB_Color is a subrange of an implicit type which is a copy
4514 of type Color. If we call that implicit type RGB_ColorB ("B" is
4515 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4516 As a result, when an expression references any of the enumeral
4517 by name (Eg. "print green"), the expression is technically
4518 ambiguous and the user should be asked to disambiguate. But
4519 doing so would only hinder the user, since it wouldn't matter
4520 what choice he makes, the outcome would always be the same.
4521 So, for practical purposes, we consider them as the same. */
4522
4523static int
4524symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4525{
4526 int i;
4527
4528 /* Before performing a thorough comparison check of each type,
4529 we perform a series of inexpensive checks. We expect that these
4530 checks will quickly fail in the vast majority of cases, and thus
4531 help prevent the unnecessary use of a more expensive comparison.
4532 Said comparison also expects us to make some of these checks
4533 (see ada_identical_enum_types_p). */
4534
4535 /* Quick check: All symbols should have an enum type. */
4536 for (i = 0; i < nsyms; i++)
4537 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4538 return 0;
4539
4540 /* Quick check: They should all have the same value. */
4541 for (i = 1; i < nsyms; i++)
4542 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4543 return 0;
4544
4545 /* Quick check: They should all have the same number of enumerals. */
4546 for (i = 1; i < nsyms; i++)
4547 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4548 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4549 return 0;
4550
4551 /* All the sanity checks passed, so we might have a set of
4552 identical enumeration types. Perform a more complete
4553 comparison of the type of each symbol. */
4554 for (i = 1; i < nsyms; i++)
4555 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4556 SYMBOL_TYPE (syms[0].sym)))
4557 return 0;
4558
4559 return 1;
4560}
4561
96d887e8
PH
4562/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4563 duplicate other symbols in the list (The only case I know of where
4564 this happens is when object files containing stabs-in-ecoff are
4565 linked with files containing ordinary ecoff debugging symbols (or no
4566 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4567 Returns the number of items in the modified list. */
4c4b4cd2 4568
96d887e8
PH
4569static int
4570remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4571{
4572 int i, j;
4c4b4cd2 4573
8f17729f
JB
4574 /* We should never be called with less than 2 symbols, as there
4575 cannot be any extra symbol in that case. But it's easy to
4576 handle, since we have nothing to do in that case. */
4577 if (nsyms < 2)
4578 return nsyms;
4579
96d887e8
PH
4580 i = 0;
4581 while (i < nsyms)
4582 {
a35ddb44 4583 int remove_p = 0;
339c13b6
JB
4584
4585 /* If two symbols have the same name and one of them is a stub type,
4586 the get rid of the stub. */
4587
4588 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4589 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4590 {
4591 for (j = 0; j < nsyms; j++)
4592 {
4593 if (j != i
4594 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4595 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4596 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4597 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4598 remove_p = 1;
339c13b6
JB
4599 }
4600 }
4601
4602 /* Two symbols with the same name, same class and same address
4603 should be identical. */
4604
4605 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4606 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4607 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4608 {
4609 for (j = 0; j < nsyms; j += 1)
4610 {
4611 if (i != j
4612 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4613 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4614 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4615 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4616 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4617 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4618 remove_p = 1;
4c4b4cd2 4619 }
4c4b4cd2 4620 }
339c13b6 4621
a35ddb44 4622 if (remove_p)
339c13b6
JB
4623 {
4624 for (j = i + 1; j < nsyms; j += 1)
4625 syms[j - 1] = syms[j];
4626 nsyms -= 1;
4627 }
4628
96d887e8 4629 i += 1;
14f9c5c9 4630 }
8f17729f
JB
4631
4632 /* If all the remaining symbols are identical enumerals, then
4633 just keep the first one and discard the rest.
4634
4635 Unlike what we did previously, we do not discard any entry
4636 unless they are ALL identical. This is because the symbol
4637 comparison is not a strict comparison, but rather a practical
4638 comparison. If all symbols are considered identical, then
4639 we can just go ahead and use the first one and discard the rest.
4640 But if we cannot reduce the list to a single element, we have
4641 to ask the user to disambiguate anyways. And if we have to
4642 present a multiple-choice menu, it's less confusing if the list
4643 isn't missing some choices that were identical and yet distinct. */
4644 if (symbols_are_identical_enums (syms, nsyms))
4645 nsyms = 1;
4646
96d887e8 4647 return nsyms;
14f9c5c9
AS
4648}
4649
96d887e8
PH
4650/* Given a type that corresponds to a renaming entity, use the type name
4651 to extract the scope (package name or function name, fully qualified,
4652 and following the GNAT encoding convention) where this renaming has been
4653 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4654
96d887e8
PH
4655static char *
4656xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4657{
96d887e8 4658 /* The renaming types adhere to the following convention:
0963b4bd 4659 <scope>__<rename>___<XR extension>.
96d887e8
PH
4660 So, to extract the scope, we search for the "___XR" extension,
4661 and then backtrack until we find the first "__". */
76a01679 4662
96d887e8
PH
4663 const char *name = type_name_no_tag (renaming_type);
4664 char *suffix = strstr (name, "___XR");
4665 char *last;
4666 int scope_len;
4667 char *scope;
14f9c5c9 4668
96d887e8
PH
4669 /* Now, backtrack a bit until we find the first "__". Start looking
4670 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4671
96d887e8
PH
4672 for (last = suffix - 3; last > name; last--)
4673 if (last[0] == '_' && last[1] == '_')
4674 break;
76a01679 4675
96d887e8 4676 /* Make a copy of scope and return it. */
14f9c5c9 4677
96d887e8
PH
4678 scope_len = last - name;
4679 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4680
96d887e8
PH
4681 strncpy (scope, name, scope_len);
4682 scope[scope_len] = '\0';
4c4b4cd2 4683
96d887e8 4684 return scope;
4c4b4cd2
PH
4685}
4686
96d887e8 4687/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4688
96d887e8
PH
4689static int
4690is_package_name (const char *name)
4c4b4cd2 4691{
96d887e8
PH
4692 /* Here, We take advantage of the fact that no symbols are generated
4693 for packages, while symbols are generated for each function.
4694 So the condition for NAME represent a package becomes equivalent
4695 to NAME not existing in our list of symbols. There is only one
4696 small complication with library-level functions (see below). */
4c4b4cd2 4697
96d887e8 4698 char *fun_name;
76a01679 4699
96d887e8
PH
4700 /* If it is a function that has not been defined at library level,
4701 then we should be able to look it up in the symbols. */
4702 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4703 return 0;
14f9c5c9 4704
96d887e8
PH
4705 /* Library-level function names start with "_ada_". See if function
4706 "_ada_" followed by NAME can be found. */
14f9c5c9 4707
96d887e8 4708 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4709 functions names cannot contain "__" in them. */
96d887e8
PH
4710 if (strstr (name, "__") != NULL)
4711 return 0;
4c4b4cd2 4712
b435e160 4713 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4714
96d887e8
PH
4715 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4716}
14f9c5c9 4717
96d887e8 4718/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4719 not visible from FUNCTION_NAME. */
14f9c5c9 4720
96d887e8 4721static int
0d5cff50 4722old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4723{
aeb5907d
JB
4724 char *scope;
4725
4726 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4727 return 0;
4728
4729 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4730
96d887e8 4731 make_cleanup (xfree, scope);
14f9c5c9 4732
96d887e8
PH
4733 /* If the rename has been defined in a package, then it is visible. */
4734 if (is_package_name (scope))
aeb5907d 4735 return 0;
14f9c5c9 4736
96d887e8
PH
4737 /* Check that the rename is in the current function scope by checking
4738 that its name starts with SCOPE. */
76a01679 4739
96d887e8
PH
4740 /* If the function name starts with "_ada_", it means that it is
4741 a library-level function. Strip this prefix before doing the
4742 comparison, as the encoding for the renaming does not contain
4743 this prefix. */
4744 if (strncmp (function_name, "_ada_", 5) == 0)
4745 function_name += 5;
f26caa11 4746
aeb5907d 4747 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4748}
4749
aeb5907d
JB
4750/* Remove entries from SYMS that corresponds to a renaming entity that
4751 is not visible from the function associated with CURRENT_BLOCK or
4752 that is superfluous due to the presence of more specific renaming
4753 information. Places surviving symbols in the initial entries of
4754 SYMS and returns the number of surviving symbols.
96d887e8
PH
4755
4756 Rationale:
aeb5907d
JB
4757 First, in cases where an object renaming is implemented as a
4758 reference variable, GNAT may produce both the actual reference
4759 variable and the renaming encoding. In this case, we discard the
4760 latter.
4761
4762 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4763 entity. Unfortunately, STABS currently does not support the definition
4764 of types that are local to a given lexical block, so all renamings types
4765 are emitted at library level. As a consequence, if an application
4766 contains two renaming entities using the same name, and a user tries to
4767 print the value of one of these entities, the result of the ada symbol
4768 lookup will also contain the wrong renaming type.
f26caa11 4769
96d887e8
PH
4770 This function partially covers for this limitation by attempting to
4771 remove from the SYMS list renaming symbols that should be visible
4772 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4773 method with the current information available. The implementation
4774 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4775
4776 - When the user tries to print a rename in a function while there
4777 is another rename entity defined in a package: Normally, the
4778 rename in the function has precedence over the rename in the
4779 package, so the latter should be removed from the list. This is
4780 currently not the case.
4781
4782 - This function will incorrectly remove valid renames if
4783 the CURRENT_BLOCK corresponds to a function which symbol name
4784 has been changed by an "Export" pragma. As a consequence,
4785 the user will be unable to print such rename entities. */
4c4b4cd2 4786
14f9c5c9 4787static int
aeb5907d
JB
4788remove_irrelevant_renamings (struct ada_symbol_info *syms,
4789 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4790{
4791 struct symbol *current_function;
0d5cff50 4792 const char *current_function_name;
4c4b4cd2 4793 int i;
aeb5907d
JB
4794 int is_new_style_renaming;
4795
4796 /* If there is both a renaming foo___XR... encoded as a variable and
4797 a simple variable foo in the same block, discard the latter.
0963b4bd 4798 First, zero out such symbols, then compress. */
aeb5907d
JB
4799 is_new_style_renaming = 0;
4800 for (i = 0; i < nsyms; i += 1)
4801 {
4802 struct symbol *sym = syms[i].sym;
4803 struct block *block = syms[i].block;
4804 const char *name;
4805 const char *suffix;
4806
4807 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4808 continue;
4809 name = SYMBOL_LINKAGE_NAME (sym);
4810 suffix = strstr (name, "___XR");
4811
4812 if (suffix != NULL)
4813 {
4814 int name_len = suffix - name;
4815 int j;
5b4ee69b 4816
aeb5907d
JB
4817 is_new_style_renaming = 1;
4818 for (j = 0; j < nsyms; j += 1)
4819 if (i != j && syms[j].sym != NULL
4820 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4821 name_len) == 0
4822 && block == syms[j].block)
4823 syms[j].sym = NULL;
4824 }
4825 }
4826 if (is_new_style_renaming)
4827 {
4828 int j, k;
4829
4830 for (j = k = 0; j < nsyms; j += 1)
4831 if (syms[j].sym != NULL)
4832 {
4833 syms[k] = syms[j];
4834 k += 1;
4835 }
4836 return k;
4837 }
4c4b4cd2
PH
4838
4839 /* Extract the function name associated to CURRENT_BLOCK.
4840 Abort if unable to do so. */
76a01679 4841
4c4b4cd2
PH
4842 if (current_block == NULL)
4843 return nsyms;
76a01679 4844
7f0df278 4845 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4846 if (current_function == NULL)
4847 return nsyms;
4848
4849 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4850 if (current_function_name == NULL)
4851 return nsyms;
4852
4853 /* Check each of the symbols, and remove it from the list if it is
4854 a type corresponding to a renaming that is out of the scope of
4855 the current block. */
4856
4857 i = 0;
4858 while (i < nsyms)
4859 {
aeb5907d
JB
4860 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4861 == ADA_OBJECT_RENAMING
4862 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4863 {
4864 int j;
5b4ee69b 4865
aeb5907d 4866 for (j = i + 1; j < nsyms; j += 1)
76a01679 4867 syms[j - 1] = syms[j];
4c4b4cd2
PH
4868 nsyms -= 1;
4869 }
4870 else
4871 i += 1;
4872 }
4873
4874 return nsyms;
4875}
4876
339c13b6
JB
4877/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4878 whose name and domain match NAME and DOMAIN respectively.
4879 If no match was found, then extend the search to "enclosing"
4880 routines (in other words, if we're inside a nested function,
4881 search the symbols defined inside the enclosing functions).
4882
4883 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4884
4885static void
4886ada_add_local_symbols (struct obstack *obstackp, const char *name,
4887 struct block *block, domain_enum domain,
4888 int wild_match)
4889{
4890 int block_depth = 0;
4891
4892 while (block != NULL)
4893 {
4894 block_depth += 1;
4895 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4896
4897 /* If we found a non-function match, assume that's the one. */
4898 if (is_nonfunction (defns_collected (obstackp, 0),
4899 num_defns_collected (obstackp)))
4900 return;
4901
4902 block = BLOCK_SUPERBLOCK (block);
4903 }
4904
4905 /* If no luck so far, try to find NAME as a local symbol in some lexically
4906 enclosing subprogram. */
4907 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4908 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4909}
4910
ccefe4c4 4911/* An object of this type is used as the user_data argument when
40658b94 4912 calling the map_matching_symbols method. */
ccefe4c4 4913
40658b94 4914struct match_data
ccefe4c4 4915{
40658b94 4916 struct objfile *objfile;
ccefe4c4 4917 struct obstack *obstackp;
40658b94
PH
4918 struct symbol *arg_sym;
4919 int found_sym;
ccefe4c4
TT
4920};
4921
40658b94
PH
4922/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4923 to a list of symbols. DATA0 is a pointer to a struct match_data *
4924 containing the obstack that collects the symbol list, the file that SYM
4925 must come from, a flag indicating whether a non-argument symbol has
4926 been found in the current block, and the last argument symbol
4927 passed in SYM within the current block (if any). When SYM is null,
4928 marking the end of a block, the argument symbol is added if no
4929 other has been found. */
ccefe4c4 4930
40658b94
PH
4931static int
4932aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4933{
40658b94
PH
4934 struct match_data *data = (struct match_data *) data0;
4935
4936 if (sym == NULL)
4937 {
4938 if (!data->found_sym && data->arg_sym != NULL)
4939 add_defn_to_vec (data->obstackp,
4940 fixup_symbol_section (data->arg_sym, data->objfile),
4941 block);
4942 data->found_sym = 0;
4943 data->arg_sym = NULL;
4944 }
4945 else
4946 {
4947 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4948 return 0;
4949 else if (SYMBOL_IS_ARGUMENT (sym))
4950 data->arg_sym = sym;
4951 else
4952 {
4953 data->found_sym = 1;
4954 add_defn_to_vec (data->obstackp,
4955 fixup_symbol_section (sym, data->objfile),
4956 block);
4957 }
4958 }
4959 return 0;
4960}
4961
4962/* Compare STRING1 to STRING2, with results as for strcmp.
4963 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4964 implies compare_names (STRING1, STRING2) (they may differ as to
4965 what symbols compare equal). */
5b4ee69b 4966
40658b94
PH
4967static int
4968compare_names (const char *string1, const char *string2)
4969{
4970 while (*string1 != '\0' && *string2 != '\0')
4971 {
4972 if (isspace (*string1) || isspace (*string2))
4973 return strcmp_iw_ordered (string1, string2);
4974 if (*string1 != *string2)
4975 break;
4976 string1 += 1;
4977 string2 += 1;
4978 }
4979 switch (*string1)
4980 {
4981 case '(':
4982 return strcmp_iw_ordered (string1, string2);
4983 case '_':
4984 if (*string2 == '\0')
4985 {
052874e8 4986 if (is_name_suffix (string1))
40658b94
PH
4987 return 0;
4988 else
1a1d5513 4989 return 1;
40658b94 4990 }
dbb8534f 4991 /* FALLTHROUGH */
40658b94
PH
4992 default:
4993 if (*string2 == '(')
4994 return strcmp_iw_ordered (string1, string2);
4995 else
4996 return *string1 - *string2;
4997 }
ccefe4c4
TT
4998}
4999
339c13b6
JB
5000/* Add to OBSTACKP all non-local symbols whose name and domain match
5001 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5002 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5003
5004static void
40658b94
PH
5005add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5006 domain_enum domain, int global,
5007 int is_wild_match)
339c13b6
JB
5008{
5009 struct objfile *objfile;
40658b94 5010 struct match_data data;
339c13b6 5011
6475f2fe 5012 memset (&data, 0, sizeof data);
ccefe4c4 5013 data.obstackp = obstackp;
339c13b6 5014
ccefe4c4 5015 ALL_OBJFILES (objfile)
40658b94
PH
5016 {
5017 data.objfile = objfile;
5018
5019 if (is_wild_match)
5020 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5021 aux_add_nonlocal_symbols, &data,
5022 wild_match, NULL);
5023 else
5024 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5025 aux_add_nonlocal_symbols, &data,
5026 full_match, compare_names);
5027 }
5028
5029 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5030 {
5031 ALL_OBJFILES (objfile)
5032 {
5033 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5034 strcpy (name1, "_ada_");
5035 strcpy (name1 + sizeof ("_ada_") - 1, name);
5036 data.objfile = objfile;
0963b4bd
MS
5037 objfile->sf->qf->map_matching_symbols (name1, domain,
5038 objfile, global,
5039 aux_add_nonlocal_symbols,
5040 &data,
40658b94
PH
5041 full_match, compare_names);
5042 }
5043 }
339c13b6
JB
5044}
5045
4c4b4cd2
PH
5046/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5047 scope and in global scopes, returning the number of matches. Sets
6c9353d3 5048 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
5049 indicating the symbols found and the blocks and symbol tables (if
5050 any) in which they were found. This vector are transient---good only to
5051 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5052 symbol match within the nest of blocks whose innermost member is BLOCK0,
5053 is the one match returned (no other matches in that or
d9680e73
TT
5054 enclosing blocks is returned). If there are any matches in or
5055 surrounding BLOCK0, then these alone are returned. Otherwise, if
5056 FULL_SEARCH is non-zero, then the search extends to global and
5057 file-scope (static) symbol tables.
4c4b4cd2
PH
5058 Names prefixed with "standard__" are handled specially: "standard__"
5059 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
5060
5061int
4c4b4cd2 5062ada_lookup_symbol_list (const char *name0, const struct block *block0,
d9680e73
TT
5063 domain_enum namespace,
5064 struct ada_symbol_info **results,
5065 int full_search)
14f9c5c9
AS
5066{
5067 struct symbol *sym;
14f9c5c9 5068 struct block *block;
4c4b4cd2 5069 const char *name;
c0431670 5070 const int wild_match = should_use_wild_match (name0);
14f9c5c9 5071 int cacheIfUnique;
4c4b4cd2 5072 int ndefns;
14f9c5c9 5073
4c4b4cd2
PH
5074 obstack_free (&symbol_list_obstack, NULL);
5075 obstack_init (&symbol_list_obstack);
14f9c5c9 5076
14f9c5c9
AS
5077 cacheIfUnique = 0;
5078
5079 /* Search specified block and its superiors. */
5080
4c4b4cd2 5081 name = name0;
76a01679
JB
5082 block = (struct block *) block0; /* FIXME: No cast ought to be
5083 needed, but adding const will
5084 have a cascade effect. */
339c13b6
JB
5085
5086 /* Special case: If the user specifies a symbol name inside package
5087 Standard, do a non-wild matching of the symbol name without
5088 the "standard__" prefix. This was primarily introduced in order
5089 to allow the user to specifically access the standard exceptions
5090 using, for instance, Standard.Constraint_Error when Constraint_Error
5091 is ambiguous (due to the user defining its own Constraint_Error
5092 entity inside its program). */
4c4b4cd2
PH
5093 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5094 {
4c4b4cd2
PH
5095 block = NULL;
5096 name = name0 + sizeof ("standard__") - 1;
5097 }
5098
339c13b6 5099 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5100
339c13b6
JB
5101 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5102 wild_match);
d9680e73 5103 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
14f9c5c9 5104 goto done;
d2e4a39e 5105
339c13b6
JB
5106 /* No non-global symbols found. Check our cache to see if we have
5107 already performed this search before. If we have, then return
5108 the same result. */
5109
14f9c5c9 5110 cacheIfUnique = 1;
2570f2b7 5111 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5112 {
5113 if (sym != NULL)
2570f2b7 5114 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5115 goto done;
5116 }
14f9c5c9 5117
339c13b6
JB
5118 /* Search symbols from all global blocks. */
5119
40658b94
PH
5120 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5121 wild_match);
d2e4a39e 5122
4c4b4cd2 5123 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5124 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5125
4c4b4cd2 5126 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94
PH
5127 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5128 wild_match);
14f9c5c9 5129
4c4b4cd2
PH
5130done:
5131 ndefns = num_defns_collected (&symbol_list_obstack);
5132 *results = defns_collected (&symbol_list_obstack, 1);
5133
5134 ndefns = remove_extra_symbols (*results, ndefns);
5135
2ad01556 5136 if (ndefns == 0 && full_search)
2570f2b7 5137 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5138
2ad01556 5139 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5140 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5141
aeb5907d 5142 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5143
14f9c5c9
AS
5144 return ndefns;
5145}
5146
f8eba3c6
TT
5147/* If NAME is the name of an entity, return a string that should
5148 be used to look that entity up in Ada units. This string should
5149 be deallocated after use using xfree.
5150
5151 NAME can have any form that the "break" or "print" commands might
5152 recognize. In other words, it does not have to be the "natural"
5153 name, or the "encoded" name. */
5154
5155char *
5156ada_name_for_lookup (const char *name)
5157{
5158 char *canon;
5159 int nlen = strlen (name);
5160
5161 if (name[0] == '<' && name[nlen - 1] == '>')
5162 {
5163 canon = xmalloc (nlen - 1);
5164 memcpy (canon, name + 1, nlen - 2);
5165 canon[nlen - 2] = '\0';
5166 }
5167 else
5168 canon = xstrdup (ada_encode (ada_fold_name (name)));
5169 return canon;
5170}
5171
5172/* Implementation of the la_iterate_over_symbols method. */
5173
5174static void
5175ada_iterate_over_symbols (const struct block *block,
5176 const char *name, domain_enum domain,
8e704927 5177 symbol_found_callback_ftype *callback,
f8eba3c6
TT
5178 void *data)
5179{
5180 int ndefs, i;
5181 struct ada_symbol_info *results;
5182
d9680e73 5183 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
f8eba3c6
TT
5184 for (i = 0; i < ndefs; ++i)
5185 {
5186 if (! (*callback) (results[i].sym, data))
5187 break;
5188 }
5189}
5190
d2e4a39e 5191struct symbol *
aeb5907d 5192ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 5193 domain_enum namespace, struct block **block_found)
14f9c5c9 5194{
4c4b4cd2 5195 struct ada_symbol_info *candidates;
14f9c5c9
AS
5196 int n_candidates;
5197
d9680e73
TT
5198 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates,
5199 1);
14f9c5c9
AS
5200
5201 if (n_candidates == 0)
5202 return NULL;
4c4b4cd2 5203
aeb5907d
JB
5204 if (block_found != NULL)
5205 *block_found = candidates[0].block;
4c4b4cd2 5206
21b556f4 5207 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
5208}
5209
5210/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5211 scope and in global scopes, or NULL if none. NAME is folded and
5212 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5213 choosing the first symbol if there are multiple choices.
aeb5907d
JB
5214 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5215 table in which the symbol was found (in both cases, these
5216 assignments occur only if the pointers are non-null). */
5217struct symbol *
5218ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5219 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
5220{
5221 if (is_a_field_of_this != NULL)
5222 *is_a_field_of_this = 0;
5223
5224 return
5225 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 5226 block0, namespace, NULL);
4c4b4cd2 5227}
14f9c5c9 5228
4c4b4cd2
PH
5229static struct symbol *
5230ada_lookup_symbol_nonlocal (const char *name,
76a01679 5231 const struct block *block,
21b556f4 5232 const domain_enum domain)
4c4b4cd2 5233{
94af9270 5234 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5235}
5236
5237
4c4b4cd2
PH
5238/* True iff STR is a possible encoded suffix of a normal Ada name
5239 that is to be ignored for matching purposes. Suffixes of parallel
5240 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5241 are given by any of the regular expressions:
4c4b4cd2 5242
babe1480
JB
5243 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5244 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5245 TKB [subprogram suffix for task bodies]
babe1480 5246 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5247 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5248
5249 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5250 match is performed. This sequence is used to differentiate homonyms,
5251 is an optional part of a valid name suffix. */
4c4b4cd2 5252
14f9c5c9 5253static int
d2e4a39e 5254is_name_suffix (const char *str)
14f9c5c9
AS
5255{
5256 int k;
4c4b4cd2
PH
5257 const char *matching;
5258 const int len = strlen (str);
5259
babe1480
JB
5260 /* Skip optional leading __[0-9]+. */
5261
4c4b4cd2
PH
5262 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5263 {
babe1480
JB
5264 str += 3;
5265 while (isdigit (str[0]))
5266 str += 1;
4c4b4cd2 5267 }
babe1480
JB
5268
5269 /* [.$][0-9]+ */
4c4b4cd2 5270
babe1480 5271 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5272 {
babe1480 5273 matching = str + 1;
4c4b4cd2
PH
5274 while (isdigit (matching[0]))
5275 matching += 1;
5276 if (matching[0] == '\0')
5277 return 1;
5278 }
5279
5280 /* ___[0-9]+ */
babe1480 5281
4c4b4cd2
PH
5282 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5283 {
5284 matching = str + 3;
5285 while (isdigit (matching[0]))
5286 matching += 1;
5287 if (matching[0] == '\0')
5288 return 1;
5289 }
5290
9ac7f98e
JB
5291 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5292
5293 if (strcmp (str, "TKB") == 0)
5294 return 1;
5295
529cad9c
PH
5296#if 0
5297 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5298 with a N at the end. Unfortunately, the compiler uses the same
5299 convention for other internal types it creates. So treating
529cad9c 5300 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5301 some regressions. For instance, consider the case of an enumerated
5302 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5303 name ends with N.
5304 Having a single character like this as a suffix carrying some
0963b4bd 5305 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5306 to be something like "_N" instead. In the meantime, do not do
5307 the following check. */
5308 /* Protected Object Subprograms */
5309 if (len == 1 && str [0] == 'N')
5310 return 1;
5311#endif
5312
5313 /* _E[0-9]+[bs]$ */
5314 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5315 {
5316 matching = str + 3;
5317 while (isdigit (matching[0]))
5318 matching += 1;
5319 if ((matching[0] == 'b' || matching[0] == 's')
5320 && matching [1] == '\0')
5321 return 1;
5322 }
5323
4c4b4cd2
PH
5324 /* ??? We should not modify STR directly, as we are doing below. This
5325 is fine in this case, but may become problematic later if we find
5326 that this alternative did not work, and want to try matching
5327 another one from the begining of STR. Since we modified it, we
5328 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5329 if (str[0] == 'X')
5330 {
5331 str += 1;
d2e4a39e 5332 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5333 {
5334 if (str[0] != 'n' && str[0] != 'b')
5335 return 0;
5336 str += 1;
5337 }
14f9c5c9 5338 }
babe1480 5339
14f9c5c9
AS
5340 if (str[0] == '\000')
5341 return 1;
babe1480 5342
d2e4a39e 5343 if (str[0] == '_')
14f9c5c9
AS
5344 {
5345 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5346 return 0;
d2e4a39e 5347 if (str[2] == '_')
4c4b4cd2 5348 {
61ee279c
PH
5349 if (strcmp (str + 3, "JM") == 0)
5350 return 1;
5351 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5352 the LJM suffix in favor of the JM one. But we will
5353 still accept LJM as a valid suffix for a reasonable
5354 amount of time, just to allow ourselves to debug programs
5355 compiled using an older version of GNAT. */
4c4b4cd2
PH
5356 if (strcmp (str + 3, "LJM") == 0)
5357 return 1;
5358 if (str[3] != 'X')
5359 return 0;
1265e4aa
JB
5360 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5361 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5362 return 1;
5363 if (str[4] == 'R' && str[5] != 'T')
5364 return 1;
5365 return 0;
5366 }
5367 if (!isdigit (str[2]))
5368 return 0;
5369 for (k = 3; str[k] != '\0'; k += 1)
5370 if (!isdigit (str[k]) && str[k] != '_')
5371 return 0;
14f9c5c9
AS
5372 return 1;
5373 }
4c4b4cd2 5374 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5375 {
4c4b4cd2
PH
5376 for (k = 2; str[k] != '\0'; k += 1)
5377 if (!isdigit (str[k]) && str[k] != '_')
5378 return 0;
14f9c5c9
AS
5379 return 1;
5380 }
5381 return 0;
5382}
d2e4a39e 5383
aeb5907d
JB
5384/* Return non-zero if the string starting at NAME and ending before
5385 NAME_END contains no capital letters. */
529cad9c
PH
5386
5387static int
5388is_valid_name_for_wild_match (const char *name0)
5389{
5390 const char *decoded_name = ada_decode (name0);
5391 int i;
5392
5823c3ef
JB
5393 /* If the decoded name starts with an angle bracket, it means that
5394 NAME0 does not follow the GNAT encoding format. It should then
5395 not be allowed as a possible wild match. */
5396 if (decoded_name[0] == '<')
5397 return 0;
5398
529cad9c
PH
5399 for (i=0; decoded_name[i] != '\0'; i++)
5400 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5401 return 0;
5402
5403 return 1;
5404}
5405
73589123
PH
5406/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5407 that could start a simple name. Assumes that *NAMEP points into
5408 the string beginning at NAME0. */
4c4b4cd2 5409
14f9c5c9 5410static int
73589123 5411advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5412{
73589123 5413 const char *name = *namep;
5b4ee69b 5414
5823c3ef 5415 while (1)
14f9c5c9 5416 {
aa27d0b3 5417 int t0, t1;
73589123
PH
5418
5419 t0 = *name;
5420 if (t0 == '_')
5421 {
5422 t1 = name[1];
5423 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5424 {
5425 name += 1;
5426 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5427 break;
5428 else
5429 name += 1;
5430 }
aa27d0b3
JB
5431 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5432 || name[2] == target0))
73589123
PH
5433 {
5434 name += 2;
5435 break;
5436 }
5437 else
5438 return 0;
5439 }
5440 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5441 name += 1;
5442 else
5823c3ef 5443 return 0;
73589123
PH
5444 }
5445
5446 *namep = name;
5447 return 1;
5448}
5449
5450/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5451 informational suffixes of NAME (i.e., for which is_name_suffix is
5452 true). Assumes that PATN is a lower-cased Ada simple name. */
5453
5454static int
5455wild_match (const char *name, const char *patn)
5456{
5457 const char *p, *n;
5458 const char *name0 = name;
5459
5460 while (1)
5461 {
5462 const char *match = name;
5463
5464 if (*name == *patn)
5465 {
5466 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5467 if (*p != *name)
5468 break;
5469 if (*p == '\0' && is_name_suffix (name))
5470 return match != name0 && !is_valid_name_for_wild_match (name0);
5471
5472 if (name[-1] == '_')
5473 name -= 1;
5474 }
5475 if (!advance_wild_match (&name, name0, *patn))
5476 return 1;
96d887e8 5477 }
96d887e8
PH
5478}
5479
40658b94
PH
5480/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5481 informational suffix. */
5482
c4d840bd
PH
5483static int
5484full_match (const char *sym_name, const char *search_name)
5485{
40658b94 5486 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5487}
5488
5489
96d887e8
PH
5490/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5491 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5492 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5493 OBJFILE is the section containing BLOCK.
5494 SYMTAB is recorded with each symbol added. */
5495
5496static void
5497ada_add_block_symbols (struct obstack *obstackp,
76a01679 5498 struct block *block, const char *name,
96d887e8 5499 domain_enum domain, struct objfile *objfile,
2570f2b7 5500 int wild)
96d887e8
PH
5501{
5502 struct dict_iterator iter;
5503 int name_len = strlen (name);
5504 /* A matching argument symbol, if any. */
5505 struct symbol *arg_sym;
5506 /* Set true when we find a matching non-argument symbol. */
5507 int found_sym;
5508 struct symbol *sym;
5509
5510 arg_sym = NULL;
5511 found_sym = 0;
5512 if (wild)
5513 {
c4d840bd
PH
5514 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5515 wild_match, &iter);
5516 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
76a01679 5517 {
5eeb2539
AR
5518 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5519 SYMBOL_DOMAIN (sym), domain)
73589123 5520 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5521 {
2a2d4dc3
AS
5522 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5523 continue;
5524 else if (SYMBOL_IS_ARGUMENT (sym))
5525 arg_sym = sym;
5526 else
5527 {
76a01679
JB
5528 found_sym = 1;
5529 add_defn_to_vec (obstackp,
5530 fixup_symbol_section (sym, objfile),
2570f2b7 5531 block);
76a01679
JB
5532 }
5533 }
5534 }
96d887e8
PH
5535 }
5536 else
5537 {
c4d840bd 5538 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
40658b94 5539 full_match, &iter);
c4d840bd 5540 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
76a01679 5541 {
5eeb2539
AR
5542 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5543 SYMBOL_DOMAIN (sym), domain))
76a01679 5544 {
c4d840bd
PH
5545 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5546 {
5547 if (SYMBOL_IS_ARGUMENT (sym))
5548 arg_sym = sym;
5549 else
2a2d4dc3 5550 {
c4d840bd
PH
5551 found_sym = 1;
5552 add_defn_to_vec (obstackp,
5553 fixup_symbol_section (sym, objfile),
5554 block);
2a2d4dc3 5555 }
c4d840bd 5556 }
76a01679
JB
5557 }
5558 }
96d887e8
PH
5559 }
5560
5561 if (!found_sym && arg_sym != NULL)
5562 {
76a01679
JB
5563 add_defn_to_vec (obstackp,
5564 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5565 block);
96d887e8
PH
5566 }
5567
5568 if (!wild)
5569 {
5570 arg_sym = NULL;
5571 found_sym = 0;
5572
5573 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5574 {
5eeb2539
AR
5575 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5576 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5577 {
5578 int cmp;
5579
5580 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5581 if (cmp == 0)
5582 {
5583 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5584 if (cmp == 0)
5585 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5586 name_len);
5587 }
5588
5589 if (cmp == 0
5590 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5591 {
2a2d4dc3
AS
5592 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5593 {
5594 if (SYMBOL_IS_ARGUMENT (sym))
5595 arg_sym = sym;
5596 else
5597 {
5598 found_sym = 1;
5599 add_defn_to_vec (obstackp,
5600 fixup_symbol_section (sym, objfile),
5601 block);
5602 }
5603 }
76a01679
JB
5604 }
5605 }
76a01679 5606 }
96d887e8
PH
5607
5608 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5609 They aren't parameters, right? */
5610 if (!found_sym && arg_sym != NULL)
5611 {
5612 add_defn_to_vec (obstackp,
76a01679 5613 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5614 block);
96d887e8
PH
5615 }
5616 }
5617}
5618\f
41d27058
JB
5619
5620 /* Symbol Completion */
5621
5622/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5623 name in a form that's appropriate for the completion. The result
5624 does not need to be deallocated, but is only good until the next call.
5625
5626 TEXT_LEN is equal to the length of TEXT.
5627 Perform a wild match if WILD_MATCH is set.
5628 ENCODED should be set if TEXT represents the start of a symbol name
5629 in its encoded form. */
5630
5631static const char *
5632symbol_completion_match (const char *sym_name,
5633 const char *text, int text_len,
5634 int wild_match, int encoded)
5635{
41d27058
JB
5636 const int verbatim_match = (text[0] == '<');
5637 int match = 0;
5638
5639 if (verbatim_match)
5640 {
5641 /* Strip the leading angle bracket. */
5642 text = text + 1;
5643 text_len--;
5644 }
5645
5646 /* First, test against the fully qualified name of the symbol. */
5647
5648 if (strncmp (sym_name, text, text_len) == 0)
5649 match = 1;
5650
5651 if (match && !encoded)
5652 {
5653 /* One needed check before declaring a positive match is to verify
5654 that iff we are doing a verbatim match, the decoded version
5655 of the symbol name starts with '<'. Otherwise, this symbol name
5656 is not a suitable completion. */
5657 const char *sym_name_copy = sym_name;
5658 int has_angle_bracket;
5659
5660 sym_name = ada_decode (sym_name);
5661 has_angle_bracket = (sym_name[0] == '<');
5662 match = (has_angle_bracket == verbatim_match);
5663 sym_name = sym_name_copy;
5664 }
5665
5666 if (match && !verbatim_match)
5667 {
5668 /* When doing non-verbatim match, another check that needs to
5669 be done is to verify that the potentially matching symbol name
5670 does not include capital letters, because the ada-mode would
5671 not be able to understand these symbol names without the
5672 angle bracket notation. */
5673 const char *tmp;
5674
5675 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5676 if (*tmp != '\0')
5677 match = 0;
5678 }
5679
5680 /* Second: Try wild matching... */
5681
5682 if (!match && wild_match)
5683 {
5684 /* Since we are doing wild matching, this means that TEXT
5685 may represent an unqualified symbol name. We therefore must
5686 also compare TEXT against the unqualified name of the symbol. */
5687 sym_name = ada_unqualified_name (ada_decode (sym_name));
5688
5689 if (strncmp (sym_name, text, text_len) == 0)
5690 match = 1;
5691 }
5692
5693 /* Finally: If we found a mach, prepare the result to return. */
5694
5695 if (!match)
5696 return NULL;
5697
5698 if (verbatim_match)
5699 sym_name = add_angle_brackets (sym_name);
5700
5701 if (!encoded)
5702 sym_name = ada_decode (sym_name);
5703
5704 return sym_name;
5705}
5706
5707/* A companion function to ada_make_symbol_completion_list().
5708 Check if SYM_NAME represents a symbol which name would be suitable
5709 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5710 it is appended at the end of the given string vector SV.
5711
5712 ORIG_TEXT is the string original string from the user command
5713 that needs to be completed. WORD is the entire command on which
5714 completion should be performed. These two parameters are used to
5715 determine which part of the symbol name should be added to the
5716 completion vector.
5717 if WILD_MATCH is set, then wild matching is performed.
5718 ENCODED should be set if TEXT represents a symbol name in its
5719 encoded formed (in which case the completion should also be
5720 encoded). */
5721
5722static void
d6565258 5723symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5724 const char *sym_name,
5725 const char *text, int text_len,
5726 const char *orig_text, const char *word,
5727 int wild_match, int encoded)
5728{
5729 const char *match = symbol_completion_match (sym_name, text, text_len,
5730 wild_match, encoded);
5731 char *completion;
5732
5733 if (match == NULL)
5734 return;
5735
5736 /* We found a match, so add the appropriate completion to the given
5737 string vector. */
5738
5739 if (word == orig_text)
5740 {
5741 completion = xmalloc (strlen (match) + 5);
5742 strcpy (completion, match);
5743 }
5744 else if (word > orig_text)
5745 {
5746 /* Return some portion of sym_name. */
5747 completion = xmalloc (strlen (match) + 5);
5748 strcpy (completion, match + (word - orig_text));
5749 }
5750 else
5751 {
5752 /* Return some of ORIG_TEXT plus sym_name. */
5753 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5754 strncpy (completion, word, orig_text - word);
5755 completion[orig_text - word] = '\0';
5756 strcat (completion, match);
5757 }
5758
d6565258 5759 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5760}
5761
ccefe4c4 5762/* An object of this type is passed as the user_data argument to the
7b08b9eb 5763 expand_partial_symbol_names method. */
ccefe4c4
TT
5764struct add_partial_datum
5765{
5766 VEC(char_ptr) **completions;
5767 char *text;
5768 int text_len;
5769 char *text0;
5770 char *word;
5771 int wild_match;
5772 int encoded;
5773};
5774
7b08b9eb
JK
5775/* A callback for expand_partial_symbol_names. */
5776static int
e078317b 5777ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5778{
5779 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5780
5781 return symbol_completion_match (name, data->text, data->text_len,
5782 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5783}
5784
41d27058
JB
5785/* Return a list of possible symbol names completing TEXT0. The list
5786 is NULL terminated. WORD is the entire command on which completion
5787 is made. */
5788
5789static char **
5790ada_make_symbol_completion_list (char *text0, char *word)
5791{
5792 char *text;
5793 int text_len;
5794 int wild_match;
5795 int encoded;
2ba95b9b 5796 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5797 struct symbol *sym;
5798 struct symtab *s;
41d27058
JB
5799 struct minimal_symbol *msymbol;
5800 struct objfile *objfile;
5801 struct block *b, *surrounding_static_block = 0;
5802 int i;
5803 struct dict_iterator iter;
5804
5805 if (text0[0] == '<')
5806 {
5807 text = xstrdup (text0);
5808 make_cleanup (xfree, text);
5809 text_len = strlen (text);
5810 wild_match = 0;
5811 encoded = 1;
5812 }
5813 else
5814 {
5815 text = xstrdup (ada_encode (text0));
5816 make_cleanup (xfree, text);
5817 text_len = strlen (text);
5818 for (i = 0; i < text_len; i++)
5819 text[i] = tolower (text[i]);
5820
5821 encoded = (strstr (text0, "__") != NULL);
5822 /* If the name contains a ".", then the user is entering a fully
5823 qualified entity name, and the match must not be done in wild
5824 mode. Similarly, if the user wants to complete what looks like
5825 an encoded name, the match must not be done in wild mode. */
5826 wild_match = (strchr (text0, '.') == NULL && !encoded);
5827 }
5828
5829 /* First, look at the partial symtab symbols. */
41d27058 5830 {
ccefe4c4
TT
5831 struct add_partial_datum data;
5832
5833 data.completions = &completions;
5834 data.text = text;
5835 data.text_len = text_len;
5836 data.text0 = text0;
5837 data.word = word;
5838 data.wild_match = wild_match;
5839 data.encoded = encoded;
7b08b9eb 5840 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5841 }
5842
5843 /* At this point scan through the misc symbol vectors and add each
5844 symbol you find to the list. Eventually we want to ignore
5845 anything that isn't a text symbol (everything else will be
5846 handled by the psymtab code above). */
5847
5848 ALL_MSYMBOLS (objfile, msymbol)
5849 {
5850 QUIT;
d6565258 5851 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5852 text, text_len, text0, word, wild_match, encoded);
5853 }
5854
5855 /* Search upwards from currently selected frame (so that we can
5856 complete on local vars. */
5857
5858 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5859 {
5860 if (!BLOCK_SUPERBLOCK (b))
5861 surrounding_static_block = b; /* For elmin of dups */
5862
5863 ALL_BLOCK_SYMBOLS (b, iter, sym)
5864 {
d6565258 5865 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5866 text, text_len, text0, word,
5867 wild_match, encoded);
5868 }
5869 }
5870
5871 /* Go through the symtabs and check the externs and statics for
5872 symbols which match. */
5873
5874 ALL_SYMTABS (objfile, s)
5875 {
5876 QUIT;
5877 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5878 ALL_BLOCK_SYMBOLS (b, iter, sym)
5879 {
d6565258 5880 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5881 text, text_len, text0, word,
5882 wild_match, encoded);
5883 }
5884 }
5885
5886 ALL_SYMTABS (objfile, s)
5887 {
5888 QUIT;
5889 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5890 /* Don't do this block twice. */
5891 if (b == surrounding_static_block)
5892 continue;
5893 ALL_BLOCK_SYMBOLS (b, iter, sym)
5894 {
d6565258 5895 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5896 text, text_len, text0, word,
5897 wild_match, encoded);
5898 }
5899 }
5900
5901 /* Append the closing NULL entry. */
2ba95b9b 5902 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5903
2ba95b9b
JB
5904 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5905 return the copy. It's unfortunate that we have to make a copy
5906 of an array that we're about to destroy, but there is nothing much
5907 we can do about it. Fortunately, it's typically not a very large
5908 array. */
5909 {
5910 const size_t completions_size =
5911 VEC_length (char_ptr, completions) * sizeof (char *);
dc19db01 5912 char **result = xmalloc (completions_size);
2ba95b9b
JB
5913
5914 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5915
5916 VEC_free (char_ptr, completions);
5917 return result;
5918 }
41d27058
JB
5919}
5920
963a6417 5921 /* Field Access */
96d887e8 5922
73fb9985
JB
5923/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5924 for tagged types. */
5925
5926static int
5927ada_is_dispatch_table_ptr_type (struct type *type)
5928{
0d5cff50 5929 const char *name;
73fb9985
JB
5930
5931 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5932 return 0;
5933
5934 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5935 if (name == NULL)
5936 return 0;
5937
5938 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5939}
5940
963a6417
PH
5941/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5942 to be invisible to users. */
96d887e8 5943
963a6417
PH
5944int
5945ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5946{
963a6417
PH
5947 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5948 return 1;
ffde82bf 5949
73fb9985
JB
5950 /* Check the name of that field. */
5951 {
5952 const char *name = TYPE_FIELD_NAME (type, field_num);
5953
5954 /* Anonymous field names should not be printed.
5955 brobecker/2007-02-20: I don't think this can actually happen
5956 but we don't want to print the value of annonymous fields anyway. */
5957 if (name == NULL)
5958 return 1;
5959
ffde82bf
JB
5960 /* Normally, fields whose name start with an underscore ("_")
5961 are fields that have been internally generated by the compiler,
5962 and thus should not be printed. The "_parent" field is special,
5963 however: This is a field internally generated by the compiler
5964 for tagged types, and it contains the components inherited from
5965 the parent type. This field should not be printed as is, but
5966 should not be ignored either. */
73fb9985
JB
5967 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5968 return 1;
5969 }
5970
5971 /* If this is the dispatch table of a tagged type, then ignore. */
5972 if (ada_is_tagged_type (type, 1)
5973 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5974 return 1;
5975
5976 /* Not a special field, so it should not be ignored. */
5977 return 0;
963a6417 5978}
96d887e8 5979
963a6417 5980/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5981 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5982
963a6417
PH
5983int
5984ada_is_tagged_type (struct type *type, int refok)
5985{
5986 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5987}
96d887e8 5988
963a6417 5989/* True iff TYPE represents the type of X'Tag */
96d887e8 5990
963a6417
PH
5991int
5992ada_is_tag_type (struct type *type)
5993{
5994 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5995 return 0;
5996 else
96d887e8 5997 {
963a6417 5998 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5999
963a6417
PH
6000 return (name != NULL
6001 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6002 }
96d887e8
PH
6003}
6004
963a6417 6005/* The type of the tag on VAL. */
76a01679 6006
963a6417
PH
6007struct type *
6008ada_tag_type (struct value *val)
96d887e8 6009{
df407dfe 6010 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6011}
96d887e8 6012
963a6417 6013/* The value of the tag on VAL. */
96d887e8 6014
963a6417
PH
6015struct value *
6016ada_value_tag (struct value *val)
6017{
03ee6b2e 6018 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6019}
6020
963a6417
PH
6021/* The value of the tag on the object of type TYPE whose contents are
6022 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6023 ADDRESS. */
96d887e8 6024
963a6417 6025static struct value *
10a2c479 6026value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6027 const gdb_byte *valaddr,
963a6417 6028 CORE_ADDR address)
96d887e8 6029{
b5385fc0 6030 int tag_byte_offset;
963a6417 6031 struct type *tag_type;
5b4ee69b 6032
963a6417 6033 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6034 NULL, NULL, NULL))
96d887e8 6035 {
fc1a4b47 6036 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6037 ? NULL
6038 : valaddr + tag_byte_offset);
963a6417 6039 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6040
963a6417 6041 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6042 }
963a6417
PH
6043 return NULL;
6044}
96d887e8 6045
963a6417
PH
6046static struct type *
6047type_from_tag (struct value *tag)
6048{
6049 const char *type_name = ada_tag_name (tag);
5b4ee69b 6050
963a6417
PH
6051 if (type_name != NULL)
6052 return ada_find_any_type (ada_encode (type_name));
6053 return NULL;
6054}
96d887e8 6055
1b611343
JB
6056/* Return the "ada__tags__type_specific_data" type. */
6057
6058static struct type *
6059ada_get_tsd_type (struct inferior *inf)
963a6417 6060{
1b611343 6061 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6062
1b611343
JB
6063 if (data->tsd_type == 0)
6064 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6065 return data->tsd_type;
6066}
529cad9c 6067
1b611343
JB
6068/* Return the TSD (type-specific data) associated to the given TAG.
6069 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6070
1b611343 6071 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6072
1b611343
JB
6073static struct value *
6074ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6075{
4c4b4cd2 6076 struct value *val;
1b611343 6077 struct type *type;
5b4ee69b 6078
1b611343
JB
6079 /* First option: The TSD is simply stored as a field of our TAG.
6080 Only older versions of GNAT would use this format, but we have
6081 to test it first, because there are no visible markers for
6082 the current approach except the absence of that field. */
529cad9c 6083
1b611343
JB
6084 val = ada_value_struct_elt (tag, "tsd", 1);
6085 if (val)
6086 return val;
e802dbe0 6087
1b611343
JB
6088 /* Try the second representation for the dispatch table (in which
6089 there is no explicit 'tsd' field in the referent of the tag pointer,
6090 and instead the tsd pointer is stored just before the dispatch
6091 table. */
e802dbe0 6092
1b611343
JB
6093 type = ada_get_tsd_type (current_inferior());
6094 if (type == NULL)
6095 return NULL;
6096 type = lookup_pointer_type (lookup_pointer_type (type));
6097 val = value_cast (type, tag);
6098 if (val == NULL)
6099 return NULL;
6100 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6101}
6102
1b611343
JB
6103/* Given the TSD of a tag (type-specific data), return a string
6104 containing the name of the associated type.
6105
6106 The returned value is good until the next call. May return NULL
6107 if we are unable to determine the tag name. */
6108
6109static char *
6110ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6111{
529cad9c
PH
6112 static char name[1024];
6113 char *p;
1b611343 6114 struct value *val;
529cad9c 6115
1b611343 6116 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6117 if (val == NULL)
1b611343 6118 return NULL;
4c4b4cd2
PH
6119 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6120 for (p = name; *p != '\0'; p += 1)
6121 if (isalpha (*p))
6122 *p = tolower (*p);
1b611343 6123 return name;
4c4b4cd2
PH
6124}
6125
6126/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6127 a C string.
6128
6129 Return NULL if the TAG is not an Ada tag, or if we were unable to
6130 determine the name of that tag. The result is good until the next
6131 call. */
4c4b4cd2
PH
6132
6133const char *
6134ada_tag_name (struct value *tag)
6135{
1b611343
JB
6136 volatile struct gdb_exception e;
6137 char *name = NULL;
5b4ee69b 6138
df407dfe 6139 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6140 return NULL;
1b611343
JB
6141
6142 /* It is perfectly possible that an exception be raised while trying
6143 to determine the TAG's name, even under normal circumstances:
6144 The associated variable may be uninitialized or corrupted, for
6145 instance. We do not let any exception propagate past this point.
6146 instead we return NULL.
6147
6148 We also do not print the error message either (which often is very
6149 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6150 the caller print a more meaningful message if necessary. */
6151 TRY_CATCH (e, RETURN_MASK_ERROR)
6152 {
6153 struct value *tsd = ada_get_tsd_from_tag (tag);
6154
6155 if (tsd != NULL)
6156 name = ada_tag_name_from_tsd (tsd);
6157 }
6158
6159 return name;
4c4b4cd2
PH
6160}
6161
6162/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6163
d2e4a39e 6164struct type *
ebf56fd3 6165ada_parent_type (struct type *type)
14f9c5c9
AS
6166{
6167 int i;
6168
61ee279c 6169 type = ada_check_typedef (type);
14f9c5c9
AS
6170
6171 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6172 return NULL;
6173
6174 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6175 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6176 {
6177 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6178
6179 /* If the _parent field is a pointer, then dereference it. */
6180 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6181 parent_type = TYPE_TARGET_TYPE (parent_type);
6182 /* If there is a parallel XVS type, get the actual base type. */
6183 parent_type = ada_get_base_type (parent_type);
6184
6185 return ada_check_typedef (parent_type);
6186 }
14f9c5c9
AS
6187
6188 return NULL;
6189}
6190
4c4b4cd2
PH
6191/* True iff field number FIELD_NUM of structure type TYPE contains the
6192 parent-type (inherited) fields of a derived type. Assumes TYPE is
6193 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6194
6195int
ebf56fd3 6196ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6197{
61ee279c 6198 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6199
4c4b4cd2
PH
6200 return (name != NULL
6201 && (strncmp (name, "PARENT", 6) == 0
6202 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6203}
6204
4c4b4cd2 6205/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6206 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6207 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6208 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6209 structures. */
14f9c5c9
AS
6210
6211int
ebf56fd3 6212ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6213{
d2e4a39e 6214 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6215
d2e4a39e 6216 return (name != NULL
4c4b4cd2
PH
6217 && (strncmp (name, "PARENT", 6) == 0
6218 || strcmp (name, "REP") == 0
6219 || strncmp (name, "_parent", 7) == 0
6220 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6221}
6222
4c4b4cd2
PH
6223/* True iff field number FIELD_NUM of structure or union type TYPE
6224 is a variant wrapper. Assumes TYPE is a structure type with at least
6225 FIELD_NUM+1 fields. */
14f9c5c9
AS
6226
6227int
ebf56fd3 6228ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6229{
d2e4a39e 6230 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6231
14f9c5c9 6232 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6233 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6234 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6235 == TYPE_CODE_UNION)));
14f9c5c9
AS
6236}
6237
6238/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6239 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6240 returns the type of the controlling discriminant for the variant.
6241 May return NULL if the type could not be found. */
14f9c5c9 6242
d2e4a39e 6243struct type *
ebf56fd3 6244ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6245{
d2e4a39e 6246 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6247
7c964f07 6248 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6249}
6250
4c4b4cd2 6251/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6252 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6253 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6254
6255int
ebf56fd3 6256ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6257{
d2e4a39e 6258 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6259
14f9c5c9
AS
6260 return (name != NULL && name[0] == 'O');
6261}
6262
6263/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6264 returns the name of the discriminant controlling the variant.
6265 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6266
d2e4a39e 6267char *
ebf56fd3 6268ada_variant_discrim_name (struct type *type0)
14f9c5c9 6269{
d2e4a39e 6270 static char *result = NULL;
14f9c5c9 6271 static size_t result_len = 0;
d2e4a39e
AS
6272 struct type *type;
6273 const char *name;
6274 const char *discrim_end;
6275 const char *discrim_start;
14f9c5c9
AS
6276
6277 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6278 type = TYPE_TARGET_TYPE (type0);
6279 else
6280 type = type0;
6281
6282 name = ada_type_name (type);
6283
6284 if (name == NULL || name[0] == '\000')
6285 return "";
6286
6287 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6288 discrim_end -= 1)
6289 {
4c4b4cd2
PH
6290 if (strncmp (discrim_end, "___XVN", 6) == 0)
6291 break;
14f9c5c9
AS
6292 }
6293 if (discrim_end == name)
6294 return "";
6295
d2e4a39e 6296 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6297 discrim_start -= 1)
6298 {
d2e4a39e 6299 if (discrim_start == name + 1)
4c4b4cd2 6300 return "";
76a01679 6301 if ((discrim_start > name + 3
4c4b4cd2
PH
6302 && strncmp (discrim_start - 3, "___", 3) == 0)
6303 || discrim_start[-1] == '.')
6304 break;
14f9c5c9
AS
6305 }
6306
6307 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6308 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6309 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6310 return result;
6311}
6312
4c4b4cd2
PH
6313/* Scan STR for a subtype-encoded number, beginning at position K.
6314 Put the position of the character just past the number scanned in
6315 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6316 Return 1 if there was a valid number at the given position, and 0
6317 otherwise. A "subtype-encoded" number consists of the absolute value
6318 in decimal, followed by the letter 'm' to indicate a negative number.
6319 Assumes 0m does not occur. */
14f9c5c9
AS
6320
6321int
d2e4a39e 6322ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6323{
6324 ULONGEST RU;
6325
d2e4a39e 6326 if (!isdigit (str[k]))
14f9c5c9
AS
6327 return 0;
6328
4c4b4cd2 6329 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6330 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6331 LONGEST. */
14f9c5c9
AS
6332 RU = 0;
6333 while (isdigit (str[k]))
6334 {
d2e4a39e 6335 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6336 k += 1;
6337 }
6338
d2e4a39e 6339 if (str[k] == 'm')
14f9c5c9
AS
6340 {
6341 if (R != NULL)
4c4b4cd2 6342 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6343 k += 1;
6344 }
6345 else if (R != NULL)
6346 *R = (LONGEST) RU;
6347
4c4b4cd2 6348 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6349 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6350 number representable as a LONGEST (although either would probably work
6351 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6352 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6353
6354 if (new_k != NULL)
6355 *new_k = k;
6356 return 1;
6357}
6358
4c4b4cd2
PH
6359/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6360 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6361 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6362
d2e4a39e 6363int
ebf56fd3 6364ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6365{
d2e4a39e 6366 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6367 int p;
6368
6369 p = 0;
6370 while (1)
6371 {
d2e4a39e 6372 switch (name[p])
4c4b4cd2
PH
6373 {
6374 case '\0':
6375 return 0;
6376 case 'S':
6377 {
6378 LONGEST W;
5b4ee69b 6379
4c4b4cd2
PH
6380 if (!ada_scan_number (name, p + 1, &W, &p))
6381 return 0;
6382 if (val == W)
6383 return 1;
6384 break;
6385 }
6386 case 'R':
6387 {
6388 LONGEST L, U;
5b4ee69b 6389
4c4b4cd2
PH
6390 if (!ada_scan_number (name, p + 1, &L, &p)
6391 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6392 return 0;
6393 if (val >= L && val <= U)
6394 return 1;
6395 break;
6396 }
6397 case 'O':
6398 return 1;
6399 default:
6400 return 0;
6401 }
6402 }
6403}
6404
0963b4bd 6405/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6406
6407/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6408 ARG_TYPE, extract and return the value of one of its (non-static)
6409 fields. FIELDNO says which field. Differs from value_primitive_field
6410 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6411
4c4b4cd2 6412static struct value *
d2e4a39e 6413ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6414 struct type *arg_type)
14f9c5c9 6415{
14f9c5c9
AS
6416 struct type *type;
6417
61ee279c 6418 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6419 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6420
4c4b4cd2 6421 /* Handle packed fields. */
14f9c5c9
AS
6422
6423 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6424 {
6425 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6426 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6427
0fd88904 6428 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6429 offset + bit_pos / 8,
6430 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6431 }
6432 else
6433 return value_primitive_field (arg1, offset, fieldno, arg_type);
6434}
6435
52ce6436
PH
6436/* Find field with name NAME in object of type TYPE. If found,
6437 set the following for each argument that is non-null:
6438 - *FIELD_TYPE_P to the field's type;
6439 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6440 an object of that type;
6441 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6442 - *BIT_SIZE_P to its size in bits if the field is packed, and
6443 0 otherwise;
6444 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6445 fields up to but not including the desired field, or by the total
6446 number of fields if not found. A NULL value of NAME never
6447 matches; the function just counts visible fields in this case.
6448
0963b4bd 6449 Returns 1 if found, 0 otherwise. */
52ce6436 6450
4c4b4cd2 6451static int
0d5cff50 6452find_struct_field (const char *name, struct type *type, int offset,
76a01679 6453 struct type **field_type_p,
52ce6436
PH
6454 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6455 int *index_p)
4c4b4cd2
PH
6456{
6457 int i;
6458
61ee279c 6459 type = ada_check_typedef (type);
76a01679 6460
52ce6436
PH
6461 if (field_type_p != NULL)
6462 *field_type_p = NULL;
6463 if (byte_offset_p != NULL)
d5d6fca5 6464 *byte_offset_p = 0;
52ce6436
PH
6465 if (bit_offset_p != NULL)
6466 *bit_offset_p = 0;
6467 if (bit_size_p != NULL)
6468 *bit_size_p = 0;
6469
6470 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6471 {
6472 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6473 int fld_offset = offset + bit_pos / 8;
0d5cff50 6474 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6475
4c4b4cd2
PH
6476 if (t_field_name == NULL)
6477 continue;
6478
52ce6436 6479 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6480 {
6481 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6482
52ce6436
PH
6483 if (field_type_p != NULL)
6484 *field_type_p = TYPE_FIELD_TYPE (type, i);
6485 if (byte_offset_p != NULL)
6486 *byte_offset_p = fld_offset;
6487 if (bit_offset_p != NULL)
6488 *bit_offset_p = bit_pos % 8;
6489 if (bit_size_p != NULL)
6490 *bit_size_p = bit_size;
76a01679
JB
6491 return 1;
6492 }
4c4b4cd2
PH
6493 else if (ada_is_wrapper_field (type, i))
6494 {
52ce6436
PH
6495 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6496 field_type_p, byte_offset_p, bit_offset_p,
6497 bit_size_p, index_p))
76a01679
JB
6498 return 1;
6499 }
4c4b4cd2
PH
6500 else if (ada_is_variant_part (type, i))
6501 {
52ce6436
PH
6502 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6503 fixed type?? */
4c4b4cd2 6504 int j;
52ce6436
PH
6505 struct type *field_type
6506 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6507
52ce6436 6508 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6509 {
76a01679
JB
6510 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6511 fld_offset
6512 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6513 field_type_p, byte_offset_p,
52ce6436 6514 bit_offset_p, bit_size_p, index_p))
76a01679 6515 return 1;
4c4b4cd2
PH
6516 }
6517 }
52ce6436
PH
6518 else if (index_p != NULL)
6519 *index_p += 1;
4c4b4cd2
PH
6520 }
6521 return 0;
6522}
6523
0963b4bd 6524/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6525
52ce6436
PH
6526static int
6527num_visible_fields (struct type *type)
6528{
6529 int n;
5b4ee69b 6530
52ce6436
PH
6531 n = 0;
6532 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6533 return n;
6534}
14f9c5c9 6535
4c4b4cd2 6536/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6537 and search in it assuming it has (class) type TYPE.
6538 If found, return value, else return NULL.
6539
4c4b4cd2 6540 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6541
4c4b4cd2 6542static struct value *
d2e4a39e 6543ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6544 struct type *type)
14f9c5c9
AS
6545{
6546 int i;
14f9c5c9 6547
5b4ee69b 6548 type = ada_check_typedef (type);
52ce6436 6549 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6550 {
0d5cff50 6551 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6552
6553 if (t_field_name == NULL)
4c4b4cd2 6554 continue;
14f9c5c9
AS
6555
6556 else if (field_name_match (t_field_name, name))
4c4b4cd2 6557 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6558
6559 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6560 {
0963b4bd 6561 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6562 ada_search_struct_field (name, arg,
6563 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6564 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6565
4c4b4cd2
PH
6566 if (v != NULL)
6567 return v;
6568 }
14f9c5c9
AS
6569
6570 else if (ada_is_variant_part (type, i))
4c4b4cd2 6571 {
0963b4bd 6572 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6573 int j;
5b4ee69b
MS
6574 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6575 i));
4c4b4cd2
PH
6576 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6577
52ce6436 6578 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6579 {
0963b4bd
MS
6580 struct value *v = ada_search_struct_field /* Force line
6581 break. */
06d5cf63
JB
6582 (name, arg,
6583 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6584 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6585
4c4b4cd2
PH
6586 if (v != NULL)
6587 return v;
6588 }
6589 }
14f9c5c9
AS
6590 }
6591 return NULL;
6592}
d2e4a39e 6593
52ce6436
PH
6594static struct value *ada_index_struct_field_1 (int *, struct value *,
6595 int, struct type *);
6596
6597
6598/* Return field #INDEX in ARG, where the index is that returned by
6599 * find_struct_field through its INDEX_P argument. Adjust the address
6600 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6601 * If found, return value, else return NULL. */
52ce6436
PH
6602
6603static struct value *
6604ada_index_struct_field (int index, struct value *arg, int offset,
6605 struct type *type)
6606{
6607 return ada_index_struct_field_1 (&index, arg, offset, type);
6608}
6609
6610
6611/* Auxiliary function for ada_index_struct_field. Like
6612 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6613 * *INDEX_P. */
52ce6436
PH
6614
6615static struct value *
6616ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6617 struct type *type)
6618{
6619 int i;
6620 type = ada_check_typedef (type);
6621
6622 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6623 {
6624 if (TYPE_FIELD_NAME (type, i) == NULL)
6625 continue;
6626 else if (ada_is_wrapper_field (type, i))
6627 {
0963b4bd 6628 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6629 ada_index_struct_field_1 (index_p, arg,
6630 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6631 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6632
52ce6436
PH
6633 if (v != NULL)
6634 return v;
6635 }
6636
6637 else if (ada_is_variant_part (type, i))
6638 {
6639 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6640 find_struct_field. */
52ce6436
PH
6641 error (_("Cannot assign this kind of variant record"));
6642 }
6643 else if (*index_p == 0)
6644 return ada_value_primitive_field (arg, offset, i, type);
6645 else
6646 *index_p -= 1;
6647 }
6648 return NULL;
6649}
6650
4c4b4cd2
PH
6651/* Given ARG, a value of type (pointer or reference to a)*
6652 structure/union, extract the component named NAME from the ultimate
6653 target structure/union and return it as a value with its
f5938064 6654 appropriate type.
14f9c5c9 6655
4c4b4cd2
PH
6656 The routine searches for NAME among all members of the structure itself
6657 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6658 (e.g., '_parent').
6659
03ee6b2e
PH
6660 If NO_ERR, then simply return NULL in case of error, rather than
6661 calling error. */
14f9c5c9 6662
d2e4a39e 6663struct value *
03ee6b2e 6664ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6665{
4c4b4cd2 6666 struct type *t, *t1;
d2e4a39e 6667 struct value *v;
14f9c5c9 6668
4c4b4cd2 6669 v = NULL;
df407dfe 6670 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6671 if (TYPE_CODE (t) == TYPE_CODE_REF)
6672 {
6673 t1 = TYPE_TARGET_TYPE (t);
6674 if (t1 == NULL)
03ee6b2e 6675 goto BadValue;
61ee279c 6676 t1 = ada_check_typedef (t1);
4c4b4cd2 6677 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6678 {
994b9211 6679 arg = coerce_ref (arg);
76a01679
JB
6680 t = t1;
6681 }
4c4b4cd2 6682 }
14f9c5c9 6683
4c4b4cd2
PH
6684 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6685 {
6686 t1 = TYPE_TARGET_TYPE (t);
6687 if (t1 == NULL)
03ee6b2e 6688 goto BadValue;
61ee279c 6689 t1 = ada_check_typedef (t1);
4c4b4cd2 6690 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6691 {
6692 arg = value_ind (arg);
6693 t = t1;
6694 }
4c4b4cd2 6695 else
76a01679 6696 break;
4c4b4cd2 6697 }
14f9c5c9 6698
4c4b4cd2 6699 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6700 goto BadValue;
14f9c5c9 6701
4c4b4cd2
PH
6702 if (t1 == t)
6703 v = ada_search_struct_field (name, arg, 0, t);
6704 else
6705 {
6706 int bit_offset, bit_size, byte_offset;
6707 struct type *field_type;
6708 CORE_ADDR address;
6709
76a01679
JB
6710 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6711 address = value_as_address (arg);
4c4b4cd2 6712 else
0fd88904 6713 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6714
1ed6ede0 6715 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6716 if (find_struct_field (name, t1, 0,
6717 &field_type, &byte_offset, &bit_offset,
52ce6436 6718 &bit_size, NULL))
76a01679
JB
6719 {
6720 if (bit_size != 0)
6721 {
714e53ab
PH
6722 if (TYPE_CODE (t) == TYPE_CODE_REF)
6723 arg = ada_coerce_ref (arg);
6724 else
6725 arg = ada_value_ind (arg);
76a01679
JB
6726 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6727 bit_offset, bit_size,
6728 field_type);
6729 }
6730 else
f5938064 6731 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6732 }
6733 }
6734
03ee6b2e
PH
6735 if (v != NULL || no_err)
6736 return v;
6737 else
323e0a4a 6738 error (_("There is no member named %s."), name);
14f9c5c9 6739
03ee6b2e
PH
6740 BadValue:
6741 if (no_err)
6742 return NULL;
6743 else
0963b4bd
MS
6744 error (_("Attempt to extract a component of "
6745 "a value that is not a record."));
14f9c5c9
AS
6746}
6747
6748/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6749 If DISPP is non-null, add its byte displacement from the beginning of a
6750 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6751 work for packed fields).
6752
6753 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6754 followed by "___".
14f9c5c9 6755
0963b4bd 6756 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6757 be a (pointer or reference)+ to a struct or union, and the
6758 ultimate target type will be searched.
14f9c5c9
AS
6759
6760 Looks recursively into variant clauses and parent types.
6761
4c4b4cd2
PH
6762 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6763 TYPE is not a type of the right kind. */
14f9c5c9 6764
4c4b4cd2 6765static struct type *
76a01679
JB
6766ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6767 int noerr, int *dispp)
14f9c5c9
AS
6768{
6769 int i;
6770
6771 if (name == NULL)
6772 goto BadName;
6773
76a01679 6774 if (refok && type != NULL)
4c4b4cd2
PH
6775 while (1)
6776 {
61ee279c 6777 type = ada_check_typedef (type);
76a01679
JB
6778 if (TYPE_CODE (type) != TYPE_CODE_PTR
6779 && TYPE_CODE (type) != TYPE_CODE_REF)
6780 break;
6781 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6782 }
14f9c5c9 6783
76a01679 6784 if (type == NULL
1265e4aa
JB
6785 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6786 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6787 {
4c4b4cd2 6788 if (noerr)
76a01679 6789 return NULL;
4c4b4cd2 6790 else
76a01679
JB
6791 {
6792 target_terminal_ours ();
6793 gdb_flush (gdb_stdout);
323e0a4a
AC
6794 if (type == NULL)
6795 error (_("Type (null) is not a structure or union type"));
6796 else
6797 {
6798 /* XXX: type_sprint */
6799 fprintf_unfiltered (gdb_stderr, _("Type "));
6800 type_print (type, "", gdb_stderr, -1);
6801 error (_(" is not a structure or union type"));
6802 }
76a01679 6803 }
14f9c5c9
AS
6804 }
6805
6806 type = to_static_fixed_type (type);
6807
6808 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6809 {
0d5cff50 6810 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6811 struct type *t;
6812 int disp;
d2e4a39e 6813
14f9c5c9 6814 if (t_field_name == NULL)
4c4b4cd2 6815 continue;
14f9c5c9
AS
6816
6817 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6818 {
6819 if (dispp != NULL)
6820 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6821 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6822 }
14f9c5c9
AS
6823
6824 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6825 {
6826 disp = 0;
6827 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6828 0, 1, &disp);
6829 if (t != NULL)
6830 {
6831 if (dispp != NULL)
6832 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6833 return t;
6834 }
6835 }
14f9c5c9
AS
6836
6837 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6838 {
6839 int j;
5b4ee69b
MS
6840 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6841 i));
4c4b4cd2
PH
6842
6843 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6844 {
b1f33ddd
JB
6845 /* FIXME pnh 2008/01/26: We check for a field that is
6846 NOT wrapped in a struct, since the compiler sometimes
6847 generates these for unchecked variant types. Revisit
0963b4bd 6848 if the compiler changes this practice. */
0d5cff50 6849 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6850 disp = 0;
b1f33ddd
JB
6851 if (v_field_name != NULL
6852 && field_name_match (v_field_name, name))
6853 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6854 else
0963b4bd
MS
6855 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6856 j),
b1f33ddd
JB
6857 name, 0, 1, &disp);
6858
4c4b4cd2
PH
6859 if (t != NULL)
6860 {
6861 if (dispp != NULL)
6862 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6863 return t;
6864 }
6865 }
6866 }
14f9c5c9
AS
6867
6868 }
6869
6870BadName:
d2e4a39e 6871 if (!noerr)
14f9c5c9
AS
6872 {
6873 target_terminal_ours ();
6874 gdb_flush (gdb_stdout);
323e0a4a
AC
6875 if (name == NULL)
6876 {
6877 /* XXX: type_sprint */
6878 fprintf_unfiltered (gdb_stderr, _("Type "));
6879 type_print (type, "", gdb_stderr, -1);
6880 error (_(" has no component named <null>"));
6881 }
6882 else
6883 {
6884 /* XXX: type_sprint */
6885 fprintf_unfiltered (gdb_stderr, _("Type "));
6886 type_print (type, "", gdb_stderr, -1);
6887 error (_(" has no component named %s"), name);
6888 }
14f9c5c9
AS
6889 }
6890
6891 return NULL;
6892}
6893
b1f33ddd
JB
6894/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6895 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6896 represents an unchecked union (that is, the variant part of a
0963b4bd 6897 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6898
6899static int
6900is_unchecked_variant (struct type *var_type, struct type *outer_type)
6901{
6902 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6903
b1f33ddd
JB
6904 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6905 == NULL);
6906}
6907
6908
14f9c5c9
AS
6909/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6910 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6911 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6912 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6913
d2e4a39e 6914int
ebf56fd3 6915ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6916 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6917{
6918 int others_clause;
6919 int i;
d2e4a39e 6920 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6921 struct value *outer;
6922 struct value *discrim;
14f9c5c9
AS
6923 LONGEST discrim_val;
6924
0c281816
JB
6925 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6926 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6927 if (discrim == NULL)
14f9c5c9 6928 return -1;
0c281816 6929 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6930
6931 others_clause = -1;
6932 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6933 {
6934 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6935 others_clause = i;
14f9c5c9 6936 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6937 return i;
14f9c5c9
AS
6938 }
6939
6940 return others_clause;
6941}
d2e4a39e 6942\f
14f9c5c9
AS
6943
6944
4c4b4cd2 6945 /* Dynamic-Sized Records */
14f9c5c9
AS
6946
6947/* Strategy: The type ostensibly attached to a value with dynamic size
6948 (i.e., a size that is not statically recorded in the debugging
6949 data) does not accurately reflect the size or layout of the value.
6950 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6951 conventional types that are constructed on the fly. */
14f9c5c9
AS
6952
6953/* There is a subtle and tricky problem here. In general, we cannot
6954 determine the size of dynamic records without its data. However,
6955 the 'struct value' data structure, which GDB uses to represent
6956 quantities in the inferior process (the target), requires the size
6957 of the type at the time of its allocation in order to reserve space
6958 for GDB's internal copy of the data. That's why the
6959 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6960 rather than struct value*s.
14f9c5c9
AS
6961
6962 However, GDB's internal history variables ($1, $2, etc.) are
6963 struct value*s containing internal copies of the data that are not, in
6964 general, the same as the data at their corresponding addresses in
6965 the target. Fortunately, the types we give to these values are all
6966 conventional, fixed-size types (as per the strategy described
6967 above), so that we don't usually have to perform the
6968 'to_fixed_xxx_type' conversions to look at their values.
6969 Unfortunately, there is one exception: if one of the internal
6970 history variables is an array whose elements are unconstrained
6971 records, then we will need to create distinct fixed types for each
6972 element selected. */
6973
6974/* The upshot of all of this is that many routines take a (type, host
6975 address, target address) triple as arguments to represent a value.
6976 The host address, if non-null, is supposed to contain an internal
6977 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6978 target at the target address. */
14f9c5c9
AS
6979
6980/* Assuming that VAL0 represents a pointer value, the result of
6981 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6982 dynamic-sized types. */
14f9c5c9 6983
d2e4a39e
AS
6984struct value *
6985ada_value_ind (struct value *val0)
14f9c5c9 6986{
c48db5ca 6987 struct value *val = value_ind (val0);
5b4ee69b 6988
4c4b4cd2 6989 return ada_to_fixed_value (val);
14f9c5c9
AS
6990}
6991
6992/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6993 qualifiers on VAL0. */
6994
d2e4a39e
AS
6995static struct value *
6996ada_coerce_ref (struct value *val0)
6997{
df407dfe 6998 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6999 {
7000 struct value *val = val0;
5b4ee69b 7001
994b9211 7002 val = coerce_ref (val);
4c4b4cd2 7003 return ada_to_fixed_value (val);
d2e4a39e
AS
7004 }
7005 else
14f9c5c9
AS
7006 return val0;
7007}
7008
7009/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7010 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7011
7012static unsigned int
ebf56fd3 7013align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7014{
7015 return (off + alignment - 1) & ~(alignment - 1);
7016}
7017
4c4b4cd2 7018/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7019
7020static unsigned int
ebf56fd3 7021field_alignment (struct type *type, int f)
14f9c5c9 7022{
d2e4a39e 7023 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7024 int len;
14f9c5c9
AS
7025 int align_offset;
7026
64a1bf19
JB
7027 /* The field name should never be null, unless the debugging information
7028 is somehow malformed. In this case, we assume the field does not
7029 require any alignment. */
7030 if (name == NULL)
7031 return 1;
7032
7033 len = strlen (name);
7034
4c4b4cd2
PH
7035 if (!isdigit (name[len - 1]))
7036 return 1;
14f9c5c9 7037
d2e4a39e 7038 if (isdigit (name[len - 2]))
14f9c5c9
AS
7039 align_offset = len - 2;
7040 else
7041 align_offset = len - 1;
7042
4c4b4cd2 7043 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7044 return TARGET_CHAR_BIT;
7045
4c4b4cd2
PH
7046 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7047}
7048
852dff6c 7049/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7050
852dff6c
JB
7051static struct symbol *
7052ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7053{
7054 struct symbol *sym;
7055
7056 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7057 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7058 return sym;
7059
7060 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7061 return sym;
14f9c5c9
AS
7062}
7063
dddfab26
UW
7064/* Find a type named NAME. Ignores ambiguity. This routine will look
7065 solely for types defined by debug info, it will not search the GDB
7066 primitive types. */
4c4b4cd2 7067
852dff6c 7068static struct type *
ebf56fd3 7069ada_find_any_type (const char *name)
14f9c5c9 7070{
852dff6c 7071 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7072
14f9c5c9 7073 if (sym != NULL)
dddfab26 7074 return SYMBOL_TYPE (sym);
14f9c5c9 7075
dddfab26 7076 return NULL;
14f9c5c9
AS
7077}
7078
739593e0
JB
7079/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7080 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7081 symbol, in which case it is returned. Otherwise, this looks for
7082 symbols whose name is that of NAME_SYM suffixed with "___XR".
7083 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7084
7085struct symbol *
739593e0 7086ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
aeb5907d 7087{
739593e0 7088 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7089 struct symbol *sym;
7090
739593e0
JB
7091 if (strstr (name, "___XR") != NULL)
7092 return name_sym;
7093
aeb5907d
JB
7094 sym = find_old_style_renaming_symbol (name, block);
7095
7096 if (sym != NULL)
7097 return sym;
7098
0963b4bd 7099 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7100 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7101 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7102 return sym;
7103 else
7104 return NULL;
7105}
7106
7107static struct symbol *
7108find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 7109{
7f0df278 7110 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7111 char *rename;
7112
7113 if (function_sym != NULL)
7114 {
7115 /* If the symbol is defined inside a function, NAME is not fully
7116 qualified. This means we need to prepend the function name
7117 as well as adding the ``___XR'' suffix to build the name of
7118 the associated renaming symbol. */
0d5cff50 7119 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7120 /* Function names sometimes contain suffixes used
7121 for instance to qualify nested subprograms. When building
7122 the XR type name, we need to make sure that this suffix is
7123 not included. So do not include any suffix in the function
7124 name length below. */
69fadcdf 7125 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7126 const int rename_len = function_name_len + 2 /* "__" */
7127 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7128
529cad9c 7129 /* Strip the suffix if necessary. */
69fadcdf
JB
7130 ada_remove_trailing_digits (function_name, &function_name_len);
7131 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7132 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7133
4c4b4cd2
PH
7134 /* Library-level functions are a special case, as GNAT adds
7135 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7136 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7137 have this prefix, so we need to skip this prefix if present. */
7138 if (function_name_len > 5 /* "_ada_" */
7139 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7140 {
7141 function_name += 5;
7142 function_name_len -= 5;
7143 }
4c4b4cd2
PH
7144
7145 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7146 strncpy (rename, function_name, function_name_len);
7147 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7148 "__%s___XR", name);
4c4b4cd2
PH
7149 }
7150 else
7151 {
7152 const int rename_len = strlen (name) + 6;
5b4ee69b 7153
4c4b4cd2 7154 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7155 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7156 }
7157
852dff6c 7158 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7159}
7160
14f9c5c9 7161/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7162 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7163 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7164 otherwise return 0. */
7165
14f9c5c9 7166int
d2e4a39e 7167ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7168{
7169 if (type1 == NULL)
7170 return 1;
7171 else if (type0 == NULL)
7172 return 0;
7173 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7174 return 1;
7175 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7176 return 0;
4c4b4cd2
PH
7177 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7178 return 1;
ad82864c 7179 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7180 return 1;
4c4b4cd2
PH
7181 else if (ada_is_array_descriptor_type (type0)
7182 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7183 return 1;
aeb5907d
JB
7184 else
7185 {
7186 const char *type0_name = type_name_no_tag (type0);
7187 const char *type1_name = type_name_no_tag (type1);
7188
7189 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7190 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7191 return 1;
7192 }
14f9c5c9
AS
7193 return 0;
7194}
7195
7196/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7197 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7198
0d5cff50 7199const char *
d2e4a39e 7200ada_type_name (struct type *type)
14f9c5c9 7201{
d2e4a39e 7202 if (type == NULL)
14f9c5c9
AS
7203 return NULL;
7204 else if (TYPE_NAME (type) != NULL)
7205 return TYPE_NAME (type);
7206 else
7207 return TYPE_TAG_NAME (type);
7208}
7209
b4ba55a1
JB
7210/* Search the list of "descriptive" types associated to TYPE for a type
7211 whose name is NAME. */
7212
7213static struct type *
7214find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7215{
7216 struct type *result;
7217
7218 /* If there no descriptive-type info, then there is no parallel type
7219 to be found. */
7220 if (!HAVE_GNAT_AUX_INFO (type))
7221 return NULL;
7222
7223 result = TYPE_DESCRIPTIVE_TYPE (type);
7224 while (result != NULL)
7225 {
0d5cff50 7226 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7227
7228 if (result_name == NULL)
7229 {
7230 warning (_("unexpected null name on descriptive type"));
7231 return NULL;
7232 }
7233
7234 /* If the names match, stop. */
7235 if (strcmp (result_name, name) == 0)
7236 break;
7237
7238 /* Otherwise, look at the next item on the list, if any. */
7239 if (HAVE_GNAT_AUX_INFO (result))
7240 result = TYPE_DESCRIPTIVE_TYPE (result);
7241 else
7242 result = NULL;
7243 }
7244
7245 /* If we didn't find a match, see whether this is a packed array. With
7246 older compilers, the descriptive type information is either absent or
7247 irrelevant when it comes to packed arrays so the above lookup fails.
7248 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7249 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7250 return ada_find_any_type (name);
7251
7252 return result;
7253}
7254
7255/* Find a parallel type to TYPE with the specified NAME, using the
7256 descriptive type taken from the debugging information, if available,
7257 and otherwise using the (slower) name-based method. */
7258
7259static struct type *
7260ada_find_parallel_type_with_name (struct type *type, const char *name)
7261{
7262 struct type *result = NULL;
7263
7264 if (HAVE_GNAT_AUX_INFO (type))
7265 result = find_parallel_type_by_descriptive_type (type, name);
7266 else
7267 result = ada_find_any_type (name);
7268
7269 return result;
7270}
7271
7272/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7273 SUFFIX to the name of TYPE. */
14f9c5c9 7274
d2e4a39e 7275struct type *
ebf56fd3 7276ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7277{
0d5cff50
DE
7278 char *name;
7279 const char *typename = ada_type_name (type);
14f9c5c9 7280 int len;
d2e4a39e 7281
14f9c5c9
AS
7282 if (typename == NULL)
7283 return NULL;
7284
7285 len = strlen (typename);
7286
b4ba55a1 7287 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7288
7289 strcpy (name, typename);
7290 strcpy (name + len, suffix);
7291
b4ba55a1 7292 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7293}
7294
14f9c5c9 7295/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7296 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7297
d2e4a39e
AS
7298static struct type *
7299dynamic_template_type (struct type *type)
14f9c5c9 7300{
61ee279c 7301 type = ada_check_typedef (type);
14f9c5c9
AS
7302
7303 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7304 || ada_type_name (type) == NULL)
14f9c5c9 7305 return NULL;
d2e4a39e 7306 else
14f9c5c9
AS
7307 {
7308 int len = strlen (ada_type_name (type));
5b4ee69b 7309
4c4b4cd2
PH
7310 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7311 return type;
14f9c5c9 7312 else
4c4b4cd2 7313 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7314 }
7315}
7316
7317/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7318 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7319
d2e4a39e
AS
7320static int
7321is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7322{
7323 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7324
d2e4a39e 7325 return name != NULL
14f9c5c9
AS
7326 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7327 && strstr (name, "___XVL") != NULL;
7328}
7329
4c4b4cd2
PH
7330/* The index of the variant field of TYPE, or -1 if TYPE does not
7331 represent a variant record type. */
14f9c5c9 7332
d2e4a39e 7333static int
4c4b4cd2 7334variant_field_index (struct type *type)
14f9c5c9
AS
7335{
7336 int f;
7337
4c4b4cd2
PH
7338 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7339 return -1;
7340
7341 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7342 {
7343 if (ada_is_variant_part (type, f))
7344 return f;
7345 }
7346 return -1;
14f9c5c9
AS
7347}
7348
4c4b4cd2
PH
7349/* A record type with no fields. */
7350
d2e4a39e 7351static struct type *
e9bb382b 7352empty_record (struct type *template)
14f9c5c9 7353{
e9bb382b 7354 struct type *type = alloc_type_copy (template);
5b4ee69b 7355
14f9c5c9
AS
7356 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7357 TYPE_NFIELDS (type) = 0;
7358 TYPE_FIELDS (type) = NULL;
b1f33ddd 7359 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7360 TYPE_NAME (type) = "<empty>";
7361 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7362 TYPE_LENGTH (type) = 0;
7363 return type;
7364}
7365
7366/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7367 the value of type TYPE at VALADDR or ADDRESS (see comments at
7368 the beginning of this section) VAL according to GNAT conventions.
7369 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7370 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7371 an outer-level type (i.e., as opposed to a branch of a variant.) A
7372 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7373 of the variant.
14f9c5c9 7374
4c4b4cd2
PH
7375 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7376 length are not statically known are discarded. As a consequence,
7377 VALADDR, ADDRESS and DVAL0 are ignored.
7378
7379 NOTE: Limitations: For now, we assume that dynamic fields and
7380 variants occupy whole numbers of bytes. However, they need not be
7381 byte-aligned. */
7382
7383struct type *
10a2c479 7384ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7385 const gdb_byte *valaddr,
4c4b4cd2
PH
7386 CORE_ADDR address, struct value *dval0,
7387 int keep_dynamic_fields)
14f9c5c9 7388{
d2e4a39e
AS
7389 struct value *mark = value_mark ();
7390 struct value *dval;
7391 struct type *rtype;
14f9c5c9 7392 int nfields, bit_len;
4c4b4cd2 7393 int variant_field;
14f9c5c9 7394 long off;
d94e4f4f 7395 int fld_bit_len;
14f9c5c9
AS
7396 int f;
7397
4c4b4cd2
PH
7398 /* Compute the number of fields in this record type that are going
7399 to be processed: unless keep_dynamic_fields, this includes only
7400 fields whose position and length are static will be processed. */
7401 if (keep_dynamic_fields)
7402 nfields = TYPE_NFIELDS (type);
7403 else
7404 {
7405 nfields = 0;
76a01679 7406 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7407 && !ada_is_variant_part (type, nfields)
7408 && !is_dynamic_field (type, nfields))
7409 nfields++;
7410 }
7411
e9bb382b 7412 rtype = alloc_type_copy (type);
14f9c5c9
AS
7413 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7414 INIT_CPLUS_SPECIFIC (rtype);
7415 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7416 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7417 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7418 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7419 TYPE_NAME (rtype) = ada_type_name (type);
7420 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7421 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7422
d2e4a39e
AS
7423 off = 0;
7424 bit_len = 0;
4c4b4cd2
PH
7425 variant_field = -1;
7426
14f9c5c9
AS
7427 for (f = 0; f < nfields; f += 1)
7428 {
6c038f32
PH
7429 off = align_value (off, field_alignment (type, f))
7430 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7431 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7432 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7433
d2e4a39e 7434 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7435 {
7436 variant_field = f;
d94e4f4f 7437 fld_bit_len = 0;
4c4b4cd2 7438 }
14f9c5c9 7439 else if (is_dynamic_field (type, f))
4c4b4cd2 7440 {
284614f0
JB
7441 const gdb_byte *field_valaddr = valaddr;
7442 CORE_ADDR field_address = address;
7443 struct type *field_type =
7444 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7445
4c4b4cd2 7446 if (dval0 == NULL)
b5304971
JG
7447 {
7448 /* rtype's length is computed based on the run-time
7449 value of discriminants. If the discriminants are not
7450 initialized, the type size may be completely bogus and
0963b4bd 7451 GDB may fail to allocate a value for it. So check the
b5304971
JG
7452 size first before creating the value. */
7453 check_size (rtype);
7454 dval = value_from_contents_and_address (rtype, valaddr, address);
7455 }
4c4b4cd2
PH
7456 else
7457 dval = dval0;
7458
284614f0
JB
7459 /* If the type referenced by this field is an aligner type, we need
7460 to unwrap that aligner type, because its size might not be set.
7461 Keeping the aligner type would cause us to compute the wrong
7462 size for this field, impacting the offset of the all the fields
7463 that follow this one. */
7464 if (ada_is_aligner_type (field_type))
7465 {
7466 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7467
7468 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7469 field_address = cond_offset_target (field_address, field_offset);
7470 field_type = ada_aligned_type (field_type);
7471 }
7472
7473 field_valaddr = cond_offset_host (field_valaddr,
7474 off / TARGET_CHAR_BIT);
7475 field_address = cond_offset_target (field_address,
7476 off / TARGET_CHAR_BIT);
7477
7478 /* Get the fixed type of the field. Note that, in this case,
7479 we do not want to get the real type out of the tag: if
7480 the current field is the parent part of a tagged record,
7481 we will get the tag of the object. Clearly wrong: the real
7482 type of the parent is not the real type of the child. We
7483 would end up in an infinite loop. */
7484 field_type = ada_get_base_type (field_type);
7485 field_type = ada_to_fixed_type (field_type, field_valaddr,
7486 field_address, dval, 0);
27f2a97b
JB
7487 /* If the field size is already larger than the maximum
7488 object size, then the record itself will necessarily
7489 be larger than the maximum object size. We need to make
7490 this check now, because the size might be so ridiculously
7491 large (due to an uninitialized variable in the inferior)
7492 that it would cause an overflow when adding it to the
7493 record size. */
7494 check_size (field_type);
284614f0
JB
7495
7496 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7497 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7498 /* The multiplication can potentially overflow. But because
7499 the field length has been size-checked just above, and
7500 assuming that the maximum size is a reasonable value,
7501 an overflow should not happen in practice. So rather than
7502 adding overflow recovery code to this already complex code,
7503 we just assume that it's not going to happen. */
d94e4f4f 7504 fld_bit_len =
4c4b4cd2
PH
7505 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7506 }
14f9c5c9 7507 else
4c4b4cd2 7508 {
9f0dec2d
JB
7509 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7510
720d1a40
JB
7511 /* If our field is a typedef type (most likely a typedef of
7512 a fat pointer, encoding an array access), then we need to
7513 look at its target type to determine its characteristics.
7514 In particular, we would miscompute the field size if we took
7515 the size of the typedef (zero), instead of the size of
7516 the target type. */
7517 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7518 field_type = ada_typedef_target_type (field_type);
7519
9f0dec2d 7520 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7521 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7522 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7523 fld_bit_len =
4c4b4cd2
PH
7524 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7525 else
d94e4f4f 7526 fld_bit_len =
9f0dec2d 7527 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7528 }
14f9c5c9 7529 if (off + fld_bit_len > bit_len)
4c4b4cd2 7530 bit_len = off + fld_bit_len;
d94e4f4f 7531 off += fld_bit_len;
4c4b4cd2
PH
7532 TYPE_LENGTH (rtype) =
7533 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7534 }
4c4b4cd2
PH
7535
7536 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7537 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7538 the record. This can happen in the presence of representation
7539 clauses. */
7540 if (variant_field >= 0)
7541 {
7542 struct type *branch_type;
7543
7544 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7545
7546 if (dval0 == NULL)
7547 dval = value_from_contents_and_address (rtype, valaddr, address);
7548 else
7549 dval = dval0;
7550
7551 branch_type =
7552 to_fixed_variant_branch_type
7553 (TYPE_FIELD_TYPE (type, variant_field),
7554 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7555 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7556 if (branch_type == NULL)
7557 {
7558 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7559 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7560 TYPE_NFIELDS (rtype) -= 1;
7561 }
7562 else
7563 {
7564 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7565 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7566 fld_bit_len =
7567 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7568 TARGET_CHAR_BIT;
7569 if (off + fld_bit_len > bit_len)
7570 bit_len = off + fld_bit_len;
7571 TYPE_LENGTH (rtype) =
7572 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7573 }
7574 }
7575
714e53ab
PH
7576 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7577 should contain the alignment of that record, which should be a strictly
7578 positive value. If null or negative, then something is wrong, most
7579 probably in the debug info. In that case, we don't round up the size
0963b4bd 7580 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7581 the current RTYPE length might be good enough for our purposes. */
7582 if (TYPE_LENGTH (type) <= 0)
7583 {
323e0a4a
AC
7584 if (TYPE_NAME (rtype))
7585 warning (_("Invalid type size for `%s' detected: %d."),
7586 TYPE_NAME (rtype), TYPE_LENGTH (type));
7587 else
7588 warning (_("Invalid type size for <unnamed> detected: %d."),
7589 TYPE_LENGTH (type));
714e53ab
PH
7590 }
7591 else
7592 {
7593 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7594 TYPE_LENGTH (type));
7595 }
14f9c5c9
AS
7596
7597 value_free_to_mark (mark);
d2e4a39e 7598 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7599 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7600 return rtype;
7601}
7602
4c4b4cd2
PH
7603/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7604 of 1. */
14f9c5c9 7605
d2e4a39e 7606static struct type *
fc1a4b47 7607template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7608 CORE_ADDR address, struct value *dval0)
7609{
7610 return ada_template_to_fixed_record_type_1 (type, valaddr,
7611 address, dval0, 1);
7612}
7613
7614/* An ordinary record type in which ___XVL-convention fields and
7615 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7616 static approximations, containing all possible fields. Uses
7617 no runtime values. Useless for use in values, but that's OK,
7618 since the results are used only for type determinations. Works on both
7619 structs and unions. Representation note: to save space, we memorize
7620 the result of this function in the TYPE_TARGET_TYPE of the
7621 template type. */
7622
7623static struct type *
7624template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7625{
7626 struct type *type;
7627 int nfields;
7628 int f;
7629
4c4b4cd2
PH
7630 if (TYPE_TARGET_TYPE (type0) != NULL)
7631 return TYPE_TARGET_TYPE (type0);
7632
7633 nfields = TYPE_NFIELDS (type0);
7634 type = type0;
14f9c5c9
AS
7635
7636 for (f = 0; f < nfields; f += 1)
7637 {
61ee279c 7638 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7639 struct type *new_type;
14f9c5c9 7640
4c4b4cd2
PH
7641 if (is_dynamic_field (type0, f))
7642 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7643 else
f192137b 7644 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7645 if (type == type0 && new_type != field_type)
7646 {
e9bb382b 7647 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7648 TYPE_CODE (type) = TYPE_CODE (type0);
7649 INIT_CPLUS_SPECIFIC (type);
7650 TYPE_NFIELDS (type) = nfields;
7651 TYPE_FIELDS (type) = (struct field *)
7652 TYPE_ALLOC (type, nfields * sizeof (struct field));
7653 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7654 sizeof (struct field) * nfields);
7655 TYPE_NAME (type) = ada_type_name (type0);
7656 TYPE_TAG_NAME (type) = NULL;
876cecd0 7657 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7658 TYPE_LENGTH (type) = 0;
7659 }
7660 TYPE_FIELD_TYPE (type, f) = new_type;
7661 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7662 }
14f9c5c9
AS
7663 return type;
7664}
7665
4c4b4cd2 7666/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7667 whose address in memory is ADDRESS, returns a revision of TYPE,
7668 which should be a non-dynamic-sized record, in which the variant
7669 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7670 for discriminant values in DVAL0, which can be NULL if the record
7671 contains the necessary discriminant values. */
7672
d2e4a39e 7673static struct type *
fc1a4b47 7674to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7675 CORE_ADDR address, struct value *dval0)
14f9c5c9 7676{
d2e4a39e 7677 struct value *mark = value_mark ();
4c4b4cd2 7678 struct value *dval;
d2e4a39e 7679 struct type *rtype;
14f9c5c9
AS
7680 struct type *branch_type;
7681 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7682 int variant_field = variant_field_index (type);
14f9c5c9 7683
4c4b4cd2 7684 if (variant_field == -1)
14f9c5c9
AS
7685 return type;
7686
4c4b4cd2
PH
7687 if (dval0 == NULL)
7688 dval = value_from_contents_and_address (type, valaddr, address);
7689 else
7690 dval = dval0;
7691
e9bb382b 7692 rtype = alloc_type_copy (type);
14f9c5c9 7693 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7694 INIT_CPLUS_SPECIFIC (rtype);
7695 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7696 TYPE_FIELDS (rtype) =
7697 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7698 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7699 sizeof (struct field) * nfields);
14f9c5c9
AS
7700 TYPE_NAME (rtype) = ada_type_name (type);
7701 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7702 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7703 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7704
4c4b4cd2
PH
7705 branch_type = to_fixed_variant_branch_type
7706 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7707 cond_offset_host (valaddr,
4c4b4cd2
PH
7708 TYPE_FIELD_BITPOS (type, variant_field)
7709 / TARGET_CHAR_BIT),
d2e4a39e 7710 cond_offset_target (address,
4c4b4cd2
PH
7711 TYPE_FIELD_BITPOS (type, variant_field)
7712 / TARGET_CHAR_BIT), dval);
d2e4a39e 7713 if (branch_type == NULL)
14f9c5c9 7714 {
4c4b4cd2 7715 int f;
5b4ee69b 7716
4c4b4cd2
PH
7717 for (f = variant_field + 1; f < nfields; f += 1)
7718 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7719 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7720 }
7721 else
7722 {
4c4b4cd2
PH
7723 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7724 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7725 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7726 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7727 }
4c4b4cd2 7728 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7729
4c4b4cd2 7730 value_free_to_mark (mark);
14f9c5c9
AS
7731 return rtype;
7732}
7733
7734/* An ordinary record type (with fixed-length fields) that describes
7735 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7736 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7737 should be in DVAL, a record value; it may be NULL if the object
7738 at ADDR itself contains any necessary discriminant values.
7739 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7740 values from the record are needed. Except in the case that DVAL,
7741 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7742 unchecked) is replaced by a particular branch of the variant.
7743
7744 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7745 is questionable and may be removed. It can arise during the
7746 processing of an unconstrained-array-of-record type where all the
7747 variant branches have exactly the same size. This is because in
7748 such cases, the compiler does not bother to use the XVS convention
7749 when encoding the record. I am currently dubious of this
7750 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7751
d2e4a39e 7752static struct type *
fc1a4b47 7753to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7754 CORE_ADDR address, struct value *dval)
14f9c5c9 7755{
d2e4a39e 7756 struct type *templ_type;
14f9c5c9 7757
876cecd0 7758 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7759 return type0;
7760
d2e4a39e 7761 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7762
7763 if (templ_type != NULL)
7764 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7765 else if (variant_field_index (type0) >= 0)
7766 {
7767 if (dval == NULL && valaddr == NULL && address == 0)
7768 return type0;
7769 return to_record_with_fixed_variant_part (type0, valaddr, address,
7770 dval);
7771 }
14f9c5c9
AS
7772 else
7773 {
876cecd0 7774 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7775 return type0;
7776 }
7777
7778}
7779
7780/* An ordinary record type (with fixed-length fields) that describes
7781 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7782 union type. Any necessary discriminants' values should be in DVAL,
7783 a record value. That is, this routine selects the appropriate
7784 branch of the union at ADDR according to the discriminant value
b1f33ddd 7785 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7786 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7787
d2e4a39e 7788static struct type *
fc1a4b47 7789to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7790 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7791{
7792 int which;
d2e4a39e
AS
7793 struct type *templ_type;
7794 struct type *var_type;
14f9c5c9
AS
7795
7796 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7797 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7798 else
14f9c5c9
AS
7799 var_type = var_type0;
7800
7801 templ_type = ada_find_parallel_type (var_type, "___XVU");
7802
7803 if (templ_type != NULL)
7804 var_type = templ_type;
7805
b1f33ddd
JB
7806 if (is_unchecked_variant (var_type, value_type (dval)))
7807 return var_type0;
d2e4a39e
AS
7808 which =
7809 ada_which_variant_applies (var_type,
0fd88904 7810 value_type (dval), value_contents (dval));
14f9c5c9
AS
7811
7812 if (which < 0)
e9bb382b 7813 return empty_record (var_type);
14f9c5c9 7814 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7815 return to_fixed_record_type
d2e4a39e
AS
7816 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7817 valaddr, address, dval);
4c4b4cd2 7818 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7819 return
7820 to_fixed_record_type
7821 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7822 else
7823 return TYPE_FIELD_TYPE (var_type, which);
7824}
7825
7826/* Assuming that TYPE0 is an array type describing the type of a value
7827 at ADDR, and that DVAL describes a record containing any
7828 discriminants used in TYPE0, returns a type for the value that
7829 contains no dynamic components (that is, no components whose sizes
7830 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7831 true, gives an error message if the resulting type's size is over
4c4b4cd2 7832 varsize_limit. */
14f9c5c9 7833
d2e4a39e
AS
7834static struct type *
7835to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7836 int ignore_too_big)
14f9c5c9 7837{
d2e4a39e
AS
7838 struct type *index_type_desc;
7839 struct type *result;
ad82864c 7840 int constrained_packed_array_p;
14f9c5c9 7841
b0dd7688 7842 type0 = ada_check_typedef (type0);
284614f0 7843 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7844 return type0;
14f9c5c9 7845
ad82864c
JB
7846 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7847 if (constrained_packed_array_p)
7848 type0 = decode_constrained_packed_array_type (type0);
284614f0 7849
14f9c5c9 7850 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7851 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7852 if (index_type_desc == NULL)
7853 {
61ee279c 7854 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7855
14f9c5c9 7856 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7857 depend on the contents of the array in properly constructed
7858 debugging data. */
529cad9c
PH
7859 /* Create a fixed version of the array element type.
7860 We're not providing the address of an element here,
e1d5a0d2 7861 and thus the actual object value cannot be inspected to do
529cad9c
PH
7862 the conversion. This should not be a problem, since arrays of
7863 unconstrained objects are not allowed. In particular, all
7864 the elements of an array of a tagged type should all be of
7865 the same type specified in the debugging info. No need to
7866 consult the object tag. */
1ed6ede0 7867 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7868
284614f0
JB
7869 /* Make sure we always create a new array type when dealing with
7870 packed array types, since we're going to fix-up the array
7871 type length and element bitsize a little further down. */
ad82864c 7872 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7873 result = type0;
14f9c5c9 7874 else
e9bb382b 7875 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7876 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7877 }
7878 else
7879 {
7880 int i;
7881 struct type *elt_type0;
7882
7883 elt_type0 = type0;
7884 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7885 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7886
7887 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7888 depend on the contents of the array in properly constructed
7889 debugging data. */
529cad9c
PH
7890 /* Create a fixed version of the array element type.
7891 We're not providing the address of an element here,
e1d5a0d2 7892 and thus the actual object value cannot be inspected to do
529cad9c
PH
7893 the conversion. This should not be a problem, since arrays of
7894 unconstrained objects are not allowed. In particular, all
7895 the elements of an array of a tagged type should all be of
7896 the same type specified in the debugging info. No need to
7897 consult the object tag. */
1ed6ede0
JB
7898 result =
7899 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7900
7901 elt_type0 = type0;
14f9c5c9 7902 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7903 {
7904 struct type *range_type =
28c85d6c 7905 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7906
e9bb382b 7907 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7908 result, range_type);
1ce677a4 7909 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7910 }
d2e4a39e 7911 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7912 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7913 }
7914
2e6fda7d
JB
7915 /* We want to preserve the type name. This can be useful when
7916 trying to get the type name of a value that has already been
7917 printed (for instance, if the user did "print VAR; whatis $". */
7918 TYPE_NAME (result) = TYPE_NAME (type0);
7919
ad82864c 7920 if (constrained_packed_array_p)
284614f0
JB
7921 {
7922 /* So far, the resulting type has been created as if the original
7923 type was a regular (non-packed) array type. As a result, the
7924 bitsize of the array elements needs to be set again, and the array
7925 length needs to be recomputed based on that bitsize. */
7926 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7927 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7928
7929 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7930 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7931 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7932 TYPE_LENGTH (result)++;
7933 }
7934
876cecd0 7935 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7936 return result;
d2e4a39e 7937}
14f9c5c9
AS
7938
7939
7940/* A standard type (containing no dynamically sized components)
7941 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7942 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7943 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7944 ADDRESS or in VALADDR contains these discriminants.
7945
1ed6ede0
JB
7946 If CHECK_TAG is not null, in the case of tagged types, this function
7947 attempts to locate the object's tag and use it to compute the actual
7948 type. However, when ADDRESS is null, we cannot use it to determine the
7949 location of the tag, and therefore compute the tagged type's actual type.
7950 So we return the tagged type without consulting the tag. */
529cad9c 7951
f192137b
JB
7952static struct type *
7953ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7954 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7955{
61ee279c 7956 type = ada_check_typedef (type);
d2e4a39e
AS
7957 switch (TYPE_CODE (type))
7958 {
7959 default:
14f9c5c9 7960 return type;
d2e4a39e 7961 case TYPE_CODE_STRUCT:
4c4b4cd2 7962 {
76a01679 7963 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7964 struct type *fixed_record_type =
7965 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7966
529cad9c
PH
7967 /* If STATIC_TYPE is a tagged type and we know the object's address,
7968 then we can determine its tag, and compute the object's actual
0963b4bd 7969 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7970 type (the parent part of the record may have dynamic fields
7971 and the way the location of _tag is expressed may depend on
7972 them). */
529cad9c 7973
1ed6ede0 7974 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7975 {
7976 struct type *real_type =
1ed6ede0
JB
7977 type_from_tag (value_tag_from_contents_and_address
7978 (fixed_record_type,
7979 valaddr,
7980 address));
5b4ee69b 7981
76a01679 7982 if (real_type != NULL)
1ed6ede0 7983 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7984 }
4af88198
JB
7985
7986 /* Check to see if there is a parallel ___XVZ variable.
7987 If there is, then it provides the actual size of our type. */
7988 else if (ada_type_name (fixed_record_type) != NULL)
7989 {
0d5cff50 7990 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
7991 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7992 int xvz_found = 0;
7993 LONGEST size;
7994
88c15c34 7995 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7996 size = get_int_var_value (xvz_name, &xvz_found);
7997 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7998 {
7999 fixed_record_type = copy_type (fixed_record_type);
8000 TYPE_LENGTH (fixed_record_type) = size;
8001
8002 /* The FIXED_RECORD_TYPE may have be a stub. We have
8003 observed this when the debugging info is STABS, and
8004 apparently it is something that is hard to fix.
8005
8006 In practice, we don't need the actual type definition
8007 at all, because the presence of the XVZ variable allows us
8008 to assume that there must be a XVS type as well, which we
8009 should be able to use later, when we need the actual type
8010 definition.
8011
8012 In the meantime, pretend that the "fixed" type we are
8013 returning is NOT a stub, because this can cause trouble
8014 when using this type to create new types targeting it.
8015 Indeed, the associated creation routines often check
8016 whether the target type is a stub and will try to replace
0963b4bd 8017 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8018 might cause the new type to have the wrong size too.
8019 Consider the case of an array, for instance, where the size
8020 of the array is computed from the number of elements in
8021 our array multiplied by the size of its element. */
8022 TYPE_STUB (fixed_record_type) = 0;
8023 }
8024 }
1ed6ede0 8025 return fixed_record_type;
4c4b4cd2 8026 }
d2e4a39e 8027 case TYPE_CODE_ARRAY:
4c4b4cd2 8028 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8029 case TYPE_CODE_UNION:
8030 if (dval == NULL)
4c4b4cd2 8031 return type;
d2e4a39e 8032 else
4c4b4cd2 8033 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8034 }
14f9c5c9
AS
8035}
8036
f192137b
JB
8037/* The same as ada_to_fixed_type_1, except that it preserves the type
8038 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8039
8040 The typedef layer needs be preserved in order to differentiate between
8041 arrays and array pointers when both types are implemented using the same
8042 fat pointer. In the array pointer case, the pointer is encoded as
8043 a typedef of the pointer type. For instance, considering:
8044
8045 type String_Access is access String;
8046 S1 : String_Access := null;
8047
8048 To the debugger, S1 is defined as a typedef of type String. But
8049 to the user, it is a pointer. So if the user tries to print S1,
8050 we should not dereference the array, but print the array address
8051 instead.
8052
8053 If we didn't preserve the typedef layer, we would lose the fact that
8054 the type is to be presented as a pointer (needs de-reference before
8055 being printed). And we would also use the source-level type name. */
f192137b
JB
8056
8057struct type *
8058ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8059 CORE_ADDR address, struct value *dval, int check_tag)
8060
8061{
8062 struct type *fixed_type =
8063 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8064
96dbd2c1
JB
8065 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8066 then preserve the typedef layer.
8067
8068 Implementation note: We can only check the main-type portion of
8069 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8070 from TYPE now returns a type that has the same instance flags
8071 as TYPE. For instance, if TYPE is a "typedef const", and its
8072 target type is a "struct", then the typedef elimination will return
8073 a "const" version of the target type. See check_typedef for more
8074 details about how the typedef layer elimination is done.
8075
8076 brobecker/2010-11-19: It seems to me that the only case where it is
8077 useful to preserve the typedef layer is when dealing with fat pointers.
8078 Perhaps, we could add a check for that and preserve the typedef layer
8079 only in that situation. But this seems unecessary so far, probably
8080 because we call check_typedef/ada_check_typedef pretty much everywhere.
8081 */
f192137b 8082 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8083 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8084 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8085 return type;
8086
8087 return fixed_type;
8088}
8089
14f9c5c9 8090/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8091 TYPE0, but based on no runtime data. */
14f9c5c9 8092
d2e4a39e
AS
8093static struct type *
8094to_static_fixed_type (struct type *type0)
14f9c5c9 8095{
d2e4a39e 8096 struct type *type;
14f9c5c9
AS
8097
8098 if (type0 == NULL)
8099 return NULL;
8100
876cecd0 8101 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8102 return type0;
8103
61ee279c 8104 type0 = ada_check_typedef (type0);
d2e4a39e 8105
14f9c5c9
AS
8106 switch (TYPE_CODE (type0))
8107 {
8108 default:
8109 return type0;
8110 case TYPE_CODE_STRUCT:
8111 type = dynamic_template_type (type0);
d2e4a39e 8112 if (type != NULL)
4c4b4cd2
PH
8113 return template_to_static_fixed_type (type);
8114 else
8115 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8116 case TYPE_CODE_UNION:
8117 type = ada_find_parallel_type (type0, "___XVU");
8118 if (type != NULL)
4c4b4cd2
PH
8119 return template_to_static_fixed_type (type);
8120 else
8121 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8122 }
8123}
8124
4c4b4cd2
PH
8125/* A static approximation of TYPE with all type wrappers removed. */
8126
d2e4a39e
AS
8127static struct type *
8128static_unwrap_type (struct type *type)
14f9c5c9
AS
8129{
8130 if (ada_is_aligner_type (type))
8131 {
61ee279c 8132 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8133 if (ada_type_name (type1) == NULL)
4c4b4cd2 8134 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8135
8136 return static_unwrap_type (type1);
8137 }
d2e4a39e 8138 else
14f9c5c9 8139 {
d2e4a39e 8140 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8141
d2e4a39e 8142 if (raw_real_type == type)
4c4b4cd2 8143 return type;
14f9c5c9 8144 else
4c4b4cd2 8145 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8146 }
8147}
8148
8149/* In some cases, incomplete and private types require
4c4b4cd2 8150 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8151 type Foo;
8152 type FooP is access Foo;
8153 V: FooP;
8154 type Foo is array ...;
4c4b4cd2 8155 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8156 cross-references to such types, we instead substitute for FooP a
8157 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8158 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8159
8160/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8161 exists, otherwise TYPE. */
8162
d2e4a39e 8163struct type *
61ee279c 8164ada_check_typedef (struct type *type)
14f9c5c9 8165{
727e3d2e
JB
8166 if (type == NULL)
8167 return NULL;
8168
720d1a40
JB
8169 /* If our type is a typedef type of a fat pointer, then we're done.
8170 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8171 what allows us to distinguish between fat pointers that represent
8172 array types, and fat pointers that represent array access types
8173 (in both cases, the compiler implements them as fat pointers). */
8174 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8175 && is_thick_pntr (ada_typedef_target_type (type)))
8176 return type;
8177
14f9c5c9
AS
8178 CHECK_TYPEDEF (type);
8179 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8180 || !TYPE_STUB (type)
14f9c5c9
AS
8181 || TYPE_TAG_NAME (type) == NULL)
8182 return type;
d2e4a39e 8183 else
14f9c5c9 8184 {
0d5cff50 8185 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8186 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8187
05e522ef
JB
8188 if (type1 == NULL)
8189 return type;
8190
8191 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8192 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8193 types, only for the typedef-to-array types). If that's the case,
8194 strip the typedef layer. */
8195 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8196 type1 = ada_check_typedef (type1);
8197
8198 return type1;
14f9c5c9
AS
8199 }
8200}
8201
8202/* A value representing the data at VALADDR/ADDRESS as described by
8203 type TYPE0, but with a standard (static-sized) type that correctly
8204 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8205 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8206 creation of struct values]. */
14f9c5c9 8207
4c4b4cd2
PH
8208static struct value *
8209ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8210 struct value *val0)
14f9c5c9 8211{
1ed6ede0 8212 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8213
14f9c5c9
AS
8214 if (type == type0 && val0 != NULL)
8215 return val0;
d2e4a39e 8216 else
4c4b4cd2
PH
8217 return value_from_contents_and_address (type, 0, address);
8218}
8219
8220/* A value representing VAL, but with a standard (static-sized) type
8221 that correctly describes it. Does not necessarily create a new
8222 value. */
8223
0c3acc09 8224struct value *
4c4b4cd2
PH
8225ada_to_fixed_value (struct value *val)
8226{
c48db5ca
JB
8227 val = unwrap_value (val);
8228 val = ada_to_fixed_value_create (value_type (val),
8229 value_address (val),
8230 val);
8231 return val;
14f9c5c9 8232}
d2e4a39e 8233\f
14f9c5c9 8234
14f9c5c9
AS
8235/* Attributes */
8236
4c4b4cd2
PH
8237/* Table mapping attribute numbers to names.
8238 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8239
d2e4a39e 8240static const char *attribute_names[] = {
14f9c5c9
AS
8241 "<?>",
8242
d2e4a39e 8243 "first",
14f9c5c9
AS
8244 "last",
8245 "length",
8246 "image",
14f9c5c9
AS
8247 "max",
8248 "min",
4c4b4cd2
PH
8249 "modulus",
8250 "pos",
8251 "size",
8252 "tag",
14f9c5c9 8253 "val",
14f9c5c9
AS
8254 0
8255};
8256
d2e4a39e 8257const char *
4c4b4cd2 8258ada_attribute_name (enum exp_opcode n)
14f9c5c9 8259{
4c4b4cd2
PH
8260 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8261 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8262 else
8263 return attribute_names[0];
8264}
8265
4c4b4cd2 8266/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8267
4c4b4cd2
PH
8268static LONGEST
8269pos_atr (struct value *arg)
14f9c5c9 8270{
24209737
PH
8271 struct value *val = coerce_ref (arg);
8272 struct type *type = value_type (val);
14f9c5c9 8273
d2e4a39e 8274 if (!discrete_type_p (type))
323e0a4a 8275 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8276
8277 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8278 {
8279 int i;
24209737 8280 LONGEST v = value_as_long (val);
14f9c5c9 8281
d2e4a39e 8282 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
8283 {
8284 if (v == TYPE_FIELD_BITPOS (type, i))
8285 return i;
8286 }
323e0a4a 8287 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8288 }
8289 else
24209737 8290 return value_as_long (val);
4c4b4cd2
PH
8291}
8292
8293static struct value *
3cb382c9 8294value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8295{
3cb382c9 8296 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8297}
8298
4c4b4cd2 8299/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8300
d2e4a39e
AS
8301static struct value *
8302value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8303{
d2e4a39e 8304 if (!discrete_type_p (type))
323e0a4a 8305 error (_("'VAL only defined on discrete types"));
df407dfe 8306 if (!integer_type_p (value_type (arg)))
323e0a4a 8307 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8308
8309 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8310 {
8311 long pos = value_as_long (arg);
5b4ee69b 8312
14f9c5c9 8313 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8314 error (_("argument to 'VAL out of range"));
d2e4a39e 8315 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
8316 }
8317 else
8318 return value_from_longest (type, value_as_long (arg));
8319}
14f9c5c9 8320\f
d2e4a39e 8321
4c4b4cd2 8322 /* Evaluation */
14f9c5c9 8323
4c4b4cd2
PH
8324/* True if TYPE appears to be an Ada character type.
8325 [At the moment, this is true only for Character and Wide_Character;
8326 It is a heuristic test that could stand improvement]. */
14f9c5c9 8327
d2e4a39e
AS
8328int
8329ada_is_character_type (struct type *type)
14f9c5c9 8330{
7b9f71f2
JB
8331 const char *name;
8332
8333 /* If the type code says it's a character, then assume it really is,
8334 and don't check any further. */
8335 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8336 return 1;
8337
8338 /* Otherwise, assume it's a character type iff it is a discrete type
8339 with a known character type name. */
8340 name = ada_type_name (type);
8341 return (name != NULL
8342 && (TYPE_CODE (type) == TYPE_CODE_INT
8343 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8344 && (strcmp (name, "character") == 0
8345 || strcmp (name, "wide_character") == 0
5a517ebd 8346 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8347 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8348}
8349
4c4b4cd2 8350/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8351
8352int
ebf56fd3 8353ada_is_string_type (struct type *type)
14f9c5c9 8354{
61ee279c 8355 type = ada_check_typedef (type);
d2e4a39e 8356 if (type != NULL
14f9c5c9 8357 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8358 && (ada_is_simple_array_type (type)
8359 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8360 && ada_array_arity (type) == 1)
8361 {
8362 struct type *elttype = ada_array_element_type (type, 1);
8363
8364 return ada_is_character_type (elttype);
8365 }
d2e4a39e 8366 else
14f9c5c9
AS
8367 return 0;
8368}
8369
5bf03f13
JB
8370/* The compiler sometimes provides a parallel XVS type for a given
8371 PAD type. Normally, it is safe to follow the PAD type directly,
8372 but older versions of the compiler have a bug that causes the offset
8373 of its "F" field to be wrong. Following that field in that case
8374 would lead to incorrect results, but this can be worked around
8375 by ignoring the PAD type and using the associated XVS type instead.
8376
8377 Set to True if the debugger should trust the contents of PAD types.
8378 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8379static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8380
8381/* True if TYPE is a struct type introduced by the compiler to force the
8382 alignment of a value. Such types have a single field with a
4c4b4cd2 8383 distinctive name. */
14f9c5c9
AS
8384
8385int
ebf56fd3 8386ada_is_aligner_type (struct type *type)
14f9c5c9 8387{
61ee279c 8388 type = ada_check_typedef (type);
714e53ab 8389
5bf03f13 8390 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8391 return 0;
8392
14f9c5c9 8393 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8394 && TYPE_NFIELDS (type) == 1
8395 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8396}
8397
8398/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8399 the parallel type. */
14f9c5c9 8400
d2e4a39e
AS
8401struct type *
8402ada_get_base_type (struct type *raw_type)
14f9c5c9 8403{
d2e4a39e
AS
8404 struct type *real_type_namer;
8405 struct type *raw_real_type;
14f9c5c9
AS
8406
8407 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8408 return raw_type;
8409
284614f0
JB
8410 if (ada_is_aligner_type (raw_type))
8411 /* The encoding specifies that we should always use the aligner type.
8412 So, even if this aligner type has an associated XVS type, we should
8413 simply ignore it.
8414
8415 According to the compiler gurus, an XVS type parallel to an aligner
8416 type may exist because of a stabs limitation. In stabs, aligner
8417 types are empty because the field has a variable-sized type, and
8418 thus cannot actually be used as an aligner type. As a result,
8419 we need the associated parallel XVS type to decode the type.
8420 Since the policy in the compiler is to not change the internal
8421 representation based on the debugging info format, we sometimes
8422 end up having a redundant XVS type parallel to the aligner type. */
8423 return raw_type;
8424
14f9c5c9 8425 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8426 if (real_type_namer == NULL
14f9c5c9
AS
8427 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8428 || TYPE_NFIELDS (real_type_namer) != 1)
8429 return raw_type;
8430
f80d3ff2
JB
8431 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8432 {
8433 /* This is an older encoding form where the base type needs to be
8434 looked up by name. We prefer the newer enconding because it is
8435 more efficient. */
8436 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8437 if (raw_real_type == NULL)
8438 return raw_type;
8439 else
8440 return raw_real_type;
8441 }
8442
8443 /* The field in our XVS type is a reference to the base type. */
8444 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8445}
14f9c5c9 8446
4c4b4cd2 8447/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8448
d2e4a39e
AS
8449struct type *
8450ada_aligned_type (struct type *type)
14f9c5c9
AS
8451{
8452 if (ada_is_aligner_type (type))
8453 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8454 else
8455 return ada_get_base_type (type);
8456}
8457
8458
8459/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8460 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8461
fc1a4b47
AC
8462const gdb_byte *
8463ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8464{
d2e4a39e 8465 if (ada_is_aligner_type (type))
14f9c5c9 8466 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8467 valaddr +
8468 TYPE_FIELD_BITPOS (type,
8469 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8470 else
8471 return valaddr;
8472}
8473
4c4b4cd2
PH
8474
8475
14f9c5c9 8476/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8477 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8478const char *
8479ada_enum_name (const char *name)
14f9c5c9 8480{
4c4b4cd2
PH
8481 static char *result;
8482 static size_t result_len = 0;
d2e4a39e 8483 char *tmp;
14f9c5c9 8484
4c4b4cd2
PH
8485 /* First, unqualify the enumeration name:
8486 1. Search for the last '.' character. If we find one, then skip
177b42fe 8487 all the preceding characters, the unqualified name starts
76a01679 8488 right after that dot.
4c4b4cd2 8489 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8490 translates dots into "__". Search forward for double underscores,
8491 but stop searching when we hit an overloading suffix, which is
8492 of the form "__" followed by digits. */
4c4b4cd2 8493
c3e5cd34
PH
8494 tmp = strrchr (name, '.');
8495 if (tmp != NULL)
4c4b4cd2
PH
8496 name = tmp + 1;
8497 else
14f9c5c9 8498 {
4c4b4cd2
PH
8499 while ((tmp = strstr (name, "__")) != NULL)
8500 {
8501 if (isdigit (tmp[2]))
8502 break;
8503 else
8504 name = tmp + 2;
8505 }
14f9c5c9
AS
8506 }
8507
8508 if (name[0] == 'Q')
8509 {
14f9c5c9 8510 int v;
5b4ee69b 8511
14f9c5c9 8512 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8513 {
8514 if (sscanf (name + 2, "%x", &v) != 1)
8515 return name;
8516 }
14f9c5c9 8517 else
4c4b4cd2 8518 return name;
14f9c5c9 8519
4c4b4cd2 8520 GROW_VECT (result, result_len, 16);
14f9c5c9 8521 if (isascii (v) && isprint (v))
88c15c34 8522 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8523 else if (name[1] == 'U')
88c15c34 8524 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8525 else
88c15c34 8526 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8527
8528 return result;
8529 }
d2e4a39e 8530 else
4c4b4cd2 8531 {
c3e5cd34
PH
8532 tmp = strstr (name, "__");
8533 if (tmp == NULL)
8534 tmp = strstr (name, "$");
8535 if (tmp != NULL)
4c4b4cd2
PH
8536 {
8537 GROW_VECT (result, result_len, tmp - name + 1);
8538 strncpy (result, name, tmp - name);
8539 result[tmp - name] = '\0';
8540 return result;
8541 }
8542
8543 return name;
8544 }
14f9c5c9
AS
8545}
8546
14f9c5c9
AS
8547/* Evaluate the subexpression of EXP starting at *POS as for
8548 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8549 expression. */
14f9c5c9 8550
d2e4a39e
AS
8551static struct value *
8552evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8553{
4b27a620 8554 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8555}
8556
8557/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8558 value it wraps. */
14f9c5c9 8559
d2e4a39e
AS
8560static struct value *
8561unwrap_value (struct value *val)
14f9c5c9 8562{
df407dfe 8563 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8564
14f9c5c9
AS
8565 if (ada_is_aligner_type (type))
8566 {
de4d072f 8567 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8568 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8569
14f9c5c9 8570 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8571 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8572
8573 return unwrap_value (v);
8574 }
d2e4a39e 8575 else
14f9c5c9 8576 {
d2e4a39e 8577 struct type *raw_real_type =
61ee279c 8578 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8579
5bf03f13
JB
8580 /* If there is no parallel XVS or XVE type, then the value is
8581 already unwrapped. Return it without further modification. */
8582 if ((type == raw_real_type)
8583 && ada_find_parallel_type (type, "___XVE") == NULL)
8584 return val;
14f9c5c9 8585
d2e4a39e 8586 return
4c4b4cd2
PH
8587 coerce_unspec_val_to_type
8588 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8589 value_address (val),
1ed6ede0 8590 NULL, 1));
14f9c5c9
AS
8591 }
8592}
d2e4a39e
AS
8593
8594static struct value *
8595cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8596{
8597 LONGEST val;
8598
df407dfe 8599 if (type == value_type (arg))
14f9c5c9 8600 return arg;
df407dfe 8601 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8602 val = ada_float_to_fixed (type,
df407dfe 8603 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8604 value_as_long (arg)));
d2e4a39e 8605 else
14f9c5c9 8606 {
a53b7a21 8607 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8608
14f9c5c9
AS
8609 val = ada_float_to_fixed (type, argd);
8610 }
8611
8612 return value_from_longest (type, val);
8613}
8614
d2e4a39e 8615static struct value *
a53b7a21 8616cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8617{
df407dfe 8618 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8619 value_as_long (arg));
5b4ee69b 8620
a53b7a21 8621 return value_from_double (type, val);
14f9c5c9
AS
8622}
8623
4c4b4cd2
PH
8624/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8625 return the converted value. */
8626
d2e4a39e
AS
8627static struct value *
8628coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8629{
df407dfe 8630 struct type *type2 = value_type (val);
5b4ee69b 8631
14f9c5c9
AS
8632 if (type == type2)
8633 return val;
8634
61ee279c
PH
8635 type2 = ada_check_typedef (type2);
8636 type = ada_check_typedef (type);
14f9c5c9 8637
d2e4a39e
AS
8638 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8639 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8640 {
8641 val = ada_value_ind (val);
df407dfe 8642 type2 = value_type (val);
14f9c5c9
AS
8643 }
8644
d2e4a39e 8645 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8646 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8647 {
8648 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8649 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8650 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8651 error (_("Incompatible types in assignment"));
04624583 8652 deprecated_set_value_type (val, type);
14f9c5c9 8653 }
d2e4a39e 8654 return val;
14f9c5c9
AS
8655}
8656
4c4b4cd2
PH
8657static struct value *
8658ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8659{
8660 struct value *val;
8661 struct type *type1, *type2;
8662 LONGEST v, v1, v2;
8663
994b9211
AC
8664 arg1 = coerce_ref (arg1);
8665 arg2 = coerce_ref (arg2);
18af8284
JB
8666 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8667 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8668
76a01679
JB
8669 if (TYPE_CODE (type1) != TYPE_CODE_INT
8670 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8671 return value_binop (arg1, arg2, op);
8672
76a01679 8673 switch (op)
4c4b4cd2
PH
8674 {
8675 case BINOP_MOD:
8676 case BINOP_DIV:
8677 case BINOP_REM:
8678 break;
8679 default:
8680 return value_binop (arg1, arg2, op);
8681 }
8682
8683 v2 = value_as_long (arg2);
8684 if (v2 == 0)
323e0a4a 8685 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8686
8687 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8688 return value_binop (arg1, arg2, op);
8689
8690 v1 = value_as_long (arg1);
8691 switch (op)
8692 {
8693 case BINOP_DIV:
8694 v = v1 / v2;
76a01679
JB
8695 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8696 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8697 break;
8698 case BINOP_REM:
8699 v = v1 % v2;
76a01679
JB
8700 if (v * v1 < 0)
8701 v -= v2;
4c4b4cd2
PH
8702 break;
8703 default:
8704 /* Should not reach this point. */
8705 v = 0;
8706 }
8707
8708 val = allocate_value (type1);
990a07ab 8709 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8710 TYPE_LENGTH (value_type (val)),
8711 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8712 return val;
8713}
8714
8715static int
8716ada_value_equal (struct value *arg1, struct value *arg2)
8717{
df407dfe
AC
8718 if (ada_is_direct_array_type (value_type (arg1))
8719 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8720 {
f58b38bf
JB
8721 /* Automatically dereference any array reference before
8722 we attempt to perform the comparison. */
8723 arg1 = ada_coerce_ref (arg1);
8724 arg2 = ada_coerce_ref (arg2);
8725
4c4b4cd2
PH
8726 arg1 = ada_coerce_to_simple_array (arg1);
8727 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8728 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8729 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8730 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8731 /* FIXME: The following works only for types whose
76a01679
JB
8732 representations use all bits (no padding or undefined bits)
8733 and do not have user-defined equality. */
8734 return
df407dfe 8735 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8736 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8737 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8738 }
8739 return value_equal (arg1, arg2);
8740}
8741
52ce6436
PH
8742/* Total number of component associations in the aggregate starting at
8743 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8744 OP_AGGREGATE. */
52ce6436
PH
8745
8746static int
8747num_component_specs (struct expression *exp, int pc)
8748{
8749 int n, m, i;
5b4ee69b 8750
52ce6436
PH
8751 m = exp->elts[pc + 1].longconst;
8752 pc += 3;
8753 n = 0;
8754 for (i = 0; i < m; i += 1)
8755 {
8756 switch (exp->elts[pc].opcode)
8757 {
8758 default:
8759 n += 1;
8760 break;
8761 case OP_CHOICES:
8762 n += exp->elts[pc + 1].longconst;
8763 break;
8764 }
8765 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8766 }
8767 return n;
8768}
8769
8770/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8771 component of LHS (a simple array or a record), updating *POS past
8772 the expression, assuming that LHS is contained in CONTAINER. Does
8773 not modify the inferior's memory, nor does it modify LHS (unless
8774 LHS == CONTAINER). */
8775
8776static void
8777assign_component (struct value *container, struct value *lhs, LONGEST index,
8778 struct expression *exp, int *pos)
8779{
8780 struct value *mark = value_mark ();
8781 struct value *elt;
5b4ee69b 8782
52ce6436
PH
8783 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8784 {
22601c15
UW
8785 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8786 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8787
52ce6436
PH
8788 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8789 }
8790 else
8791 {
8792 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 8793 elt = ada_to_fixed_value (elt);
52ce6436
PH
8794 }
8795
8796 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8797 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8798 else
8799 value_assign_to_component (container, elt,
8800 ada_evaluate_subexp (NULL, exp, pos,
8801 EVAL_NORMAL));
8802
8803 value_free_to_mark (mark);
8804}
8805
8806/* Assuming that LHS represents an lvalue having a record or array
8807 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8808 of that aggregate's value to LHS, advancing *POS past the
8809 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8810 lvalue containing LHS (possibly LHS itself). Does not modify
8811 the inferior's memory, nor does it modify the contents of
0963b4bd 8812 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8813
8814static struct value *
8815assign_aggregate (struct value *container,
8816 struct value *lhs, struct expression *exp,
8817 int *pos, enum noside noside)
8818{
8819 struct type *lhs_type;
8820 int n = exp->elts[*pos+1].longconst;
8821 LONGEST low_index, high_index;
8822 int num_specs;
8823 LONGEST *indices;
8824 int max_indices, num_indices;
8825 int is_array_aggregate;
8826 int i;
52ce6436
PH
8827
8828 *pos += 3;
8829 if (noside != EVAL_NORMAL)
8830 {
52ce6436
PH
8831 for (i = 0; i < n; i += 1)
8832 ada_evaluate_subexp (NULL, exp, pos, noside);
8833 return container;
8834 }
8835
8836 container = ada_coerce_ref (container);
8837 if (ada_is_direct_array_type (value_type (container)))
8838 container = ada_coerce_to_simple_array (container);
8839 lhs = ada_coerce_ref (lhs);
8840 if (!deprecated_value_modifiable (lhs))
8841 error (_("Left operand of assignment is not a modifiable lvalue."));
8842
8843 lhs_type = value_type (lhs);
8844 if (ada_is_direct_array_type (lhs_type))
8845 {
8846 lhs = ada_coerce_to_simple_array (lhs);
8847 lhs_type = value_type (lhs);
8848 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8849 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8850 is_array_aggregate = 1;
8851 }
8852 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8853 {
8854 low_index = 0;
8855 high_index = num_visible_fields (lhs_type) - 1;
8856 is_array_aggregate = 0;
8857 }
8858 else
8859 error (_("Left-hand side must be array or record."));
8860
8861 num_specs = num_component_specs (exp, *pos - 3);
8862 max_indices = 4 * num_specs + 4;
8863 indices = alloca (max_indices * sizeof (indices[0]));
8864 indices[0] = indices[1] = low_index - 1;
8865 indices[2] = indices[3] = high_index + 1;
8866 num_indices = 4;
8867
8868 for (i = 0; i < n; i += 1)
8869 {
8870 switch (exp->elts[*pos].opcode)
8871 {
1fbf5ada
JB
8872 case OP_CHOICES:
8873 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8874 &num_indices, max_indices,
8875 low_index, high_index);
8876 break;
8877 case OP_POSITIONAL:
8878 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
8879 &num_indices, max_indices,
8880 low_index, high_index);
1fbf5ada
JB
8881 break;
8882 case OP_OTHERS:
8883 if (i != n-1)
8884 error (_("Misplaced 'others' clause"));
8885 aggregate_assign_others (container, lhs, exp, pos, indices,
8886 num_indices, low_index, high_index);
8887 break;
8888 default:
8889 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
8890 }
8891 }
8892
8893 return container;
8894}
8895
8896/* Assign into the component of LHS indexed by the OP_POSITIONAL
8897 construct at *POS, updating *POS past the construct, given that
8898 the positions are relative to lower bound LOW, where HIGH is the
8899 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8900 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8901 assign_aggregate. */
52ce6436
PH
8902static void
8903aggregate_assign_positional (struct value *container,
8904 struct value *lhs, struct expression *exp,
8905 int *pos, LONGEST *indices, int *num_indices,
8906 int max_indices, LONGEST low, LONGEST high)
8907{
8908 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8909
8910 if (ind - 1 == high)
e1d5a0d2 8911 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8912 if (ind <= high)
8913 {
8914 add_component_interval (ind, ind, indices, num_indices, max_indices);
8915 *pos += 3;
8916 assign_component (container, lhs, ind, exp, pos);
8917 }
8918 else
8919 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8920}
8921
8922/* Assign into the components of LHS indexed by the OP_CHOICES
8923 construct at *POS, updating *POS past the construct, given that
8924 the allowable indices are LOW..HIGH. Record the indices assigned
8925 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 8926 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8927static void
8928aggregate_assign_from_choices (struct value *container,
8929 struct value *lhs, struct expression *exp,
8930 int *pos, LONGEST *indices, int *num_indices,
8931 int max_indices, LONGEST low, LONGEST high)
8932{
8933 int j;
8934 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8935 int choice_pos, expr_pc;
8936 int is_array = ada_is_direct_array_type (value_type (lhs));
8937
8938 choice_pos = *pos += 3;
8939
8940 for (j = 0; j < n_choices; j += 1)
8941 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8942 expr_pc = *pos;
8943 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8944
8945 for (j = 0; j < n_choices; j += 1)
8946 {
8947 LONGEST lower, upper;
8948 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8949
52ce6436
PH
8950 if (op == OP_DISCRETE_RANGE)
8951 {
8952 choice_pos += 1;
8953 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8954 EVAL_NORMAL));
8955 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8956 EVAL_NORMAL));
8957 }
8958 else if (is_array)
8959 {
8960 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8961 EVAL_NORMAL));
8962 upper = lower;
8963 }
8964 else
8965 {
8966 int ind;
0d5cff50 8967 const char *name;
5b4ee69b 8968
52ce6436
PH
8969 switch (op)
8970 {
8971 case OP_NAME:
8972 name = &exp->elts[choice_pos + 2].string;
8973 break;
8974 case OP_VAR_VALUE:
8975 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8976 break;
8977 default:
8978 error (_("Invalid record component association."));
8979 }
8980 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8981 ind = 0;
8982 if (! find_struct_field (name, value_type (lhs), 0,
8983 NULL, NULL, NULL, NULL, &ind))
8984 error (_("Unknown component name: %s."), name);
8985 lower = upper = ind;
8986 }
8987
8988 if (lower <= upper && (lower < low || upper > high))
8989 error (_("Index in component association out of bounds."));
8990
8991 add_component_interval (lower, upper, indices, num_indices,
8992 max_indices);
8993 while (lower <= upper)
8994 {
8995 int pos1;
5b4ee69b 8996
52ce6436
PH
8997 pos1 = expr_pc;
8998 assign_component (container, lhs, lower, exp, &pos1);
8999 lower += 1;
9000 }
9001 }
9002}
9003
9004/* Assign the value of the expression in the OP_OTHERS construct in
9005 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9006 have not been previously assigned. The index intervals already assigned
9007 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9008 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9009static void
9010aggregate_assign_others (struct value *container,
9011 struct value *lhs, struct expression *exp,
9012 int *pos, LONGEST *indices, int num_indices,
9013 LONGEST low, LONGEST high)
9014{
9015 int i;
5ce64950 9016 int expr_pc = *pos + 1;
52ce6436
PH
9017
9018 for (i = 0; i < num_indices - 2; i += 2)
9019 {
9020 LONGEST ind;
5b4ee69b 9021
52ce6436
PH
9022 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9023 {
5ce64950 9024 int localpos;
5b4ee69b 9025
5ce64950
MS
9026 localpos = expr_pc;
9027 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9028 }
9029 }
9030 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9031}
9032
9033/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9034 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9035 modifying *SIZE as needed. It is an error if *SIZE exceeds
9036 MAX_SIZE. The resulting intervals do not overlap. */
9037static void
9038add_component_interval (LONGEST low, LONGEST high,
9039 LONGEST* indices, int *size, int max_size)
9040{
9041 int i, j;
5b4ee69b 9042
52ce6436
PH
9043 for (i = 0; i < *size; i += 2) {
9044 if (high >= indices[i] && low <= indices[i + 1])
9045 {
9046 int kh;
5b4ee69b 9047
52ce6436
PH
9048 for (kh = i + 2; kh < *size; kh += 2)
9049 if (high < indices[kh])
9050 break;
9051 if (low < indices[i])
9052 indices[i] = low;
9053 indices[i + 1] = indices[kh - 1];
9054 if (high > indices[i + 1])
9055 indices[i + 1] = high;
9056 memcpy (indices + i + 2, indices + kh, *size - kh);
9057 *size -= kh - i - 2;
9058 return;
9059 }
9060 else if (high < indices[i])
9061 break;
9062 }
9063
9064 if (*size == max_size)
9065 error (_("Internal error: miscounted aggregate components."));
9066 *size += 2;
9067 for (j = *size-1; j >= i+2; j -= 1)
9068 indices[j] = indices[j - 2];
9069 indices[i] = low;
9070 indices[i + 1] = high;
9071}
9072
6e48bd2c
JB
9073/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9074 is different. */
9075
9076static struct value *
9077ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9078{
9079 if (type == ada_check_typedef (value_type (arg2)))
9080 return arg2;
9081
9082 if (ada_is_fixed_point_type (type))
9083 return (cast_to_fixed (type, arg2));
9084
9085 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9086 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9087
9088 return value_cast (type, arg2);
9089}
9090
284614f0
JB
9091/* Evaluating Ada expressions, and printing their result.
9092 ------------------------------------------------------
9093
21649b50
JB
9094 1. Introduction:
9095 ----------------
9096
284614f0
JB
9097 We usually evaluate an Ada expression in order to print its value.
9098 We also evaluate an expression in order to print its type, which
9099 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9100 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9101 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9102 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9103 similar.
9104
9105 Evaluating expressions is a little more complicated for Ada entities
9106 than it is for entities in languages such as C. The main reason for
9107 this is that Ada provides types whose definition might be dynamic.
9108 One example of such types is variant records. Or another example
9109 would be an array whose bounds can only be known at run time.
9110
9111 The following description is a general guide as to what should be
9112 done (and what should NOT be done) in order to evaluate an expression
9113 involving such types, and when. This does not cover how the semantic
9114 information is encoded by GNAT as this is covered separatly. For the
9115 document used as the reference for the GNAT encoding, see exp_dbug.ads
9116 in the GNAT sources.
9117
9118 Ideally, we should embed each part of this description next to its
9119 associated code. Unfortunately, the amount of code is so vast right
9120 now that it's hard to see whether the code handling a particular
9121 situation might be duplicated or not. One day, when the code is
9122 cleaned up, this guide might become redundant with the comments
9123 inserted in the code, and we might want to remove it.
9124
21649b50
JB
9125 2. ``Fixing'' an Entity, the Simple Case:
9126 -----------------------------------------
9127
284614f0
JB
9128 When evaluating Ada expressions, the tricky issue is that they may
9129 reference entities whose type contents and size are not statically
9130 known. Consider for instance a variant record:
9131
9132 type Rec (Empty : Boolean := True) is record
9133 case Empty is
9134 when True => null;
9135 when False => Value : Integer;
9136 end case;
9137 end record;
9138 Yes : Rec := (Empty => False, Value => 1);
9139 No : Rec := (empty => True);
9140
9141 The size and contents of that record depends on the value of the
9142 descriminant (Rec.Empty). At this point, neither the debugging
9143 information nor the associated type structure in GDB are able to
9144 express such dynamic types. So what the debugger does is to create
9145 "fixed" versions of the type that applies to the specific object.
9146 We also informally refer to this opperation as "fixing" an object,
9147 which means creating its associated fixed type.
9148
9149 Example: when printing the value of variable "Yes" above, its fixed
9150 type would look like this:
9151
9152 type Rec is record
9153 Empty : Boolean;
9154 Value : Integer;
9155 end record;
9156
9157 On the other hand, if we printed the value of "No", its fixed type
9158 would become:
9159
9160 type Rec is record
9161 Empty : Boolean;
9162 end record;
9163
9164 Things become a little more complicated when trying to fix an entity
9165 with a dynamic type that directly contains another dynamic type,
9166 such as an array of variant records, for instance. There are
9167 two possible cases: Arrays, and records.
9168
21649b50
JB
9169 3. ``Fixing'' Arrays:
9170 ---------------------
9171
9172 The type structure in GDB describes an array in terms of its bounds,
9173 and the type of its elements. By design, all elements in the array
9174 have the same type and we cannot represent an array of variant elements
9175 using the current type structure in GDB. When fixing an array,
9176 we cannot fix the array element, as we would potentially need one
9177 fixed type per element of the array. As a result, the best we can do
9178 when fixing an array is to produce an array whose bounds and size
9179 are correct (allowing us to read it from memory), but without having
9180 touched its element type. Fixing each element will be done later,
9181 when (if) necessary.
9182
9183 Arrays are a little simpler to handle than records, because the same
9184 amount of memory is allocated for each element of the array, even if
1b536f04 9185 the amount of space actually used by each element differs from element
21649b50 9186 to element. Consider for instance the following array of type Rec:
284614f0
JB
9187
9188 type Rec_Array is array (1 .. 2) of Rec;
9189
1b536f04
JB
9190 The actual amount of memory occupied by each element might be different
9191 from element to element, depending on the value of their discriminant.
21649b50 9192 But the amount of space reserved for each element in the array remains
1b536f04 9193 fixed regardless. So we simply need to compute that size using
21649b50
JB
9194 the debugging information available, from which we can then determine
9195 the array size (we multiply the number of elements of the array by
9196 the size of each element).
9197
9198 The simplest case is when we have an array of a constrained element
9199 type. For instance, consider the following type declarations:
9200
9201 type Bounded_String (Max_Size : Integer) is
9202 Length : Integer;
9203 Buffer : String (1 .. Max_Size);
9204 end record;
9205 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9206
9207 In this case, the compiler describes the array as an array of
9208 variable-size elements (identified by its XVS suffix) for which
9209 the size can be read in the parallel XVZ variable.
9210
9211 In the case of an array of an unconstrained element type, the compiler
9212 wraps the array element inside a private PAD type. This type should not
9213 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9214 that we also use the adjective "aligner" in our code to designate
9215 these wrapper types.
9216
1b536f04 9217 In some cases, the size allocated for each element is statically
21649b50
JB
9218 known. In that case, the PAD type already has the correct size,
9219 and the array element should remain unfixed.
9220
9221 But there are cases when this size is not statically known.
9222 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9223
9224 type Dynamic is array (1 .. Five) of Integer;
9225 type Wrapper (Has_Length : Boolean := False) is record
9226 Data : Dynamic;
9227 case Has_Length is
9228 when True => Length : Integer;
9229 when False => null;
9230 end case;
9231 end record;
9232 type Wrapper_Array is array (1 .. 2) of Wrapper;
9233
9234 Hello : Wrapper_Array := (others => (Has_Length => True,
9235 Data => (others => 17),
9236 Length => 1));
9237
9238
9239 The debugging info would describe variable Hello as being an
9240 array of a PAD type. The size of that PAD type is not statically
9241 known, but can be determined using a parallel XVZ variable.
9242 In that case, a copy of the PAD type with the correct size should
9243 be used for the fixed array.
9244
21649b50
JB
9245 3. ``Fixing'' record type objects:
9246 ----------------------------------
9247
9248 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9249 record types. In this case, in order to compute the associated
9250 fixed type, we need to determine the size and offset of each of
9251 its components. This, in turn, requires us to compute the fixed
9252 type of each of these components.
9253
9254 Consider for instance the example:
9255
9256 type Bounded_String (Max_Size : Natural) is record
9257 Str : String (1 .. Max_Size);
9258 Length : Natural;
9259 end record;
9260 My_String : Bounded_String (Max_Size => 10);
9261
9262 In that case, the position of field "Length" depends on the size
9263 of field Str, which itself depends on the value of the Max_Size
21649b50 9264 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9265 we need to fix the type of field Str. Therefore, fixing a variant
9266 record requires us to fix each of its components.
9267
9268 However, if a component does not have a dynamic size, the component
9269 should not be fixed. In particular, fields that use a PAD type
9270 should not fixed. Here is an example where this might happen
9271 (assuming type Rec above):
9272
9273 type Container (Big : Boolean) is record
9274 First : Rec;
9275 After : Integer;
9276 case Big is
9277 when True => Another : Integer;
9278 when False => null;
9279 end case;
9280 end record;
9281 My_Container : Container := (Big => False,
9282 First => (Empty => True),
9283 After => 42);
9284
9285 In that example, the compiler creates a PAD type for component First,
9286 whose size is constant, and then positions the component After just
9287 right after it. The offset of component After is therefore constant
9288 in this case.
9289
9290 The debugger computes the position of each field based on an algorithm
9291 that uses, among other things, the actual position and size of the field
21649b50
JB
9292 preceding it. Let's now imagine that the user is trying to print
9293 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9294 end up computing the offset of field After based on the size of the
9295 fixed version of field First. And since in our example First has
9296 only one actual field, the size of the fixed type is actually smaller
9297 than the amount of space allocated to that field, and thus we would
9298 compute the wrong offset of field After.
9299
21649b50
JB
9300 To make things more complicated, we need to watch out for dynamic
9301 components of variant records (identified by the ___XVL suffix in
9302 the component name). Even if the target type is a PAD type, the size
9303 of that type might not be statically known. So the PAD type needs
9304 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9305 we might end up with the wrong size for our component. This can be
9306 observed with the following type declarations:
284614f0
JB
9307
9308 type Octal is new Integer range 0 .. 7;
9309 type Octal_Array is array (Positive range <>) of Octal;
9310 pragma Pack (Octal_Array);
9311
9312 type Octal_Buffer (Size : Positive) is record
9313 Buffer : Octal_Array (1 .. Size);
9314 Length : Integer;
9315 end record;
9316
9317 In that case, Buffer is a PAD type whose size is unset and needs
9318 to be computed by fixing the unwrapped type.
9319
21649b50
JB
9320 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9321 ----------------------------------------------------------
9322
9323 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9324 thus far, be actually fixed?
9325
9326 The answer is: Only when referencing that element. For instance
9327 when selecting one component of a record, this specific component
9328 should be fixed at that point in time. Or when printing the value
9329 of a record, each component should be fixed before its value gets
9330 printed. Similarly for arrays, the element of the array should be
9331 fixed when printing each element of the array, or when extracting
9332 one element out of that array. On the other hand, fixing should
9333 not be performed on the elements when taking a slice of an array!
9334
9335 Note that one of the side-effects of miscomputing the offset and
9336 size of each field is that we end up also miscomputing the size
9337 of the containing type. This can have adverse results when computing
9338 the value of an entity. GDB fetches the value of an entity based
9339 on the size of its type, and thus a wrong size causes GDB to fetch
9340 the wrong amount of memory. In the case where the computed size is
9341 too small, GDB fetches too little data to print the value of our
9342 entiry. Results in this case as unpredicatble, as we usually read
9343 past the buffer containing the data =:-o. */
9344
9345/* Implement the evaluate_exp routine in the exp_descriptor structure
9346 for the Ada language. */
9347
52ce6436 9348static struct value *
ebf56fd3 9349ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9350 int *pos, enum noside noside)
14f9c5c9
AS
9351{
9352 enum exp_opcode op;
b5385fc0 9353 int tem;
14f9c5c9
AS
9354 int pc;
9355 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9356 struct type *type;
52ce6436 9357 int nargs, oplen;
d2e4a39e 9358 struct value **argvec;
14f9c5c9 9359
d2e4a39e
AS
9360 pc = *pos;
9361 *pos += 1;
14f9c5c9
AS
9362 op = exp->elts[pc].opcode;
9363
d2e4a39e 9364 switch (op)
14f9c5c9
AS
9365 {
9366 default:
9367 *pos -= 1;
6e48bd2c
JB
9368 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9369 arg1 = unwrap_value (arg1);
9370
9371 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9372 then we need to perform the conversion manually, because
9373 evaluate_subexp_standard doesn't do it. This conversion is
9374 necessary in Ada because the different kinds of float/fixed
9375 types in Ada have different representations.
9376
9377 Similarly, we need to perform the conversion from OP_LONG
9378 ourselves. */
9379 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9380 arg1 = ada_value_cast (expect_type, arg1, noside);
9381
9382 return arg1;
4c4b4cd2
PH
9383
9384 case OP_STRING:
9385 {
76a01679 9386 struct value *result;
5b4ee69b 9387
76a01679
JB
9388 *pos -= 1;
9389 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9390 /* The result type will have code OP_STRING, bashed there from
9391 OP_ARRAY. Bash it back. */
df407dfe
AC
9392 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9393 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9394 return result;
4c4b4cd2 9395 }
14f9c5c9
AS
9396
9397 case UNOP_CAST:
9398 (*pos) += 2;
9399 type = exp->elts[pc + 1].type;
9400 arg1 = evaluate_subexp (type, exp, pos, noside);
9401 if (noside == EVAL_SKIP)
4c4b4cd2 9402 goto nosideret;
6e48bd2c 9403 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9404 return arg1;
9405
4c4b4cd2
PH
9406 case UNOP_QUAL:
9407 (*pos) += 2;
9408 type = exp->elts[pc + 1].type;
9409 return ada_evaluate_subexp (type, exp, pos, noside);
9410
14f9c5c9
AS
9411 case BINOP_ASSIGN:
9412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9413 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9414 {
9415 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9416 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9417 return arg1;
9418 return ada_value_assign (arg1, arg1);
9419 }
003f3813
JB
9420 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9421 except if the lhs of our assignment is a convenience variable.
9422 In the case of assigning to a convenience variable, the lhs
9423 should be exactly the result of the evaluation of the rhs. */
9424 type = value_type (arg1);
9425 if (VALUE_LVAL (arg1) == lval_internalvar)
9426 type = NULL;
9427 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9428 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9429 return arg1;
df407dfe
AC
9430 if (ada_is_fixed_point_type (value_type (arg1)))
9431 arg2 = cast_to_fixed (value_type (arg1), arg2);
9432 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9433 error
323e0a4a 9434 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9435 else
df407dfe 9436 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9437 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9438
9439 case BINOP_ADD:
9440 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9441 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9442 if (noside == EVAL_SKIP)
4c4b4cd2 9443 goto nosideret;
2ac8a782
JB
9444 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9445 return (value_from_longest
9446 (value_type (arg1),
9447 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9448 if ((ada_is_fixed_point_type (value_type (arg1))
9449 || ada_is_fixed_point_type (value_type (arg2)))
9450 && value_type (arg1) != value_type (arg2))
323e0a4a 9451 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9452 /* Do the addition, and cast the result to the type of the first
9453 argument. We cannot cast the result to a reference type, so if
9454 ARG1 is a reference type, find its underlying type. */
9455 type = value_type (arg1);
9456 while (TYPE_CODE (type) == TYPE_CODE_REF)
9457 type = TYPE_TARGET_TYPE (type);
f44316fa 9458 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9459 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9460
9461 case BINOP_SUB:
9462 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9463 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9464 if (noside == EVAL_SKIP)
4c4b4cd2 9465 goto nosideret;
2ac8a782
JB
9466 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9467 return (value_from_longest
9468 (value_type (arg1),
9469 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9470 if ((ada_is_fixed_point_type (value_type (arg1))
9471 || ada_is_fixed_point_type (value_type (arg2)))
9472 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9473 error (_("Operands of fixed-point subtraction "
9474 "must have the same type"));
b7789565
JB
9475 /* Do the substraction, and cast the result to the type of the first
9476 argument. We cannot cast the result to a reference type, so if
9477 ARG1 is a reference type, find its underlying type. */
9478 type = value_type (arg1);
9479 while (TYPE_CODE (type) == TYPE_CODE_REF)
9480 type = TYPE_TARGET_TYPE (type);
f44316fa 9481 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9482 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9483
9484 case BINOP_MUL:
9485 case BINOP_DIV:
e1578042
JB
9486 case BINOP_REM:
9487 case BINOP_MOD:
14f9c5c9
AS
9488 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9489 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9490 if (noside == EVAL_SKIP)
4c4b4cd2 9491 goto nosideret;
e1578042 9492 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9493 {
9494 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9495 return value_zero (value_type (arg1), not_lval);
9496 }
14f9c5c9 9497 else
4c4b4cd2 9498 {
a53b7a21 9499 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9500 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9501 arg1 = cast_from_fixed (type, arg1);
df407dfe 9502 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9503 arg2 = cast_from_fixed (type, arg2);
f44316fa 9504 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9505 return ada_value_binop (arg1, arg2, op);
9506 }
9507
4c4b4cd2
PH
9508 case BINOP_EQUAL:
9509 case BINOP_NOTEQUAL:
14f9c5c9 9510 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9511 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9512 if (noside == EVAL_SKIP)
76a01679 9513 goto nosideret;
4c4b4cd2 9514 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9515 tem = 0;
4c4b4cd2 9516 else
f44316fa
UW
9517 {
9518 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9519 tem = ada_value_equal (arg1, arg2);
9520 }
4c4b4cd2 9521 if (op == BINOP_NOTEQUAL)
76a01679 9522 tem = !tem;
fbb06eb1
UW
9523 type = language_bool_type (exp->language_defn, exp->gdbarch);
9524 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9525
9526 case UNOP_NEG:
9527 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9528 if (noside == EVAL_SKIP)
9529 goto nosideret;
df407dfe
AC
9530 else if (ada_is_fixed_point_type (value_type (arg1)))
9531 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9532 else
f44316fa
UW
9533 {
9534 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9535 return value_neg (arg1);
9536 }
4c4b4cd2 9537
2330c6c6
JB
9538 case BINOP_LOGICAL_AND:
9539 case BINOP_LOGICAL_OR:
9540 case UNOP_LOGICAL_NOT:
000d5124
JB
9541 {
9542 struct value *val;
9543
9544 *pos -= 1;
9545 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9546 type = language_bool_type (exp->language_defn, exp->gdbarch);
9547 return value_cast (type, val);
000d5124 9548 }
2330c6c6
JB
9549
9550 case BINOP_BITWISE_AND:
9551 case BINOP_BITWISE_IOR:
9552 case BINOP_BITWISE_XOR:
000d5124
JB
9553 {
9554 struct value *val;
9555
9556 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9557 *pos = pc;
9558 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9559
9560 return value_cast (value_type (arg1), val);
9561 }
2330c6c6 9562
14f9c5c9
AS
9563 case OP_VAR_VALUE:
9564 *pos -= 1;
6799def4 9565
14f9c5c9 9566 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9567 {
9568 *pos += 4;
9569 goto nosideret;
9570 }
9571 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9572 /* Only encountered when an unresolved symbol occurs in a
9573 context other than a function call, in which case, it is
52ce6436 9574 invalid. */
323e0a4a 9575 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9576 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9577 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9578 {
0c1f74cf 9579 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9580 /* Check to see if this is a tagged type. We also need to handle
9581 the case where the type is a reference to a tagged type, but
9582 we have to be careful to exclude pointers to tagged types.
9583 The latter should be shown as usual (as a pointer), whereas
9584 a reference should mostly be transparent to the user. */
9585 if (ada_is_tagged_type (type, 0)
9586 || (TYPE_CODE(type) == TYPE_CODE_REF
9587 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9588 {
9589 /* Tagged types are a little special in the fact that the real
9590 type is dynamic and can only be determined by inspecting the
9591 object's tag. This means that we need to get the object's
9592 value first (EVAL_NORMAL) and then extract the actual object
9593 type from its tag.
9594
9595 Note that we cannot skip the final step where we extract
9596 the object type from its tag, because the EVAL_NORMAL phase
9597 results in dynamic components being resolved into fixed ones.
9598 This can cause problems when trying to print the type
9599 description of tagged types whose parent has a dynamic size:
9600 We use the type name of the "_parent" component in order
9601 to print the name of the ancestor type in the type description.
9602 If that component had a dynamic size, the resolution into
9603 a fixed type would result in the loss of that type name,
9604 thus preventing us from printing the name of the ancestor
9605 type in the type description. */
b79819ba
JB
9606 struct type *actual_type;
9607
0c1f74cf 9608 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9609 actual_type = type_from_tag (ada_value_tag (arg1));
9610 if (actual_type == NULL)
9611 /* If, for some reason, we were unable to determine
9612 the actual type from the tag, then use the static
9613 approximation that we just computed as a fallback.
9614 This can happen if the debugging information is
9615 incomplete, for instance. */
9616 actual_type = type;
9617
9618 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9619 }
9620
4c4b4cd2
PH
9621 *pos += 4;
9622 return value_zero
9623 (to_static_fixed_type
9624 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9625 not_lval);
9626 }
d2e4a39e 9627 else
4c4b4cd2 9628 {
284614f0 9629 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9630 return ada_to_fixed_value (arg1);
9631 }
9632
9633 case OP_FUNCALL:
9634 (*pos) += 2;
9635
9636 /* Allocate arg vector, including space for the function to be
9637 called in argvec[0] and a terminating NULL. */
9638 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9639 argvec =
9640 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9641
9642 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9643 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9644 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9645 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9646 else
9647 {
9648 for (tem = 0; tem <= nargs; tem += 1)
9649 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9650 argvec[tem] = 0;
9651
9652 if (noside == EVAL_SKIP)
9653 goto nosideret;
9654 }
9655
ad82864c
JB
9656 if (ada_is_constrained_packed_array_type
9657 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9658 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9659 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9660 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9661 /* This is a packed array that has already been fixed, and
9662 therefore already coerced to a simple array. Nothing further
9663 to do. */
9664 ;
df407dfe
AC
9665 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9666 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9667 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9668 argvec[0] = value_addr (argvec[0]);
9669
df407dfe 9670 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9671
9672 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9673 them. So, if this is an array typedef (encoding use for array
9674 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9675 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9676 type = ada_typedef_target_type (type);
9677
4c4b4cd2
PH
9678 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9679 {
61ee279c 9680 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9681 {
9682 case TYPE_CODE_FUNC:
61ee279c 9683 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9684 break;
9685 case TYPE_CODE_ARRAY:
9686 break;
9687 case TYPE_CODE_STRUCT:
9688 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9689 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9690 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9691 break;
9692 default:
323e0a4a 9693 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9694 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9695 break;
9696 }
9697 }
9698
9699 switch (TYPE_CODE (type))
9700 {
9701 case TYPE_CODE_FUNC:
9702 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9703 return allocate_value (TYPE_TARGET_TYPE (type));
9704 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9705 case TYPE_CODE_STRUCT:
9706 {
9707 int arity;
9708
4c4b4cd2
PH
9709 arity = ada_array_arity (type);
9710 type = ada_array_element_type (type, nargs);
9711 if (type == NULL)
323e0a4a 9712 error (_("cannot subscript or call a record"));
4c4b4cd2 9713 if (arity != nargs)
323e0a4a 9714 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9715 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9716 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9717 return
9718 unwrap_value (ada_value_subscript
9719 (argvec[0], nargs, argvec + 1));
9720 }
9721 case TYPE_CODE_ARRAY:
9722 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9723 {
9724 type = ada_array_element_type (type, nargs);
9725 if (type == NULL)
323e0a4a 9726 error (_("element type of array unknown"));
4c4b4cd2 9727 else
0a07e705 9728 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9729 }
9730 return
9731 unwrap_value (ada_value_subscript
9732 (ada_coerce_to_simple_array (argvec[0]),
9733 nargs, argvec + 1));
9734 case TYPE_CODE_PTR: /* Pointer to array */
9735 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9736 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9737 {
9738 type = ada_array_element_type (type, nargs);
9739 if (type == NULL)
323e0a4a 9740 error (_("element type of array unknown"));
4c4b4cd2 9741 else
0a07e705 9742 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9743 }
9744 return
9745 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9746 nargs, argvec + 1));
9747
9748 default:
e1d5a0d2
PH
9749 error (_("Attempt to index or call something other than an "
9750 "array or function"));
4c4b4cd2
PH
9751 }
9752
9753 case TERNOP_SLICE:
9754 {
9755 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9756 struct value *low_bound_val =
9757 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9758 struct value *high_bound_val =
9759 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9760 LONGEST low_bound;
9761 LONGEST high_bound;
5b4ee69b 9762
994b9211
AC
9763 low_bound_val = coerce_ref (low_bound_val);
9764 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9765 low_bound = pos_atr (low_bound_val);
9766 high_bound = pos_atr (high_bound_val);
963a6417 9767
4c4b4cd2
PH
9768 if (noside == EVAL_SKIP)
9769 goto nosideret;
9770
4c4b4cd2
PH
9771 /* If this is a reference to an aligner type, then remove all
9772 the aligners. */
df407dfe
AC
9773 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9774 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9775 TYPE_TARGET_TYPE (value_type (array)) =
9776 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9777
ad82864c 9778 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9779 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9780
9781 /* If this is a reference to an array or an array lvalue,
9782 convert to a pointer. */
df407dfe
AC
9783 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9784 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9785 && VALUE_LVAL (array) == lval_memory))
9786 array = value_addr (array);
9787
1265e4aa 9788 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9789 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9790 (value_type (array))))
0b5d8877 9791 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9792
9793 array = ada_coerce_to_simple_array_ptr (array);
9794
714e53ab
PH
9795 /* If we have more than one level of pointer indirection,
9796 dereference the value until we get only one level. */
df407dfe
AC
9797 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9798 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9799 == TYPE_CODE_PTR))
9800 array = value_ind (array);
9801
9802 /* Make sure we really do have an array type before going further,
9803 to avoid a SEGV when trying to get the index type or the target
9804 type later down the road if the debug info generated by
9805 the compiler is incorrect or incomplete. */
df407dfe 9806 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9807 error (_("cannot take slice of non-array"));
714e53ab 9808
828292f2
JB
9809 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9810 == TYPE_CODE_PTR)
4c4b4cd2 9811 {
828292f2
JB
9812 struct type *type0 = ada_check_typedef (value_type (array));
9813
0b5d8877 9814 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 9815 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
9816 else
9817 {
9818 struct type *arr_type0 =
828292f2 9819 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 9820
f5938064
JG
9821 return ada_value_slice_from_ptr (array, arr_type0,
9822 longest_to_int (low_bound),
9823 longest_to_int (high_bound));
4c4b4cd2
PH
9824 }
9825 }
9826 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9827 return array;
9828 else if (high_bound < low_bound)
df407dfe 9829 return empty_array (value_type (array), low_bound);
4c4b4cd2 9830 else
529cad9c
PH
9831 return ada_value_slice (array, longest_to_int (low_bound),
9832 longest_to_int (high_bound));
4c4b4cd2 9833 }
14f9c5c9 9834
4c4b4cd2
PH
9835 case UNOP_IN_RANGE:
9836 (*pos) += 2;
9837 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9838 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9839
14f9c5c9 9840 if (noside == EVAL_SKIP)
4c4b4cd2 9841 goto nosideret;
14f9c5c9 9842
4c4b4cd2
PH
9843 switch (TYPE_CODE (type))
9844 {
9845 default:
e1d5a0d2
PH
9846 lim_warning (_("Membership test incompletely implemented; "
9847 "always returns true"));
fbb06eb1
UW
9848 type = language_bool_type (exp->language_defn, exp->gdbarch);
9849 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9850
9851 case TYPE_CODE_RANGE:
030b4912
UW
9852 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9853 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9854 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9855 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9856 type = language_bool_type (exp->language_defn, exp->gdbarch);
9857 return
9858 value_from_longest (type,
4c4b4cd2
PH
9859 (value_less (arg1, arg3)
9860 || value_equal (arg1, arg3))
9861 && (value_less (arg2, arg1)
9862 || value_equal (arg2, arg1)));
9863 }
9864
9865 case BINOP_IN_BOUNDS:
14f9c5c9 9866 (*pos) += 2;
4c4b4cd2
PH
9867 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9868 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9869
4c4b4cd2
PH
9870 if (noside == EVAL_SKIP)
9871 goto nosideret;
14f9c5c9 9872
4c4b4cd2 9873 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9874 {
9875 type = language_bool_type (exp->language_defn, exp->gdbarch);
9876 return value_zero (type, not_lval);
9877 }
14f9c5c9 9878
4c4b4cd2 9879 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9880
1eea4ebd
UW
9881 type = ada_index_type (value_type (arg2), tem, "range");
9882 if (!type)
9883 type = value_type (arg1);
14f9c5c9 9884
1eea4ebd
UW
9885 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9886 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9887
f44316fa
UW
9888 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9889 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9890 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9891 return
fbb06eb1 9892 value_from_longest (type,
4c4b4cd2
PH
9893 (value_less (arg1, arg3)
9894 || value_equal (arg1, arg3))
9895 && (value_less (arg2, arg1)
9896 || value_equal (arg2, arg1)));
9897
9898 case TERNOP_IN_RANGE:
9899 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9900 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9901 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9902
9903 if (noside == EVAL_SKIP)
9904 goto nosideret;
9905
f44316fa
UW
9906 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9907 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9908 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9909 return
fbb06eb1 9910 value_from_longest (type,
4c4b4cd2
PH
9911 (value_less (arg1, arg3)
9912 || value_equal (arg1, arg3))
9913 && (value_less (arg2, arg1)
9914 || value_equal (arg2, arg1)));
9915
9916 case OP_ATR_FIRST:
9917 case OP_ATR_LAST:
9918 case OP_ATR_LENGTH:
9919 {
76a01679 9920 struct type *type_arg;
5b4ee69b 9921
76a01679
JB
9922 if (exp->elts[*pos].opcode == OP_TYPE)
9923 {
9924 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9925 arg1 = NULL;
5bc23cb3 9926 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9927 }
9928 else
9929 {
9930 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9931 type_arg = NULL;
9932 }
9933
9934 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9935 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9936 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9937 *pos += 4;
9938
9939 if (noside == EVAL_SKIP)
9940 goto nosideret;
9941
9942 if (type_arg == NULL)
9943 {
9944 arg1 = ada_coerce_ref (arg1);
9945
ad82864c 9946 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9947 arg1 = ada_coerce_to_simple_array (arg1);
9948
1eea4ebd
UW
9949 type = ada_index_type (value_type (arg1), tem,
9950 ada_attribute_name (op));
9951 if (type == NULL)
9952 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9953
9954 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9955 return allocate_value (type);
76a01679
JB
9956
9957 switch (op)
9958 {
9959 default: /* Should never happen. */
323e0a4a 9960 error (_("unexpected attribute encountered"));
76a01679 9961 case OP_ATR_FIRST:
1eea4ebd
UW
9962 return value_from_longest
9963 (type, ada_array_bound (arg1, tem, 0));
76a01679 9964 case OP_ATR_LAST:
1eea4ebd
UW
9965 return value_from_longest
9966 (type, ada_array_bound (arg1, tem, 1));
76a01679 9967 case OP_ATR_LENGTH:
1eea4ebd
UW
9968 return value_from_longest
9969 (type, ada_array_length (arg1, tem));
76a01679
JB
9970 }
9971 }
9972 else if (discrete_type_p (type_arg))
9973 {
9974 struct type *range_type;
0d5cff50 9975 const char *name = ada_type_name (type_arg);
5b4ee69b 9976
76a01679
JB
9977 range_type = NULL;
9978 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9979 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9980 if (range_type == NULL)
9981 range_type = type_arg;
9982 switch (op)
9983 {
9984 default:
323e0a4a 9985 error (_("unexpected attribute encountered"));
76a01679 9986 case OP_ATR_FIRST:
690cc4eb 9987 return value_from_longest
43bbcdc2 9988 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9989 case OP_ATR_LAST:
690cc4eb 9990 return value_from_longest
43bbcdc2 9991 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9992 case OP_ATR_LENGTH:
323e0a4a 9993 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9994 }
9995 }
9996 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9997 error (_("unimplemented type attribute"));
76a01679
JB
9998 else
9999 {
10000 LONGEST low, high;
10001
ad82864c
JB
10002 if (ada_is_constrained_packed_array_type (type_arg))
10003 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10004
1eea4ebd 10005 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 10006 if (type == NULL)
1eea4ebd
UW
10007 type = builtin_type (exp->gdbarch)->builtin_int;
10008
76a01679
JB
10009 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10010 return allocate_value (type);
10011
10012 switch (op)
10013 {
10014 default:
323e0a4a 10015 error (_("unexpected attribute encountered"));
76a01679 10016 case OP_ATR_FIRST:
1eea4ebd 10017 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10018 return value_from_longest (type, low);
10019 case OP_ATR_LAST:
1eea4ebd 10020 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10021 return value_from_longest (type, high);
10022 case OP_ATR_LENGTH:
1eea4ebd
UW
10023 low = ada_array_bound_from_type (type_arg, tem, 0);
10024 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10025 return value_from_longest (type, high - low + 1);
10026 }
10027 }
14f9c5c9
AS
10028 }
10029
4c4b4cd2
PH
10030 case OP_ATR_TAG:
10031 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10032 if (noside == EVAL_SKIP)
76a01679 10033 goto nosideret;
4c4b4cd2
PH
10034
10035 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10036 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10037
10038 return ada_value_tag (arg1);
10039
10040 case OP_ATR_MIN:
10041 case OP_ATR_MAX:
10042 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10043 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10044 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10045 if (noside == EVAL_SKIP)
76a01679 10046 goto nosideret;
d2e4a39e 10047 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10048 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10049 else
f44316fa
UW
10050 {
10051 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10052 return value_binop (arg1, arg2,
10053 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10054 }
14f9c5c9 10055
4c4b4cd2
PH
10056 case OP_ATR_MODULUS:
10057 {
31dedfee 10058 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10059
5b4ee69b 10060 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10061 if (noside == EVAL_SKIP)
10062 goto nosideret;
4c4b4cd2 10063
76a01679 10064 if (!ada_is_modular_type (type_arg))
323e0a4a 10065 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10066
76a01679
JB
10067 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10068 ada_modulus (type_arg));
4c4b4cd2
PH
10069 }
10070
10071
10072 case OP_ATR_POS:
10073 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10074 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10075 if (noside == EVAL_SKIP)
76a01679 10076 goto nosideret;
3cb382c9
UW
10077 type = builtin_type (exp->gdbarch)->builtin_int;
10078 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10079 return value_zero (type, not_lval);
14f9c5c9 10080 else
3cb382c9 10081 return value_pos_atr (type, arg1);
14f9c5c9 10082
4c4b4cd2
PH
10083 case OP_ATR_SIZE:
10084 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10085 type = value_type (arg1);
10086
10087 /* If the argument is a reference, then dereference its type, since
10088 the user is really asking for the size of the actual object,
10089 not the size of the pointer. */
10090 if (TYPE_CODE (type) == TYPE_CODE_REF)
10091 type = TYPE_TARGET_TYPE (type);
10092
4c4b4cd2 10093 if (noside == EVAL_SKIP)
76a01679 10094 goto nosideret;
4c4b4cd2 10095 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10096 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10097 else
22601c15 10098 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10099 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10100
10101 case OP_ATR_VAL:
10102 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10103 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10104 type = exp->elts[pc + 2].type;
14f9c5c9 10105 if (noside == EVAL_SKIP)
76a01679 10106 goto nosideret;
4c4b4cd2 10107 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10108 return value_zero (type, not_lval);
4c4b4cd2 10109 else
76a01679 10110 return value_val_atr (type, arg1);
4c4b4cd2
PH
10111
10112 case BINOP_EXP:
10113 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10114 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10115 if (noside == EVAL_SKIP)
10116 goto nosideret;
10117 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10118 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10119 else
f44316fa
UW
10120 {
10121 /* For integer exponentiation operations,
10122 only promote the first argument. */
10123 if (is_integral_type (value_type (arg2)))
10124 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10125 else
10126 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10127
10128 return value_binop (arg1, arg2, op);
10129 }
4c4b4cd2
PH
10130
10131 case UNOP_PLUS:
10132 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10133 if (noside == EVAL_SKIP)
10134 goto nosideret;
10135 else
10136 return arg1;
10137
10138 case UNOP_ABS:
10139 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10140 if (noside == EVAL_SKIP)
10141 goto nosideret;
f44316fa 10142 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10143 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10144 return value_neg (arg1);
14f9c5c9 10145 else
4c4b4cd2 10146 return arg1;
14f9c5c9
AS
10147
10148 case UNOP_IND:
6b0d7253 10149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10150 if (noside == EVAL_SKIP)
4c4b4cd2 10151 goto nosideret;
df407dfe 10152 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10153 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10154 {
10155 if (ada_is_array_descriptor_type (type))
10156 /* GDB allows dereferencing GNAT array descriptors. */
10157 {
10158 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10159
4c4b4cd2 10160 if (arrType == NULL)
323e0a4a 10161 error (_("Attempt to dereference null array pointer."));
00a4c844 10162 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10163 }
10164 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10165 || TYPE_CODE (type) == TYPE_CODE_REF
10166 /* In C you can dereference an array to get the 1st elt. */
10167 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10168 {
10169 type = to_static_fixed_type
10170 (ada_aligned_type
10171 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10172 check_size (type);
10173 return value_zero (type, lval_memory);
10174 }
4c4b4cd2 10175 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10176 {
10177 /* GDB allows dereferencing an int. */
10178 if (expect_type == NULL)
10179 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10180 lval_memory);
10181 else
10182 {
10183 expect_type =
10184 to_static_fixed_type (ada_aligned_type (expect_type));
10185 return value_zero (expect_type, lval_memory);
10186 }
10187 }
4c4b4cd2 10188 else
323e0a4a 10189 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10190 }
0963b4bd 10191 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10192 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10193
96967637
JB
10194 if (TYPE_CODE (type) == TYPE_CODE_INT)
10195 /* GDB allows dereferencing an int. If we were given
10196 the expect_type, then use that as the target type.
10197 Otherwise, assume that the target type is an int. */
10198 {
10199 if (expect_type != NULL)
10200 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10201 arg1));
10202 else
10203 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10204 (CORE_ADDR) value_as_address (arg1));
10205 }
6b0d7253 10206
4c4b4cd2
PH
10207 if (ada_is_array_descriptor_type (type))
10208 /* GDB allows dereferencing GNAT array descriptors. */
10209 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10210 else
4c4b4cd2 10211 return ada_value_ind (arg1);
14f9c5c9
AS
10212
10213 case STRUCTOP_STRUCT:
10214 tem = longest_to_int (exp->elts[pc + 1].longconst);
10215 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10216 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10217 if (noside == EVAL_SKIP)
4c4b4cd2 10218 goto nosideret;
14f9c5c9 10219 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10220 {
df407dfe 10221 struct type *type1 = value_type (arg1);
5b4ee69b 10222
76a01679
JB
10223 if (ada_is_tagged_type (type1, 1))
10224 {
10225 type = ada_lookup_struct_elt_type (type1,
10226 &exp->elts[pc + 2].string,
10227 1, 1, NULL);
10228 if (type == NULL)
10229 /* In this case, we assume that the field COULD exist
10230 in some extension of the type. Return an object of
10231 "type" void, which will match any formal
0963b4bd 10232 (see ada_type_match). */
30b15541
UW
10233 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10234 lval_memory);
76a01679
JB
10235 }
10236 else
10237 type =
10238 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10239 0, NULL);
10240
10241 return value_zero (ada_aligned_type (type), lval_memory);
10242 }
14f9c5c9 10243 else
284614f0
JB
10244 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10245 arg1 = unwrap_value (arg1);
10246 return ada_to_fixed_value (arg1);
10247
14f9c5c9 10248 case OP_TYPE:
4c4b4cd2
PH
10249 /* The value is not supposed to be used. This is here to make it
10250 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10251 (*pos) += 2;
10252 if (noside == EVAL_SKIP)
4c4b4cd2 10253 goto nosideret;
14f9c5c9 10254 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10255 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10256 else
323e0a4a 10257 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10258
10259 case OP_AGGREGATE:
10260 case OP_CHOICES:
10261 case OP_OTHERS:
10262 case OP_DISCRETE_RANGE:
10263 case OP_POSITIONAL:
10264 case OP_NAME:
10265 if (noside == EVAL_NORMAL)
10266 switch (op)
10267 {
10268 case OP_NAME:
10269 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10270 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10271 case OP_AGGREGATE:
10272 error (_("Aggregates only allowed on the right of an assignment"));
10273 default:
0963b4bd
MS
10274 internal_error (__FILE__, __LINE__,
10275 _("aggregate apparently mangled"));
52ce6436
PH
10276 }
10277
10278 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10279 *pos += oplen - 1;
10280 for (tem = 0; tem < nargs; tem += 1)
10281 ada_evaluate_subexp (NULL, exp, pos, noside);
10282 goto nosideret;
14f9c5c9
AS
10283 }
10284
10285nosideret:
22601c15 10286 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10287}
14f9c5c9 10288\f
d2e4a39e 10289
4c4b4cd2 10290 /* Fixed point */
14f9c5c9
AS
10291
10292/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10293 type name that encodes the 'small and 'delta information.
4c4b4cd2 10294 Otherwise, return NULL. */
14f9c5c9 10295
d2e4a39e 10296static const char *
ebf56fd3 10297fixed_type_info (struct type *type)
14f9c5c9 10298{
d2e4a39e 10299 const char *name = ada_type_name (type);
14f9c5c9
AS
10300 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10301
d2e4a39e
AS
10302 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10303 {
14f9c5c9 10304 const char *tail = strstr (name, "___XF_");
5b4ee69b 10305
14f9c5c9 10306 if (tail == NULL)
4c4b4cd2 10307 return NULL;
d2e4a39e 10308 else
4c4b4cd2 10309 return tail + 5;
14f9c5c9
AS
10310 }
10311 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10312 return fixed_type_info (TYPE_TARGET_TYPE (type));
10313 else
10314 return NULL;
10315}
10316
4c4b4cd2 10317/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10318
10319int
ebf56fd3 10320ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10321{
10322 return fixed_type_info (type) != NULL;
10323}
10324
4c4b4cd2
PH
10325/* Return non-zero iff TYPE represents a System.Address type. */
10326
10327int
10328ada_is_system_address_type (struct type *type)
10329{
10330 return (TYPE_NAME (type)
10331 && strcmp (TYPE_NAME (type), "system__address") == 0);
10332}
10333
14f9c5c9
AS
10334/* Assuming that TYPE is the representation of an Ada fixed-point
10335 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10336 delta cannot be determined. */
14f9c5c9
AS
10337
10338DOUBLEST
ebf56fd3 10339ada_delta (struct type *type)
14f9c5c9
AS
10340{
10341 const char *encoding = fixed_type_info (type);
facc390f 10342 DOUBLEST num, den;
14f9c5c9 10343
facc390f
JB
10344 /* Strictly speaking, num and den are encoded as integer. However,
10345 they may not fit into a long, and they will have to be converted
10346 to DOUBLEST anyway. So scan them as DOUBLEST. */
10347 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10348 &num, &den) < 2)
14f9c5c9 10349 return -1.0;
d2e4a39e 10350 else
facc390f 10351 return num / den;
14f9c5c9
AS
10352}
10353
10354/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10355 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10356
10357static DOUBLEST
ebf56fd3 10358scaling_factor (struct type *type)
14f9c5c9
AS
10359{
10360 const char *encoding = fixed_type_info (type);
facc390f 10361 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10362 int n;
d2e4a39e 10363
facc390f
JB
10364 /* Strictly speaking, num's and den's are encoded as integer. However,
10365 they may not fit into a long, and they will have to be converted
10366 to DOUBLEST anyway. So scan them as DOUBLEST. */
10367 n = sscanf (encoding,
10368 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10369 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10370 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10371
10372 if (n < 2)
10373 return 1.0;
10374 else if (n == 4)
facc390f 10375 return num1 / den1;
d2e4a39e 10376 else
facc390f 10377 return num0 / den0;
14f9c5c9
AS
10378}
10379
10380
10381/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10382 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10383
10384DOUBLEST
ebf56fd3 10385ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10386{
d2e4a39e 10387 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10388}
10389
4c4b4cd2
PH
10390/* The representation of a fixed-point value of type TYPE
10391 corresponding to the value X. */
14f9c5c9
AS
10392
10393LONGEST
ebf56fd3 10394ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10395{
10396 return (LONGEST) (x / scaling_factor (type) + 0.5);
10397}
10398
14f9c5c9 10399\f
d2e4a39e 10400
4c4b4cd2 10401 /* Range types */
14f9c5c9
AS
10402
10403/* Scan STR beginning at position K for a discriminant name, and
10404 return the value of that discriminant field of DVAL in *PX. If
10405 PNEW_K is not null, put the position of the character beyond the
10406 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10407 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10408
10409static int
07d8f827 10410scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10411 int *pnew_k)
14f9c5c9
AS
10412{
10413 static char *bound_buffer = NULL;
10414 static size_t bound_buffer_len = 0;
10415 char *bound;
10416 char *pend;
d2e4a39e 10417 struct value *bound_val;
14f9c5c9
AS
10418
10419 if (dval == NULL || str == NULL || str[k] == '\0')
10420 return 0;
10421
d2e4a39e 10422 pend = strstr (str + k, "__");
14f9c5c9
AS
10423 if (pend == NULL)
10424 {
d2e4a39e 10425 bound = str + k;
14f9c5c9
AS
10426 k += strlen (bound);
10427 }
d2e4a39e 10428 else
14f9c5c9 10429 {
d2e4a39e 10430 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10431 bound = bound_buffer;
d2e4a39e
AS
10432 strncpy (bound_buffer, str + k, pend - (str + k));
10433 bound[pend - (str + k)] = '\0';
10434 k = pend - str;
14f9c5c9 10435 }
d2e4a39e 10436
df407dfe 10437 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10438 if (bound_val == NULL)
10439 return 0;
10440
10441 *px = value_as_long (bound_val);
10442 if (pnew_k != NULL)
10443 *pnew_k = k;
10444 return 1;
10445}
10446
10447/* Value of variable named NAME in the current environment. If
10448 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10449 otherwise causes an error with message ERR_MSG. */
10450
d2e4a39e
AS
10451static struct value *
10452get_var_value (char *name, char *err_msg)
14f9c5c9 10453{
4c4b4cd2 10454 struct ada_symbol_info *syms;
14f9c5c9
AS
10455 int nsyms;
10456
4c4b4cd2 10457 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
d9680e73 10458 &syms, 1);
14f9c5c9
AS
10459
10460 if (nsyms != 1)
10461 {
10462 if (err_msg == NULL)
4c4b4cd2 10463 return 0;
14f9c5c9 10464 else
8a3fe4f8 10465 error (("%s"), err_msg);
14f9c5c9
AS
10466 }
10467
4c4b4cd2 10468 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10469}
d2e4a39e 10470
14f9c5c9 10471/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10472 no such variable found, returns 0, and sets *FLAG to 0. If
10473 successful, sets *FLAG to 1. */
10474
14f9c5c9 10475LONGEST
4c4b4cd2 10476get_int_var_value (char *name, int *flag)
14f9c5c9 10477{
4c4b4cd2 10478 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10479
14f9c5c9
AS
10480 if (var_val == 0)
10481 {
10482 if (flag != NULL)
4c4b4cd2 10483 *flag = 0;
14f9c5c9
AS
10484 return 0;
10485 }
10486 else
10487 {
10488 if (flag != NULL)
4c4b4cd2 10489 *flag = 1;
14f9c5c9
AS
10490 return value_as_long (var_val);
10491 }
10492}
d2e4a39e 10493
14f9c5c9
AS
10494
10495/* Return a range type whose base type is that of the range type named
10496 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10497 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10498 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10499 corresponding range type from debug information; fall back to using it
10500 if symbol lookup fails. If a new type must be created, allocate it
10501 like ORIG_TYPE was. The bounds information, in general, is encoded
10502 in NAME, the base type given in the named range type. */
14f9c5c9 10503
d2e4a39e 10504static struct type *
28c85d6c 10505to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10506{
0d5cff50 10507 const char *name;
14f9c5c9 10508 struct type *base_type;
d2e4a39e 10509 char *subtype_info;
14f9c5c9 10510
28c85d6c
JB
10511 gdb_assert (raw_type != NULL);
10512 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10513
1ce677a4 10514 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10515 base_type = TYPE_TARGET_TYPE (raw_type);
10516 else
10517 base_type = raw_type;
10518
28c85d6c 10519 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10520 subtype_info = strstr (name, "___XD");
10521 if (subtype_info == NULL)
690cc4eb 10522 {
43bbcdc2
PH
10523 LONGEST L = ada_discrete_type_low_bound (raw_type);
10524 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10525
690cc4eb
PH
10526 if (L < INT_MIN || U > INT_MAX)
10527 return raw_type;
10528 else
28c85d6c 10529 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10530 ada_discrete_type_low_bound (raw_type),
10531 ada_discrete_type_high_bound (raw_type));
690cc4eb 10532 }
14f9c5c9
AS
10533 else
10534 {
10535 static char *name_buf = NULL;
10536 static size_t name_len = 0;
10537 int prefix_len = subtype_info - name;
10538 LONGEST L, U;
10539 struct type *type;
10540 char *bounds_str;
10541 int n;
10542
10543 GROW_VECT (name_buf, name_len, prefix_len + 5);
10544 strncpy (name_buf, name, prefix_len);
10545 name_buf[prefix_len] = '\0';
10546
10547 subtype_info += 5;
10548 bounds_str = strchr (subtype_info, '_');
10549 n = 1;
10550
d2e4a39e 10551 if (*subtype_info == 'L')
4c4b4cd2
PH
10552 {
10553 if (!ada_scan_number (bounds_str, n, &L, &n)
10554 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10555 return raw_type;
10556 if (bounds_str[n] == '_')
10557 n += 2;
0963b4bd 10558 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10559 n += 1;
10560 subtype_info += 1;
10561 }
d2e4a39e 10562 else
4c4b4cd2
PH
10563 {
10564 int ok;
5b4ee69b 10565
4c4b4cd2
PH
10566 strcpy (name_buf + prefix_len, "___L");
10567 L = get_int_var_value (name_buf, &ok);
10568 if (!ok)
10569 {
323e0a4a 10570 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10571 L = 1;
10572 }
10573 }
14f9c5c9 10574
d2e4a39e 10575 if (*subtype_info == 'U')
4c4b4cd2
PH
10576 {
10577 if (!ada_scan_number (bounds_str, n, &U, &n)
10578 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10579 return raw_type;
10580 }
d2e4a39e 10581 else
4c4b4cd2
PH
10582 {
10583 int ok;
5b4ee69b 10584
4c4b4cd2
PH
10585 strcpy (name_buf + prefix_len, "___U");
10586 U = get_int_var_value (name_buf, &ok);
10587 if (!ok)
10588 {
323e0a4a 10589 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10590 U = L;
10591 }
10592 }
14f9c5c9 10593
28c85d6c 10594 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10595 TYPE_NAME (type) = name;
14f9c5c9
AS
10596 return type;
10597 }
10598}
10599
4c4b4cd2
PH
10600/* True iff NAME is the name of a range type. */
10601
14f9c5c9 10602int
d2e4a39e 10603ada_is_range_type_name (const char *name)
14f9c5c9
AS
10604{
10605 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10606}
14f9c5c9 10607\f
d2e4a39e 10608
4c4b4cd2
PH
10609 /* Modular types */
10610
10611/* True iff TYPE is an Ada modular type. */
14f9c5c9 10612
14f9c5c9 10613int
d2e4a39e 10614ada_is_modular_type (struct type *type)
14f9c5c9 10615{
18af8284 10616 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10617
10618 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10619 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10620 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10621}
10622
4c4b4cd2
PH
10623/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10624
61ee279c 10625ULONGEST
0056e4d5 10626ada_modulus (struct type *type)
14f9c5c9 10627{
43bbcdc2 10628 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10629}
d2e4a39e 10630\f
f7f9143b
JB
10631
10632/* Ada exception catchpoint support:
10633 ---------------------------------
10634
10635 We support 3 kinds of exception catchpoints:
10636 . catchpoints on Ada exceptions
10637 . catchpoints on unhandled Ada exceptions
10638 . catchpoints on failed assertions
10639
10640 Exceptions raised during failed assertions, or unhandled exceptions
10641 could perfectly be caught with the general catchpoint on Ada exceptions.
10642 However, we can easily differentiate these two special cases, and having
10643 the option to distinguish these two cases from the rest can be useful
10644 to zero-in on certain situations.
10645
10646 Exception catchpoints are a specialized form of breakpoint,
10647 since they rely on inserting breakpoints inside known routines
10648 of the GNAT runtime. The implementation therefore uses a standard
10649 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10650 of breakpoint_ops.
10651
0259addd
JB
10652 Support in the runtime for exception catchpoints have been changed
10653 a few times already, and these changes affect the implementation
10654 of these catchpoints. In order to be able to support several
10655 variants of the runtime, we use a sniffer that will determine
28010a5d 10656 the runtime variant used by the program being debugged. */
f7f9143b
JB
10657
10658/* The different types of catchpoints that we introduced for catching
10659 Ada exceptions. */
10660
10661enum exception_catchpoint_kind
10662{
10663 ex_catch_exception,
10664 ex_catch_exception_unhandled,
10665 ex_catch_assert
10666};
10667
3d0b0fa3
JB
10668/* Ada's standard exceptions. */
10669
10670static char *standard_exc[] = {
10671 "constraint_error",
10672 "program_error",
10673 "storage_error",
10674 "tasking_error"
10675};
10676
0259addd
JB
10677typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10678
10679/* A structure that describes how to support exception catchpoints
10680 for a given executable. */
10681
10682struct exception_support_info
10683{
10684 /* The name of the symbol to break on in order to insert
10685 a catchpoint on exceptions. */
10686 const char *catch_exception_sym;
10687
10688 /* The name of the symbol to break on in order to insert
10689 a catchpoint on unhandled exceptions. */
10690 const char *catch_exception_unhandled_sym;
10691
10692 /* The name of the symbol to break on in order to insert
10693 a catchpoint on failed assertions. */
10694 const char *catch_assert_sym;
10695
10696 /* Assuming that the inferior just triggered an unhandled exception
10697 catchpoint, this function is responsible for returning the address
10698 in inferior memory where the name of that exception is stored.
10699 Return zero if the address could not be computed. */
10700 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10701};
10702
10703static CORE_ADDR ada_unhandled_exception_name_addr (void);
10704static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10705
10706/* The following exception support info structure describes how to
10707 implement exception catchpoints with the latest version of the
10708 Ada runtime (as of 2007-03-06). */
10709
10710static const struct exception_support_info default_exception_support_info =
10711{
10712 "__gnat_debug_raise_exception", /* catch_exception_sym */
10713 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10714 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10715 ada_unhandled_exception_name_addr
10716};
10717
10718/* The following exception support info structure describes how to
10719 implement exception catchpoints with a slightly older version
10720 of the Ada runtime. */
10721
10722static const struct exception_support_info exception_support_info_fallback =
10723{
10724 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10725 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10726 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10727 ada_unhandled_exception_name_addr_from_raise
10728};
10729
f17011e0
JB
10730/* Return nonzero if we can detect the exception support routines
10731 described in EINFO.
10732
10733 This function errors out if an abnormal situation is detected
10734 (for instance, if we find the exception support routines, but
10735 that support is found to be incomplete). */
10736
10737static int
10738ada_has_this_exception_support (const struct exception_support_info *einfo)
10739{
10740 struct symbol *sym;
10741
10742 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10743 that should be compiled with debugging information. As a result, we
10744 expect to find that symbol in the symtabs. */
10745
10746 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10747 if (sym == NULL)
a6af7abe
JB
10748 {
10749 /* Perhaps we did not find our symbol because the Ada runtime was
10750 compiled without debugging info, or simply stripped of it.
10751 It happens on some GNU/Linux distributions for instance, where
10752 users have to install a separate debug package in order to get
10753 the runtime's debugging info. In that situation, let the user
10754 know why we cannot insert an Ada exception catchpoint.
10755
10756 Note: Just for the purpose of inserting our Ada exception
10757 catchpoint, we could rely purely on the associated minimal symbol.
10758 But we would be operating in degraded mode anyway, since we are
10759 still lacking the debugging info needed later on to extract
10760 the name of the exception being raised (this name is printed in
10761 the catchpoint message, and is also used when trying to catch
10762 a specific exception). We do not handle this case for now. */
10763 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10764 error (_("Your Ada runtime appears to be missing some debugging "
10765 "information.\nCannot insert Ada exception catchpoint "
10766 "in this configuration."));
10767
10768 return 0;
10769 }
f17011e0
JB
10770
10771 /* Make sure that the symbol we found corresponds to a function. */
10772
10773 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10774 error (_("Symbol \"%s\" is not a function (class = %d)"),
10775 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10776
10777 return 1;
10778}
10779
0259addd
JB
10780/* Inspect the Ada runtime and determine which exception info structure
10781 should be used to provide support for exception catchpoints.
10782
3eecfa55
JB
10783 This function will always set the per-inferior exception_info,
10784 or raise an error. */
0259addd
JB
10785
10786static void
10787ada_exception_support_info_sniffer (void)
10788{
3eecfa55 10789 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
10790 struct symbol *sym;
10791
10792 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 10793 if (data->exception_info != NULL)
0259addd
JB
10794 return;
10795
10796 /* Check the latest (default) exception support info. */
f17011e0 10797 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 10798 {
3eecfa55 10799 data->exception_info = &default_exception_support_info;
0259addd
JB
10800 return;
10801 }
10802
10803 /* Try our fallback exception suport info. */
f17011e0 10804 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 10805 {
3eecfa55 10806 data->exception_info = &exception_support_info_fallback;
0259addd
JB
10807 return;
10808 }
10809
10810 /* Sometimes, it is normal for us to not be able to find the routine
10811 we are looking for. This happens when the program is linked with
10812 the shared version of the GNAT runtime, and the program has not been
10813 started yet. Inform the user of these two possible causes if
10814 applicable. */
10815
ccefe4c4 10816 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10817 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10818
10819 /* If the symbol does not exist, then check that the program is
10820 already started, to make sure that shared libraries have been
10821 loaded. If it is not started, this may mean that the symbol is
10822 in a shared library. */
10823
10824 if (ptid_get_pid (inferior_ptid) == 0)
10825 error (_("Unable to insert catchpoint. Try to start the program first."));
10826
10827 /* At this point, we know that we are debugging an Ada program and
10828 that the inferior has been started, but we still are not able to
0963b4bd 10829 find the run-time symbols. That can mean that we are in
0259addd
JB
10830 configurable run time mode, or that a-except as been optimized
10831 out by the linker... In any case, at this point it is not worth
10832 supporting this feature. */
10833
7dda8cff 10834 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
10835}
10836
f7f9143b
JB
10837/* True iff FRAME is very likely to be that of a function that is
10838 part of the runtime system. This is all very heuristic, but is
10839 intended to be used as advice as to what frames are uninteresting
10840 to most users. */
10841
10842static int
10843is_known_support_routine (struct frame_info *frame)
10844{
4ed6b5be 10845 struct symtab_and_line sal;
0d5cff50 10846 const char *func_name;
692465f1 10847 enum language func_lang;
f7f9143b 10848 int i;
f7f9143b 10849
4ed6b5be
JB
10850 /* If this code does not have any debugging information (no symtab),
10851 This cannot be any user code. */
f7f9143b 10852
4ed6b5be 10853 find_frame_sal (frame, &sal);
f7f9143b
JB
10854 if (sal.symtab == NULL)
10855 return 1;
10856
4ed6b5be
JB
10857 /* If there is a symtab, but the associated source file cannot be
10858 located, then assume this is not user code: Selecting a frame
10859 for which we cannot display the code would not be very helpful
10860 for the user. This should also take care of case such as VxWorks
10861 where the kernel has some debugging info provided for a few units. */
f7f9143b 10862
9bbc9174 10863 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10864 return 1;
10865
4ed6b5be
JB
10866 /* Check the unit filename againt the Ada runtime file naming.
10867 We also check the name of the objfile against the name of some
10868 known system libraries that sometimes come with debugging info
10869 too. */
10870
f7f9143b
JB
10871 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10872 {
10873 re_comp (known_runtime_file_name_patterns[i]);
10874 if (re_exec (sal.symtab->filename))
10875 return 1;
4ed6b5be
JB
10876 if (sal.symtab->objfile != NULL
10877 && re_exec (sal.symtab->objfile->name))
10878 return 1;
f7f9143b
JB
10879 }
10880
4ed6b5be 10881 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10882
e9e07ba6 10883 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10884 if (func_name == NULL)
10885 return 1;
10886
10887 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10888 {
10889 re_comp (known_auxiliary_function_name_patterns[i]);
10890 if (re_exec (func_name))
10891 return 1;
10892 }
10893
10894 return 0;
10895}
10896
10897/* Find the first frame that contains debugging information and that is not
10898 part of the Ada run-time, starting from FI and moving upward. */
10899
0ef643c8 10900void
f7f9143b
JB
10901ada_find_printable_frame (struct frame_info *fi)
10902{
10903 for (; fi != NULL; fi = get_prev_frame (fi))
10904 {
10905 if (!is_known_support_routine (fi))
10906 {
10907 select_frame (fi);
10908 break;
10909 }
10910 }
10911
10912}
10913
10914/* Assuming that the inferior just triggered an unhandled exception
10915 catchpoint, return the address in inferior memory where the name
10916 of the exception is stored.
10917
10918 Return zero if the address could not be computed. */
10919
10920static CORE_ADDR
10921ada_unhandled_exception_name_addr (void)
0259addd
JB
10922{
10923 return parse_and_eval_address ("e.full_name");
10924}
10925
10926/* Same as ada_unhandled_exception_name_addr, except that this function
10927 should be used when the inferior uses an older version of the runtime,
10928 where the exception name needs to be extracted from a specific frame
10929 several frames up in the callstack. */
10930
10931static CORE_ADDR
10932ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10933{
10934 int frame_level;
10935 struct frame_info *fi;
3eecfa55 10936 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
10937
10938 /* To determine the name of this exception, we need to select
10939 the frame corresponding to RAISE_SYM_NAME. This frame is
10940 at least 3 levels up, so we simply skip the first 3 frames
10941 without checking the name of their associated function. */
10942 fi = get_current_frame ();
10943 for (frame_level = 0; frame_level < 3; frame_level += 1)
10944 if (fi != NULL)
10945 fi = get_prev_frame (fi);
10946
10947 while (fi != NULL)
10948 {
0d5cff50 10949 const char *func_name;
692465f1
JB
10950 enum language func_lang;
10951
e9e07ba6 10952 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10953 if (func_name != NULL
3eecfa55 10954 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10955 break; /* We found the frame we were looking for... */
10956 fi = get_prev_frame (fi);
10957 }
10958
10959 if (fi == NULL)
10960 return 0;
10961
10962 select_frame (fi);
10963 return parse_and_eval_address ("id.full_name");
10964}
10965
10966/* Assuming the inferior just triggered an Ada exception catchpoint
10967 (of any type), return the address in inferior memory where the name
10968 of the exception is stored, if applicable.
10969
10970 Return zero if the address could not be computed, or if not relevant. */
10971
10972static CORE_ADDR
10973ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10974 struct breakpoint *b)
10975{
3eecfa55
JB
10976 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10977
f7f9143b
JB
10978 switch (ex)
10979 {
10980 case ex_catch_exception:
10981 return (parse_and_eval_address ("e.full_name"));
10982 break;
10983
10984 case ex_catch_exception_unhandled:
3eecfa55 10985 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10986 break;
10987
10988 case ex_catch_assert:
10989 return 0; /* Exception name is not relevant in this case. */
10990 break;
10991
10992 default:
10993 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10994 break;
10995 }
10996
10997 return 0; /* Should never be reached. */
10998}
10999
11000/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11001 any error that ada_exception_name_addr_1 might cause to be thrown.
11002 When an error is intercepted, a warning with the error message is printed,
11003 and zero is returned. */
11004
11005static CORE_ADDR
11006ada_exception_name_addr (enum exception_catchpoint_kind ex,
11007 struct breakpoint *b)
11008{
bfd189b1 11009 volatile struct gdb_exception e;
f7f9143b
JB
11010 CORE_ADDR result = 0;
11011
11012 TRY_CATCH (e, RETURN_MASK_ERROR)
11013 {
11014 result = ada_exception_name_addr_1 (ex, b);
11015 }
11016
11017 if (e.reason < 0)
11018 {
11019 warning (_("failed to get exception name: %s"), e.message);
11020 return 0;
11021 }
11022
11023 return result;
11024}
11025
28010a5d
PA
11026static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11027 char *, char **,
c0a91b2b 11028 const struct breakpoint_ops **);
28010a5d
PA
11029static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11030
11031/* Ada catchpoints.
11032
11033 In the case of catchpoints on Ada exceptions, the catchpoint will
11034 stop the target on every exception the program throws. When a user
11035 specifies the name of a specific exception, we translate this
11036 request into a condition expression (in text form), and then parse
11037 it into an expression stored in each of the catchpoint's locations.
11038 We then use this condition to check whether the exception that was
11039 raised is the one the user is interested in. If not, then the
11040 target is resumed again. We store the name of the requested
11041 exception, in order to be able to re-set the condition expression
11042 when symbols change. */
11043
11044/* An instance of this type is used to represent an Ada catchpoint
11045 breakpoint location. It includes a "struct bp_location" as a kind
11046 of base class; users downcast to "struct bp_location *" when
11047 needed. */
11048
11049struct ada_catchpoint_location
11050{
11051 /* The base class. */
11052 struct bp_location base;
11053
11054 /* The condition that checks whether the exception that was raised
11055 is the specific exception the user specified on catchpoint
11056 creation. */
11057 struct expression *excep_cond_expr;
11058};
11059
11060/* Implement the DTOR method in the bp_location_ops structure for all
11061 Ada exception catchpoint kinds. */
11062
11063static void
11064ada_catchpoint_location_dtor (struct bp_location *bl)
11065{
11066 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11067
11068 xfree (al->excep_cond_expr);
11069}
11070
11071/* The vtable to be used in Ada catchpoint locations. */
11072
11073static const struct bp_location_ops ada_catchpoint_location_ops =
11074{
11075 ada_catchpoint_location_dtor
11076};
11077
11078/* An instance of this type is used to represent an Ada catchpoint.
11079 It includes a "struct breakpoint" as a kind of base class; users
11080 downcast to "struct breakpoint *" when needed. */
11081
11082struct ada_catchpoint
11083{
11084 /* The base class. */
11085 struct breakpoint base;
11086
11087 /* The name of the specific exception the user specified. */
11088 char *excep_string;
11089};
11090
11091/* Parse the exception condition string in the context of each of the
11092 catchpoint's locations, and store them for later evaluation. */
11093
11094static void
11095create_excep_cond_exprs (struct ada_catchpoint *c)
11096{
11097 struct cleanup *old_chain;
11098 struct bp_location *bl;
11099 char *cond_string;
11100
11101 /* Nothing to do if there's no specific exception to catch. */
11102 if (c->excep_string == NULL)
11103 return;
11104
11105 /* Same if there are no locations... */
11106 if (c->base.loc == NULL)
11107 return;
11108
11109 /* Compute the condition expression in text form, from the specific
11110 expection we want to catch. */
11111 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11112 old_chain = make_cleanup (xfree, cond_string);
11113
11114 /* Iterate over all the catchpoint's locations, and parse an
11115 expression for each. */
11116 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11117 {
11118 struct ada_catchpoint_location *ada_loc
11119 = (struct ada_catchpoint_location *) bl;
11120 struct expression *exp = NULL;
11121
11122 if (!bl->shlib_disabled)
11123 {
11124 volatile struct gdb_exception e;
11125 char *s;
11126
11127 s = cond_string;
11128 TRY_CATCH (e, RETURN_MASK_ERROR)
11129 {
11130 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11131 }
11132 if (e.reason < 0)
11133 warning (_("failed to reevaluate internal exception condition "
11134 "for catchpoint %d: %s"),
11135 c->base.number, e.message);
11136 }
11137
11138 ada_loc->excep_cond_expr = exp;
11139 }
11140
11141 do_cleanups (old_chain);
11142}
11143
11144/* Implement the DTOR method in the breakpoint_ops structure for all
11145 exception catchpoint kinds. */
11146
11147static void
11148dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11149{
11150 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11151
11152 xfree (c->excep_string);
348d480f 11153
2060206e 11154 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11155}
11156
11157/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11158 structure for all exception catchpoint kinds. */
11159
11160static struct bp_location *
11161allocate_location_exception (enum exception_catchpoint_kind ex,
11162 struct breakpoint *self)
11163{
11164 struct ada_catchpoint_location *loc;
11165
11166 loc = XNEW (struct ada_catchpoint_location);
11167 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11168 loc->excep_cond_expr = NULL;
11169 return &loc->base;
11170}
11171
11172/* Implement the RE_SET method in the breakpoint_ops structure for all
11173 exception catchpoint kinds. */
11174
11175static void
11176re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11177{
11178 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11179
11180 /* Call the base class's method. This updates the catchpoint's
11181 locations. */
2060206e 11182 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11183
11184 /* Reparse the exception conditional expressions. One for each
11185 location. */
11186 create_excep_cond_exprs (c);
11187}
11188
11189/* Returns true if we should stop for this breakpoint hit. If the
11190 user specified a specific exception, we only want to cause a stop
11191 if the program thrown that exception. */
11192
11193static int
11194should_stop_exception (const struct bp_location *bl)
11195{
11196 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11197 const struct ada_catchpoint_location *ada_loc
11198 = (const struct ada_catchpoint_location *) bl;
11199 volatile struct gdb_exception ex;
11200 int stop;
11201
11202 /* With no specific exception, should always stop. */
11203 if (c->excep_string == NULL)
11204 return 1;
11205
11206 if (ada_loc->excep_cond_expr == NULL)
11207 {
11208 /* We will have a NULL expression if back when we were creating
11209 the expressions, this location's had failed to parse. */
11210 return 1;
11211 }
11212
11213 stop = 1;
11214 TRY_CATCH (ex, RETURN_MASK_ALL)
11215 {
11216 struct value *mark;
11217
11218 mark = value_mark ();
11219 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11220 value_free_to_mark (mark);
11221 }
11222 if (ex.reason < 0)
11223 exception_fprintf (gdb_stderr, ex,
11224 _("Error in testing exception condition:\n"));
11225 return stop;
11226}
11227
11228/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11229 for all exception catchpoint kinds. */
11230
11231static void
11232check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11233{
11234 bs->stop = should_stop_exception (bs->bp_location_at);
11235}
11236
f7f9143b
JB
11237/* Implement the PRINT_IT method in the breakpoint_ops structure
11238 for all exception catchpoint kinds. */
11239
11240static enum print_stop_action
348d480f 11241print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11242{
79a45e25 11243 struct ui_out *uiout = current_uiout;
348d480f
PA
11244 struct breakpoint *b = bs->breakpoint_at;
11245
956a9fb9 11246 annotate_catchpoint (b->number);
f7f9143b 11247
956a9fb9 11248 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11249 {
956a9fb9
JB
11250 ui_out_field_string (uiout, "reason",
11251 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11252 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11253 }
11254
00eb2c4a
JB
11255 ui_out_text (uiout,
11256 b->disposition == disp_del ? "\nTemporary catchpoint "
11257 : "\nCatchpoint ");
956a9fb9
JB
11258 ui_out_field_int (uiout, "bkptno", b->number);
11259 ui_out_text (uiout, ", ");
f7f9143b 11260
f7f9143b
JB
11261 switch (ex)
11262 {
11263 case ex_catch_exception:
f7f9143b 11264 case ex_catch_exception_unhandled:
956a9fb9
JB
11265 {
11266 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11267 char exception_name[256];
11268
11269 if (addr != 0)
11270 {
11271 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11272 exception_name [sizeof (exception_name) - 1] = '\0';
11273 }
11274 else
11275 {
11276 /* For some reason, we were unable to read the exception
11277 name. This could happen if the Runtime was compiled
11278 without debugging info, for instance. In that case,
11279 just replace the exception name by the generic string
11280 "exception" - it will read as "an exception" in the
11281 notification we are about to print. */
967cff16 11282 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11283 }
11284 /* In the case of unhandled exception breakpoints, we print
11285 the exception name as "unhandled EXCEPTION_NAME", to make
11286 it clearer to the user which kind of catchpoint just got
11287 hit. We used ui_out_text to make sure that this extra
11288 info does not pollute the exception name in the MI case. */
11289 if (ex == ex_catch_exception_unhandled)
11290 ui_out_text (uiout, "unhandled ");
11291 ui_out_field_string (uiout, "exception-name", exception_name);
11292 }
11293 break;
f7f9143b 11294 case ex_catch_assert:
956a9fb9
JB
11295 /* In this case, the name of the exception is not really
11296 important. Just print "failed assertion" to make it clearer
11297 that his program just hit an assertion-failure catchpoint.
11298 We used ui_out_text because this info does not belong in
11299 the MI output. */
11300 ui_out_text (uiout, "failed assertion");
11301 break;
f7f9143b 11302 }
956a9fb9
JB
11303 ui_out_text (uiout, " at ");
11304 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11305
11306 return PRINT_SRC_AND_LOC;
11307}
11308
11309/* Implement the PRINT_ONE method in the breakpoint_ops structure
11310 for all exception catchpoint kinds. */
11311
11312static void
11313print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11314 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11315{
79a45e25 11316 struct ui_out *uiout = current_uiout;
28010a5d 11317 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11318 struct value_print_options opts;
11319
11320 get_user_print_options (&opts);
11321 if (opts.addressprint)
f7f9143b
JB
11322 {
11323 annotate_field (4);
5af949e3 11324 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11325 }
11326
11327 annotate_field (5);
a6d9a66e 11328 *last_loc = b->loc;
f7f9143b
JB
11329 switch (ex)
11330 {
11331 case ex_catch_exception:
28010a5d 11332 if (c->excep_string != NULL)
f7f9143b 11333 {
28010a5d
PA
11334 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11335
f7f9143b
JB
11336 ui_out_field_string (uiout, "what", msg);
11337 xfree (msg);
11338 }
11339 else
11340 ui_out_field_string (uiout, "what", "all Ada exceptions");
11341
11342 break;
11343
11344 case ex_catch_exception_unhandled:
11345 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11346 break;
11347
11348 case ex_catch_assert:
11349 ui_out_field_string (uiout, "what", "failed Ada assertions");
11350 break;
11351
11352 default:
11353 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11354 break;
11355 }
11356}
11357
11358/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11359 for all exception catchpoint kinds. */
11360
11361static void
11362print_mention_exception (enum exception_catchpoint_kind ex,
11363 struct breakpoint *b)
11364{
28010a5d 11365 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11366 struct ui_out *uiout = current_uiout;
28010a5d 11367
00eb2c4a
JB
11368 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11369 : _("Catchpoint "));
11370 ui_out_field_int (uiout, "bkptno", b->number);
11371 ui_out_text (uiout, ": ");
11372
f7f9143b
JB
11373 switch (ex)
11374 {
11375 case ex_catch_exception:
28010a5d 11376 if (c->excep_string != NULL)
00eb2c4a
JB
11377 {
11378 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11379 struct cleanup *old_chain = make_cleanup (xfree, info);
11380
11381 ui_out_text (uiout, info);
11382 do_cleanups (old_chain);
11383 }
f7f9143b 11384 else
00eb2c4a 11385 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11386 break;
11387
11388 case ex_catch_exception_unhandled:
00eb2c4a 11389 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11390 break;
11391
11392 case ex_catch_assert:
00eb2c4a 11393 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11394 break;
11395
11396 default:
11397 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11398 break;
11399 }
11400}
11401
6149aea9
PA
11402/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11403 for all exception catchpoint kinds. */
11404
11405static void
11406print_recreate_exception (enum exception_catchpoint_kind ex,
11407 struct breakpoint *b, struct ui_file *fp)
11408{
28010a5d
PA
11409 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11410
6149aea9
PA
11411 switch (ex)
11412 {
11413 case ex_catch_exception:
11414 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11415 if (c->excep_string != NULL)
11416 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11417 break;
11418
11419 case ex_catch_exception_unhandled:
78076abc 11420 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11421 break;
11422
11423 case ex_catch_assert:
11424 fprintf_filtered (fp, "catch assert");
11425 break;
11426
11427 default:
11428 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11429 }
d9b3f62e 11430 print_recreate_thread (b, fp);
6149aea9
PA
11431}
11432
f7f9143b
JB
11433/* Virtual table for "catch exception" breakpoints. */
11434
28010a5d
PA
11435static void
11436dtor_catch_exception (struct breakpoint *b)
11437{
11438 dtor_exception (ex_catch_exception, b);
11439}
11440
11441static struct bp_location *
11442allocate_location_catch_exception (struct breakpoint *self)
11443{
11444 return allocate_location_exception (ex_catch_exception, self);
11445}
11446
11447static void
11448re_set_catch_exception (struct breakpoint *b)
11449{
11450 re_set_exception (ex_catch_exception, b);
11451}
11452
11453static void
11454check_status_catch_exception (bpstat bs)
11455{
11456 check_status_exception (ex_catch_exception, bs);
11457}
11458
f7f9143b 11459static enum print_stop_action
348d480f 11460print_it_catch_exception (bpstat bs)
f7f9143b 11461{
348d480f 11462 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11463}
11464
11465static void
a6d9a66e 11466print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11467{
a6d9a66e 11468 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11469}
11470
11471static void
11472print_mention_catch_exception (struct breakpoint *b)
11473{
11474 print_mention_exception (ex_catch_exception, b);
11475}
11476
6149aea9
PA
11477static void
11478print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11479{
11480 print_recreate_exception (ex_catch_exception, b, fp);
11481}
11482
2060206e 11483static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11484
11485/* Virtual table for "catch exception unhandled" breakpoints. */
11486
28010a5d
PA
11487static void
11488dtor_catch_exception_unhandled (struct breakpoint *b)
11489{
11490 dtor_exception (ex_catch_exception_unhandled, b);
11491}
11492
11493static struct bp_location *
11494allocate_location_catch_exception_unhandled (struct breakpoint *self)
11495{
11496 return allocate_location_exception (ex_catch_exception_unhandled, self);
11497}
11498
11499static void
11500re_set_catch_exception_unhandled (struct breakpoint *b)
11501{
11502 re_set_exception (ex_catch_exception_unhandled, b);
11503}
11504
11505static void
11506check_status_catch_exception_unhandled (bpstat bs)
11507{
11508 check_status_exception (ex_catch_exception_unhandled, bs);
11509}
11510
f7f9143b 11511static enum print_stop_action
348d480f 11512print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11513{
348d480f 11514 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11515}
11516
11517static void
a6d9a66e
UW
11518print_one_catch_exception_unhandled (struct breakpoint *b,
11519 struct bp_location **last_loc)
f7f9143b 11520{
a6d9a66e 11521 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11522}
11523
11524static void
11525print_mention_catch_exception_unhandled (struct breakpoint *b)
11526{
11527 print_mention_exception (ex_catch_exception_unhandled, b);
11528}
11529
6149aea9
PA
11530static void
11531print_recreate_catch_exception_unhandled (struct breakpoint *b,
11532 struct ui_file *fp)
11533{
11534 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11535}
11536
2060206e 11537static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11538
11539/* Virtual table for "catch assert" breakpoints. */
11540
28010a5d
PA
11541static void
11542dtor_catch_assert (struct breakpoint *b)
11543{
11544 dtor_exception (ex_catch_assert, b);
11545}
11546
11547static struct bp_location *
11548allocate_location_catch_assert (struct breakpoint *self)
11549{
11550 return allocate_location_exception (ex_catch_assert, self);
11551}
11552
11553static void
11554re_set_catch_assert (struct breakpoint *b)
11555{
11556 return re_set_exception (ex_catch_assert, b);
11557}
11558
11559static void
11560check_status_catch_assert (bpstat bs)
11561{
11562 check_status_exception (ex_catch_assert, bs);
11563}
11564
f7f9143b 11565static enum print_stop_action
348d480f 11566print_it_catch_assert (bpstat bs)
f7f9143b 11567{
348d480f 11568 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11569}
11570
11571static void
a6d9a66e 11572print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11573{
a6d9a66e 11574 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11575}
11576
11577static void
11578print_mention_catch_assert (struct breakpoint *b)
11579{
11580 print_mention_exception (ex_catch_assert, b);
11581}
11582
6149aea9
PA
11583static void
11584print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11585{
11586 print_recreate_exception (ex_catch_assert, b, fp);
11587}
11588
2060206e 11589static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11590
f7f9143b
JB
11591/* Return a newly allocated copy of the first space-separated token
11592 in ARGSP, and then adjust ARGSP to point immediately after that
11593 token.
11594
11595 Return NULL if ARGPS does not contain any more tokens. */
11596
11597static char *
11598ada_get_next_arg (char **argsp)
11599{
11600 char *args = *argsp;
11601 char *end;
11602 char *result;
11603
0fcd72ba 11604 args = skip_spaces (args);
f7f9143b
JB
11605 if (args[0] == '\0')
11606 return NULL; /* No more arguments. */
11607
11608 /* Find the end of the current argument. */
11609
0fcd72ba 11610 end = skip_to_space (args);
f7f9143b
JB
11611
11612 /* Adjust ARGSP to point to the start of the next argument. */
11613
11614 *argsp = end;
11615
11616 /* Make a copy of the current argument and return it. */
11617
11618 result = xmalloc (end - args + 1);
11619 strncpy (result, args, end - args);
11620 result[end - args] = '\0';
11621
11622 return result;
11623}
11624
11625/* Split the arguments specified in a "catch exception" command.
11626 Set EX to the appropriate catchpoint type.
28010a5d 11627 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11628 specified by the user.
11629 If a condition is found at the end of the arguments, the condition
11630 expression is stored in COND_STRING (memory must be deallocated
11631 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11632
11633static void
11634catch_ada_exception_command_split (char *args,
11635 enum exception_catchpoint_kind *ex,
5845583d
JB
11636 char **excep_string,
11637 char **cond_string)
f7f9143b
JB
11638{
11639 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11640 char *exception_name;
5845583d 11641 char *cond = NULL;
f7f9143b
JB
11642
11643 exception_name = ada_get_next_arg (&args);
5845583d
JB
11644 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11645 {
11646 /* This is not an exception name; this is the start of a condition
11647 expression for a catchpoint on all exceptions. So, "un-get"
11648 this token, and set exception_name to NULL. */
11649 xfree (exception_name);
11650 exception_name = NULL;
11651 args -= 2;
11652 }
f7f9143b
JB
11653 make_cleanup (xfree, exception_name);
11654
5845583d 11655 /* Check to see if we have a condition. */
f7f9143b 11656
0fcd72ba 11657 args = skip_spaces (args);
5845583d
JB
11658 if (strncmp (args, "if", 2) == 0
11659 && (isspace (args[2]) || args[2] == '\0'))
11660 {
11661 args += 2;
11662 args = skip_spaces (args);
11663
11664 if (args[0] == '\0')
11665 error (_("Condition missing after `if' keyword"));
11666 cond = xstrdup (args);
11667 make_cleanup (xfree, cond);
11668
11669 args += strlen (args);
11670 }
11671
11672 /* Check that we do not have any more arguments. Anything else
11673 is unexpected. */
f7f9143b
JB
11674
11675 if (args[0] != '\0')
11676 error (_("Junk at end of expression"));
11677
11678 discard_cleanups (old_chain);
11679
11680 if (exception_name == NULL)
11681 {
11682 /* Catch all exceptions. */
11683 *ex = ex_catch_exception;
28010a5d 11684 *excep_string = NULL;
f7f9143b
JB
11685 }
11686 else if (strcmp (exception_name, "unhandled") == 0)
11687 {
11688 /* Catch unhandled exceptions. */
11689 *ex = ex_catch_exception_unhandled;
28010a5d 11690 *excep_string = NULL;
f7f9143b
JB
11691 }
11692 else
11693 {
11694 /* Catch a specific exception. */
11695 *ex = ex_catch_exception;
28010a5d 11696 *excep_string = exception_name;
f7f9143b 11697 }
5845583d 11698 *cond_string = cond;
f7f9143b
JB
11699}
11700
11701/* Return the name of the symbol on which we should break in order to
11702 implement a catchpoint of the EX kind. */
11703
11704static const char *
11705ada_exception_sym_name (enum exception_catchpoint_kind ex)
11706{
3eecfa55
JB
11707 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11708
11709 gdb_assert (data->exception_info != NULL);
0259addd 11710
f7f9143b
JB
11711 switch (ex)
11712 {
11713 case ex_catch_exception:
3eecfa55 11714 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11715 break;
11716 case ex_catch_exception_unhandled:
3eecfa55 11717 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11718 break;
11719 case ex_catch_assert:
3eecfa55 11720 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11721 break;
11722 default:
11723 internal_error (__FILE__, __LINE__,
11724 _("unexpected catchpoint kind (%d)"), ex);
11725 }
11726}
11727
11728/* Return the breakpoint ops "virtual table" used for catchpoints
11729 of the EX kind. */
11730
c0a91b2b 11731static const struct breakpoint_ops *
4b9eee8c 11732ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11733{
11734 switch (ex)
11735 {
11736 case ex_catch_exception:
11737 return (&catch_exception_breakpoint_ops);
11738 break;
11739 case ex_catch_exception_unhandled:
11740 return (&catch_exception_unhandled_breakpoint_ops);
11741 break;
11742 case ex_catch_assert:
11743 return (&catch_assert_breakpoint_ops);
11744 break;
11745 default:
11746 internal_error (__FILE__, __LINE__,
11747 _("unexpected catchpoint kind (%d)"), ex);
11748 }
11749}
11750
11751/* Return the condition that will be used to match the current exception
11752 being raised with the exception that the user wants to catch. This
11753 assumes that this condition is used when the inferior just triggered
11754 an exception catchpoint.
11755
11756 The string returned is a newly allocated string that needs to be
11757 deallocated later. */
11758
11759static char *
28010a5d 11760ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 11761{
3d0b0fa3
JB
11762 int i;
11763
0963b4bd 11764 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 11765 runtime units that have been compiled without debugging info; if
28010a5d 11766 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
11767 exception (e.g. "constraint_error") then, during the evaluation
11768 of the condition expression, the symbol lookup on this name would
0963b4bd 11769 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11770 may then be set only on user-defined exceptions which have the
11771 same not-fully-qualified name (e.g. my_package.constraint_error).
11772
11773 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11774 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11775 exception constraint_error" is rewritten into "catch exception
11776 standard.constraint_error".
11777
11778 If an exception named contraint_error is defined in another package of
11779 the inferior program, then the only way to specify this exception as a
11780 breakpoint condition is to use its fully-qualified named:
11781 e.g. my_package.constraint_error. */
11782
11783 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11784 {
28010a5d 11785 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
11786 {
11787 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 11788 excep_string);
3d0b0fa3
JB
11789 }
11790 }
28010a5d 11791 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
11792}
11793
11794/* Return the symtab_and_line that should be used to insert an exception
11795 catchpoint of the TYPE kind.
11796
28010a5d
PA
11797 EXCEP_STRING should contain the name of a specific exception that
11798 the catchpoint should catch, or NULL otherwise.
f7f9143b 11799
28010a5d
PA
11800 ADDR_STRING returns the name of the function where the real
11801 breakpoint that implements the catchpoints is set, depending on the
11802 type of catchpoint we need to create. */
f7f9143b
JB
11803
11804static struct symtab_and_line
28010a5d 11805ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 11806 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
11807{
11808 const char *sym_name;
11809 struct symbol *sym;
f7f9143b 11810
0259addd
JB
11811 /* First, find out which exception support info to use. */
11812 ada_exception_support_info_sniffer ();
11813
11814 /* Then lookup the function on which we will break in order to catch
f7f9143b 11815 the Ada exceptions requested by the user. */
f7f9143b
JB
11816 sym_name = ada_exception_sym_name (ex);
11817 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11818
f17011e0
JB
11819 /* We can assume that SYM is not NULL at this stage. If the symbol
11820 did not exist, ada_exception_support_info_sniffer would have
11821 raised an exception.
f7f9143b 11822
f17011e0
JB
11823 Also, ada_exception_support_info_sniffer should have already
11824 verified that SYM is a function symbol. */
11825 gdb_assert (sym != NULL);
11826 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
11827
11828 /* Set ADDR_STRING. */
f7f9143b
JB
11829 *addr_string = xstrdup (sym_name);
11830
f7f9143b 11831 /* Set OPS. */
4b9eee8c 11832 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 11833
f17011e0 11834 return find_function_start_sal (sym, 1);
f7f9143b
JB
11835}
11836
11837/* Parse the arguments (ARGS) of the "catch exception" command.
11838
f7f9143b
JB
11839 If the user asked the catchpoint to catch only a specific
11840 exception, then save the exception name in ADDR_STRING.
11841
5845583d
JB
11842 If the user provided a condition, then set COND_STRING to
11843 that condition expression (the memory must be deallocated
11844 after use). Otherwise, set COND_STRING to NULL.
11845
f7f9143b
JB
11846 See ada_exception_sal for a description of all the remaining
11847 function arguments of this function. */
11848
9ac4176b 11849static struct symtab_and_line
f7f9143b 11850ada_decode_exception_location (char *args, char **addr_string,
28010a5d 11851 char **excep_string,
5845583d 11852 char **cond_string,
c0a91b2b 11853 const struct breakpoint_ops **ops)
f7f9143b
JB
11854{
11855 enum exception_catchpoint_kind ex;
11856
5845583d 11857 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
28010a5d
PA
11858 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11859}
11860
11861/* Create an Ada exception catchpoint. */
11862
11863static void
11864create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11865 struct symtab_and_line sal,
11866 char *addr_string,
11867 char *excep_string,
5845583d 11868 char *cond_string,
c0a91b2b 11869 const struct breakpoint_ops *ops,
28010a5d
PA
11870 int tempflag,
11871 int from_tty)
11872{
11873 struct ada_catchpoint *c;
11874
11875 c = XNEW (struct ada_catchpoint);
11876 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11877 ops, tempflag, from_tty);
11878 c->excep_string = excep_string;
11879 create_excep_cond_exprs (c);
5845583d
JB
11880 if (cond_string != NULL)
11881 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 11882 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
11883}
11884
9ac4176b
PA
11885/* Implement the "catch exception" command. */
11886
11887static void
11888catch_ada_exception_command (char *arg, int from_tty,
11889 struct cmd_list_element *command)
11890{
11891 struct gdbarch *gdbarch = get_current_arch ();
11892 int tempflag;
11893 struct symtab_and_line sal;
11894 char *addr_string = NULL;
28010a5d 11895 char *excep_string = NULL;
5845583d 11896 char *cond_string = NULL;
c0a91b2b 11897 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11898
11899 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11900
11901 if (!arg)
11902 arg = "";
5845583d
JB
11903 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11904 &cond_string, &ops);
28010a5d 11905 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
11906 excep_string, cond_string, ops,
11907 tempflag, from_tty);
9ac4176b
PA
11908}
11909
5845583d
JB
11910/* Assuming that ARGS contains the arguments of a "catch assert"
11911 command, parse those arguments and return a symtab_and_line object
11912 for a failed assertion catchpoint.
11913
11914 Set ADDR_STRING to the name of the function where the real
11915 breakpoint that implements the catchpoint is set.
11916
11917 If ARGS contains a condition, set COND_STRING to that condition
11918 (the memory needs to be deallocated after use). Otherwise, set
11919 COND_STRING to NULL. */
11920
9ac4176b 11921static struct symtab_and_line
f7f9143b 11922ada_decode_assert_location (char *args, char **addr_string,
5845583d 11923 char **cond_string,
c0a91b2b 11924 const struct breakpoint_ops **ops)
f7f9143b 11925{
5845583d 11926 args = skip_spaces (args);
f7f9143b 11927
5845583d
JB
11928 /* Check whether a condition was provided. */
11929 if (strncmp (args, "if", 2) == 0
11930 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 11931 {
5845583d 11932 args += 2;
0fcd72ba 11933 args = skip_spaces (args);
5845583d
JB
11934 if (args[0] == '\0')
11935 error (_("condition missing after `if' keyword"));
11936 *cond_string = xstrdup (args);
f7f9143b
JB
11937 }
11938
5845583d
JB
11939 /* Otherwise, there should be no other argument at the end of
11940 the command. */
11941 else if (args[0] != '\0')
11942 error (_("Junk at end of arguments."));
11943
28010a5d 11944 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
11945}
11946
9ac4176b
PA
11947/* Implement the "catch assert" command. */
11948
11949static void
11950catch_assert_command (char *arg, int from_tty,
11951 struct cmd_list_element *command)
11952{
11953 struct gdbarch *gdbarch = get_current_arch ();
11954 int tempflag;
11955 struct symtab_and_line sal;
11956 char *addr_string = NULL;
5845583d 11957 char *cond_string = NULL;
c0a91b2b 11958 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11959
11960 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11961
11962 if (!arg)
11963 arg = "";
5845583d 11964 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
28010a5d 11965 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
11966 NULL, cond_string, ops, tempflag,
11967 from_tty);
9ac4176b 11968}
4c4b4cd2
PH
11969 /* Operators */
11970/* Information about operators given special treatment in functions
11971 below. */
11972/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11973
11974#define ADA_OPERATORS \
11975 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11976 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11977 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11978 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11979 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11980 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11981 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11982 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11983 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11984 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11985 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11986 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11987 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11988 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11989 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
11990 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11991 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11992 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11993 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
11994
11995static void
554794dc
SDJ
11996ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11997 int *argsp)
4c4b4cd2
PH
11998{
11999 switch (exp->elts[pc - 1].opcode)
12000 {
76a01679 12001 default:
4c4b4cd2
PH
12002 operator_length_standard (exp, pc, oplenp, argsp);
12003 break;
12004
12005#define OP_DEFN(op, len, args, binop) \
12006 case op: *oplenp = len; *argsp = args; break;
12007 ADA_OPERATORS;
12008#undef OP_DEFN
52ce6436
PH
12009
12010 case OP_AGGREGATE:
12011 *oplenp = 3;
12012 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12013 break;
12014
12015 case OP_CHOICES:
12016 *oplenp = 3;
12017 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12018 break;
4c4b4cd2
PH
12019 }
12020}
12021
c0201579
JK
12022/* Implementation of the exp_descriptor method operator_check. */
12023
12024static int
12025ada_operator_check (struct expression *exp, int pos,
12026 int (*objfile_func) (struct objfile *objfile, void *data),
12027 void *data)
12028{
12029 const union exp_element *const elts = exp->elts;
12030 struct type *type = NULL;
12031
12032 switch (elts[pos].opcode)
12033 {
12034 case UNOP_IN_RANGE:
12035 case UNOP_QUAL:
12036 type = elts[pos + 1].type;
12037 break;
12038
12039 default:
12040 return operator_check_standard (exp, pos, objfile_func, data);
12041 }
12042
12043 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12044
12045 if (type && TYPE_OBJFILE (type)
12046 && (*objfile_func) (TYPE_OBJFILE (type), data))
12047 return 1;
12048
12049 return 0;
12050}
12051
4c4b4cd2
PH
12052static char *
12053ada_op_name (enum exp_opcode opcode)
12054{
12055 switch (opcode)
12056 {
76a01679 12057 default:
4c4b4cd2 12058 return op_name_standard (opcode);
52ce6436 12059
4c4b4cd2
PH
12060#define OP_DEFN(op, len, args, binop) case op: return #op;
12061 ADA_OPERATORS;
12062#undef OP_DEFN
52ce6436
PH
12063
12064 case OP_AGGREGATE:
12065 return "OP_AGGREGATE";
12066 case OP_CHOICES:
12067 return "OP_CHOICES";
12068 case OP_NAME:
12069 return "OP_NAME";
4c4b4cd2
PH
12070 }
12071}
12072
12073/* As for operator_length, but assumes PC is pointing at the first
12074 element of the operator, and gives meaningful results only for the
52ce6436 12075 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12076
12077static void
76a01679
JB
12078ada_forward_operator_length (struct expression *exp, int pc,
12079 int *oplenp, int *argsp)
4c4b4cd2 12080{
76a01679 12081 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12082 {
12083 default:
12084 *oplenp = *argsp = 0;
12085 break;
52ce6436 12086
4c4b4cd2
PH
12087#define OP_DEFN(op, len, args, binop) \
12088 case op: *oplenp = len; *argsp = args; break;
12089 ADA_OPERATORS;
12090#undef OP_DEFN
52ce6436
PH
12091
12092 case OP_AGGREGATE:
12093 *oplenp = 3;
12094 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12095 break;
12096
12097 case OP_CHOICES:
12098 *oplenp = 3;
12099 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12100 break;
12101
12102 case OP_STRING:
12103 case OP_NAME:
12104 {
12105 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12106
52ce6436
PH
12107 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12108 *argsp = 0;
12109 break;
12110 }
4c4b4cd2
PH
12111 }
12112}
12113
12114static int
12115ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12116{
12117 enum exp_opcode op = exp->elts[elt].opcode;
12118 int oplen, nargs;
12119 int pc = elt;
12120 int i;
76a01679 12121
4c4b4cd2
PH
12122 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12123
76a01679 12124 switch (op)
4c4b4cd2 12125 {
76a01679 12126 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12127 case OP_ATR_FIRST:
12128 case OP_ATR_LAST:
12129 case OP_ATR_LENGTH:
12130 case OP_ATR_IMAGE:
12131 case OP_ATR_MAX:
12132 case OP_ATR_MIN:
12133 case OP_ATR_MODULUS:
12134 case OP_ATR_POS:
12135 case OP_ATR_SIZE:
12136 case OP_ATR_TAG:
12137 case OP_ATR_VAL:
12138 break;
12139
12140 case UNOP_IN_RANGE:
12141 case UNOP_QUAL:
323e0a4a
AC
12142 /* XXX: gdb_sprint_host_address, type_sprint */
12143 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12144 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12145 fprintf_filtered (stream, " (");
12146 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12147 fprintf_filtered (stream, ")");
12148 break;
12149 case BINOP_IN_BOUNDS:
52ce6436
PH
12150 fprintf_filtered (stream, " (%d)",
12151 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12152 break;
12153 case TERNOP_IN_RANGE:
12154 break;
12155
52ce6436
PH
12156 case OP_AGGREGATE:
12157 case OP_OTHERS:
12158 case OP_DISCRETE_RANGE:
12159 case OP_POSITIONAL:
12160 case OP_CHOICES:
12161 break;
12162
12163 case OP_NAME:
12164 case OP_STRING:
12165 {
12166 char *name = &exp->elts[elt + 2].string;
12167 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12168
52ce6436
PH
12169 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12170 break;
12171 }
12172
4c4b4cd2
PH
12173 default:
12174 return dump_subexp_body_standard (exp, stream, elt);
12175 }
12176
12177 elt += oplen;
12178 for (i = 0; i < nargs; i += 1)
12179 elt = dump_subexp (exp, stream, elt);
12180
12181 return elt;
12182}
12183
12184/* The Ada extension of print_subexp (q.v.). */
12185
76a01679
JB
12186static void
12187ada_print_subexp (struct expression *exp, int *pos,
12188 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12189{
52ce6436 12190 int oplen, nargs, i;
4c4b4cd2
PH
12191 int pc = *pos;
12192 enum exp_opcode op = exp->elts[pc].opcode;
12193
12194 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12195
52ce6436 12196 *pos += oplen;
4c4b4cd2
PH
12197 switch (op)
12198 {
12199 default:
52ce6436 12200 *pos -= oplen;
4c4b4cd2
PH
12201 print_subexp_standard (exp, pos, stream, prec);
12202 return;
12203
12204 case OP_VAR_VALUE:
4c4b4cd2
PH
12205 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12206 return;
12207
12208 case BINOP_IN_BOUNDS:
323e0a4a 12209 /* XXX: sprint_subexp */
4c4b4cd2 12210 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12211 fputs_filtered (" in ", stream);
4c4b4cd2 12212 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12213 fputs_filtered ("'range", stream);
4c4b4cd2 12214 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12215 fprintf_filtered (stream, "(%ld)",
12216 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12217 return;
12218
12219 case TERNOP_IN_RANGE:
4c4b4cd2 12220 if (prec >= PREC_EQUAL)
76a01679 12221 fputs_filtered ("(", stream);
323e0a4a 12222 /* XXX: sprint_subexp */
4c4b4cd2 12223 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12224 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12225 print_subexp (exp, pos, stream, PREC_EQUAL);
12226 fputs_filtered (" .. ", stream);
12227 print_subexp (exp, pos, stream, PREC_EQUAL);
12228 if (prec >= PREC_EQUAL)
76a01679
JB
12229 fputs_filtered (")", stream);
12230 return;
4c4b4cd2
PH
12231
12232 case OP_ATR_FIRST:
12233 case OP_ATR_LAST:
12234 case OP_ATR_LENGTH:
12235 case OP_ATR_IMAGE:
12236 case OP_ATR_MAX:
12237 case OP_ATR_MIN:
12238 case OP_ATR_MODULUS:
12239 case OP_ATR_POS:
12240 case OP_ATR_SIZE:
12241 case OP_ATR_TAG:
12242 case OP_ATR_VAL:
4c4b4cd2 12243 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12244 {
12245 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12246 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12247 *pos += 3;
12248 }
4c4b4cd2 12249 else
76a01679 12250 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12251 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12252 if (nargs > 1)
76a01679
JB
12253 {
12254 int tem;
5b4ee69b 12255
76a01679
JB
12256 for (tem = 1; tem < nargs; tem += 1)
12257 {
12258 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12259 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12260 }
12261 fputs_filtered (")", stream);
12262 }
4c4b4cd2 12263 return;
14f9c5c9 12264
4c4b4cd2 12265 case UNOP_QUAL:
4c4b4cd2
PH
12266 type_print (exp->elts[pc + 1].type, "", stream, 0);
12267 fputs_filtered ("'(", stream);
12268 print_subexp (exp, pos, stream, PREC_PREFIX);
12269 fputs_filtered (")", stream);
12270 return;
14f9c5c9 12271
4c4b4cd2 12272 case UNOP_IN_RANGE:
323e0a4a 12273 /* XXX: sprint_subexp */
4c4b4cd2 12274 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12275 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12276 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12277 return;
52ce6436
PH
12278
12279 case OP_DISCRETE_RANGE:
12280 print_subexp (exp, pos, stream, PREC_SUFFIX);
12281 fputs_filtered ("..", stream);
12282 print_subexp (exp, pos, stream, PREC_SUFFIX);
12283 return;
12284
12285 case OP_OTHERS:
12286 fputs_filtered ("others => ", stream);
12287 print_subexp (exp, pos, stream, PREC_SUFFIX);
12288 return;
12289
12290 case OP_CHOICES:
12291 for (i = 0; i < nargs-1; i += 1)
12292 {
12293 if (i > 0)
12294 fputs_filtered ("|", stream);
12295 print_subexp (exp, pos, stream, PREC_SUFFIX);
12296 }
12297 fputs_filtered (" => ", stream);
12298 print_subexp (exp, pos, stream, PREC_SUFFIX);
12299 return;
12300
12301 case OP_POSITIONAL:
12302 print_subexp (exp, pos, stream, PREC_SUFFIX);
12303 return;
12304
12305 case OP_AGGREGATE:
12306 fputs_filtered ("(", stream);
12307 for (i = 0; i < nargs; i += 1)
12308 {
12309 if (i > 0)
12310 fputs_filtered (", ", stream);
12311 print_subexp (exp, pos, stream, PREC_SUFFIX);
12312 }
12313 fputs_filtered (")", stream);
12314 return;
4c4b4cd2
PH
12315 }
12316}
14f9c5c9
AS
12317
12318/* Table mapping opcodes into strings for printing operators
12319 and precedences of the operators. */
12320
d2e4a39e
AS
12321static const struct op_print ada_op_print_tab[] = {
12322 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12323 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12324 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12325 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12326 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12327 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12328 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12329 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12330 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12331 {">=", BINOP_GEQ, PREC_ORDER, 0},
12332 {">", BINOP_GTR, PREC_ORDER, 0},
12333 {"<", BINOP_LESS, PREC_ORDER, 0},
12334 {">>", BINOP_RSH, PREC_SHIFT, 0},
12335 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12336 {"+", BINOP_ADD, PREC_ADD, 0},
12337 {"-", BINOP_SUB, PREC_ADD, 0},
12338 {"&", BINOP_CONCAT, PREC_ADD, 0},
12339 {"*", BINOP_MUL, PREC_MUL, 0},
12340 {"/", BINOP_DIV, PREC_MUL, 0},
12341 {"rem", BINOP_REM, PREC_MUL, 0},
12342 {"mod", BINOP_MOD, PREC_MUL, 0},
12343 {"**", BINOP_EXP, PREC_REPEAT, 0},
12344 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12345 {"-", UNOP_NEG, PREC_PREFIX, 0},
12346 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12347 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12348 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12349 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12350 {".all", UNOP_IND, PREC_SUFFIX, 1},
12351 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12352 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12353 {NULL, 0, 0, 0}
14f9c5c9
AS
12354};
12355\f
72d5681a
PH
12356enum ada_primitive_types {
12357 ada_primitive_type_int,
12358 ada_primitive_type_long,
12359 ada_primitive_type_short,
12360 ada_primitive_type_char,
12361 ada_primitive_type_float,
12362 ada_primitive_type_double,
12363 ada_primitive_type_void,
12364 ada_primitive_type_long_long,
12365 ada_primitive_type_long_double,
12366 ada_primitive_type_natural,
12367 ada_primitive_type_positive,
12368 ada_primitive_type_system_address,
12369 nr_ada_primitive_types
12370};
6c038f32
PH
12371
12372static void
d4a9a881 12373ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12374 struct language_arch_info *lai)
12375{
d4a9a881 12376 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12377
72d5681a 12378 lai->primitive_type_vector
d4a9a881 12379 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12380 struct type *);
e9bb382b
UW
12381
12382 lai->primitive_type_vector [ada_primitive_type_int]
12383 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12384 0, "integer");
12385 lai->primitive_type_vector [ada_primitive_type_long]
12386 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12387 0, "long_integer");
12388 lai->primitive_type_vector [ada_primitive_type_short]
12389 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12390 0, "short_integer");
12391 lai->string_char_type
12392 = lai->primitive_type_vector [ada_primitive_type_char]
12393 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12394 lai->primitive_type_vector [ada_primitive_type_float]
12395 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12396 "float", NULL);
12397 lai->primitive_type_vector [ada_primitive_type_double]
12398 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12399 "long_float", NULL);
12400 lai->primitive_type_vector [ada_primitive_type_long_long]
12401 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12402 0, "long_long_integer");
12403 lai->primitive_type_vector [ada_primitive_type_long_double]
12404 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12405 "long_long_float", NULL);
12406 lai->primitive_type_vector [ada_primitive_type_natural]
12407 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12408 0, "natural");
12409 lai->primitive_type_vector [ada_primitive_type_positive]
12410 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12411 0, "positive");
12412 lai->primitive_type_vector [ada_primitive_type_void]
12413 = builtin->builtin_void;
12414
12415 lai->primitive_type_vector [ada_primitive_type_system_address]
12416 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12417 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12418 = "system__address";
fbb06eb1 12419
47e729a8 12420 lai->bool_type_symbol = NULL;
fbb06eb1 12421 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12422}
6c038f32
PH
12423\f
12424 /* Language vector */
12425
12426/* Not really used, but needed in the ada_language_defn. */
12427
12428static void
6c7a06a3 12429emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12430{
6c7a06a3 12431 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12432}
12433
12434static int
12435parse (void)
12436{
12437 warnings_issued = 0;
12438 return ada_parse ();
12439}
12440
12441static const struct exp_descriptor ada_exp_descriptor = {
12442 ada_print_subexp,
12443 ada_operator_length,
c0201579 12444 ada_operator_check,
6c038f32
PH
12445 ada_op_name,
12446 ada_dump_subexp_body,
12447 ada_evaluate_subexp
12448};
12449
1a119f36 12450/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
12451 for Ada. */
12452
1a119f36
JB
12453static symbol_name_cmp_ftype
12454ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
12455{
12456 if (should_use_wild_match (lookup_name))
12457 return wild_match;
12458 else
12459 return compare_names;
12460}
12461
a5ee536b
JB
12462/* Implement the "la_read_var_value" language_defn method for Ada. */
12463
12464static struct value *
12465ada_read_var_value (struct symbol *var, struct frame_info *frame)
12466{
12467 struct block *frame_block = NULL;
12468 struct symbol *renaming_sym = NULL;
12469
12470 /* The only case where default_read_var_value is not sufficient
12471 is when VAR is a renaming... */
12472 if (frame)
12473 frame_block = get_frame_block (frame, NULL);
12474 if (frame_block)
12475 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12476 if (renaming_sym != NULL)
12477 return ada_read_renaming_var_value (renaming_sym, frame_block);
12478
12479 /* This is a typical case where we expect the default_read_var_value
12480 function to work. */
12481 return default_read_var_value (var, frame);
12482}
12483
6c038f32
PH
12484const struct language_defn ada_language_defn = {
12485 "ada", /* Language name */
12486 language_ada,
6c038f32
PH
12487 range_check_off,
12488 type_check_off,
12489 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12490 that's not quite what this means. */
6c038f32 12491 array_row_major,
9a044a89 12492 macro_expansion_no,
6c038f32
PH
12493 &ada_exp_descriptor,
12494 parse,
12495 ada_error,
12496 resolve,
12497 ada_printchar, /* Print a character constant */
12498 ada_printstr, /* Function to print string constant */
12499 emit_char, /* Function to print single char (not used) */
6c038f32 12500 ada_print_type, /* Print a type using appropriate syntax */
be942545 12501 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12502 ada_val_print, /* Print a value using appropriate syntax */
12503 ada_value_print, /* Print a top-level value */
a5ee536b 12504 ada_read_var_value, /* la_read_var_value */
6c038f32 12505 NULL, /* Language specific skip_trampoline */
2b2d9e11 12506 NULL, /* name_of_this */
6c038f32
PH
12507 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12508 basic_lookup_transparent_type, /* lookup_transparent_type */
12509 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12510 NULL, /* Language specific
12511 class_name_from_physname */
6c038f32
PH
12512 ada_op_print_tab, /* expression operators for printing */
12513 0, /* c-style arrays */
12514 1, /* String lower bound */
6c038f32 12515 ada_get_gdb_completer_word_break_characters,
41d27058 12516 ada_make_symbol_completion_list,
72d5681a 12517 ada_language_arch_info,
e79af960 12518 ada_print_array_index,
41f1b697 12519 default_pass_by_reference,
ae6a3a4c 12520 c_get_string,
1a119f36 12521 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 12522 ada_iterate_over_symbols,
6c038f32
PH
12523 LANG_MAGIC
12524};
12525
2c0b251b
PA
12526/* Provide a prototype to silence -Wmissing-prototypes. */
12527extern initialize_file_ftype _initialize_ada_language;
12528
5bf03f13
JB
12529/* Command-list for the "set/show ada" prefix command. */
12530static struct cmd_list_element *set_ada_list;
12531static struct cmd_list_element *show_ada_list;
12532
12533/* Implement the "set ada" prefix command. */
12534
12535static void
12536set_ada_command (char *arg, int from_tty)
12537{
12538 printf_unfiltered (_(\
12539"\"set ada\" must be followed by the name of a setting.\n"));
12540 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12541}
12542
12543/* Implement the "show ada" prefix command. */
12544
12545static void
12546show_ada_command (char *args, int from_tty)
12547{
12548 cmd_show_list (show_ada_list, from_tty, "");
12549}
12550
2060206e
PA
12551static void
12552initialize_ada_catchpoint_ops (void)
12553{
12554 struct breakpoint_ops *ops;
12555
12556 initialize_breakpoint_ops ();
12557
12558 ops = &catch_exception_breakpoint_ops;
12559 *ops = bkpt_breakpoint_ops;
12560 ops->dtor = dtor_catch_exception;
12561 ops->allocate_location = allocate_location_catch_exception;
12562 ops->re_set = re_set_catch_exception;
12563 ops->check_status = check_status_catch_exception;
12564 ops->print_it = print_it_catch_exception;
12565 ops->print_one = print_one_catch_exception;
12566 ops->print_mention = print_mention_catch_exception;
12567 ops->print_recreate = print_recreate_catch_exception;
12568
12569 ops = &catch_exception_unhandled_breakpoint_ops;
12570 *ops = bkpt_breakpoint_ops;
12571 ops->dtor = dtor_catch_exception_unhandled;
12572 ops->allocate_location = allocate_location_catch_exception_unhandled;
12573 ops->re_set = re_set_catch_exception_unhandled;
12574 ops->check_status = check_status_catch_exception_unhandled;
12575 ops->print_it = print_it_catch_exception_unhandled;
12576 ops->print_one = print_one_catch_exception_unhandled;
12577 ops->print_mention = print_mention_catch_exception_unhandled;
12578 ops->print_recreate = print_recreate_catch_exception_unhandled;
12579
12580 ops = &catch_assert_breakpoint_ops;
12581 *ops = bkpt_breakpoint_ops;
12582 ops->dtor = dtor_catch_assert;
12583 ops->allocate_location = allocate_location_catch_assert;
12584 ops->re_set = re_set_catch_assert;
12585 ops->check_status = check_status_catch_assert;
12586 ops->print_it = print_it_catch_assert;
12587 ops->print_one = print_one_catch_assert;
12588 ops->print_mention = print_mention_catch_assert;
12589 ops->print_recreate = print_recreate_catch_assert;
12590}
12591
d2e4a39e 12592void
6c038f32 12593_initialize_ada_language (void)
14f9c5c9 12594{
6c038f32
PH
12595 add_language (&ada_language_defn);
12596
2060206e
PA
12597 initialize_ada_catchpoint_ops ();
12598
5bf03f13
JB
12599 add_prefix_cmd ("ada", no_class, set_ada_command,
12600 _("Prefix command for changing Ada-specfic settings"),
12601 &set_ada_list, "set ada ", 0, &setlist);
12602
12603 add_prefix_cmd ("ada", no_class, show_ada_command,
12604 _("Generic command for showing Ada-specific settings."),
12605 &show_ada_list, "show ada ", 0, &showlist);
12606
12607 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12608 &trust_pad_over_xvs, _("\
12609Enable or disable an optimization trusting PAD types over XVS types"), _("\
12610Show whether an optimization trusting PAD types over XVS types is activated"),
12611 _("\
12612This is related to the encoding used by the GNAT compiler. The debugger\n\
12613should normally trust the contents of PAD types, but certain older versions\n\
12614of GNAT have a bug that sometimes causes the information in the PAD type\n\
12615to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12616work around this bug. It is always safe to turn this option \"off\", but\n\
12617this incurs a slight performance penalty, so it is recommended to NOT change\n\
12618this option to \"off\" unless necessary."),
12619 NULL, NULL, &set_ada_list, &show_ada_list);
12620
9ac4176b
PA
12621 add_catch_command ("exception", _("\
12622Catch Ada exceptions, when raised.\n\
12623With an argument, catch only exceptions with the given name."),
12624 catch_ada_exception_command,
12625 NULL,
12626 CATCH_PERMANENT,
12627 CATCH_TEMPORARY);
12628 add_catch_command ("assert", _("\
12629Catch failed Ada assertions, when raised.\n\
12630With an argument, catch only exceptions with the given name."),
12631 catch_assert_command,
12632 NULL,
12633 CATCH_PERMANENT,
12634 CATCH_TEMPORARY);
12635
6c038f32 12636 varsize_limit = 65536;
6c038f32
PH
12637
12638 obstack_init (&symbol_list_obstack);
12639
12640 decoded_names_store = htab_create_alloc
12641 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12642 NULL, xcalloc, xfree);
6b69afc4 12643
e802dbe0
JB
12644 /* Setup per-inferior data. */
12645 observer_attach_inferior_exit (ada_inferior_exit);
12646 ada_inferior_data
12647 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 12648}
This page took 1.642699 seconds and 4 git commands to generate.