Synthesize array descriptors with -fgnat-encodings=minimal
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
4de283e4 52
40bc484c 53#include "value.h"
4de283e4
TT
54#include "mi/mi-common.h"
55#include "arch-utils.h"
56#include "cli/cli-utils.h"
268a13a5
TT
57#include "gdbsupport/function-view.h"
58#include "gdbsupport/byte-vector.h"
4de283e4 59#include <algorithm>
ccefe4c4 60
4c4b4cd2 61/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 62 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
63 Copied from valarith.c. */
64
65#ifndef TRUNCATION_TOWARDS_ZERO
66#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67#endif
68
d2e4a39e 69static struct type *desc_base_type (struct type *);
14f9c5c9 70
d2e4a39e 71static struct type *desc_bounds_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct value *desc_bounds (struct value *);
14f9c5c9 74
d2e4a39e 75static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 78
556bdfd4 79static struct type *desc_data_target_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_data (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 88
d2e4a39e 89static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static struct type *desc_index_type (struct type *, int);
14f9c5c9 94
d2e4a39e 95static int desc_arity (struct type *);
14f9c5c9 96
d2e4a39e 97static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
4c4b4cd2 103static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
22cee43f 108static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
22cee43f 111
d12307c1 112static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
dda83cd7 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
d12307c1 119static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 120
e9d9f57e 121static struct value *resolve_subexp (expression_up *, int *, int,
dda83cd7 122 struct type *, int,
699bd4cf 123 innermost_block_tracker *);
14f9c5c9 124
e9d9f57e 125static void replace_operator_with_call (expression_up *, int, int, int,
dda83cd7 126 struct symbol *, const struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
a121b7c1 130static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
131
132static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 133
d2e4a39e 134static int numeric_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int integer_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int scalar_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int discrete_type_p (struct type *);
14f9c5c9 141
a121b7c1 142static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
dda83cd7 143 int, int);
4c4b4cd2 144
d2e4a39e 145static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 146
b4ba55a1 147static struct type *ada_find_parallel_type_with_name (struct type *,
dda83cd7 148 const char *);
b4ba55a1 149
d2e4a39e 150static int is_dynamic_field (struct type *, int);
14f9c5c9 151
10a2c479 152static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 153 const gdb_byte *,
dda83cd7 154 CORE_ADDR, struct value *);
4c4b4cd2
PH
155
156static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 157
28c85d6c 158static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 159
d2e4a39e 160static struct type *to_static_fixed_type (struct type *);
f192137b 161static struct type *static_unwrap_type (struct type *type);
14f9c5c9 162
d2e4a39e 163static struct value *unwrap_value (struct value *);
14f9c5c9 164
ad82864c 165static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 166
ad82864c 167static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 168
ad82864c
JB
169static long decode_packed_array_bitsize (struct type *);
170
171static struct value *decode_constrained_packed_array (struct value *);
172
ad82864c 173static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 174
d2e4a39e 175static struct value *value_subscript_packed (struct value *, int,
dda83cd7 176 struct value **);
14f9c5c9 177
4c4b4cd2 178static struct value *coerce_unspec_val_to_type (struct value *,
dda83cd7 179 struct type *);
14f9c5c9 180
d2e4a39e 181static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 182
d2e4a39e 183static int equiv_types (struct type *, struct type *);
14f9c5c9 184
d2e4a39e 185static int is_name_suffix (const char *);
14f9c5c9 186
59c8a30b 187static int advance_wild_match (const char **, const char *, char);
73589123 188
b5ec771e 189static bool wild_match (const char *name, const char *patn);
14f9c5c9 190
d2e4a39e 191static struct value *ada_coerce_ref (struct value *);
14f9c5c9 192
4c4b4cd2
PH
193static LONGEST pos_atr (struct value *);
194
3cb382c9 195static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 196
53a47a3e
TT
197static struct value *val_atr (struct type *, LONGEST);
198
d2e4a39e 199static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 200
4c4b4cd2 201static struct symbol *standard_lookup (const char *, const struct block *,
dda83cd7 202 domain_enum);
14f9c5c9 203
108d56a4 204static struct value *ada_search_struct_field (const char *, struct value *, int,
dda83cd7 205 struct type *);
4c4b4cd2 206
0d5cff50 207static int find_struct_field (const char *, struct type *, int,
dda83cd7 208 struct type **, int *, int *, int *, int *);
4c4b4cd2 209
d12307c1 210static int ada_resolve_function (struct block_symbol *, int,
dda83cd7
SM
211 struct value **, int, const char *,
212 struct type *, int);
4c4b4cd2 213
4c4b4cd2
PH
214static int ada_is_direct_array_type (struct type *);
215
52ce6436
PH
216static struct value *ada_index_struct_field (int, struct value *, int,
217 struct type *);
218
219static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
220 struct expression *,
221 int *, enum noside);
52ce6436
PH
222
223static void aggregate_assign_from_choices (struct value *, struct value *,
224 struct expression *,
225 int *, LONGEST *, int *,
226 int, LONGEST, LONGEST);
227
228static void aggregate_assign_positional (struct value *, struct value *,
229 struct expression *,
230 int *, LONGEST *, int *, int,
231 LONGEST, LONGEST);
232
233
234static void aggregate_assign_others (struct value *, struct value *,
235 struct expression *,
236 int *, LONGEST *, int, LONGEST, LONGEST);
237
238
239static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
240
241
242static struct value *ada_evaluate_subexp (struct type *, struct expression *,
243 int *, enum noside);
244
245static void ada_forward_operator_length (struct expression *, int, int *,
246 int *);
852dff6c
JB
247
248static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
249
250static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
251 (const lookup_name_info &lookup_name);
252
4c4b4cd2
PH
253\f
254
ee01b665
JB
255/* The result of a symbol lookup to be stored in our symbol cache. */
256
257struct cache_entry
258{
259 /* The name used to perform the lookup. */
260 const char *name;
261 /* The namespace used during the lookup. */
fe978cb0 262 domain_enum domain;
ee01b665
JB
263 /* The symbol returned by the lookup, or NULL if no matching symbol
264 was found. */
265 struct symbol *sym;
266 /* The block where the symbol was found, or NULL if no matching
267 symbol was found. */
268 const struct block *block;
269 /* A pointer to the next entry with the same hash. */
270 struct cache_entry *next;
271};
272
273/* The Ada symbol cache, used to store the result of Ada-mode symbol
274 lookups in the course of executing the user's commands.
275
276 The cache is implemented using a simple, fixed-sized hash.
277 The size is fixed on the grounds that there are not likely to be
278 all that many symbols looked up during any given session, regardless
279 of the size of the symbol table. If we decide to go to a resizable
280 table, let's just use the stuff from libiberty instead. */
281
282#define HASH_SIZE 1009
283
284struct ada_symbol_cache
285{
286 /* An obstack used to store the entries in our cache. */
287 struct obstack cache_space;
288
289 /* The root of the hash table used to implement our symbol cache. */
290 struct cache_entry *root[HASH_SIZE];
291};
292
293static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 294
4c4b4cd2 295/* Maximum-sized dynamic type. */
14f9c5c9
AS
296static unsigned int varsize_limit;
297
67cb5b2d 298static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
299#ifdef VMS
300 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
301#else
14f9c5c9 302 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 303#endif
14f9c5c9 304
4c4b4cd2 305/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 306static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 307 = "__gnat_ada_main_program_name";
14f9c5c9 308
4c4b4cd2
PH
309/* Limit on the number of warnings to raise per expression evaluation. */
310static int warning_limit = 2;
311
312/* Number of warning messages issued; reset to 0 by cleanups after
313 expression evaluation. */
314static int warnings_issued = 0;
315
27087b7f 316static const char * const known_runtime_file_name_patterns[] = {
4c4b4cd2
PH
317 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
318};
319
27087b7f 320static const char * const known_auxiliary_function_name_patterns[] = {
4c4b4cd2
PH
321 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
322};
323
c6044dd1
JB
324/* Maintenance-related settings for this module. */
325
326static struct cmd_list_element *maint_set_ada_cmdlist;
327static struct cmd_list_element *maint_show_ada_cmdlist;
328
c6044dd1
JB
329/* The "maintenance ada set/show ignore-descriptive-type" value. */
330
491144b5 331static bool ada_ignore_descriptive_types_p = false;
c6044dd1 332
e802dbe0
JB
333 /* Inferior-specific data. */
334
335/* Per-inferior data for this module. */
336
337struct ada_inferior_data
338{
339 /* The ada__tags__type_specific_data type, which is used when decoding
340 tagged types. With older versions of GNAT, this type was directly
341 accessible through a component ("tsd") in the object tag. But this
342 is no longer the case, so we cache it for each inferior. */
f37b313d 343 struct type *tsd_type = nullptr;
3eecfa55
JB
344
345 /* The exception_support_info data. This data is used to determine
346 how to implement support for Ada exception catchpoints in a given
347 inferior. */
f37b313d 348 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
349};
350
351/* Our key to this module's inferior data. */
f37b313d 352static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
353
354/* Return our inferior data for the given inferior (INF).
355
356 This function always returns a valid pointer to an allocated
357 ada_inferior_data structure. If INF's inferior data has not
358 been previously set, this functions creates a new one with all
359 fields set to zero, sets INF's inferior to it, and then returns
360 a pointer to that newly allocated ada_inferior_data. */
361
362static struct ada_inferior_data *
363get_ada_inferior_data (struct inferior *inf)
364{
365 struct ada_inferior_data *data;
366
f37b313d 367 data = ada_inferior_data.get (inf);
e802dbe0 368 if (data == NULL)
f37b313d 369 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
370
371 return data;
372}
373
374/* Perform all necessary cleanups regarding our module's inferior data
375 that is required after the inferior INF just exited. */
376
377static void
378ada_inferior_exit (struct inferior *inf)
379{
f37b313d 380 ada_inferior_data.clear (inf);
e802dbe0
JB
381}
382
ee01b665
JB
383
384 /* program-space-specific data. */
385
386/* This module's per-program-space data. */
387struct ada_pspace_data
388{
f37b313d
TT
389 ~ada_pspace_data ()
390 {
391 if (sym_cache != NULL)
392 ada_free_symbol_cache (sym_cache);
393 }
394
ee01b665 395 /* The Ada symbol cache. */
f37b313d 396 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
397};
398
399/* Key to our per-program-space data. */
f37b313d 400static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
401
402/* Return this module's data for the given program space (PSPACE).
403 If not is found, add a zero'ed one now.
404
405 This function always returns a valid object. */
406
407static struct ada_pspace_data *
408get_ada_pspace_data (struct program_space *pspace)
409{
410 struct ada_pspace_data *data;
411
f37b313d 412 data = ada_pspace_data_handle.get (pspace);
ee01b665 413 if (data == NULL)
f37b313d 414 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
415
416 return data;
417}
418
dda83cd7 419 /* Utilities */
4c4b4cd2 420
720d1a40 421/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 422 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
423
424 Normally, we really expect a typedef type to only have 1 typedef layer.
425 In other words, we really expect the target type of a typedef type to be
426 a non-typedef type. This is particularly true for Ada units, because
427 the language does not have a typedef vs not-typedef distinction.
428 In that respect, the Ada compiler has been trying to eliminate as many
429 typedef definitions in the debugging information, since they generally
430 do not bring any extra information (we still use typedef under certain
431 circumstances related mostly to the GNAT encoding).
432
433 Unfortunately, we have seen situations where the debugging information
434 generated by the compiler leads to such multiple typedef layers. For
435 instance, consider the following example with stabs:
436
437 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
438 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
439
440 This is an error in the debugging information which causes type
441 pck__float_array___XUP to be defined twice, and the second time,
442 it is defined as a typedef of a typedef.
443
444 This is on the fringe of legality as far as debugging information is
445 concerned, and certainly unexpected. But it is easy to handle these
446 situations correctly, so we can afford to be lenient in this case. */
447
448static struct type *
449ada_typedef_target_type (struct type *type)
450{
78134374 451 while (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
452 type = TYPE_TARGET_TYPE (type);
453 return type;
454}
455
41d27058
JB
456/* Given DECODED_NAME a string holding a symbol name in its
457 decoded form (ie using the Ada dotted notation), returns
458 its unqualified name. */
459
460static const char *
461ada_unqualified_name (const char *decoded_name)
462{
2b0f535a
JB
463 const char *result;
464
465 /* If the decoded name starts with '<', it means that the encoded
466 name does not follow standard naming conventions, and thus that
467 it is not your typical Ada symbol name. Trying to unqualify it
468 is therefore pointless and possibly erroneous. */
469 if (decoded_name[0] == '<')
470 return decoded_name;
471
472 result = strrchr (decoded_name, '.');
41d27058
JB
473 if (result != NULL)
474 result++; /* Skip the dot... */
475 else
476 result = decoded_name;
477
478 return result;
479}
480
39e7af3e 481/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 482
39e7af3e 483static std::string
41d27058
JB
484add_angle_brackets (const char *str)
485{
39e7af3e 486 return string_printf ("<%s>", str);
41d27058 487}
96d887e8 488
de93309a
SM
489/* Assuming V points to an array of S objects, make sure that it contains at
490 least M objects, updating V and S as necessary. */
491
492#define GROW_VECT(v, s, m) \
493 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
494
f27cf670 495/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 496 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 497 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 498
de93309a 499static void *
f27cf670 500grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 501{
d2e4a39e
AS
502 if (*size < min_size)
503 {
504 *size *= 2;
505 if (*size < min_size)
dda83cd7 506 *size = min_size;
f27cf670 507 vect = xrealloc (vect, *size * element_size);
d2e4a39e 508 }
f27cf670 509 return vect;
14f9c5c9
AS
510}
511
512/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 513 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
514
515static int
ebf56fd3 516field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
517{
518 int len = strlen (target);
5b4ee69b 519
d2e4a39e 520 return
4c4b4cd2
PH
521 (strncmp (field_name, target, len) == 0
522 && (field_name[len] == '\0'
dda83cd7
SM
523 || (startswith (field_name + len, "___")
524 && strcmp (field_name + strlen (field_name) - 6,
525 "___XVN") != 0)));
14f9c5c9
AS
526}
527
528
872c8b51
JB
529/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
530 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
531 and return its index. This function also handles fields whose name
532 have ___ suffixes because the compiler sometimes alters their name
533 by adding such a suffix to represent fields with certain constraints.
534 If the field could not be found, return a negative number if
535 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
536
537int
538ada_get_field_index (const struct type *type, const char *field_name,
dda83cd7 539 int maybe_missing)
4c4b4cd2
PH
540{
541 int fieldno;
872c8b51
JB
542 struct type *struct_type = check_typedef ((struct type *) type);
543
1f704f76 544 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
872c8b51 545 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
546 return fieldno;
547
548 if (!maybe_missing)
323e0a4a 549 error (_("Unable to find field %s in struct %s. Aborting"),
dda83cd7 550 field_name, struct_type->name ());
4c4b4cd2
PH
551
552 return -1;
553}
554
555/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
556
557int
d2e4a39e 558ada_name_prefix_len (const char *name)
14f9c5c9
AS
559{
560 if (name == NULL)
561 return 0;
d2e4a39e 562 else
14f9c5c9 563 {
d2e4a39e 564 const char *p = strstr (name, "___");
5b4ee69b 565
14f9c5c9 566 if (p == NULL)
dda83cd7 567 return strlen (name);
14f9c5c9 568 else
dda83cd7 569 return p - name;
14f9c5c9
AS
570 }
571}
572
4c4b4cd2
PH
573/* Return non-zero if SUFFIX is a suffix of STR.
574 Return zero if STR is null. */
575
14f9c5c9 576static int
d2e4a39e 577is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
578{
579 int len1, len2;
5b4ee69b 580
14f9c5c9
AS
581 if (str == NULL)
582 return 0;
583 len1 = strlen (str);
584 len2 = strlen (suffix);
4c4b4cd2 585 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
586}
587
4c4b4cd2
PH
588/* The contents of value VAL, treated as a value of type TYPE. The
589 result is an lval in memory if VAL is. */
14f9c5c9 590
d2e4a39e 591static struct value *
4c4b4cd2 592coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 593{
61ee279c 594 type = ada_check_typedef (type);
df407dfe 595 if (value_type (val) == type)
4c4b4cd2 596 return val;
d2e4a39e 597 else
14f9c5c9 598 {
4c4b4cd2
PH
599 struct value *result;
600
601 /* Make sure that the object size is not unreasonable before
dda83cd7 602 trying to allocate some memory for it. */
c1b5a1a6 603 ada_ensure_varsize_limit (type);
4c4b4cd2 604
41e8491f 605 if (value_lazy (val)
dda83cd7 606 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
41e8491f
JK
607 result = allocate_value_lazy (type);
608 else
609 {
610 result = allocate_value (type);
9a0dc9e3 611 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 612 }
74bcbdf3 613 set_value_component_location (result, val);
9bbda503
AC
614 set_value_bitsize (result, value_bitsize (val));
615 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
616 if (VALUE_LVAL (result) == lval_memory)
617 set_value_address (result, value_address (val));
14f9c5c9
AS
618 return result;
619 }
620}
621
fc1a4b47
AC
622static const gdb_byte *
623cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
624{
625 if (valaddr == NULL)
626 return NULL;
627 else
628 return valaddr + offset;
629}
630
631static CORE_ADDR
ebf56fd3 632cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
633{
634 if (address == 0)
635 return 0;
d2e4a39e 636 else
14f9c5c9
AS
637 return address + offset;
638}
639
4c4b4cd2
PH
640/* Issue a warning (as for the definition of warning in utils.c, but
641 with exactly one argument rather than ...), unless the limit on the
642 number of warnings has passed during the evaluation of the current
643 expression. */
a2249542 644
77109804
AC
645/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
646 provided by "complaint". */
a0b31db1 647static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 648
14f9c5c9 649static void
a2249542 650lim_warning (const char *format, ...)
14f9c5c9 651{
a2249542 652 va_list args;
a2249542 653
5b4ee69b 654 va_start (args, format);
4c4b4cd2
PH
655 warnings_issued += 1;
656 if (warnings_issued <= warning_limit)
a2249542
MK
657 vwarning (format, args);
658
659 va_end (args);
4c4b4cd2
PH
660}
661
714e53ab
PH
662/* Issue an error if the size of an object of type T is unreasonable,
663 i.e. if it would be a bad idea to allocate a value of this type in
664 GDB. */
665
c1b5a1a6
JB
666void
667ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
668{
669 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 670 error (_("object size is larger than varsize-limit"));
714e53ab
PH
671}
672
0963b4bd 673/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 674static LONGEST
c3e5cd34 675max_of_size (int size)
4c4b4cd2 676{
76a01679 677 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 678
76a01679 679 return top_bit | (top_bit - 1);
4c4b4cd2
PH
680}
681
0963b4bd 682/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 683static LONGEST
c3e5cd34 684min_of_size (int size)
4c4b4cd2 685{
c3e5cd34 686 return -max_of_size (size) - 1;
4c4b4cd2
PH
687}
688
0963b4bd 689/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 690static ULONGEST
c3e5cd34 691umax_of_size (int size)
4c4b4cd2 692{
76a01679 693 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 694
76a01679 695 return top_bit | (top_bit - 1);
4c4b4cd2
PH
696}
697
0963b4bd 698/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
699static LONGEST
700max_of_type (struct type *t)
4c4b4cd2 701{
c6d940a9 702 if (t->is_unsigned ())
c3e5cd34
PH
703 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
704 else
705 return max_of_size (TYPE_LENGTH (t));
706}
707
0963b4bd 708/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
709static LONGEST
710min_of_type (struct type *t)
711{
c6d940a9 712 if (t->is_unsigned ())
c3e5cd34
PH
713 return 0;
714 else
715 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
716}
717
718/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
719LONGEST
720ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 721{
b249d2c2 722 type = resolve_dynamic_type (type, {}, 0);
78134374 723 switch (type->code ())
4c4b4cd2
PH
724 {
725 case TYPE_CODE_RANGE:
d1fd641e
SM
726 {
727 const dynamic_prop &high = type->bounds ()->high;
728
729 if (high.kind () == PROP_CONST)
730 return high.const_val ();
731 else
732 {
733 gdb_assert (high.kind () == PROP_UNDEFINED);
734
735 /* This happens when trying to evaluate a type's dynamic bound
736 without a live target. There is nothing relevant for us to
737 return here, so return 0. */
738 return 0;
739 }
740 }
4c4b4cd2 741 case TYPE_CODE_ENUM:
1f704f76 742 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
690cc4eb
PH
743 case TYPE_CODE_BOOL:
744 return 1;
745 case TYPE_CODE_CHAR:
76a01679 746 case TYPE_CODE_INT:
690cc4eb 747 return max_of_type (type);
4c4b4cd2 748 default:
43bbcdc2 749 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
750 }
751}
752
14e75d8e 753/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
754LONGEST
755ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 756{
b249d2c2 757 type = resolve_dynamic_type (type, {}, 0);
78134374 758 switch (type->code ())
4c4b4cd2
PH
759 {
760 case TYPE_CODE_RANGE:
d1fd641e
SM
761 {
762 const dynamic_prop &low = type->bounds ()->low;
763
764 if (low.kind () == PROP_CONST)
765 return low.const_val ();
766 else
767 {
768 gdb_assert (low.kind () == PROP_UNDEFINED);
769
770 /* This happens when trying to evaluate a type's dynamic bound
771 without a live target. There is nothing relevant for us to
772 return here, so return 0. */
773 return 0;
774 }
775 }
4c4b4cd2 776 case TYPE_CODE_ENUM:
14e75d8e 777 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
778 case TYPE_CODE_BOOL:
779 return 0;
780 case TYPE_CODE_CHAR:
76a01679 781 case TYPE_CODE_INT:
690cc4eb 782 return min_of_type (type);
4c4b4cd2 783 default:
43bbcdc2 784 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
785 }
786}
787
788/* The identity on non-range types. For range types, the underlying
76a01679 789 non-range scalar type. */
4c4b4cd2
PH
790
791static struct type *
18af8284 792get_base_type (struct type *type)
4c4b4cd2 793{
78134374 794 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 795 {
76a01679 796 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
dda83cd7 797 return type;
4c4b4cd2
PH
798 type = TYPE_TARGET_TYPE (type);
799 }
800 return type;
14f9c5c9 801}
41246937
JB
802
803/* Return a decoded version of the given VALUE. This means returning
804 a value whose type is obtained by applying all the GNAT-specific
85102364 805 encodings, making the resulting type a static but standard description
41246937
JB
806 of the initial type. */
807
808struct value *
809ada_get_decoded_value (struct value *value)
810{
811 struct type *type = ada_check_typedef (value_type (value));
812
813 if (ada_is_array_descriptor_type (type)
814 || (ada_is_constrained_packed_array_type (type)
dda83cd7 815 && type->code () != TYPE_CODE_PTR))
41246937 816 {
78134374 817 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
dda83cd7 818 value = ada_coerce_to_simple_array_ptr (value);
41246937 819 else
dda83cd7 820 value = ada_coerce_to_simple_array (value);
41246937
JB
821 }
822 else
823 value = ada_to_fixed_value (value);
824
825 return value;
826}
827
828/* Same as ada_get_decoded_value, but with the given TYPE.
829 Because there is no associated actual value for this type,
830 the resulting type might be a best-effort approximation in
831 the case of dynamic types. */
832
833struct type *
834ada_get_decoded_type (struct type *type)
835{
836 type = to_static_fixed_type (type);
837 if (ada_is_constrained_packed_array_type (type))
838 type = ada_coerce_to_simple_array_type (type);
839 return type;
840}
841
4c4b4cd2 842\f
76a01679 843
dda83cd7 844 /* Language Selection */
14f9c5c9
AS
845
846/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 847 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 848
de93309a 849static enum language
ccefe4c4 850ada_update_initial_language (enum language lang)
14f9c5c9 851{
cafb3438 852 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 853 return language_ada;
14f9c5c9
AS
854
855 return lang;
856}
96d887e8
PH
857
858/* If the main procedure is written in Ada, then return its name.
859 The result is good until the next call. Return NULL if the main
860 procedure doesn't appear to be in Ada. */
861
862char *
863ada_main_name (void)
864{
3b7344d5 865 struct bound_minimal_symbol msym;
e83e4e24 866 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 867
96d887e8
PH
868 /* For Ada, the name of the main procedure is stored in a specific
869 string constant, generated by the binder. Look for that symbol,
870 extract its address, and then read that string. If we didn't find
871 that string, then most probably the main procedure is not written
872 in Ada. */
873 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
874
3b7344d5 875 if (msym.minsym != NULL)
96d887e8 876 {
66920317 877 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 878 if (main_program_name_addr == 0)
dda83cd7 879 error (_("Invalid address for Ada main program name."));
96d887e8 880
66920317 881 main_program_name = target_read_string (main_program_name_addr, 1024);
e83e4e24 882 return main_program_name.get ();
96d887e8
PH
883 }
884
885 /* The main procedure doesn't seem to be in Ada. */
886 return NULL;
887}
14f9c5c9 888\f
dda83cd7 889 /* Symbols */
d2e4a39e 890
4c4b4cd2
PH
891/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
892 of NULLs. */
14f9c5c9 893
d2e4a39e
AS
894const struct ada_opname_map ada_opname_table[] = {
895 {"Oadd", "\"+\"", BINOP_ADD},
896 {"Osubtract", "\"-\"", BINOP_SUB},
897 {"Omultiply", "\"*\"", BINOP_MUL},
898 {"Odivide", "\"/\"", BINOP_DIV},
899 {"Omod", "\"mod\"", BINOP_MOD},
900 {"Orem", "\"rem\"", BINOP_REM},
901 {"Oexpon", "\"**\"", BINOP_EXP},
902 {"Olt", "\"<\"", BINOP_LESS},
903 {"Ole", "\"<=\"", BINOP_LEQ},
904 {"Ogt", "\">\"", BINOP_GTR},
905 {"Oge", "\">=\"", BINOP_GEQ},
906 {"Oeq", "\"=\"", BINOP_EQUAL},
907 {"One", "\"/=\"", BINOP_NOTEQUAL},
908 {"Oand", "\"and\"", BINOP_BITWISE_AND},
909 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
910 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
911 {"Oconcat", "\"&\"", BINOP_CONCAT},
912 {"Oabs", "\"abs\"", UNOP_ABS},
913 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
914 {"Oadd", "\"+\"", UNOP_PLUS},
915 {"Osubtract", "\"-\"", UNOP_NEG},
916 {NULL, NULL}
14f9c5c9
AS
917};
918
5c4258f4 919/* The "encoded" form of DECODED, according to GNAT conventions. If
b5ec771e 920 THROW_ERRORS, throw an error if invalid operator name is found.
5c4258f4 921 Otherwise, return the empty string in that case. */
4c4b4cd2 922
5c4258f4 923static std::string
b5ec771e 924ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 925{
4c4b4cd2 926 if (decoded == NULL)
5c4258f4 927 return {};
14f9c5c9 928
5c4258f4
TT
929 std::string encoding_buffer;
930 for (const char *p = decoded; *p != '\0'; p += 1)
14f9c5c9 931 {
cdc7bb92 932 if (*p == '.')
5c4258f4 933 encoding_buffer.append ("__");
14f9c5c9 934 else if (*p == '"')
dda83cd7
SM
935 {
936 const struct ada_opname_map *mapping;
937
938 for (mapping = ada_opname_table;
939 mapping->encoded != NULL
940 && !startswith (p, mapping->decoded); mapping += 1)
941 ;
942 if (mapping->encoded == NULL)
b5ec771e
PA
943 {
944 if (throw_errors)
945 error (_("invalid Ada operator name: %s"), p);
946 else
5c4258f4 947 return {};
b5ec771e 948 }
5c4258f4 949 encoding_buffer.append (mapping->encoded);
dda83cd7
SM
950 break;
951 }
d2e4a39e 952 else
5c4258f4 953 encoding_buffer.push_back (*p);
14f9c5c9
AS
954 }
955
4c4b4cd2 956 return encoding_buffer;
14f9c5c9
AS
957}
958
5c4258f4 959/* The "encoded" form of DECODED, according to GNAT conventions. */
b5ec771e 960
5c4258f4 961std::string
b5ec771e
PA
962ada_encode (const char *decoded)
963{
964 return ada_encode_1 (decoded, true);
965}
966
14f9c5c9 967/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
968 quotes, unfolded, but with the quotes stripped away. Result good
969 to next call. */
970
de93309a 971static char *
e0802d59 972ada_fold_name (gdb::string_view name)
14f9c5c9 973{
d2e4a39e 974 static char *fold_buffer = NULL;
14f9c5c9
AS
975 static size_t fold_buffer_size = 0;
976
e0802d59 977 int len = name.size ();
d2e4a39e 978 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
979
980 if (name[0] == '\'')
981 {
e0802d59 982 strncpy (fold_buffer, name.data () + 1, len - 2);
d2e4a39e 983 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
984 }
985 else
986 {
987 int i;
5b4ee69b 988
14f9c5c9 989 for (i = 0; i <= len; i += 1)
dda83cd7 990 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
991 }
992
993 return fold_buffer;
994}
995
529cad9c
PH
996/* Return nonzero if C is either a digit or a lowercase alphabet character. */
997
998static int
999is_lower_alphanum (const char c)
1000{
1001 return (isdigit (c) || (isalpha (c) && islower (c)));
1002}
1003
c90092fe
JB
1004/* ENCODED is the linkage name of a symbol and LEN contains its length.
1005 This function saves in LEN the length of that same symbol name but
1006 without either of these suffixes:
29480c32
JB
1007 . .{DIGIT}+
1008 . ${DIGIT}+
1009 . ___{DIGIT}+
1010 . __{DIGIT}+.
c90092fe 1011
29480c32
JB
1012 These are suffixes introduced by the compiler for entities such as
1013 nested subprogram for instance, in order to avoid name clashes.
1014 They do not serve any purpose for the debugger. */
1015
1016static void
1017ada_remove_trailing_digits (const char *encoded, int *len)
1018{
1019 if (*len > 1 && isdigit (encoded[*len - 1]))
1020 {
1021 int i = *len - 2;
5b4ee69b 1022
29480c32 1023 while (i > 0 && isdigit (encoded[i]))
dda83cd7 1024 i--;
29480c32 1025 if (i >= 0 && encoded[i] == '.')
dda83cd7 1026 *len = i;
29480c32 1027 else if (i >= 0 && encoded[i] == '$')
dda83cd7 1028 *len = i;
61012eef 1029 else if (i >= 2 && startswith (encoded + i - 2, "___"))
dda83cd7 1030 *len = i - 2;
61012eef 1031 else if (i >= 1 && startswith (encoded + i - 1, "__"))
dda83cd7 1032 *len = i - 1;
29480c32
JB
1033 }
1034}
1035
1036/* Remove the suffix introduced by the compiler for protected object
1037 subprograms. */
1038
1039static void
1040ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1041{
1042 /* Remove trailing N. */
1043
1044 /* Protected entry subprograms are broken into two
1045 separate subprograms: The first one is unprotected, and has
1046 a 'N' suffix; the second is the protected version, and has
0963b4bd 1047 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1048 the protection. Since the P subprograms are internally generated,
1049 we leave these names undecoded, giving the user a clue that this
1050 entity is internal. */
1051
1052 if (*len > 1
1053 && encoded[*len - 1] == 'N'
1054 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1055 *len = *len - 1;
1056}
1057
1058/* If ENCODED follows the GNAT entity encoding conventions, then return
1059 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1060 replaced by ENCODED. */
14f9c5c9 1061
f945dedf 1062std::string
4c4b4cd2 1063ada_decode (const char *encoded)
14f9c5c9
AS
1064{
1065 int i, j;
1066 int len0;
d2e4a39e 1067 const char *p;
14f9c5c9 1068 int at_start_name;
f945dedf 1069 std::string decoded;
d2e4a39e 1070
0d81f350
JG
1071 /* With function descriptors on PPC64, the value of a symbol named
1072 ".FN", if it exists, is the entry point of the function "FN". */
1073 if (encoded[0] == '.')
1074 encoded += 1;
1075
29480c32
JB
1076 /* The name of the Ada main procedure starts with "_ada_".
1077 This prefix is not part of the decoded name, so skip this part
1078 if we see this prefix. */
61012eef 1079 if (startswith (encoded, "_ada_"))
4c4b4cd2 1080 encoded += 5;
14f9c5c9 1081
29480c32
JB
1082 /* If the name starts with '_', then it is not a properly encoded
1083 name, so do not attempt to decode it. Similarly, if the name
1084 starts with '<', the name should not be decoded. */
4c4b4cd2 1085 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1086 goto Suppress;
1087
4c4b4cd2 1088 len0 = strlen (encoded);
4c4b4cd2 1089
29480c32
JB
1090 ada_remove_trailing_digits (encoded, &len0);
1091 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1092
4c4b4cd2
PH
1093 /* Remove the ___X.* suffix if present. Do not forget to verify that
1094 the suffix is located before the current "end" of ENCODED. We want
1095 to avoid re-matching parts of ENCODED that have previously been
1096 marked as discarded (by decrementing LEN0). */
1097 p = strstr (encoded, "___");
1098 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1099 {
1100 if (p[3] == 'X')
dda83cd7 1101 len0 = p - encoded;
14f9c5c9 1102 else
dda83cd7 1103 goto Suppress;
14f9c5c9 1104 }
4c4b4cd2 1105
29480c32
JB
1106 /* Remove any trailing TKB suffix. It tells us that this symbol
1107 is for the body of a task, but that information does not actually
1108 appear in the decoded name. */
1109
61012eef 1110 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1111 len0 -= 3;
76a01679 1112
a10967fa
JB
1113 /* Remove any trailing TB suffix. The TB suffix is slightly different
1114 from the TKB suffix because it is used for non-anonymous task
1115 bodies. */
1116
61012eef 1117 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1118 len0 -= 2;
1119
29480c32
JB
1120 /* Remove trailing "B" suffixes. */
1121 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1122
61012eef 1123 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1124 len0 -= 1;
1125
4c4b4cd2 1126 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1127
f945dedf 1128 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1129
29480c32
JB
1130 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1131
4c4b4cd2 1132 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1133 {
4c4b4cd2
PH
1134 i = len0 - 2;
1135 while ((i >= 0 && isdigit (encoded[i]))
dda83cd7
SM
1136 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1137 i -= 1;
4c4b4cd2 1138 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
dda83cd7 1139 len0 = i - 1;
4c4b4cd2 1140 else if (encoded[i] == '$')
dda83cd7 1141 len0 = i;
d2e4a39e 1142 }
14f9c5c9 1143
29480c32
JB
1144 /* The first few characters that are not alphabetic are not part
1145 of any encoding we use, so we can copy them over verbatim. */
1146
4c4b4cd2
PH
1147 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1148 decoded[j] = encoded[i];
14f9c5c9
AS
1149
1150 at_start_name = 1;
1151 while (i < len0)
1152 {
29480c32 1153 /* Is this a symbol function? */
4c4b4cd2 1154 if (at_start_name && encoded[i] == 'O')
dda83cd7
SM
1155 {
1156 int k;
1157
1158 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1159 {
1160 int op_len = strlen (ada_opname_table[k].encoded);
1161 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1162 op_len - 1) == 0)
1163 && !isalnum (encoded[i + op_len]))
1164 {
1165 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1166 at_start_name = 0;
1167 i += op_len;
1168 j += strlen (ada_opname_table[k].decoded);
1169 break;
1170 }
1171 }
1172 if (ada_opname_table[k].encoded != NULL)
1173 continue;
1174 }
14f9c5c9
AS
1175 at_start_name = 0;
1176
529cad9c 1177 /* Replace "TK__" with "__", which will eventually be translated
dda83cd7 1178 into "." (just below). */
529cad9c 1179
61012eef 1180 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
dda83cd7 1181 i += 2;
529cad9c 1182
29480c32 1183 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
dda83cd7
SM
1184 be translated into "." (just below). These are internal names
1185 generated for anonymous blocks inside which our symbol is nested. */
29480c32
JB
1186
1187 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
dda83cd7
SM
1188 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1189 && isdigit (encoded [i+4]))
1190 {
1191 int k = i + 5;
1192
1193 while (k < len0 && isdigit (encoded[k]))
1194 k++; /* Skip any extra digit. */
1195
1196 /* Double-check that the "__B_{DIGITS}+" sequence we found
1197 is indeed followed by "__". */
1198 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1199 i = k;
1200 }
29480c32 1201
529cad9c
PH
1202 /* Remove _E{DIGITS}+[sb] */
1203
1204 /* Just as for protected object subprograms, there are 2 categories
dda83cd7
SM
1205 of subprograms created by the compiler for each entry. The first
1206 one implements the actual entry code, and has a suffix following
1207 the convention above; the second one implements the barrier and
1208 uses the same convention as above, except that the 'E' is replaced
1209 by a 'B'.
529cad9c 1210
dda83cd7
SM
1211 Just as above, we do not decode the name of barrier functions
1212 to give the user a clue that the code he is debugging has been
1213 internally generated. */
529cad9c
PH
1214
1215 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
dda83cd7
SM
1216 && isdigit (encoded[i+2]))
1217 {
1218 int k = i + 3;
1219
1220 while (k < len0 && isdigit (encoded[k]))
1221 k++;
1222
1223 if (k < len0
1224 && (encoded[k] == 'b' || encoded[k] == 's'))
1225 {
1226 k++;
1227 /* Just as an extra precaution, make sure that if this
1228 suffix is followed by anything else, it is a '_'.
1229 Otherwise, we matched this sequence by accident. */
1230 if (k == len0
1231 || (k < len0 && encoded[k] == '_'))
1232 i = k;
1233 }
1234 }
529cad9c
PH
1235
1236 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
dda83cd7 1237 the GNAT front-end in protected object subprograms. */
529cad9c
PH
1238
1239 if (i < len0 + 3
dda83cd7
SM
1240 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1241 {
1242 /* Backtrack a bit up until we reach either the begining of
1243 the encoded name, or "__". Make sure that we only find
1244 digits or lowercase characters. */
1245 const char *ptr = encoded + i - 1;
1246
1247 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1248 ptr--;
1249 if (ptr < encoded
1250 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1251 i++;
1252 }
529cad9c 1253
4c4b4cd2 1254 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
dda83cd7
SM
1255 {
1256 /* This is a X[bn]* sequence not separated from the previous
1257 part of the name with a non-alpha-numeric character (in other
1258 words, immediately following an alpha-numeric character), then
1259 verify that it is placed at the end of the encoded name. If
1260 not, then the encoding is not valid and we should abort the
1261 decoding. Otherwise, just skip it, it is used in body-nested
1262 package names. */
1263 do
1264 i += 1;
1265 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1266 if (i < len0)
1267 goto Suppress;
1268 }
cdc7bb92 1269 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
dda83cd7
SM
1270 {
1271 /* Replace '__' by '.'. */
1272 decoded[j] = '.';
1273 at_start_name = 1;
1274 i += 2;
1275 j += 1;
1276 }
14f9c5c9 1277 else
dda83cd7
SM
1278 {
1279 /* It's a character part of the decoded name, so just copy it
1280 over. */
1281 decoded[j] = encoded[i];
1282 i += 1;
1283 j += 1;
1284 }
14f9c5c9 1285 }
f945dedf 1286 decoded.resize (j);
14f9c5c9 1287
29480c32
JB
1288 /* Decoded names should never contain any uppercase character.
1289 Double-check this, and abort the decoding if we find one. */
1290
f945dedf 1291 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1292 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1293 goto Suppress;
1294
f945dedf 1295 return decoded;
14f9c5c9
AS
1296
1297Suppress:
4c4b4cd2 1298 if (encoded[0] == '<')
f945dedf 1299 decoded = encoded;
14f9c5c9 1300 else
f945dedf 1301 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1302 return decoded;
1303
1304}
1305
1306/* Table for keeping permanent unique copies of decoded names. Once
1307 allocated, names in this table are never released. While this is a
1308 storage leak, it should not be significant unless there are massive
1309 changes in the set of decoded names in successive versions of a
1310 symbol table loaded during a single session. */
1311static struct htab *decoded_names_store;
1312
1313/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1314 in the language-specific part of GSYMBOL, if it has not been
1315 previously computed. Tries to save the decoded name in the same
1316 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1317 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1318 GSYMBOL).
4c4b4cd2
PH
1319 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1320 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1321 when a decoded name is cached in it. */
4c4b4cd2 1322
45e6c716 1323const char *
f85f34ed 1324ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1325{
f85f34ed
TT
1326 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1327 const char **resultp =
615b3f62 1328 &gsymbol->language_specific.demangled_name;
5b4ee69b 1329
f85f34ed 1330 if (!gsymbol->ada_mangled)
4c4b4cd2 1331 {
4d4eaa30 1332 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1333 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1334
f85f34ed 1335 gsymbol->ada_mangled = 1;
5b4ee69b 1336
f85f34ed 1337 if (obstack != NULL)
f945dedf 1338 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1339 else
dda83cd7 1340 {
f85f34ed
TT
1341 /* Sometimes, we can't find a corresponding objfile, in
1342 which case, we put the result on the heap. Since we only
1343 decode when needed, we hope this usually does not cause a
1344 significant memory leak (FIXME). */
1345
dda83cd7
SM
1346 char **slot = (char **) htab_find_slot (decoded_names_store,
1347 decoded.c_str (), INSERT);
5b4ee69b 1348
dda83cd7
SM
1349 if (*slot == NULL)
1350 *slot = xstrdup (decoded.c_str ());
1351 *resultp = *slot;
1352 }
4c4b4cd2 1353 }
14f9c5c9 1354
4c4b4cd2
PH
1355 return *resultp;
1356}
76a01679 1357
2c0b251b 1358static char *
76a01679 1359ada_la_decode (const char *encoded, int options)
4c4b4cd2 1360{
f945dedf 1361 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1362}
1363
14f9c5c9 1364\f
d2e4a39e 1365
dda83cd7 1366 /* Arrays */
14f9c5c9 1367
28c85d6c
JB
1368/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
85102364 1375 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391void
1392ada_fixup_array_indexes_type (struct type *index_desc_type)
1393{
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1f704f76 1398 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
940da03e
SM
1407 if (index_desc_type->field (0).type ()->name () != NULL
1408 && strcmp (index_desc_type->field (0).type ()->name (),
dda83cd7 1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
28c85d6c
JB
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1413 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1414 {
0d5cff50 1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
5d14b6e5 1419 index_desc_type->field (i).set_type (raw_type);
28c85d6c
JB
1420 }
1421}
1422
4c4b4cd2
PH
1423/* The desc_* routines return primitive portions of array descriptors
1424 (fat pointers). */
14f9c5c9
AS
1425
1426/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1427 level of indirection, if needed. */
1428
d2e4a39e
AS
1429static struct type *
1430desc_base_type (struct type *type)
14f9c5c9
AS
1431{
1432 if (type == NULL)
1433 return NULL;
61ee279c 1434 type = ada_check_typedef (type);
78134374 1435 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1436 type = ada_typedef_target_type (type);
1437
1265e4aa 1438 if (type != NULL
78134374 1439 && (type->code () == TYPE_CODE_PTR
dda83cd7 1440 || type->code () == TYPE_CODE_REF))
61ee279c 1441 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1442 else
1443 return type;
1444}
1445
4c4b4cd2
PH
1446/* True iff TYPE indicates a "thin" array pointer type. */
1447
14f9c5c9 1448static int
d2e4a39e 1449is_thin_pntr (struct type *type)
14f9c5c9 1450{
d2e4a39e 1451 return
14f9c5c9
AS
1452 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1453 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1454}
1455
4c4b4cd2
PH
1456/* The descriptor type for thin pointer type TYPE. */
1457
d2e4a39e
AS
1458static struct type *
1459thin_descriptor_type (struct type *type)
14f9c5c9 1460{
d2e4a39e 1461 struct type *base_type = desc_base_type (type);
5b4ee69b 1462
14f9c5c9
AS
1463 if (base_type == NULL)
1464 return NULL;
1465 if (is_suffix (ada_type_name (base_type), "___XVE"))
1466 return base_type;
d2e4a39e 1467 else
14f9c5c9 1468 {
d2e4a39e 1469 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1470
14f9c5c9 1471 if (alt_type == NULL)
dda83cd7 1472 return base_type;
14f9c5c9 1473 else
dda83cd7 1474 return alt_type;
14f9c5c9
AS
1475 }
1476}
1477
4c4b4cd2
PH
1478/* A pointer to the array data for thin-pointer value VAL. */
1479
d2e4a39e
AS
1480static struct value *
1481thin_data_pntr (struct value *val)
14f9c5c9 1482{
828292f2 1483 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1484 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1485
556bdfd4
UW
1486 data_type = lookup_pointer_type (data_type);
1487
78134374 1488 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1489 return value_cast (data_type, value_copy (val));
d2e4a39e 1490 else
42ae5230 1491 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1492}
1493
4c4b4cd2
PH
1494/* True iff TYPE indicates a "thick" array pointer type. */
1495
14f9c5c9 1496static int
d2e4a39e 1497is_thick_pntr (struct type *type)
14f9c5c9
AS
1498{
1499 type = desc_base_type (type);
78134374 1500 return (type != NULL && type->code () == TYPE_CODE_STRUCT
dda83cd7 1501 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1502}
1503
4c4b4cd2
PH
1504/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1505 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1506
d2e4a39e
AS
1507static struct type *
1508desc_bounds_type (struct type *type)
14f9c5c9 1509{
d2e4a39e 1510 struct type *r;
14f9c5c9
AS
1511
1512 type = desc_base_type (type);
1513
1514 if (type == NULL)
1515 return NULL;
1516 else if (is_thin_pntr (type))
1517 {
1518 type = thin_descriptor_type (type);
1519 if (type == NULL)
dda83cd7 1520 return NULL;
14f9c5c9
AS
1521 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1522 if (r != NULL)
dda83cd7 1523 return ada_check_typedef (r);
14f9c5c9 1524 }
78134374 1525 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1526 {
1527 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1528 if (r != NULL)
dda83cd7 1529 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1530 }
1531 return NULL;
1532}
1533
1534/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1535 one, a pointer to its bounds data. Otherwise NULL. */
1536
d2e4a39e
AS
1537static struct value *
1538desc_bounds (struct value *arr)
14f9c5c9 1539{
df407dfe 1540 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1541
d2e4a39e 1542 if (is_thin_pntr (type))
14f9c5c9 1543 {
d2e4a39e 1544 struct type *bounds_type =
dda83cd7 1545 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1546 LONGEST addr;
1547
4cdfadb1 1548 if (bounds_type == NULL)
dda83cd7 1549 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1550
1551 /* NOTE: The following calculation is not really kosher, but
dda83cd7
SM
1552 since desc_type is an XVE-encoded type (and shouldn't be),
1553 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1554 if (type->code () == TYPE_CODE_PTR)
dda83cd7 1555 addr = value_as_long (arr);
d2e4a39e 1556 else
dda83cd7 1557 addr = value_address (arr);
14f9c5c9 1558
d2e4a39e 1559 return
dda83cd7
SM
1560 value_from_longest (lookup_pointer_type (bounds_type),
1561 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1562 }
1563
1564 else if (is_thick_pntr (type))
05e522ef
JB
1565 {
1566 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1567 _("Bad GNAT array descriptor"));
1568 struct type *p_bounds_type = value_type (p_bounds);
1569
1570 if (p_bounds_type
78134374 1571 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef
JB
1572 {
1573 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1574
e46d3488 1575 if (target_type->is_stub ())
05e522ef
JB
1576 p_bounds = value_cast (lookup_pointer_type
1577 (ada_check_typedef (target_type)),
1578 p_bounds);
1579 }
1580 else
1581 error (_("Bad GNAT array descriptor"));
1582
1583 return p_bounds;
1584 }
14f9c5c9
AS
1585 else
1586 return NULL;
1587}
1588
4c4b4cd2
PH
1589/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1590 position of the field containing the address of the bounds data. */
1591
14f9c5c9 1592static int
d2e4a39e 1593fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1594{
1595 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1596}
1597
1598/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1599 size of the field containing the address of the bounds data. */
1600
14f9c5c9 1601static int
d2e4a39e 1602fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1603{
1604 type = desc_base_type (type);
1605
d2e4a39e 1606 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1607 return TYPE_FIELD_BITSIZE (type, 1);
1608 else
940da03e 1609 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
14f9c5c9
AS
1610}
1611
4c4b4cd2 1612/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1613 pointer to one, the type of its array data (a array-with-no-bounds type);
1614 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1615 data. */
4c4b4cd2 1616
d2e4a39e 1617static struct type *
556bdfd4 1618desc_data_target_type (struct type *type)
14f9c5c9
AS
1619{
1620 type = desc_base_type (type);
1621
4c4b4cd2 1622 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1623 if (is_thin_pntr (type))
940da03e 1624 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
14f9c5c9 1625 else if (is_thick_pntr (type))
556bdfd4
UW
1626 {
1627 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1628
1629 if (data_type
78134374 1630 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
05e522ef 1631 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1632 }
1633
1634 return NULL;
14f9c5c9
AS
1635}
1636
1637/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1638 its array data. */
4c4b4cd2 1639
d2e4a39e
AS
1640static struct value *
1641desc_data (struct value *arr)
14f9c5c9 1642{
df407dfe 1643 struct type *type = value_type (arr);
5b4ee69b 1644
14f9c5c9
AS
1645 if (is_thin_pntr (type))
1646 return thin_data_pntr (arr);
1647 else if (is_thick_pntr (type))
d2e4a39e 1648 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
dda83cd7 1649 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1650 else
1651 return NULL;
1652}
1653
1654
1655/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1656 position of the field containing the address of the data. */
1657
14f9c5c9 1658static int
d2e4a39e 1659fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1660{
1661 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1662}
1663
1664/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1665 size of the field containing the address of the data. */
1666
14f9c5c9 1667static int
d2e4a39e 1668fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1669{
1670 type = desc_base_type (type);
1671
1672 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1673 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1674 else
940da03e 1675 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
14f9c5c9
AS
1676}
1677
4c4b4cd2 1678/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1679 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1680 bound, if WHICH is 1. The first bound is I=1. */
1681
d2e4a39e
AS
1682static struct value *
1683desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1684{
250106a7
TT
1685 char bound_name[20];
1686 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1687 which ? 'U' : 'L', i - 1);
1688 return value_struct_elt (&bounds, NULL, bound_name, NULL,
dda83cd7 1689 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1690}
1691
1692/* If BOUNDS is an array-bounds structure type, return the bit position
1693 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
14f9c5c9 1696static int
d2e4a39e 1697desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1698{
d2e4a39e 1699 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1700}
1701
1702/* If BOUNDS is an array-bounds structure type, return the bit field size
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
76a01679 1706static int
d2e4a39e 1707desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1708{
1709 type = desc_base_type (type);
1710
d2e4a39e
AS
1711 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1712 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1713 else
940da03e 1714 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
14f9c5c9
AS
1715}
1716
1717/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1718 Ith bound (numbering from 1). Otherwise, NULL. */
1719
d2e4a39e
AS
1720static struct type *
1721desc_index_type (struct type *type, int i)
14f9c5c9
AS
1722{
1723 type = desc_base_type (type);
1724
78134374 1725 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
1726 {
1727 char bound_name[20];
1728 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1729 return lookup_struct_elt_type (type, bound_name, 1);
1730 }
d2e4a39e 1731 else
14f9c5c9
AS
1732 return NULL;
1733}
1734
4c4b4cd2
PH
1735/* The number of index positions in the array-bounds type TYPE.
1736 Return 0 if TYPE is NULL. */
1737
14f9c5c9 1738static int
d2e4a39e 1739desc_arity (struct type *type)
14f9c5c9
AS
1740{
1741 type = desc_base_type (type);
1742
1743 if (type != NULL)
1f704f76 1744 return type->num_fields () / 2;
14f9c5c9
AS
1745 return 0;
1746}
1747
4c4b4cd2
PH
1748/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1749 an array descriptor type (representing an unconstrained array
1750 type). */
1751
76a01679
JB
1752static int
1753ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1754{
1755 if (type == NULL)
1756 return 0;
61ee279c 1757 type = ada_check_typedef (type);
78134374 1758 return (type->code () == TYPE_CODE_ARRAY
dda83cd7 1759 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1760}
1761
52ce6436 1762/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1763 * to one. */
52ce6436 1764
2c0b251b 1765static int
52ce6436
PH
1766ada_is_array_type (struct type *type)
1767{
78134374
SM
1768 while (type != NULL
1769 && (type->code () == TYPE_CODE_PTR
1770 || type->code () == TYPE_CODE_REF))
52ce6436
PH
1771 type = TYPE_TARGET_TYPE (type);
1772 return ada_is_direct_array_type (type);
1773}
1774
4c4b4cd2 1775/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1776
14f9c5c9 1777int
4c4b4cd2 1778ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1779{
1780 if (type == NULL)
1781 return 0;
61ee279c 1782 type = ada_check_typedef (type);
78134374
SM
1783 return (type->code () == TYPE_CODE_ARRAY
1784 || (type->code () == TYPE_CODE_PTR
1785 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1786 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
1787}
1788
4c4b4cd2
PH
1789/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1790
14f9c5c9 1791int
4c4b4cd2 1792ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1793{
556bdfd4 1794 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1795
1796 if (type == NULL)
1797 return 0;
61ee279c 1798 type = ada_check_typedef (type);
556bdfd4 1799 return (data_type != NULL
78134374 1800 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 1801 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1802}
1803
1804/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1805 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1806 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1807 is still needed. */
1808
14f9c5c9 1809int
ebf56fd3 1810ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1811{
d2e4a39e 1812 return
14f9c5c9 1813 type != NULL
78134374 1814 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 1815 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
dda83cd7 1816 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
4c4b4cd2 1817 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1818}
1819
1820
4c4b4cd2 1821/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1822 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1823 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1824 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1825 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1826 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1827 a descriptor. */
de93309a
SM
1828
1829static struct type *
d2e4a39e 1830ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1831{
ad82864c
JB
1832 if (ada_is_constrained_packed_array_type (value_type (arr)))
1833 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1834
df407dfe
AC
1835 if (!ada_is_array_descriptor_type (value_type (arr)))
1836 return value_type (arr);
d2e4a39e
AS
1837
1838 if (!bounds)
ad82864c
JB
1839 {
1840 struct type *array_type =
1841 ada_check_typedef (desc_data_target_type (value_type (arr)));
1842
1843 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1844 TYPE_FIELD_BITSIZE (array_type, 0) =
1845 decode_packed_array_bitsize (value_type (arr));
1846
1847 return array_type;
1848 }
14f9c5c9
AS
1849 else
1850 {
d2e4a39e 1851 struct type *elt_type;
14f9c5c9 1852 int arity;
d2e4a39e 1853 struct value *descriptor;
14f9c5c9 1854
df407dfe
AC
1855 elt_type = ada_array_element_type (value_type (arr), -1);
1856 arity = ada_array_arity (value_type (arr));
14f9c5c9 1857
d2e4a39e 1858 if (elt_type == NULL || arity == 0)
dda83cd7 1859 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1860
1861 descriptor = desc_bounds (arr);
d2e4a39e 1862 if (value_as_long (descriptor) == 0)
dda83cd7 1863 return NULL;
d2e4a39e 1864 while (arity > 0)
dda83cd7
SM
1865 {
1866 struct type *range_type = alloc_type_copy (value_type (arr));
1867 struct type *array_type = alloc_type_copy (value_type (arr));
1868 struct value *low = desc_one_bound (descriptor, arity, 0);
1869 struct value *high = desc_one_bound (descriptor, arity, 1);
1870
1871 arity -= 1;
1872 create_static_range_type (range_type, value_type (low),
0c9c3474
SA
1873 longest_to_int (value_as_long (low)),
1874 longest_to_int (value_as_long (high)));
dda83cd7 1875 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1876
1877 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1878 {
1879 /* We need to store the element packed bitsize, as well as
dda83cd7 1880 recompute the array size, because it was previously
e67ad678
JB
1881 computed based on the unpacked element size. */
1882 LONGEST lo = value_as_long (low);
1883 LONGEST hi = value_as_long (high);
1884
1885 TYPE_FIELD_BITSIZE (elt_type, 0) =
1886 decode_packed_array_bitsize (value_type (arr));
1887 /* If the array has no element, then the size is already
dda83cd7 1888 zero, and does not need to be recomputed. */
e67ad678
JB
1889 if (lo < hi)
1890 {
1891 int array_bitsize =
dda83cd7 1892 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
e67ad678
JB
1893
1894 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1895 }
1896 }
dda83cd7 1897 }
14f9c5c9
AS
1898
1899 return lookup_pointer_type (elt_type);
1900 }
1901}
1902
1903/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1904 Otherwise, returns either a standard GDB array with bounds set
1905 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1906 GDB array. Returns NULL if ARR is a null fat pointer. */
1907
d2e4a39e
AS
1908struct value *
1909ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1910{
df407dfe 1911 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1912 {
d2e4a39e 1913 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1914
14f9c5c9 1915 if (arrType == NULL)
dda83cd7 1916 return NULL;
14f9c5c9
AS
1917 return value_cast (arrType, value_copy (desc_data (arr)));
1918 }
ad82864c
JB
1919 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1920 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1921 else
1922 return arr;
1923}
1924
1925/* If ARR does not represent an array, returns ARR unchanged.
1926 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1927 be ARR itself if it already is in the proper form). */
1928
720d1a40 1929struct value *
d2e4a39e 1930ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1931{
df407dfe 1932 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1933 {
d2e4a39e 1934 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1935
14f9c5c9 1936 if (arrVal == NULL)
dda83cd7 1937 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 1938 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1939 return value_ind (arrVal);
1940 }
ad82864c
JB
1941 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1942 return decode_constrained_packed_array (arr);
d2e4a39e 1943 else
14f9c5c9
AS
1944 return arr;
1945}
1946
1947/* If TYPE represents a GNAT array type, return it translated to an
1948 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1949 packing). For other types, is the identity. */
1950
d2e4a39e
AS
1951struct type *
1952ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1953{
ad82864c
JB
1954 if (ada_is_constrained_packed_array_type (type))
1955 return decode_constrained_packed_array_type (type);
17280b9f
UW
1956
1957 if (ada_is_array_descriptor_type (type))
556bdfd4 1958 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1959
1960 return type;
14f9c5c9
AS
1961}
1962
4c4b4cd2
PH
1963/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1964
ad82864c 1965static int
57567375 1966ada_is_gnat_encoded_packed_array_type (struct type *type)
14f9c5c9
AS
1967{
1968 if (type == NULL)
1969 return 0;
4c4b4cd2 1970 type = desc_base_type (type);
61ee279c 1971 type = ada_check_typedef (type);
d2e4a39e 1972 return
14f9c5c9
AS
1973 ada_type_name (type) != NULL
1974 && strstr (ada_type_name (type), "___XP") != NULL;
1975}
1976
ad82864c
JB
1977/* Non-zero iff TYPE represents a standard GNAT constrained
1978 packed-array type. */
1979
1980int
1981ada_is_constrained_packed_array_type (struct type *type)
1982{
57567375 1983 return ada_is_gnat_encoded_packed_array_type (type)
ad82864c
JB
1984 && !ada_is_array_descriptor_type (type);
1985}
1986
1987/* Non-zero iff TYPE represents an array descriptor for a
1988 unconstrained packed-array type. */
1989
1990static int
1991ada_is_unconstrained_packed_array_type (struct type *type)
1992{
57567375
TT
1993 if (!ada_is_array_descriptor_type (type))
1994 return 0;
1995
1996 if (ada_is_gnat_encoded_packed_array_type (type))
1997 return 1;
1998
1999 /* If we saw GNAT encodings, then the above code is sufficient.
2000 However, with minimal encodings, we will just have a thick
2001 pointer instead. */
2002 if (is_thick_pntr (type))
2003 {
2004 type = desc_base_type (type);
2005 /* The structure's first field is a pointer to an array, so this
2006 fetches the array type. */
2007 type = TYPE_TARGET_TYPE (type->field (0).type ());
2008 /* Now we can see if the array elements are packed. */
2009 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2010 }
2011
2012 return 0;
ad82864c
JB
2013}
2014
2015/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2016 return the size of its elements in bits. */
2017
2018static long
2019decode_packed_array_bitsize (struct type *type)
2020{
0d5cff50
DE
2021 const char *raw_name;
2022 const char *tail;
ad82864c
JB
2023 long bits;
2024
720d1a40
JB
2025 /* Access to arrays implemented as fat pointers are encoded as a typedef
2026 of the fat pointer type. We need the name of the fat pointer type
2027 to do the decoding, so strip the typedef layer. */
78134374 2028 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
2029 type = ada_typedef_target_type (type);
2030
2031 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2032 if (!raw_name)
2033 raw_name = ada_type_name (desc_base_type (type));
2034
2035 if (!raw_name)
2036 return 0;
2037
2038 tail = strstr (raw_name, "___XP");
57567375
TT
2039 if (tail == nullptr)
2040 {
2041 gdb_assert (is_thick_pntr (type));
2042 /* The structure's first field is a pointer to an array, so this
2043 fetches the array type. */
2044 type = TYPE_TARGET_TYPE (type->field (0).type ());
2045 /* Now we can see if the array elements are packed. */
2046 return TYPE_FIELD_BITSIZE (type, 0);
2047 }
ad82864c
JB
2048
2049 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2050 {
2051 lim_warning
2052 (_("could not understand bit size information on packed array"));
2053 return 0;
2054 }
2055
2056 return bits;
2057}
2058
14f9c5c9
AS
2059/* Given that TYPE is a standard GDB array type with all bounds filled
2060 in, and that the element size of its ultimate scalar constituents
2061 (that is, either its elements, or, if it is an array of arrays, its
2062 elements' elements, etc.) is *ELT_BITS, return an identical type,
2063 but with the bit sizes of its elements (and those of any
2064 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2065 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2066 in bits.
2067
2068 Note that, for arrays whose index type has an XA encoding where
2069 a bound references a record discriminant, getting that discriminant,
2070 and therefore the actual value of that bound, is not possible
2071 because none of the given parameters gives us access to the record.
2072 This function assumes that it is OK in the context where it is being
2073 used to return an array whose bounds are still dynamic and where
2074 the length is arbitrary. */
4c4b4cd2 2075
d2e4a39e 2076static struct type *
ad82864c 2077constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2078{
d2e4a39e
AS
2079 struct type *new_elt_type;
2080 struct type *new_type;
99b1c762
JB
2081 struct type *index_type_desc;
2082 struct type *index_type;
14f9c5c9
AS
2083 LONGEST low_bound, high_bound;
2084
61ee279c 2085 type = ada_check_typedef (type);
78134374 2086 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2087 return type;
2088
99b1c762
JB
2089 index_type_desc = ada_find_parallel_type (type, "___XA");
2090 if (index_type_desc)
940da03e 2091 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
99b1c762
JB
2092 NULL);
2093 else
3d967001 2094 index_type = type->index_type ();
99b1c762 2095
e9bb382b 2096 new_type = alloc_type_copy (type);
ad82864c
JB
2097 new_elt_type =
2098 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2099 elt_bits);
99b1c762 2100 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2101 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2102 new_type->set_name (ada_type_name (type));
14f9c5c9 2103
78134374 2104 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e
JB
2105 && is_dynamic_type (check_typedef (index_type)))
2106 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2107 low_bound = high_bound = 0;
2108 if (high_bound < low_bound)
2109 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2110 else
14f9c5c9
AS
2111 {
2112 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2113 TYPE_LENGTH (new_type) =
dda83cd7 2114 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2115 }
2116
9cdd0d12 2117 new_type->set_is_fixed_instance (true);
14f9c5c9
AS
2118 return new_type;
2119}
2120
ad82864c
JB
2121/* The array type encoded by TYPE, where
2122 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2123
d2e4a39e 2124static struct type *
ad82864c 2125decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2126{
0d5cff50 2127 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2128 char *name;
0d5cff50 2129 const char *tail;
d2e4a39e 2130 struct type *shadow_type;
14f9c5c9 2131 long bits;
14f9c5c9 2132
727e3d2e
JB
2133 if (!raw_name)
2134 raw_name = ada_type_name (desc_base_type (type));
2135
2136 if (!raw_name)
2137 return NULL;
2138
2139 name = (char *) alloca (strlen (raw_name) + 1);
2140 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2141 type = desc_base_type (type);
2142
14f9c5c9
AS
2143 memcpy (name, raw_name, tail - raw_name);
2144 name[tail - raw_name] = '\000';
2145
b4ba55a1
JB
2146 shadow_type = ada_find_parallel_type_with_name (type, name);
2147
2148 if (shadow_type == NULL)
14f9c5c9 2149 {
323e0a4a 2150 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2151 return NULL;
2152 }
f168693b 2153 shadow_type = check_typedef (shadow_type);
14f9c5c9 2154
78134374 2155 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2156 {
0963b4bd
MS
2157 lim_warning (_("could not understand bounds "
2158 "information on packed array"));
14f9c5c9
AS
2159 return NULL;
2160 }
d2e4a39e 2161
ad82864c
JB
2162 bits = decode_packed_array_bitsize (type);
2163 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2164}
2165
a7400e44
TT
2166/* Helper function for decode_constrained_packed_array. Set the field
2167 bitsize on a series of packed arrays. Returns the number of
2168 elements in TYPE. */
2169
2170static LONGEST
2171recursively_update_array_bitsize (struct type *type)
2172{
2173 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2174
2175 LONGEST low, high;
2176 if (get_discrete_bounds (type->index_type (), &low, &high) < 0
2177 || low > high)
2178 return 0;
2179 LONGEST our_len = high - low + 1;
2180
2181 struct type *elt_type = TYPE_TARGET_TYPE (type);
2182 if (elt_type->code () == TYPE_CODE_ARRAY)
2183 {
2184 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2185 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2186 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2187
2188 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2189 / HOST_CHAR_BIT);
2190 }
2191
2192 return our_len;
2193}
2194
ad82864c
JB
2195/* Given that ARR is a struct value *indicating a GNAT constrained packed
2196 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2197 standard GDB array type except that the BITSIZEs of the array
2198 target types are set to the number of bits in each element, and the
4c4b4cd2 2199 type length is set appropriately. */
14f9c5c9 2200
d2e4a39e 2201static struct value *
ad82864c 2202decode_constrained_packed_array (struct value *arr)
14f9c5c9 2203{
4c4b4cd2 2204 struct type *type;
14f9c5c9 2205
11aa919a
PMR
2206 /* If our value is a pointer, then dereference it. Likewise if
2207 the value is a reference. Make sure that this operation does not
2208 cause the target type to be fixed, as this would indirectly cause
2209 this array to be decoded. The rest of the routine assumes that
2210 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2211 and "value_ind" routines to perform the dereferencing, as opposed
2212 to using "ada_coerce_ref" or "ada_value_ind". */
2213 arr = coerce_ref (arr);
78134374 2214 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2215 arr = value_ind (arr);
4c4b4cd2 2216
ad82864c 2217 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2218 if (type == NULL)
2219 {
323e0a4a 2220 error (_("can't unpack array"));
14f9c5c9
AS
2221 return NULL;
2222 }
61ee279c 2223
a7400e44
TT
2224 /* Decoding the packed array type could not correctly set the field
2225 bitsizes for any dimension except the innermost, because the
2226 bounds may be variable and were not passed to that function. So,
2227 we further resolve the array bounds here and then update the
2228 sizes. */
2229 const gdb_byte *valaddr = value_contents_for_printing (arr);
2230 CORE_ADDR address = value_address (arr);
2231 gdb::array_view<const gdb_byte> view
2232 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2233 type = resolve_dynamic_type (type, view, address);
2234 recursively_update_array_bitsize (type);
2235
d5a22e77 2236 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2237 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2238 {
2239 /* This is a (right-justified) modular type representing a packed
2240 array with no wrapper. In order to interpret the value through
2241 the (left-justified) packed array type we just built, we must
2242 first left-justify it. */
2243 int bit_size, bit_pos;
2244 ULONGEST mod;
2245
df407dfe 2246 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2247 bit_size = 0;
2248 while (mod > 0)
2249 {
2250 bit_size += 1;
2251 mod >>= 1;
2252 }
df407dfe 2253 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2254 arr = ada_value_primitive_packed_val (arr, NULL,
2255 bit_pos / HOST_CHAR_BIT,
2256 bit_pos % HOST_CHAR_BIT,
2257 bit_size,
2258 type);
2259 }
2260
4c4b4cd2 2261 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2262}
2263
2264
2265/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2266 given in IND. ARR must be a simple array. */
14f9c5c9 2267
d2e4a39e
AS
2268static struct value *
2269value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2270{
2271 int i;
2272 int bits, elt_off, bit_off;
2273 long elt_total_bit_offset;
d2e4a39e
AS
2274 struct type *elt_type;
2275 struct value *v;
14f9c5c9
AS
2276
2277 bits = 0;
2278 elt_total_bit_offset = 0;
df407dfe 2279 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2280 for (i = 0; i < arity; i += 1)
14f9c5c9 2281 {
78134374 2282 if (elt_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
2283 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2284 error
2285 (_("attempt to do packed indexing of "
0963b4bd 2286 "something other than a packed array"));
14f9c5c9 2287 else
dda83cd7
SM
2288 {
2289 struct type *range_type = elt_type->index_type ();
2290 LONGEST lowerbound, upperbound;
2291 LONGEST idx;
2292
2293 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2294 {
2295 lim_warning (_("don't know bounds of array"));
2296 lowerbound = upperbound = 0;
2297 }
2298
2299 idx = pos_atr (ind[i]);
2300 if (idx < lowerbound || idx > upperbound)
2301 lim_warning (_("packed array index %ld out of bounds"),
0963b4bd 2302 (long) idx);
dda83cd7
SM
2303 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2304 elt_total_bit_offset += (idx - lowerbound) * bits;
2305 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2306 }
14f9c5c9
AS
2307 }
2308 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2309 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2310
2311 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
dda83cd7 2312 bits, elt_type);
14f9c5c9
AS
2313 return v;
2314}
2315
4c4b4cd2 2316/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2317
2318static int
d2e4a39e 2319has_negatives (struct type *type)
14f9c5c9 2320{
78134374 2321 switch (type->code ())
d2e4a39e
AS
2322 {
2323 default:
2324 return 0;
2325 case TYPE_CODE_INT:
c6d940a9 2326 return !type->is_unsigned ();
d2e4a39e 2327 case TYPE_CODE_RANGE:
5537ddd0 2328 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
d2e4a39e 2329 }
14f9c5c9 2330}
d2e4a39e 2331
f93fca70 2332/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2333 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2334 the unpacked buffer.
14f9c5c9 2335
5b639dea
JB
2336 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2337 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2338
f93fca70
JB
2339 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2340 zero otherwise.
14f9c5c9 2341
f93fca70 2342 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2343
f93fca70
JB
2344 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2345
2346static void
2347ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2348 gdb_byte *unpacked, int unpacked_len,
2349 int is_big_endian, int is_signed_type,
2350 int is_scalar)
2351{
a1c95e6b
JB
2352 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2353 int src_idx; /* Index into the source area */
2354 int src_bytes_left; /* Number of source bytes left to process. */
2355 int srcBitsLeft; /* Number of source bits left to move */
2356 int unusedLS; /* Number of bits in next significant
dda83cd7 2357 byte of source that are unused */
a1c95e6b 2358
a1c95e6b
JB
2359 int unpacked_idx; /* Index into the unpacked buffer */
2360 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2361
4c4b4cd2 2362 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2363 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2364 unsigned char sign;
a1c95e6b 2365
4c4b4cd2
PH
2366 /* Transmit bytes from least to most significant; delta is the direction
2367 the indices move. */
f93fca70 2368 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2369
5b639dea
JB
2370 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2371 bits from SRC. .*/
2372 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2373 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2374 bit_size, unpacked_len);
2375
14f9c5c9 2376 srcBitsLeft = bit_size;
086ca51f 2377 src_bytes_left = src_len;
f93fca70 2378 unpacked_bytes_left = unpacked_len;
14f9c5c9 2379 sign = 0;
f93fca70
JB
2380
2381 if (is_big_endian)
14f9c5c9 2382 {
086ca51f 2383 src_idx = src_len - 1;
f93fca70
JB
2384 if (is_signed_type
2385 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
dda83cd7 2386 sign = ~0;
d2e4a39e
AS
2387
2388 unusedLS =
dda83cd7
SM
2389 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2390 % HOST_CHAR_BIT;
14f9c5c9 2391
f93fca70
JB
2392 if (is_scalar)
2393 {
dda83cd7
SM
2394 accumSize = 0;
2395 unpacked_idx = unpacked_len - 1;
f93fca70
JB
2396 }
2397 else
2398 {
dda83cd7
SM
2399 /* Non-scalar values must be aligned at a byte boundary... */
2400 accumSize =
2401 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2402 /* ... And are placed at the beginning (most-significant) bytes
2403 of the target. */
2404 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2405 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2406 }
14f9c5c9 2407 }
d2e4a39e 2408 else
14f9c5c9
AS
2409 {
2410 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2411
086ca51f 2412 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2413 unusedLS = bit_offset;
2414 accumSize = 0;
2415
f93fca70 2416 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
dda83cd7 2417 sign = ~0;
14f9c5c9 2418 }
d2e4a39e 2419
14f9c5c9 2420 accum = 0;
086ca51f 2421 while (src_bytes_left > 0)
14f9c5c9
AS
2422 {
2423 /* Mask for removing bits of the next source byte that are not
dda83cd7 2424 part of the value. */
d2e4a39e 2425 unsigned int unusedMSMask =
dda83cd7
SM
2426 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2427 1;
4c4b4cd2 2428 /* Sign-extend bits for this byte. */
14f9c5c9 2429 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2430
d2e4a39e 2431 accum |=
dda83cd7 2432 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2433 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2434 if (accumSize >= HOST_CHAR_BIT)
dda83cd7
SM
2435 {
2436 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2437 accumSize -= HOST_CHAR_BIT;
2438 accum >>= HOST_CHAR_BIT;
2439 unpacked_bytes_left -= 1;
2440 unpacked_idx += delta;
2441 }
14f9c5c9
AS
2442 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2443 unusedLS = 0;
086ca51f
JB
2444 src_bytes_left -= 1;
2445 src_idx += delta;
14f9c5c9 2446 }
086ca51f 2447 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2448 {
2449 accum |= sign << accumSize;
db297a65 2450 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2451 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2452 if (accumSize < 0)
2453 accumSize = 0;
14f9c5c9 2454 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2455 unpacked_bytes_left -= 1;
2456 unpacked_idx += delta;
14f9c5c9 2457 }
f93fca70
JB
2458}
2459
2460/* Create a new value of type TYPE from the contents of OBJ starting
2461 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2462 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2463 assigning through the result will set the field fetched from.
2464 VALADDR is ignored unless OBJ is NULL, in which case,
2465 VALADDR+OFFSET must address the start of storage containing the
2466 packed value. The value returned in this case is never an lval.
2467 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2468
2469struct value *
2470ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2471 long offset, int bit_offset, int bit_size,
dda83cd7 2472 struct type *type)
f93fca70
JB
2473{
2474 struct value *v;
bfb1c796 2475 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2476 gdb_byte *unpacked;
220475ed 2477 const int is_scalar = is_scalar_type (type);
d5a22e77 2478 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2479 gdb::byte_vector staging;
f93fca70
JB
2480
2481 type = ada_check_typedef (type);
2482
d0a9e810 2483 if (obj == NULL)
bfb1c796 2484 src = valaddr + offset;
d0a9e810 2485 else
bfb1c796 2486 src = value_contents (obj) + offset;
d0a9e810
JB
2487
2488 if (is_dynamic_type (type))
2489 {
2490 /* The length of TYPE might by dynamic, so we need to resolve
2491 TYPE in order to know its actual size, which we then use
2492 to create the contents buffer of the value we return.
2493 The difficulty is that the data containing our object is
2494 packed, and therefore maybe not at a byte boundary. So, what
2495 we do, is unpack the data into a byte-aligned buffer, and then
2496 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2497 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2498 staging.resize (staging_len);
d0a9e810
JB
2499
2500 ada_unpack_from_contents (src, bit_offset, bit_size,
dda83cd7 2501 staging.data (), staging.size (),
d0a9e810
JB
2502 is_big_endian, has_negatives (type),
2503 is_scalar);
b249d2c2 2504 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2505 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2506 {
2507 /* This happens when the length of the object is dynamic,
2508 and is actually smaller than the space reserved for it.
2509 For instance, in an array of variant records, the bit_size
2510 we're given is the array stride, which is constant and
2511 normally equal to the maximum size of its element.
2512 But, in reality, each element only actually spans a portion
2513 of that stride. */
2514 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2515 }
d0a9e810
JB
2516 }
2517
f93fca70
JB
2518 if (obj == NULL)
2519 {
2520 v = allocate_value (type);
bfb1c796 2521 src = valaddr + offset;
f93fca70
JB
2522 }
2523 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2524 {
0cafa88c 2525 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2526 gdb_byte *buf;
0cafa88c 2527
f93fca70 2528 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2529 buf = (gdb_byte *) alloca (src_len);
2530 read_memory (value_address (v), buf, src_len);
2531 src = buf;
f93fca70
JB
2532 }
2533 else
2534 {
2535 v = allocate_value (type);
bfb1c796 2536 src = value_contents (obj) + offset;
f93fca70
JB
2537 }
2538
2539 if (obj != NULL)
2540 {
2541 long new_offset = offset;
2542
2543 set_value_component_location (v, obj);
2544 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2545 set_value_bitsize (v, bit_size);
2546 if (value_bitpos (v) >= HOST_CHAR_BIT)
dda83cd7 2547 {
f93fca70 2548 ++new_offset;
dda83cd7
SM
2549 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2550 }
f93fca70
JB
2551 set_value_offset (v, new_offset);
2552
2553 /* Also set the parent value. This is needed when trying to
2554 assign a new value (in inferior memory). */
2555 set_value_parent (v, obj);
2556 }
2557 else
2558 set_value_bitsize (v, bit_size);
bfb1c796 2559 unpacked = value_contents_writeable (v);
f93fca70
JB
2560
2561 if (bit_size == 0)
2562 {
2563 memset (unpacked, 0, TYPE_LENGTH (type));
2564 return v;
2565 }
2566
d5722aa2 2567 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2568 {
d0a9e810
JB
2569 /* Small short-cut: If we've unpacked the data into a buffer
2570 of the same size as TYPE's length, then we can reuse that,
2571 instead of doing the unpacking again. */
d5722aa2 2572 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2573 }
d0a9e810
JB
2574 else
2575 ada_unpack_from_contents (src, bit_offset, bit_size,
2576 unpacked, TYPE_LENGTH (type),
2577 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2578
14f9c5c9
AS
2579 return v;
2580}
d2e4a39e 2581
14f9c5c9
AS
2582/* Store the contents of FROMVAL into the location of TOVAL.
2583 Return a new value with the location of TOVAL and contents of
2584 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2585 floating-point or non-scalar types. */
14f9c5c9 2586
d2e4a39e
AS
2587static struct value *
2588ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2589{
df407dfe
AC
2590 struct type *type = value_type (toval);
2591 int bits = value_bitsize (toval);
14f9c5c9 2592
52ce6436
PH
2593 toval = ada_coerce_ref (toval);
2594 fromval = ada_coerce_ref (fromval);
2595
2596 if (ada_is_direct_array_type (value_type (toval)))
2597 toval = ada_coerce_to_simple_array (toval);
2598 if (ada_is_direct_array_type (value_type (fromval)))
2599 fromval = ada_coerce_to_simple_array (fromval);
2600
88e3b34b 2601 if (!deprecated_value_modifiable (toval))
323e0a4a 2602 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2603
d2e4a39e 2604 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2605 && bits > 0
78134374 2606 && (type->code () == TYPE_CODE_FLT
dda83cd7 2607 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2608 {
df407dfe
AC
2609 int len = (value_bitpos (toval)
2610 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2611 int from_size;
224c3ddb 2612 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2613 struct value *val;
42ae5230 2614 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2615
78134374 2616 if (type->code () == TYPE_CODE_FLT)
dda83cd7 2617 fromval = value_cast (type, fromval);
14f9c5c9 2618
52ce6436 2619 read_memory (to_addr, buffer, len);
aced2898
PH
2620 from_size = value_bitsize (fromval);
2621 if (from_size == 0)
2622 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2623
d5a22e77 2624 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2625 ULONGEST from_offset = 0;
2626 if (is_big_endian && is_scalar_type (value_type (fromval)))
2627 from_offset = from_size - bits;
2628 copy_bitwise (buffer, value_bitpos (toval),
2629 value_contents (fromval), from_offset,
2630 bits, is_big_endian);
972daa01 2631 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2632
14f9c5c9 2633 val = value_copy (toval);
0fd88904 2634 memcpy (value_contents_raw (val), value_contents (fromval),
dda83cd7 2635 TYPE_LENGTH (type));
04624583 2636 deprecated_set_value_type (val, type);
d2e4a39e 2637
14f9c5c9
AS
2638 return val;
2639 }
2640
2641 return value_assign (toval, fromval);
2642}
2643
2644
7c512744
JB
2645/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2646 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2647 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2648 COMPONENT, and not the inferior's memory. The current contents
2649 of COMPONENT are ignored.
2650
2651 Although not part of the initial design, this function also works
2652 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2653 had a null address, and COMPONENT had an address which is equal to
2654 its offset inside CONTAINER. */
2655
52ce6436
PH
2656static void
2657value_assign_to_component (struct value *container, struct value *component,
2658 struct value *val)
2659{
2660 LONGEST offset_in_container =
42ae5230 2661 (LONGEST) (value_address (component) - value_address (container));
7c512744 2662 int bit_offset_in_container =
52ce6436
PH
2663 value_bitpos (component) - value_bitpos (container);
2664 int bits;
7c512744 2665
52ce6436
PH
2666 val = value_cast (value_type (component), val);
2667
2668 if (value_bitsize (component) == 0)
2669 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2670 else
2671 bits = value_bitsize (component);
2672
d5a22e77 2673 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2674 {
2675 int src_offset;
2676
2677 if (is_scalar_type (check_typedef (value_type (component))))
dda83cd7 2678 src_offset
2a62dfa9
JB
2679 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2680 else
2681 src_offset = 0;
a99bc3d2
JB
2682 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2683 value_bitpos (container) + bit_offset_in_container,
2684 value_contents (val), src_offset, bits, 1);
2a62dfa9 2685 }
52ce6436 2686 else
a99bc3d2
JB
2687 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2688 value_bitpos (container) + bit_offset_in_container,
2689 value_contents (val), 0, bits, 0);
7c512744
JB
2690}
2691
736ade86
XR
2692/* Determine if TYPE is an access to an unconstrained array. */
2693
d91e9ea8 2694bool
736ade86
XR
2695ada_is_access_to_unconstrained_array (struct type *type)
2696{
78134374 2697 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2698 && is_thick_pntr (ada_typedef_target_type (type)));
2699}
2700
4c4b4cd2
PH
2701/* The value of the element of array ARR at the ARITY indices given in IND.
2702 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2703 thereto. */
2704
d2e4a39e
AS
2705struct value *
2706ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2707{
2708 int k;
d2e4a39e
AS
2709 struct value *elt;
2710 struct type *elt_type;
14f9c5c9
AS
2711
2712 elt = ada_coerce_to_simple_array (arr);
2713
df407dfe 2714 elt_type = ada_check_typedef (value_type (elt));
78134374 2715 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
2716 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2717 return value_subscript_packed (elt, arity, ind);
2718
2719 for (k = 0; k < arity; k += 1)
2720 {
b9c50e9a
XR
2721 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2722
78134374 2723 if (elt_type->code () != TYPE_CODE_ARRAY)
dda83cd7 2724 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2725
2497b498 2726 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2727
2728 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 2729 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
2730 {
2731 /* The element is a typedef to an unconstrained array,
2732 except that the value_subscript call stripped the
2733 typedef layer. The typedef layer is GNAT's way to
2734 specify that the element is, at the source level, an
2735 access to the unconstrained array, rather than the
2736 unconstrained array. So, we need to restore that
2737 typedef layer, which we can do by forcing the element's
2738 type back to its original type. Otherwise, the returned
2739 value is going to be printed as the array, rather
2740 than as an access. Another symptom of the same issue
2741 would be that an expression trying to dereference the
2742 element would also be improperly rejected. */
2743 deprecated_set_value_type (elt, saved_elt_type);
2744 }
2745
2746 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2747 }
b9c50e9a 2748
14f9c5c9
AS
2749 return elt;
2750}
2751
deede10c
JB
2752/* Assuming ARR is a pointer to a GDB array, the value of the element
2753 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2754 Does not read the entire array into memory.
2755
2756 Note: Unlike what one would expect, this function is used instead of
2757 ada_value_subscript for basically all non-packed array types. The reason
2758 for this is that a side effect of doing our own pointer arithmetics instead
2759 of relying on value_subscript is that there is no implicit typedef peeling.
2760 This is important for arrays of array accesses, where it allows us to
2761 preserve the fact that the array's element is an array access, where the
2762 access part os encoded in a typedef layer. */
14f9c5c9 2763
2c0b251b 2764static struct value *
deede10c 2765ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2766{
2767 int k;
919e6dbe 2768 struct value *array_ind = ada_value_ind (arr);
deede10c 2769 struct type *type
919e6dbe
PMR
2770 = check_typedef (value_enclosing_type (array_ind));
2771
78134374 2772 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
2773 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2774 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2775
2776 for (k = 0; k < arity; k += 1)
2777 {
2778 LONGEST lwb, upb;
14f9c5c9 2779
78134374 2780 if (type->code () != TYPE_CODE_ARRAY)
dda83cd7 2781 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2782 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
dda83cd7 2783 value_copy (arr));
3d967001 2784 get_discrete_bounds (type->index_type (), &lwb, &upb);
53a47a3e 2785 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2786 type = TYPE_TARGET_TYPE (type);
2787 }
2788
2789 return value_ind (arr);
2790}
2791
0b5d8877 2792/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2793 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2794 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2795 this array is LOW, as per Ada rules. */
0b5d8877 2796static struct value *
f5938064 2797ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
dda83cd7 2798 int low, int high)
0b5d8877 2799{
b0dd7688 2800 struct type *type0 = ada_check_typedef (type);
3d967001 2801 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
0c9c3474 2802 struct type *index_type
aa715135 2803 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2804 struct type *slice_type = create_array_type_with_stride
2805 (NULL, TYPE_TARGET_TYPE (type0), index_type,
24e99c6c 2806 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2807 TYPE_FIELD_BITSIZE (type0, 0));
3d967001 2808 int base_low = ada_discrete_type_low_bound (type0->index_type ());
aa715135
JG
2809 LONGEST base_low_pos, low_pos;
2810 CORE_ADDR base;
2811
2812 if (!discrete_position (base_index_type, low, &low_pos)
2813 || !discrete_position (base_index_type, base_low, &base_low_pos))
2814 {
2815 warning (_("unable to get positions in slice, use bounds instead"));
2816 low_pos = low;
2817 base_low_pos = base_low;
2818 }
5b4ee69b 2819
aa715135
JG
2820 base = value_as_address (array_ptr)
2821 + ((low_pos - base_low_pos)
2822 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2823 return value_at_lazy (slice_type, base);
0b5d8877
PH
2824}
2825
2826
2827static struct value *
2828ada_value_slice (struct value *array, int low, int high)
2829{
b0dd7688 2830 struct type *type = ada_check_typedef (value_type (array));
3d967001 2831 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
0c9c3474 2832 struct type *index_type
3d967001 2833 = create_static_range_type (NULL, type->index_type (), low, high);
9fe561ab
JB
2834 struct type *slice_type = create_array_type_with_stride
2835 (NULL, TYPE_TARGET_TYPE (type), index_type,
24e99c6c 2836 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2837 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2838 LONGEST low_pos, high_pos;
5b4ee69b 2839
aa715135
JG
2840 if (!discrete_position (base_index_type, low, &low_pos)
2841 || !discrete_position (base_index_type, high, &high_pos))
2842 {
2843 warning (_("unable to get positions in slice, use bounds instead"));
2844 low_pos = low;
2845 high_pos = high;
2846 }
2847
2848 return value_cast (slice_type,
2849 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2850}
2851
14f9c5c9
AS
2852/* If type is a record type in the form of a standard GNAT array
2853 descriptor, returns the number of dimensions for type. If arr is a
2854 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2855 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2856
2857int
d2e4a39e 2858ada_array_arity (struct type *type)
14f9c5c9
AS
2859{
2860 int arity;
2861
2862 if (type == NULL)
2863 return 0;
2864
2865 type = desc_base_type (type);
2866
2867 arity = 0;
78134374 2868 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 2869 return desc_arity (desc_bounds_type (type));
d2e4a39e 2870 else
78134374 2871 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2872 {
dda83cd7
SM
2873 arity += 1;
2874 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2875 }
d2e4a39e 2876
14f9c5c9
AS
2877 return arity;
2878}
2879
2880/* If TYPE is a record type in the form of a standard GNAT array
2881 descriptor or a simple array type, returns the element type for
2882 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2883 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2884
d2e4a39e
AS
2885struct type *
2886ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2887{
2888 type = desc_base_type (type);
2889
78134374 2890 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
2891 {
2892 int k;
d2e4a39e 2893 struct type *p_array_type;
14f9c5c9 2894
556bdfd4 2895 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2896
2897 k = ada_array_arity (type);
2898 if (k == 0)
dda83cd7 2899 return NULL;
d2e4a39e 2900
4c4b4cd2 2901 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2902 if (nindices >= 0 && k > nindices)
dda83cd7 2903 k = nindices;
d2e4a39e 2904 while (k > 0 && p_array_type != NULL)
dda83cd7
SM
2905 {
2906 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2907 k -= 1;
2908 }
14f9c5c9
AS
2909 return p_array_type;
2910 }
78134374 2911 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2912 {
78134374 2913 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
dda83cd7
SM
2914 {
2915 type = TYPE_TARGET_TYPE (type);
2916 nindices -= 1;
2917 }
14f9c5c9
AS
2918 return type;
2919 }
2920
2921 return NULL;
2922}
2923
4c4b4cd2 2924/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2925 Does not examine memory. Throws an error if N is invalid or TYPE
2926 is not an array type. NAME is the name of the Ada attribute being
2927 evaluated ('range, 'first, 'last, or 'length); it is used in building
2928 the error message. */
14f9c5c9 2929
1eea4ebd
UW
2930static struct type *
2931ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2932{
4c4b4cd2
PH
2933 struct type *result_type;
2934
14f9c5c9
AS
2935 type = desc_base_type (type);
2936
1eea4ebd
UW
2937 if (n < 0 || n > ada_array_arity (type))
2938 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2939
4c4b4cd2 2940 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2941 {
2942 int i;
2943
2944 for (i = 1; i < n; i += 1)
dda83cd7 2945 type = TYPE_TARGET_TYPE (type);
3d967001 2946 result_type = TYPE_TARGET_TYPE (type->index_type ());
4c4b4cd2 2947 /* FIXME: The stabs type r(0,0);bound;bound in an array type
dda83cd7
SM
2948 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2949 perhaps stabsread.c would make more sense. */
78134374 2950 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
dda83cd7 2951 result_type = NULL;
14f9c5c9 2952 }
d2e4a39e 2953 else
1eea4ebd
UW
2954 {
2955 result_type = desc_index_type (desc_bounds_type (type), n);
2956 if (result_type == NULL)
2957 error (_("attempt to take bound of something that is not an array"));
2958 }
2959
2960 return result_type;
14f9c5c9
AS
2961}
2962
2963/* Given that arr is an array type, returns the lower bound of the
2964 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2965 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2966 array-descriptor type. It works for other arrays with bounds supplied
2967 by run-time quantities other than discriminants. */
14f9c5c9 2968
abb68b3e 2969static LONGEST
fb5e3d5c 2970ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2971{
8a48ac95 2972 struct type *type, *index_type_desc, *index_type;
1ce677a4 2973 int i;
262452ec
JK
2974
2975 gdb_assert (which == 0 || which == 1);
14f9c5c9 2976
ad82864c
JB
2977 if (ada_is_constrained_packed_array_type (arr_type))
2978 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2979
4c4b4cd2 2980 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2981 return (LONGEST) - which;
14f9c5c9 2982
78134374 2983 if (arr_type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
2984 type = TYPE_TARGET_TYPE (arr_type);
2985 else
2986 type = arr_type;
2987
22c4c60c 2988 if (type->is_fixed_instance ())
bafffb51
JB
2989 {
2990 /* The array has already been fixed, so we do not need to
2991 check the parallel ___XA type again. That encoding has
2992 already been applied, so ignore it now. */
2993 index_type_desc = NULL;
2994 }
2995 else
2996 {
2997 index_type_desc = ada_find_parallel_type (type, "___XA");
2998 ada_fixup_array_indexes_type (index_type_desc);
2999 }
3000
262452ec 3001 if (index_type_desc != NULL)
940da03e 3002 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
28c85d6c 3003 NULL);
262452ec 3004 else
8a48ac95
JB
3005 {
3006 struct type *elt_type = check_typedef (type);
3007
3008 for (i = 1; i < n; i++)
3009 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3010
3d967001 3011 index_type = elt_type->index_type ();
8a48ac95 3012 }
262452ec 3013
43bbcdc2
PH
3014 return
3015 (LONGEST) (which == 0
dda83cd7
SM
3016 ? ada_discrete_type_low_bound (index_type)
3017 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3018}
3019
3020/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3021 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3022 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3023 supplied by run-time quantities other than discriminants. */
14f9c5c9 3024
1eea4ebd 3025static LONGEST
4dc81987 3026ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3027{
eb479039
JB
3028 struct type *arr_type;
3029
78134374 3030 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3031 arr = value_ind (arr);
3032 arr_type = value_enclosing_type (arr);
14f9c5c9 3033
ad82864c
JB
3034 if (ada_is_constrained_packed_array_type (arr_type))
3035 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3036 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3037 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3038 else
1eea4ebd 3039 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3040}
3041
3042/* Given that arr is an array value, returns the length of the
3043 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3044 supplied by run-time quantities other than discriminants.
3045 Does not work for arrays indexed by enumeration types with representation
3046 clauses at the moment. */
14f9c5c9 3047
1eea4ebd 3048static LONGEST
d2e4a39e 3049ada_array_length (struct value *arr, int n)
14f9c5c9 3050{
aa715135
JG
3051 struct type *arr_type, *index_type;
3052 int low, high;
eb479039 3053
78134374 3054 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3055 arr = value_ind (arr);
3056 arr_type = value_enclosing_type (arr);
14f9c5c9 3057
ad82864c
JB
3058 if (ada_is_constrained_packed_array_type (arr_type))
3059 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3060
4c4b4cd2 3061 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3062 {
3063 low = ada_array_bound_from_type (arr_type, n, 0);
3064 high = ada_array_bound_from_type (arr_type, n, 1);
3065 }
14f9c5c9 3066 else
aa715135
JG
3067 {
3068 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3069 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3070 }
3071
f168693b 3072 arr_type = check_typedef (arr_type);
7150d33c 3073 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3074 if (index_type != NULL)
3075 {
3076 struct type *base_type;
78134374 3077 if (index_type->code () == TYPE_CODE_RANGE)
aa715135
JG
3078 base_type = TYPE_TARGET_TYPE (index_type);
3079 else
3080 base_type = index_type;
3081
3082 low = pos_atr (value_from_longest (base_type, low));
3083 high = pos_atr (value_from_longest (base_type, high));
3084 }
3085 return high - low + 1;
4c4b4cd2
PH
3086}
3087
bff8c71f
TT
3088/* An array whose type is that of ARR_TYPE (an array type), with
3089 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3090 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3091
3092static struct value *
bff8c71f 3093empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3094{
b0dd7688 3095 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3096 struct type *index_type
3097 = create_static_range_type
dda83cd7 3098 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
bff8c71f 3099 high < low ? low - 1 : high);
b0dd7688 3100 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3101
0b5d8877 3102 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3103}
14f9c5c9 3104\f
d2e4a39e 3105
dda83cd7 3106 /* Name resolution */
14f9c5c9 3107
4c4b4cd2
PH
3108/* The "decoded" name for the user-definable Ada operator corresponding
3109 to OP. */
14f9c5c9 3110
d2e4a39e 3111static const char *
4c4b4cd2 3112ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3113{
3114 int i;
3115
4c4b4cd2 3116 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3117 {
3118 if (ada_opname_table[i].op == op)
dda83cd7 3119 return ada_opname_table[i].decoded;
14f9c5c9 3120 }
323e0a4a 3121 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3122}
3123
de93309a
SM
3124/* Returns true (non-zero) iff decoded name N0 should appear before N1
3125 in a listing of choices during disambiguation (see sort_choices, below).
3126 The idea is that overloadings of a subprogram name from the
3127 same package should sort in their source order. We settle for ordering
3128 such symbols by their trailing number (__N or $N). */
14f9c5c9 3129
de93309a
SM
3130static int
3131encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3132{
de93309a
SM
3133 if (N1 == NULL)
3134 return 0;
3135 else if (N0 == NULL)
3136 return 1;
3137 else
3138 {
3139 int k0, k1;
30b15541 3140
de93309a 3141 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
dda83cd7 3142 ;
de93309a 3143 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
dda83cd7 3144 ;
de93309a 3145 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
dda83cd7
SM
3146 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3147 {
3148 int n0, n1;
3149
3150 n0 = k0;
3151 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3152 n0 -= 1;
3153 n1 = k1;
3154 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3155 n1 -= 1;
3156 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3157 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3158 }
de93309a
SM
3159 return (strcmp (N0, N1) < 0);
3160 }
14f9c5c9
AS
3161}
3162
de93309a
SM
3163/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3164 encoded names. */
14f9c5c9 3165
de93309a
SM
3166static void
3167sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3168{
14f9c5c9 3169 int i;
14f9c5c9 3170
de93309a 3171 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3172 {
de93309a
SM
3173 struct block_symbol sym = syms[i];
3174 int j;
3175
3176 for (j = i - 1; j >= 0; j -= 1)
dda83cd7
SM
3177 {
3178 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3179 sym.symbol->linkage_name ()))
3180 break;
3181 syms[j + 1] = syms[j];
3182 }
de93309a
SM
3183 syms[j + 1] = sym;
3184 }
3185}
14f9c5c9 3186
de93309a
SM
3187/* Whether GDB should display formals and return types for functions in the
3188 overloads selection menu. */
3189static bool print_signatures = true;
4c4b4cd2 3190
de93309a
SM
3191/* Print the signature for SYM on STREAM according to the FLAGS options. For
3192 all but functions, the signature is just the name of the symbol. For
3193 functions, this is the name of the function, the list of types for formals
3194 and the return type (if any). */
4c4b4cd2 3195
de93309a
SM
3196static void
3197ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3198 const struct type_print_options *flags)
3199{
3200 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3201
987012b8 3202 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3203 if (!print_signatures
3204 || type == NULL
78134374 3205 || type->code () != TYPE_CODE_FUNC)
de93309a 3206 return;
4c4b4cd2 3207
1f704f76 3208 if (type->num_fields () > 0)
de93309a
SM
3209 {
3210 int i;
14f9c5c9 3211
de93309a 3212 fprintf_filtered (stream, " (");
1f704f76 3213 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3214 {
3215 if (i > 0)
3216 fprintf_filtered (stream, "; ");
940da03e 3217 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
de93309a
SM
3218 flags);
3219 }
3220 fprintf_filtered (stream, ")");
3221 }
3222 if (TYPE_TARGET_TYPE (type) != NULL
78134374 3223 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
de93309a
SM
3224 {
3225 fprintf_filtered (stream, " return ");
3226 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3227 }
3228}
14f9c5c9 3229
de93309a
SM
3230/* Read and validate a set of numeric choices from the user in the
3231 range 0 .. N_CHOICES-1. Place the results in increasing
3232 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3233
de93309a
SM
3234 The user types choices as a sequence of numbers on one line
3235 separated by blanks, encoding them as follows:
14f9c5c9 3236
de93309a
SM
3237 + A choice of 0 means to cancel the selection, throwing an error.
3238 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3239 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3240
de93309a 3241 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3242
de93309a
SM
3243 ANNOTATION_SUFFIX, if present, is used to annotate the input
3244 prompts (for use with the -f switch). */
14f9c5c9 3245
de93309a
SM
3246static int
3247get_selections (int *choices, int n_choices, int max_results,
dda83cd7 3248 int is_all_choice, const char *annotation_suffix)
de93309a 3249{
992a7040 3250 const char *args;
de93309a
SM
3251 const char *prompt;
3252 int n_chosen;
3253 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3254
de93309a
SM
3255 prompt = getenv ("PS2");
3256 if (prompt == NULL)
3257 prompt = "> ";
4c4b4cd2 3258
de93309a 3259 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3260
de93309a
SM
3261 if (args == NULL)
3262 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3263
de93309a 3264 n_chosen = 0;
4c4b4cd2 3265
de93309a
SM
3266 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3267 order, as given in args. Choices are validated. */
3268 while (1)
14f9c5c9 3269 {
de93309a
SM
3270 char *args2;
3271 int choice, j;
76a01679 3272
de93309a
SM
3273 args = skip_spaces (args);
3274 if (*args == '\0' && n_chosen == 0)
dda83cd7 3275 error_no_arg (_("one or more choice numbers"));
de93309a 3276 else if (*args == '\0')
dda83cd7 3277 break;
76a01679 3278
de93309a
SM
3279 choice = strtol (args, &args2, 10);
3280 if (args == args2 || choice < 0
dda83cd7
SM
3281 || choice > n_choices + first_choice - 1)
3282 error (_("Argument must be choice number"));
de93309a 3283 args = args2;
76a01679 3284
de93309a 3285 if (choice == 0)
dda83cd7 3286 error (_("cancelled"));
76a01679 3287
de93309a 3288 if (choice < first_choice)
dda83cd7
SM
3289 {
3290 n_chosen = n_choices;
3291 for (j = 0; j < n_choices; j += 1)
3292 choices[j] = j;
3293 break;
3294 }
de93309a 3295 choice -= first_choice;
76a01679 3296
de93309a 3297 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
dda83cd7
SM
3298 {
3299 }
4c4b4cd2 3300
de93309a 3301 if (j < 0 || choice != choices[j])
dda83cd7
SM
3302 {
3303 int k;
4c4b4cd2 3304
dda83cd7
SM
3305 for (k = n_chosen - 1; k > j; k -= 1)
3306 choices[k + 1] = choices[k];
3307 choices[j + 1] = choice;
3308 n_chosen += 1;
3309 }
14f9c5c9
AS
3310 }
3311
de93309a
SM
3312 if (n_chosen > max_results)
3313 error (_("Select no more than %d of the above"), max_results);
3314
3315 return n_chosen;
14f9c5c9
AS
3316}
3317
de93309a
SM
3318/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3319 by asking the user (if necessary), returning the number selected,
3320 and setting the first elements of SYMS items. Error if no symbols
3321 selected. */
3322
3323/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3324 to be re-integrated one of these days. */
14f9c5c9
AS
3325
3326static int
de93309a 3327user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3328{
de93309a
SM
3329 int i;
3330 int *chosen = XALLOCAVEC (int , nsyms);
3331 int n_chosen;
3332 int first_choice = (max_results == 1) ? 1 : 2;
3333 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3334
de93309a
SM
3335 if (max_results < 1)
3336 error (_("Request to select 0 symbols!"));
3337 if (nsyms <= 1)
3338 return nsyms;
14f9c5c9 3339
de93309a
SM
3340 if (select_mode == multiple_symbols_cancel)
3341 error (_("\
3342canceled because the command is ambiguous\n\
3343See set/show multiple-symbol."));
14f9c5c9 3344
de93309a
SM
3345 /* If select_mode is "all", then return all possible symbols.
3346 Only do that if more than one symbol can be selected, of course.
3347 Otherwise, display the menu as usual. */
3348 if (select_mode == multiple_symbols_all && max_results > 1)
3349 return nsyms;
14f9c5c9 3350
de93309a
SM
3351 printf_filtered (_("[0] cancel\n"));
3352 if (max_results > 1)
3353 printf_filtered (_("[1] all\n"));
14f9c5c9 3354
de93309a 3355 sort_choices (syms, nsyms);
14f9c5c9 3356
de93309a
SM
3357 for (i = 0; i < nsyms; i += 1)
3358 {
3359 if (syms[i].symbol == NULL)
dda83cd7 3360 continue;
14f9c5c9 3361
de93309a 3362 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
dda83cd7
SM
3363 {
3364 struct symtab_and_line sal =
3365 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3366
de93309a
SM
3367 printf_filtered ("[%d] ", i + first_choice);
3368 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3369 &type_print_raw_options);
3370 if (sal.symtab == NULL)
3371 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3372 metadata_style.style ().ptr (), nullptr, sal.line);
3373 else
3374 printf_filtered
3375 (_(" at %ps:%d\n"),
3376 styled_string (file_name_style.style (),
3377 symtab_to_filename_for_display (sal.symtab)),
3378 sal.line);
dda83cd7
SM
3379 continue;
3380 }
76a01679 3381 else
dda83cd7
SM
3382 {
3383 int is_enumeral =
3384 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3385 && SYMBOL_TYPE (syms[i].symbol) != NULL
3386 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
de93309a 3387 struct symtab *symtab = NULL;
4c4b4cd2 3388
de93309a
SM
3389 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3390 symtab = symbol_symtab (syms[i].symbol);
3391
dda83cd7 3392 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
de93309a
SM
3393 {
3394 printf_filtered ("[%d] ", i + first_choice);
3395 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3396 &type_print_raw_options);
3397 printf_filtered (_(" at %s:%d\n"),
3398 symtab_to_filename_for_display (symtab),
3399 SYMBOL_LINE (syms[i].symbol));
3400 }
dda83cd7
SM
3401 else if (is_enumeral
3402 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3403 {
3404 printf_filtered (("[%d] "), i + first_choice);
3405 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3406 gdb_stdout, -1, 0, &type_print_raw_options);
3407 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3408 syms[i].symbol->print_name ());
dda83cd7 3409 }
de93309a
SM
3410 else
3411 {
3412 printf_filtered ("[%d] ", i + first_choice);
3413 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3414 &type_print_raw_options);
3415
3416 if (symtab != NULL)
3417 printf_filtered (is_enumeral
3418 ? _(" in %s (enumeral)\n")
3419 : _(" at %s:?\n"),
3420 symtab_to_filename_for_display (symtab));
3421 else
3422 printf_filtered (is_enumeral
3423 ? _(" (enumeral)\n")
3424 : _(" at ?\n"));
3425 }
dda83cd7 3426 }
14f9c5c9 3427 }
14f9c5c9 3428
de93309a 3429 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
dda83cd7 3430 "overload-choice");
14f9c5c9 3431
de93309a
SM
3432 for (i = 0; i < n_chosen; i += 1)
3433 syms[i] = syms[chosen[i]];
14f9c5c9 3434
de93309a
SM
3435 return n_chosen;
3436}
14f9c5c9 3437
de93309a
SM
3438/* Resolve the operator of the subexpression beginning at
3439 position *POS of *EXPP. "Resolving" consists of replacing
3440 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3441 with their resolutions, replacing built-in operators with
3442 function calls to user-defined operators, where appropriate, and,
3443 when DEPROCEDURE_P is non-zero, converting function-valued variables
3444 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3445 are as in ada_resolve, above. */
14f9c5c9 3446
de93309a
SM
3447static struct value *
3448resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
dda83cd7 3449 struct type *context_type, int parse_completion,
de93309a 3450 innermost_block_tracker *tracker)
14f9c5c9 3451{
de93309a
SM
3452 int pc = *pos;
3453 int i;
3454 struct expression *exp; /* Convenience: == *expp. */
3455 enum exp_opcode op = (*expp)->elts[pc].opcode;
3456 struct value **argvec; /* Vector of operand types (alloca'ed). */
3457 int nargs; /* Number of operands. */
3458 int oplen;
14f9c5c9 3459
de93309a
SM
3460 argvec = NULL;
3461 nargs = 0;
3462 exp = expp->get ();
4c4b4cd2 3463
de93309a
SM
3464 /* Pass one: resolve operands, saving their types and updating *pos,
3465 if needed. */
3466 switch (op)
3467 {
3468 case OP_FUNCALL:
3469 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
dda83cd7
SM
3470 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3471 *pos += 7;
de93309a 3472 else
dda83cd7
SM
3473 {
3474 *pos += 3;
3475 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3476 }
de93309a
SM
3477 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3478 break;
14f9c5c9 3479
de93309a
SM
3480 case UNOP_ADDR:
3481 *pos += 1;
3482 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3483 break;
3484
3485 case UNOP_QUAL:
3486 *pos += 3;
3487 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3488 parse_completion, tracker);
3489 break;
3490
3491 case OP_ATR_MODULUS:
3492 case OP_ATR_SIZE:
3493 case OP_ATR_TAG:
3494 case OP_ATR_FIRST:
3495 case OP_ATR_LAST:
3496 case OP_ATR_LENGTH:
3497 case OP_ATR_POS:
3498 case OP_ATR_VAL:
3499 case OP_ATR_MIN:
3500 case OP_ATR_MAX:
3501 case TERNOP_IN_RANGE:
3502 case BINOP_IN_BOUNDS:
3503 case UNOP_IN_RANGE:
3504 case OP_AGGREGATE:
3505 case OP_OTHERS:
3506 case OP_CHOICES:
3507 case OP_POSITIONAL:
3508 case OP_DISCRETE_RANGE:
3509 case OP_NAME:
3510 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3511 *pos += oplen;
3512 break;
3513
3514 case BINOP_ASSIGN:
3515 {
dda83cd7
SM
3516 struct value *arg1;
3517
3518 *pos += 1;
3519 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3520 if (arg1 == NULL)
3521 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3522 else
3523 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
de93309a 3524 tracker);
dda83cd7 3525 break;
de93309a
SM
3526 }
3527
3528 case UNOP_CAST:
3529 *pos += 3;
3530 nargs = 1;
3531 break;
3532
3533 case BINOP_ADD:
3534 case BINOP_SUB:
3535 case BINOP_MUL:
3536 case BINOP_DIV:
3537 case BINOP_REM:
3538 case BINOP_MOD:
3539 case BINOP_EXP:
3540 case BINOP_CONCAT:
3541 case BINOP_LOGICAL_AND:
3542 case BINOP_LOGICAL_OR:
3543 case BINOP_BITWISE_AND:
3544 case BINOP_BITWISE_IOR:
3545 case BINOP_BITWISE_XOR:
3546
3547 case BINOP_EQUAL:
3548 case BINOP_NOTEQUAL:
3549 case BINOP_LESS:
3550 case BINOP_GTR:
3551 case BINOP_LEQ:
3552 case BINOP_GEQ:
3553
3554 case BINOP_REPEAT:
3555 case BINOP_SUBSCRIPT:
3556 case BINOP_COMMA:
3557 *pos += 1;
3558 nargs = 2;
3559 break;
3560
3561 case UNOP_NEG:
3562 case UNOP_PLUS:
3563 case UNOP_LOGICAL_NOT:
3564 case UNOP_ABS:
3565 case UNOP_IND:
3566 *pos += 1;
3567 nargs = 1;
3568 break;
3569
3570 case OP_LONG:
3571 case OP_FLOAT:
3572 case OP_VAR_VALUE:
3573 case OP_VAR_MSYM_VALUE:
3574 *pos += 4;
3575 break;
3576
3577 case OP_TYPE:
3578 case OP_BOOL:
3579 case OP_LAST:
3580 case OP_INTERNALVAR:
3581 *pos += 3;
3582 break;
3583
3584 case UNOP_MEMVAL:
3585 *pos += 3;
3586 nargs = 1;
3587 break;
3588
3589 case OP_REGISTER:
3590 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3591 break;
3592
3593 case STRUCTOP_STRUCT:
3594 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3595 nargs = 1;
3596 break;
3597
3598 case TERNOP_SLICE:
3599 *pos += 1;
3600 nargs = 3;
3601 break;
3602
3603 case OP_STRING:
3604 break;
3605
3606 default:
3607 error (_("Unexpected operator during name resolution"));
14f9c5c9 3608 }
14f9c5c9 3609
de93309a
SM
3610 argvec = XALLOCAVEC (struct value *, nargs + 1);
3611 for (i = 0; i < nargs; i += 1)
3612 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3613 tracker);
3614 argvec[i] = NULL;
3615 exp = expp->get ();
4c4b4cd2 3616
de93309a
SM
3617 /* Pass two: perform any resolution on principal operator. */
3618 switch (op)
14f9c5c9 3619 {
de93309a
SM
3620 default:
3621 break;
5b4ee69b 3622
de93309a
SM
3623 case OP_VAR_VALUE:
3624 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
dda83cd7
SM
3625 {
3626 std::vector<struct block_symbol> candidates;
3627 int n_candidates;
3628
3629 n_candidates =
3630 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3631 exp->elts[pc + 1].block, VAR_DOMAIN,
3632 &candidates);
3633
3634 if (n_candidates > 1)
3635 {
3636 /* Types tend to get re-introduced locally, so if there
3637 are any local symbols that are not types, first filter
3638 out all types. */
3639 int j;
3640 for (j = 0; j < n_candidates; j += 1)
3641 switch (SYMBOL_CLASS (candidates[j].symbol))
3642 {
3643 case LOC_REGISTER:
3644 case LOC_ARG:
3645 case LOC_REF_ARG:
3646 case LOC_REGPARM_ADDR:
3647 case LOC_LOCAL:
3648 case LOC_COMPUTED:
3649 goto FoundNonType;
3650 default:
3651 break;
3652 }
3653 FoundNonType:
3654 if (j < n_candidates)
3655 {
3656 j = 0;
3657 while (j < n_candidates)
3658 {
3659 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3660 {
3661 candidates[j] = candidates[n_candidates - 1];
3662 n_candidates -= 1;
3663 }
3664 else
3665 j += 1;
3666 }
3667 }
3668 }
3669
3670 if (n_candidates == 0)
3671 error (_("No definition found for %s"),
3672 exp->elts[pc + 2].symbol->print_name ());
3673 else if (n_candidates == 1)
3674 i = 0;
3675 else if (deprocedure_p
3676 && !is_nonfunction (candidates.data (), n_candidates))
3677 {
3678 i = ada_resolve_function
3679 (candidates.data (), n_candidates, NULL, 0,
3680 exp->elts[pc + 2].symbol->linkage_name (),
3681 context_type, parse_completion);
3682 if (i < 0)
3683 error (_("Could not find a match for %s"),
3684 exp->elts[pc + 2].symbol->print_name ());
3685 }
3686 else
3687 {
3688 printf_filtered (_("Multiple matches for %s\n"),
3689 exp->elts[pc + 2].symbol->print_name ());
3690 user_select_syms (candidates.data (), n_candidates, 1);
3691 i = 0;
3692 }
3693
3694 exp->elts[pc + 1].block = candidates[i].block;
3695 exp->elts[pc + 2].symbol = candidates[i].symbol;
de93309a 3696 tracker->update (candidates[i]);
dda83cd7 3697 }
14f9c5c9 3698
de93309a 3699 if (deprocedure_p
dda83cd7
SM
3700 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3701 == TYPE_CODE_FUNC))
3702 {
3703 replace_operator_with_call (expp, pc, 0, 4,
3704 exp->elts[pc + 2].symbol,
3705 exp->elts[pc + 1].block);
3706 exp = expp->get ();
3707 }
de93309a
SM
3708 break;
3709
3710 case OP_FUNCALL:
3711 {
dda83cd7
SM
3712 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3713 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3714 {
de93309a 3715 std::vector<struct block_symbol> candidates;
dda83cd7
SM
3716 int n_candidates;
3717
3718 n_candidates =
3719 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3720 exp->elts[pc + 4].block, VAR_DOMAIN,
3721 &candidates);
3722
3723 if (n_candidates == 1)
3724 i = 0;
3725 else
3726 {
3727 i = ada_resolve_function
3728 (candidates.data (), n_candidates,
3729 argvec, nargs,
3730 exp->elts[pc + 5].symbol->linkage_name (),
3731 context_type, parse_completion);
3732 if (i < 0)
3733 error (_("Could not find a match for %s"),
3734 exp->elts[pc + 5].symbol->print_name ());
3735 }
3736
3737 exp->elts[pc + 4].block = candidates[i].block;
3738 exp->elts[pc + 5].symbol = candidates[i].symbol;
de93309a 3739 tracker->update (candidates[i]);
dda83cd7 3740 }
de93309a
SM
3741 }
3742 break;
3743 case BINOP_ADD:
3744 case BINOP_SUB:
3745 case BINOP_MUL:
3746 case BINOP_DIV:
3747 case BINOP_REM:
3748 case BINOP_MOD:
3749 case BINOP_CONCAT:
3750 case BINOP_BITWISE_AND:
3751 case BINOP_BITWISE_IOR:
3752 case BINOP_BITWISE_XOR:
3753 case BINOP_EQUAL:
3754 case BINOP_NOTEQUAL:
3755 case BINOP_LESS:
3756 case BINOP_GTR:
3757 case BINOP_LEQ:
3758 case BINOP_GEQ:
3759 case BINOP_EXP:
3760 case UNOP_NEG:
3761 case UNOP_PLUS:
3762 case UNOP_LOGICAL_NOT:
3763 case UNOP_ABS:
3764 if (possible_user_operator_p (op, argvec))
dda83cd7 3765 {
de93309a 3766 std::vector<struct block_symbol> candidates;
dda83cd7 3767 int n_candidates;
d72413e6 3768
dda83cd7
SM
3769 n_candidates =
3770 ada_lookup_symbol_list (ada_decoded_op_name (op),
de93309a 3771 NULL, VAR_DOMAIN,
dda83cd7 3772 &candidates);
d72413e6 3773
dda83cd7 3774 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
de93309a
SM
3775 nargs, ada_decoded_op_name (op), NULL,
3776 parse_completion);
dda83cd7
SM
3777 if (i < 0)
3778 break;
d72413e6 3779
de93309a
SM
3780 replace_operator_with_call (expp, pc, nargs, 1,
3781 candidates[i].symbol,
3782 candidates[i].block);
dda83cd7
SM
3783 exp = expp->get ();
3784 }
de93309a 3785 break;
d72413e6 3786
de93309a
SM
3787 case OP_TYPE:
3788 case OP_REGISTER:
3789 return NULL;
d72413e6 3790 }
d72413e6 3791
de93309a
SM
3792 *pos = pc;
3793 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3794 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3795 exp->elts[pc + 1].objfile,
3796 exp->elts[pc + 2].msymbol);
3797 else
3798 return evaluate_subexp_type (exp, pos);
3799}
14f9c5c9 3800
de93309a
SM
3801/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3802 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3803 a non-pointer. */
3804/* The term "match" here is rather loose. The match is heuristic and
3805 liberal. */
14f9c5c9 3806
de93309a
SM
3807static int
3808ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3809{
de93309a
SM
3810 ftype = ada_check_typedef (ftype);
3811 atype = ada_check_typedef (atype);
14f9c5c9 3812
78134374 3813 if (ftype->code () == TYPE_CODE_REF)
de93309a 3814 ftype = TYPE_TARGET_TYPE (ftype);
78134374 3815 if (atype->code () == TYPE_CODE_REF)
de93309a 3816 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3817
78134374 3818 switch (ftype->code ())
14f9c5c9 3819 {
de93309a 3820 default:
78134374 3821 return ftype->code () == atype->code ();
de93309a 3822 case TYPE_CODE_PTR:
78134374 3823 if (atype->code () == TYPE_CODE_PTR)
dda83cd7
SM
3824 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3825 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3826 else
dda83cd7
SM
3827 return (may_deref
3828 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
de93309a
SM
3829 case TYPE_CODE_INT:
3830 case TYPE_CODE_ENUM:
3831 case TYPE_CODE_RANGE:
78134374 3832 switch (atype->code ())
dda83cd7
SM
3833 {
3834 case TYPE_CODE_INT:
3835 case TYPE_CODE_ENUM:
3836 case TYPE_CODE_RANGE:
3837 return 1;
3838 default:
3839 return 0;
3840 }
d2e4a39e 3841
de93309a 3842 case TYPE_CODE_ARRAY:
78134374 3843 return (atype->code () == TYPE_CODE_ARRAY
dda83cd7 3844 || ada_is_array_descriptor_type (atype));
14f9c5c9 3845
de93309a
SM
3846 case TYPE_CODE_STRUCT:
3847 if (ada_is_array_descriptor_type (ftype))
dda83cd7
SM
3848 return (atype->code () == TYPE_CODE_ARRAY
3849 || ada_is_array_descriptor_type (atype));
de93309a 3850 else
dda83cd7
SM
3851 return (atype->code () == TYPE_CODE_STRUCT
3852 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3853
de93309a
SM
3854 case TYPE_CODE_UNION:
3855 case TYPE_CODE_FLT:
78134374 3856 return (atype->code () == ftype->code ());
de93309a 3857 }
14f9c5c9
AS
3858}
3859
de93309a
SM
3860/* Return non-zero if the formals of FUNC "sufficiently match" the
3861 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3862 may also be an enumeral, in which case it is treated as a 0-
3863 argument function. */
14f9c5c9 3864
de93309a
SM
3865static int
3866ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3867{
3868 int i;
3869 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3870
de93309a 3871 if (SYMBOL_CLASS (func) == LOC_CONST
78134374 3872 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3873 return (n_actuals == 0);
78134374 3874 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3875 return 0;
14f9c5c9 3876
1f704f76 3877 if (func_type->num_fields () != n_actuals)
de93309a 3878 return 0;
14f9c5c9 3879
de93309a
SM
3880 for (i = 0; i < n_actuals; i += 1)
3881 {
3882 if (actuals[i] == NULL)
dda83cd7 3883 return 0;
de93309a 3884 else
dda83cd7
SM
3885 {
3886 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3887 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3888
dda83cd7
SM
3889 if (!ada_type_match (ftype, atype, 1))
3890 return 0;
3891 }
de93309a
SM
3892 }
3893 return 1;
3894}
d2e4a39e 3895
de93309a
SM
3896/* False iff function type FUNC_TYPE definitely does not produce a value
3897 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3898 FUNC_TYPE is not a valid function type with a non-null return type
3899 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3900
de93309a
SM
3901static int
3902return_match (struct type *func_type, struct type *context_type)
3903{
3904 struct type *return_type;
d2e4a39e 3905
de93309a
SM
3906 if (func_type == NULL)
3907 return 1;
14f9c5c9 3908
78134374 3909 if (func_type->code () == TYPE_CODE_FUNC)
de93309a
SM
3910 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3911 else
3912 return_type = get_base_type (func_type);
3913 if (return_type == NULL)
3914 return 1;
76a01679 3915
de93309a 3916 context_type = get_base_type (context_type);
14f9c5c9 3917
78134374 3918 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
3919 return context_type == NULL || return_type == context_type;
3920 else if (context_type == NULL)
78134374 3921 return return_type->code () != TYPE_CODE_VOID;
de93309a 3922 else
78134374 3923 return return_type->code () == context_type->code ();
de93309a 3924}
14f9c5c9 3925
14f9c5c9 3926
de93309a
SM
3927/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3928 function (if any) that matches the types of the NARGS arguments in
3929 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3930 that returns that type, then eliminate matches that don't. If
3931 CONTEXT_TYPE is void and there is at least one match that does not
3932 return void, eliminate all matches that do.
14f9c5c9 3933
de93309a
SM
3934 Asks the user if there is more than one match remaining. Returns -1
3935 if there is no such symbol or none is selected. NAME is used
3936 solely for messages. May re-arrange and modify SYMS in
3937 the process; the index returned is for the modified vector. */
14f9c5c9 3938
de93309a
SM
3939static int
3940ada_resolve_function (struct block_symbol syms[],
dda83cd7
SM
3941 int nsyms, struct value **args, int nargs,
3942 const char *name, struct type *context_type,
de93309a
SM
3943 int parse_completion)
3944{
3945 int fallback;
3946 int k;
3947 int m; /* Number of hits */
14f9c5c9 3948
de93309a
SM
3949 m = 0;
3950 /* In the first pass of the loop, we only accept functions matching
3951 context_type. If none are found, we add a second pass of the loop
3952 where every function is accepted. */
3953 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3954 {
3955 for (k = 0; k < nsyms; k += 1)
dda83cd7
SM
3956 {
3957 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 3958
dda83cd7
SM
3959 if (ada_args_match (syms[k].symbol, args, nargs)
3960 && (fallback || return_match (type, context_type)))
3961 {
3962 syms[m] = syms[k];
3963 m += 1;
3964 }
3965 }
14f9c5c9
AS
3966 }
3967
de93309a
SM
3968 /* If we got multiple matches, ask the user which one to use. Don't do this
3969 interactive thing during completion, though, as the purpose of the
3970 completion is providing a list of all possible matches. Prompting the
3971 user to filter it down would be completely unexpected in this case. */
3972 if (m == 0)
3973 return -1;
3974 else if (m > 1 && !parse_completion)
3975 {
3976 printf_filtered (_("Multiple matches for %s\n"), name);
3977 user_select_syms (syms, m, 1);
3978 return 0;
3979 }
3980 return 0;
14f9c5c9
AS
3981}
3982
4c4b4cd2
PH
3983/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3984 on the function identified by SYM and BLOCK, and taking NARGS
3985 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3986
3987static void
e9d9f57e 3988replace_operator_with_call (expression_up *expp, int pc, int nargs,
dda83cd7
SM
3989 int oplen, struct symbol *sym,
3990 const struct block *block)
14f9c5c9
AS
3991{
3992 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3993 symbol, -oplen for operator being replaced). */
d2e4a39e 3994 struct expression *newexp = (struct expression *)
8c1a34e7 3995 xzalloc (sizeof (struct expression)
dda83cd7 3996 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 3997 struct expression *exp = expp->get ();
14f9c5c9
AS
3998
3999 newexp->nelts = exp->nelts + 7 - oplen;
4000 newexp->language_defn = exp->language_defn;
3489610d 4001 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4002 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4003 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
dda83cd7 4004 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4005
4006 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4007 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4008
4009 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4010 newexp->elts[pc + 4].block = block;
4011 newexp->elts[pc + 5].symbol = sym;
4012
e9d9f57e 4013 expp->reset (newexp);
d2e4a39e 4014}
14f9c5c9
AS
4015
4016/* Type-class predicates */
4017
4c4b4cd2
PH
4018/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4019 or FLOAT). */
14f9c5c9
AS
4020
4021static int
d2e4a39e 4022numeric_type_p (struct type *type)
14f9c5c9
AS
4023{
4024 if (type == NULL)
4025 return 0;
d2e4a39e
AS
4026 else
4027 {
78134374 4028 switch (type->code ())
dda83cd7
SM
4029 {
4030 case TYPE_CODE_INT:
4031 case TYPE_CODE_FLT:
4032 return 1;
4033 case TYPE_CODE_RANGE:
4034 return (type == TYPE_TARGET_TYPE (type)
4035 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4036 default:
4037 return 0;
4038 }
d2e4a39e 4039 }
14f9c5c9
AS
4040}
4041
4c4b4cd2 4042/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4043
4044static int
d2e4a39e 4045integer_type_p (struct type *type)
14f9c5c9
AS
4046{
4047 if (type == NULL)
4048 return 0;
d2e4a39e
AS
4049 else
4050 {
78134374 4051 switch (type->code ())
dda83cd7
SM
4052 {
4053 case TYPE_CODE_INT:
4054 return 1;
4055 case TYPE_CODE_RANGE:
4056 return (type == TYPE_TARGET_TYPE (type)
4057 || integer_type_p (TYPE_TARGET_TYPE (type)));
4058 default:
4059 return 0;
4060 }
d2e4a39e 4061 }
14f9c5c9
AS
4062}
4063
4c4b4cd2 4064/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4065
4066static int
d2e4a39e 4067scalar_type_p (struct type *type)
14f9c5c9
AS
4068{
4069 if (type == NULL)
4070 return 0;
d2e4a39e
AS
4071 else
4072 {
78134374 4073 switch (type->code ())
dda83cd7
SM
4074 {
4075 case TYPE_CODE_INT:
4076 case TYPE_CODE_RANGE:
4077 case TYPE_CODE_ENUM:
4078 case TYPE_CODE_FLT:
4079 return 1;
4080 default:
4081 return 0;
4082 }
d2e4a39e 4083 }
14f9c5c9
AS
4084}
4085
4c4b4cd2 4086/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4087
4088static int
d2e4a39e 4089discrete_type_p (struct type *type)
14f9c5c9
AS
4090{
4091 if (type == NULL)
4092 return 0;
d2e4a39e
AS
4093 else
4094 {
78134374 4095 switch (type->code ())
dda83cd7
SM
4096 {
4097 case TYPE_CODE_INT:
4098 case TYPE_CODE_RANGE:
4099 case TYPE_CODE_ENUM:
4100 case TYPE_CODE_BOOL:
4101 return 1;
4102 default:
4103 return 0;
4104 }
d2e4a39e 4105 }
14f9c5c9
AS
4106}
4107
4c4b4cd2
PH
4108/* Returns non-zero if OP with operands in the vector ARGS could be
4109 a user-defined function. Errs on the side of pre-defined operators
4110 (i.e., result 0). */
14f9c5c9
AS
4111
4112static int
d2e4a39e 4113possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4114{
76a01679 4115 struct type *type0 =
df407dfe 4116 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4117 struct type *type1 =
df407dfe 4118 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4119
4c4b4cd2
PH
4120 if (type0 == NULL)
4121 return 0;
4122
14f9c5c9
AS
4123 switch (op)
4124 {
4125 default:
4126 return 0;
4127
4128 case BINOP_ADD:
4129 case BINOP_SUB:
4130 case BINOP_MUL:
4131 case BINOP_DIV:
d2e4a39e 4132 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4133
4134 case BINOP_REM:
4135 case BINOP_MOD:
4136 case BINOP_BITWISE_AND:
4137 case BINOP_BITWISE_IOR:
4138 case BINOP_BITWISE_XOR:
d2e4a39e 4139 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4140
4141 case BINOP_EQUAL:
4142 case BINOP_NOTEQUAL:
4143 case BINOP_LESS:
4144 case BINOP_GTR:
4145 case BINOP_LEQ:
4146 case BINOP_GEQ:
d2e4a39e 4147 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4148
4149 case BINOP_CONCAT:
ee90b9ab 4150 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4151
4152 case BINOP_EXP:
d2e4a39e 4153 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4154
4155 case UNOP_NEG:
4156 case UNOP_PLUS:
4157 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4158 case UNOP_ABS:
4159 return (!numeric_type_p (type0));
14f9c5c9
AS
4160
4161 }
4162}
4163\f
dda83cd7 4164 /* Renaming */
14f9c5c9 4165
aeb5907d
JB
4166/* NOTES:
4167
4168 1. In the following, we assume that a renaming type's name may
4169 have an ___XD suffix. It would be nice if this went away at some
4170 point.
4171 2. We handle both the (old) purely type-based representation of
4172 renamings and the (new) variable-based encoding. At some point,
4173 it is devoutly to be hoped that the former goes away
4174 (FIXME: hilfinger-2007-07-09).
4175 3. Subprogram renamings are not implemented, although the XRS
4176 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4177
4178/* If SYM encodes a renaming,
4179
4180 <renaming> renames <renamed entity>,
4181
4182 sets *LEN to the length of the renamed entity's name,
4183 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4184 the string describing the subcomponent selected from the renamed
0963b4bd 4185 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4186 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4187 are undefined). Otherwise, returns a value indicating the category
4188 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4189 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4190 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4191 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4192 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4193 may be NULL, in which case they are not assigned.
4194
4195 [Currently, however, GCC does not generate subprogram renamings.] */
4196
4197enum ada_renaming_category
4198ada_parse_renaming (struct symbol *sym,
4199 const char **renamed_entity, int *len,
4200 const char **renaming_expr)
4201{
4202 enum ada_renaming_category kind;
4203 const char *info;
4204 const char *suffix;
4205
4206 if (sym == NULL)
4207 return ADA_NOT_RENAMING;
4208 switch (SYMBOL_CLASS (sym))
14f9c5c9 4209 {
aeb5907d
JB
4210 default:
4211 return ADA_NOT_RENAMING;
aeb5907d
JB
4212 case LOC_LOCAL:
4213 case LOC_STATIC:
4214 case LOC_COMPUTED:
4215 case LOC_OPTIMIZED_OUT:
987012b8 4216 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4217 if (info == NULL)
4218 return ADA_NOT_RENAMING;
4219 switch (info[5])
4220 {
4221 case '_':
4222 kind = ADA_OBJECT_RENAMING;
4223 info += 6;
4224 break;
4225 case 'E':
4226 kind = ADA_EXCEPTION_RENAMING;
4227 info += 7;
4228 break;
4229 case 'P':
4230 kind = ADA_PACKAGE_RENAMING;
4231 info += 7;
4232 break;
4233 case 'S':
4234 kind = ADA_SUBPROGRAM_RENAMING;
4235 info += 7;
4236 break;
4237 default:
4238 return ADA_NOT_RENAMING;
4239 }
14f9c5c9 4240 }
4c4b4cd2 4241
de93309a
SM
4242 if (renamed_entity != NULL)
4243 *renamed_entity = info;
4244 suffix = strstr (info, "___XE");
4245 if (suffix == NULL || suffix == info)
4246 return ADA_NOT_RENAMING;
4247 if (len != NULL)
4248 *len = strlen (info) - strlen (suffix);
4249 suffix += 5;
4250 if (renaming_expr != NULL)
4251 *renaming_expr = suffix;
4252 return kind;
4253}
4254
4255/* Compute the value of the given RENAMING_SYM, which is expected to
4256 be a symbol encoding a renaming expression. BLOCK is the block
4257 used to evaluate the renaming. */
4258
4259static struct value *
4260ada_read_renaming_var_value (struct symbol *renaming_sym,
4261 const struct block *block)
4262{
4263 const char *sym_name;
4264
987012b8 4265 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4266 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4267 return evaluate_expression (expr.get ());
4268}
4269\f
4270
dda83cd7 4271 /* Evaluation: Function Calls */
de93309a
SM
4272
4273/* Return an lvalue containing the value VAL. This is the identity on
4274 lvalues, and otherwise has the side-effect of allocating memory
4275 in the inferior where a copy of the value contents is copied. */
4276
4277static struct value *
4278ensure_lval (struct value *val)
4279{
4280 if (VALUE_LVAL (val) == not_lval
4281 || VALUE_LVAL (val) == lval_internalvar)
4282 {
4283 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4284 const CORE_ADDR addr =
dda83cd7 4285 value_as_long (value_allocate_space_in_inferior (len));
de93309a
SM
4286
4287 VALUE_LVAL (val) = lval_memory;
4288 set_value_address (val, addr);
4289 write_memory (addr, value_contents (val), len);
4290 }
4291
4292 return val;
4293}
4294
4295/* Given ARG, a value of type (pointer or reference to a)*
4296 structure/union, extract the component named NAME from the ultimate
4297 target structure/union and return it as a value with its
4298 appropriate type.
4299
4300 The routine searches for NAME among all members of the structure itself
4301 and (recursively) among all members of any wrapper members
4302 (e.g., '_parent').
4303
4304 If NO_ERR, then simply return NULL in case of error, rather than
4305 calling error. */
4306
4307static struct value *
4308ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4309{
4310 struct type *t, *t1;
4311 struct value *v;
4312 int check_tag;
4313
4314 v = NULL;
4315 t1 = t = ada_check_typedef (value_type (arg));
78134374 4316 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4317 {
4318 t1 = TYPE_TARGET_TYPE (t);
4319 if (t1 == NULL)
4320 goto BadValue;
4321 t1 = ada_check_typedef (t1);
78134374 4322 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4323 {
4324 arg = coerce_ref (arg);
4325 t = t1;
4326 }
de93309a
SM
4327 }
4328
78134374 4329 while (t->code () == TYPE_CODE_PTR)
de93309a
SM
4330 {
4331 t1 = TYPE_TARGET_TYPE (t);
4332 if (t1 == NULL)
4333 goto BadValue;
4334 t1 = ada_check_typedef (t1);
78134374 4335 if (t1->code () == TYPE_CODE_PTR)
dda83cd7
SM
4336 {
4337 arg = value_ind (arg);
4338 t = t1;
4339 }
de93309a 4340 else
dda83cd7 4341 break;
de93309a 4342 }
aeb5907d 4343
78134374 4344 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4345 goto BadValue;
52ce6436 4346
de93309a
SM
4347 if (t1 == t)
4348 v = ada_search_struct_field (name, arg, 0, t);
4349 else
4350 {
4351 int bit_offset, bit_size, byte_offset;
4352 struct type *field_type;
4353 CORE_ADDR address;
a5ee536b 4354
78134374 4355 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4356 address = value_address (ada_value_ind (arg));
4357 else
4358 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4359
de93309a 4360 /* Check to see if this is a tagged type. We also need to handle
dda83cd7
SM
4361 the case where the type is a reference to a tagged type, but
4362 we have to be careful to exclude pointers to tagged types.
4363 The latter should be shown as usual (as a pointer), whereas
4364 a reference should mostly be transparent to the user. */
14f9c5c9 4365
de93309a 4366 if (ada_is_tagged_type (t1, 0)
dda83cd7
SM
4367 || (t1->code () == TYPE_CODE_REF
4368 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4369 {
4370 /* We first try to find the searched field in the current type.
de93309a 4371 If not found then let's look in the fixed type. */
14f9c5c9 4372
dda83cd7
SM
4373 if (!find_struct_field (name, t1, 0,
4374 &field_type, &byte_offset, &bit_offset,
4375 &bit_size, NULL))
de93309a
SM
4376 check_tag = 1;
4377 else
4378 check_tag = 0;
dda83cd7 4379 }
de93309a
SM
4380 else
4381 check_tag = 0;
c3e5cd34 4382
de93309a
SM
4383 /* Convert to fixed type in all cases, so that we have proper
4384 offsets to each field in unconstrained record types. */
4385 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4386 address, NULL, check_tag);
4387
4388 if (find_struct_field (name, t1, 0,
dda83cd7
SM
4389 &field_type, &byte_offset, &bit_offset,
4390 &bit_size, NULL))
4391 {
4392 if (bit_size != 0)
4393 {
4394 if (t->code () == TYPE_CODE_REF)
4395 arg = ada_coerce_ref (arg);
4396 else
4397 arg = ada_value_ind (arg);
4398 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4399 bit_offset, bit_size,
4400 field_type);
4401 }
4402 else
4403 v = value_at_lazy (field_type, address + byte_offset);
4404 }
c3e5cd34 4405 }
14f9c5c9 4406
de93309a
SM
4407 if (v != NULL || no_err)
4408 return v;
4409 else
4410 error (_("There is no member named %s."), name);
4411
4412 BadValue:
4413 if (no_err)
4414 return NULL;
4415 else
4416 error (_("Attempt to extract a component of "
4417 "a value that is not a record."));
14f9c5c9
AS
4418}
4419
4420/* Return the value ACTUAL, converted to be an appropriate value for a
4421 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4422 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4423 values not residing in memory, updating it as needed. */
14f9c5c9 4424
a93c0eb6 4425struct value *
40bc484c 4426ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4427{
df407dfe 4428 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4429 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4430 struct type *formal_target =
78134374 4431 formal_type->code () == TYPE_CODE_PTR
61ee279c 4432 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e 4433 struct type *actual_target =
78134374 4434 actual_type->code () == TYPE_CODE_PTR
61ee279c 4435 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4436
4c4b4cd2 4437 if (ada_is_array_descriptor_type (formal_target)
78134374 4438 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4439 return make_array_descriptor (formal_type, actual);
78134374
SM
4440 else if (formal_type->code () == TYPE_CODE_PTR
4441 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4442 {
a84a8a0d 4443 struct value *result;
5b4ee69b 4444
78134374 4445 if (formal_target->code () == TYPE_CODE_ARRAY
dda83cd7 4446 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4447 result = desc_data (actual);
78134374 4448 else if (formal_type->code () != TYPE_CODE_PTR)
dda83cd7
SM
4449 {
4450 if (VALUE_LVAL (actual) != lval_memory)
4451 {
4452 struct value *val;
4453
4454 actual_type = ada_check_typedef (value_type (actual));
4455 val = allocate_value (actual_type);
4456 memcpy ((char *) value_contents_raw (val),
4457 (char *) value_contents (actual),
4458 TYPE_LENGTH (actual_type));
4459 actual = ensure_lval (val);
4460 }
4461 result = value_addr (actual);
4462 }
a84a8a0d
JB
4463 else
4464 return actual;
b1af9e97 4465 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4466 }
78134374 4467 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4468 return ada_value_ind (actual);
8344af1e
JB
4469 else if (ada_is_aligner_type (formal_type))
4470 {
4471 /* We need to turn this parameter into an aligner type
4472 as well. */
4473 struct value *aligner = allocate_value (formal_type);
4474 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4475
4476 value_assign_to_component (aligner, component, actual);
4477 return aligner;
4478 }
14f9c5c9
AS
4479
4480 return actual;
4481}
4482
438c98a1
JB
4483/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4484 type TYPE. This is usually an inefficient no-op except on some targets
4485 (such as AVR) where the representation of a pointer and an address
4486 differs. */
4487
4488static CORE_ADDR
4489value_pointer (struct value *value, struct type *type)
4490{
4491 struct gdbarch *gdbarch = get_type_arch (type);
4492 unsigned len = TYPE_LENGTH (type);
224c3ddb 4493 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4494 CORE_ADDR addr;
4495
4496 addr = value_address (value);
4497 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
34877895 4498 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4499 return addr;
4500}
4501
14f9c5c9 4502
4c4b4cd2
PH
4503/* Push a descriptor of type TYPE for array value ARR on the stack at
4504 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4505 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4506 to-descriptor type rather than a descriptor type), a struct value *
4507 representing a pointer to this descriptor. */
14f9c5c9 4508
d2e4a39e 4509static struct value *
40bc484c 4510make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4511{
d2e4a39e
AS
4512 struct type *bounds_type = desc_bounds_type (type);
4513 struct type *desc_type = desc_base_type (type);
4514 struct value *descriptor = allocate_value (desc_type);
4515 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4516 int i;
d2e4a39e 4517
0963b4bd
MS
4518 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4519 i > 0; i -= 1)
14f9c5c9 4520 {
19f220c3
JK
4521 modify_field (value_type (bounds), value_contents_writeable (bounds),
4522 ada_array_bound (arr, i, 0),
4523 desc_bound_bitpos (bounds_type, i, 0),
4524 desc_bound_bitsize (bounds_type, i, 0));
4525 modify_field (value_type (bounds), value_contents_writeable (bounds),
4526 ada_array_bound (arr, i, 1),
4527 desc_bound_bitpos (bounds_type, i, 1),
4528 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4529 }
d2e4a39e 4530
40bc484c 4531 bounds = ensure_lval (bounds);
d2e4a39e 4532
19f220c3
JK
4533 modify_field (value_type (descriptor),
4534 value_contents_writeable (descriptor),
4535 value_pointer (ensure_lval (arr),
940da03e 4536 desc_type->field (0).type ()),
19f220c3
JK
4537 fat_pntr_data_bitpos (desc_type),
4538 fat_pntr_data_bitsize (desc_type));
4539
4540 modify_field (value_type (descriptor),
4541 value_contents_writeable (descriptor),
4542 value_pointer (bounds,
940da03e 4543 desc_type->field (1).type ()),
19f220c3
JK
4544 fat_pntr_bounds_bitpos (desc_type),
4545 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4546
40bc484c 4547 descriptor = ensure_lval (descriptor);
14f9c5c9 4548
78134374 4549 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4550 return value_addr (descriptor);
4551 else
4552 return descriptor;
4553}
14f9c5c9 4554\f
dda83cd7 4555 /* Symbol Cache Module */
3d9434b5 4556
3d9434b5 4557/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4558 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4559 on the type of entity being printed, the cache can make it as much
4560 as an order of magnitude faster than without it.
4561
4562 The descriptive type DWARF extension has significantly reduced
4563 the need for this cache, at least when DWARF is being used. However,
4564 even in this case, some expensive name-based symbol searches are still
4565 sometimes necessary - to find an XVZ variable, mostly. */
4566
ee01b665 4567/* Initialize the contents of SYM_CACHE. */
3d9434b5 4568
ee01b665
JB
4569static void
4570ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4571{
4572 obstack_init (&sym_cache->cache_space);
4573 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4574}
3d9434b5 4575
ee01b665
JB
4576/* Free the memory used by SYM_CACHE. */
4577
4578static void
4579ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4580{
ee01b665
JB
4581 obstack_free (&sym_cache->cache_space, NULL);
4582 xfree (sym_cache);
4583}
3d9434b5 4584
ee01b665
JB
4585/* Return the symbol cache associated to the given program space PSPACE.
4586 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4587
ee01b665
JB
4588static struct ada_symbol_cache *
4589ada_get_symbol_cache (struct program_space *pspace)
4590{
4591 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4592
66c168ae 4593 if (pspace_data->sym_cache == NULL)
ee01b665 4594 {
66c168ae
JB
4595 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4596 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4597 }
4598
66c168ae 4599 return pspace_data->sym_cache;
ee01b665 4600}
3d9434b5
JB
4601
4602/* Clear all entries from the symbol cache. */
4603
4604static void
4605ada_clear_symbol_cache (void)
4606{
ee01b665
JB
4607 struct ada_symbol_cache *sym_cache
4608 = ada_get_symbol_cache (current_program_space);
4609
4610 obstack_free (&sym_cache->cache_space, NULL);
4611 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4612}
4613
fe978cb0 4614/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4615 Return it if found, or NULL otherwise. */
4616
4617static struct cache_entry **
fe978cb0 4618find_entry (const char *name, domain_enum domain)
3d9434b5 4619{
ee01b665
JB
4620 struct ada_symbol_cache *sym_cache
4621 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4622 int h = msymbol_hash (name) % HASH_SIZE;
4623 struct cache_entry **e;
4624
ee01b665 4625 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4626 {
fe978cb0 4627 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
dda83cd7 4628 return e;
3d9434b5
JB
4629 }
4630 return NULL;
4631}
4632
fe978cb0 4633/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4634 Return 1 if found, 0 otherwise.
4635
4636 If an entry was found and SYM is not NULL, set *SYM to the entry's
4637 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4638
96d887e8 4639static int
fe978cb0 4640lookup_cached_symbol (const char *name, domain_enum domain,
dda83cd7 4641 struct symbol **sym, const struct block **block)
96d887e8 4642{
fe978cb0 4643 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4644
4645 if (e == NULL)
4646 return 0;
4647 if (sym != NULL)
4648 *sym = (*e)->sym;
4649 if (block != NULL)
4650 *block = (*e)->block;
4651 return 1;
96d887e8
PH
4652}
4653
3d9434b5 4654/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4655 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4656
96d887e8 4657static void
fe978cb0 4658cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
dda83cd7 4659 const struct block *block)
96d887e8 4660{
ee01b665
JB
4661 struct ada_symbol_cache *sym_cache
4662 = ada_get_symbol_cache (current_program_space);
3d9434b5 4663 int h;
3d9434b5
JB
4664 struct cache_entry *e;
4665
1994afbf
DE
4666 /* Symbols for builtin types don't have a block.
4667 For now don't cache such symbols. */
4668 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4669 return;
4670
3d9434b5
JB
4671 /* If the symbol is a local symbol, then do not cache it, as a search
4672 for that symbol depends on the context. To determine whether
4673 the symbol is local or not, we check the block where we found it
4674 against the global and static blocks of its associated symtab. */
4675 if (sym
08be3fe3 4676 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4677 GLOBAL_BLOCK) != block
08be3fe3 4678 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4679 STATIC_BLOCK) != block)
3d9434b5
JB
4680 return;
4681
4682 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4683 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4684 e->next = sym_cache->root[h];
4685 sym_cache->root[h] = e;
2ef5453b 4686 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4687 e->sym = sym;
fe978cb0 4688 e->domain = domain;
3d9434b5 4689 e->block = block;
96d887e8 4690}
4c4b4cd2 4691\f
dda83cd7 4692 /* Symbol Lookup */
4c4b4cd2 4693
b5ec771e
PA
4694/* Return the symbol name match type that should be used used when
4695 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4696
4697 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4698 for Ada lookups. */
c0431670 4699
b5ec771e
PA
4700static symbol_name_match_type
4701name_match_type_from_name (const char *lookup_name)
c0431670 4702{
b5ec771e
PA
4703 return (strstr (lookup_name, "__") == NULL
4704 ? symbol_name_match_type::WILD
4705 : symbol_name_match_type::FULL);
c0431670
JB
4706}
4707
4c4b4cd2
PH
4708/* Return the result of a standard (literal, C-like) lookup of NAME in
4709 given DOMAIN, visible from lexical block BLOCK. */
4710
4711static struct symbol *
4712standard_lookup (const char *name, const struct block *block,
dda83cd7 4713 domain_enum domain)
4c4b4cd2 4714{
acbd605d 4715 /* Initialize it just to avoid a GCC false warning. */
6640a367 4716 struct block_symbol sym = {};
4c4b4cd2 4717
d12307c1
PMR
4718 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4719 return sym.symbol;
a2cd4f14 4720 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4721 cache_symbol (name, domain, sym.symbol, sym.block);
4722 return sym.symbol;
4c4b4cd2
PH
4723}
4724
4725
4726/* Non-zero iff there is at least one non-function/non-enumeral symbol
4727 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4728 since they contend in overloading in the same way. */
4729static int
d12307c1 4730is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4731{
4732 int i;
4733
4734 for (i = 0; i < n; i += 1)
78134374 4735 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
dda83cd7
SM
4736 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4737 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4738 return 1;
4739
4740 return 0;
4741}
4742
4743/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4744 struct types. Otherwise, they may not. */
14f9c5c9
AS
4745
4746static int
d2e4a39e 4747equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4748{
d2e4a39e 4749 if (type0 == type1)
14f9c5c9 4750 return 1;
d2e4a39e 4751 if (type0 == NULL || type1 == NULL
78134374 4752 || type0->code () != type1->code ())
14f9c5c9 4753 return 0;
78134374
SM
4754 if ((type0->code () == TYPE_CODE_STRUCT
4755 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4756 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4757 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4758 return 1;
d2e4a39e 4759
14f9c5c9
AS
4760 return 0;
4761}
4762
4763/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4764 no more defined than that of SYM1. */
14f9c5c9
AS
4765
4766static int
d2e4a39e 4767lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4768{
4769 if (sym0 == sym1)
4770 return 1;
176620f1 4771 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4772 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4773 return 0;
4774
d2e4a39e 4775 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4776 {
4777 case LOC_UNDEF:
4778 return 1;
4779 case LOC_TYPEDEF:
4780 {
dda83cd7
SM
4781 struct type *type0 = SYMBOL_TYPE (sym0);
4782 struct type *type1 = SYMBOL_TYPE (sym1);
4783 const char *name0 = sym0->linkage_name ();
4784 const char *name1 = sym1->linkage_name ();
4785 int len0 = strlen (name0);
4786
4787 return
4788 type0->code () == type1->code ()
4789 && (equiv_types (type0, type1)
4790 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4791 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4792 }
4793 case LOC_CONST:
4794 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
dda83cd7 4795 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4796
4797 case LOC_STATIC:
4798 {
dda83cd7
SM
4799 const char *name0 = sym0->linkage_name ();
4800 const char *name1 = sym1->linkage_name ();
4801 return (strcmp (name0, name1) == 0
4802 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4b610737
TT
4803 }
4804
d2e4a39e
AS
4805 default:
4806 return 0;
14f9c5c9
AS
4807 }
4808}
4809
d12307c1 4810/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4811 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4812
4813static void
76a01679 4814add_defn_to_vec (struct obstack *obstackp,
dda83cd7
SM
4815 struct symbol *sym,
4816 const struct block *block)
14f9c5c9
AS
4817{
4818 int i;
d12307c1 4819 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4820
529cad9c
PH
4821 /* Do not try to complete stub types, as the debugger is probably
4822 already scanning all symbols matching a certain name at the
4823 time when this function is called. Trying to replace the stub
4824 type by its associated full type will cause us to restart a scan
4825 which may lead to an infinite recursion. Instead, the client
4826 collecting the matching symbols will end up collecting several
4827 matches, with at least one of them complete. It can then filter
4828 out the stub ones if needed. */
4829
4c4b4cd2
PH
4830 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4831 {
d12307c1 4832 if (lesseq_defined_than (sym, prevDefns[i].symbol))
dda83cd7 4833 return;
d12307c1 4834 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
dda83cd7
SM
4835 {
4836 prevDefns[i].symbol = sym;
4837 prevDefns[i].block = block;
4838 return;
4839 }
4c4b4cd2
PH
4840 }
4841
4842 {
d12307c1 4843 struct block_symbol info;
4c4b4cd2 4844
d12307c1 4845 info.symbol = sym;
4c4b4cd2 4846 info.block = block;
d12307c1 4847 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4848 }
4849}
4850
d12307c1
PMR
4851/* Number of block_symbol structures currently collected in current vector in
4852 OBSTACKP. */
4c4b4cd2 4853
76a01679
JB
4854static int
4855num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4856{
d12307c1 4857 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4858}
4859
d12307c1
PMR
4860/* Vector of block_symbol structures currently collected in current vector in
4861 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4862
d12307c1 4863static struct block_symbol *
4c4b4cd2
PH
4864defns_collected (struct obstack *obstackp, int finish)
4865{
4866 if (finish)
224c3ddb 4867 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4868 else
d12307c1 4869 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4870}
4871
7c7b6655
TT
4872/* Return a bound minimal symbol matching NAME according to Ada
4873 decoding rules. Returns an invalid symbol if there is no such
4874 minimal symbol. Names prefixed with "standard__" are handled
4875 specially: "standard__" is first stripped off, and only static and
4876 global symbols are searched. */
4c4b4cd2 4877
7c7b6655 4878struct bound_minimal_symbol
96d887e8 4879ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4880{
7c7b6655 4881 struct bound_minimal_symbol result;
4c4b4cd2 4882
7c7b6655
TT
4883 memset (&result, 0, sizeof (result));
4884
b5ec771e
PA
4885 symbol_name_match_type match_type = name_match_type_from_name (name);
4886 lookup_name_info lookup_name (name, match_type);
4887
4888 symbol_name_matcher_ftype *match_name
4889 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4890
2030c079 4891 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4892 {
7932255d 4893 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4894 {
c9d95fa3 4895 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4896 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4897 {
4898 result.minsym = msymbol;
4899 result.objfile = objfile;
4900 break;
4901 }
4902 }
4903 }
4c4b4cd2 4904
7c7b6655 4905 return result;
96d887e8 4906}
4c4b4cd2 4907
96d887e8
PH
4908/* For all subprograms that statically enclose the subprogram of the
4909 selected frame, add symbols matching identifier NAME in DOMAIN
4910 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4911 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4912 with a wildcard prefix. */
4c4b4cd2 4913
96d887e8
PH
4914static void
4915add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4916 const lookup_name_info &lookup_name,
4917 domain_enum domain)
96d887e8 4918{
96d887e8 4919}
14f9c5c9 4920
96d887e8
PH
4921/* True if TYPE is definitely an artificial type supplied to a symbol
4922 for which no debugging information was given in the symbol file. */
14f9c5c9 4923
96d887e8
PH
4924static int
4925is_nondebugging_type (struct type *type)
4926{
0d5cff50 4927 const char *name = ada_type_name (type);
5b4ee69b 4928
96d887e8
PH
4929 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4930}
4c4b4cd2 4931
8f17729f
JB
4932/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4933 that are deemed "identical" for practical purposes.
4934
4935 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4936 types and that their number of enumerals is identical (in other
1f704f76 4937 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4938
4939static int
4940ada_identical_enum_types_p (struct type *type1, struct type *type2)
4941{
4942 int i;
4943
4944 /* The heuristic we use here is fairly conservative. We consider
4945 that 2 enumerate types are identical if they have the same
4946 number of enumerals and that all enumerals have the same
4947 underlying value and name. */
4948
4949 /* All enums in the type should have an identical underlying value. */
1f704f76 4950 for (i = 0; i < type1->num_fields (); i++)
14e75d8e 4951 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4952 return 0;
4953
4954 /* All enumerals should also have the same name (modulo any numerical
4955 suffix). */
1f704f76 4956 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4957 {
0d5cff50
DE
4958 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4959 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4960 int len_1 = strlen (name_1);
4961 int len_2 = strlen (name_2);
4962
4963 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4964 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4965 if (len_1 != len_2
dda83cd7 4966 || strncmp (TYPE_FIELD_NAME (type1, i),
8f17729f
JB
4967 TYPE_FIELD_NAME (type2, i),
4968 len_1) != 0)
4969 return 0;
4970 }
4971
4972 return 1;
4973}
4974
4975/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4976 that are deemed "identical" for practical purposes. Sometimes,
4977 enumerals are not strictly identical, but their types are so similar
4978 that they can be considered identical.
4979
4980 For instance, consider the following code:
4981
4982 type Color is (Black, Red, Green, Blue, White);
4983 type RGB_Color is new Color range Red .. Blue;
4984
4985 Type RGB_Color is a subrange of an implicit type which is a copy
4986 of type Color. If we call that implicit type RGB_ColorB ("B" is
4987 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4988 As a result, when an expression references any of the enumeral
4989 by name (Eg. "print green"), the expression is technically
4990 ambiguous and the user should be asked to disambiguate. But
4991 doing so would only hinder the user, since it wouldn't matter
4992 what choice he makes, the outcome would always be the same.
4993 So, for practical purposes, we consider them as the same. */
4994
4995static int
54d343a2 4996symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4997{
4998 int i;
4999
5000 /* Before performing a thorough comparison check of each type,
5001 we perform a series of inexpensive checks. We expect that these
5002 checks will quickly fail in the vast majority of cases, and thus
5003 help prevent the unnecessary use of a more expensive comparison.
5004 Said comparison also expects us to make some of these checks
5005 (see ada_identical_enum_types_p). */
5006
5007 /* Quick check: All symbols should have an enum type. */
54d343a2 5008 for (i = 0; i < syms.size (); i++)
78134374 5009 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
8f17729f
JB
5010 return 0;
5011
5012 /* Quick check: They should all have the same value. */
54d343a2 5013 for (i = 1; i < syms.size (); i++)
d12307c1 5014 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5015 return 0;
5016
5017 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5018 for (i = 1; i < syms.size (); i++)
1f704f76 5019 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
dda83cd7 5020 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
8f17729f
JB
5021 return 0;
5022
5023 /* All the sanity checks passed, so we might have a set of
5024 identical enumeration types. Perform a more complete
5025 comparison of the type of each symbol. */
54d343a2 5026 for (i = 1; i < syms.size (); i++)
d12307c1 5027 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
dda83cd7 5028 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5029 return 0;
5030
5031 return 1;
5032}
5033
54d343a2 5034/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5035 duplicate other symbols in the list (The only case I know of where
5036 this happens is when object files containing stabs-in-ecoff are
5037 linked with files containing ordinary ecoff debugging symbols (or no
5038 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5039 Returns the number of items in the modified list. */
4c4b4cd2 5040
96d887e8 5041static int
54d343a2 5042remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5043{
5044 int i, j;
4c4b4cd2 5045
8f17729f
JB
5046 /* We should never be called with less than 2 symbols, as there
5047 cannot be any extra symbol in that case. But it's easy to
5048 handle, since we have nothing to do in that case. */
54d343a2
TT
5049 if (syms->size () < 2)
5050 return syms->size ();
8f17729f 5051
96d887e8 5052 i = 0;
54d343a2 5053 while (i < syms->size ())
96d887e8 5054 {
a35ddb44 5055 int remove_p = 0;
339c13b6
JB
5056
5057 /* If two symbols have the same name and one of them is a stub type,
dda83cd7 5058 the get rid of the stub. */
339c13b6 5059
e46d3488 5060 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
dda83cd7
SM
5061 && (*syms)[i].symbol->linkage_name () != NULL)
5062 {
5063 for (j = 0; j < syms->size (); j++)
5064 {
5065 if (j != i
5066 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
5067 && (*syms)[j].symbol->linkage_name () != NULL
5068 && strcmp ((*syms)[i].symbol->linkage_name (),
5069 (*syms)[j].symbol->linkage_name ()) == 0)
5070 remove_p = 1;
5071 }
5072 }
339c13b6
JB
5073
5074 /* Two symbols with the same name, same class and same address
dda83cd7 5075 should be identical. */
339c13b6 5076
987012b8 5077 else if ((*syms)[i].symbol->linkage_name () != NULL
dda83cd7
SM
5078 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5079 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5080 {
5081 for (j = 0; j < syms->size (); j += 1)
5082 {
5083 if (i != j
5084 && (*syms)[j].symbol->linkage_name () != NULL
5085 && strcmp ((*syms)[i].symbol->linkage_name (),
5086 (*syms)[j].symbol->linkage_name ()) == 0
5087 && SYMBOL_CLASS ((*syms)[i].symbol)
54d343a2 5088 == SYMBOL_CLASS ((*syms)[j].symbol)
dda83cd7
SM
5089 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5090 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5091 remove_p = 1;
5092 }
5093 }
339c13b6 5094
a35ddb44 5095 if (remove_p)
54d343a2 5096 syms->erase (syms->begin () + i);
1b788fb6
TT
5097 else
5098 i += 1;
14f9c5c9 5099 }
8f17729f
JB
5100
5101 /* If all the remaining symbols are identical enumerals, then
5102 just keep the first one and discard the rest.
5103
5104 Unlike what we did previously, we do not discard any entry
5105 unless they are ALL identical. This is because the symbol
5106 comparison is not a strict comparison, but rather a practical
5107 comparison. If all symbols are considered identical, then
5108 we can just go ahead and use the first one and discard the rest.
5109 But if we cannot reduce the list to a single element, we have
5110 to ask the user to disambiguate anyways. And if we have to
5111 present a multiple-choice menu, it's less confusing if the list
5112 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5113 if (symbols_are_identical_enums (*syms))
5114 syms->resize (1);
8f17729f 5115
54d343a2 5116 return syms->size ();
14f9c5c9
AS
5117}
5118
96d887e8
PH
5119/* Given a type that corresponds to a renaming entity, use the type name
5120 to extract the scope (package name or function name, fully qualified,
5121 and following the GNAT encoding convention) where this renaming has been
49d83361 5122 defined. */
4c4b4cd2 5123
49d83361 5124static std::string
96d887e8 5125xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5126{
96d887e8 5127 /* The renaming types adhere to the following convention:
0963b4bd 5128 <scope>__<rename>___<XR extension>.
96d887e8
PH
5129 So, to extract the scope, we search for the "___XR" extension,
5130 and then backtrack until we find the first "__". */
76a01679 5131
7d93a1e0 5132 const char *name = renaming_type->name ();
108d56a4
SM
5133 const char *suffix = strstr (name, "___XR");
5134 const char *last;
14f9c5c9 5135
96d887e8
PH
5136 /* Now, backtrack a bit until we find the first "__". Start looking
5137 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5138
96d887e8
PH
5139 for (last = suffix - 3; last > name; last--)
5140 if (last[0] == '_' && last[1] == '_')
5141 break;
76a01679 5142
96d887e8 5143 /* Make a copy of scope and return it. */
49d83361 5144 return std::string (name, last);
4c4b4cd2
PH
5145}
5146
96d887e8 5147/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5148
96d887e8
PH
5149static int
5150is_package_name (const char *name)
4c4b4cd2 5151{
96d887e8
PH
5152 /* Here, We take advantage of the fact that no symbols are generated
5153 for packages, while symbols are generated for each function.
5154 So the condition for NAME represent a package becomes equivalent
5155 to NAME not existing in our list of symbols. There is only one
5156 small complication with library-level functions (see below). */
4c4b4cd2 5157
96d887e8
PH
5158 /* If it is a function that has not been defined at library level,
5159 then we should be able to look it up in the symbols. */
5160 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5161 return 0;
14f9c5c9 5162
96d887e8
PH
5163 /* Library-level function names start with "_ada_". See if function
5164 "_ada_" followed by NAME can be found. */
14f9c5c9 5165
96d887e8 5166 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5167 functions names cannot contain "__" in them. */
96d887e8
PH
5168 if (strstr (name, "__") != NULL)
5169 return 0;
4c4b4cd2 5170
528e1572 5171 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5172
528e1572 5173 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5174}
14f9c5c9 5175
96d887e8 5176/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5177 not visible from FUNCTION_NAME. */
14f9c5c9 5178
96d887e8 5179static int
0d5cff50 5180old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5181{
aeb5907d
JB
5182 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5183 return 0;
5184
49d83361 5185 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5186
96d887e8 5187 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5188 if (is_package_name (scope.c_str ()))
5189 return 0;
14f9c5c9 5190
96d887e8
PH
5191 /* Check that the rename is in the current function scope by checking
5192 that its name starts with SCOPE. */
76a01679 5193
96d887e8
PH
5194 /* If the function name starts with "_ada_", it means that it is
5195 a library-level function. Strip this prefix before doing the
5196 comparison, as the encoding for the renaming does not contain
5197 this prefix. */
61012eef 5198 if (startswith (function_name, "_ada_"))
96d887e8 5199 function_name += 5;
f26caa11 5200
49d83361 5201 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5202}
5203
aeb5907d
JB
5204/* Remove entries from SYMS that corresponds to a renaming entity that
5205 is not visible from the function associated with CURRENT_BLOCK or
5206 that is superfluous due to the presence of more specific renaming
5207 information. Places surviving symbols in the initial entries of
5208 SYMS and returns the number of surviving symbols.
96d887e8
PH
5209
5210 Rationale:
aeb5907d
JB
5211 First, in cases where an object renaming is implemented as a
5212 reference variable, GNAT may produce both the actual reference
5213 variable and the renaming encoding. In this case, we discard the
5214 latter.
5215
5216 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5217 entity. Unfortunately, STABS currently does not support the definition
5218 of types that are local to a given lexical block, so all renamings types
5219 are emitted at library level. As a consequence, if an application
5220 contains two renaming entities using the same name, and a user tries to
5221 print the value of one of these entities, the result of the ada symbol
5222 lookup will also contain the wrong renaming type.
f26caa11 5223
96d887e8
PH
5224 This function partially covers for this limitation by attempting to
5225 remove from the SYMS list renaming symbols that should be visible
5226 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5227 method with the current information available. The implementation
5228 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5229
5230 - When the user tries to print a rename in a function while there
dda83cd7
SM
5231 is another rename entity defined in a package: Normally, the
5232 rename in the function has precedence over the rename in the
5233 package, so the latter should be removed from the list. This is
5234 currently not the case.
5235
96d887e8 5236 - This function will incorrectly remove valid renames if
dda83cd7
SM
5237 the CURRENT_BLOCK corresponds to a function which symbol name
5238 has been changed by an "Export" pragma. As a consequence,
5239 the user will be unable to print such rename entities. */
4c4b4cd2 5240
14f9c5c9 5241static int
54d343a2
TT
5242remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5243 const struct block *current_block)
4c4b4cd2
PH
5244{
5245 struct symbol *current_function;
0d5cff50 5246 const char *current_function_name;
4c4b4cd2 5247 int i;
aeb5907d
JB
5248 int is_new_style_renaming;
5249
5250 /* If there is both a renaming foo___XR... encoded as a variable and
5251 a simple variable foo in the same block, discard the latter.
0963b4bd 5252 First, zero out such symbols, then compress. */
aeb5907d 5253 is_new_style_renaming = 0;
54d343a2 5254 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5255 {
54d343a2
TT
5256 struct symbol *sym = (*syms)[i].symbol;
5257 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5258 const char *name;
5259 const char *suffix;
5260
5261 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5262 continue;
987012b8 5263 name = sym->linkage_name ();
aeb5907d
JB
5264 suffix = strstr (name, "___XR");
5265
5266 if (suffix != NULL)
5267 {
5268 int name_len = suffix - name;
5269 int j;
5b4ee69b 5270
aeb5907d 5271 is_new_style_renaming = 1;
54d343a2
TT
5272 for (j = 0; j < syms->size (); j += 1)
5273 if (i != j && (*syms)[j].symbol != NULL
987012b8 5274 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5275 name_len) == 0
54d343a2
TT
5276 && block == (*syms)[j].block)
5277 (*syms)[j].symbol = NULL;
aeb5907d
JB
5278 }
5279 }
5280 if (is_new_style_renaming)
5281 {
5282 int j, k;
5283
54d343a2
TT
5284 for (j = k = 0; j < syms->size (); j += 1)
5285 if ((*syms)[j].symbol != NULL)
aeb5907d 5286 {
54d343a2 5287 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5288 k += 1;
5289 }
5290 return k;
5291 }
4c4b4cd2
PH
5292
5293 /* Extract the function name associated to CURRENT_BLOCK.
5294 Abort if unable to do so. */
76a01679 5295
4c4b4cd2 5296 if (current_block == NULL)
54d343a2 5297 return syms->size ();
76a01679 5298
7f0df278 5299 current_function = block_linkage_function (current_block);
4c4b4cd2 5300 if (current_function == NULL)
54d343a2 5301 return syms->size ();
4c4b4cd2 5302
987012b8 5303 current_function_name = current_function->linkage_name ();
4c4b4cd2 5304 if (current_function_name == NULL)
54d343a2 5305 return syms->size ();
4c4b4cd2
PH
5306
5307 /* Check each of the symbols, and remove it from the list if it is
5308 a type corresponding to a renaming that is out of the scope of
5309 the current block. */
5310
5311 i = 0;
54d343a2 5312 while (i < syms->size ())
4c4b4cd2 5313 {
54d343a2 5314 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
dda83cd7
SM
5315 == ADA_OBJECT_RENAMING
5316 && old_renaming_is_invisible ((*syms)[i].symbol,
54d343a2
TT
5317 current_function_name))
5318 syms->erase (syms->begin () + i);
4c4b4cd2 5319 else
dda83cd7 5320 i += 1;
4c4b4cd2
PH
5321 }
5322
54d343a2 5323 return syms->size ();
4c4b4cd2
PH
5324}
5325
339c13b6
JB
5326/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5327 whose name and domain match NAME and DOMAIN respectively.
5328 If no match was found, then extend the search to "enclosing"
5329 routines (in other words, if we're inside a nested function,
5330 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5331 If WILD_MATCH_P is nonzero, perform the naming matching in
5332 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5333
5334 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5335
5336static void
b5ec771e
PA
5337ada_add_local_symbols (struct obstack *obstackp,
5338 const lookup_name_info &lookup_name,
5339 const struct block *block, domain_enum domain)
339c13b6
JB
5340{
5341 int block_depth = 0;
5342
5343 while (block != NULL)
5344 {
5345 block_depth += 1;
b5ec771e 5346 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5347
5348 /* If we found a non-function match, assume that's the one. */
5349 if (is_nonfunction (defns_collected (obstackp, 0),
dda83cd7
SM
5350 num_defns_collected (obstackp)))
5351 return;
339c13b6
JB
5352
5353 block = BLOCK_SUPERBLOCK (block);
5354 }
5355
5356 /* If no luck so far, try to find NAME as a local symbol in some lexically
5357 enclosing subprogram. */
5358 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5359 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5360}
5361
ccefe4c4 5362/* An object of this type is used as the user_data argument when
40658b94 5363 calling the map_matching_symbols method. */
ccefe4c4 5364
40658b94 5365struct match_data
ccefe4c4 5366{
40658b94 5367 struct objfile *objfile;
ccefe4c4 5368 struct obstack *obstackp;
40658b94
PH
5369 struct symbol *arg_sym;
5370 int found_sym;
ccefe4c4
TT
5371};
5372
199b4314
TT
5373/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5374 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5375 containing the obstack that collects the symbol list, the file that SYM
5376 must come from, a flag indicating whether a non-argument symbol has
5377 been found in the current block, and the last argument symbol
5378 passed in SYM within the current block (if any). When SYM is null,
5379 marking the end of a block, the argument symbol is added if no
5380 other has been found. */
ccefe4c4 5381
199b4314
TT
5382static bool
5383aux_add_nonlocal_symbols (struct block_symbol *bsym,
5384 struct match_data *data)
ccefe4c4 5385{
199b4314
TT
5386 const struct block *block = bsym->block;
5387 struct symbol *sym = bsym->symbol;
5388
40658b94
PH
5389 if (sym == NULL)
5390 {
5391 if (!data->found_sym && data->arg_sym != NULL)
5392 add_defn_to_vec (data->obstackp,
5393 fixup_symbol_section (data->arg_sym, data->objfile),
5394 block);
5395 data->found_sym = 0;
5396 data->arg_sym = NULL;
5397 }
5398 else
5399 {
5400 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5401 return true;
40658b94
PH
5402 else if (SYMBOL_IS_ARGUMENT (sym))
5403 data->arg_sym = sym;
5404 else
5405 {
5406 data->found_sym = 1;
5407 add_defn_to_vec (data->obstackp,
5408 fixup_symbol_section (sym, data->objfile),
5409 block);
5410 }
5411 }
199b4314 5412 return true;
40658b94
PH
5413}
5414
b5ec771e
PA
5415/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5416 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5417 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5418
5419static int
5420ada_add_block_renamings (struct obstack *obstackp,
5421 const struct block *block,
b5ec771e
PA
5422 const lookup_name_info &lookup_name,
5423 domain_enum domain)
22cee43f
PMR
5424{
5425 struct using_direct *renaming;
5426 int defns_mark = num_defns_collected (obstackp);
5427
b5ec771e
PA
5428 symbol_name_matcher_ftype *name_match
5429 = ada_get_symbol_name_matcher (lookup_name);
5430
22cee43f
PMR
5431 for (renaming = block_using (block);
5432 renaming != NULL;
5433 renaming = renaming->next)
5434 {
5435 const char *r_name;
22cee43f
PMR
5436
5437 /* Avoid infinite recursions: skip this renaming if we are actually
5438 already traversing it.
5439
5440 Currently, symbol lookup in Ada don't use the namespace machinery from
5441 C++/Fortran support: skip namespace imports that use them. */
5442 if (renaming->searched
5443 || (renaming->import_src != NULL
5444 && renaming->import_src[0] != '\0')
5445 || (renaming->import_dest != NULL
5446 && renaming->import_dest[0] != '\0'))
5447 continue;
5448 renaming->searched = 1;
5449
5450 /* TODO: here, we perform another name-based symbol lookup, which can
5451 pull its own multiple overloads. In theory, we should be able to do
5452 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5453 not a simple name. But in order to do this, we would need to enhance
5454 the DWARF reader to associate a symbol to this renaming, instead of a
5455 name. So, for now, we do something simpler: re-use the C++/Fortran
5456 namespace machinery. */
5457 r_name = (renaming->alias != NULL
5458 ? renaming->alias
5459 : renaming->declaration);
b5ec771e
PA
5460 if (name_match (r_name, lookup_name, NULL))
5461 {
5462 lookup_name_info decl_lookup_name (renaming->declaration,
5463 lookup_name.match_type ());
5464 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5465 1, NULL);
5466 }
22cee43f
PMR
5467 renaming->searched = 0;
5468 }
5469 return num_defns_collected (obstackp) != defns_mark;
5470}
5471
db230ce3
JB
5472/* Implements compare_names, but only applying the comparision using
5473 the given CASING. */
5b4ee69b 5474
40658b94 5475static int
db230ce3
JB
5476compare_names_with_case (const char *string1, const char *string2,
5477 enum case_sensitivity casing)
40658b94
PH
5478{
5479 while (*string1 != '\0' && *string2 != '\0')
5480 {
db230ce3
JB
5481 char c1, c2;
5482
40658b94
PH
5483 if (isspace (*string1) || isspace (*string2))
5484 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5485
5486 if (casing == case_sensitive_off)
5487 {
5488 c1 = tolower (*string1);
5489 c2 = tolower (*string2);
5490 }
5491 else
5492 {
5493 c1 = *string1;
5494 c2 = *string2;
5495 }
5496 if (c1 != c2)
40658b94 5497 break;
db230ce3 5498
40658b94
PH
5499 string1 += 1;
5500 string2 += 1;
5501 }
db230ce3 5502
40658b94
PH
5503 switch (*string1)
5504 {
5505 case '(':
5506 return strcmp_iw_ordered (string1, string2);
5507 case '_':
5508 if (*string2 == '\0')
5509 {
052874e8 5510 if (is_name_suffix (string1))
40658b94
PH
5511 return 0;
5512 else
1a1d5513 5513 return 1;
40658b94 5514 }
dbb8534f 5515 /* FALLTHROUGH */
40658b94
PH
5516 default:
5517 if (*string2 == '(')
5518 return strcmp_iw_ordered (string1, string2);
5519 else
db230ce3
JB
5520 {
5521 if (casing == case_sensitive_off)
5522 return tolower (*string1) - tolower (*string2);
5523 else
5524 return *string1 - *string2;
5525 }
40658b94 5526 }
ccefe4c4
TT
5527}
5528
db230ce3
JB
5529/* Compare STRING1 to STRING2, with results as for strcmp.
5530 Compatible with strcmp_iw_ordered in that...
5531
5532 strcmp_iw_ordered (STRING1, STRING2) <= 0
5533
5534 ... implies...
5535
5536 compare_names (STRING1, STRING2) <= 0
5537
5538 (they may differ as to what symbols compare equal). */
5539
5540static int
5541compare_names (const char *string1, const char *string2)
5542{
5543 int result;
5544
5545 /* Similar to what strcmp_iw_ordered does, we need to perform
5546 a case-insensitive comparison first, and only resort to
5547 a second, case-sensitive, comparison if the first one was
5548 not sufficient to differentiate the two strings. */
5549
5550 result = compare_names_with_case (string1, string2, case_sensitive_off);
5551 if (result == 0)
5552 result = compare_names_with_case (string1, string2, case_sensitive_on);
5553
5554 return result;
5555}
5556
b5ec771e
PA
5557/* Convenience function to get at the Ada encoded lookup name for
5558 LOOKUP_NAME, as a C string. */
5559
5560static const char *
5561ada_lookup_name (const lookup_name_info &lookup_name)
5562{
5563 return lookup_name.ada ().lookup_name ().c_str ();
5564}
5565
339c13b6 5566/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5567 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5568 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5569 symbols otherwise. */
339c13b6
JB
5570
5571static void
b5ec771e
PA
5572add_nonlocal_symbols (struct obstack *obstackp,
5573 const lookup_name_info &lookup_name,
5574 domain_enum domain, int global)
339c13b6 5575{
40658b94 5576 struct match_data data;
339c13b6 5577
6475f2fe 5578 memset (&data, 0, sizeof data);
ccefe4c4 5579 data.obstackp = obstackp;
339c13b6 5580
b5ec771e
PA
5581 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5582
199b4314
TT
5583 auto callback = [&] (struct block_symbol *bsym)
5584 {
5585 return aux_add_nonlocal_symbols (bsym, &data);
5586 };
5587
2030c079 5588 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5589 {
5590 data.objfile = objfile;
5591
b054970d
TT
5592 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5593 domain, global, callback,
5594 (is_wild_match
5595 ? NULL : compare_names));
22cee43f 5596
b669c953 5597 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5598 {
5599 const struct block *global_block
5600 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5601
b5ec771e
PA
5602 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5603 domain))
22cee43f
PMR
5604 data.found_sym = 1;
5605 }
40658b94
PH
5606 }
5607
5608 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5609 {
b5ec771e 5610 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5611 std::string bracket_name = std::string ("<_ada_") + name + '>';
5612 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5613
2030c079 5614 for (objfile *objfile : current_program_space->objfiles ())
dda83cd7 5615 {
40658b94 5616 data.objfile = objfile;
b054970d 5617 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5618 domain, global, callback,
b5ec771e 5619 compare_names);
40658b94
PH
5620 }
5621 }
339c13b6
JB
5622}
5623
b5ec771e
PA
5624/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5625 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5626 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5627
22cee43f
PMR
5628 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5629 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5630 is the one match returned (no other matches in that or
d9680e73 5631 enclosing blocks is returned). If there are any matches in or
22cee43f 5632 surrounding BLOCK, then these alone are returned.
4eeaa230 5633
b5ec771e
PA
5634 Names prefixed with "standard__" are handled specially:
5635 "standard__" is first stripped off (by the lookup_name
5636 constructor), and only static and global symbols are searched.
14f9c5c9 5637
22cee43f
PMR
5638 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5639 to lookup global symbols. */
5640
5641static void
5642ada_add_all_symbols (struct obstack *obstackp,
5643 const struct block *block,
b5ec771e 5644 const lookup_name_info &lookup_name,
22cee43f
PMR
5645 domain_enum domain,
5646 int full_search,
5647 int *made_global_lookup_p)
14f9c5c9
AS
5648{
5649 struct symbol *sym;
14f9c5c9 5650
22cee43f
PMR
5651 if (made_global_lookup_p)
5652 *made_global_lookup_p = 0;
339c13b6
JB
5653
5654 /* Special case: If the user specifies a symbol name inside package
5655 Standard, do a non-wild matching of the symbol name without
5656 the "standard__" prefix. This was primarily introduced in order
5657 to allow the user to specifically access the standard exceptions
5658 using, for instance, Standard.Constraint_Error when Constraint_Error
5659 is ambiguous (due to the user defining its own Constraint_Error
5660 entity inside its program). */
b5ec771e
PA
5661 if (lookup_name.ada ().standard_p ())
5662 block = NULL;
4c4b4cd2 5663
339c13b6 5664 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5665
4eeaa230
DE
5666 if (block != NULL)
5667 {
5668 if (full_search)
b5ec771e 5669 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5670 else
5671 {
5672 /* In the !full_search case we're are being called by
4009ee92 5673 iterate_over_symbols, and we don't want to search
4eeaa230 5674 superblocks. */
b5ec771e 5675 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5676 }
22cee43f
PMR
5677 if (num_defns_collected (obstackp) > 0 || !full_search)
5678 return;
4eeaa230 5679 }
d2e4a39e 5680
339c13b6
JB
5681 /* No non-global symbols found. Check our cache to see if we have
5682 already performed this search before. If we have, then return
5683 the same result. */
5684
b5ec771e
PA
5685 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5686 domain, &sym, &block))
4c4b4cd2
PH
5687 {
5688 if (sym != NULL)
b5ec771e 5689 add_defn_to_vec (obstackp, sym, block);
22cee43f 5690 return;
4c4b4cd2 5691 }
14f9c5c9 5692
22cee43f
PMR
5693 if (made_global_lookup_p)
5694 *made_global_lookup_p = 1;
b1eedac9 5695
339c13b6
JB
5696 /* Search symbols from all global blocks. */
5697
b5ec771e 5698 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5699
4c4b4cd2 5700 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5701 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5702
22cee43f 5703 if (num_defns_collected (obstackp) == 0)
b5ec771e 5704 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5705}
5706
b5ec771e
PA
5707/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5708 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5709 matches.
54d343a2
TT
5710 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5711 found and the blocks and symbol tables (if any) in which they were
5712 found.
22cee43f
PMR
5713
5714 When full_search is non-zero, any non-function/non-enumeral
5715 symbol match within the nest of blocks whose innermost member is BLOCK,
5716 is the one match returned (no other matches in that or
5717 enclosing blocks is returned). If there are any matches in or
5718 surrounding BLOCK, then these alone are returned.
5719
5720 Names prefixed with "standard__" are handled specially: "standard__"
5721 is first stripped off, and only static and global symbols are searched. */
5722
5723static int
b5ec771e
PA
5724ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5725 const struct block *block,
22cee43f 5726 domain_enum domain,
54d343a2 5727 std::vector<struct block_symbol> *results,
22cee43f
PMR
5728 int full_search)
5729{
22cee43f
PMR
5730 int syms_from_global_search;
5731 int ndefns;
ec6a20c2 5732 auto_obstack obstack;
22cee43f 5733
ec6a20c2 5734 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5735 domain, full_search, &syms_from_global_search);
14f9c5c9 5736
ec6a20c2
JB
5737 ndefns = num_defns_collected (&obstack);
5738
54d343a2
TT
5739 struct block_symbol *base = defns_collected (&obstack, 1);
5740 for (int i = 0; i < ndefns; ++i)
5741 results->push_back (base[i]);
4c4b4cd2 5742
54d343a2 5743 ndefns = remove_extra_symbols (results);
4c4b4cd2 5744
b1eedac9 5745 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5746 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5747
b1eedac9 5748 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5749 cache_symbol (ada_lookup_name (lookup_name), domain,
5750 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5751
54d343a2 5752 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5753
14f9c5c9
AS
5754 return ndefns;
5755}
5756
b5ec771e 5757/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5758 in global scopes, returning the number of matches, and filling *RESULTS
5759 with (SYM,BLOCK) tuples.
ec6a20c2 5760
4eeaa230
DE
5761 See ada_lookup_symbol_list_worker for further details. */
5762
5763int
b5ec771e 5764ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5765 domain_enum domain,
5766 std::vector<struct block_symbol> *results)
4eeaa230 5767{
b5ec771e
PA
5768 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5769 lookup_name_info lookup_name (name, name_match_type);
5770
5771 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5772}
5773
4e5c77fe
JB
5774/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5775 to 1, but choosing the first symbol found if there are multiple
5776 choices.
5777
5e2336be
JB
5778 The result is stored in *INFO, which must be non-NULL.
5779 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5780
5781void
5782ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5783 domain_enum domain,
d12307c1 5784 struct block_symbol *info)
14f9c5c9 5785{
b5ec771e
PA
5786 /* Since we already have an encoded name, wrap it in '<>' to force a
5787 verbatim match. Otherwise, if the name happens to not look like
5788 an encoded name (because it doesn't include a "__"),
5789 ada_lookup_name_info would re-encode/fold it again, and that
5790 would e.g., incorrectly lowercase object renaming names like
5791 "R28b" -> "r28b". */
5792 std::string verbatim = std::string ("<") + name + '>';
5793
5e2336be 5794 gdb_assert (info != NULL);
65392b3e 5795 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5796}
aeb5907d
JB
5797
5798/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5799 scope and in global scopes, or NULL if none. NAME is folded and
5800 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5801 choosing the first symbol if there are multiple choices. */
4e5c77fe 5802
d12307c1 5803struct block_symbol
aeb5907d 5804ada_lookup_symbol (const char *name, const struct block *block0,
dda83cd7 5805 domain_enum domain)
aeb5907d 5806{
54d343a2 5807 std::vector<struct block_symbol> candidates;
f98fc17b 5808 int n_candidates;
f98fc17b
PA
5809
5810 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5811
5812 if (n_candidates == 0)
54d343a2 5813 return {};
f98fc17b
PA
5814
5815 block_symbol info = candidates[0];
5816 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5817 return info;
4c4b4cd2 5818}
14f9c5c9 5819
14f9c5c9 5820
4c4b4cd2
PH
5821/* True iff STR is a possible encoded suffix of a normal Ada name
5822 that is to be ignored for matching purposes. Suffixes of parallel
5823 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5824 are given by any of the regular expressions:
4c4b4cd2 5825
babe1480
JB
5826 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5827 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5828 TKB [subprogram suffix for task bodies]
babe1480 5829 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5830 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5831
5832 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5833 match is performed. This sequence is used to differentiate homonyms,
5834 is an optional part of a valid name suffix. */
4c4b4cd2 5835
14f9c5c9 5836static int
d2e4a39e 5837is_name_suffix (const char *str)
14f9c5c9
AS
5838{
5839 int k;
4c4b4cd2
PH
5840 const char *matching;
5841 const int len = strlen (str);
5842
babe1480
JB
5843 /* Skip optional leading __[0-9]+. */
5844
4c4b4cd2
PH
5845 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5846 {
babe1480
JB
5847 str += 3;
5848 while (isdigit (str[0]))
dda83cd7 5849 str += 1;
4c4b4cd2 5850 }
babe1480
JB
5851
5852 /* [.$][0-9]+ */
4c4b4cd2 5853
babe1480 5854 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5855 {
babe1480 5856 matching = str + 1;
4c4b4cd2 5857 while (isdigit (matching[0]))
dda83cd7 5858 matching += 1;
4c4b4cd2 5859 if (matching[0] == '\0')
dda83cd7 5860 return 1;
4c4b4cd2
PH
5861 }
5862
5863 /* ___[0-9]+ */
babe1480 5864
4c4b4cd2
PH
5865 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5866 {
5867 matching = str + 3;
5868 while (isdigit (matching[0]))
dda83cd7 5869 matching += 1;
4c4b4cd2 5870 if (matching[0] == '\0')
dda83cd7 5871 return 1;
4c4b4cd2
PH
5872 }
5873
9ac7f98e
JB
5874 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5875
5876 if (strcmp (str, "TKB") == 0)
5877 return 1;
5878
529cad9c
PH
5879#if 0
5880 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5881 with a N at the end. Unfortunately, the compiler uses the same
5882 convention for other internal types it creates. So treating
529cad9c 5883 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5884 some regressions. For instance, consider the case of an enumerated
5885 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5886 name ends with N.
5887 Having a single character like this as a suffix carrying some
0963b4bd 5888 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5889 to be something like "_N" instead. In the meantime, do not do
5890 the following check. */
5891 /* Protected Object Subprograms */
5892 if (len == 1 && str [0] == 'N')
5893 return 1;
5894#endif
5895
5896 /* _E[0-9]+[bs]$ */
5897 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5898 {
5899 matching = str + 3;
5900 while (isdigit (matching[0]))
dda83cd7 5901 matching += 1;
529cad9c 5902 if ((matching[0] == 'b' || matching[0] == 's')
dda83cd7
SM
5903 && matching [1] == '\0')
5904 return 1;
529cad9c
PH
5905 }
5906
4c4b4cd2
PH
5907 /* ??? We should not modify STR directly, as we are doing below. This
5908 is fine in this case, but may become problematic later if we find
5909 that this alternative did not work, and want to try matching
5910 another one from the begining of STR. Since we modified it, we
5911 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5912 if (str[0] == 'X')
5913 {
5914 str += 1;
d2e4a39e 5915 while (str[0] != '_' && str[0] != '\0')
dda83cd7
SM
5916 {
5917 if (str[0] != 'n' && str[0] != 'b')
5918 return 0;
5919 str += 1;
5920 }
14f9c5c9 5921 }
babe1480 5922
14f9c5c9
AS
5923 if (str[0] == '\000')
5924 return 1;
babe1480 5925
d2e4a39e 5926 if (str[0] == '_')
14f9c5c9
AS
5927 {
5928 if (str[1] != '_' || str[2] == '\000')
dda83cd7 5929 return 0;
d2e4a39e 5930 if (str[2] == '_')
dda83cd7
SM
5931 {
5932 if (strcmp (str + 3, "JM") == 0)
5933 return 1;
5934 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5935 the LJM suffix in favor of the JM one. But we will
5936 still accept LJM as a valid suffix for a reasonable
5937 amount of time, just to allow ourselves to debug programs
5938 compiled using an older version of GNAT. */
5939 if (strcmp (str + 3, "LJM") == 0)
5940 return 1;
5941 if (str[3] != 'X')
5942 return 0;
5943 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5944 || str[4] == 'U' || str[4] == 'P')
5945 return 1;
5946 if (str[4] == 'R' && str[5] != 'T')
5947 return 1;
5948 return 0;
5949 }
4c4b4cd2 5950 if (!isdigit (str[2]))
dda83cd7 5951 return 0;
4c4b4cd2 5952 for (k = 3; str[k] != '\0'; k += 1)
dda83cd7
SM
5953 if (!isdigit (str[k]) && str[k] != '_')
5954 return 0;
14f9c5c9
AS
5955 return 1;
5956 }
4c4b4cd2 5957 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5958 {
4c4b4cd2 5959 for (k = 2; str[k] != '\0'; k += 1)
dda83cd7
SM
5960 if (!isdigit (str[k]) && str[k] != '_')
5961 return 0;
14f9c5c9
AS
5962 return 1;
5963 }
5964 return 0;
5965}
d2e4a39e 5966
aeb5907d
JB
5967/* Return non-zero if the string starting at NAME and ending before
5968 NAME_END contains no capital letters. */
529cad9c
PH
5969
5970static int
5971is_valid_name_for_wild_match (const char *name0)
5972{
f945dedf 5973 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5974 int i;
5975
5823c3ef
JB
5976 /* If the decoded name starts with an angle bracket, it means that
5977 NAME0 does not follow the GNAT encoding format. It should then
5978 not be allowed as a possible wild match. */
5979 if (decoded_name[0] == '<')
5980 return 0;
5981
529cad9c
PH
5982 for (i=0; decoded_name[i] != '\0'; i++)
5983 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5984 return 0;
5985
5986 return 1;
5987}
5988
59c8a30b
JB
5989/* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5990 character which could start a simple name. Assumes that *NAMEP points
5991 somewhere inside the string beginning at NAME0. */
4c4b4cd2 5992
14f9c5c9 5993static int
59c8a30b 5994advance_wild_match (const char **namep, const char *name0, char target0)
14f9c5c9 5995{
73589123 5996 const char *name = *namep;
5b4ee69b 5997
5823c3ef 5998 while (1)
14f9c5c9 5999 {
59c8a30b 6000 char t0, t1;
73589123
PH
6001
6002 t0 = *name;
6003 if (t0 == '_')
6004 {
6005 t1 = name[1];
6006 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6007 {
6008 name += 1;
61012eef 6009 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6010 break;
6011 else
6012 name += 1;
6013 }
aa27d0b3
JB
6014 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6015 || name[2] == target0))
73589123
PH
6016 {
6017 name += 2;
6018 break;
6019 }
6020 else
6021 return 0;
6022 }
6023 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6024 name += 1;
6025 else
5823c3ef 6026 return 0;
73589123
PH
6027 }
6028
6029 *namep = name;
6030 return 1;
6031}
6032
b5ec771e
PA
6033/* Return true iff NAME encodes a name of the form prefix.PATN.
6034 Ignores any informational suffixes of NAME (i.e., for which
6035 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6036 simple name. */
73589123 6037
b5ec771e 6038static bool
73589123
PH
6039wild_match (const char *name, const char *patn)
6040{
22e048c9 6041 const char *p;
73589123
PH
6042 const char *name0 = name;
6043
6044 while (1)
6045 {
6046 const char *match = name;
6047
6048 if (*name == *patn)
6049 {
6050 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6051 if (*p != *name)
6052 break;
6053 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6054 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6055
6056 if (name[-1] == '_')
6057 name -= 1;
6058 }
6059 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6060 return false;
96d887e8 6061 }
96d887e8
PH
6062}
6063
b5ec771e
PA
6064/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6065 any trailing suffixes that encode debugging information or leading
6066 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6067 information that is ignored). */
40658b94 6068
b5ec771e 6069static bool
c4d840bd
PH
6070full_match (const char *sym_name, const char *search_name)
6071{
b5ec771e
PA
6072 size_t search_name_len = strlen (search_name);
6073
6074 if (strncmp (sym_name, search_name, search_name_len) == 0
6075 && is_name_suffix (sym_name + search_name_len))
6076 return true;
6077
6078 if (startswith (sym_name, "_ada_")
6079 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6080 && is_name_suffix (sym_name + search_name_len + 5))
6081 return true;
c4d840bd 6082
b5ec771e
PA
6083 return false;
6084}
c4d840bd 6085
b5ec771e
PA
6086/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6087 *defn_symbols, updating the list of symbols in OBSTACKP (if
6088 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6089
6090static void
6091ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6092 const struct block *block,
6093 const lookup_name_info &lookup_name,
6094 domain_enum domain, struct objfile *objfile)
96d887e8 6095{
8157b174 6096 struct block_iterator iter;
96d887e8
PH
6097 /* A matching argument symbol, if any. */
6098 struct symbol *arg_sym;
6099 /* Set true when we find a matching non-argument symbol. */
6100 int found_sym;
6101 struct symbol *sym;
6102
6103 arg_sym = NULL;
6104 found_sym = 0;
b5ec771e
PA
6105 for (sym = block_iter_match_first (block, lookup_name, &iter);
6106 sym != NULL;
6107 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6108 {
c1b5c1eb 6109 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
6110 {
6111 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6112 {
6113 if (SYMBOL_IS_ARGUMENT (sym))
6114 arg_sym = sym;
6115 else
6116 {
6117 found_sym = 1;
6118 add_defn_to_vec (obstackp,
6119 fixup_symbol_section (sym, objfile),
6120 block);
6121 }
6122 }
6123 }
96d887e8
PH
6124 }
6125
22cee43f
PMR
6126 /* Handle renamings. */
6127
b5ec771e 6128 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6129 found_sym = 1;
6130
96d887e8
PH
6131 if (!found_sym && arg_sym != NULL)
6132 {
76a01679 6133 add_defn_to_vec (obstackp,
dda83cd7
SM
6134 fixup_symbol_section (arg_sym, objfile),
6135 block);
96d887e8
PH
6136 }
6137
b5ec771e 6138 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6139 {
6140 arg_sym = NULL;
6141 found_sym = 0;
b5ec771e
PA
6142 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6143 const char *name = ada_lookup_name.c_str ();
6144 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6145
6146 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6147 {
dda83cd7
SM
6148 if (symbol_matches_domain (sym->language (),
6149 SYMBOL_DOMAIN (sym), domain))
6150 {
6151 int cmp;
6152
6153 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6154 if (cmp == 0)
6155 {
6156 cmp = !startswith (sym->linkage_name (), "_ada_");
6157 if (cmp == 0)
6158 cmp = strncmp (name, sym->linkage_name () + 5,
6159 name_len);
6160 }
6161
6162 if (cmp == 0
6163 && is_name_suffix (sym->linkage_name () + name_len + 5))
6164 {
2a2d4dc3
AS
6165 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6166 {
6167 if (SYMBOL_IS_ARGUMENT (sym))
6168 arg_sym = sym;
6169 else
6170 {
6171 found_sym = 1;
6172 add_defn_to_vec (obstackp,
6173 fixup_symbol_section (sym, objfile),
6174 block);
6175 }
6176 }
dda83cd7
SM
6177 }
6178 }
76a01679 6179 }
96d887e8
PH
6180
6181 /* NOTE: This really shouldn't be needed for _ada_ symbols.
dda83cd7 6182 They aren't parameters, right? */
96d887e8 6183 if (!found_sym && arg_sym != NULL)
dda83cd7
SM
6184 {
6185 add_defn_to_vec (obstackp,
6186 fixup_symbol_section (arg_sym, objfile),
6187 block);
6188 }
96d887e8
PH
6189 }
6190}
6191\f
41d27058 6192
dda83cd7 6193 /* Symbol Completion */
41d27058 6194
b5ec771e 6195/* See symtab.h. */
41d27058 6196
b5ec771e
PA
6197bool
6198ada_lookup_name_info::matches
6199 (const char *sym_name,
6200 symbol_name_match_type match_type,
a207cff2 6201 completion_match_result *comp_match_res) const
41d27058 6202{
b5ec771e
PA
6203 bool match = false;
6204 const char *text = m_encoded_name.c_str ();
6205 size_t text_len = m_encoded_name.size ();
41d27058
JB
6206
6207 /* First, test against the fully qualified name of the symbol. */
6208
6209 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6210 match = true;
41d27058 6211
f945dedf 6212 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6213 if (match && !m_encoded_p)
41d27058
JB
6214 {
6215 /* One needed check before declaring a positive match is to verify
dda83cd7
SM
6216 that iff we are doing a verbatim match, the decoded version
6217 of the symbol name starts with '<'. Otherwise, this symbol name
6218 is not a suitable completion. */
41d27058 6219
f945dedf 6220 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6221 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6222 }
6223
b5ec771e 6224 if (match && !m_verbatim_p)
41d27058
JB
6225 {
6226 /* When doing non-verbatim match, another check that needs to
dda83cd7
SM
6227 be done is to verify that the potentially matching symbol name
6228 does not include capital letters, because the ada-mode would
6229 not be able to understand these symbol names without the
6230 angle bracket notation. */
41d27058
JB
6231 const char *tmp;
6232
6233 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6234 if (*tmp != '\0')
b5ec771e 6235 match = false;
41d27058
JB
6236 }
6237
6238 /* Second: Try wild matching... */
6239
b5ec771e 6240 if (!match && m_wild_match_p)
41d27058
JB
6241 {
6242 /* Since we are doing wild matching, this means that TEXT
dda83cd7
SM
6243 may represent an unqualified symbol name. We therefore must
6244 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6245 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6246
6247 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6248 match = true;
41d27058
JB
6249 }
6250
b5ec771e 6251 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6252
6253 if (!match)
b5ec771e 6254 return false;
41d27058 6255
a207cff2 6256 if (comp_match_res != NULL)
b5ec771e 6257 {
a207cff2 6258 std::string &match_str = comp_match_res->match.storage ();
41d27058 6259
b5ec771e 6260 if (!m_encoded_p)
a207cff2 6261 match_str = ada_decode (sym_name);
b5ec771e
PA
6262 else
6263 {
6264 if (m_verbatim_p)
6265 match_str = add_angle_brackets (sym_name);
6266 else
6267 match_str = sym_name;
41d27058 6268
b5ec771e 6269 }
a207cff2
PA
6270
6271 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6272 }
6273
b5ec771e 6274 return true;
41d27058
JB
6275}
6276
dda83cd7 6277 /* Field Access */
96d887e8 6278
73fb9985
JB
6279/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6280 for tagged types. */
6281
6282static int
6283ada_is_dispatch_table_ptr_type (struct type *type)
6284{
0d5cff50 6285 const char *name;
73fb9985 6286
78134374 6287 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
6288 return 0;
6289
7d93a1e0 6290 name = TYPE_TARGET_TYPE (type)->name ();
73fb9985
JB
6291 if (name == NULL)
6292 return 0;
6293
6294 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6295}
6296
ac4a2da4
JG
6297/* Return non-zero if TYPE is an interface tag. */
6298
6299static int
6300ada_is_interface_tag (struct type *type)
6301{
7d93a1e0 6302 const char *name = type->name ();
ac4a2da4
JG
6303
6304 if (name == NULL)
6305 return 0;
6306
6307 return (strcmp (name, "ada__tags__interface_tag") == 0);
6308}
6309
963a6417
PH
6310/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6311 to be invisible to users. */
96d887e8 6312
963a6417
PH
6313int
6314ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6315{
1f704f76 6316 if (field_num < 0 || field_num > type->num_fields ())
963a6417 6317 return 1;
ffde82bf 6318
73fb9985
JB
6319 /* Check the name of that field. */
6320 {
6321 const char *name = TYPE_FIELD_NAME (type, field_num);
6322
6323 /* Anonymous field names should not be printed.
6324 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6325 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6326 if (name == NULL)
6327 return 1;
6328
ffde82bf
JB
6329 /* Normally, fields whose name start with an underscore ("_")
6330 are fields that have been internally generated by the compiler,
6331 and thus should not be printed. The "_parent" field is special,
6332 however: This is a field internally generated by the compiler
6333 for tagged types, and it contains the components inherited from
6334 the parent type. This field should not be printed as is, but
6335 should not be ignored either. */
61012eef 6336 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6337 return 1;
6338 }
6339
ac4a2da4
JG
6340 /* If this is the dispatch table of a tagged type or an interface tag,
6341 then ignore. */
73fb9985 6342 if (ada_is_tagged_type (type, 1)
940da03e
SM
6343 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6344 || ada_is_interface_tag (type->field (field_num).type ())))
73fb9985
JB
6345 return 1;
6346
6347 /* Not a special field, so it should not be ignored. */
6348 return 0;
963a6417 6349}
96d887e8 6350
963a6417 6351/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6352 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6353
963a6417
PH
6354int
6355ada_is_tagged_type (struct type *type, int refok)
6356{
988f6b3d 6357 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6358}
96d887e8 6359
963a6417 6360/* True iff TYPE represents the type of X'Tag */
96d887e8 6361
963a6417
PH
6362int
6363ada_is_tag_type (struct type *type)
6364{
460efde1
JB
6365 type = ada_check_typedef (type);
6366
78134374 6367 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6368 return 0;
6369 else
96d887e8 6370 {
963a6417 6371 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6372
963a6417 6373 return (name != NULL
dda83cd7 6374 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6375 }
96d887e8
PH
6376}
6377
963a6417 6378/* The type of the tag on VAL. */
76a01679 6379
de93309a 6380static struct type *
963a6417 6381ada_tag_type (struct value *val)
96d887e8 6382{
988f6b3d 6383 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6384}
96d887e8 6385
b50d69b5
JG
6386/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6387 retired at Ada 05). */
6388
6389static int
6390is_ada95_tag (struct value *tag)
6391{
6392 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6393}
6394
963a6417 6395/* The value of the tag on VAL. */
96d887e8 6396
de93309a 6397static struct value *
963a6417
PH
6398ada_value_tag (struct value *val)
6399{
03ee6b2e 6400 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6401}
6402
963a6417
PH
6403/* The value of the tag on the object of type TYPE whose contents are
6404 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6405 ADDRESS. */
96d887e8 6406
963a6417 6407static struct value *
10a2c479 6408value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6409 const gdb_byte *valaddr,
dda83cd7 6410 CORE_ADDR address)
96d887e8 6411{
b5385fc0 6412 int tag_byte_offset;
963a6417 6413 struct type *tag_type;
5b4ee69b 6414
963a6417 6415 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
dda83cd7 6416 NULL, NULL, NULL))
96d887e8 6417 {
fc1a4b47 6418 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6419 ? NULL
6420 : valaddr + tag_byte_offset);
963a6417 6421 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6422
963a6417 6423 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6424 }
963a6417
PH
6425 return NULL;
6426}
96d887e8 6427
963a6417
PH
6428static struct type *
6429type_from_tag (struct value *tag)
6430{
f5272a3b 6431 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5b4ee69b 6432
963a6417 6433 if (type_name != NULL)
5c4258f4 6434 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
963a6417
PH
6435 return NULL;
6436}
96d887e8 6437
b50d69b5
JG
6438/* Given a value OBJ of a tagged type, return a value of this
6439 type at the base address of the object. The base address, as
6440 defined in Ada.Tags, it is the address of the primary tag of
6441 the object, and therefore where the field values of its full
6442 view can be fetched. */
6443
6444struct value *
6445ada_tag_value_at_base_address (struct value *obj)
6446{
b50d69b5
JG
6447 struct value *val;
6448 LONGEST offset_to_top = 0;
6449 struct type *ptr_type, *obj_type;
6450 struct value *tag;
6451 CORE_ADDR base_address;
6452
6453 obj_type = value_type (obj);
6454
6455 /* It is the responsability of the caller to deref pointers. */
6456
78134374 6457 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6458 return obj;
6459
6460 tag = ada_value_tag (obj);
6461 if (!tag)
6462 return obj;
6463
6464 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6465
6466 if (is_ada95_tag (tag))
6467 return obj;
6468
08f49010
XR
6469 ptr_type = language_lookup_primitive_type
6470 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6471 ptr_type = lookup_pointer_type (ptr_type);
6472 val = value_cast (ptr_type, tag);
6473 if (!val)
6474 return obj;
6475
6476 /* It is perfectly possible that an exception be raised while
6477 trying to determine the base address, just like for the tag;
6478 see ada_tag_name for more details. We do not print the error
6479 message for the same reason. */
6480
a70b8144 6481 try
b50d69b5
JG
6482 {
6483 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6484 }
6485
230d2906 6486 catch (const gdb_exception_error &e)
492d29ea
PA
6487 {
6488 return obj;
6489 }
b50d69b5
JG
6490
6491 /* If offset is null, nothing to do. */
6492
6493 if (offset_to_top == 0)
6494 return obj;
6495
6496 /* -1 is a special case in Ada.Tags; however, what should be done
6497 is not quite clear from the documentation. So do nothing for
6498 now. */
6499
6500 if (offset_to_top == -1)
6501 return obj;
6502
08f49010
XR
6503 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6504 from the base address. This was however incompatible with
6505 C++ dispatch table: C++ uses a *negative* value to *add*
6506 to the base address. Ada's convention has therefore been
6507 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6508 use the same convention. Here, we support both cases by
6509 checking the sign of OFFSET_TO_TOP. */
6510
6511 if (offset_to_top > 0)
6512 offset_to_top = -offset_to_top;
6513
6514 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6515 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6516
6517 /* Make sure that we have a proper tag at the new address.
6518 Otherwise, offset_to_top is bogus (which can happen when
6519 the object is not initialized yet). */
6520
6521 if (!tag)
6522 return obj;
6523
6524 obj_type = type_from_tag (tag);
6525
6526 if (!obj_type)
6527 return obj;
6528
6529 return value_from_contents_and_address (obj_type, NULL, base_address);
6530}
6531
1b611343
JB
6532/* Return the "ada__tags__type_specific_data" type. */
6533
6534static struct type *
6535ada_get_tsd_type (struct inferior *inf)
963a6417 6536{
1b611343 6537 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6538
1b611343
JB
6539 if (data->tsd_type == 0)
6540 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6541 return data->tsd_type;
6542}
529cad9c 6543
1b611343
JB
6544/* Return the TSD (type-specific data) associated to the given TAG.
6545 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6546
1b611343 6547 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6548
1b611343
JB
6549static struct value *
6550ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6551{
4c4b4cd2 6552 struct value *val;
1b611343 6553 struct type *type;
5b4ee69b 6554
1b611343
JB
6555 /* First option: The TSD is simply stored as a field of our TAG.
6556 Only older versions of GNAT would use this format, but we have
6557 to test it first, because there are no visible markers for
6558 the current approach except the absence of that field. */
529cad9c 6559
1b611343
JB
6560 val = ada_value_struct_elt (tag, "tsd", 1);
6561 if (val)
6562 return val;
e802dbe0 6563
1b611343
JB
6564 /* Try the second representation for the dispatch table (in which
6565 there is no explicit 'tsd' field in the referent of the tag pointer,
6566 and instead the tsd pointer is stored just before the dispatch
6567 table. */
e802dbe0 6568
1b611343
JB
6569 type = ada_get_tsd_type (current_inferior());
6570 if (type == NULL)
6571 return NULL;
6572 type = lookup_pointer_type (lookup_pointer_type (type));
6573 val = value_cast (type, tag);
6574 if (val == NULL)
6575 return NULL;
6576 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6577}
6578
1b611343
JB
6579/* Given the TSD of a tag (type-specific data), return a string
6580 containing the name of the associated type.
6581
f5272a3b 6582 May return NULL if we are unable to determine the tag name. */
1b611343 6583
f5272a3b 6584static gdb::unique_xmalloc_ptr<char>
1b611343 6585ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6586{
529cad9c 6587 char *p;
1b611343 6588 struct value *val;
529cad9c 6589
1b611343 6590 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6591 if (val == NULL)
1b611343 6592 return NULL;
66920317
TT
6593 gdb::unique_xmalloc_ptr<char> buffer
6594 = target_read_string (value_as_address (val), INT_MAX);
6595 if (buffer == nullptr)
f5272a3b
TT
6596 return nullptr;
6597
6598 for (p = buffer.get (); *p != '\0'; ++p)
6599 {
6600 if (isalpha (*p))
6601 *p = tolower (*p);
6602 }
6603
6604 return buffer;
4c4b4cd2
PH
6605}
6606
6607/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6608 a C string.
6609
6610 Return NULL if the TAG is not an Ada tag, or if we were unable to
f5272a3b 6611 determine the name of that tag. */
4c4b4cd2 6612
f5272a3b 6613gdb::unique_xmalloc_ptr<char>
4c4b4cd2
PH
6614ada_tag_name (struct value *tag)
6615{
f5272a3b 6616 gdb::unique_xmalloc_ptr<char> name;
5b4ee69b 6617
df407dfe 6618 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6619 return NULL;
1b611343
JB
6620
6621 /* It is perfectly possible that an exception be raised while trying
6622 to determine the TAG's name, even under normal circumstances:
6623 The associated variable may be uninitialized or corrupted, for
6624 instance. We do not let any exception propagate past this point.
6625 instead we return NULL.
6626
6627 We also do not print the error message either (which often is very
6628 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6629 the caller print a more meaningful message if necessary. */
a70b8144 6630 try
1b611343
JB
6631 {
6632 struct value *tsd = ada_get_tsd_from_tag (tag);
6633
6634 if (tsd != NULL)
6635 name = ada_tag_name_from_tsd (tsd);
6636 }
230d2906 6637 catch (const gdb_exception_error &e)
492d29ea
PA
6638 {
6639 }
1b611343
JB
6640
6641 return name;
4c4b4cd2
PH
6642}
6643
6644/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6645
d2e4a39e 6646struct type *
ebf56fd3 6647ada_parent_type (struct type *type)
14f9c5c9
AS
6648{
6649 int i;
6650
61ee279c 6651 type = ada_check_typedef (type);
14f9c5c9 6652
78134374 6653 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6654 return NULL;
6655
1f704f76 6656 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6657 if (ada_is_parent_field (type, i))
0c1f74cf 6658 {
dda83cd7 6659 struct type *parent_type = type->field (i).type ();
0c1f74cf 6660
dda83cd7
SM
6661 /* If the _parent field is a pointer, then dereference it. */
6662 if (parent_type->code () == TYPE_CODE_PTR)
6663 parent_type = TYPE_TARGET_TYPE (parent_type);
6664 /* If there is a parallel XVS type, get the actual base type. */
6665 parent_type = ada_get_base_type (parent_type);
0c1f74cf 6666
dda83cd7 6667 return ada_check_typedef (parent_type);
0c1f74cf 6668 }
14f9c5c9
AS
6669
6670 return NULL;
6671}
6672
4c4b4cd2
PH
6673/* True iff field number FIELD_NUM of structure type TYPE contains the
6674 parent-type (inherited) fields of a derived type. Assumes TYPE is
6675 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6676
6677int
ebf56fd3 6678ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6679{
61ee279c 6680 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6681
4c4b4cd2 6682 return (name != NULL
dda83cd7
SM
6683 && (startswith (name, "PARENT")
6684 || startswith (name, "_parent")));
14f9c5c9
AS
6685}
6686
4c4b4cd2 6687/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6688 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6689 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6690 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6691 structures. */
14f9c5c9
AS
6692
6693int
ebf56fd3 6694ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6695{
d2e4a39e 6696 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6697
dddc0e16
JB
6698 if (name != NULL && strcmp (name, "RETVAL") == 0)
6699 {
6700 /* This happens in functions with "out" or "in out" parameters
6701 which are passed by copy. For such functions, GNAT describes
6702 the function's return type as being a struct where the return
6703 value is in a field called RETVAL, and where the other "out"
6704 or "in out" parameters are fields of that struct. This is not
6705 a wrapper. */
6706 return 0;
6707 }
6708
d2e4a39e 6709 return (name != NULL
dda83cd7
SM
6710 && (startswith (name, "PARENT")
6711 || strcmp (name, "REP") == 0
6712 || startswith (name, "_parent")
6713 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6714}
6715
4c4b4cd2
PH
6716/* True iff field number FIELD_NUM of structure or union type TYPE
6717 is a variant wrapper. Assumes TYPE is a structure type with at least
6718 FIELD_NUM+1 fields. */
14f9c5c9
AS
6719
6720int
ebf56fd3 6721ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6722{
8ecb59f8
TT
6723 /* Only Ada types are eligible. */
6724 if (!ADA_TYPE_P (type))
6725 return 0;
6726
940da03e 6727 struct type *field_type = type->field (field_num).type ();
5b4ee69b 6728
78134374
SM
6729 return (field_type->code () == TYPE_CODE_UNION
6730 || (is_dynamic_field (type, field_num)
6731 && (TYPE_TARGET_TYPE (field_type)->code ()
c3e5cd34 6732 == TYPE_CODE_UNION)));
14f9c5c9
AS
6733}
6734
6735/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6736 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6737 returns the type of the controlling discriminant for the variant.
6738 May return NULL if the type could not be found. */
14f9c5c9 6739
d2e4a39e 6740struct type *
ebf56fd3 6741ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6742{
a121b7c1 6743 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6744
988f6b3d 6745 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6746}
6747
4c4b4cd2 6748/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6749 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6750 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6751
de93309a 6752static int
ebf56fd3 6753ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6754{
d2e4a39e 6755 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6756
14f9c5c9
AS
6757 return (name != NULL && name[0] == 'O');
6758}
6759
6760/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6761 returns the name of the discriminant controlling the variant.
6762 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6763
a121b7c1 6764const char *
ebf56fd3 6765ada_variant_discrim_name (struct type *type0)
14f9c5c9 6766{
d2e4a39e 6767 static char *result = NULL;
14f9c5c9 6768 static size_t result_len = 0;
d2e4a39e
AS
6769 struct type *type;
6770 const char *name;
6771 const char *discrim_end;
6772 const char *discrim_start;
14f9c5c9 6773
78134374 6774 if (type0->code () == TYPE_CODE_PTR)
14f9c5c9
AS
6775 type = TYPE_TARGET_TYPE (type0);
6776 else
6777 type = type0;
6778
6779 name = ada_type_name (type);
6780
6781 if (name == NULL || name[0] == '\000')
6782 return "";
6783
6784 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6785 discrim_end -= 1)
6786 {
61012eef 6787 if (startswith (discrim_end, "___XVN"))
dda83cd7 6788 break;
14f9c5c9
AS
6789 }
6790 if (discrim_end == name)
6791 return "";
6792
d2e4a39e 6793 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6794 discrim_start -= 1)
6795 {
d2e4a39e 6796 if (discrim_start == name + 1)
dda83cd7 6797 return "";
76a01679 6798 if ((discrim_start > name + 3
dda83cd7
SM
6799 && startswith (discrim_start - 3, "___"))
6800 || discrim_start[-1] == '.')
6801 break;
14f9c5c9
AS
6802 }
6803
6804 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6805 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6806 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6807 return result;
6808}
6809
4c4b4cd2
PH
6810/* Scan STR for a subtype-encoded number, beginning at position K.
6811 Put the position of the character just past the number scanned in
6812 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6813 Return 1 if there was a valid number at the given position, and 0
6814 otherwise. A "subtype-encoded" number consists of the absolute value
6815 in decimal, followed by the letter 'm' to indicate a negative number.
6816 Assumes 0m does not occur. */
14f9c5c9
AS
6817
6818int
d2e4a39e 6819ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6820{
6821 ULONGEST RU;
6822
d2e4a39e 6823 if (!isdigit (str[k]))
14f9c5c9
AS
6824 return 0;
6825
4c4b4cd2 6826 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6827 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6828 LONGEST. */
14f9c5c9
AS
6829 RU = 0;
6830 while (isdigit (str[k]))
6831 {
d2e4a39e 6832 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6833 k += 1;
6834 }
6835
d2e4a39e 6836 if (str[k] == 'm')
14f9c5c9
AS
6837 {
6838 if (R != NULL)
dda83cd7 6839 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6840 k += 1;
6841 }
6842 else if (R != NULL)
6843 *R = (LONGEST) RU;
6844
4c4b4cd2 6845 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6846 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6847 number representable as a LONGEST (although either would probably work
6848 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6849 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6850
6851 if (new_k != NULL)
6852 *new_k = k;
6853 return 1;
6854}
6855
4c4b4cd2
PH
6856/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6857 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6858 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6859
de93309a 6860static int
ebf56fd3 6861ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6862{
d2e4a39e 6863 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6864 int p;
6865
6866 p = 0;
6867 while (1)
6868 {
d2e4a39e 6869 switch (name[p])
dda83cd7
SM
6870 {
6871 case '\0':
6872 return 0;
6873 case 'S':
6874 {
6875 LONGEST W;
6876
6877 if (!ada_scan_number (name, p + 1, &W, &p))
6878 return 0;
6879 if (val == W)
6880 return 1;
6881 break;
6882 }
6883 case 'R':
6884 {
6885 LONGEST L, U;
6886
6887 if (!ada_scan_number (name, p + 1, &L, &p)
6888 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6889 return 0;
6890 if (val >= L && val <= U)
6891 return 1;
6892 break;
6893 }
6894 case 'O':
6895 return 1;
6896 default:
6897 return 0;
6898 }
4c4b4cd2
PH
6899 }
6900}
6901
0963b4bd 6902/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6903
6904/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6905 ARG_TYPE, extract and return the value of one of its (non-static)
6906 fields. FIELDNO says which field. Differs from value_primitive_field
6907 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6908
5eb68a39 6909struct value *
d2e4a39e 6910ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
dda83cd7 6911 struct type *arg_type)
14f9c5c9 6912{
14f9c5c9
AS
6913 struct type *type;
6914
61ee279c 6915 arg_type = ada_check_typedef (arg_type);
940da03e 6916 type = arg_type->field (fieldno).type ();
14f9c5c9 6917
4504bbde
TT
6918 /* Handle packed fields. It might be that the field is not packed
6919 relative to its containing structure, but the structure itself is
6920 packed; in this case we must take the bit-field path. */
6921 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
6922 {
6923 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6924 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6925
0fd88904 6926 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
dda83cd7
SM
6927 offset + bit_pos / 8,
6928 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6929 }
6930 else
6931 return value_primitive_field (arg1, offset, fieldno, arg_type);
6932}
6933
52ce6436
PH
6934/* Find field with name NAME in object of type TYPE. If found,
6935 set the following for each argument that is non-null:
6936 - *FIELD_TYPE_P to the field's type;
6937 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6938 an object of that type;
6939 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6940 - *BIT_SIZE_P to its size in bits if the field is packed, and
6941 0 otherwise;
6942 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6943 fields up to but not including the desired field, or by the total
6944 number of fields if not found. A NULL value of NAME never
6945 matches; the function just counts visible fields in this case.
6946
828d5846
XR
6947 Notice that we need to handle when a tagged record hierarchy
6948 has some components with the same name, like in this scenario:
6949
6950 type Top_T is tagged record
dda83cd7
SM
6951 N : Integer := 1;
6952 U : Integer := 974;
6953 A : Integer := 48;
828d5846
XR
6954 end record;
6955
6956 type Middle_T is new Top.Top_T with record
dda83cd7
SM
6957 N : Character := 'a';
6958 C : Integer := 3;
828d5846
XR
6959 end record;
6960
6961 type Bottom_T is new Middle.Middle_T with record
dda83cd7
SM
6962 N : Float := 4.0;
6963 C : Character := '5';
6964 X : Integer := 6;
6965 A : Character := 'J';
828d5846
XR
6966 end record;
6967
6968 Let's say we now have a variable declared and initialized as follow:
6969
6970 TC : Top_A := new Bottom_T;
6971
6972 And then we use this variable to call this function
6973
6974 procedure Assign (Obj: in out Top_T; TV : Integer);
6975
6976 as follow:
6977
6978 Assign (Top_T (B), 12);
6979
6980 Now, we're in the debugger, and we're inside that procedure
6981 then and we want to print the value of obj.c:
6982
6983 Usually, the tagged record or one of the parent type owns the
6984 component to print and there's no issue but in this particular
6985 case, what does it mean to ask for Obj.C? Since the actual
6986 type for object is type Bottom_T, it could mean two things: type
6987 component C from the Middle_T view, but also component C from
6988 Bottom_T. So in that "undefined" case, when the component is
6989 not found in the non-resolved type (which includes all the
6990 components of the parent type), then resolve it and see if we
6991 get better luck once expanded.
6992
6993 In the case of homonyms in the derived tagged type, we don't
6994 guaranty anything, and pick the one that's easiest for us
6995 to program.
6996
0963b4bd 6997 Returns 1 if found, 0 otherwise. */
52ce6436 6998
4c4b4cd2 6999static int
0d5cff50 7000find_struct_field (const char *name, struct type *type, int offset,
dda83cd7
SM
7001 struct type **field_type_p,
7002 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
52ce6436 7003 int *index_p)
4c4b4cd2
PH
7004{
7005 int i;
828d5846 7006 int parent_offset = -1;
4c4b4cd2 7007
61ee279c 7008 type = ada_check_typedef (type);
76a01679 7009
52ce6436
PH
7010 if (field_type_p != NULL)
7011 *field_type_p = NULL;
7012 if (byte_offset_p != NULL)
d5d6fca5 7013 *byte_offset_p = 0;
52ce6436
PH
7014 if (bit_offset_p != NULL)
7015 *bit_offset_p = 0;
7016 if (bit_size_p != NULL)
7017 *bit_size_p = 0;
7018
1f704f76 7019 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2
PH
7020 {
7021 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7022 int fld_offset = offset + bit_pos / 8;
0d5cff50 7023 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7024
4c4b4cd2 7025 if (t_field_name == NULL)
dda83cd7 7026 continue;
4c4b4cd2 7027
828d5846 7028 else if (ada_is_parent_field (type, i))
dda83cd7 7029 {
828d5846
XR
7030 /* This is a field pointing us to the parent type of a tagged
7031 type. As hinted in this function's documentation, we give
7032 preference to fields in the current record first, so what
7033 we do here is just record the index of this field before
7034 we skip it. If it turns out we couldn't find our field
7035 in the current record, then we'll get back to it and search
7036 inside it whether the field might exist in the parent. */
7037
dda83cd7
SM
7038 parent_offset = i;
7039 continue;
7040 }
828d5846 7041
52ce6436 7042 else if (name != NULL && field_name_match (t_field_name, name))
dda83cd7
SM
7043 {
7044 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7045
52ce6436 7046 if (field_type_p != NULL)
940da03e 7047 *field_type_p = type->field (i).type ();
52ce6436
PH
7048 if (byte_offset_p != NULL)
7049 *byte_offset_p = fld_offset;
7050 if (bit_offset_p != NULL)
7051 *bit_offset_p = bit_pos % 8;
7052 if (bit_size_p != NULL)
7053 *bit_size_p = bit_size;
dda83cd7
SM
7054 return 1;
7055 }
4c4b4cd2 7056 else if (ada_is_wrapper_field (type, i))
dda83cd7 7057 {
940da03e 7058 if (find_struct_field (name, type->field (i).type (), fld_offset,
52ce6436
PH
7059 field_type_p, byte_offset_p, bit_offset_p,
7060 bit_size_p, index_p))
dda83cd7
SM
7061 return 1;
7062 }
4c4b4cd2 7063 else if (ada_is_variant_part (type, i))
dda83cd7 7064 {
52ce6436
PH
7065 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7066 fixed type?? */
dda83cd7
SM
7067 int j;
7068 struct type *field_type
940da03e 7069 = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7070
dda83cd7
SM
7071 for (j = 0; j < field_type->num_fields (); j += 1)
7072 {
7073 if (find_struct_field (name, field_type->field (j).type (),
7074 fld_offset
7075 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7076 field_type_p, byte_offset_p,
7077 bit_offset_p, bit_size_p, index_p))
7078 return 1;
7079 }
7080 }
52ce6436
PH
7081 else if (index_p != NULL)
7082 *index_p += 1;
4c4b4cd2 7083 }
828d5846
XR
7084
7085 /* Field not found so far. If this is a tagged type which
7086 has a parent, try finding that field in the parent now. */
7087
7088 if (parent_offset != -1)
7089 {
7090 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7091 int fld_offset = offset + bit_pos / 8;
7092
940da03e 7093 if (find_struct_field (name, type->field (parent_offset).type (),
dda83cd7
SM
7094 fld_offset, field_type_p, byte_offset_p,
7095 bit_offset_p, bit_size_p, index_p))
7096 return 1;
828d5846
XR
7097 }
7098
4c4b4cd2
PH
7099 return 0;
7100}
7101
0963b4bd 7102/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7103
52ce6436
PH
7104static int
7105num_visible_fields (struct type *type)
7106{
7107 int n;
5b4ee69b 7108
52ce6436
PH
7109 n = 0;
7110 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7111 return n;
7112}
14f9c5c9 7113
4c4b4cd2 7114/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7115 and search in it assuming it has (class) type TYPE.
7116 If found, return value, else return NULL.
7117
828d5846
XR
7118 Searches recursively through wrapper fields (e.g., '_parent').
7119
7120 In the case of homonyms in the tagged types, please refer to the
7121 long explanation in find_struct_field's function documentation. */
14f9c5c9 7122
4c4b4cd2 7123static struct value *
108d56a4 7124ada_search_struct_field (const char *name, struct value *arg, int offset,
dda83cd7 7125 struct type *type)
14f9c5c9
AS
7126{
7127 int i;
828d5846 7128 int parent_offset = -1;
14f9c5c9 7129
5b4ee69b 7130 type = ada_check_typedef (type);
1f704f76 7131 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7132 {
0d5cff50 7133 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7134
7135 if (t_field_name == NULL)
dda83cd7 7136 continue;
14f9c5c9 7137
828d5846 7138 else if (ada_is_parent_field (type, i))
dda83cd7 7139 {
828d5846
XR
7140 /* This is a field pointing us to the parent type of a tagged
7141 type. As hinted in this function's documentation, we give
7142 preference to fields in the current record first, so what
7143 we do here is just record the index of this field before
7144 we skip it. If it turns out we couldn't find our field
7145 in the current record, then we'll get back to it and search
7146 inside it whether the field might exist in the parent. */
7147
dda83cd7
SM
7148 parent_offset = i;
7149 continue;
7150 }
828d5846 7151
14f9c5c9 7152 else if (field_name_match (t_field_name, name))
dda83cd7 7153 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7154
7155 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7156 {
7157 struct value *v = /* Do not let indent join lines here. */
7158 ada_search_struct_field (name, arg,
7159 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7160 type->field (i).type ());
5b4ee69b 7161
dda83cd7
SM
7162 if (v != NULL)
7163 return v;
7164 }
14f9c5c9
AS
7165
7166 else if (ada_is_variant_part (type, i))
dda83cd7 7167 {
0963b4bd 7168 /* PNH: Do we ever get here? See find_struct_field. */
dda83cd7
SM
7169 int j;
7170 struct type *field_type = ada_check_typedef (type->field (i).type ());
7171 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
4c4b4cd2 7172
dda83cd7
SM
7173 for (j = 0; j < field_type->num_fields (); j += 1)
7174 {
7175 struct value *v = ada_search_struct_field /* Force line
0963b4bd 7176 break. */
dda83cd7
SM
7177 (name, arg,
7178 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7179 field_type->field (j).type ());
5b4ee69b 7180
dda83cd7
SM
7181 if (v != NULL)
7182 return v;
7183 }
7184 }
14f9c5c9 7185 }
828d5846
XR
7186
7187 /* Field not found so far. If this is a tagged type which
7188 has a parent, try finding that field in the parent now. */
7189
7190 if (parent_offset != -1)
7191 {
7192 struct value *v = ada_search_struct_field (
7193 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
940da03e 7194 type->field (parent_offset).type ());
828d5846
XR
7195
7196 if (v != NULL)
dda83cd7 7197 return v;
828d5846
XR
7198 }
7199
14f9c5c9
AS
7200 return NULL;
7201}
d2e4a39e 7202
52ce6436
PH
7203static struct value *ada_index_struct_field_1 (int *, struct value *,
7204 int, struct type *);
7205
7206
7207/* Return field #INDEX in ARG, where the index is that returned by
7208 * find_struct_field through its INDEX_P argument. Adjust the address
7209 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7210 * If found, return value, else return NULL. */
52ce6436
PH
7211
7212static struct value *
7213ada_index_struct_field (int index, struct value *arg, int offset,
7214 struct type *type)
7215{
7216 return ada_index_struct_field_1 (&index, arg, offset, type);
7217}
7218
7219
7220/* Auxiliary function for ada_index_struct_field. Like
7221 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7222 * *INDEX_P. */
52ce6436
PH
7223
7224static struct value *
7225ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7226 struct type *type)
7227{
7228 int i;
7229 type = ada_check_typedef (type);
7230
1f704f76 7231 for (i = 0; i < type->num_fields (); i += 1)
52ce6436
PH
7232 {
7233 if (TYPE_FIELD_NAME (type, i) == NULL)
dda83cd7 7234 continue;
52ce6436 7235 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7236 {
7237 struct value *v = /* Do not let indent join lines here. */
7238 ada_index_struct_field_1 (index_p, arg,
52ce6436 7239 offset + TYPE_FIELD_BITPOS (type, i) / 8,
940da03e 7240 type->field (i).type ());
5b4ee69b 7241
dda83cd7
SM
7242 if (v != NULL)
7243 return v;
7244 }
52ce6436
PH
7245
7246 else if (ada_is_variant_part (type, i))
dda83cd7 7247 {
52ce6436 7248 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7249 find_struct_field. */
52ce6436 7250 error (_("Cannot assign this kind of variant record"));
dda83cd7 7251 }
52ce6436 7252 else if (*index_p == 0)
dda83cd7 7253 return ada_value_primitive_field (arg, offset, i, type);
52ce6436
PH
7254 else
7255 *index_p -= 1;
7256 }
7257 return NULL;
7258}
7259
3b4de39c 7260/* Return a string representation of type TYPE. */
99bbb428 7261
3b4de39c 7262static std::string
99bbb428
PA
7263type_as_string (struct type *type)
7264{
d7e74731 7265 string_file tmp_stream;
99bbb428 7266
d7e74731 7267 type_print (type, "", &tmp_stream, -1);
99bbb428 7268
d7e74731 7269 return std::move (tmp_stream.string ());
99bbb428
PA
7270}
7271
14f9c5c9 7272/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7273 If DISPP is non-null, add its byte displacement from the beginning of a
7274 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7275 work for packed fields).
7276
7277 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7278 followed by "___".
14f9c5c9 7279
0963b4bd 7280 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7281 be a (pointer or reference)+ to a struct or union, and the
7282 ultimate target type will be searched.
14f9c5c9
AS
7283
7284 Looks recursively into variant clauses and parent types.
7285
828d5846
XR
7286 In the case of homonyms in the tagged types, please refer to the
7287 long explanation in find_struct_field's function documentation.
7288
4c4b4cd2
PH
7289 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7290 TYPE is not a type of the right kind. */
14f9c5c9 7291
4c4b4cd2 7292static struct type *
a121b7c1 7293ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
dda83cd7 7294 int noerr)
14f9c5c9
AS
7295{
7296 int i;
828d5846 7297 int parent_offset = -1;
14f9c5c9
AS
7298
7299 if (name == NULL)
7300 goto BadName;
7301
76a01679 7302 if (refok && type != NULL)
4c4b4cd2
PH
7303 while (1)
7304 {
dda83cd7
SM
7305 type = ada_check_typedef (type);
7306 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7307 break;
7308 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7309 }
14f9c5c9 7310
76a01679 7311 if (type == NULL
78134374
SM
7312 || (type->code () != TYPE_CODE_STRUCT
7313 && type->code () != TYPE_CODE_UNION))
14f9c5c9 7314 {
4c4b4cd2 7315 if (noerr)
dda83cd7 7316 return NULL;
99bbb428 7317
3b4de39c
PA
7318 error (_("Type %s is not a structure or union type"),
7319 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7320 }
7321
7322 type = to_static_fixed_type (type);
7323
1f704f76 7324 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7325 {
0d5cff50 7326 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7327 struct type *t;
d2e4a39e 7328
14f9c5c9 7329 if (t_field_name == NULL)
dda83cd7 7330 continue;
14f9c5c9 7331
828d5846 7332 else if (ada_is_parent_field (type, i))
dda83cd7 7333 {
828d5846
XR
7334 /* This is a field pointing us to the parent type of a tagged
7335 type. As hinted in this function's documentation, we give
7336 preference to fields in the current record first, so what
7337 we do here is just record the index of this field before
7338 we skip it. If it turns out we couldn't find our field
7339 in the current record, then we'll get back to it and search
7340 inside it whether the field might exist in the parent. */
7341
dda83cd7
SM
7342 parent_offset = i;
7343 continue;
7344 }
828d5846 7345
14f9c5c9 7346 else if (field_name_match (t_field_name, name))
940da03e 7347 return type->field (i).type ();
14f9c5c9
AS
7348
7349 else if (ada_is_wrapper_field (type, i))
dda83cd7
SM
7350 {
7351 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7352 0, 1);
7353 if (t != NULL)
988f6b3d 7354 return t;
dda83cd7 7355 }
14f9c5c9
AS
7356
7357 else if (ada_is_variant_part (type, i))
dda83cd7
SM
7358 {
7359 int j;
7360 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7361
dda83cd7
SM
7362 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7363 {
b1f33ddd 7364 /* FIXME pnh 2008/01/26: We check for a field that is
dda83cd7 7365 NOT wrapped in a struct, since the compiler sometimes
b1f33ddd 7366 generates these for unchecked variant types. Revisit
dda83cd7 7367 if the compiler changes this practice. */
0d5cff50 7368 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7369
b1f33ddd
JB
7370 if (v_field_name != NULL
7371 && field_name_match (v_field_name, name))
940da03e 7372 t = field_type->field (j).type ();
b1f33ddd 7373 else
940da03e 7374 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
988f6b3d 7375 name, 0, 1);
b1f33ddd 7376
dda83cd7 7377 if (t != NULL)
988f6b3d 7378 return t;
dda83cd7
SM
7379 }
7380 }
14f9c5c9
AS
7381
7382 }
7383
828d5846
XR
7384 /* Field not found so far. If this is a tagged type which
7385 has a parent, try finding that field in the parent now. */
7386
7387 if (parent_offset != -1)
7388 {
dda83cd7 7389 struct type *t;
828d5846 7390
dda83cd7
SM
7391 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7392 name, 0, 1);
7393 if (t != NULL)
828d5846
XR
7394 return t;
7395 }
7396
14f9c5c9 7397BadName:
d2e4a39e 7398 if (!noerr)
14f9c5c9 7399 {
2b2798cc 7400 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7401
7402 error (_("Type %s has no component named %s"),
3b4de39c 7403 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7404 }
7405
7406 return NULL;
7407}
7408
b1f33ddd
JB
7409/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7410 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7411 represents an unchecked union (that is, the variant part of a
0963b4bd 7412 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7413
7414static int
7415is_unchecked_variant (struct type *var_type, struct type *outer_type)
7416{
a121b7c1 7417 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7418
988f6b3d 7419 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7420}
7421
7422
14f9c5c9 7423/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7424 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7425 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7426
d2e4a39e 7427int
d8af9068 7428ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7429{
7430 int others_clause;
7431 int i;
a121b7c1 7432 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7433 struct value *discrim;
14f9c5c9
AS
7434 LONGEST discrim_val;
7435
012370f6
TT
7436 /* Using plain value_from_contents_and_address here causes problems
7437 because we will end up trying to resolve a type that is currently
7438 being constructed. */
0c281816
JB
7439 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7440 if (discrim == NULL)
14f9c5c9 7441 return -1;
0c281816 7442 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7443
7444 others_clause = -1;
1f704f76 7445 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7446 {
7447 if (ada_is_others_clause (var_type, i))
dda83cd7 7448 others_clause = i;
14f9c5c9 7449 else if (ada_in_variant (discrim_val, var_type, i))
dda83cd7 7450 return i;
14f9c5c9
AS
7451 }
7452
7453 return others_clause;
7454}
d2e4a39e 7455\f
14f9c5c9
AS
7456
7457
dda83cd7 7458 /* Dynamic-Sized Records */
14f9c5c9
AS
7459
7460/* Strategy: The type ostensibly attached to a value with dynamic size
7461 (i.e., a size that is not statically recorded in the debugging
7462 data) does not accurately reflect the size or layout of the value.
7463 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7464 conventional types that are constructed on the fly. */
14f9c5c9
AS
7465
7466/* There is a subtle and tricky problem here. In general, we cannot
7467 determine the size of dynamic records without its data. However,
7468 the 'struct value' data structure, which GDB uses to represent
7469 quantities in the inferior process (the target), requires the size
7470 of the type at the time of its allocation in order to reserve space
7471 for GDB's internal copy of the data. That's why the
7472 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7473 rather than struct value*s.
14f9c5c9
AS
7474
7475 However, GDB's internal history variables ($1, $2, etc.) are
7476 struct value*s containing internal copies of the data that are not, in
7477 general, the same as the data at their corresponding addresses in
7478 the target. Fortunately, the types we give to these values are all
7479 conventional, fixed-size types (as per the strategy described
7480 above), so that we don't usually have to perform the
7481 'to_fixed_xxx_type' conversions to look at their values.
7482 Unfortunately, there is one exception: if one of the internal
7483 history variables is an array whose elements are unconstrained
7484 records, then we will need to create distinct fixed types for each
7485 element selected. */
7486
7487/* The upshot of all of this is that many routines take a (type, host
7488 address, target address) triple as arguments to represent a value.
7489 The host address, if non-null, is supposed to contain an internal
7490 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7491 target at the target address. */
14f9c5c9
AS
7492
7493/* Assuming that VAL0 represents a pointer value, the result of
7494 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7495 dynamic-sized types. */
14f9c5c9 7496
d2e4a39e
AS
7497struct value *
7498ada_value_ind (struct value *val0)
14f9c5c9 7499{
c48db5ca 7500 struct value *val = value_ind (val0);
5b4ee69b 7501
b50d69b5
JG
7502 if (ada_is_tagged_type (value_type (val), 0))
7503 val = ada_tag_value_at_base_address (val);
7504
4c4b4cd2 7505 return ada_to_fixed_value (val);
14f9c5c9
AS
7506}
7507
7508/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7509 qualifiers on VAL0. */
7510
d2e4a39e
AS
7511static struct value *
7512ada_coerce_ref (struct value *val0)
7513{
78134374 7514 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7515 {
7516 struct value *val = val0;
5b4ee69b 7517
994b9211 7518 val = coerce_ref (val);
b50d69b5
JG
7519
7520 if (ada_is_tagged_type (value_type (val), 0))
7521 val = ada_tag_value_at_base_address (val);
7522
4c4b4cd2 7523 return ada_to_fixed_value (val);
d2e4a39e
AS
7524 }
7525 else
14f9c5c9
AS
7526 return val0;
7527}
7528
4c4b4cd2 7529/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7530
7531static unsigned int
ebf56fd3 7532field_alignment (struct type *type, int f)
14f9c5c9 7533{
d2e4a39e 7534 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7535 int len;
14f9c5c9
AS
7536 int align_offset;
7537
64a1bf19
JB
7538 /* The field name should never be null, unless the debugging information
7539 is somehow malformed. In this case, we assume the field does not
7540 require any alignment. */
7541 if (name == NULL)
7542 return 1;
7543
7544 len = strlen (name);
7545
4c4b4cd2
PH
7546 if (!isdigit (name[len - 1]))
7547 return 1;
14f9c5c9 7548
d2e4a39e 7549 if (isdigit (name[len - 2]))
14f9c5c9
AS
7550 align_offset = len - 2;
7551 else
7552 align_offset = len - 1;
7553
61012eef 7554 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7555 return TARGET_CHAR_BIT;
7556
4c4b4cd2
PH
7557 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7558}
7559
852dff6c 7560/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7561
852dff6c
JB
7562static struct symbol *
7563ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7564{
7565 struct symbol *sym;
7566
7567 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7568 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7569 return sym;
7570
4186eb54
KS
7571 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7572 return sym;
14f9c5c9
AS
7573}
7574
dddfab26
UW
7575/* Find a type named NAME. Ignores ambiguity. This routine will look
7576 solely for types defined by debug info, it will not search the GDB
7577 primitive types. */
4c4b4cd2 7578
852dff6c 7579static struct type *
ebf56fd3 7580ada_find_any_type (const char *name)
14f9c5c9 7581{
852dff6c 7582 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7583
14f9c5c9 7584 if (sym != NULL)
dddfab26 7585 return SYMBOL_TYPE (sym);
14f9c5c9 7586
dddfab26 7587 return NULL;
14f9c5c9
AS
7588}
7589
739593e0
JB
7590/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7591 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7592 symbol, in which case it is returned. Otherwise, this looks for
7593 symbols whose name is that of NAME_SYM suffixed with "___XR".
7594 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7595
c0e70c62
TT
7596static bool
7597ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7598{
987012b8 7599 const char *name = name_sym->linkage_name ();
c0e70c62 7600 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7601}
7602
14f9c5c9 7603/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7604 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7605 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7606 otherwise return 0. */
7607
14f9c5c9 7608int
d2e4a39e 7609ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7610{
7611 if (type1 == NULL)
7612 return 1;
7613 else if (type0 == NULL)
7614 return 0;
78134374 7615 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7616 return 1;
78134374 7617 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7618 return 0;
7d93a1e0 7619 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7620 return 1;
ad82864c 7621 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7622 return 1;
4c4b4cd2 7623 else if (ada_is_array_descriptor_type (type0)
dda83cd7 7624 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7625 return 1;
aeb5907d
JB
7626 else
7627 {
7d93a1e0
SM
7628 const char *type0_name = type0->name ();
7629 const char *type1_name = type1->name ();
aeb5907d
JB
7630
7631 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7632 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7633 return 1;
7634 }
14f9c5c9
AS
7635 return 0;
7636}
7637
e86ca25f
TT
7638/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7639 null. */
4c4b4cd2 7640
0d5cff50 7641const char *
d2e4a39e 7642ada_type_name (struct type *type)
14f9c5c9 7643{
d2e4a39e 7644 if (type == NULL)
14f9c5c9 7645 return NULL;
7d93a1e0 7646 return type->name ();
14f9c5c9
AS
7647}
7648
b4ba55a1
JB
7649/* Search the list of "descriptive" types associated to TYPE for a type
7650 whose name is NAME. */
7651
7652static struct type *
7653find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7654{
931e5bc3 7655 struct type *result, *tmp;
b4ba55a1 7656
c6044dd1
JB
7657 if (ada_ignore_descriptive_types_p)
7658 return NULL;
7659
b4ba55a1
JB
7660 /* If there no descriptive-type info, then there is no parallel type
7661 to be found. */
7662 if (!HAVE_GNAT_AUX_INFO (type))
7663 return NULL;
7664
7665 result = TYPE_DESCRIPTIVE_TYPE (type);
7666 while (result != NULL)
7667 {
0d5cff50 7668 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7669
7670 if (result_name == NULL)
dda83cd7
SM
7671 {
7672 warning (_("unexpected null name on descriptive type"));
7673 return NULL;
7674 }
b4ba55a1
JB
7675
7676 /* If the names match, stop. */
7677 if (strcmp (result_name, name) == 0)
7678 break;
7679
7680 /* Otherwise, look at the next item on the list, if any. */
7681 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7682 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7683 else
7684 tmp = NULL;
7685
7686 /* If not found either, try after having resolved the typedef. */
7687 if (tmp != NULL)
7688 result = tmp;
b4ba55a1 7689 else
931e5bc3 7690 {
f168693b 7691 result = check_typedef (result);
931e5bc3
JG
7692 if (HAVE_GNAT_AUX_INFO (result))
7693 result = TYPE_DESCRIPTIVE_TYPE (result);
7694 else
7695 result = NULL;
7696 }
b4ba55a1
JB
7697 }
7698
7699 /* If we didn't find a match, see whether this is a packed array. With
7700 older compilers, the descriptive type information is either absent or
7701 irrelevant when it comes to packed arrays so the above lookup fails.
7702 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7703 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7704 return ada_find_any_type (name);
7705
7706 return result;
7707}
7708
7709/* Find a parallel type to TYPE with the specified NAME, using the
7710 descriptive type taken from the debugging information, if available,
7711 and otherwise using the (slower) name-based method. */
7712
7713static struct type *
7714ada_find_parallel_type_with_name (struct type *type, const char *name)
7715{
7716 struct type *result = NULL;
7717
7718 if (HAVE_GNAT_AUX_INFO (type))
7719 result = find_parallel_type_by_descriptive_type (type, name);
7720 else
7721 result = ada_find_any_type (name);
7722
7723 return result;
7724}
7725
7726/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7727 SUFFIX to the name of TYPE. */
14f9c5c9 7728
d2e4a39e 7729struct type *
ebf56fd3 7730ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7731{
0d5cff50 7732 char *name;
fe978cb0 7733 const char *type_name = ada_type_name (type);
14f9c5c9 7734 int len;
d2e4a39e 7735
fe978cb0 7736 if (type_name == NULL)
14f9c5c9
AS
7737 return NULL;
7738
fe978cb0 7739 len = strlen (type_name);
14f9c5c9 7740
b4ba55a1 7741 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7742
fe978cb0 7743 strcpy (name, type_name);
14f9c5c9
AS
7744 strcpy (name + len, suffix);
7745
b4ba55a1 7746 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7747}
7748
14f9c5c9 7749/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7750 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7751
d2e4a39e
AS
7752static struct type *
7753dynamic_template_type (struct type *type)
14f9c5c9 7754{
61ee279c 7755 type = ada_check_typedef (type);
14f9c5c9 7756
78134374 7757 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7758 || ada_type_name (type) == NULL)
14f9c5c9 7759 return NULL;
d2e4a39e 7760 else
14f9c5c9
AS
7761 {
7762 int len = strlen (ada_type_name (type));
5b4ee69b 7763
4c4b4cd2 7764 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
dda83cd7 7765 return type;
14f9c5c9 7766 else
dda83cd7 7767 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7768 }
7769}
7770
7771/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7772 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7773
d2e4a39e
AS
7774static int
7775is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7776{
7777 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7778
d2e4a39e 7779 return name != NULL
940da03e 7780 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
14f9c5c9
AS
7781 && strstr (name, "___XVL") != NULL;
7782}
7783
4c4b4cd2
PH
7784/* The index of the variant field of TYPE, or -1 if TYPE does not
7785 represent a variant record type. */
14f9c5c9 7786
d2e4a39e 7787static int
4c4b4cd2 7788variant_field_index (struct type *type)
14f9c5c9
AS
7789{
7790 int f;
7791
78134374 7792 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7793 return -1;
7794
1f704f76 7795 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7796 {
7797 if (ada_is_variant_part (type, f))
dda83cd7 7798 return f;
4c4b4cd2
PH
7799 }
7800 return -1;
14f9c5c9
AS
7801}
7802
4c4b4cd2
PH
7803/* A record type with no fields. */
7804
d2e4a39e 7805static struct type *
fe978cb0 7806empty_record (struct type *templ)
14f9c5c9 7807{
fe978cb0 7808 struct type *type = alloc_type_copy (templ);
5b4ee69b 7809
67607e24 7810 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7811 INIT_NONE_SPECIFIC (type);
d0e39ea2 7812 type->set_name ("<empty>");
14f9c5c9
AS
7813 TYPE_LENGTH (type) = 0;
7814 return type;
7815}
7816
7817/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7818 the value of type TYPE at VALADDR or ADDRESS (see comments at
7819 the beginning of this section) VAL according to GNAT conventions.
7820 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7821 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7822 an outer-level type (i.e., as opposed to a branch of a variant.) A
7823 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7824 of the variant.
14f9c5c9 7825
4c4b4cd2
PH
7826 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7827 length are not statically known are discarded. As a consequence,
7828 VALADDR, ADDRESS and DVAL0 are ignored.
7829
7830 NOTE: Limitations: For now, we assume that dynamic fields and
7831 variants occupy whole numbers of bytes. However, they need not be
7832 byte-aligned. */
7833
7834struct type *
10a2c479 7835ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7836 const gdb_byte *valaddr,
dda83cd7
SM
7837 CORE_ADDR address, struct value *dval0,
7838 int keep_dynamic_fields)
14f9c5c9 7839{
d2e4a39e
AS
7840 struct value *mark = value_mark ();
7841 struct value *dval;
7842 struct type *rtype;
14f9c5c9 7843 int nfields, bit_len;
4c4b4cd2 7844 int variant_field;
14f9c5c9 7845 long off;
d94e4f4f 7846 int fld_bit_len;
14f9c5c9
AS
7847 int f;
7848
4c4b4cd2
PH
7849 /* Compute the number of fields in this record type that are going
7850 to be processed: unless keep_dynamic_fields, this includes only
7851 fields whose position and length are static will be processed. */
7852 if (keep_dynamic_fields)
1f704f76 7853 nfields = type->num_fields ();
4c4b4cd2
PH
7854 else
7855 {
7856 nfields = 0;
1f704f76 7857 while (nfields < type->num_fields ()
dda83cd7
SM
7858 && !ada_is_variant_part (type, nfields)
7859 && !is_dynamic_field (type, nfields))
7860 nfields++;
4c4b4cd2
PH
7861 }
7862
e9bb382b 7863 rtype = alloc_type_copy (type);
67607e24 7864 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7865 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 7866 rtype->set_num_fields (nfields);
3cabb6b0
SM
7867 rtype->set_fields
7868 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 7869 rtype->set_name (ada_type_name (type));
9cdd0d12 7870 rtype->set_is_fixed_instance (true);
14f9c5c9 7871
d2e4a39e
AS
7872 off = 0;
7873 bit_len = 0;
4c4b4cd2
PH
7874 variant_field = -1;
7875
14f9c5c9
AS
7876 for (f = 0; f < nfields; f += 1)
7877 {
a89febbd 7878 off = align_up (off, field_alignment (type, f))
6c038f32 7879 + TYPE_FIELD_BITPOS (type, f);
ceacbf6e 7880 SET_FIELD_BITPOS (rtype->field (f), off);
d2e4a39e 7881 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7882
d2e4a39e 7883 if (ada_is_variant_part (type, f))
dda83cd7
SM
7884 {
7885 variant_field = f;
7886 fld_bit_len = 0;
7887 }
14f9c5c9 7888 else if (is_dynamic_field (type, f))
dda83cd7 7889 {
284614f0
JB
7890 const gdb_byte *field_valaddr = valaddr;
7891 CORE_ADDR field_address = address;
7892 struct type *field_type =
940da03e 7893 TYPE_TARGET_TYPE (type->field (f).type ());
284614f0 7894
dda83cd7 7895 if (dval0 == NULL)
b5304971
JG
7896 {
7897 /* rtype's length is computed based on the run-time
7898 value of discriminants. If the discriminants are not
7899 initialized, the type size may be completely bogus and
0963b4bd 7900 GDB may fail to allocate a value for it. So check the
b5304971 7901 size first before creating the value. */
c1b5a1a6 7902 ada_ensure_varsize_limit (rtype);
012370f6
TT
7903 /* Using plain value_from_contents_and_address here
7904 causes problems because we will end up trying to
7905 resolve a type that is currently being
7906 constructed. */
7907 dval = value_from_contents_and_address_unresolved (rtype,
7908 valaddr,
7909 address);
9f1f738a 7910 rtype = value_type (dval);
b5304971 7911 }
dda83cd7
SM
7912 else
7913 dval = dval0;
4c4b4cd2 7914
284614f0
JB
7915 /* If the type referenced by this field is an aligner type, we need
7916 to unwrap that aligner type, because its size might not be set.
7917 Keeping the aligner type would cause us to compute the wrong
7918 size for this field, impacting the offset of the all the fields
7919 that follow this one. */
7920 if (ada_is_aligner_type (field_type))
7921 {
7922 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7923
7924 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7925 field_address = cond_offset_target (field_address, field_offset);
7926 field_type = ada_aligned_type (field_type);
7927 }
7928
7929 field_valaddr = cond_offset_host (field_valaddr,
7930 off / TARGET_CHAR_BIT);
7931 field_address = cond_offset_target (field_address,
7932 off / TARGET_CHAR_BIT);
7933
7934 /* Get the fixed type of the field. Note that, in this case,
7935 we do not want to get the real type out of the tag: if
7936 the current field is the parent part of a tagged record,
7937 we will get the tag of the object. Clearly wrong: the real
7938 type of the parent is not the real type of the child. We
7939 would end up in an infinite loop. */
7940 field_type = ada_get_base_type (field_type);
7941 field_type = ada_to_fixed_type (field_type, field_valaddr,
7942 field_address, dval, 0);
27f2a97b
JB
7943 /* If the field size is already larger than the maximum
7944 object size, then the record itself will necessarily
7945 be larger than the maximum object size. We need to make
7946 this check now, because the size might be so ridiculously
7947 large (due to an uninitialized variable in the inferior)
7948 that it would cause an overflow when adding it to the
7949 record size. */
c1b5a1a6 7950 ada_ensure_varsize_limit (field_type);
284614f0 7951
5d14b6e5 7952 rtype->field (f).set_type (field_type);
dda83cd7 7953 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7954 /* The multiplication can potentially overflow. But because
7955 the field length has been size-checked just above, and
7956 assuming that the maximum size is a reasonable value,
7957 an overflow should not happen in practice. So rather than
7958 adding overflow recovery code to this already complex code,
7959 we just assume that it's not going to happen. */
dda83cd7
SM
7960 fld_bit_len =
7961 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7962 }
14f9c5c9 7963 else
dda83cd7 7964 {
5ded5331
JB
7965 /* Note: If this field's type is a typedef, it is important
7966 to preserve the typedef layer.
7967
7968 Otherwise, we might be transforming a typedef to a fat
7969 pointer (encoding a pointer to an unconstrained array),
7970 into a basic fat pointer (encoding an unconstrained
7971 array). As both types are implemented using the same
7972 structure, the typedef is the only clue which allows us
7973 to distinguish between the two options. Stripping it
7974 would prevent us from printing this field appropriately. */
dda83cd7
SM
7975 rtype->field (f).set_type (type->field (f).type ());
7976 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7977 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7978 fld_bit_len =
7979 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7980 else
5ded5331 7981 {
940da03e 7982 struct type *field_type = type->field (f).type ();
5ded5331
JB
7983
7984 /* We need to be careful of typedefs when computing
7985 the length of our field. If this is a typedef,
7986 get the length of the target type, not the length
7987 of the typedef. */
78134374 7988 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
7989 field_type = ada_typedef_target_type (field_type);
7990
dda83cd7
SM
7991 fld_bit_len =
7992 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
5ded5331 7993 }
dda83cd7 7994 }
14f9c5c9 7995 if (off + fld_bit_len > bit_len)
dda83cd7 7996 bit_len = off + fld_bit_len;
d94e4f4f 7997 off += fld_bit_len;
4c4b4cd2 7998 TYPE_LENGTH (rtype) =
dda83cd7 7999 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8000 }
4c4b4cd2
PH
8001
8002 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8003 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8004 the record. This can happen in the presence of representation
8005 clauses. */
8006 if (variant_field >= 0)
8007 {
8008 struct type *branch_type;
8009
8010 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8011
8012 if (dval0 == NULL)
9f1f738a 8013 {
012370f6
TT
8014 /* Using plain value_from_contents_and_address here causes
8015 problems because we will end up trying to resolve a type
8016 that is currently being constructed. */
8017 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8018 address);
9f1f738a
SA
8019 rtype = value_type (dval);
8020 }
4c4b4cd2 8021 else
dda83cd7 8022 dval = dval0;
4c4b4cd2
PH
8023
8024 branch_type =
dda83cd7
SM
8025 to_fixed_variant_branch_type
8026 (type->field (variant_field).type (),
8027 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8028 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
4c4b4cd2 8029 if (branch_type == NULL)
dda83cd7
SM
8030 {
8031 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8032 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8033 rtype->set_num_fields (rtype->num_fields () - 1);
dda83cd7 8034 }
4c4b4cd2 8035 else
dda83cd7
SM
8036 {
8037 rtype->field (variant_field).set_type (branch_type);
8038 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8039 fld_bit_len =
8040 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8041 TARGET_CHAR_BIT;
8042 if (off + fld_bit_len > bit_len)
8043 bit_len = off + fld_bit_len;
8044 TYPE_LENGTH (rtype) =
8045 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8046 }
4c4b4cd2
PH
8047 }
8048
714e53ab
PH
8049 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8050 should contain the alignment of that record, which should be a strictly
8051 positive value. If null or negative, then something is wrong, most
8052 probably in the debug info. In that case, we don't round up the size
0963b4bd 8053 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8054 the current RTYPE length might be good enough for our purposes. */
8055 if (TYPE_LENGTH (type) <= 0)
8056 {
7d93a1e0 8057 if (rtype->name ())
cc1defb1 8058 warning (_("Invalid type size for `%s' detected: %s."),
7d93a1e0 8059 rtype->name (), pulongest (TYPE_LENGTH (type)));
323e0a4a 8060 else
cc1defb1
KS
8061 warning (_("Invalid type size for <unnamed> detected: %s."),
8062 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8063 }
8064 else
8065 {
a89febbd
TT
8066 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8067 TYPE_LENGTH (type));
714e53ab 8068 }
14f9c5c9
AS
8069
8070 value_free_to_mark (mark);
d2e4a39e 8071 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8072 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8073 return rtype;
8074}
8075
4c4b4cd2
PH
8076/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8077 of 1. */
14f9c5c9 8078
d2e4a39e 8079static struct type *
fc1a4b47 8080template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8081 CORE_ADDR address, struct value *dval0)
4c4b4cd2
PH
8082{
8083 return ada_template_to_fixed_record_type_1 (type, valaddr,
dda83cd7 8084 address, dval0, 1);
4c4b4cd2
PH
8085}
8086
8087/* An ordinary record type in which ___XVL-convention fields and
8088 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8089 static approximations, containing all possible fields. Uses
8090 no runtime values. Useless for use in values, but that's OK,
8091 since the results are used only for type determinations. Works on both
8092 structs and unions. Representation note: to save space, we memorize
8093 the result of this function in the TYPE_TARGET_TYPE of the
8094 template type. */
8095
8096static struct type *
8097template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8098{
8099 struct type *type;
8100 int nfields;
8101 int f;
8102
9e195661 8103 /* No need no do anything if the input type is already fixed. */
22c4c60c 8104 if (type0->is_fixed_instance ())
9e195661
PMR
8105 return type0;
8106
8107 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8108 if (TYPE_TARGET_TYPE (type0) != NULL)
8109 return TYPE_TARGET_TYPE (type0);
8110
9e195661 8111 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8112 type = type0;
1f704f76 8113 nfields = type0->num_fields ();
9e195661
PMR
8114
8115 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8116 recompute all over next time. */
8117 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8118
8119 for (f = 0; f < nfields; f += 1)
8120 {
940da03e 8121 struct type *field_type = type0->field (f).type ();
4c4b4cd2 8122 struct type *new_type;
14f9c5c9 8123
4c4b4cd2 8124 if (is_dynamic_field (type0, f))
460efde1
JB
8125 {
8126 field_type = ada_check_typedef (field_type);
dda83cd7 8127 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
460efde1 8128 }
14f9c5c9 8129 else
dda83cd7 8130 new_type = static_unwrap_type (field_type);
9e195661
PMR
8131
8132 if (new_type != field_type)
8133 {
8134 /* Clone TYPE0 only the first time we get a new field type. */
8135 if (type == type0)
8136 {
8137 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
78134374 8138 type->set_code (type0->code ());
8ecb59f8 8139 INIT_NONE_SPECIFIC (type);
5e33d5f4 8140 type->set_num_fields (nfields);
3cabb6b0
SM
8141
8142 field *fields =
8143 ((struct field *)
8144 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 8145 memcpy (fields, type0->fields (),
9e195661 8146 sizeof (struct field) * nfields);
3cabb6b0
SM
8147 type->set_fields (fields);
8148
d0e39ea2 8149 type->set_name (ada_type_name (type0));
9cdd0d12 8150 type->set_is_fixed_instance (true);
9e195661
PMR
8151 TYPE_LENGTH (type) = 0;
8152 }
5d14b6e5 8153 type->field (f).set_type (new_type);
9e195661
PMR
8154 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8155 }
14f9c5c9 8156 }
9e195661 8157
14f9c5c9
AS
8158 return type;
8159}
8160
4c4b4cd2 8161/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8162 whose address in memory is ADDRESS, returns a revision of TYPE,
8163 which should be a non-dynamic-sized record, in which the variant
8164 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8165 for discriminant values in DVAL0, which can be NULL if the record
8166 contains the necessary discriminant values. */
8167
d2e4a39e 8168static struct type *
fc1a4b47 8169to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
dda83cd7 8170 CORE_ADDR address, struct value *dval0)
14f9c5c9 8171{
d2e4a39e 8172 struct value *mark = value_mark ();
4c4b4cd2 8173 struct value *dval;
d2e4a39e 8174 struct type *rtype;
14f9c5c9 8175 struct type *branch_type;
1f704f76 8176 int nfields = type->num_fields ();
4c4b4cd2 8177 int variant_field = variant_field_index (type);
14f9c5c9 8178
4c4b4cd2 8179 if (variant_field == -1)
14f9c5c9
AS
8180 return type;
8181
4c4b4cd2 8182 if (dval0 == NULL)
9f1f738a
SA
8183 {
8184 dval = value_from_contents_and_address (type, valaddr, address);
8185 type = value_type (dval);
8186 }
4c4b4cd2
PH
8187 else
8188 dval = dval0;
8189
e9bb382b 8190 rtype = alloc_type_copy (type);
67607e24 8191 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8192 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8193 rtype->set_num_fields (nfields);
3cabb6b0
SM
8194
8195 field *fields =
d2e4a39e 8196 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 8197 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
8198 rtype->set_fields (fields);
8199
d0e39ea2 8200 rtype->set_name (ada_type_name (type));
9cdd0d12 8201 rtype->set_is_fixed_instance (true);
14f9c5c9
AS
8202 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8203
4c4b4cd2 8204 branch_type = to_fixed_variant_branch_type
940da03e 8205 (type->field (variant_field).type (),
d2e4a39e 8206 cond_offset_host (valaddr,
dda83cd7
SM
8207 TYPE_FIELD_BITPOS (type, variant_field)
8208 / TARGET_CHAR_BIT),
d2e4a39e 8209 cond_offset_target (address,
dda83cd7
SM
8210 TYPE_FIELD_BITPOS (type, variant_field)
8211 / TARGET_CHAR_BIT), dval);
d2e4a39e 8212 if (branch_type == NULL)
14f9c5c9 8213 {
4c4b4cd2 8214 int f;
5b4ee69b 8215
4c4b4cd2 8216 for (f = variant_field + 1; f < nfields; f += 1)
dda83cd7 8217 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8218 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
8219 }
8220 else
8221 {
5d14b6e5 8222 rtype->field (variant_field).set_type (branch_type);
4c4b4cd2
PH
8223 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8224 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8225 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8226 }
940da03e 8227 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
d2e4a39e 8228
4c4b4cd2 8229 value_free_to_mark (mark);
14f9c5c9
AS
8230 return rtype;
8231}
8232
8233/* An ordinary record type (with fixed-length fields) that describes
8234 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8235 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8236 should be in DVAL, a record value; it may be NULL if the object
8237 at ADDR itself contains any necessary discriminant values.
8238 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8239 values from the record are needed. Except in the case that DVAL,
8240 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8241 unchecked) is replaced by a particular branch of the variant.
8242
8243 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8244 is questionable and may be removed. It can arise during the
8245 processing of an unconstrained-array-of-record type where all the
8246 variant branches have exactly the same size. This is because in
8247 such cases, the compiler does not bother to use the XVS convention
8248 when encoding the record. I am currently dubious of this
8249 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8250
d2e4a39e 8251static struct type *
fc1a4b47 8252to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
dda83cd7 8253 CORE_ADDR address, struct value *dval)
14f9c5c9 8254{
d2e4a39e 8255 struct type *templ_type;
14f9c5c9 8256
22c4c60c 8257 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8258 return type0;
8259
d2e4a39e 8260 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8261
8262 if (templ_type != NULL)
8263 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8264 else if (variant_field_index (type0) >= 0)
8265 {
8266 if (dval == NULL && valaddr == NULL && address == 0)
dda83cd7 8267 return type0;
4c4b4cd2 8268 return to_record_with_fixed_variant_part (type0, valaddr, address,
dda83cd7 8269 dval);
4c4b4cd2 8270 }
14f9c5c9
AS
8271 else
8272 {
9cdd0d12 8273 type0->set_is_fixed_instance (true);
14f9c5c9
AS
8274 return type0;
8275 }
8276
8277}
8278
8279/* An ordinary record type (with fixed-length fields) that describes
8280 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8281 union type. Any necessary discriminants' values should be in DVAL,
8282 a record value. That is, this routine selects the appropriate
8283 branch of the union at ADDR according to the discriminant value
b1f33ddd 8284 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8285 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8286
d2e4a39e 8287static struct type *
fc1a4b47 8288to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
dda83cd7 8289 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8290{
8291 int which;
d2e4a39e
AS
8292 struct type *templ_type;
8293 struct type *var_type;
14f9c5c9 8294
78134374 8295 if (var_type0->code () == TYPE_CODE_PTR)
14f9c5c9 8296 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8297 else
14f9c5c9
AS
8298 var_type = var_type0;
8299
8300 templ_type = ada_find_parallel_type (var_type, "___XVU");
8301
8302 if (templ_type != NULL)
8303 var_type = templ_type;
8304
b1f33ddd
JB
8305 if (is_unchecked_variant (var_type, value_type (dval)))
8306 return var_type0;
d8af9068 8307 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
8308
8309 if (which < 0)
e9bb382b 8310 return empty_record (var_type);
14f9c5c9 8311 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8312 return to_fixed_record_type
940da03e 8313 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
d2e4a39e 8314 valaddr, address, dval);
940da03e 8315 else if (variant_field_index (var_type->field (which).type ()) >= 0)
d2e4a39e
AS
8316 return
8317 to_fixed_record_type
940da03e 8318 (var_type->field (which).type (), valaddr, address, dval);
14f9c5c9 8319 else
940da03e 8320 return var_type->field (which).type ();
14f9c5c9
AS
8321}
8322
8908fca5
JB
8323/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8324 ENCODING_TYPE, a type following the GNAT conventions for discrete
8325 type encodings, only carries redundant information. */
8326
8327static int
8328ada_is_redundant_range_encoding (struct type *range_type,
8329 struct type *encoding_type)
8330{
108d56a4 8331 const char *bounds_str;
8908fca5
JB
8332 int n;
8333 LONGEST lo, hi;
8334
78134374 8335 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 8336
78134374
SM
8337 if (get_base_type (range_type)->code ()
8338 != get_base_type (encoding_type)->code ())
005e2509
JB
8339 {
8340 /* The compiler probably used a simple base type to describe
8341 the range type instead of the range's actual base type,
8342 expecting us to get the real base type from the encoding
8343 anyway. In this situation, the encoding cannot be ignored
8344 as redundant. */
8345 return 0;
8346 }
8347
8908fca5
JB
8348 if (is_dynamic_type (range_type))
8349 return 0;
8350
7d93a1e0 8351 if (encoding_type->name () == NULL)
8908fca5
JB
8352 return 0;
8353
7d93a1e0 8354 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
8355 if (bounds_str == NULL)
8356 return 0;
8357
8358 n = 8; /* Skip "___XDLU_". */
8359 if (!ada_scan_number (bounds_str, n, &lo, &n))
8360 return 0;
5537ddd0 8361 if (range_type->bounds ()->low.const_val () != lo)
8908fca5
JB
8362 return 0;
8363
8364 n += 2; /* Skip the "__" separator between the two bounds. */
8365 if (!ada_scan_number (bounds_str, n, &hi, &n))
8366 return 0;
5537ddd0 8367 if (range_type->bounds ()->high.const_val () != hi)
8908fca5
JB
8368 return 0;
8369
8370 return 1;
8371}
8372
8373/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8374 a type following the GNAT encoding for describing array type
8375 indices, only carries redundant information. */
8376
8377static int
8378ada_is_redundant_index_type_desc (struct type *array_type,
8379 struct type *desc_type)
8380{
8381 struct type *this_layer = check_typedef (array_type);
8382 int i;
8383
1f704f76 8384 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5 8385 {
3d967001 8386 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
940da03e 8387 desc_type->field (i).type ()))
8908fca5
JB
8388 return 0;
8389 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8390 }
8391
8392 return 1;
8393}
8394
14f9c5c9
AS
8395/* Assuming that TYPE0 is an array type describing the type of a value
8396 at ADDR, and that DVAL describes a record containing any
8397 discriminants used in TYPE0, returns a type for the value that
8398 contains no dynamic components (that is, no components whose sizes
8399 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8400 true, gives an error message if the resulting type's size is over
4c4b4cd2 8401 varsize_limit. */
14f9c5c9 8402
d2e4a39e
AS
8403static struct type *
8404to_fixed_array_type (struct type *type0, struct value *dval,
dda83cd7 8405 int ignore_too_big)
14f9c5c9 8406{
d2e4a39e
AS
8407 struct type *index_type_desc;
8408 struct type *result;
ad82864c 8409 int constrained_packed_array_p;
931e5bc3 8410 static const char *xa_suffix = "___XA";
14f9c5c9 8411
b0dd7688 8412 type0 = ada_check_typedef (type0);
22c4c60c 8413 if (type0->is_fixed_instance ())
4c4b4cd2 8414 return type0;
14f9c5c9 8415
ad82864c
JB
8416 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8417 if (constrained_packed_array_p)
75fd6a26
TT
8418 {
8419 type0 = decode_constrained_packed_array_type (type0);
8420 if (type0 == nullptr)
8421 error (_("could not decode constrained packed array type"));
8422 }
284614f0 8423
931e5bc3
JG
8424 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8425
8426 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8427 encoding suffixed with 'P' may still be generated. If so,
8428 it should be used to find the XA type. */
8429
8430 if (index_type_desc == NULL)
8431 {
1da0522e 8432 const char *type_name = ada_type_name (type0);
931e5bc3 8433
1da0522e 8434 if (type_name != NULL)
931e5bc3 8435 {
1da0522e 8436 const int len = strlen (type_name);
931e5bc3
JG
8437 char *name = (char *) alloca (len + strlen (xa_suffix));
8438
1da0522e 8439 if (type_name[len - 1] == 'P')
931e5bc3 8440 {
1da0522e 8441 strcpy (name, type_name);
931e5bc3
JG
8442 strcpy (name + len - 1, xa_suffix);
8443 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8444 }
8445 }
8446 }
8447
28c85d6c 8448 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8449 if (index_type_desc != NULL
8450 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8451 {
8452 /* Ignore this ___XA parallel type, as it does not bring any
8453 useful information. This allows us to avoid creating fixed
8454 versions of the array's index types, which would be identical
8455 to the original ones. This, in turn, can also help avoid
8456 the creation of fixed versions of the array itself. */
8457 index_type_desc = NULL;
8458 }
8459
14f9c5c9
AS
8460 if (index_type_desc == NULL)
8461 {
61ee279c 8462 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8463
14f9c5c9 8464 /* NOTE: elt_type---the fixed version of elt_type0---should never
dda83cd7
SM
8465 depend on the contents of the array in properly constructed
8466 debugging data. */
529cad9c 8467 /* Create a fixed version of the array element type.
dda83cd7
SM
8468 We're not providing the address of an element here,
8469 and thus the actual object value cannot be inspected to do
8470 the conversion. This should not be a problem, since arrays of
8471 unconstrained objects are not allowed. In particular, all
8472 the elements of an array of a tagged type should all be of
8473 the same type specified in the debugging info. No need to
8474 consult the object tag. */
1ed6ede0 8475 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8476
284614f0
JB
8477 /* Make sure we always create a new array type when dealing with
8478 packed array types, since we're going to fix-up the array
8479 type length and element bitsize a little further down. */
ad82864c 8480 if (elt_type0 == elt_type && !constrained_packed_array_p)
dda83cd7 8481 result = type0;
14f9c5c9 8482 else
dda83cd7
SM
8483 result = create_array_type (alloc_type_copy (type0),
8484 elt_type, type0->index_type ());
14f9c5c9
AS
8485 }
8486 else
8487 {
8488 int i;
8489 struct type *elt_type0;
8490
8491 elt_type0 = type0;
1f704f76 8492 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
dda83cd7 8493 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8494
8495 /* NOTE: result---the fixed version of elt_type0---should never
dda83cd7
SM
8496 depend on the contents of the array in properly constructed
8497 debugging data. */
529cad9c 8498 /* Create a fixed version of the array element type.
dda83cd7
SM
8499 We're not providing the address of an element here,
8500 and thus the actual object value cannot be inspected to do
8501 the conversion. This should not be a problem, since arrays of
8502 unconstrained objects are not allowed. In particular, all
8503 the elements of an array of a tagged type should all be of
8504 the same type specified in the debugging info. No need to
8505 consult the object tag. */
1ed6ede0 8506 result =
dda83cd7 8507 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8508
8509 elt_type0 = type0;
1f704f76 8510 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
dda83cd7
SM
8511 {
8512 struct type *range_type =
8513 to_fixed_range_type (index_type_desc->field (i).type (), dval);
5b4ee69b 8514
dda83cd7
SM
8515 result = create_array_type (alloc_type_copy (elt_type0),
8516 result, range_type);
1ce677a4 8517 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
dda83cd7 8518 }
d2e4a39e 8519 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
dda83cd7 8520 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8521 }
8522
2e6fda7d
JB
8523 /* We want to preserve the type name. This can be useful when
8524 trying to get the type name of a value that has already been
8525 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8526 result->set_name (type0->name ());
2e6fda7d 8527
ad82864c 8528 if (constrained_packed_array_p)
284614f0
JB
8529 {
8530 /* So far, the resulting type has been created as if the original
8531 type was a regular (non-packed) array type. As a result, the
8532 bitsize of the array elements needs to be set again, and the array
8533 length needs to be recomputed based on that bitsize. */
8534 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8535 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8536
8537 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8538 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8539 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
dda83cd7 8540 TYPE_LENGTH (result)++;
284614f0
JB
8541 }
8542
9cdd0d12 8543 result->set_is_fixed_instance (true);
14f9c5c9 8544 return result;
d2e4a39e 8545}
14f9c5c9
AS
8546
8547
8548/* A standard type (containing no dynamically sized components)
8549 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8550 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8551 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8552 ADDRESS or in VALADDR contains these discriminants.
8553
1ed6ede0
JB
8554 If CHECK_TAG is not null, in the case of tagged types, this function
8555 attempts to locate the object's tag and use it to compute the actual
8556 type. However, when ADDRESS is null, we cannot use it to determine the
8557 location of the tag, and therefore compute the tagged type's actual type.
8558 So we return the tagged type without consulting the tag. */
529cad9c 8559
f192137b
JB
8560static struct type *
8561ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
dda83cd7 8562 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8563{
61ee279c 8564 type = ada_check_typedef (type);
8ecb59f8
TT
8565
8566 /* Only un-fixed types need to be handled here. */
8567 if (!HAVE_GNAT_AUX_INFO (type))
8568 return type;
8569
78134374 8570 switch (type->code ())
d2e4a39e
AS
8571 {
8572 default:
14f9c5c9 8573 return type;
d2e4a39e 8574 case TYPE_CODE_STRUCT:
4c4b4cd2 8575 {
dda83cd7
SM
8576 struct type *static_type = to_static_fixed_type (type);
8577 struct type *fixed_record_type =
8578 to_fixed_record_type (type, valaddr, address, NULL);
8579
8580 /* If STATIC_TYPE is a tagged type and we know the object's address,
8581 then we can determine its tag, and compute the object's actual
8582 type from there. Note that we have to use the fixed record
8583 type (the parent part of the record may have dynamic fields
8584 and the way the location of _tag is expressed may depend on
8585 them). */
8586
8587 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8588 {
b50d69b5
JG
8589 struct value *tag =
8590 value_tag_from_contents_and_address
8591 (fixed_record_type,
8592 valaddr,
8593 address);
8594 struct type *real_type = type_from_tag (tag);
8595 struct value *obj =
8596 value_from_contents_and_address (fixed_record_type,
8597 valaddr,
8598 address);
dda83cd7
SM
8599 fixed_record_type = value_type (obj);
8600 if (real_type != NULL)
8601 return to_fixed_record_type
b50d69b5
JG
8602 (real_type, NULL,
8603 value_address (ada_tag_value_at_base_address (obj)), NULL);
dda83cd7
SM
8604 }
8605
8606 /* Check to see if there is a parallel ___XVZ variable.
8607 If there is, then it provides the actual size of our type. */
8608 else if (ada_type_name (fixed_record_type) != NULL)
8609 {
8610 const char *name = ada_type_name (fixed_record_type);
8611 char *xvz_name
224c3ddb 8612 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8613 bool xvz_found = false;
dda83cd7 8614 LONGEST size;
4af88198 8615
dda83cd7 8616 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8617 try
eccab96d
JB
8618 {
8619 xvz_found = get_int_var_value (xvz_name, size);
8620 }
230d2906 8621 catch (const gdb_exception_error &except)
eccab96d
JB
8622 {
8623 /* We found the variable, but somehow failed to read
8624 its value. Rethrow the same error, but with a little
8625 bit more information, to help the user understand
8626 what went wrong (Eg: the variable might have been
8627 optimized out). */
8628 throw_error (except.error,
8629 _("unable to read value of %s (%s)"),
3d6e9d23 8630 xvz_name, except.what ());
eccab96d 8631 }
eccab96d 8632
dda83cd7
SM
8633 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8634 {
8635 fixed_record_type = copy_type (fixed_record_type);
8636 TYPE_LENGTH (fixed_record_type) = size;
8637
8638 /* The FIXED_RECORD_TYPE may have be a stub. We have
8639 observed this when the debugging info is STABS, and
8640 apparently it is something that is hard to fix.
8641
8642 In practice, we don't need the actual type definition
8643 at all, because the presence of the XVZ variable allows us
8644 to assume that there must be a XVS type as well, which we
8645 should be able to use later, when we need the actual type
8646 definition.
8647
8648 In the meantime, pretend that the "fixed" type we are
8649 returning is NOT a stub, because this can cause trouble
8650 when using this type to create new types targeting it.
8651 Indeed, the associated creation routines often check
8652 whether the target type is a stub and will try to replace
8653 it, thus using a type with the wrong size. This, in turn,
8654 might cause the new type to have the wrong size too.
8655 Consider the case of an array, for instance, where the size
8656 of the array is computed from the number of elements in
8657 our array multiplied by the size of its element. */
b4b73759 8658 fixed_record_type->set_is_stub (false);
dda83cd7
SM
8659 }
8660 }
8661 return fixed_record_type;
4c4b4cd2 8662 }
d2e4a39e 8663 case TYPE_CODE_ARRAY:
4c4b4cd2 8664 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8665 case TYPE_CODE_UNION:
8666 if (dval == NULL)
dda83cd7 8667 return type;
d2e4a39e 8668 else
dda83cd7 8669 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8670 }
14f9c5c9
AS
8671}
8672
f192137b
JB
8673/* The same as ada_to_fixed_type_1, except that it preserves the type
8674 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8675
8676 The typedef layer needs be preserved in order to differentiate between
8677 arrays and array pointers when both types are implemented using the same
8678 fat pointer. In the array pointer case, the pointer is encoded as
8679 a typedef of the pointer type. For instance, considering:
8680
8681 type String_Access is access String;
8682 S1 : String_Access := null;
8683
8684 To the debugger, S1 is defined as a typedef of type String. But
8685 to the user, it is a pointer. So if the user tries to print S1,
8686 we should not dereference the array, but print the array address
8687 instead.
8688
8689 If we didn't preserve the typedef layer, we would lose the fact that
8690 the type is to be presented as a pointer (needs de-reference before
8691 being printed). And we would also use the source-level type name. */
f192137b
JB
8692
8693struct type *
8694ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
dda83cd7 8695 CORE_ADDR address, struct value *dval, int check_tag)
f192137b
JB
8696
8697{
8698 struct type *fixed_type =
8699 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8700
96dbd2c1
JB
8701 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8702 then preserve the typedef layer.
8703
8704 Implementation note: We can only check the main-type portion of
8705 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8706 from TYPE now returns a type that has the same instance flags
8707 as TYPE. For instance, if TYPE is a "typedef const", and its
8708 target type is a "struct", then the typedef elimination will return
8709 a "const" version of the target type. See check_typedef for more
8710 details about how the typedef layer elimination is done.
8711
8712 brobecker/2010-11-19: It seems to me that the only case where it is
8713 useful to preserve the typedef layer is when dealing with fat pointers.
8714 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8715 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8716 because we call check_typedef/ada_check_typedef pretty much everywhere.
8717 */
78134374 8718 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8719 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8720 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8721 return type;
8722
8723 return fixed_type;
8724}
8725
14f9c5c9 8726/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8727 TYPE0, but based on no runtime data. */
14f9c5c9 8728
d2e4a39e
AS
8729static struct type *
8730to_static_fixed_type (struct type *type0)
14f9c5c9 8731{
d2e4a39e 8732 struct type *type;
14f9c5c9
AS
8733
8734 if (type0 == NULL)
8735 return NULL;
8736
22c4c60c 8737 if (type0->is_fixed_instance ())
4c4b4cd2
PH
8738 return type0;
8739
61ee279c 8740 type0 = ada_check_typedef (type0);
d2e4a39e 8741
78134374 8742 switch (type0->code ())
14f9c5c9
AS
8743 {
8744 default:
8745 return type0;
8746 case TYPE_CODE_STRUCT:
8747 type = dynamic_template_type (type0);
d2e4a39e 8748 if (type != NULL)
dda83cd7 8749 return template_to_static_fixed_type (type);
4c4b4cd2 8750 else
dda83cd7 8751 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8752 case TYPE_CODE_UNION:
8753 type = ada_find_parallel_type (type0, "___XVU");
8754 if (type != NULL)
dda83cd7 8755 return template_to_static_fixed_type (type);
4c4b4cd2 8756 else
dda83cd7 8757 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8758 }
8759}
8760
4c4b4cd2
PH
8761/* A static approximation of TYPE with all type wrappers removed. */
8762
d2e4a39e
AS
8763static struct type *
8764static_unwrap_type (struct type *type)
14f9c5c9
AS
8765{
8766 if (ada_is_aligner_type (type))
8767 {
940da03e 8768 struct type *type1 = ada_check_typedef (type)->field (0).type ();
14f9c5c9 8769 if (ada_type_name (type1) == NULL)
d0e39ea2 8770 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8771
8772 return static_unwrap_type (type1);
8773 }
d2e4a39e 8774 else
14f9c5c9 8775 {
d2e4a39e 8776 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8777
d2e4a39e 8778 if (raw_real_type == type)
dda83cd7 8779 return type;
14f9c5c9 8780 else
dda83cd7 8781 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8782 }
8783}
8784
8785/* In some cases, incomplete and private types require
4c4b4cd2 8786 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8787 type Foo;
8788 type FooP is access Foo;
8789 V: FooP;
8790 type Foo is array ...;
4c4b4cd2 8791 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8792 cross-references to such types, we instead substitute for FooP a
8793 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8794 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8795
8796/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8797 exists, otherwise TYPE. */
8798
d2e4a39e 8799struct type *
61ee279c 8800ada_check_typedef (struct type *type)
14f9c5c9 8801{
727e3d2e
JB
8802 if (type == NULL)
8803 return NULL;
8804
736ade86
XR
8805 /* If our type is an access to an unconstrained array, which is encoded
8806 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8807 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8808 what allows us to distinguish between fat pointers that represent
8809 array types, and fat pointers that represent array access types
8810 (in both cases, the compiler implements them as fat pointers). */
736ade86 8811 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8812 return type;
8813
f168693b 8814 type = check_typedef (type);
78134374 8815 if (type == NULL || type->code () != TYPE_CODE_ENUM
e46d3488 8816 || !type->is_stub ()
7d93a1e0 8817 || type->name () == NULL)
14f9c5c9 8818 return type;
d2e4a39e 8819 else
14f9c5c9 8820 {
7d93a1e0 8821 const char *name = type->name ();
d2e4a39e 8822 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8823
05e522ef 8824 if (type1 == NULL)
dda83cd7 8825 return type;
05e522ef
JB
8826
8827 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8828 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8829 types, only for the typedef-to-array types). If that's the case,
8830 strip the typedef layer. */
78134374 8831 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8832 type1 = ada_check_typedef (type1);
8833
8834 return type1;
14f9c5c9
AS
8835 }
8836}
8837
8838/* A value representing the data at VALADDR/ADDRESS as described by
8839 type TYPE0, but with a standard (static-sized) type that correctly
8840 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8841 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8842 creation of struct values]. */
14f9c5c9 8843
4c4b4cd2
PH
8844static struct value *
8845ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
dda83cd7 8846 struct value *val0)
14f9c5c9 8847{
1ed6ede0 8848 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8849
14f9c5c9
AS
8850 if (type == type0 && val0 != NULL)
8851 return val0;
cc0e770c
JB
8852
8853 if (VALUE_LVAL (val0) != lval_memory)
8854 {
8855 /* Our value does not live in memory; it could be a convenience
8856 variable, for instance. Create a not_lval value using val0's
8857 contents. */
8858 return value_from_contents (type, value_contents (val0));
8859 }
8860
8861 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8862}
8863
8864/* A value representing VAL, but with a standard (static-sized) type
8865 that correctly describes it. Does not necessarily create a new
8866 value. */
8867
0c3acc09 8868struct value *
4c4b4cd2
PH
8869ada_to_fixed_value (struct value *val)
8870{
c48db5ca 8871 val = unwrap_value (val);
d8ce9127 8872 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 8873 return val;
14f9c5c9 8874}
d2e4a39e 8875\f
14f9c5c9 8876
14f9c5c9
AS
8877/* Attributes */
8878
4c4b4cd2
PH
8879/* Table mapping attribute numbers to names.
8880 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8881
27087b7f 8882static const char * const attribute_names[] = {
14f9c5c9
AS
8883 "<?>",
8884
d2e4a39e 8885 "first",
14f9c5c9
AS
8886 "last",
8887 "length",
8888 "image",
14f9c5c9
AS
8889 "max",
8890 "min",
4c4b4cd2
PH
8891 "modulus",
8892 "pos",
8893 "size",
8894 "tag",
14f9c5c9 8895 "val",
14f9c5c9
AS
8896 0
8897};
8898
de93309a 8899static const char *
4c4b4cd2 8900ada_attribute_name (enum exp_opcode n)
14f9c5c9 8901{
4c4b4cd2
PH
8902 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8903 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8904 else
8905 return attribute_names[0];
8906}
8907
4c4b4cd2 8908/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8909
4c4b4cd2
PH
8910static LONGEST
8911pos_atr (struct value *arg)
14f9c5c9 8912{
24209737
PH
8913 struct value *val = coerce_ref (arg);
8914 struct type *type = value_type (val);
aa715135 8915 LONGEST result;
14f9c5c9 8916
d2e4a39e 8917 if (!discrete_type_p (type))
323e0a4a 8918 error (_("'POS only defined on discrete types"));
14f9c5c9 8919
aa715135
JG
8920 if (!discrete_position (type, value_as_long (val), &result))
8921 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 8922
aa715135 8923 return result;
4c4b4cd2
PH
8924}
8925
8926static struct value *
3cb382c9 8927value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8928{
3cb382c9 8929 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8930}
8931
4c4b4cd2 8932/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8933
d2e4a39e 8934static struct value *
53a47a3e 8935val_atr (struct type *type, LONGEST val)
14f9c5c9 8936{
53a47a3e 8937 gdb_assert (discrete_type_p (type));
0bc2354b
TT
8938 if (type->code () == TYPE_CODE_RANGE)
8939 type = TYPE_TARGET_TYPE (type);
78134374 8940 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 8941 {
53a47a3e 8942 if (val < 0 || val >= type->num_fields ())
dda83cd7 8943 error (_("argument to 'VAL out of range"));
53a47a3e 8944 val = TYPE_FIELD_ENUMVAL (type, val);
14f9c5c9 8945 }
53a47a3e
TT
8946 return value_from_longest (type, val);
8947}
8948
8949static struct value *
8950value_val_atr (struct type *type, struct value *arg)
8951{
8952 if (!discrete_type_p (type))
8953 error (_("'VAL only defined on discrete types"));
8954 if (!integer_type_p (value_type (arg)))
8955 error (_("'VAL requires integral argument"));
8956
8957 return val_atr (type, value_as_long (arg));
14f9c5c9 8958}
14f9c5c9 8959\f
d2e4a39e 8960
dda83cd7 8961 /* Evaluation */
14f9c5c9 8962
4c4b4cd2
PH
8963/* True if TYPE appears to be an Ada character type.
8964 [At the moment, this is true only for Character and Wide_Character;
8965 It is a heuristic test that could stand improvement]. */
14f9c5c9 8966
fc913e53 8967bool
d2e4a39e 8968ada_is_character_type (struct type *type)
14f9c5c9 8969{
7b9f71f2
JB
8970 const char *name;
8971
8972 /* If the type code says it's a character, then assume it really is,
8973 and don't check any further. */
78134374 8974 if (type->code () == TYPE_CODE_CHAR)
fc913e53 8975 return true;
7b9f71f2
JB
8976
8977 /* Otherwise, assume it's a character type iff it is a discrete type
8978 with a known character type name. */
8979 name = ada_type_name (type);
8980 return (name != NULL
dda83cd7
SM
8981 && (type->code () == TYPE_CODE_INT
8982 || type->code () == TYPE_CODE_RANGE)
8983 && (strcmp (name, "character") == 0
8984 || strcmp (name, "wide_character") == 0
8985 || strcmp (name, "wide_wide_character") == 0
8986 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8987}
8988
4c4b4cd2 8989/* True if TYPE appears to be an Ada string type. */
14f9c5c9 8990
fc913e53 8991bool
ebf56fd3 8992ada_is_string_type (struct type *type)
14f9c5c9 8993{
61ee279c 8994 type = ada_check_typedef (type);
d2e4a39e 8995 if (type != NULL
78134374 8996 && type->code () != TYPE_CODE_PTR
76a01679 8997 && (ada_is_simple_array_type (type)
dda83cd7 8998 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8999 && ada_array_arity (type) == 1)
9000 {
9001 struct type *elttype = ada_array_element_type (type, 1);
9002
9003 return ada_is_character_type (elttype);
9004 }
d2e4a39e 9005 else
fc913e53 9006 return false;
14f9c5c9
AS
9007}
9008
5bf03f13
JB
9009/* The compiler sometimes provides a parallel XVS type for a given
9010 PAD type. Normally, it is safe to follow the PAD type directly,
9011 but older versions of the compiler have a bug that causes the offset
9012 of its "F" field to be wrong. Following that field in that case
9013 would lead to incorrect results, but this can be worked around
9014 by ignoring the PAD type and using the associated XVS type instead.
9015
9016 Set to True if the debugger should trust the contents of PAD types.
9017 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9018static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9019
9020/* True if TYPE is a struct type introduced by the compiler to force the
9021 alignment of a value. Such types have a single field with a
4c4b4cd2 9022 distinctive name. */
14f9c5c9
AS
9023
9024int
ebf56fd3 9025ada_is_aligner_type (struct type *type)
14f9c5c9 9026{
61ee279c 9027 type = ada_check_typedef (type);
714e53ab 9028
5bf03f13 9029 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9030 return 0;
9031
78134374 9032 return (type->code () == TYPE_CODE_STRUCT
dda83cd7
SM
9033 && type->num_fields () == 1
9034 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9035}
9036
9037/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9038 the parallel type. */
14f9c5c9 9039
d2e4a39e
AS
9040struct type *
9041ada_get_base_type (struct type *raw_type)
14f9c5c9 9042{
d2e4a39e
AS
9043 struct type *real_type_namer;
9044 struct type *raw_real_type;
14f9c5c9 9045
78134374 9046 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
9047 return raw_type;
9048
284614f0
JB
9049 if (ada_is_aligner_type (raw_type))
9050 /* The encoding specifies that we should always use the aligner type.
9051 So, even if this aligner type has an associated XVS type, we should
9052 simply ignore it.
9053
9054 According to the compiler gurus, an XVS type parallel to an aligner
9055 type may exist because of a stabs limitation. In stabs, aligner
9056 types are empty because the field has a variable-sized type, and
9057 thus cannot actually be used as an aligner type. As a result,
9058 we need the associated parallel XVS type to decode the type.
9059 Since the policy in the compiler is to not change the internal
9060 representation based on the debugging info format, we sometimes
9061 end up having a redundant XVS type parallel to the aligner type. */
9062 return raw_type;
9063
14f9c5c9 9064 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9065 if (real_type_namer == NULL
78134374 9066 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 9067 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
9068 return raw_type;
9069
940da03e 9070 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
f80d3ff2
JB
9071 {
9072 /* This is an older encoding form where the base type needs to be
85102364 9073 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
9074 more efficient. */
9075 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9076 if (raw_real_type == NULL)
9077 return raw_type;
9078 else
9079 return raw_real_type;
9080 }
9081
9082 /* The field in our XVS type is a reference to the base type. */
940da03e 9083 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
d2e4a39e 9084}
14f9c5c9 9085
4c4b4cd2 9086/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9087
d2e4a39e
AS
9088struct type *
9089ada_aligned_type (struct type *type)
14f9c5c9
AS
9090{
9091 if (ada_is_aligner_type (type))
940da03e 9092 return ada_aligned_type (type->field (0).type ());
14f9c5c9
AS
9093 else
9094 return ada_get_base_type (type);
9095}
9096
9097
9098/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9099 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9100
fc1a4b47
AC
9101const gdb_byte *
9102ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9103{
d2e4a39e 9104 if (ada_is_aligner_type (type))
940da03e 9105 return ada_aligned_value_addr (type->field (0).type (),
dda83cd7
SM
9106 valaddr +
9107 TYPE_FIELD_BITPOS (type,
9108 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9109 else
9110 return valaddr;
9111}
9112
4c4b4cd2
PH
9113
9114
14f9c5c9 9115/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9116 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9117const char *
9118ada_enum_name (const char *name)
14f9c5c9 9119{
4c4b4cd2
PH
9120 static char *result;
9121 static size_t result_len = 0;
e6a959d6 9122 const char *tmp;
14f9c5c9 9123
4c4b4cd2
PH
9124 /* First, unqualify the enumeration name:
9125 1. Search for the last '.' character. If we find one, then skip
177b42fe 9126 all the preceding characters, the unqualified name starts
76a01679 9127 right after that dot.
4c4b4cd2 9128 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9129 translates dots into "__". Search forward for double underscores,
9130 but stop searching when we hit an overloading suffix, which is
9131 of the form "__" followed by digits. */
4c4b4cd2 9132
c3e5cd34
PH
9133 tmp = strrchr (name, '.');
9134 if (tmp != NULL)
4c4b4cd2
PH
9135 name = tmp + 1;
9136 else
14f9c5c9 9137 {
4c4b4cd2 9138 while ((tmp = strstr (name, "__")) != NULL)
dda83cd7
SM
9139 {
9140 if (isdigit (tmp[2]))
9141 break;
9142 else
9143 name = tmp + 2;
9144 }
14f9c5c9
AS
9145 }
9146
9147 if (name[0] == 'Q')
9148 {
14f9c5c9 9149 int v;
5b4ee69b 9150
14f9c5c9 9151 if (name[1] == 'U' || name[1] == 'W')
dda83cd7
SM
9152 {
9153 if (sscanf (name + 2, "%x", &v) != 1)
9154 return name;
9155 }
272560b5
TT
9156 else if (((name[1] >= '0' && name[1] <= '9')
9157 || (name[1] >= 'a' && name[1] <= 'z'))
9158 && name[2] == '\0')
9159 {
9160 GROW_VECT (result, result_len, 4);
9161 xsnprintf (result, result_len, "'%c'", name[1]);
9162 return result;
9163 }
14f9c5c9 9164 else
dda83cd7 9165 return name;
14f9c5c9 9166
4c4b4cd2 9167 GROW_VECT (result, result_len, 16);
14f9c5c9 9168 if (isascii (v) && isprint (v))
dda83cd7 9169 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9170 else if (name[1] == 'U')
dda83cd7 9171 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9172 else
dda83cd7 9173 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9174
9175 return result;
9176 }
d2e4a39e 9177 else
4c4b4cd2 9178 {
c3e5cd34
PH
9179 tmp = strstr (name, "__");
9180 if (tmp == NULL)
9181 tmp = strstr (name, "$");
9182 if (tmp != NULL)
dda83cd7
SM
9183 {
9184 GROW_VECT (result, result_len, tmp - name + 1);
9185 strncpy (result, name, tmp - name);
9186 result[tmp - name] = '\0';
9187 return result;
9188 }
4c4b4cd2
PH
9189
9190 return name;
9191 }
14f9c5c9
AS
9192}
9193
14f9c5c9
AS
9194/* Evaluate the subexpression of EXP starting at *POS as for
9195 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9196 expression. */
14f9c5c9 9197
d2e4a39e
AS
9198static struct value *
9199evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9200{
fe1fe7ea 9201 return evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9202}
9203
9204/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9205 value it wraps. */
14f9c5c9 9206
d2e4a39e
AS
9207static struct value *
9208unwrap_value (struct value *val)
14f9c5c9 9209{
df407dfe 9210 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9211
14f9c5c9
AS
9212 if (ada_is_aligner_type (type))
9213 {
de4d072f 9214 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9215 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9216
14f9c5c9 9217 if (ada_type_name (val_type) == NULL)
d0e39ea2 9218 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
9219
9220 return unwrap_value (v);
9221 }
d2e4a39e 9222 else
14f9c5c9 9223 {
d2e4a39e 9224 struct type *raw_real_type =
dda83cd7 9225 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9226
5bf03f13
JB
9227 /* If there is no parallel XVS or XVE type, then the value is
9228 already unwrapped. Return it without further modification. */
9229 if ((type == raw_real_type)
9230 && ada_find_parallel_type (type, "___XVE") == NULL)
9231 return val;
14f9c5c9 9232
d2e4a39e 9233 return
dda83cd7
SM
9234 coerce_unspec_val_to_type
9235 (val, ada_to_fixed_type (raw_real_type, 0,
9236 value_address (val),
9237 NULL, 1));
14f9c5c9
AS
9238 }
9239}
d2e4a39e
AS
9240
9241static struct value *
75f24e86 9242cast_from_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
14f9c5c9 9243{
db99d0d0
JB
9244 struct value *scale
9245 = gnat_encoded_fixed_point_scaling_factor (value_type (arg));
50eff16b 9246 arg = value_cast (value_type (scale), arg);
14f9c5c9 9247
50eff16b
UW
9248 arg = value_binop (arg, scale, BINOP_MUL);
9249 return value_cast (type, arg);
14f9c5c9
AS
9250}
9251
d2e4a39e 9252static struct value *
75f24e86 9253cast_to_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
14f9c5c9 9254{
50eff16b
UW
9255 if (type == value_type (arg))
9256 return arg;
5b4ee69b 9257
75f24e86 9258 struct value *scale = gnat_encoded_fixed_point_scaling_factor (type);
b2188a06 9259 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
75f24e86 9260 arg = cast_from_gnat_encoded_fixed_point_type (value_type (scale), arg);
50eff16b
UW
9261 else
9262 arg = value_cast (value_type (scale), arg);
9263
9264 arg = value_binop (arg, scale, BINOP_DIV);
9265 return value_cast (type, arg);
14f9c5c9
AS
9266}
9267
d99dcf51
JB
9268/* Given two array types T1 and T2, return nonzero iff both arrays
9269 contain the same number of elements. */
9270
9271static int
9272ada_same_array_size_p (struct type *t1, struct type *t2)
9273{
9274 LONGEST lo1, hi1, lo2, hi2;
9275
9276 /* Get the array bounds in order to verify that the size of
9277 the two arrays match. */
9278 if (!get_array_bounds (t1, &lo1, &hi1)
9279 || !get_array_bounds (t2, &lo2, &hi2))
9280 error (_("unable to determine array bounds"));
9281
9282 /* To make things easier for size comparison, normalize a bit
9283 the case of empty arrays by making sure that the difference
9284 between upper bound and lower bound is always -1. */
9285 if (lo1 > hi1)
9286 hi1 = lo1 - 1;
9287 if (lo2 > hi2)
9288 hi2 = lo2 - 1;
9289
9290 return (hi1 - lo1 == hi2 - lo2);
9291}
9292
9293/* Assuming that VAL is an array of integrals, and TYPE represents
9294 an array with the same number of elements, but with wider integral
9295 elements, return an array "casted" to TYPE. In practice, this
9296 means that the returned array is built by casting each element
9297 of the original array into TYPE's (wider) element type. */
9298
9299static struct value *
9300ada_promote_array_of_integrals (struct type *type, struct value *val)
9301{
9302 struct type *elt_type = TYPE_TARGET_TYPE (type);
9303 LONGEST lo, hi;
9304 struct value *res;
9305 LONGEST i;
9306
9307 /* Verify that both val and type are arrays of scalars, and
9308 that the size of val's elements is smaller than the size
9309 of type's element. */
78134374 9310 gdb_assert (type->code () == TYPE_CODE_ARRAY);
d99dcf51 9311 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
78134374 9312 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
d99dcf51
JB
9313 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9314 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9315 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9316
9317 if (!get_array_bounds (type, &lo, &hi))
9318 error (_("unable to determine array bounds"));
9319
9320 res = allocate_value (type);
9321
9322 /* Promote each array element. */
9323 for (i = 0; i < hi - lo + 1; i++)
9324 {
9325 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9326
9327 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9328 value_contents_all (elt), TYPE_LENGTH (elt_type));
9329 }
9330
9331 return res;
9332}
9333
4c4b4cd2
PH
9334/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9335 return the converted value. */
9336
d2e4a39e
AS
9337static struct value *
9338coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9339{
df407dfe 9340 struct type *type2 = value_type (val);
5b4ee69b 9341
14f9c5c9
AS
9342 if (type == type2)
9343 return val;
9344
61ee279c
PH
9345 type2 = ada_check_typedef (type2);
9346 type = ada_check_typedef (type);
14f9c5c9 9347
78134374
SM
9348 if (type2->code () == TYPE_CODE_PTR
9349 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
9350 {
9351 val = ada_value_ind (val);
df407dfe 9352 type2 = value_type (val);
14f9c5c9
AS
9353 }
9354
78134374
SM
9355 if (type2->code () == TYPE_CODE_ARRAY
9356 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 9357 {
d99dcf51
JB
9358 if (!ada_same_array_size_p (type, type2))
9359 error (_("cannot assign arrays of different length"));
9360
9361 if (is_integral_type (TYPE_TARGET_TYPE (type))
9362 && is_integral_type (TYPE_TARGET_TYPE (type2))
9363 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9364 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9365 {
9366 /* Allow implicit promotion of the array elements to
9367 a wider type. */
9368 return ada_promote_array_of_integrals (type, val);
9369 }
9370
9371 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
dda83cd7
SM
9372 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9373 error (_("Incompatible types in assignment"));
04624583 9374 deprecated_set_value_type (val, type);
14f9c5c9 9375 }
d2e4a39e 9376 return val;
14f9c5c9
AS
9377}
9378
4c4b4cd2
PH
9379static struct value *
9380ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9381{
9382 struct value *val;
9383 struct type *type1, *type2;
9384 LONGEST v, v1, v2;
9385
994b9211
AC
9386 arg1 = coerce_ref (arg1);
9387 arg2 = coerce_ref (arg2);
18af8284
JB
9388 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9389 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9390
78134374
SM
9391 if (type1->code () != TYPE_CODE_INT
9392 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
9393 return value_binop (arg1, arg2, op);
9394
76a01679 9395 switch (op)
4c4b4cd2
PH
9396 {
9397 case BINOP_MOD:
9398 case BINOP_DIV:
9399 case BINOP_REM:
9400 break;
9401 default:
9402 return value_binop (arg1, arg2, op);
9403 }
9404
9405 v2 = value_as_long (arg2);
9406 if (v2 == 0)
323e0a4a 9407 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2 9408
c6d940a9 9409 if (type1->is_unsigned () || op == BINOP_MOD)
4c4b4cd2
PH
9410 return value_binop (arg1, arg2, op);
9411
9412 v1 = value_as_long (arg1);
9413 switch (op)
9414 {
9415 case BINOP_DIV:
9416 v = v1 / v2;
76a01679 9417 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
dda83cd7 9418 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9419 break;
9420 case BINOP_REM:
9421 v = v1 % v2;
76a01679 9422 if (v * v1 < 0)
dda83cd7 9423 v -= v2;
4c4b4cd2
PH
9424 break;
9425 default:
9426 /* Should not reach this point. */
9427 v = 0;
9428 }
9429
9430 val = allocate_value (type1);
990a07ab 9431 store_unsigned_integer (value_contents_raw (val),
dda83cd7 9432 TYPE_LENGTH (value_type (val)),
34877895 9433 type_byte_order (type1), v);
4c4b4cd2
PH
9434 return val;
9435}
9436
9437static int
9438ada_value_equal (struct value *arg1, struct value *arg2)
9439{
df407dfe
AC
9440 if (ada_is_direct_array_type (value_type (arg1))
9441 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9442 {
79e8fcaa
JB
9443 struct type *arg1_type, *arg2_type;
9444
f58b38bf 9445 /* Automatically dereference any array reference before
dda83cd7 9446 we attempt to perform the comparison. */
f58b38bf
JB
9447 arg1 = ada_coerce_ref (arg1);
9448 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9449
4c4b4cd2
PH
9450 arg1 = ada_coerce_to_simple_array (arg1);
9451 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9452
9453 arg1_type = ada_check_typedef (value_type (arg1));
9454 arg2_type = ada_check_typedef (value_type (arg2));
9455
78134374 9456 if (arg1_type->code () != TYPE_CODE_ARRAY
dda83cd7
SM
9457 || arg2_type->code () != TYPE_CODE_ARRAY)
9458 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9459 /* FIXME: The following works only for types whose
dda83cd7
SM
9460 representations use all bits (no padding or undefined bits)
9461 and do not have user-defined equality. */
79e8fcaa
JB
9462 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9463 && memcmp (value_contents (arg1), value_contents (arg2),
9464 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9465 }
9466 return value_equal (arg1, arg2);
9467}
9468
52ce6436
PH
9469/* Total number of component associations in the aggregate starting at
9470 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9471 OP_AGGREGATE. */
52ce6436
PH
9472
9473static int
9474num_component_specs (struct expression *exp, int pc)
9475{
9476 int n, m, i;
5b4ee69b 9477
52ce6436
PH
9478 m = exp->elts[pc + 1].longconst;
9479 pc += 3;
9480 n = 0;
9481 for (i = 0; i < m; i += 1)
9482 {
9483 switch (exp->elts[pc].opcode)
9484 {
9485 default:
9486 n += 1;
9487 break;
9488 case OP_CHOICES:
9489 n += exp->elts[pc + 1].longconst;
9490 break;
9491 }
9492 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9493 }
9494 return n;
9495}
9496
9497/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9498 component of LHS (a simple array or a record), updating *POS past
9499 the expression, assuming that LHS is contained in CONTAINER. Does
9500 not modify the inferior's memory, nor does it modify LHS (unless
9501 LHS == CONTAINER). */
9502
9503static void
9504assign_component (struct value *container, struct value *lhs, LONGEST index,
9505 struct expression *exp, int *pos)
9506{
9507 struct value *mark = value_mark ();
9508 struct value *elt;
0e2da9f0 9509 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9510
78134374 9511 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9512 {
22601c15
UW
9513 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9514 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9515
52ce6436
PH
9516 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9517 }
9518 else
9519 {
9520 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9521 elt = ada_to_fixed_value (elt);
52ce6436
PH
9522 }
9523
9524 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9525 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9526 else
9527 value_assign_to_component (container, elt,
9528 ada_evaluate_subexp (NULL, exp, pos,
9529 EVAL_NORMAL));
9530
9531 value_free_to_mark (mark);
9532}
9533
9534/* Assuming that LHS represents an lvalue having a record or array
9535 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9536 of that aggregate's value to LHS, advancing *POS past the
9537 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9538 lvalue containing LHS (possibly LHS itself). Does not modify
9539 the inferior's memory, nor does it modify the contents of
0963b4bd 9540 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9541
9542static struct value *
9543assign_aggregate (struct value *container,
9544 struct value *lhs, struct expression *exp,
9545 int *pos, enum noside noside)
9546{
9547 struct type *lhs_type;
9548 int n = exp->elts[*pos+1].longconst;
9549 LONGEST low_index, high_index;
9550 int num_specs;
9551 LONGEST *indices;
9552 int max_indices, num_indices;
52ce6436 9553 int i;
52ce6436
PH
9554
9555 *pos += 3;
9556 if (noside != EVAL_NORMAL)
9557 {
52ce6436
PH
9558 for (i = 0; i < n; i += 1)
9559 ada_evaluate_subexp (NULL, exp, pos, noside);
9560 return container;
9561 }
9562
9563 container = ada_coerce_ref (container);
9564 if (ada_is_direct_array_type (value_type (container)))
9565 container = ada_coerce_to_simple_array (container);
9566 lhs = ada_coerce_ref (lhs);
9567 if (!deprecated_value_modifiable (lhs))
9568 error (_("Left operand of assignment is not a modifiable lvalue."));
9569
0e2da9f0 9570 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9571 if (ada_is_direct_array_type (lhs_type))
9572 {
9573 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9574 lhs_type = check_typedef (value_type (lhs));
cf88be68
SM
9575 low_index = lhs_type->bounds ()->low.const_val ();
9576 high_index = lhs_type->bounds ()->high.const_val ();
52ce6436 9577 }
78134374 9578 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9579 {
9580 low_index = 0;
9581 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9582 }
9583 else
9584 error (_("Left-hand side must be array or record."));
9585
9586 num_specs = num_component_specs (exp, *pos - 3);
9587 max_indices = 4 * num_specs + 4;
8d749320 9588 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9589 indices[0] = indices[1] = low_index - 1;
9590 indices[2] = indices[3] = high_index + 1;
9591 num_indices = 4;
9592
9593 for (i = 0; i < n; i += 1)
9594 {
9595 switch (exp->elts[*pos].opcode)
9596 {
1fbf5ada
JB
9597 case OP_CHOICES:
9598 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9599 &num_indices, max_indices,
9600 low_index, high_index);
9601 break;
9602 case OP_POSITIONAL:
9603 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9604 &num_indices, max_indices,
9605 low_index, high_index);
1fbf5ada
JB
9606 break;
9607 case OP_OTHERS:
9608 if (i != n-1)
9609 error (_("Misplaced 'others' clause"));
9610 aggregate_assign_others (container, lhs, exp, pos, indices,
9611 num_indices, low_index, high_index);
9612 break;
9613 default:
9614 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9615 }
9616 }
9617
9618 return container;
9619}
9620
9621/* Assign into the component of LHS indexed by the OP_POSITIONAL
9622 construct at *POS, updating *POS past the construct, given that
9623 the positions are relative to lower bound LOW, where HIGH is the
9624 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9625 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9626 assign_aggregate. */
52ce6436
PH
9627static void
9628aggregate_assign_positional (struct value *container,
9629 struct value *lhs, struct expression *exp,
9630 int *pos, LONGEST *indices, int *num_indices,
9631 int max_indices, LONGEST low, LONGEST high)
9632{
9633 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9634
9635 if (ind - 1 == high)
e1d5a0d2 9636 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9637 if (ind <= high)
9638 {
9639 add_component_interval (ind, ind, indices, num_indices, max_indices);
9640 *pos += 3;
9641 assign_component (container, lhs, ind, exp, pos);
9642 }
9643 else
9644 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9645}
9646
9647/* Assign into the components of LHS indexed by the OP_CHOICES
9648 construct at *POS, updating *POS past the construct, given that
9649 the allowable indices are LOW..HIGH. Record the indices assigned
9650 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9651 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9652static void
9653aggregate_assign_from_choices (struct value *container,
9654 struct value *lhs, struct expression *exp,
9655 int *pos, LONGEST *indices, int *num_indices,
9656 int max_indices, LONGEST low, LONGEST high)
9657{
9658 int j;
9659 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9660 int choice_pos, expr_pc;
9661 int is_array = ada_is_direct_array_type (value_type (lhs));
9662
9663 choice_pos = *pos += 3;
9664
9665 for (j = 0; j < n_choices; j += 1)
9666 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9667 expr_pc = *pos;
9668 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9669
9670 for (j = 0; j < n_choices; j += 1)
9671 {
9672 LONGEST lower, upper;
9673 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9674
52ce6436
PH
9675 if (op == OP_DISCRETE_RANGE)
9676 {
9677 choice_pos += 1;
9678 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9679 EVAL_NORMAL));
9680 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9681 EVAL_NORMAL));
9682 }
9683 else if (is_array)
9684 {
9685 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9686 EVAL_NORMAL));
9687 upper = lower;
9688 }
9689 else
9690 {
9691 int ind;
0d5cff50 9692 const char *name;
5b4ee69b 9693
52ce6436
PH
9694 switch (op)
9695 {
9696 case OP_NAME:
9697 name = &exp->elts[choice_pos + 2].string;
9698 break;
9699 case OP_VAR_VALUE:
987012b8 9700 name = exp->elts[choice_pos + 2].symbol->natural_name ();
52ce6436
PH
9701 break;
9702 default:
9703 error (_("Invalid record component association."));
9704 }
9705 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9706 ind = 0;
9707 if (! find_struct_field (name, value_type (lhs), 0,
9708 NULL, NULL, NULL, NULL, &ind))
9709 error (_("Unknown component name: %s."), name);
9710 lower = upper = ind;
9711 }
9712
9713 if (lower <= upper && (lower < low || upper > high))
9714 error (_("Index in component association out of bounds."));
9715
9716 add_component_interval (lower, upper, indices, num_indices,
9717 max_indices);
9718 while (lower <= upper)
9719 {
9720 int pos1;
5b4ee69b 9721
52ce6436
PH
9722 pos1 = expr_pc;
9723 assign_component (container, lhs, lower, exp, &pos1);
9724 lower += 1;
9725 }
9726 }
9727}
9728
9729/* Assign the value of the expression in the OP_OTHERS construct in
9730 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9731 have not been previously assigned. The index intervals already assigned
9732 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9733 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9734static void
9735aggregate_assign_others (struct value *container,
9736 struct value *lhs, struct expression *exp,
9737 int *pos, LONGEST *indices, int num_indices,
9738 LONGEST low, LONGEST high)
9739{
9740 int i;
5ce64950 9741 int expr_pc = *pos + 1;
52ce6436
PH
9742
9743 for (i = 0; i < num_indices - 2; i += 2)
9744 {
9745 LONGEST ind;
5b4ee69b 9746
52ce6436
PH
9747 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9748 {
5ce64950 9749 int localpos;
5b4ee69b 9750
5ce64950
MS
9751 localpos = expr_pc;
9752 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9753 }
9754 }
9755 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9756}
9757
9758/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9759 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9760 modifying *SIZE as needed. It is an error if *SIZE exceeds
9761 MAX_SIZE. The resulting intervals do not overlap. */
9762static void
9763add_component_interval (LONGEST low, LONGEST high,
9764 LONGEST* indices, int *size, int max_size)
9765{
9766 int i, j;
5b4ee69b 9767
52ce6436
PH
9768 for (i = 0; i < *size; i += 2) {
9769 if (high >= indices[i] && low <= indices[i + 1])
9770 {
9771 int kh;
5b4ee69b 9772
52ce6436
PH
9773 for (kh = i + 2; kh < *size; kh += 2)
9774 if (high < indices[kh])
9775 break;
9776 if (low < indices[i])
9777 indices[i] = low;
9778 indices[i + 1] = indices[kh - 1];
9779 if (high > indices[i + 1])
9780 indices[i + 1] = high;
9781 memcpy (indices + i + 2, indices + kh, *size - kh);
9782 *size -= kh - i - 2;
9783 return;
9784 }
9785 else if (high < indices[i])
9786 break;
9787 }
9788
9789 if (*size == max_size)
9790 error (_("Internal error: miscounted aggregate components."));
9791 *size += 2;
9792 for (j = *size-1; j >= i+2; j -= 1)
9793 indices[j] = indices[j - 2];
9794 indices[i] = low;
9795 indices[i + 1] = high;
9796}
9797
6e48bd2c
JB
9798/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9799 is different. */
9800
9801static struct value *
b7e22850 9802ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9803{
9804 if (type == ada_check_typedef (value_type (arg2)))
9805 return arg2;
9806
b2188a06 9807 if (ada_is_gnat_encoded_fixed_point_type (type))
75f24e86 9808 return cast_to_gnat_encoded_fixed_point_type (type, arg2);
6e48bd2c 9809
b2188a06 9810 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
75f24e86 9811 return cast_from_gnat_encoded_fixed_point_type (type, arg2);
6e48bd2c
JB
9812
9813 return value_cast (type, arg2);
9814}
9815
284614f0
JB
9816/* Evaluating Ada expressions, and printing their result.
9817 ------------------------------------------------------
9818
21649b50
JB
9819 1. Introduction:
9820 ----------------
9821
284614f0
JB
9822 We usually evaluate an Ada expression in order to print its value.
9823 We also evaluate an expression in order to print its type, which
9824 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9825 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9826 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9827 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9828 similar.
9829
9830 Evaluating expressions is a little more complicated for Ada entities
9831 than it is for entities in languages such as C. The main reason for
9832 this is that Ada provides types whose definition might be dynamic.
9833 One example of such types is variant records. Or another example
9834 would be an array whose bounds can only be known at run time.
9835
9836 The following description is a general guide as to what should be
9837 done (and what should NOT be done) in order to evaluate an expression
9838 involving such types, and when. This does not cover how the semantic
9839 information is encoded by GNAT as this is covered separatly. For the
9840 document used as the reference for the GNAT encoding, see exp_dbug.ads
9841 in the GNAT sources.
9842
9843 Ideally, we should embed each part of this description next to its
9844 associated code. Unfortunately, the amount of code is so vast right
9845 now that it's hard to see whether the code handling a particular
9846 situation might be duplicated or not. One day, when the code is
9847 cleaned up, this guide might become redundant with the comments
9848 inserted in the code, and we might want to remove it.
9849
21649b50
JB
9850 2. ``Fixing'' an Entity, the Simple Case:
9851 -----------------------------------------
9852
284614f0
JB
9853 When evaluating Ada expressions, the tricky issue is that they may
9854 reference entities whose type contents and size are not statically
9855 known. Consider for instance a variant record:
9856
9857 type Rec (Empty : Boolean := True) is record
dda83cd7
SM
9858 case Empty is
9859 when True => null;
9860 when False => Value : Integer;
9861 end case;
284614f0
JB
9862 end record;
9863 Yes : Rec := (Empty => False, Value => 1);
9864 No : Rec := (empty => True);
9865
9866 The size and contents of that record depends on the value of the
9867 descriminant (Rec.Empty). At this point, neither the debugging
9868 information nor the associated type structure in GDB are able to
9869 express such dynamic types. So what the debugger does is to create
9870 "fixed" versions of the type that applies to the specific object.
30baf67b 9871 We also informally refer to this operation as "fixing" an object,
284614f0
JB
9872 which means creating its associated fixed type.
9873
9874 Example: when printing the value of variable "Yes" above, its fixed
9875 type would look like this:
9876
9877 type Rec is record
dda83cd7
SM
9878 Empty : Boolean;
9879 Value : Integer;
284614f0
JB
9880 end record;
9881
9882 On the other hand, if we printed the value of "No", its fixed type
9883 would become:
9884
9885 type Rec is record
dda83cd7 9886 Empty : Boolean;
284614f0
JB
9887 end record;
9888
9889 Things become a little more complicated when trying to fix an entity
9890 with a dynamic type that directly contains another dynamic type,
9891 such as an array of variant records, for instance. There are
9892 two possible cases: Arrays, and records.
9893
21649b50
JB
9894 3. ``Fixing'' Arrays:
9895 ---------------------
9896
9897 The type structure in GDB describes an array in terms of its bounds,
9898 and the type of its elements. By design, all elements in the array
9899 have the same type and we cannot represent an array of variant elements
9900 using the current type structure in GDB. When fixing an array,
9901 we cannot fix the array element, as we would potentially need one
9902 fixed type per element of the array. As a result, the best we can do
9903 when fixing an array is to produce an array whose bounds and size
9904 are correct (allowing us to read it from memory), but without having
9905 touched its element type. Fixing each element will be done later,
9906 when (if) necessary.
9907
9908 Arrays are a little simpler to handle than records, because the same
9909 amount of memory is allocated for each element of the array, even if
1b536f04 9910 the amount of space actually used by each element differs from element
21649b50 9911 to element. Consider for instance the following array of type Rec:
284614f0
JB
9912
9913 type Rec_Array is array (1 .. 2) of Rec;
9914
1b536f04
JB
9915 The actual amount of memory occupied by each element might be different
9916 from element to element, depending on the value of their discriminant.
21649b50 9917 But the amount of space reserved for each element in the array remains
1b536f04 9918 fixed regardless. So we simply need to compute that size using
21649b50
JB
9919 the debugging information available, from which we can then determine
9920 the array size (we multiply the number of elements of the array by
9921 the size of each element).
9922
9923 The simplest case is when we have an array of a constrained element
9924 type. For instance, consider the following type declarations:
9925
dda83cd7
SM
9926 type Bounded_String (Max_Size : Integer) is
9927 Length : Integer;
9928 Buffer : String (1 .. Max_Size);
9929 end record;
9930 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
21649b50
JB
9931
9932 In this case, the compiler describes the array as an array of
9933 variable-size elements (identified by its XVS suffix) for which
9934 the size can be read in the parallel XVZ variable.
9935
9936 In the case of an array of an unconstrained element type, the compiler
9937 wraps the array element inside a private PAD type. This type should not
9938 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9939 that we also use the adjective "aligner" in our code to designate
9940 these wrapper types.
9941
1b536f04 9942 In some cases, the size allocated for each element is statically
21649b50
JB
9943 known. In that case, the PAD type already has the correct size,
9944 and the array element should remain unfixed.
9945
9946 But there are cases when this size is not statically known.
9947 For instance, assuming that "Five" is an integer variable:
284614f0 9948
dda83cd7
SM
9949 type Dynamic is array (1 .. Five) of Integer;
9950 type Wrapper (Has_Length : Boolean := False) is record
9951 Data : Dynamic;
9952 case Has_Length is
9953 when True => Length : Integer;
9954 when False => null;
9955 end case;
9956 end record;
9957 type Wrapper_Array is array (1 .. 2) of Wrapper;
284614f0 9958
dda83cd7
SM
9959 Hello : Wrapper_Array := (others => (Has_Length => True,
9960 Data => (others => 17),
9961 Length => 1));
284614f0
JB
9962
9963
9964 The debugging info would describe variable Hello as being an
9965 array of a PAD type. The size of that PAD type is not statically
9966 known, but can be determined using a parallel XVZ variable.
9967 In that case, a copy of the PAD type with the correct size should
9968 be used for the fixed array.
9969
21649b50
JB
9970 3. ``Fixing'' record type objects:
9971 ----------------------------------
9972
9973 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9974 record types. In this case, in order to compute the associated
9975 fixed type, we need to determine the size and offset of each of
9976 its components. This, in turn, requires us to compute the fixed
9977 type of each of these components.
9978
9979 Consider for instance the example:
9980
dda83cd7
SM
9981 type Bounded_String (Max_Size : Natural) is record
9982 Str : String (1 .. Max_Size);
9983 Length : Natural;
9984 end record;
9985 My_String : Bounded_String (Max_Size => 10);
284614f0
JB
9986
9987 In that case, the position of field "Length" depends on the size
9988 of field Str, which itself depends on the value of the Max_Size
21649b50 9989 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9990 we need to fix the type of field Str. Therefore, fixing a variant
9991 record requires us to fix each of its components.
9992
9993 However, if a component does not have a dynamic size, the component
9994 should not be fixed. In particular, fields that use a PAD type
9995 should not fixed. Here is an example where this might happen
9996 (assuming type Rec above):
9997
9998 type Container (Big : Boolean) is record
dda83cd7
SM
9999 First : Rec;
10000 After : Integer;
10001 case Big is
10002 when True => Another : Integer;
10003 when False => null;
10004 end case;
284614f0
JB
10005 end record;
10006 My_Container : Container := (Big => False,
dda83cd7
SM
10007 First => (Empty => True),
10008 After => 42);
284614f0
JB
10009
10010 In that example, the compiler creates a PAD type for component First,
10011 whose size is constant, and then positions the component After just
10012 right after it. The offset of component After is therefore constant
10013 in this case.
10014
10015 The debugger computes the position of each field based on an algorithm
10016 that uses, among other things, the actual position and size of the field
21649b50
JB
10017 preceding it. Let's now imagine that the user is trying to print
10018 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10019 end up computing the offset of field After based on the size of the
10020 fixed version of field First. And since in our example First has
10021 only one actual field, the size of the fixed type is actually smaller
10022 than the amount of space allocated to that field, and thus we would
10023 compute the wrong offset of field After.
10024
21649b50
JB
10025 To make things more complicated, we need to watch out for dynamic
10026 components of variant records (identified by the ___XVL suffix in
10027 the component name). Even if the target type is a PAD type, the size
10028 of that type might not be statically known. So the PAD type needs
10029 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10030 we might end up with the wrong size for our component. This can be
10031 observed with the following type declarations:
284614f0 10032
dda83cd7
SM
10033 type Octal is new Integer range 0 .. 7;
10034 type Octal_Array is array (Positive range <>) of Octal;
10035 pragma Pack (Octal_Array);
284614f0 10036
dda83cd7
SM
10037 type Octal_Buffer (Size : Positive) is record
10038 Buffer : Octal_Array (1 .. Size);
10039 Length : Integer;
10040 end record;
284614f0
JB
10041
10042 In that case, Buffer is a PAD type whose size is unset and needs
10043 to be computed by fixing the unwrapped type.
10044
21649b50
JB
10045 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10046 ----------------------------------------------------------
10047
10048 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10049 thus far, be actually fixed?
10050
10051 The answer is: Only when referencing that element. For instance
10052 when selecting one component of a record, this specific component
10053 should be fixed at that point in time. Or when printing the value
10054 of a record, each component should be fixed before its value gets
10055 printed. Similarly for arrays, the element of the array should be
10056 fixed when printing each element of the array, or when extracting
10057 one element out of that array. On the other hand, fixing should
10058 not be performed on the elements when taking a slice of an array!
10059
31432a67 10060 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10061 size of each field is that we end up also miscomputing the size
10062 of the containing type. This can have adverse results when computing
10063 the value of an entity. GDB fetches the value of an entity based
10064 on the size of its type, and thus a wrong size causes GDB to fetch
10065 the wrong amount of memory. In the case where the computed size is
10066 too small, GDB fetches too little data to print the value of our
31432a67 10067 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10068 past the buffer containing the data =:-o. */
10069
ced9779b
JB
10070/* Evaluate a subexpression of EXP, at index *POS, and return a value
10071 for that subexpression cast to TO_TYPE. Advance *POS over the
10072 subexpression. */
10073
10074static value *
10075ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10076 enum noside noside, struct type *to_type)
10077{
10078 int pc = *pos;
10079
10080 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10081 || exp->elts[pc].opcode == OP_VAR_VALUE)
10082 {
10083 (*pos) += 4;
10084
10085 value *val;
10086 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
dda83cd7
SM
10087 {
10088 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10089 return value_zero (to_type, not_lval);
10090
10091 val = evaluate_var_msym_value (noside,
10092 exp->elts[pc + 1].objfile,
10093 exp->elts[pc + 2].msymbol);
10094 }
ced9779b 10095 else
dda83cd7
SM
10096 val = evaluate_var_value (noside,
10097 exp->elts[pc + 1].block,
10098 exp->elts[pc + 2].symbol);
ced9779b
JB
10099
10100 if (noside == EVAL_SKIP)
dda83cd7 10101 return eval_skip_value (exp);
ced9779b
JB
10102
10103 val = ada_value_cast (to_type, val);
10104
10105 /* Follow the Ada language semantics that do not allow taking
10106 an address of the result of a cast (view conversion in Ada). */
10107 if (VALUE_LVAL (val) == lval_memory)
dda83cd7
SM
10108 {
10109 if (value_lazy (val))
10110 value_fetch_lazy (val);
10111 VALUE_LVAL (val) = not_lval;
10112 }
ced9779b
JB
10113 return val;
10114 }
10115
10116 value *val = evaluate_subexp (to_type, exp, pos, noside);
10117 if (noside == EVAL_SKIP)
10118 return eval_skip_value (exp);
10119 return ada_value_cast (to_type, val);
10120}
10121
284614f0
JB
10122/* Implement the evaluate_exp routine in the exp_descriptor structure
10123 for the Ada language. */
10124
52ce6436 10125static struct value *
ebf56fd3 10126ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
dda83cd7 10127 int *pos, enum noside noside)
14f9c5c9
AS
10128{
10129 enum exp_opcode op;
b5385fc0 10130 int tem;
14f9c5c9 10131 int pc;
5ec18f2b 10132 int preeval_pos;
14f9c5c9
AS
10133 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10134 struct type *type;
52ce6436 10135 int nargs, oplen;
d2e4a39e 10136 struct value **argvec;
14f9c5c9 10137
d2e4a39e
AS
10138 pc = *pos;
10139 *pos += 1;
14f9c5c9
AS
10140 op = exp->elts[pc].opcode;
10141
d2e4a39e 10142 switch (op)
14f9c5c9
AS
10143 {
10144 default:
10145 *pos -= 1;
6e48bd2c 10146 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10147
10148 if (noside == EVAL_NORMAL)
10149 arg1 = unwrap_value (arg1);
6e48bd2c 10150
edd079d9 10151 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
dda83cd7
SM
10152 then we need to perform the conversion manually, because
10153 evaluate_subexp_standard doesn't do it. This conversion is
10154 necessary in Ada because the different kinds of float/fixed
10155 types in Ada have different representations.
6e48bd2c 10156
dda83cd7
SM
10157 Similarly, we need to perform the conversion from OP_LONG
10158 ourselves. */
edd079d9 10159 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
dda83cd7 10160 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10161
10162 return arg1;
4c4b4cd2
PH
10163
10164 case OP_STRING:
10165 {
dda83cd7
SM
10166 struct value *result;
10167
10168 *pos -= 1;
10169 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10170 /* The result type will have code OP_STRING, bashed there from
10171 OP_ARRAY. Bash it back. */
10172 if (value_type (result)->code () == TYPE_CODE_STRING)
10173 value_type (result)->set_code (TYPE_CODE_ARRAY);
10174 return result;
4c4b4cd2 10175 }
14f9c5c9
AS
10176
10177 case UNOP_CAST:
10178 (*pos) += 2;
10179 type = exp->elts[pc + 1].type;
ced9779b 10180 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10181
4c4b4cd2
PH
10182 case UNOP_QUAL:
10183 (*pos) += 2;
10184 type = exp->elts[pc + 1].type;
10185 return ada_evaluate_subexp (type, exp, pos, noside);
10186
14f9c5c9 10187 case BINOP_ASSIGN:
fe1fe7ea 10188 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
52ce6436
PH
10189 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10190 {
10191 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10192 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10193 return arg1;
10194 return ada_value_assign (arg1, arg1);
10195 }
003f3813 10196 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
dda83cd7
SM
10197 except if the lhs of our assignment is a convenience variable.
10198 In the case of assigning to a convenience variable, the lhs
10199 should be exactly the result of the evaluation of the rhs. */
003f3813
JB
10200 type = value_type (arg1);
10201 if (VALUE_LVAL (arg1) == lval_internalvar)
dda83cd7 10202 type = NULL;
003f3813 10203 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10204 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10205 return arg1;
f411722c
TT
10206 if (VALUE_LVAL (arg1) == lval_internalvar)
10207 {
10208 /* Nothing. */
10209 }
b2188a06 10210 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
dda83cd7 10211 arg2 = cast_to_gnat_encoded_fixed_point_type (value_type (arg1), arg2);
b2188a06 10212 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
dda83cd7
SM
10213 error
10214 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10215 else
dda83cd7 10216 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10217 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10218
10219 case BINOP_ADD:
10220 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10221 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10222 if (noside == EVAL_SKIP)
dda83cd7 10223 goto nosideret;
78134374 10224 if (value_type (arg1)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10225 return (value_from_longest
10226 (value_type (arg1),
10227 value_as_long (arg1) + value_as_long (arg2)));
78134374 10228 if (value_type (arg2)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10229 return (value_from_longest
10230 (value_type (arg2),
10231 value_as_long (arg1) + value_as_long (arg2)));
b2188a06 10232 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
dda83cd7
SM
10233 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10234 && value_type (arg1) != value_type (arg2))
10235 error (_("Operands of fixed-point addition must have the same type"));
b7789565 10236 /* Do the addition, and cast the result to the type of the first
dda83cd7
SM
10237 argument. We cannot cast the result to a reference type, so if
10238 ARG1 is a reference type, find its underlying type. */
b7789565 10239 type = value_type (arg1);
78134374 10240 while (type->code () == TYPE_CODE_REF)
dda83cd7 10241 type = TYPE_TARGET_TYPE (type);
f44316fa 10242 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10243 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10244
10245 case BINOP_SUB:
10246 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10247 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10248 if (noside == EVAL_SKIP)
dda83cd7 10249 goto nosideret;
78134374 10250 if (value_type (arg1)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10251 return (value_from_longest
10252 (value_type (arg1),
10253 value_as_long (arg1) - value_as_long (arg2)));
78134374 10254 if (value_type (arg2)->code () == TYPE_CODE_PTR)
dda83cd7
SM
10255 return (value_from_longest
10256 (value_type (arg2),
10257 value_as_long (arg1) - value_as_long (arg2)));
b2188a06 10258 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
dda83cd7
SM
10259 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10260 && value_type (arg1) != value_type (arg2))
10261 error (_("Operands of fixed-point subtraction "
0963b4bd 10262 "must have the same type"));
b7789565 10263 /* Do the substraction, and cast the result to the type of the first
dda83cd7
SM
10264 argument. We cannot cast the result to a reference type, so if
10265 ARG1 is a reference type, find its underlying type. */
b7789565 10266 type = value_type (arg1);
78134374 10267 while (type->code () == TYPE_CODE_REF)
dda83cd7 10268 type = TYPE_TARGET_TYPE (type);
f44316fa 10269 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10270 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10271
10272 case BINOP_MUL:
10273 case BINOP_DIV:
e1578042
JB
10274 case BINOP_REM:
10275 case BINOP_MOD:
fe1fe7ea
SM
10276 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10277 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10278 if (noside == EVAL_SKIP)
dda83cd7 10279 goto nosideret;
e1578042 10280 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
10281 {
10282 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10283 return value_zero (value_type (arg1), not_lval);
10284 }
14f9c5c9 10285 else
dda83cd7
SM
10286 {
10287 type = builtin_type (exp->gdbarch)->builtin_double;
10288 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10289 arg1 = cast_from_gnat_encoded_fixed_point_type (type, arg1);
10290 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10291 arg2 = cast_from_gnat_encoded_fixed_point_type (type, arg2);
10292 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10293 return ada_value_binop (arg1, arg2, op);
10294 }
4c4b4cd2 10295
4c4b4cd2
PH
10296 case BINOP_EQUAL:
10297 case BINOP_NOTEQUAL:
fe1fe7ea 10298 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
df407dfe 10299 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10300 if (noside == EVAL_SKIP)
dda83cd7 10301 goto nosideret;
4c4b4cd2 10302 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10303 tem = 0;
4c4b4cd2 10304 else
f44316fa
UW
10305 {
10306 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10307 tem = ada_value_equal (arg1, arg2);
10308 }
4c4b4cd2 10309 if (op == BINOP_NOTEQUAL)
dda83cd7 10310 tem = !tem;
fbb06eb1
UW
10311 type = language_bool_type (exp->language_defn, exp->gdbarch);
10312 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10313
10314 case UNOP_NEG:
fe1fe7ea 10315 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10316 if (noside == EVAL_SKIP)
dda83cd7 10317 goto nosideret;
b2188a06 10318 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
dda83cd7 10319 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10320 else
f44316fa
UW
10321 {
10322 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10323 return value_neg (arg1);
10324 }
4c4b4cd2 10325
2330c6c6
JB
10326 case BINOP_LOGICAL_AND:
10327 case BINOP_LOGICAL_OR:
10328 case UNOP_LOGICAL_NOT:
000d5124 10329 {
dda83cd7 10330 struct value *val;
000d5124 10331
dda83cd7
SM
10332 *pos -= 1;
10333 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1 10334 type = language_bool_type (exp->language_defn, exp->gdbarch);
dda83cd7 10335 return value_cast (type, val);
000d5124 10336 }
2330c6c6
JB
10337
10338 case BINOP_BITWISE_AND:
10339 case BINOP_BITWISE_IOR:
10340 case BINOP_BITWISE_XOR:
000d5124 10341 {
dda83cd7 10342 struct value *val;
000d5124 10343
fe1fe7ea
SM
10344 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10345 *pos = pc;
dda83cd7 10346 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
000d5124 10347
dda83cd7 10348 return value_cast (value_type (arg1), val);
000d5124 10349 }
2330c6c6 10350
14f9c5c9
AS
10351 case OP_VAR_VALUE:
10352 *pos -= 1;
6799def4 10353
14f9c5c9 10354 if (noside == EVAL_SKIP)
dda83cd7
SM
10355 {
10356 *pos += 4;
10357 goto nosideret;
10358 }
da5c522f
JB
10359
10360 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
dda83cd7
SM
10361 /* Only encountered when an unresolved symbol occurs in a
10362 context other than a function call, in which case, it is
10363 invalid. */
10364 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10365 exp->elts[pc + 2].symbol->print_name ());
da5c522f
JB
10366
10367 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
10368 {
10369 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10370 /* Check to see if this is a tagged type. We also need to handle
10371 the case where the type is a reference to a tagged type, but
10372 we have to be careful to exclude pointers to tagged types.
10373 The latter should be shown as usual (as a pointer), whereas
10374 a reference should mostly be transparent to the user. */
10375 if (ada_is_tagged_type (type, 0)
10376 || (type->code () == TYPE_CODE_REF
10377 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10378 {
10379 /* Tagged types are a little special in the fact that the real
10380 type is dynamic and can only be determined by inspecting the
10381 object's tag. This means that we need to get the object's
10382 value first (EVAL_NORMAL) and then extract the actual object
10383 type from its tag.
10384
10385 Note that we cannot skip the final step where we extract
10386 the object type from its tag, because the EVAL_NORMAL phase
10387 results in dynamic components being resolved into fixed ones.
10388 This can cause problems when trying to print the type
10389 description of tagged types whose parent has a dynamic size:
10390 We use the type name of the "_parent" component in order
10391 to print the name of the ancestor type in the type description.
10392 If that component had a dynamic size, the resolution into
10393 a fixed type would result in the loss of that type name,
10394 thus preventing us from printing the name of the ancestor
10395 type in the type description. */
fe1fe7ea 10396 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
0d72a7c3 10397
78134374 10398 if (type->code () != TYPE_CODE_REF)
0d72a7c3
JB
10399 {
10400 struct type *actual_type;
10401
10402 actual_type = type_from_tag (ada_value_tag (arg1));
10403 if (actual_type == NULL)
10404 /* If, for some reason, we were unable to determine
10405 the actual type from the tag, then use the static
10406 approximation that we just computed as a fallback.
10407 This can happen if the debugging information is
10408 incomplete, for instance. */
10409 actual_type = type;
10410 return value_zero (actual_type, not_lval);
10411 }
10412 else
10413 {
10414 /* In the case of a ref, ada_coerce_ref takes care
10415 of determining the actual type. But the evaluation
10416 should return a ref as it should be valid to ask
10417 for its address; so rebuild a ref after coerce. */
10418 arg1 = ada_coerce_ref (arg1);
a65cfae5 10419 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10420 }
10421 }
0c1f74cf 10422
84754697
JB
10423 /* Records and unions for which GNAT encodings have been
10424 generated need to be statically fixed as well.
10425 Otherwise, non-static fixing produces a type where
10426 all dynamic properties are removed, which prevents "ptype"
10427 from being able to completely describe the type.
10428 For instance, a case statement in a variant record would be
10429 replaced by the relevant components based on the actual
10430 value of the discriminants. */
78134374 10431 if ((type->code () == TYPE_CODE_STRUCT
84754697 10432 && dynamic_template_type (type) != NULL)
78134374 10433 || (type->code () == TYPE_CODE_UNION
84754697
JB
10434 && ada_find_parallel_type (type, "___XVU") != NULL))
10435 {
10436 *pos += 4;
10437 return value_zero (to_static_fixed_type (type), not_lval);
10438 }
dda83cd7 10439 }
da5c522f
JB
10440
10441 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10442 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10443
10444 case OP_FUNCALL:
10445 (*pos) += 2;
10446
10447 /* Allocate arg vector, including space for the function to be
dda83cd7 10448 called in argvec[0] and a terminating NULL. */
4c4b4cd2 10449 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10450 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10451
10452 if (exp->elts[*pos].opcode == OP_VAR_VALUE
dda83cd7
SM
10453 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10454 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10455 exp->elts[pc + 5].symbol->print_name ());
4c4b4cd2 10456 else
dda83cd7
SM
10457 {
10458 for (tem = 0; tem <= nargs; tem += 1)
fe1fe7ea
SM
10459 argvec[tem] = evaluate_subexp (nullptr, exp, pos, noside);
10460 argvec[tem] = 0;
4c4b4cd2 10461
dda83cd7
SM
10462 if (noside == EVAL_SKIP)
10463 goto nosideret;
10464 }
4c4b4cd2 10465
ad82864c
JB
10466 if (ada_is_constrained_packed_array_type
10467 (desc_base_type (value_type (argvec[0]))))
dda83cd7 10468 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
78134374 10469 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
dda83cd7
SM
10470 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10471 /* This is a packed array that has already been fixed, and
284614f0
JB
10472 therefore already coerced to a simple array. Nothing further
10473 to do. */
dda83cd7 10474 ;
78134374 10475 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
e6c2c623
PMR
10476 {
10477 /* Make sure we dereference references so that all the code below
10478 feels like it's really handling the referenced value. Wrapping
10479 types (for alignment) may be there, so make sure we strip them as
10480 well. */
10481 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10482 }
78134374 10483 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
e6c2c623
PMR
10484 && VALUE_LVAL (argvec[0]) == lval_memory)
10485 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10486
df407dfe 10487 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10488
10489 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10490 them. So, if this is an array typedef (encoding use for array
10491 access types encoded as fat pointers), strip it now. */
78134374 10492 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
10493 type = ada_typedef_target_type (type);
10494
78134374 10495 if (type->code () == TYPE_CODE_PTR)
dda83cd7
SM
10496 {
10497 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10498 {
10499 case TYPE_CODE_FUNC:
10500 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10501 break;
10502 case TYPE_CODE_ARRAY:
10503 break;
10504 case TYPE_CODE_STRUCT:
10505 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10506 argvec[0] = ada_value_ind (argvec[0]);
10507 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10508 break;
10509 default:
10510 error (_("cannot subscript or call something of type `%s'"),
10511 ada_type_name (value_type (argvec[0])));
10512 break;
10513 }
10514 }
4c4b4cd2 10515
78134374 10516 switch (type->code ())
dda83cd7
SM
10517 {
10518 case TYPE_CODE_FUNC:
10519 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10520 {
7022349d
PA
10521 if (TYPE_TARGET_TYPE (type) == NULL)
10522 error_call_unknown_return_type (NULL);
10523 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10524 }
e71585ff
PA
10525 return call_function_by_hand (argvec[0], NULL,
10526 gdb::make_array_view (argvec + 1,
10527 nargs));
c8ea1972
PH
10528 case TYPE_CODE_INTERNAL_FUNCTION:
10529 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10530 /* We don't know anything about what the internal
10531 function might return, but we have to return
10532 something. */
10533 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10534 not_lval);
10535 else
10536 return call_internal_function (exp->gdbarch, exp->language_defn,
10537 argvec[0], nargs, argvec + 1);
10538
dda83cd7
SM
10539 case TYPE_CODE_STRUCT:
10540 {
10541 int arity;
10542
10543 arity = ada_array_arity (type);
10544 type = ada_array_element_type (type, nargs);
10545 if (type == NULL)
10546 error (_("cannot subscript or call a record"));
10547 if (arity != nargs)
10548 error (_("wrong number of subscripts; expecting %d"), arity);
10549 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10550 return value_zero (ada_aligned_type (type), lval_memory);
10551 return
10552 unwrap_value (ada_value_subscript
10553 (argvec[0], nargs, argvec + 1));
10554 }
10555 case TYPE_CODE_ARRAY:
10556 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10557 {
10558 type = ada_array_element_type (type, nargs);
10559 if (type == NULL)
10560 error (_("element type of array unknown"));
10561 else
10562 return value_zero (ada_aligned_type (type), lval_memory);
10563 }
10564 return
10565 unwrap_value (ada_value_subscript
10566 (ada_coerce_to_simple_array (argvec[0]),
10567 nargs, argvec + 1));
10568 case TYPE_CODE_PTR: /* Pointer to array */
10569 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10570 {
deede10c 10571 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
dda83cd7
SM
10572 type = ada_array_element_type (type, nargs);
10573 if (type == NULL)
10574 error (_("element type of array unknown"));
10575 else
10576 return value_zero (ada_aligned_type (type), lval_memory);
10577 }
10578 return
10579 unwrap_value (ada_value_ptr_subscript (argvec[0],
deede10c 10580 nargs, argvec + 1));
4c4b4cd2 10581
dda83cd7
SM
10582 default:
10583 error (_("Attempt to index or call something other than an "
e1d5a0d2 10584 "array or function"));
dda83cd7 10585 }
4c4b4cd2
PH
10586
10587 case TERNOP_SLICE:
10588 {
fe1fe7ea
SM
10589 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
10590 struct value *low_bound_val
10591 = evaluate_subexp (nullptr, exp, pos, noside);
10592 struct value *high_bound_val
10593 = evaluate_subexp (nullptr, exp, pos, noside);
10594 LONGEST low_bound;
dda83cd7
SM
10595 LONGEST high_bound;
10596
10597 low_bound_val = coerce_ref (low_bound_val);
10598 high_bound_val = coerce_ref (high_bound_val);
10599 low_bound = value_as_long (low_bound_val);
10600 high_bound = value_as_long (high_bound_val);
10601
10602 if (noside == EVAL_SKIP)
10603 goto nosideret;
10604
10605 /* If this is a reference to an aligner type, then remove all
10606 the aligners. */
10607 if (value_type (array)->code () == TYPE_CODE_REF
10608 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10609 TYPE_TARGET_TYPE (value_type (array)) =
10610 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10611
10612 if (ada_is_constrained_packed_array_type (value_type (array)))
10613 error (_("cannot slice a packed array"));
10614
10615 /* If this is a reference to an array or an array lvalue,
10616 convert to a pointer. */
10617 if (value_type (array)->code () == TYPE_CODE_REF
10618 || (value_type (array)->code () == TYPE_CODE_ARRAY
10619 && VALUE_LVAL (array) == lval_memory))
10620 array = value_addr (array);
10621
10622 if (noside == EVAL_AVOID_SIDE_EFFECTS
10623 && ada_is_array_descriptor_type (ada_check_typedef
10624 (value_type (array))))
10625 return empty_array (ada_type_of_array (array, 0), low_bound,
bff8c71f 10626 high_bound);
4c4b4cd2 10627
dda83cd7
SM
10628 array = ada_coerce_to_simple_array_ptr (array);
10629
10630 /* If we have more than one level of pointer indirection,
10631 dereference the value until we get only one level. */
10632 while (value_type (array)->code () == TYPE_CODE_PTR
10633 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10634 == TYPE_CODE_PTR))
10635 array = value_ind (array);
10636
10637 /* Make sure we really do have an array type before going further,
10638 to avoid a SEGV when trying to get the index type or the target
10639 type later down the road if the debug info generated by
10640 the compiler is incorrect or incomplete. */
10641 if (!ada_is_simple_array_type (value_type (array)))
10642 error (_("cannot take slice of non-array"));
10643
10644 if (ada_check_typedef (value_type (array))->code ()
10645 == TYPE_CODE_PTR)
10646 {
10647 struct type *type0 = ada_check_typedef (value_type (array));
10648
10649 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10650 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10651 else
10652 {
10653 struct type *arr_type0 =
10654 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10655
10656 return ada_value_slice_from_ptr (array, arr_type0,
10657 longest_to_int (low_bound),
10658 longest_to_int (high_bound));
10659 }
10660 }
10661 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10662 return array;
10663 else if (high_bound < low_bound)
10664 return empty_array (value_type (array), low_bound, high_bound);
10665 else
10666 return ada_value_slice (array, longest_to_int (low_bound),
529cad9c 10667 longest_to_int (high_bound));
4c4b4cd2 10668 }
14f9c5c9 10669
4c4b4cd2
PH
10670 case UNOP_IN_RANGE:
10671 (*pos) += 2;
fe1fe7ea 10672 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
8008e265 10673 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10674
14f9c5c9 10675 if (noside == EVAL_SKIP)
dda83cd7 10676 goto nosideret;
14f9c5c9 10677
78134374 10678 switch (type->code ())
dda83cd7
SM
10679 {
10680 default:
10681 lim_warning (_("Membership test incompletely implemented; "
e1d5a0d2 10682 "always returns true"));
fbb06eb1
UW
10683 type = language_bool_type (exp->language_defn, exp->gdbarch);
10684 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2 10685
dda83cd7 10686 case TYPE_CODE_RANGE:
5537ddd0
SM
10687 arg2 = value_from_longest (type,
10688 type->bounds ()->low.const_val ());
10689 arg3 = value_from_longest (type,
10690 type->bounds ()->high.const_val ());
f44316fa
UW
10691 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10692 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10693 type = language_bool_type (exp->language_defn, exp->gdbarch);
10694 return
10695 value_from_longest (type,
dda83cd7
SM
10696 (value_less (arg1, arg3)
10697 || value_equal (arg1, arg3))
10698 && (value_less (arg2, arg1)
10699 || value_equal (arg2, arg1)));
10700 }
4c4b4cd2
PH
10701
10702 case BINOP_IN_BOUNDS:
14f9c5c9 10703 (*pos) += 2;
fe1fe7ea
SM
10704 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10705 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10706
4c4b4cd2 10707 if (noside == EVAL_SKIP)
dda83cd7 10708 goto nosideret;
14f9c5c9 10709
4c4b4cd2 10710 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10711 {
10712 type = language_bool_type (exp->language_defn, exp->gdbarch);
10713 return value_zero (type, not_lval);
10714 }
14f9c5c9 10715
4c4b4cd2 10716 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10717
1eea4ebd
UW
10718 type = ada_index_type (value_type (arg2), tem, "range");
10719 if (!type)
10720 type = value_type (arg1);
14f9c5c9 10721
1eea4ebd
UW
10722 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10723 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10724
f44316fa
UW
10725 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10726 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10727 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10728 return
dda83cd7
SM
10729 value_from_longest (type,
10730 (value_less (arg1, arg3)
10731 || value_equal (arg1, arg3))
10732 && (value_less (arg2, arg1)
10733 || value_equal (arg2, arg1)));
4c4b4cd2
PH
10734
10735 case TERNOP_IN_RANGE:
fe1fe7ea
SM
10736 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10737 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10738 arg3 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2
PH
10739
10740 if (noside == EVAL_SKIP)
dda83cd7 10741 goto nosideret;
4c4b4cd2 10742
f44316fa
UW
10743 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10744 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10745 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10746 return
dda83cd7
SM
10747 value_from_longest (type,
10748 (value_less (arg1, arg3)
10749 || value_equal (arg1, arg3))
10750 && (value_less (arg2, arg1)
10751 || value_equal (arg2, arg1)));
4c4b4cd2
PH
10752
10753 case OP_ATR_FIRST:
10754 case OP_ATR_LAST:
10755 case OP_ATR_LENGTH:
10756 {
dda83cd7 10757 struct type *type_arg;
5b4ee69b 10758
dda83cd7
SM
10759 if (exp->elts[*pos].opcode == OP_TYPE)
10760 {
fe1fe7ea
SM
10761 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10762 arg1 = NULL;
dda83cd7
SM
10763 type_arg = check_typedef (exp->elts[pc + 2].type);
10764 }
10765 else
10766 {
fe1fe7ea
SM
10767 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10768 type_arg = NULL;
dda83cd7 10769 }
76a01679 10770
dda83cd7
SM
10771 if (exp->elts[*pos].opcode != OP_LONG)
10772 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10773 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10774 *pos += 4;
76a01679 10775
dda83cd7
SM
10776 if (noside == EVAL_SKIP)
10777 goto nosideret;
680e1bee
TT
10778 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10779 {
10780 if (type_arg == NULL)
10781 type_arg = value_type (arg1);
76a01679 10782
dda83cd7 10783 if (ada_is_constrained_packed_array_type (type_arg))
680e1bee
TT
10784 type_arg = decode_constrained_packed_array_type (type_arg);
10785
10786 if (!discrete_type_p (type_arg))
10787 {
10788 switch (op)
10789 {
10790 default: /* Should never happen. */
10791 error (_("unexpected attribute encountered"));
10792 case OP_ATR_FIRST:
10793 case OP_ATR_LAST:
10794 type_arg = ada_index_type (type_arg, tem,
10795 ada_attribute_name (op));
10796 break;
10797 case OP_ATR_LENGTH:
10798 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10799 break;
10800 }
10801 }
10802
10803 return value_zero (type_arg, not_lval);
10804 }
dda83cd7
SM
10805 else if (type_arg == NULL)
10806 {
10807 arg1 = ada_coerce_ref (arg1);
76a01679 10808
dda83cd7
SM
10809 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10810 arg1 = ada_coerce_to_simple_array (arg1);
76a01679 10811
dda83cd7 10812 if (op == OP_ATR_LENGTH)
1eea4ebd 10813 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10814 else
10815 {
10816 type = ada_index_type (value_type (arg1), tem,
10817 ada_attribute_name (op));
10818 if (type == NULL)
10819 type = builtin_type (exp->gdbarch)->builtin_int;
10820 }
76a01679 10821
dda83cd7
SM
10822 switch (op)
10823 {
10824 default: /* Should never happen. */
10825 error (_("unexpected attribute encountered"));
10826 case OP_ATR_FIRST:
10827 return value_from_longest
1eea4ebd 10828 (type, ada_array_bound (arg1, tem, 0));
dda83cd7
SM
10829 case OP_ATR_LAST:
10830 return value_from_longest
1eea4ebd 10831 (type, ada_array_bound (arg1, tem, 1));
dda83cd7
SM
10832 case OP_ATR_LENGTH:
10833 return value_from_longest
1eea4ebd 10834 (type, ada_array_length (arg1, tem));
dda83cd7
SM
10835 }
10836 }
10837 else if (discrete_type_p (type_arg))
10838 {
10839 struct type *range_type;
10840 const char *name = ada_type_name (type_arg);
10841
10842 range_type = NULL;
10843 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10844 range_type = to_fixed_range_type (type_arg, NULL);
10845 if (range_type == NULL)
10846 range_type = type_arg;
10847 switch (op)
10848 {
10849 default:
10850 error (_("unexpected attribute encountered"));
10851 case OP_ATR_FIRST:
690cc4eb 10852 return value_from_longest
43bbcdc2 10853 (range_type, ada_discrete_type_low_bound (range_type));
dda83cd7
SM
10854 case OP_ATR_LAST:
10855 return value_from_longest
43bbcdc2 10856 (range_type, ada_discrete_type_high_bound (range_type));
dda83cd7
SM
10857 case OP_ATR_LENGTH:
10858 error (_("the 'length attribute applies only to array types"));
10859 }
10860 }
10861 else if (type_arg->code () == TYPE_CODE_FLT)
10862 error (_("unimplemented type attribute"));
10863 else
10864 {
10865 LONGEST low, high;
10866
10867 if (ada_is_constrained_packed_array_type (type_arg))
10868 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10869
aa4fb036 10870 if (op == OP_ATR_LENGTH)
1eea4ebd 10871 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10872 else
10873 {
10874 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10875 if (type == NULL)
10876 type = builtin_type (exp->gdbarch)->builtin_int;
10877 }
1eea4ebd 10878
dda83cd7
SM
10879 switch (op)
10880 {
10881 default:
10882 error (_("unexpected attribute encountered"));
10883 case OP_ATR_FIRST:
10884 low = ada_array_bound_from_type (type_arg, tem, 0);
10885 return value_from_longest (type, low);
10886 case OP_ATR_LAST:
10887 high = ada_array_bound_from_type (type_arg, tem, 1);
10888 return value_from_longest (type, high);
10889 case OP_ATR_LENGTH:
10890 low = ada_array_bound_from_type (type_arg, tem, 0);
10891 high = ada_array_bound_from_type (type_arg, tem, 1);
10892 return value_from_longest (type, high - low + 1);
10893 }
10894 }
14f9c5c9
AS
10895 }
10896
4c4b4cd2 10897 case OP_ATR_TAG:
fe1fe7ea 10898 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10899 if (noside == EVAL_SKIP)
dda83cd7 10900 goto nosideret;
4c4b4cd2
PH
10901
10902 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10903 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10904
10905 return ada_value_tag (arg1);
10906
10907 case OP_ATR_MIN:
10908 case OP_ATR_MAX:
fe1fe7ea
SM
10909 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10910 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10911 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10912 if (noside == EVAL_SKIP)
dda83cd7 10913 goto nosideret;
d2e4a39e 10914 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10915 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10916 else
f44316fa
UW
10917 {
10918 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10919 return value_binop (arg1, arg2,
10920 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10921 }
14f9c5c9 10922
4c4b4cd2
PH
10923 case OP_ATR_MODULUS:
10924 {
dda83cd7 10925 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10926
fe1fe7ea
SM
10927 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10928 if (noside == EVAL_SKIP)
dda83cd7 10929 goto nosideret;
4c4b4cd2 10930
dda83cd7
SM
10931 if (!ada_is_modular_type (type_arg))
10932 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10933
dda83cd7
SM
10934 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10935 ada_modulus (type_arg));
4c4b4cd2
PH
10936 }
10937
10938
10939 case OP_ATR_POS:
fe1fe7ea
SM
10940 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10941 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 10942 if (noside == EVAL_SKIP)
dda83cd7 10943 goto nosideret;
3cb382c9
UW
10944 type = builtin_type (exp->gdbarch)->builtin_int;
10945 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10946 return value_zero (type, not_lval);
14f9c5c9 10947 else
3cb382c9 10948 return value_pos_atr (type, arg1);
14f9c5c9 10949
4c4b4cd2 10950 case OP_ATR_SIZE:
fe1fe7ea 10951 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
8c1c099f
JB
10952 type = value_type (arg1);
10953
10954 /* If the argument is a reference, then dereference its type, since
dda83cd7
SM
10955 the user is really asking for the size of the actual object,
10956 not the size of the pointer. */
78134374 10957 if (type->code () == TYPE_CODE_REF)
dda83cd7 10958 type = TYPE_TARGET_TYPE (type);
8c1c099f 10959
4c4b4cd2 10960 if (noside == EVAL_SKIP)
dda83cd7 10961 goto nosideret;
4c4b4cd2 10962 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10963 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10964 else
dda83cd7
SM
10965 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10966 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10967
10968 case OP_ATR_VAL:
fe1fe7ea
SM
10969 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10970 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10971 type = exp->elts[pc + 2].type;
14f9c5c9 10972 if (noside == EVAL_SKIP)
dda83cd7 10973 goto nosideret;
4c4b4cd2 10974 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10975 return value_zero (type, not_lval);
4c4b4cd2 10976 else
dda83cd7 10977 return value_val_atr (type, arg1);
4c4b4cd2
PH
10978
10979 case BINOP_EXP:
fe1fe7ea
SM
10980 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10981 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 10982 if (noside == EVAL_SKIP)
dda83cd7 10983 goto nosideret;
4c4b4cd2 10984 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 10985 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10986 else
f44316fa
UW
10987 {
10988 /* For integer exponentiation operations,
10989 only promote the first argument. */
10990 if (is_integral_type (value_type (arg2)))
10991 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10992 else
10993 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10994
10995 return value_binop (arg1, arg2, op);
10996 }
4c4b4cd2
PH
10997
10998 case UNOP_PLUS:
fe1fe7ea 10999 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 11000 if (noside == EVAL_SKIP)
dda83cd7 11001 goto nosideret;
4c4b4cd2 11002 else
dda83cd7 11003 return arg1;
4c4b4cd2
PH
11004
11005 case UNOP_ABS:
fe1fe7ea 11006 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
4c4b4cd2 11007 if (noside == EVAL_SKIP)
dda83cd7 11008 goto nosideret;
f44316fa 11009 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11010 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
dda83cd7 11011 return value_neg (arg1);
14f9c5c9 11012 else
dda83cd7 11013 return arg1;
14f9c5c9
AS
11014
11015 case UNOP_IND:
5ec18f2b 11016 preeval_pos = *pos;
fe1fe7ea 11017 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 11018 if (noside == EVAL_SKIP)
dda83cd7 11019 goto nosideret;
df407dfe 11020 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11021 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
11022 {
11023 if (ada_is_array_descriptor_type (type))
11024 /* GDB allows dereferencing GNAT array descriptors. */
11025 {
11026 struct type *arrType = ada_type_of_array (arg1, 0);
11027
11028 if (arrType == NULL)
11029 error (_("Attempt to dereference null array pointer."));
11030 return value_at_lazy (arrType, 0);
11031 }
11032 else if (type->code () == TYPE_CODE_PTR
11033 || type->code () == TYPE_CODE_REF
11034 /* In C you can dereference an array to get the 1st elt. */
11035 || type->code () == TYPE_CODE_ARRAY)
11036 {
11037 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11038 only be determined by inspecting the object's tag.
11039 This means that we need to evaluate completely the
11040 expression in order to get its type. */
5ec18f2b 11041
78134374
SM
11042 if ((type->code () == TYPE_CODE_REF
11043 || type->code () == TYPE_CODE_PTR)
5ec18f2b
JG
11044 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11045 {
fe1fe7ea
SM
11046 arg1
11047 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
5ec18f2b
JG
11048 type = value_type (ada_value_ind (arg1));
11049 }
11050 else
11051 {
11052 type = to_static_fixed_type
11053 (ada_aligned_type
11054 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11055 }
c1b5a1a6 11056 ada_ensure_varsize_limit (type);
dda83cd7
SM
11057 return value_zero (type, lval_memory);
11058 }
11059 else if (type->code () == TYPE_CODE_INT)
6b0d7253
JB
11060 {
11061 /* GDB allows dereferencing an int. */
11062 if (expect_type == NULL)
11063 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11064 lval_memory);
11065 else
11066 {
11067 expect_type =
11068 to_static_fixed_type (ada_aligned_type (expect_type));
11069 return value_zero (expect_type, lval_memory);
11070 }
11071 }
dda83cd7
SM
11072 else
11073 error (_("Attempt to take contents of a non-pointer value."));
11074 }
0963b4bd 11075 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11076 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11077
78134374 11078 if (type->code () == TYPE_CODE_INT)
dda83cd7
SM
11079 /* GDB allows dereferencing an int. If we were given
11080 the expect_type, then use that as the target type.
11081 Otherwise, assume that the target type is an int. */
11082 {
11083 if (expect_type != NULL)
96967637
JB
11084 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11085 arg1));
11086 else
11087 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11088 (CORE_ADDR) value_as_address (arg1));
dda83cd7 11089 }
6b0d7253 11090
4c4b4cd2 11091 if (ada_is_array_descriptor_type (type))
dda83cd7
SM
11092 /* GDB allows dereferencing GNAT array descriptors. */
11093 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11094 else
dda83cd7 11095 return ada_value_ind (arg1);
14f9c5c9
AS
11096
11097 case STRUCTOP_STRUCT:
11098 tem = longest_to_int (exp->elts[pc + 1].longconst);
11099 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11100 preeval_pos = *pos;
fe1fe7ea 11101 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
14f9c5c9 11102 if (noside == EVAL_SKIP)
dda83cd7 11103 goto nosideret;
14f9c5c9 11104 if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7
SM
11105 {
11106 struct type *type1 = value_type (arg1);
5b4ee69b 11107
dda83cd7
SM
11108 if (ada_is_tagged_type (type1, 1))
11109 {
11110 type = ada_lookup_struct_elt_type (type1,
11111 &exp->elts[pc + 2].string,
11112 1, 1);
5ec18f2b
JG
11113
11114 /* If the field is not found, check if it exists in the
11115 extension of this object's type. This means that we
11116 need to evaluate completely the expression. */
11117
dda83cd7 11118 if (type == NULL)
5ec18f2b 11119 {
fe1fe7ea
SM
11120 arg1
11121 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
5ec18f2b
JG
11122 arg1 = ada_value_struct_elt (arg1,
11123 &exp->elts[pc + 2].string,
11124 0);
11125 arg1 = unwrap_value (arg1);
11126 type = value_type (ada_to_fixed_value (arg1));
11127 }
dda83cd7
SM
11128 }
11129 else
11130 type =
11131 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11132 0);
11133
11134 return value_zero (ada_aligned_type (type), lval_memory);
11135 }
14f9c5c9 11136 else
a579cd9a
MW
11137 {
11138 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11139 arg1 = unwrap_value (arg1);
11140 return ada_to_fixed_value (arg1);
11141 }
284614f0 11142
14f9c5c9 11143 case OP_TYPE:
4c4b4cd2 11144 /* The value is not supposed to be used. This is here to make it
dda83cd7 11145 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11146 (*pos) += 2;
11147 if (noside == EVAL_SKIP)
dda83cd7 11148 goto nosideret;
14f9c5c9 11149 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
dda83cd7 11150 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11151 else
dda83cd7 11152 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11153
11154 case OP_AGGREGATE:
11155 case OP_CHOICES:
11156 case OP_OTHERS:
11157 case OP_DISCRETE_RANGE:
11158 case OP_POSITIONAL:
11159 case OP_NAME:
11160 if (noside == EVAL_NORMAL)
11161 switch (op)
11162 {
11163 case OP_NAME:
11164 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11165 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11166 case OP_AGGREGATE:
11167 error (_("Aggregates only allowed on the right of an assignment"));
11168 default:
0963b4bd
MS
11169 internal_error (__FILE__, __LINE__,
11170 _("aggregate apparently mangled"));
52ce6436
PH
11171 }
11172
11173 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11174 *pos += oplen - 1;
11175 for (tem = 0; tem < nargs; tem += 1)
11176 ada_evaluate_subexp (NULL, exp, pos, noside);
11177 goto nosideret;
14f9c5c9
AS
11178 }
11179
11180nosideret:
ced9779b 11181 return eval_skip_value (exp);
14f9c5c9 11182}
14f9c5c9 11183\f
d2e4a39e 11184
dda83cd7 11185 /* Fixed point */
14f9c5c9
AS
11186
11187/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11188 type name that encodes the 'small and 'delta information.
4c4b4cd2 11189 Otherwise, return NULL. */
14f9c5c9 11190
d2e4a39e 11191static const char *
60bd1d53 11192gnat_encoded_fixed_point_type_info (struct type *type)
14f9c5c9 11193{
d2e4a39e 11194 const char *name = ada_type_name (type);
78134374 11195 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
14f9c5c9 11196
d2e4a39e
AS
11197 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11198 {
14f9c5c9 11199 const char *tail = strstr (name, "___XF_");
5b4ee69b 11200
14f9c5c9 11201 if (tail == NULL)
dda83cd7 11202 return NULL;
d2e4a39e 11203 else
dda83cd7 11204 return tail + 5;
14f9c5c9
AS
11205 }
11206 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
60bd1d53 11207 return gnat_encoded_fixed_point_type_info (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
11208 else
11209 return NULL;
11210}
11211
4c4b4cd2 11212/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11213
11214int
b2188a06 11215ada_is_gnat_encoded_fixed_point_type (struct type *type)
14f9c5c9 11216{
60bd1d53 11217 return gnat_encoded_fixed_point_type_info (type) != NULL;
14f9c5c9
AS
11218}
11219
4c4b4cd2
PH
11220/* Return non-zero iff TYPE represents a System.Address type. */
11221
11222int
11223ada_is_system_address_type (struct type *type)
11224{
7d93a1e0 11225 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
11226}
11227
14f9c5c9 11228/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11229 type, return the target floating-point type to be used to represent
11230 of this type during internal computation. */
11231
11232static struct type *
11233ada_scaling_type (struct type *type)
11234{
11235 return builtin_type (get_type_arch (type))->builtin_long_double;
11236}
11237
11238/* Assuming that TYPE is the representation of an Ada fixed-point
11239 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11240 delta cannot be determined. */
14f9c5c9 11241
50eff16b 11242struct value *
b2188a06 11243gnat_encoded_fixed_point_delta (struct type *type)
14f9c5c9 11244{
60bd1d53 11245 const char *encoding = gnat_encoded_fixed_point_type_info (type);
50eff16b
UW
11246 struct type *scale_type = ada_scaling_type (type);
11247
11248 long long num, den;
11249
11250 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11251 return nullptr;
d2e4a39e 11252 else
50eff16b
UW
11253 return value_binop (value_from_longest (scale_type, num),
11254 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11255}
11256
b2188a06
JB
11257/* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11258 the scaling factor ('SMALL value) associated with the type. */
14f9c5c9 11259
50eff16b 11260struct value *
75f24e86 11261gnat_encoded_fixed_point_scaling_factor (struct type *type)
14f9c5c9 11262{
60bd1d53 11263 const char *encoding = gnat_encoded_fixed_point_type_info (type);
50eff16b
UW
11264 struct type *scale_type = ada_scaling_type (type);
11265
11266 long long num0, den0, num1, den1;
14f9c5c9 11267 int n;
d2e4a39e 11268
50eff16b 11269 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11270 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11271
11272 if (n < 2)
50eff16b 11273 return value_from_longest (scale_type, 1);
14f9c5c9 11274 else if (n == 4)
50eff16b
UW
11275 return value_binop (value_from_longest (scale_type, num1),
11276 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11277 else
50eff16b
UW
11278 return value_binop (value_from_longest (scale_type, num0),
11279 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11280}
11281
14f9c5c9 11282\f
d2e4a39e 11283
dda83cd7 11284 /* Range types */
14f9c5c9
AS
11285
11286/* Scan STR beginning at position K for a discriminant name, and
11287 return the value of that discriminant field of DVAL in *PX. If
11288 PNEW_K is not null, put the position of the character beyond the
11289 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11290 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11291
11292static int
108d56a4 11293scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
dda83cd7 11294 int *pnew_k)
14f9c5c9
AS
11295{
11296 static char *bound_buffer = NULL;
11297 static size_t bound_buffer_len = 0;
5da1a4d3 11298 const char *pstart, *pend, *bound;
d2e4a39e 11299 struct value *bound_val;
14f9c5c9
AS
11300
11301 if (dval == NULL || str == NULL || str[k] == '\0')
11302 return 0;
11303
5da1a4d3
SM
11304 pstart = str + k;
11305 pend = strstr (pstart, "__");
14f9c5c9
AS
11306 if (pend == NULL)
11307 {
5da1a4d3 11308 bound = pstart;
14f9c5c9
AS
11309 k += strlen (bound);
11310 }
d2e4a39e 11311 else
14f9c5c9 11312 {
5da1a4d3
SM
11313 int len = pend - pstart;
11314
11315 /* Strip __ and beyond. */
11316 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11317 strncpy (bound_buffer, pstart, len);
11318 bound_buffer[len] = '\0';
11319
14f9c5c9 11320 bound = bound_buffer;
d2e4a39e 11321 k = pend - str;
14f9c5c9 11322 }
d2e4a39e 11323
df407dfe 11324 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11325 if (bound_val == NULL)
11326 return 0;
11327
11328 *px = value_as_long (bound_val);
11329 if (pnew_k != NULL)
11330 *pnew_k = k;
11331 return 1;
11332}
11333
11334/* Value of variable named NAME in the current environment. If
11335 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11336 otherwise causes an error with message ERR_MSG. */
11337
d2e4a39e 11338static struct value *
edb0c9cb 11339get_var_value (const char *name, const char *err_msg)
14f9c5c9 11340{
b5ec771e 11341 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11342
54d343a2 11343 std::vector<struct block_symbol> syms;
b5ec771e
PA
11344 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11345 get_selected_block (0),
11346 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11347
11348 if (nsyms != 1)
11349 {
11350 if (err_msg == NULL)
dda83cd7 11351 return 0;
14f9c5c9 11352 else
dda83cd7 11353 error (("%s"), err_msg);
14f9c5c9
AS
11354 }
11355
54d343a2 11356 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11357}
d2e4a39e 11358
edb0c9cb
PA
11359/* Value of integer variable named NAME in the current environment.
11360 If no such variable is found, returns false. Otherwise, sets VALUE
11361 to the variable's value and returns true. */
4c4b4cd2 11362
edb0c9cb
PA
11363bool
11364get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11365{
4c4b4cd2 11366 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11367
14f9c5c9 11368 if (var_val == 0)
edb0c9cb
PA
11369 return false;
11370
11371 value = value_as_long (var_val);
11372 return true;
14f9c5c9 11373}
d2e4a39e 11374
14f9c5c9
AS
11375
11376/* Return a range type whose base type is that of the range type named
11377 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11378 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11379 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11380 corresponding range type from debug information; fall back to using it
11381 if symbol lookup fails. If a new type must be created, allocate it
11382 like ORIG_TYPE was. The bounds information, in general, is encoded
11383 in NAME, the base type given in the named range type. */
14f9c5c9 11384
d2e4a39e 11385static struct type *
28c85d6c 11386to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11387{
0d5cff50 11388 const char *name;
14f9c5c9 11389 struct type *base_type;
108d56a4 11390 const char *subtype_info;
14f9c5c9 11391
28c85d6c 11392 gdb_assert (raw_type != NULL);
7d93a1e0 11393 gdb_assert (raw_type->name () != NULL);
dddfab26 11394
78134374 11395 if (raw_type->code () == TYPE_CODE_RANGE)
14f9c5c9
AS
11396 base_type = TYPE_TARGET_TYPE (raw_type);
11397 else
11398 base_type = raw_type;
11399
7d93a1e0 11400 name = raw_type->name ();
14f9c5c9
AS
11401 subtype_info = strstr (name, "___XD");
11402 if (subtype_info == NULL)
690cc4eb 11403 {
43bbcdc2
PH
11404 LONGEST L = ada_discrete_type_low_bound (raw_type);
11405 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11406
690cc4eb
PH
11407 if (L < INT_MIN || U > INT_MAX)
11408 return raw_type;
11409 else
0c9c3474
SA
11410 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11411 L, U);
690cc4eb 11412 }
14f9c5c9
AS
11413 else
11414 {
11415 static char *name_buf = NULL;
11416 static size_t name_len = 0;
11417 int prefix_len = subtype_info - name;
11418 LONGEST L, U;
11419 struct type *type;
108d56a4 11420 const char *bounds_str;
14f9c5c9
AS
11421 int n;
11422
11423 GROW_VECT (name_buf, name_len, prefix_len + 5);
11424 strncpy (name_buf, name, prefix_len);
11425 name_buf[prefix_len] = '\0';
11426
11427 subtype_info += 5;
11428 bounds_str = strchr (subtype_info, '_');
11429 n = 1;
11430
d2e4a39e 11431 if (*subtype_info == 'L')
dda83cd7
SM
11432 {
11433 if (!ada_scan_number (bounds_str, n, &L, &n)
11434 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11435 return raw_type;
11436 if (bounds_str[n] == '_')
11437 n += 2;
11438 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11439 n += 1;
11440 subtype_info += 1;
11441 }
d2e4a39e 11442 else
dda83cd7
SM
11443 {
11444 strcpy (name_buf + prefix_len, "___L");
11445 if (!get_int_var_value (name_buf, L))
11446 {
11447 lim_warning (_("Unknown lower bound, using 1."));
11448 L = 1;
11449 }
11450 }
14f9c5c9 11451
d2e4a39e 11452 if (*subtype_info == 'U')
dda83cd7
SM
11453 {
11454 if (!ada_scan_number (bounds_str, n, &U, &n)
11455 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11456 return raw_type;
11457 }
d2e4a39e 11458 else
dda83cd7
SM
11459 {
11460 strcpy (name_buf + prefix_len, "___U");
11461 if (!get_int_var_value (name_buf, U))
11462 {
11463 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11464 U = L;
11465 }
11466 }
14f9c5c9 11467
0c9c3474
SA
11468 type = create_static_range_type (alloc_type_copy (raw_type),
11469 base_type, L, U);
f5a91472 11470 /* create_static_range_type alters the resulting type's length
dda83cd7
SM
11471 to match the size of the base_type, which is not what we want.
11472 Set it back to the original range type's length. */
f5a91472 11473 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d0e39ea2 11474 type->set_name (name);
14f9c5c9
AS
11475 return type;
11476 }
11477}
11478
4c4b4cd2
PH
11479/* True iff NAME is the name of a range type. */
11480
14f9c5c9 11481int
d2e4a39e 11482ada_is_range_type_name (const char *name)
14f9c5c9
AS
11483{
11484 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11485}
14f9c5c9 11486\f
d2e4a39e 11487
dda83cd7 11488 /* Modular types */
4c4b4cd2
PH
11489
11490/* True iff TYPE is an Ada modular type. */
14f9c5c9 11491
14f9c5c9 11492int
d2e4a39e 11493ada_is_modular_type (struct type *type)
14f9c5c9 11494{
18af8284 11495 struct type *subranged_type = get_base_type (type);
14f9c5c9 11496
78134374 11497 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
dda83cd7
SM
11498 && subranged_type->code () == TYPE_CODE_INT
11499 && subranged_type->is_unsigned ());
14f9c5c9
AS
11500}
11501
4c4b4cd2
PH
11502/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11503
61ee279c 11504ULONGEST
0056e4d5 11505ada_modulus (struct type *type)
14f9c5c9 11506{
5e500d33
SM
11507 const dynamic_prop &high = type->bounds ()->high;
11508
11509 if (high.kind () == PROP_CONST)
11510 return (ULONGEST) high.const_val () + 1;
11511
11512 /* If TYPE is unresolved, the high bound might be a location list. Return
11513 0, for lack of a better value to return. */
11514 return 0;
14f9c5c9 11515}
d2e4a39e 11516\f
f7f9143b
JB
11517
11518/* Ada exception catchpoint support:
11519 ---------------------------------
11520
11521 We support 3 kinds of exception catchpoints:
11522 . catchpoints on Ada exceptions
11523 . catchpoints on unhandled Ada exceptions
11524 . catchpoints on failed assertions
11525
11526 Exceptions raised during failed assertions, or unhandled exceptions
11527 could perfectly be caught with the general catchpoint on Ada exceptions.
11528 However, we can easily differentiate these two special cases, and having
11529 the option to distinguish these two cases from the rest can be useful
11530 to zero-in on certain situations.
11531
11532 Exception catchpoints are a specialized form of breakpoint,
11533 since they rely on inserting breakpoints inside known routines
11534 of the GNAT runtime. The implementation therefore uses a standard
11535 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11536 of breakpoint_ops.
11537
0259addd
JB
11538 Support in the runtime for exception catchpoints have been changed
11539 a few times already, and these changes affect the implementation
11540 of these catchpoints. In order to be able to support several
11541 variants of the runtime, we use a sniffer that will determine
28010a5d 11542 the runtime variant used by the program being debugged. */
f7f9143b 11543
82eacd52
JB
11544/* Ada's standard exceptions.
11545
11546 The Ada 83 standard also defined Numeric_Error. But there so many
11547 situations where it was unclear from the Ada 83 Reference Manual
11548 (RM) whether Constraint_Error or Numeric_Error should be raised,
11549 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11550 Interpretation saying that anytime the RM says that Numeric_Error
11551 should be raised, the implementation may raise Constraint_Error.
11552 Ada 95 went one step further and pretty much removed Numeric_Error
11553 from the list of standard exceptions (it made it a renaming of
11554 Constraint_Error, to help preserve compatibility when compiling
11555 an Ada83 compiler). As such, we do not include Numeric_Error from
11556 this list of standard exceptions. */
3d0b0fa3 11557
27087b7f 11558static const char * const standard_exc[] = {
3d0b0fa3
JB
11559 "constraint_error",
11560 "program_error",
11561 "storage_error",
11562 "tasking_error"
11563};
11564
0259addd
JB
11565typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11566
11567/* A structure that describes how to support exception catchpoints
11568 for a given executable. */
11569
11570struct exception_support_info
11571{
11572 /* The name of the symbol to break on in order to insert
11573 a catchpoint on exceptions. */
11574 const char *catch_exception_sym;
11575
11576 /* The name of the symbol to break on in order to insert
11577 a catchpoint on unhandled exceptions. */
11578 const char *catch_exception_unhandled_sym;
11579
11580 /* The name of the symbol to break on in order to insert
11581 a catchpoint on failed assertions. */
11582 const char *catch_assert_sym;
11583
9f757bf7
XR
11584 /* The name of the symbol to break on in order to insert
11585 a catchpoint on exception handling. */
11586 const char *catch_handlers_sym;
11587
0259addd
JB
11588 /* Assuming that the inferior just triggered an unhandled exception
11589 catchpoint, this function is responsible for returning the address
11590 in inferior memory where the name of that exception is stored.
11591 Return zero if the address could not be computed. */
11592 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11593};
11594
11595static CORE_ADDR ada_unhandled_exception_name_addr (void);
11596static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11597
11598/* The following exception support info structure describes how to
11599 implement exception catchpoints with the latest version of the
ca683e3a 11600 Ada runtime (as of 2019-08-??). */
0259addd
JB
11601
11602static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11603{
11604 "__gnat_debug_raise_exception", /* catch_exception_sym */
11605 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11606 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11607 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11608 ada_unhandled_exception_name_addr
11609};
11610
11611/* The following exception support info structure describes how to
11612 implement exception catchpoints with an earlier version of the
11613 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11614
11615static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11616{
11617 "__gnat_debug_raise_exception", /* catch_exception_sym */
11618 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11619 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11620 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11621 ada_unhandled_exception_name_addr
11622};
11623
11624/* The following exception support info structure describes how to
11625 implement exception catchpoints with a slightly older version
11626 of the Ada runtime. */
11627
11628static const struct exception_support_info exception_support_info_fallback =
11629{
11630 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11631 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11632 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11633 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11634 ada_unhandled_exception_name_addr_from_raise
11635};
11636
f17011e0
JB
11637/* Return nonzero if we can detect the exception support routines
11638 described in EINFO.
11639
11640 This function errors out if an abnormal situation is detected
11641 (for instance, if we find the exception support routines, but
11642 that support is found to be incomplete). */
11643
11644static int
11645ada_has_this_exception_support (const struct exception_support_info *einfo)
11646{
11647 struct symbol *sym;
11648
11649 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11650 that should be compiled with debugging information. As a result, we
11651 expect to find that symbol in the symtabs. */
11652
11653 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11654 if (sym == NULL)
a6af7abe
JB
11655 {
11656 /* Perhaps we did not find our symbol because the Ada runtime was
11657 compiled without debugging info, or simply stripped of it.
11658 It happens on some GNU/Linux distributions for instance, where
11659 users have to install a separate debug package in order to get
11660 the runtime's debugging info. In that situation, let the user
11661 know why we cannot insert an Ada exception catchpoint.
11662
11663 Note: Just for the purpose of inserting our Ada exception
11664 catchpoint, we could rely purely on the associated minimal symbol.
11665 But we would be operating in degraded mode anyway, since we are
11666 still lacking the debugging info needed later on to extract
11667 the name of the exception being raised (this name is printed in
11668 the catchpoint message, and is also used when trying to catch
11669 a specific exception). We do not handle this case for now. */
3b7344d5 11670 struct bound_minimal_symbol msym
1c8e84b0
JB
11671 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11672
3b7344d5 11673 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11674 error (_("Your Ada runtime appears to be missing some debugging "
11675 "information.\nCannot insert Ada exception catchpoint "
11676 "in this configuration."));
11677
11678 return 0;
11679 }
f17011e0
JB
11680
11681 /* Make sure that the symbol we found corresponds to a function. */
11682
11683 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11684 {
11685 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11686 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11687 return 0;
11688 }
11689
11690 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11691 if (sym == NULL)
11692 {
11693 struct bound_minimal_symbol msym
11694 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11695
11696 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11697 error (_("Your Ada runtime appears to be missing some debugging "
11698 "information.\nCannot insert Ada exception catchpoint "
11699 "in this configuration."));
11700
11701 return 0;
11702 }
11703
11704 /* Make sure that the symbol we found corresponds to a function. */
11705
11706 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11707 {
11708 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11709 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11710 return 0;
11711 }
f17011e0
JB
11712
11713 return 1;
11714}
11715
0259addd
JB
11716/* Inspect the Ada runtime and determine which exception info structure
11717 should be used to provide support for exception catchpoints.
11718
3eecfa55
JB
11719 This function will always set the per-inferior exception_info,
11720 or raise an error. */
0259addd
JB
11721
11722static void
11723ada_exception_support_info_sniffer (void)
11724{
3eecfa55 11725 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11726
11727 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11728 if (data->exception_info != NULL)
0259addd
JB
11729 return;
11730
11731 /* Check the latest (default) exception support info. */
f17011e0 11732 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11733 {
3eecfa55 11734 data->exception_info = &default_exception_support_info;
0259addd
JB
11735 return;
11736 }
11737
ca683e3a
AO
11738 /* Try the v0 exception suport info. */
11739 if (ada_has_this_exception_support (&exception_support_info_v0))
11740 {
11741 data->exception_info = &exception_support_info_v0;
11742 return;
11743 }
11744
0259addd 11745 /* Try our fallback exception suport info. */
f17011e0 11746 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11747 {
3eecfa55 11748 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11749 return;
11750 }
11751
11752 /* Sometimes, it is normal for us to not be able to find the routine
11753 we are looking for. This happens when the program is linked with
11754 the shared version of the GNAT runtime, and the program has not been
11755 started yet. Inform the user of these two possible causes if
11756 applicable. */
11757
ccefe4c4 11758 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11759 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11760
11761 /* If the symbol does not exist, then check that the program is
11762 already started, to make sure that shared libraries have been
11763 loaded. If it is not started, this may mean that the symbol is
11764 in a shared library. */
11765
e99b03dc 11766 if (inferior_ptid.pid () == 0)
0259addd
JB
11767 error (_("Unable to insert catchpoint. Try to start the program first."));
11768
11769 /* At this point, we know that we are debugging an Ada program and
11770 that the inferior has been started, but we still are not able to
0963b4bd 11771 find the run-time symbols. That can mean that we are in
0259addd
JB
11772 configurable run time mode, or that a-except as been optimized
11773 out by the linker... In any case, at this point it is not worth
11774 supporting this feature. */
11775
7dda8cff 11776 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11777}
11778
f7f9143b
JB
11779/* True iff FRAME is very likely to be that of a function that is
11780 part of the runtime system. This is all very heuristic, but is
11781 intended to be used as advice as to what frames are uninteresting
11782 to most users. */
11783
11784static int
11785is_known_support_routine (struct frame_info *frame)
11786{
692465f1 11787 enum language func_lang;
f7f9143b 11788 int i;
f35a17b5 11789 const char *fullname;
f7f9143b 11790
4ed6b5be
JB
11791 /* If this code does not have any debugging information (no symtab),
11792 This cannot be any user code. */
f7f9143b 11793
51abb421 11794 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11795 if (sal.symtab == NULL)
11796 return 1;
11797
4ed6b5be
JB
11798 /* If there is a symtab, but the associated source file cannot be
11799 located, then assume this is not user code: Selecting a frame
11800 for which we cannot display the code would not be very helpful
11801 for the user. This should also take care of case such as VxWorks
11802 where the kernel has some debugging info provided for a few units. */
f7f9143b 11803
f35a17b5
JK
11804 fullname = symtab_to_fullname (sal.symtab);
11805 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11806 return 1;
11807
85102364 11808 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11809 We also check the name of the objfile against the name of some
11810 known system libraries that sometimes come with debugging info
11811 too. */
11812
f7f9143b
JB
11813 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11814 {
11815 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11816 if (re_exec (lbasename (sal.symtab->filename)))
dda83cd7 11817 return 1;
eb822aa6 11818 if (SYMTAB_OBJFILE (sal.symtab) != NULL
dda83cd7
SM
11819 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11820 return 1;
f7f9143b
JB
11821 }
11822
4ed6b5be 11823 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11824
c6dc63a1
TT
11825 gdb::unique_xmalloc_ptr<char> func_name
11826 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11827 if (func_name == NULL)
11828 return 1;
11829
11830 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11831 {
11832 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11833 if (re_exec (func_name.get ()))
11834 return 1;
f7f9143b
JB
11835 }
11836
11837 return 0;
11838}
11839
11840/* Find the first frame that contains debugging information and that is not
11841 part of the Ada run-time, starting from FI and moving upward. */
11842
0ef643c8 11843void
f7f9143b
JB
11844ada_find_printable_frame (struct frame_info *fi)
11845{
11846 for (; fi != NULL; fi = get_prev_frame (fi))
11847 {
11848 if (!is_known_support_routine (fi))
dda83cd7
SM
11849 {
11850 select_frame (fi);
11851 break;
11852 }
f7f9143b
JB
11853 }
11854
11855}
11856
11857/* Assuming that the inferior just triggered an unhandled exception
11858 catchpoint, return the address in inferior memory where the name
11859 of the exception is stored.
11860
11861 Return zero if the address could not be computed. */
11862
11863static CORE_ADDR
11864ada_unhandled_exception_name_addr (void)
0259addd
JB
11865{
11866 return parse_and_eval_address ("e.full_name");
11867}
11868
11869/* Same as ada_unhandled_exception_name_addr, except that this function
11870 should be used when the inferior uses an older version of the runtime,
11871 where the exception name needs to be extracted from a specific frame
11872 several frames up in the callstack. */
11873
11874static CORE_ADDR
11875ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11876{
11877 int frame_level;
11878 struct frame_info *fi;
3eecfa55 11879 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11880
11881 /* To determine the name of this exception, we need to select
11882 the frame corresponding to RAISE_SYM_NAME. This frame is
11883 at least 3 levels up, so we simply skip the first 3 frames
11884 without checking the name of their associated function. */
11885 fi = get_current_frame ();
11886 for (frame_level = 0; frame_level < 3; frame_level += 1)
11887 if (fi != NULL)
11888 fi = get_prev_frame (fi);
11889
11890 while (fi != NULL)
11891 {
692465f1
JB
11892 enum language func_lang;
11893
c6dc63a1
TT
11894 gdb::unique_xmalloc_ptr<char> func_name
11895 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
11896 if (func_name != NULL)
11897 {
dda83cd7 11898 if (strcmp (func_name.get (),
55b87a52
KS
11899 data->exception_info->catch_exception_sym) == 0)
11900 break; /* We found the frame we were looking for... */
55b87a52 11901 }
fb44b1a7 11902 fi = get_prev_frame (fi);
f7f9143b
JB
11903 }
11904
11905 if (fi == NULL)
11906 return 0;
11907
11908 select_frame (fi);
11909 return parse_and_eval_address ("id.full_name");
11910}
11911
11912/* Assuming the inferior just triggered an Ada exception catchpoint
11913 (of any type), return the address in inferior memory where the name
11914 of the exception is stored, if applicable.
11915
45db7c09
PA
11916 Assumes the selected frame is the current frame.
11917
f7f9143b
JB
11918 Return zero if the address could not be computed, or if not relevant. */
11919
11920static CORE_ADDR
761269c8 11921ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
dda83cd7 11922 struct breakpoint *b)
f7f9143b 11923{
3eecfa55
JB
11924 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11925
f7f9143b
JB
11926 switch (ex)
11927 {
761269c8 11928 case ada_catch_exception:
dda83cd7
SM
11929 return (parse_and_eval_address ("e.full_name"));
11930 break;
f7f9143b 11931
761269c8 11932 case ada_catch_exception_unhandled:
dda83cd7
SM
11933 return data->exception_info->unhandled_exception_name_addr ();
11934 break;
9f757bf7
XR
11935
11936 case ada_catch_handlers:
dda83cd7 11937 return 0; /* The runtimes does not provide access to the exception
9f757bf7 11938 name. */
dda83cd7 11939 break;
9f757bf7 11940
761269c8 11941 case ada_catch_assert:
dda83cd7
SM
11942 return 0; /* Exception name is not relevant in this case. */
11943 break;
f7f9143b
JB
11944
11945 default:
dda83cd7
SM
11946 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11947 break;
f7f9143b
JB
11948 }
11949
11950 return 0; /* Should never be reached. */
11951}
11952
e547c119
JB
11953/* Assuming the inferior is stopped at an exception catchpoint,
11954 return the message which was associated to the exception, if
11955 available. Return NULL if the message could not be retrieved.
11956
e547c119
JB
11957 Note: The exception message can be associated to an exception
11958 either through the use of the Raise_Exception function, or
11959 more simply (Ada 2005 and later), via:
11960
11961 raise Exception_Name with "exception message";
11962
11963 */
11964
6f46ac85 11965static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11966ada_exception_message_1 (void)
11967{
11968 struct value *e_msg_val;
e547c119 11969 int e_msg_len;
e547c119
JB
11970
11971 /* For runtimes that support this feature, the exception message
11972 is passed as an unbounded string argument called "message". */
11973 e_msg_val = parse_and_eval ("message");
11974 if (e_msg_val == NULL)
11975 return NULL; /* Exception message not supported. */
11976
11977 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11978 gdb_assert (e_msg_val != NULL);
11979 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11980
11981 /* If the message string is empty, then treat it as if there was
11982 no exception message. */
11983 if (e_msg_len <= 0)
11984 return NULL;
11985
15f3b077
TT
11986 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11987 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11988 e_msg_len);
11989 e_msg.get ()[e_msg_len] = '\0';
11990
11991 return e_msg;
e547c119
JB
11992}
11993
11994/* Same as ada_exception_message_1, except that all exceptions are
11995 contained here (returning NULL instead). */
11996
6f46ac85 11997static gdb::unique_xmalloc_ptr<char>
e547c119
JB
11998ada_exception_message (void)
11999{
6f46ac85 12000 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12001
a70b8144 12002 try
e547c119
JB
12003 {
12004 e_msg = ada_exception_message_1 ();
12005 }
230d2906 12006 catch (const gdb_exception_error &e)
e547c119 12007 {
6f46ac85 12008 e_msg.reset (nullptr);
e547c119 12009 }
e547c119
JB
12010
12011 return e_msg;
12012}
12013
f7f9143b
JB
12014/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12015 any error that ada_exception_name_addr_1 might cause to be thrown.
12016 When an error is intercepted, a warning with the error message is printed,
12017 and zero is returned. */
12018
12019static CORE_ADDR
761269c8 12020ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
dda83cd7 12021 struct breakpoint *b)
f7f9143b 12022{
f7f9143b
JB
12023 CORE_ADDR result = 0;
12024
a70b8144 12025 try
f7f9143b
JB
12026 {
12027 result = ada_exception_name_addr_1 (ex, b);
12028 }
12029
230d2906 12030 catch (const gdb_exception_error &e)
f7f9143b 12031 {
3d6e9d23 12032 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12033 return 0;
12034 }
12035
12036 return result;
12037}
12038
cb7de75e 12039static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12040 (const char *excep_string,
12041 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12042
12043/* Ada catchpoints.
12044
12045 In the case of catchpoints on Ada exceptions, the catchpoint will
12046 stop the target on every exception the program throws. When a user
12047 specifies the name of a specific exception, we translate this
12048 request into a condition expression (in text form), and then parse
12049 it into an expression stored in each of the catchpoint's locations.
12050 We then use this condition to check whether the exception that was
12051 raised is the one the user is interested in. If not, then the
12052 target is resumed again. We store the name of the requested
12053 exception, in order to be able to re-set the condition expression
12054 when symbols change. */
12055
12056/* An instance of this type is used to represent an Ada catchpoint
5625a286 12057 breakpoint location. */
28010a5d 12058
5625a286 12059class ada_catchpoint_location : public bp_location
28010a5d 12060{
5625a286 12061public:
5f486660 12062 ada_catchpoint_location (breakpoint *owner)
f06f1252 12063 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12064 {}
28010a5d
PA
12065
12066 /* The condition that checks whether the exception that was raised
12067 is the specific exception the user specified on catchpoint
12068 creation. */
4d01a485 12069 expression_up excep_cond_expr;
28010a5d
PA
12070};
12071
c1fc2657 12072/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12073
c1fc2657 12074struct ada_catchpoint : public breakpoint
28010a5d 12075{
37f6a7f4
TT
12076 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12077 : m_kind (kind)
12078 {
12079 }
12080
28010a5d 12081 /* The name of the specific exception the user specified. */
bc18fbb5 12082 std::string excep_string;
37f6a7f4
TT
12083
12084 /* What kind of catchpoint this is. */
12085 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12086};
12087
12088/* Parse the exception condition string in the context of each of the
12089 catchpoint's locations, and store them for later evaluation. */
12090
12091static void
9f757bf7 12092create_excep_cond_exprs (struct ada_catchpoint *c,
dda83cd7 12093 enum ada_exception_catchpoint_kind ex)
28010a5d 12094{
fccf9de1
TT
12095 struct bp_location *bl;
12096
28010a5d 12097 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12098 if (c->excep_string.empty ())
28010a5d
PA
12099 return;
12100
12101 /* Same if there are no locations... */
c1fc2657 12102 if (c->loc == NULL)
28010a5d
PA
12103 return;
12104
fccf9de1
TT
12105 /* Compute the condition expression in text form, from the specific
12106 expection we want to catch. */
12107 std::string cond_string
12108 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12109
fccf9de1
TT
12110 /* Iterate over all the catchpoint's locations, and parse an
12111 expression for each. */
12112 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12113 {
12114 struct ada_catchpoint_location *ada_loc
fccf9de1 12115 = (struct ada_catchpoint_location *) bl;
4d01a485 12116 expression_up exp;
28010a5d 12117
fccf9de1 12118 if (!bl->shlib_disabled)
28010a5d 12119 {
bbc13ae3 12120 const char *s;
28010a5d 12121
cb7de75e 12122 s = cond_string.c_str ();
a70b8144 12123 try
28010a5d 12124 {
fccf9de1
TT
12125 exp = parse_exp_1 (&s, bl->address,
12126 block_for_pc (bl->address),
036e657b 12127 0);
28010a5d 12128 }
230d2906 12129 catch (const gdb_exception_error &e)
849f2b52
JB
12130 {
12131 warning (_("failed to reevaluate internal exception condition "
12132 "for catchpoint %d: %s"),
3d6e9d23 12133 c->number, e.what ());
849f2b52 12134 }
28010a5d
PA
12135 }
12136
b22e99fd 12137 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12138 }
28010a5d
PA
12139}
12140
28010a5d
PA
12141/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12142 structure for all exception catchpoint kinds. */
12143
12144static struct bp_location *
37f6a7f4 12145allocate_location_exception (struct breakpoint *self)
28010a5d 12146{
5f486660 12147 return new ada_catchpoint_location (self);
28010a5d
PA
12148}
12149
12150/* Implement the RE_SET method in the breakpoint_ops structure for all
12151 exception catchpoint kinds. */
12152
12153static void
37f6a7f4 12154re_set_exception (struct breakpoint *b)
28010a5d
PA
12155{
12156 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12157
12158 /* Call the base class's method. This updates the catchpoint's
12159 locations. */
2060206e 12160 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12161
12162 /* Reparse the exception conditional expressions. One for each
12163 location. */
37f6a7f4 12164 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12165}
12166
12167/* Returns true if we should stop for this breakpoint hit. If the
12168 user specified a specific exception, we only want to cause a stop
12169 if the program thrown that exception. */
12170
12171static int
12172should_stop_exception (const struct bp_location *bl)
12173{
12174 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12175 const struct ada_catchpoint_location *ada_loc
12176 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12177 int stop;
12178
37f6a7f4
TT
12179 struct internalvar *var = lookup_internalvar ("_ada_exception");
12180 if (c->m_kind == ada_catch_assert)
12181 clear_internalvar (var);
12182 else
12183 {
12184 try
12185 {
12186 const char *expr;
12187
12188 if (c->m_kind == ada_catch_handlers)
12189 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12190 ".all.occurrence.id");
12191 else
12192 expr = "e";
12193
12194 struct value *exc = parse_and_eval (expr);
12195 set_internalvar (var, exc);
12196 }
12197 catch (const gdb_exception_error &ex)
12198 {
12199 clear_internalvar (var);
12200 }
12201 }
12202
28010a5d 12203 /* With no specific exception, should always stop. */
bc18fbb5 12204 if (c->excep_string.empty ())
28010a5d
PA
12205 return 1;
12206
12207 if (ada_loc->excep_cond_expr == NULL)
12208 {
12209 /* We will have a NULL expression if back when we were creating
12210 the expressions, this location's had failed to parse. */
12211 return 1;
12212 }
12213
12214 stop = 1;
a70b8144 12215 try
28010a5d
PA
12216 {
12217 struct value *mark;
12218
12219 mark = value_mark ();
4d01a485 12220 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12221 value_free_to_mark (mark);
12222 }
230d2906 12223 catch (const gdb_exception &ex)
492d29ea
PA
12224 {
12225 exception_fprintf (gdb_stderr, ex,
12226 _("Error in testing exception condition:\n"));
12227 }
492d29ea 12228
28010a5d
PA
12229 return stop;
12230}
12231
12232/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12233 for all exception catchpoint kinds. */
12234
12235static void
37f6a7f4 12236check_status_exception (bpstat bs)
28010a5d
PA
12237{
12238 bs->stop = should_stop_exception (bs->bp_location_at);
12239}
12240
f7f9143b
JB
12241/* Implement the PRINT_IT method in the breakpoint_ops structure
12242 for all exception catchpoint kinds. */
12243
12244static enum print_stop_action
37f6a7f4 12245print_it_exception (bpstat bs)
f7f9143b 12246{
79a45e25 12247 struct ui_out *uiout = current_uiout;
348d480f
PA
12248 struct breakpoint *b = bs->breakpoint_at;
12249
956a9fb9 12250 annotate_catchpoint (b->number);
f7f9143b 12251
112e8700 12252 if (uiout->is_mi_like_p ())
f7f9143b 12253 {
112e8700 12254 uiout->field_string ("reason",
956a9fb9 12255 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12256 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12257 }
12258
112e8700
SM
12259 uiout->text (b->disposition == disp_del
12260 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12261 uiout->field_signed ("bkptno", b->number);
112e8700 12262 uiout->text (", ");
f7f9143b 12263
45db7c09
PA
12264 /* ada_exception_name_addr relies on the selected frame being the
12265 current frame. Need to do this here because this function may be
12266 called more than once when printing a stop, and below, we'll
12267 select the first frame past the Ada run-time (see
12268 ada_find_printable_frame). */
12269 select_frame (get_current_frame ());
12270
37f6a7f4
TT
12271 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12272 switch (c->m_kind)
f7f9143b 12273 {
761269c8
JB
12274 case ada_catch_exception:
12275 case ada_catch_exception_unhandled:
9f757bf7 12276 case ada_catch_handlers:
956a9fb9 12277 {
37f6a7f4 12278 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12279 char exception_name[256];
12280
12281 if (addr != 0)
12282 {
c714b426
PA
12283 read_memory (addr, (gdb_byte *) exception_name,
12284 sizeof (exception_name) - 1);
956a9fb9
JB
12285 exception_name [sizeof (exception_name) - 1] = '\0';
12286 }
12287 else
12288 {
12289 /* For some reason, we were unable to read the exception
12290 name. This could happen if the Runtime was compiled
12291 without debugging info, for instance. In that case,
12292 just replace the exception name by the generic string
12293 "exception" - it will read as "an exception" in the
12294 notification we are about to print. */
967cff16 12295 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12296 }
12297 /* In the case of unhandled exception breakpoints, we print
12298 the exception name as "unhandled EXCEPTION_NAME", to make
12299 it clearer to the user which kind of catchpoint just got
12300 hit. We used ui_out_text to make sure that this extra
12301 info does not pollute the exception name in the MI case. */
37f6a7f4 12302 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12303 uiout->text ("unhandled ");
12304 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12305 }
12306 break;
761269c8 12307 case ada_catch_assert:
956a9fb9
JB
12308 /* In this case, the name of the exception is not really
12309 important. Just print "failed assertion" to make it clearer
12310 that his program just hit an assertion-failure catchpoint.
12311 We used ui_out_text because this info does not belong in
12312 the MI output. */
112e8700 12313 uiout->text ("failed assertion");
956a9fb9 12314 break;
f7f9143b 12315 }
e547c119 12316
6f46ac85 12317 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12318 if (exception_message != NULL)
12319 {
e547c119 12320 uiout->text (" (");
6f46ac85 12321 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12322 uiout->text (")");
e547c119
JB
12323 }
12324
112e8700 12325 uiout->text (" at ");
956a9fb9 12326 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12327
12328 return PRINT_SRC_AND_LOC;
12329}
12330
12331/* Implement the PRINT_ONE method in the breakpoint_ops structure
12332 for all exception catchpoint kinds. */
12333
12334static void
37f6a7f4 12335print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12336{
79a45e25 12337 struct ui_out *uiout = current_uiout;
28010a5d 12338 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12339 struct value_print_options opts;
12340
12341 get_user_print_options (&opts);
f06f1252 12342
79a45b7d 12343 if (opts.addressprint)
f06f1252 12344 uiout->field_skip ("addr");
f7f9143b
JB
12345
12346 annotate_field (5);
37f6a7f4 12347 switch (c->m_kind)
f7f9143b 12348 {
761269c8 12349 case ada_catch_exception:
dda83cd7
SM
12350 if (!c->excep_string.empty ())
12351 {
bc18fbb5
TT
12352 std::string msg = string_printf (_("`%s' Ada exception"),
12353 c->excep_string.c_str ());
28010a5d 12354
dda83cd7
SM
12355 uiout->field_string ("what", msg);
12356 }
12357 else
12358 uiout->field_string ("what", "all Ada exceptions");
12359
12360 break;
f7f9143b 12361
761269c8 12362 case ada_catch_exception_unhandled:
dda83cd7
SM
12363 uiout->field_string ("what", "unhandled Ada exceptions");
12364 break;
f7f9143b 12365
9f757bf7 12366 case ada_catch_handlers:
dda83cd7
SM
12367 if (!c->excep_string.empty ())
12368 {
9f757bf7
XR
12369 uiout->field_fmt ("what",
12370 _("`%s' Ada exception handlers"),
bc18fbb5 12371 c->excep_string.c_str ());
dda83cd7
SM
12372 }
12373 else
9f757bf7 12374 uiout->field_string ("what", "all Ada exceptions handlers");
dda83cd7 12375 break;
9f757bf7 12376
761269c8 12377 case ada_catch_assert:
dda83cd7
SM
12378 uiout->field_string ("what", "failed Ada assertions");
12379 break;
f7f9143b
JB
12380
12381 default:
dda83cd7
SM
12382 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12383 break;
f7f9143b
JB
12384 }
12385}
12386
12387/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12388 for all exception catchpoint kinds. */
12389
12390static void
37f6a7f4 12391print_mention_exception (struct breakpoint *b)
f7f9143b 12392{
28010a5d 12393 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12394 struct ui_out *uiout = current_uiout;
28010a5d 12395
112e8700 12396 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
dda83cd7 12397 : _("Catchpoint "));
381befee 12398 uiout->field_signed ("bkptno", b->number);
112e8700 12399 uiout->text (": ");
00eb2c4a 12400
37f6a7f4 12401 switch (c->m_kind)
f7f9143b 12402 {
761269c8 12403 case ada_catch_exception:
dda83cd7 12404 if (!c->excep_string.empty ())
00eb2c4a 12405 {
862d101a 12406 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12407 c->excep_string.c_str ());
862d101a 12408 uiout->text (info.c_str ());
00eb2c4a 12409 }
dda83cd7
SM
12410 else
12411 uiout->text (_("all Ada exceptions"));
12412 break;
f7f9143b 12413
761269c8 12414 case ada_catch_exception_unhandled:
dda83cd7
SM
12415 uiout->text (_("unhandled Ada exceptions"));
12416 break;
9f757bf7
XR
12417
12418 case ada_catch_handlers:
dda83cd7 12419 if (!c->excep_string.empty ())
9f757bf7
XR
12420 {
12421 std::string info
12422 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12423 c->excep_string.c_str ());
9f757bf7
XR
12424 uiout->text (info.c_str ());
12425 }
dda83cd7
SM
12426 else
12427 uiout->text (_("all Ada exceptions handlers"));
12428 break;
9f757bf7 12429
761269c8 12430 case ada_catch_assert:
dda83cd7
SM
12431 uiout->text (_("failed Ada assertions"));
12432 break;
f7f9143b
JB
12433
12434 default:
dda83cd7
SM
12435 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12436 break;
f7f9143b
JB
12437 }
12438}
12439
6149aea9
PA
12440/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12441 for all exception catchpoint kinds. */
12442
12443static void
37f6a7f4 12444print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12445{
28010a5d
PA
12446 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12447
37f6a7f4 12448 switch (c->m_kind)
6149aea9 12449 {
761269c8 12450 case ada_catch_exception:
6149aea9 12451 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12452 if (!c->excep_string.empty ())
12453 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12454 break;
12455
761269c8 12456 case ada_catch_exception_unhandled:
78076abc 12457 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12458 break;
12459
9f757bf7
XR
12460 case ada_catch_handlers:
12461 fprintf_filtered (fp, "catch handlers");
12462 break;
12463
761269c8 12464 case ada_catch_assert:
6149aea9
PA
12465 fprintf_filtered (fp, "catch assert");
12466 break;
12467
12468 default:
12469 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12470 }
d9b3f62e 12471 print_recreate_thread (b, fp);
6149aea9
PA
12472}
12473
37f6a7f4 12474/* Virtual tables for various breakpoint types. */
2060206e 12475static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12476static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12477static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12478static struct breakpoint_ops catch_handlers_breakpoint_ops;
12479
f06f1252
TT
12480/* See ada-lang.h. */
12481
12482bool
12483is_ada_exception_catchpoint (breakpoint *bp)
12484{
12485 return (bp->ops == &catch_exception_breakpoint_ops
12486 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12487 || bp->ops == &catch_assert_breakpoint_ops
12488 || bp->ops == &catch_handlers_breakpoint_ops);
12489}
12490
f7f9143b
JB
12491/* Split the arguments specified in a "catch exception" command.
12492 Set EX to the appropriate catchpoint type.
28010a5d 12493 Set EXCEP_STRING to the name of the specific exception if
5845583d 12494 specified by the user.
9f757bf7
XR
12495 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12496 "catch handlers" command. False otherwise.
5845583d
JB
12497 If a condition is found at the end of the arguments, the condition
12498 expression is stored in COND_STRING (memory must be deallocated
12499 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12500
12501static void
a121b7c1 12502catch_ada_exception_command_split (const char *args,
9f757bf7 12503 bool is_catch_handlers_cmd,
dda83cd7 12504 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12505 std::string *excep_string,
12506 std::string *cond_string)
f7f9143b 12507{
bc18fbb5 12508 std::string exception_name;
f7f9143b 12509
bc18fbb5
TT
12510 exception_name = extract_arg (&args);
12511 if (exception_name == "if")
5845583d
JB
12512 {
12513 /* This is not an exception name; this is the start of a condition
12514 expression for a catchpoint on all exceptions. So, "un-get"
12515 this token, and set exception_name to NULL. */
bc18fbb5 12516 exception_name.clear ();
5845583d
JB
12517 args -= 2;
12518 }
f7f9143b 12519
5845583d 12520 /* Check to see if we have a condition. */
f7f9143b 12521
f1735a53 12522 args = skip_spaces (args);
61012eef 12523 if (startswith (args, "if")
5845583d
JB
12524 && (isspace (args[2]) || args[2] == '\0'))
12525 {
12526 args += 2;
f1735a53 12527 args = skip_spaces (args);
5845583d
JB
12528
12529 if (args[0] == '\0')
dda83cd7 12530 error (_("Condition missing after `if' keyword"));
bc18fbb5 12531 *cond_string = args;
5845583d
JB
12532
12533 args += strlen (args);
12534 }
12535
12536 /* Check that we do not have any more arguments. Anything else
12537 is unexpected. */
f7f9143b
JB
12538
12539 if (args[0] != '\0')
12540 error (_("Junk at end of expression"));
12541
9f757bf7
XR
12542 if (is_catch_handlers_cmd)
12543 {
12544 /* Catch handling of exceptions. */
12545 *ex = ada_catch_handlers;
12546 *excep_string = exception_name;
12547 }
bc18fbb5 12548 else if (exception_name.empty ())
f7f9143b
JB
12549 {
12550 /* Catch all exceptions. */
761269c8 12551 *ex = ada_catch_exception;
bc18fbb5 12552 excep_string->clear ();
f7f9143b 12553 }
bc18fbb5 12554 else if (exception_name == "unhandled")
f7f9143b
JB
12555 {
12556 /* Catch unhandled exceptions. */
761269c8 12557 *ex = ada_catch_exception_unhandled;
bc18fbb5 12558 excep_string->clear ();
f7f9143b
JB
12559 }
12560 else
12561 {
12562 /* Catch a specific exception. */
761269c8 12563 *ex = ada_catch_exception;
28010a5d 12564 *excep_string = exception_name;
f7f9143b
JB
12565 }
12566}
12567
12568/* Return the name of the symbol on which we should break in order to
12569 implement a catchpoint of the EX kind. */
12570
12571static const char *
761269c8 12572ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12573{
3eecfa55
JB
12574 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12575
12576 gdb_assert (data->exception_info != NULL);
0259addd 12577
f7f9143b
JB
12578 switch (ex)
12579 {
761269c8 12580 case ada_catch_exception:
dda83cd7
SM
12581 return (data->exception_info->catch_exception_sym);
12582 break;
761269c8 12583 case ada_catch_exception_unhandled:
dda83cd7
SM
12584 return (data->exception_info->catch_exception_unhandled_sym);
12585 break;
761269c8 12586 case ada_catch_assert:
dda83cd7
SM
12587 return (data->exception_info->catch_assert_sym);
12588 break;
9f757bf7 12589 case ada_catch_handlers:
dda83cd7
SM
12590 return (data->exception_info->catch_handlers_sym);
12591 break;
f7f9143b 12592 default:
dda83cd7
SM
12593 internal_error (__FILE__, __LINE__,
12594 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12595 }
12596}
12597
12598/* Return the breakpoint ops "virtual table" used for catchpoints
12599 of the EX kind. */
12600
c0a91b2b 12601static const struct breakpoint_ops *
761269c8 12602ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12603{
12604 switch (ex)
12605 {
761269c8 12606 case ada_catch_exception:
dda83cd7
SM
12607 return (&catch_exception_breakpoint_ops);
12608 break;
761269c8 12609 case ada_catch_exception_unhandled:
dda83cd7
SM
12610 return (&catch_exception_unhandled_breakpoint_ops);
12611 break;
761269c8 12612 case ada_catch_assert:
dda83cd7
SM
12613 return (&catch_assert_breakpoint_ops);
12614 break;
9f757bf7 12615 case ada_catch_handlers:
dda83cd7
SM
12616 return (&catch_handlers_breakpoint_ops);
12617 break;
f7f9143b 12618 default:
dda83cd7
SM
12619 internal_error (__FILE__, __LINE__,
12620 _("unexpected catchpoint kind (%d)"), ex);
f7f9143b
JB
12621 }
12622}
12623
12624/* Return the condition that will be used to match the current exception
12625 being raised with the exception that the user wants to catch. This
12626 assumes that this condition is used when the inferior just triggered
12627 an exception catchpoint.
cb7de75e 12628 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12629
cb7de75e 12630static std::string
9f757bf7 12631ada_exception_catchpoint_cond_string (const char *excep_string,
dda83cd7 12632 enum ada_exception_catchpoint_kind ex)
f7f9143b 12633{
3d0b0fa3 12634 int i;
fccf9de1 12635 bool is_standard_exc = false;
cb7de75e 12636 std::string result;
9f757bf7
XR
12637
12638 if (ex == ada_catch_handlers)
12639 {
12640 /* For exception handlers catchpoints, the condition string does
dda83cd7 12641 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12642 result = ("long_integer (GNAT_GCC_exception_Access"
12643 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12644 }
12645 else
fccf9de1 12646 result = "long_integer (e)";
3d0b0fa3 12647
0963b4bd 12648 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12649 runtime units that have been compiled without debugging info; if
28010a5d 12650 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12651 exception (e.g. "constraint_error") then, during the evaluation
12652 of the condition expression, the symbol lookup on this name would
0963b4bd 12653 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12654 may then be set only on user-defined exceptions which have the
12655 same not-fully-qualified name (e.g. my_package.constraint_error).
12656
12657 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12658 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12659 exception constraint_error" is rewritten into "catch exception
12660 standard.constraint_error".
12661
85102364 12662 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12663 the inferior program, then the only way to specify this exception as a
12664 breakpoint condition is to use its fully-qualified named:
fccf9de1 12665 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12666
12667 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12668 {
28010a5d 12669 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12670 {
fccf9de1 12671 is_standard_exc = true;
9f757bf7 12672 break;
3d0b0fa3
JB
12673 }
12674 }
9f757bf7 12675
fccf9de1
TT
12676 result += " = ";
12677
12678 if (is_standard_exc)
12679 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12680 else
12681 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12682
9f757bf7 12683 return result;
f7f9143b
JB
12684}
12685
12686/* Return the symtab_and_line that should be used to insert an exception
12687 catchpoint of the TYPE kind.
12688
28010a5d
PA
12689 ADDR_STRING returns the name of the function where the real
12690 breakpoint that implements the catchpoints is set, depending on the
12691 type of catchpoint we need to create. */
f7f9143b
JB
12692
12693static struct symtab_and_line
bc18fbb5 12694ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12695 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12696{
12697 const char *sym_name;
12698 struct symbol *sym;
f7f9143b 12699
0259addd
JB
12700 /* First, find out which exception support info to use. */
12701 ada_exception_support_info_sniffer ();
12702
12703 /* Then lookup the function on which we will break in order to catch
f7f9143b 12704 the Ada exceptions requested by the user. */
f7f9143b
JB
12705 sym_name = ada_exception_sym_name (ex);
12706 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12707
57aff202
JB
12708 if (sym == NULL)
12709 error (_("Catchpoint symbol not found: %s"), sym_name);
12710
12711 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12712 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12713
12714 /* Set ADDR_STRING. */
cc12f4a8 12715 *addr_string = sym_name;
f7f9143b 12716
f7f9143b 12717 /* Set OPS. */
4b9eee8c 12718 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12719
f17011e0 12720 return find_function_start_sal (sym, 1);
f7f9143b
JB
12721}
12722
b4a5b78b 12723/* Create an Ada exception catchpoint.
f7f9143b 12724
b4a5b78b 12725 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12726
bc18fbb5 12727 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12728 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12729 of the exception to which this catchpoint applies.
2df4d1d5 12730
bc18fbb5 12731 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12732
b4a5b78b
JB
12733 TEMPFLAG, if nonzero, means that the underlying breakpoint
12734 should be temporary.
28010a5d 12735
b4a5b78b 12736 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12737
349774ef 12738void
28010a5d 12739create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12740 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12741 const std::string &excep_string,
56ecd069 12742 const std::string &cond_string,
28010a5d 12743 int tempflag,
349774ef 12744 int disabled,
28010a5d
PA
12745 int from_tty)
12746{
cc12f4a8 12747 std::string addr_string;
b4a5b78b 12748 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12749 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12750
37f6a7f4 12751 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12752 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12753 ops, tempflag, disabled, from_tty);
28010a5d 12754 c->excep_string = excep_string;
9f757bf7 12755 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069 12756 if (!cond_string.empty ())
733d554a 12757 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
b270e6f9 12758 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12759}
12760
9ac4176b
PA
12761/* Implement the "catch exception" command. */
12762
12763static void
eb4c3f4a 12764catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12765 struct cmd_list_element *command)
12766{
a121b7c1 12767 const char *arg = arg_entry;
9ac4176b
PA
12768 struct gdbarch *gdbarch = get_current_arch ();
12769 int tempflag;
761269c8 12770 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12771 std::string excep_string;
56ecd069 12772 std::string cond_string;
9ac4176b
PA
12773
12774 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12775
12776 if (!arg)
12777 arg = "";
9f757bf7 12778 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12779 &cond_string);
9f757bf7
XR
12780 create_ada_exception_catchpoint (gdbarch, ex_kind,
12781 excep_string, cond_string,
12782 tempflag, 1 /* enabled */,
12783 from_tty);
12784}
12785
12786/* Implement the "catch handlers" command. */
12787
12788static void
12789catch_ada_handlers_command (const char *arg_entry, int from_tty,
12790 struct cmd_list_element *command)
12791{
12792 const char *arg = arg_entry;
12793 struct gdbarch *gdbarch = get_current_arch ();
12794 int tempflag;
12795 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12796 std::string excep_string;
56ecd069 12797 std::string cond_string;
9f757bf7
XR
12798
12799 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12800
12801 if (!arg)
12802 arg = "";
12803 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12804 &cond_string);
b4a5b78b
JB
12805 create_ada_exception_catchpoint (gdbarch, ex_kind,
12806 excep_string, cond_string,
349774ef
JB
12807 tempflag, 1 /* enabled */,
12808 from_tty);
9ac4176b
PA
12809}
12810
71bed2db
TT
12811/* Completion function for the Ada "catch" commands. */
12812
12813static void
12814catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12815 const char *text, const char *word)
12816{
12817 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12818
12819 for (const ada_exc_info &info : exceptions)
12820 {
12821 if (startswith (info.name, word))
b02f78f9 12822 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12823 }
12824}
12825
b4a5b78b 12826/* Split the arguments specified in a "catch assert" command.
5845583d 12827
b4a5b78b
JB
12828 ARGS contains the command's arguments (or the empty string if
12829 no arguments were passed).
5845583d
JB
12830
12831 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12832 (the memory needs to be deallocated after use). */
5845583d 12833
b4a5b78b 12834static void
56ecd069 12835catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12836{
f1735a53 12837 args = skip_spaces (args);
f7f9143b 12838
5845583d 12839 /* Check whether a condition was provided. */
61012eef 12840 if (startswith (args, "if")
5845583d 12841 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12842 {
5845583d 12843 args += 2;
f1735a53 12844 args = skip_spaces (args);
5845583d 12845 if (args[0] == '\0')
dda83cd7 12846 error (_("condition missing after `if' keyword"));
56ecd069 12847 cond_string.assign (args);
f7f9143b
JB
12848 }
12849
5845583d
JB
12850 /* Otherwise, there should be no other argument at the end of
12851 the command. */
12852 else if (args[0] != '\0')
12853 error (_("Junk at end of arguments."));
f7f9143b
JB
12854}
12855
9ac4176b
PA
12856/* Implement the "catch assert" command. */
12857
12858static void
eb4c3f4a 12859catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12860 struct cmd_list_element *command)
12861{
a121b7c1 12862 const char *arg = arg_entry;
9ac4176b
PA
12863 struct gdbarch *gdbarch = get_current_arch ();
12864 int tempflag;
56ecd069 12865 std::string cond_string;
9ac4176b
PA
12866
12867 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12868
12869 if (!arg)
12870 arg = "";
56ecd069 12871 catch_ada_assert_command_split (arg, cond_string);
761269c8 12872 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 12873 "", cond_string,
349774ef
JB
12874 tempflag, 1 /* enabled */,
12875 from_tty);
9ac4176b 12876}
778865d3
JB
12877
12878/* Return non-zero if the symbol SYM is an Ada exception object. */
12879
12880static int
12881ada_is_exception_sym (struct symbol *sym)
12882{
7d93a1e0 12883 const char *type_name = SYMBOL_TYPE (sym)->name ();
778865d3
JB
12884
12885 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
dda83cd7
SM
12886 && SYMBOL_CLASS (sym) != LOC_BLOCK
12887 && SYMBOL_CLASS (sym) != LOC_CONST
12888 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12889 && type_name != NULL && strcmp (type_name, "exception") == 0);
778865d3
JB
12890}
12891
12892/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12893 Ada exception object. This matches all exceptions except the ones
12894 defined by the Ada language. */
12895
12896static int
12897ada_is_non_standard_exception_sym (struct symbol *sym)
12898{
12899 int i;
12900
12901 if (!ada_is_exception_sym (sym))
12902 return 0;
12903
12904 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 12905 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
12906 return 0; /* A standard exception. */
12907
12908 /* Numeric_Error is also a standard exception, so exclude it.
12909 See the STANDARD_EXC description for more details as to why
12910 this exception is not listed in that array. */
987012b8 12911 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
12912 return 0;
12913
12914 return 1;
12915}
12916
ab816a27 12917/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
12918 objects.
12919
12920 The comparison is determined first by exception name, and then
12921 by exception address. */
12922
ab816a27 12923bool
cc536b21 12924ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 12925{
778865d3
JB
12926 int result;
12927
ab816a27
TT
12928 result = strcmp (name, other.name);
12929 if (result < 0)
12930 return true;
12931 if (result == 0 && addr < other.addr)
12932 return true;
12933 return false;
12934}
778865d3 12935
ab816a27 12936bool
cc536b21 12937ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
12938{
12939 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
12940}
12941
12942/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12943 routine, but keeping the first SKIP elements untouched.
12944
12945 All duplicates are also removed. */
12946
12947static void
ab816a27 12948sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
12949 int skip)
12950{
ab816a27
TT
12951 std::sort (exceptions->begin () + skip, exceptions->end ());
12952 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12953 exceptions->end ());
778865d3
JB
12954}
12955
778865d3
JB
12956/* Add all exceptions defined by the Ada standard whose name match
12957 a regular expression.
12958
12959 If PREG is not NULL, then this regexp_t object is used to
12960 perform the symbol name matching. Otherwise, no name-based
12961 filtering is performed.
12962
12963 EXCEPTIONS is a vector of exceptions to which matching exceptions
12964 gets pushed. */
12965
12966static void
2d7cc5c7 12967ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 12968 std::vector<ada_exc_info> *exceptions)
778865d3
JB
12969{
12970 int i;
12971
12972 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12973 {
12974 if (preg == NULL
2d7cc5c7 12975 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
12976 {
12977 struct bound_minimal_symbol msymbol
12978 = ada_lookup_simple_minsym (standard_exc[i]);
12979
12980 if (msymbol.minsym != NULL)
12981 {
12982 struct ada_exc_info info
77e371c0 12983 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 12984
ab816a27 12985 exceptions->push_back (info);
778865d3
JB
12986 }
12987 }
12988 }
12989}
12990
12991/* Add all Ada exceptions defined locally and accessible from the given
12992 FRAME.
12993
12994 If PREG is not NULL, then this regexp_t object is used to
12995 perform the symbol name matching. Otherwise, no name-based
12996 filtering is performed.
12997
12998 EXCEPTIONS is a vector of exceptions to which matching exceptions
12999 gets pushed. */
13000
13001static void
2d7cc5c7
PA
13002ada_add_exceptions_from_frame (compiled_regex *preg,
13003 struct frame_info *frame,
ab816a27 13004 std::vector<ada_exc_info> *exceptions)
778865d3 13005{
3977b71f 13006 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13007
13008 while (block != 0)
13009 {
13010 struct block_iterator iter;
13011 struct symbol *sym;
13012
13013 ALL_BLOCK_SYMBOLS (block, iter, sym)
13014 {
13015 switch (SYMBOL_CLASS (sym))
13016 {
13017 case LOC_TYPEDEF:
13018 case LOC_BLOCK:
13019 case LOC_CONST:
13020 break;
13021 default:
13022 if (ada_is_exception_sym (sym))
13023 {
987012b8 13024 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
13025 SYMBOL_VALUE_ADDRESS (sym)};
13026
ab816a27 13027 exceptions->push_back (info);
778865d3
JB
13028 }
13029 }
13030 }
13031 if (BLOCK_FUNCTION (block) != NULL)
13032 break;
13033 block = BLOCK_SUPERBLOCK (block);
13034 }
13035}
13036
14bc53a8
PA
13037/* Return true if NAME matches PREG or if PREG is NULL. */
13038
13039static bool
2d7cc5c7 13040name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13041{
13042 return (preg == NULL
f945dedf 13043 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13044}
13045
778865d3
JB
13046/* Add all exceptions defined globally whose name name match
13047 a regular expression, excluding standard exceptions.
13048
13049 The reason we exclude standard exceptions is that they need
13050 to be handled separately: Standard exceptions are defined inside
13051 a runtime unit which is normally not compiled with debugging info,
13052 and thus usually do not show up in our symbol search. However,
13053 if the unit was in fact built with debugging info, we need to
13054 exclude them because they would duplicate the entry we found
13055 during the special loop that specifically searches for those
13056 standard exceptions.
13057
13058 If PREG is not NULL, then this regexp_t object is used to
13059 perform the symbol name matching. Otherwise, no name-based
13060 filtering is performed.
13061
13062 EXCEPTIONS is a vector of exceptions to which matching exceptions
13063 gets pushed. */
13064
13065static void
2d7cc5c7 13066ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13067 std::vector<ada_exc_info> *exceptions)
778865d3 13068{
14bc53a8
PA
13069 /* In Ada, the symbol "search name" is a linkage name, whereas the
13070 regular expression used to do the matching refers to the natural
13071 name. So match against the decoded name. */
13072 expand_symtabs_matching (NULL,
b5ec771e 13073 lookup_name_info::match_any (),
14bc53a8
PA
13074 [&] (const char *search_name)
13075 {
f945dedf
CB
13076 std::string decoded = ada_decode (search_name);
13077 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13078 },
13079 NULL,
13080 VARIABLES_DOMAIN);
778865d3 13081
2030c079 13082 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13083 {
b669c953 13084 for (compunit_symtab *s : objfile->compunits ())
778865d3 13085 {
d8aeb77f
TT
13086 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13087 int i;
778865d3 13088
d8aeb77f
TT
13089 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13090 {
582942f4 13091 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13092 struct block_iterator iter;
13093 struct symbol *sym;
778865d3 13094
d8aeb77f
TT
13095 ALL_BLOCK_SYMBOLS (b, iter, sym)
13096 if (ada_is_non_standard_exception_sym (sym)
987012b8 13097 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13098 {
13099 struct ada_exc_info info
987012b8 13100 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
13101
13102 exceptions->push_back (info);
13103 }
13104 }
778865d3
JB
13105 }
13106 }
13107}
13108
13109/* Implements ada_exceptions_list with the regular expression passed
13110 as a regex_t, rather than a string.
13111
13112 If not NULL, PREG is used to filter out exceptions whose names
13113 do not match. Otherwise, all exceptions are listed. */
13114
ab816a27 13115static std::vector<ada_exc_info>
2d7cc5c7 13116ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13117{
ab816a27 13118 std::vector<ada_exc_info> result;
778865d3
JB
13119 int prev_len;
13120
13121 /* First, list the known standard exceptions. These exceptions
13122 need to be handled separately, as they are usually defined in
13123 runtime units that have been compiled without debugging info. */
13124
13125 ada_add_standard_exceptions (preg, &result);
13126
13127 /* Next, find all exceptions whose scope is local and accessible
13128 from the currently selected frame. */
13129
13130 if (has_stack_frames ())
13131 {
ab816a27 13132 prev_len = result.size ();
778865d3
JB
13133 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13134 &result);
ab816a27 13135 if (result.size () > prev_len)
778865d3
JB
13136 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13137 }
13138
13139 /* Add all exceptions whose scope is global. */
13140
ab816a27 13141 prev_len = result.size ();
778865d3 13142 ada_add_global_exceptions (preg, &result);
ab816a27 13143 if (result.size () > prev_len)
778865d3
JB
13144 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13145
778865d3
JB
13146 return result;
13147}
13148
13149/* Return a vector of ada_exc_info.
13150
13151 If REGEXP is NULL, all exceptions are included in the result.
13152 Otherwise, it should contain a valid regular expression,
13153 and only the exceptions whose names match that regular expression
13154 are included in the result.
13155
13156 The exceptions are sorted in the following order:
13157 - Standard exceptions (defined by the Ada language), in
13158 alphabetical order;
13159 - Exceptions only visible from the current frame, in
13160 alphabetical order;
13161 - Exceptions whose scope is global, in alphabetical order. */
13162
ab816a27 13163std::vector<ada_exc_info>
778865d3
JB
13164ada_exceptions_list (const char *regexp)
13165{
2d7cc5c7
PA
13166 if (regexp == NULL)
13167 return ada_exceptions_list_1 (NULL);
778865d3 13168
2d7cc5c7
PA
13169 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13170 return ada_exceptions_list_1 (&reg);
778865d3
JB
13171}
13172
13173/* Implement the "info exceptions" command. */
13174
13175static void
1d12d88f 13176info_exceptions_command (const char *regexp, int from_tty)
778865d3 13177{
778865d3 13178 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13179
ab816a27 13180 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13181
13182 if (regexp != NULL)
13183 printf_filtered
13184 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13185 else
13186 printf_filtered (_("All defined Ada exceptions:\n"));
13187
ab816a27
TT
13188 for (const ada_exc_info &info : exceptions)
13189 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13190}
13191
dda83cd7 13192 /* Operators */
4c4b4cd2
PH
13193/* Information about operators given special treatment in functions
13194 below. */
13195/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13196
13197#define ADA_OPERATORS \
13198 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13199 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13200 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13201 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13202 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13203 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13204 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13205 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13206 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13207 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13208 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13209 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13210 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13211 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13212 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13213 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13214 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13215 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13216 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13217
13218static void
554794dc
SDJ
13219ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13220 int *argsp)
4c4b4cd2
PH
13221{
13222 switch (exp->elts[pc - 1].opcode)
13223 {
76a01679 13224 default:
4c4b4cd2
PH
13225 operator_length_standard (exp, pc, oplenp, argsp);
13226 break;
13227
13228#define OP_DEFN(op, len, args, binop) \
13229 case op: *oplenp = len; *argsp = args; break;
13230 ADA_OPERATORS;
13231#undef OP_DEFN
52ce6436
PH
13232
13233 case OP_AGGREGATE:
13234 *oplenp = 3;
13235 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13236 break;
13237
13238 case OP_CHOICES:
13239 *oplenp = 3;
13240 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13241 break;
4c4b4cd2
PH
13242 }
13243}
13244
c0201579
JK
13245/* Implementation of the exp_descriptor method operator_check. */
13246
13247static int
13248ada_operator_check (struct expression *exp, int pos,
13249 int (*objfile_func) (struct objfile *objfile, void *data),
13250 void *data)
13251{
13252 const union exp_element *const elts = exp->elts;
13253 struct type *type = NULL;
13254
13255 switch (elts[pos].opcode)
13256 {
13257 case UNOP_IN_RANGE:
13258 case UNOP_QUAL:
13259 type = elts[pos + 1].type;
13260 break;
13261
13262 default:
13263 return operator_check_standard (exp, pos, objfile_func, data);
13264 }
13265
13266 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13267
13268 if (type && TYPE_OBJFILE (type)
13269 && (*objfile_func) (TYPE_OBJFILE (type), data))
13270 return 1;
13271
13272 return 0;
13273}
13274
a121b7c1 13275static const char *
4c4b4cd2
PH
13276ada_op_name (enum exp_opcode opcode)
13277{
13278 switch (opcode)
13279 {
76a01679 13280 default:
4c4b4cd2 13281 return op_name_standard (opcode);
52ce6436 13282
4c4b4cd2
PH
13283#define OP_DEFN(op, len, args, binop) case op: return #op;
13284 ADA_OPERATORS;
13285#undef OP_DEFN
52ce6436
PH
13286
13287 case OP_AGGREGATE:
13288 return "OP_AGGREGATE";
13289 case OP_CHOICES:
13290 return "OP_CHOICES";
13291 case OP_NAME:
13292 return "OP_NAME";
4c4b4cd2
PH
13293 }
13294}
13295
13296/* As for operator_length, but assumes PC is pointing at the first
13297 element of the operator, and gives meaningful results only for the
52ce6436 13298 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13299
13300static void
76a01679 13301ada_forward_operator_length (struct expression *exp, int pc,
dda83cd7 13302 int *oplenp, int *argsp)
4c4b4cd2 13303{
76a01679 13304 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13305 {
13306 default:
13307 *oplenp = *argsp = 0;
13308 break;
52ce6436 13309
4c4b4cd2
PH
13310#define OP_DEFN(op, len, args, binop) \
13311 case op: *oplenp = len; *argsp = args; break;
13312 ADA_OPERATORS;
13313#undef OP_DEFN
52ce6436
PH
13314
13315 case OP_AGGREGATE:
13316 *oplenp = 3;
13317 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13318 break;
13319
13320 case OP_CHOICES:
13321 *oplenp = 3;
13322 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13323 break;
13324
13325 case OP_STRING:
13326 case OP_NAME:
13327 {
13328 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13329
52ce6436
PH
13330 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13331 *argsp = 0;
13332 break;
13333 }
4c4b4cd2
PH
13334 }
13335}
13336
13337static int
13338ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13339{
13340 enum exp_opcode op = exp->elts[elt].opcode;
13341 int oplen, nargs;
13342 int pc = elt;
13343 int i;
76a01679 13344
4c4b4cd2
PH
13345 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13346
76a01679 13347 switch (op)
4c4b4cd2 13348 {
76a01679 13349 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13350 case OP_ATR_FIRST:
13351 case OP_ATR_LAST:
13352 case OP_ATR_LENGTH:
13353 case OP_ATR_IMAGE:
13354 case OP_ATR_MAX:
13355 case OP_ATR_MIN:
13356 case OP_ATR_MODULUS:
13357 case OP_ATR_POS:
13358 case OP_ATR_SIZE:
13359 case OP_ATR_TAG:
13360 case OP_ATR_VAL:
13361 break;
13362
13363 case UNOP_IN_RANGE:
13364 case UNOP_QUAL:
323e0a4a
AC
13365 /* XXX: gdb_sprint_host_address, type_sprint */
13366 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13367 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13368 fprintf_filtered (stream, " (");
13369 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13370 fprintf_filtered (stream, ")");
13371 break;
13372 case BINOP_IN_BOUNDS:
52ce6436
PH
13373 fprintf_filtered (stream, " (%d)",
13374 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13375 break;
13376 case TERNOP_IN_RANGE:
13377 break;
13378
52ce6436
PH
13379 case OP_AGGREGATE:
13380 case OP_OTHERS:
13381 case OP_DISCRETE_RANGE:
13382 case OP_POSITIONAL:
13383 case OP_CHOICES:
13384 break;
13385
13386 case OP_NAME:
13387 case OP_STRING:
13388 {
13389 char *name = &exp->elts[elt + 2].string;
13390 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13391
52ce6436
PH
13392 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13393 break;
13394 }
13395
4c4b4cd2
PH
13396 default:
13397 return dump_subexp_body_standard (exp, stream, elt);
13398 }
13399
13400 elt += oplen;
13401 for (i = 0; i < nargs; i += 1)
13402 elt = dump_subexp (exp, stream, elt);
13403
13404 return elt;
13405}
13406
13407/* The Ada extension of print_subexp (q.v.). */
13408
76a01679
JB
13409static void
13410ada_print_subexp (struct expression *exp, int *pos,
dda83cd7 13411 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13412{
52ce6436 13413 int oplen, nargs, i;
4c4b4cd2
PH
13414 int pc = *pos;
13415 enum exp_opcode op = exp->elts[pc].opcode;
13416
13417 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13418
52ce6436 13419 *pos += oplen;
4c4b4cd2
PH
13420 switch (op)
13421 {
13422 default:
52ce6436 13423 *pos -= oplen;
4c4b4cd2
PH
13424 print_subexp_standard (exp, pos, stream, prec);
13425 return;
13426
13427 case OP_VAR_VALUE:
987012b8 13428 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
4c4b4cd2
PH
13429 return;
13430
13431 case BINOP_IN_BOUNDS:
323e0a4a 13432 /* XXX: sprint_subexp */
4c4b4cd2 13433 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13434 fputs_filtered (" in ", stream);
4c4b4cd2 13435 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13436 fputs_filtered ("'range", stream);
4c4b4cd2 13437 if (exp->elts[pc + 1].longconst > 1)
dda83cd7
SM
13438 fprintf_filtered (stream, "(%ld)",
13439 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13440 return;
13441
13442 case TERNOP_IN_RANGE:
4c4b4cd2 13443 if (prec >= PREC_EQUAL)
dda83cd7 13444 fputs_filtered ("(", stream);
323e0a4a 13445 /* XXX: sprint_subexp */
4c4b4cd2 13446 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13447 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13448 print_subexp (exp, pos, stream, PREC_EQUAL);
13449 fputs_filtered (" .. ", stream);
13450 print_subexp (exp, pos, stream, PREC_EQUAL);
13451 if (prec >= PREC_EQUAL)
dda83cd7 13452 fputs_filtered (")", stream);
76a01679 13453 return;
4c4b4cd2
PH
13454
13455 case OP_ATR_FIRST:
13456 case OP_ATR_LAST:
13457 case OP_ATR_LENGTH:
13458 case OP_ATR_IMAGE:
13459 case OP_ATR_MAX:
13460 case OP_ATR_MIN:
13461 case OP_ATR_MODULUS:
13462 case OP_ATR_POS:
13463 case OP_ATR_SIZE:
13464 case OP_ATR_TAG:
13465 case OP_ATR_VAL:
4c4b4cd2 13466 if (exp->elts[*pos].opcode == OP_TYPE)
dda83cd7
SM
13467 {
13468 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13469 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
79d43c61 13470 &type_print_raw_options);
dda83cd7
SM
13471 *pos += 3;
13472 }
4c4b4cd2 13473 else
dda83cd7 13474 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13475 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13476 if (nargs > 1)
dda83cd7
SM
13477 {
13478 int tem;
13479
13480 for (tem = 1; tem < nargs; tem += 1)
13481 {
13482 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13483 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13484 }
13485 fputs_filtered (")", stream);
13486 }
4c4b4cd2 13487 return;
14f9c5c9 13488
4c4b4cd2 13489 case UNOP_QUAL:
4c4b4cd2
PH
13490 type_print (exp->elts[pc + 1].type, "", stream, 0);
13491 fputs_filtered ("'(", stream);
13492 print_subexp (exp, pos, stream, PREC_PREFIX);
13493 fputs_filtered (")", stream);
13494 return;
14f9c5c9 13495
4c4b4cd2 13496 case UNOP_IN_RANGE:
323e0a4a 13497 /* XXX: sprint_subexp */
4c4b4cd2 13498 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13499 fputs_filtered (" in ", stream);
79d43c61
TT
13500 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13501 &type_print_raw_options);
4c4b4cd2 13502 return;
52ce6436
PH
13503
13504 case OP_DISCRETE_RANGE:
13505 print_subexp (exp, pos, stream, PREC_SUFFIX);
13506 fputs_filtered ("..", stream);
13507 print_subexp (exp, pos, stream, PREC_SUFFIX);
13508 return;
13509
13510 case OP_OTHERS:
13511 fputs_filtered ("others => ", stream);
13512 print_subexp (exp, pos, stream, PREC_SUFFIX);
13513 return;
13514
13515 case OP_CHOICES:
13516 for (i = 0; i < nargs-1; i += 1)
13517 {
13518 if (i > 0)
13519 fputs_filtered ("|", stream);
13520 print_subexp (exp, pos, stream, PREC_SUFFIX);
13521 }
13522 fputs_filtered (" => ", stream);
13523 print_subexp (exp, pos, stream, PREC_SUFFIX);
13524 return;
13525
13526 case OP_POSITIONAL:
13527 print_subexp (exp, pos, stream, PREC_SUFFIX);
13528 return;
13529
13530 case OP_AGGREGATE:
13531 fputs_filtered ("(", stream);
13532 for (i = 0; i < nargs; i += 1)
13533 {
13534 if (i > 0)
13535 fputs_filtered (", ", stream);
13536 print_subexp (exp, pos, stream, PREC_SUFFIX);
13537 }
13538 fputs_filtered (")", stream);
13539 return;
4c4b4cd2
PH
13540 }
13541}
14f9c5c9
AS
13542
13543/* Table mapping opcodes into strings for printing operators
13544 and precedences of the operators. */
13545
d2e4a39e
AS
13546static const struct op_print ada_op_print_tab[] = {
13547 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13548 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13549 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13550 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13551 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13552 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13553 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13554 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13555 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13556 {">=", BINOP_GEQ, PREC_ORDER, 0},
13557 {">", BINOP_GTR, PREC_ORDER, 0},
13558 {"<", BINOP_LESS, PREC_ORDER, 0},
13559 {">>", BINOP_RSH, PREC_SHIFT, 0},
13560 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13561 {"+", BINOP_ADD, PREC_ADD, 0},
13562 {"-", BINOP_SUB, PREC_ADD, 0},
13563 {"&", BINOP_CONCAT, PREC_ADD, 0},
13564 {"*", BINOP_MUL, PREC_MUL, 0},
13565 {"/", BINOP_DIV, PREC_MUL, 0},
13566 {"rem", BINOP_REM, PREC_MUL, 0},
13567 {"mod", BINOP_MOD, PREC_MUL, 0},
13568 {"**", BINOP_EXP, PREC_REPEAT, 0},
13569 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13570 {"-", UNOP_NEG, PREC_PREFIX, 0},
13571 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13572 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13573 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13574 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13575 {".all", UNOP_IND, PREC_SUFFIX, 1},
13576 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13577 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13578 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13579};
13580\f
72d5681a
PH
13581enum ada_primitive_types {
13582 ada_primitive_type_int,
13583 ada_primitive_type_long,
13584 ada_primitive_type_short,
13585 ada_primitive_type_char,
13586 ada_primitive_type_float,
13587 ada_primitive_type_double,
13588 ada_primitive_type_void,
13589 ada_primitive_type_long_long,
13590 ada_primitive_type_long_double,
13591 ada_primitive_type_natural,
13592 ada_primitive_type_positive,
13593 ada_primitive_type_system_address,
08f49010 13594 ada_primitive_type_storage_offset,
72d5681a
PH
13595 nr_ada_primitive_types
13596};
6c038f32 13597
6c038f32
PH
13598\f
13599 /* Language vector */
13600
6c038f32
PH
13601static const struct exp_descriptor ada_exp_descriptor = {
13602 ada_print_subexp,
13603 ada_operator_length,
c0201579 13604 ada_operator_check,
6c038f32
PH
13605 ada_op_name,
13606 ada_dump_subexp_body,
13607 ada_evaluate_subexp
13608};
13609
b5ec771e
PA
13610/* symbol_name_matcher_ftype adapter for wild_match. */
13611
13612static bool
13613do_wild_match (const char *symbol_search_name,
13614 const lookup_name_info &lookup_name,
a207cff2 13615 completion_match_result *comp_match_res)
b5ec771e
PA
13616{
13617 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13618}
13619
13620/* symbol_name_matcher_ftype adapter for full_match. */
13621
13622static bool
13623do_full_match (const char *symbol_search_name,
13624 const lookup_name_info &lookup_name,
a207cff2 13625 completion_match_result *comp_match_res)
b5ec771e
PA
13626{
13627 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13628}
13629
a2cd4f14
JB
13630/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13631
13632static bool
13633do_exact_match (const char *symbol_search_name,
13634 const lookup_name_info &lookup_name,
13635 completion_match_result *comp_match_res)
13636{
13637 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13638}
13639
b5ec771e
PA
13640/* Build the Ada lookup name for LOOKUP_NAME. */
13641
13642ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13643{
e0802d59 13644 gdb::string_view user_name = lookup_name.name ();
b5ec771e
PA
13645
13646 if (user_name[0] == '<')
13647 {
13648 if (user_name.back () == '>')
e0802d59 13649 m_encoded_name
5ac58899 13650 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
b5ec771e 13651 else
e0802d59 13652 m_encoded_name
5ac58899 13653 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
b5ec771e
PA
13654 m_encoded_p = true;
13655 m_verbatim_p = true;
13656 m_wild_match_p = false;
13657 m_standard_p = false;
13658 }
13659 else
13660 {
13661 m_verbatim_p = false;
13662
e0802d59 13663 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
13664
13665 if (!m_encoded_p)
13666 {
e0802d59 13667 const char *folded = ada_fold_name (user_name);
5c4258f4
TT
13668 m_encoded_name = ada_encode_1 (folded, false);
13669 if (m_encoded_name.empty ())
5ac58899 13670 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
13671 }
13672 else
5ac58899 13673 m_encoded_name = gdb::to_string (user_name);
b5ec771e
PA
13674
13675 /* Handle the 'package Standard' special case. See description
13676 of m_standard_p. */
13677 if (startswith (m_encoded_name.c_str (), "standard__"))
13678 {
13679 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13680 m_standard_p = true;
13681 }
13682 else
13683 m_standard_p = false;
74ccd7f5 13684
b5ec771e
PA
13685 /* If the name contains a ".", then the user is entering a fully
13686 qualified entity name, and the match must not be done in wild
13687 mode. Similarly, if the user wants to complete what looks
13688 like an encoded name, the match must not be done in wild
13689 mode. Also, in the standard__ special case always do
13690 non-wild matching. */
13691 m_wild_match_p
13692 = (lookup_name.match_type () != symbol_name_match_type::FULL
13693 && !m_encoded_p
13694 && !m_standard_p
13695 && user_name.find ('.') == std::string::npos);
13696 }
13697}
13698
13699/* symbol_name_matcher_ftype method for Ada. This only handles
13700 completion mode. */
13701
13702static bool
13703ada_symbol_name_matches (const char *symbol_search_name,
13704 const lookup_name_info &lookup_name,
a207cff2 13705 completion_match_result *comp_match_res)
74ccd7f5 13706{
b5ec771e
PA
13707 return lookup_name.ada ().matches (symbol_search_name,
13708 lookup_name.match_type (),
a207cff2 13709 comp_match_res);
b5ec771e
PA
13710}
13711
de63c46b
PA
13712/* A name matcher that matches the symbol name exactly, with
13713 strcmp. */
13714
13715static bool
13716literal_symbol_name_matcher (const char *symbol_search_name,
13717 const lookup_name_info &lookup_name,
13718 completion_match_result *comp_match_res)
13719{
e0802d59 13720 gdb::string_view name_view = lookup_name.name ();
de63c46b 13721
e0802d59
TT
13722 if (lookup_name.completion_mode ()
13723 ? (strncmp (symbol_search_name, name_view.data (),
13724 name_view.size ()) == 0)
13725 : symbol_search_name == name_view)
de63c46b
PA
13726 {
13727 if (comp_match_res != NULL)
13728 comp_match_res->set_match (symbol_search_name);
13729 return true;
13730 }
13731 else
13732 return false;
13733}
13734
c9debfb9 13735/* Implement the "get_symbol_name_matcher" language_defn method for
b5ec771e
PA
13736 Ada. */
13737
13738static symbol_name_matcher_ftype *
13739ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13740{
de63c46b
PA
13741 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13742 return literal_symbol_name_matcher;
13743
b5ec771e
PA
13744 if (lookup_name.completion_mode ())
13745 return ada_symbol_name_matches;
74ccd7f5 13746 else
b5ec771e
PA
13747 {
13748 if (lookup_name.ada ().wild_match_p ())
13749 return do_wild_match;
a2cd4f14
JB
13750 else if (lookup_name.ada ().verbatim_p ())
13751 return do_exact_match;
b5ec771e
PA
13752 else
13753 return do_full_match;
13754 }
74ccd7f5
JB
13755}
13756
0874fd07
AB
13757/* Class representing the Ada language. */
13758
13759class ada_language : public language_defn
13760{
13761public:
13762 ada_language ()
0e25e767 13763 : language_defn (language_ada)
0874fd07 13764 { /* Nothing. */ }
5bd40f2a 13765
6f7664a9
AB
13766 /* See language.h. */
13767
13768 const char *name () const override
13769 { return "ada"; }
13770
13771 /* See language.h. */
13772
13773 const char *natural_name () const override
13774 { return "Ada"; }
13775
e171d6f1
AB
13776 /* See language.h. */
13777
13778 const std::vector<const char *> &filename_extensions () const override
13779 {
13780 static const std::vector<const char *> extensions
13781 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13782 return extensions;
13783 }
13784
5bd40f2a
AB
13785 /* Print an array element index using the Ada syntax. */
13786
13787 void print_array_index (struct type *index_type,
13788 LONGEST index,
13789 struct ui_file *stream,
13790 const value_print_options *options) const override
13791 {
13792 struct value *index_value = val_atr (index_type, index);
13793
00c696a6 13794 value_print (index_value, stream, options);
5bd40f2a
AB
13795 fprintf_filtered (stream, " => ");
13796 }
15e5fd35
AB
13797
13798 /* Implement the "read_var_value" language_defn method for Ada. */
13799
13800 struct value *read_var_value (struct symbol *var,
13801 const struct block *var_block,
13802 struct frame_info *frame) const override
13803 {
13804 /* The only case where default_read_var_value is not sufficient
13805 is when VAR is a renaming... */
13806 if (frame != nullptr)
13807 {
13808 const struct block *frame_block = get_frame_block (frame, NULL);
13809 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13810 return ada_read_renaming_var_value (var, frame_block);
13811 }
13812
13813 /* This is a typical case where we expect the default_read_var_value
13814 function to work. */
13815 return language_defn::read_var_value (var, var_block, frame);
13816 }
1fb314aa
AB
13817
13818 /* See language.h. */
13819 void language_arch_info (struct gdbarch *gdbarch,
13820 struct language_arch_info *lai) const override
13821 {
13822 const struct builtin_type *builtin = builtin_type (gdbarch);
13823
13824 lai->primitive_type_vector
13825 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13826 struct type *);
13827
13828 lai->primitive_type_vector [ada_primitive_type_int]
13829 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13830 0, "integer");
13831 lai->primitive_type_vector [ada_primitive_type_long]
13832 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13833 0, "long_integer");
13834 lai->primitive_type_vector [ada_primitive_type_short]
13835 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13836 0, "short_integer");
13837 lai->string_char_type
13838 = lai->primitive_type_vector [ada_primitive_type_char]
13839 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13840 lai->primitive_type_vector [ada_primitive_type_float]
13841 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13842 "float", gdbarch_float_format (gdbarch));
13843 lai->primitive_type_vector [ada_primitive_type_double]
13844 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13845 "long_float", gdbarch_double_format (gdbarch));
13846 lai->primitive_type_vector [ada_primitive_type_long_long]
13847 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13848 0, "long_long_integer");
13849 lai->primitive_type_vector [ada_primitive_type_long_double]
13850 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13851 "long_long_float", gdbarch_long_double_format (gdbarch));
13852 lai->primitive_type_vector [ada_primitive_type_natural]
13853 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13854 0, "natural");
13855 lai->primitive_type_vector [ada_primitive_type_positive]
13856 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13857 0, "positive");
13858 lai->primitive_type_vector [ada_primitive_type_void]
13859 = builtin->builtin_void;
13860
13861 lai->primitive_type_vector [ada_primitive_type_system_address]
13862 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13863 "void"));
13864 lai->primitive_type_vector [ada_primitive_type_system_address]
13865 ->set_name ("system__address");
13866
13867 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13868 type. This is a signed integral type whose size is the same as
13869 the size of addresses. */
13870 {
13871 unsigned int addr_length = TYPE_LENGTH
13872 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13873
13874 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13875 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13876 "storage_offset");
13877 }
13878
13879 lai->bool_type_symbol = NULL;
13880 lai->bool_type_default = builtin->builtin_bool;
13881 }
4009ee92
AB
13882
13883 /* See language.h. */
13884
13885 bool iterate_over_symbols
13886 (const struct block *block, const lookup_name_info &name,
13887 domain_enum domain,
13888 gdb::function_view<symbol_found_callback_ftype> callback) const override
13889 {
13890 std::vector<struct block_symbol> results;
13891
13892 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13893 for (block_symbol &sym : results)
13894 {
13895 if (!callback (&sym))
13896 return false;
13897 }
13898
13899 return true;
13900 }
6f827019
AB
13901
13902 /* See language.h. */
13903 bool sniff_from_mangled_name (const char *mangled,
13904 char **out) const override
13905 {
13906 std::string demangled = ada_decode (mangled);
13907
13908 *out = NULL;
13909
13910 if (demangled != mangled && demangled[0] != '<')
13911 {
13912 /* Set the gsymbol language to Ada, but still return 0.
13913 Two reasons for that:
13914
13915 1. For Ada, we prefer computing the symbol's decoded name
13916 on the fly rather than pre-compute it, in order to save
13917 memory (Ada projects are typically very large).
13918
13919 2. There are some areas in the definition of the GNAT
13920 encoding where, with a bit of bad luck, we might be able
13921 to decode a non-Ada symbol, generating an incorrect
13922 demangled name (Eg: names ending with "TB" for instance
13923 are identified as task bodies and so stripped from
13924 the decoded name returned).
13925
13926 Returning true, here, but not setting *DEMANGLED, helps us get
13927 a little bit of the best of both worlds. Because we're last,
13928 we should not affect any of the other languages that were
13929 able to demangle the symbol before us; we get to correctly
13930 tag Ada symbols as such; and even if we incorrectly tagged a
13931 non-Ada symbol, which should be rare, any routing through the
13932 Ada language should be transparent (Ada tries to behave much
13933 like C/C++ with non-Ada symbols). */
13934 return true;
13935 }
13936
13937 return false;
13938 }
fbfb0a46
AB
13939
13940 /* See language.h. */
13941
5399db93 13942 char *demangle_symbol (const char *mangled, int options) const override
0a50df5d
AB
13943 {
13944 return ada_la_decode (mangled, options);
13945 }
13946
13947 /* See language.h. */
13948
fbfb0a46
AB
13949 void print_type (struct type *type, const char *varstring,
13950 struct ui_file *stream, int show, int level,
13951 const struct type_print_options *flags) const override
13952 {
13953 ada_print_type (type, varstring, stream, show, level, flags);
13954 }
c9debfb9 13955
53fc67f8
AB
13956 /* See language.h. */
13957
13958 const char *word_break_characters (void) const override
13959 {
13960 return ada_completer_word_break_characters;
13961 }
13962
7e56227d
AB
13963 /* See language.h. */
13964
13965 void collect_symbol_completion_matches (completion_tracker &tracker,
13966 complete_symbol_mode mode,
13967 symbol_name_match_type name_match_type,
13968 const char *text, const char *word,
13969 enum type_code code) const override
13970 {
13971 struct symbol *sym;
13972 const struct block *b, *surrounding_static_block = 0;
13973 struct block_iterator iter;
13974
13975 gdb_assert (code == TYPE_CODE_UNDEF);
13976
13977 lookup_name_info lookup_name (text, name_match_type, true);
13978
13979 /* First, look at the partial symtab symbols. */
13980 expand_symtabs_matching (NULL,
13981 lookup_name,
13982 NULL,
13983 NULL,
13984 ALL_DOMAIN);
13985
13986 /* At this point scan through the misc symbol vectors and add each
13987 symbol you find to the list. Eventually we want to ignore
13988 anything that isn't a text symbol (everything else will be
13989 handled by the psymtab code above). */
13990
13991 for (objfile *objfile : current_program_space->objfiles ())
13992 {
13993 for (minimal_symbol *msymbol : objfile->msymbols ())
13994 {
13995 QUIT;
13996
13997 if (completion_skip_symbol (mode, msymbol))
13998 continue;
13999
14000 language symbol_language = msymbol->language ();
14001
14002 /* Ada minimal symbols won't have their language set to Ada. If
14003 we let completion_list_add_name compare using the
14004 default/C-like matcher, then when completing e.g., symbols in a
14005 package named "pck", we'd match internal Ada symbols like
14006 "pckS", which are invalid in an Ada expression, unless you wrap
14007 them in '<' '>' to request a verbatim match.
14008
14009 Unfortunately, some Ada encoded names successfully demangle as
14010 C++ symbols (using an old mangling scheme), such as "name__2Xn"
14011 -> "Xn::name(void)" and thus some Ada minimal symbols end up
14012 with the wrong language set. Paper over that issue here. */
14013 if (symbol_language == language_auto
14014 || symbol_language == language_cplus)
14015 symbol_language = language_ada;
14016
14017 completion_list_add_name (tracker,
14018 symbol_language,
14019 msymbol->linkage_name (),
14020 lookup_name, text, word);
14021 }
14022 }
14023
14024 /* Search upwards from currently selected frame (so that we can
14025 complete on local vars. */
14026
14027 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
14028 {
14029 if (!BLOCK_SUPERBLOCK (b))
14030 surrounding_static_block = b; /* For elmin of dups */
14031
14032 ALL_BLOCK_SYMBOLS (b, iter, sym)
14033 {
14034 if (completion_skip_symbol (mode, sym))
14035 continue;
14036
14037 completion_list_add_name (tracker,
14038 sym->language (),
14039 sym->linkage_name (),
14040 lookup_name, text, word);
14041 }
14042 }
14043
14044 /* Go through the symtabs and check the externs and statics for
14045 symbols which match. */
14046
14047 for (objfile *objfile : current_program_space->objfiles ())
14048 {
14049 for (compunit_symtab *s : objfile->compunits ())
14050 {
14051 QUIT;
14052 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
14053 ALL_BLOCK_SYMBOLS (b, iter, sym)
14054 {
14055 if (completion_skip_symbol (mode, sym))
14056 continue;
14057
14058 completion_list_add_name (tracker,
14059 sym->language (),
14060 sym->linkage_name (),
14061 lookup_name, text, word);
14062 }
14063 }
14064 }
14065
14066 for (objfile *objfile : current_program_space->objfiles ())
14067 {
14068 for (compunit_symtab *s : objfile->compunits ())
14069 {
14070 QUIT;
14071 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14072 /* Don't do this block twice. */
14073 if (b == surrounding_static_block)
14074 continue;
14075 ALL_BLOCK_SYMBOLS (b, iter, sym)
14076 {
14077 if (completion_skip_symbol (mode, sym))
14078 continue;
14079
14080 completion_list_add_name (tracker,
14081 sym->language (),
14082 sym->linkage_name (),
14083 lookup_name, text, word);
14084 }
14085 }
14086 }
14087 }
14088
f16a9f57
AB
14089 /* See language.h. */
14090
14091 gdb::unique_xmalloc_ptr<char> watch_location_expression
14092 (struct type *type, CORE_ADDR addr) const override
14093 {
14094 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14095 std::string name = type_to_string (type);
14096 return gdb::unique_xmalloc_ptr<char>
14097 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14098 }
14099
a1d1fa3e
AB
14100 /* See language.h. */
14101
14102 void value_print (struct value *val, struct ui_file *stream,
14103 const struct value_print_options *options) const override
14104 {
14105 return ada_value_print (val, stream, options);
14106 }
14107
ebe2334e
AB
14108 /* See language.h. */
14109
14110 void value_print_inner
14111 (struct value *val, struct ui_file *stream, int recurse,
14112 const struct value_print_options *options) const override
14113 {
14114 return ada_value_print_inner (val, stream, recurse, options);
14115 }
14116
a78a19b1
AB
14117 /* See language.h. */
14118
14119 struct block_symbol lookup_symbol_nonlocal
14120 (const char *name, const struct block *block,
14121 const domain_enum domain) const override
14122 {
14123 struct block_symbol sym;
14124
14125 sym = ada_lookup_symbol (name, block_static_block (block), domain);
14126 if (sym.symbol != NULL)
14127 return sym;
14128
14129 /* If we haven't found a match at this point, try the primitive
14130 types. In other languages, this search is performed before
14131 searching for global symbols in order to short-circuit that
14132 global-symbol search if it happens that the name corresponds
14133 to a primitive type. But we cannot do the same in Ada, because
14134 it is perfectly legitimate for a program to declare a type which
14135 has the same name as a standard type. If looking up a type in
14136 that situation, we have traditionally ignored the primitive type
14137 in favor of user-defined types. This is why, unlike most other
14138 languages, we search the primitive types this late and only after
14139 having searched the global symbols without success. */
14140
14141 if (domain == VAR_DOMAIN)
14142 {
14143 struct gdbarch *gdbarch;
14144
14145 if (block == NULL)
14146 gdbarch = target_gdbarch ();
14147 else
14148 gdbarch = block_gdbarch (block);
14149 sym.symbol
14150 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
14151 if (sym.symbol != NULL)
14152 return sym;
14153 }
14154
14155 return {};
14156 }
14157
87afa652
AB
14158 /* See language.h. */
14159
14160 int parser (struct parser_state *ps) const override
14161 {
14162 warnings_issued = 0;
14163 return ada_parse (ps);
14164 }
14165
1bf9c363
AB
14166 /* See language.h.
14167
14168 Same as evaluate_type (*EXP), but resolves ambiguous symbol references
14169 (marked by OP_VAR_VALUE nodes in which the symbol has an undefined
14170 namespace) and converts operators that are user-defined into
14171 appropriate function calls. If CONTEXT_TYPE is non-null, it provides
14172 a preferred result type [at the moment, only type void has any
14173 effect---causing procedures to be preferred over functions in calls].
14174 A null CONTEXT_TYPE indicates that a non-void return type is
14175 preferred. May change (expand) *EXP. */
14176
14177 void post_parser (expression_up *expp, int void_context_p, int completing,
14178 innermost_block_tracker *tracker) const override
14179 {
14180 struct type *context_type = NULL;
14181 int pc = 0;
14182
14183 if (void_context_p)
14184 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14185
14186 resolve_subexp (expp, &pc, 1, context_type, completing, tracker);
14187 }
14188
ec8cec5b
AB
14189 /* See language.h. */
14190
14191 void emitchar (int ch, struct type *chtype,
14192 struct ui_file *stream, int quoter) const override
14193 {
14194 ada_emit_char (ch, chtype, stream, quoter, 1);
14195 }
14196
52b50f2c
AB
14197 /* See language.h. */
14198
14199 void printchar (int ch, struct type *chtype,
14200 struct ui_file *stream) const override
14201 {
14202 ada_printchar (ch, chtype, stream);
14203 }
14204
d711ee67
AB
14205 /* See language.h. */
14206
14207 void printstr (struct ui_file *stream, struct type *elttype,
14208 const gdb_byte *string, unsigned int length,
14209 const char *encoding, int force_ellipses,
14210 const struct value_print_options *options) const override
14211 {
14212 ada_printstr (stream, elttype, string, length, encoding,
14213 force_ellipses, options);
14214 }
14215
4ffc13fb
AB
14216 /* See language.h. */
14217
14218 void print_typedef (struct type *type, struct symbol *new_symbol,
14219 struct ui_file *stream) const override
14220 {
14221 ada_print_typedef (type, new_symbol, stream);
14222 }
14223
39e7ecca
AB
14224 /* See language.h. */
14225
14226 bool is_string_type_p (struct type *type) const override
14227 {
14228 return ada_is_string_type (type);
14229 }
14230
22e3f3ed
AB
14231 /* See language.h. */
14232
14233 const char *struct_too_deep_ellipsis () const override
14234 { return "(...)"; }
39e7ecca 14235
67bd3fd5
AB
14236 /* See language.h. */
14237
14238 bool c_style_arrays_p () const override
14239 { return false; }
14240
d3355e4d
AB
14241 /* See language.h. */
14242
14243 bool store_sym_names_in_linkage_form_p () const override
14244 { return true; }
14245
b63a3f3f
AB
14246 /* See language.h. */
14247
14248 const struct lang_varobj_ops *varobj_ops () const override
14249 { return &ada_varobj_ops; }
14250
5aba6ebe
AB
14251 /* See language.h. */
14252
14253 const struct exp_descriptor *expression_ops () const override
14254 { return &ada_exp_descriptor; }
14255
b7c6e27d
AB
14256 /* See language.h. */
14257
14258 const struct op_print *opcode_print_table () const override
14259 { return ada_op_print_tab; }
14260
c9debfb9
AB
14261protected:
14262 /* See language.h. */
14263
14264 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14265 (const lookup_name_info &lookup_name) const override
14266 {
14267 return ada_get_symbol_name_matcher (lookup_name);
14268 }
0874fd07
AB
14269};
14270
14271/* Single instance of the Ada language class. */
14272
14273static ada_language ada_language_defn;
14274
5bf03f13
JB
14275/* Command-list for the "set/show ada" prefix command. */
14276static struct cmd_list_element *set_ada_list;
14277static struct cmd_list_element *show_ada_list;
14278
2060206e
PA
14279static void
14280initialize_ada_catchpoint_ops (void)
14281{
14282 struct breakpoint_ops *ops;
14283
14284 initialize_breakpoint_ops ();
14285
14286 ops = &catch_exception_breakpoint_ops;
14287 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14288 ops->allocate_location = allocate_location_exception;
14289 ops->re_set = re_set_exception;
14290 ops->check_status = check_status_exception;
14291 ops->print_it = print_it_exception;
14292 ops->print_one = print_one_exception;
14293 ops->print_mention = print_mention_exception;
14294 ops->print_recreate = print_recreate_exception;
2060206e
PA
14295
14296 ops = &catch_exception_unhandled_breakpoint_ops;
14297 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14298 ops->allocate_location = allocate_location_exception;
14299 ops->re_set = re_set_exception;
14300 ops->check_status = check_status_exception;
14301 ops->print_it = print_it_exception;
14302 ops->print_one = print_one_exception;
14303 ops->print_mention = print_mention_exception;
14304 ops->print_recreate = print_recreate_exception;
2060206e
PA
14305
14306 ops = &catch_assert_breakpoint_ops;
14307 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14308 ops->allocate_location = allocate_location_exception;
14309 ops->re_set = re_set_exception;
14310 ops->check_status = check_status_exception;
14311 ops->print_it = print_it_exception;
14312 ops->print_one = print_one_exception;
14313 ops->print_mention = print_mention_exception;
14314 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14315
14316 ops = &catch_handlers_breakpoint_ops;
14317 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14318 ops->allocate_location = allocate_location_exception;
14319 ops->re_set = re_set_exception;
14320 ops->check_status = check_status_exception;
14321 ops->print_it = print_it_exception;
14322 ops->print_one = print_one_exception;
14323 ops->print_mention = print_mention_exception;
14324 ops->print_recreate = print_recreate_exception;
2060206e
PA
14325}
14326
3d9434b5
JB
14327/* This module's 'new_objfile' observer. */
14328
14329static void
14330ada_new_objfile_observer (struct objfile *objfile)
14331{
14332 ada_clear_symbol_cache ();
14333}
14334
14335/* This module's 'free_objfile' observer. */
14336
14337static void
14338ada_free_objfile_observer (struct objfile *objfile)
14339{
14340 ada_clear_symbol_cache ();
14341}
14342
6c265988 14343void _initialize_ada_language ();
d2e4a39e 14344void
6c265988 14345_initialize_ada_language ()
14f9c5c9 14346{
2060206e
PA
14347 initialize_ada_catchpoint_ops ();
14348
0743fc83
TT
14349 add_basic_prefix_cmd ("ada", no_class,
14350 _("Prefix command for changing Ada-specific settings."),
14351 &set_ada_list, "set ada ", 0, &setlist);
5bf03f13 14352
0743fc83
TT
14353 add_show_prefix_cmd ("ada", no_class,
14354 _("Generic command for showing Ada-specific settings."),
14355 &show_ada_list, "show ada ", 0, &showlist);
5bf03f13
JB
14356
14357 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
dda83cd7 14358 &trust_pad_over_xvs, _("\
590042fc
PW
14359Enable or disable an optimization trusting PAD types over XVS types."), _("\
14360Show whether an optimization trusting PAD types over XVS types is activated."),
dda83cd7 14361 _("\
5bf03f13
JB
14362This is related to the encoding used by the GNAT compiler. The debugger\n\
14363should normally trust the contents of PAD types, but certain older versions\n\
14364of GNAT have a bug that sometimes causes the information in the PAD type\n\
14365to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14366work around this bug. It is always safe to turn this option \"off\", but\n\
14367this incurs a slight performance penalty, so it is recommended to NOT change\n\
14368this option to \"off\" unless necessary."),
dda83cd7 14369 NULL, NULL, &set_ada_list, &show_ada_list);
5bf03f13 14370
d72413e6
PMR
14371 add_setshow_boolean_cmd ("print-signatures", class_vars,
14372 &print_signatures, _("\
14373Enable or disable the output of formal and return types for functions in the \
590042fc 14374overloads selection menu."), _("\
d72413e6 14375Show whether the output of formal and return types for functions in the \
590042fc 14376overloads selection menu is activated."),
d72413e6
PMR
14377 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14378
9ac4176b
PA
14379 add_catch_command ("exception", _("\
14380Catch Ada exceptions, when raised.\n\
9bf7038b 14381Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14382Without any argument, stop when any Ada exception is raised.\n\
14383If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14384being raised does not have a handler (and will therefore lead to the task's\n\
14385termination).\n\
14386Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14387raised is the same as ARG.\n\
14388CONDITION is a boolean expression that is evaluated to see whether the\n\
14389exception should cause a stop."),
9ac4176b 14390 catch_ada_exception_command,
71bed2db 14391 catch_ada_completer,
9ac4176b
PA
14392 CATCH_PERMANENT,
14393 CATCH_TEMPORARY);
9f757bf7
XR
14394
14395 add_catch_command ("handlers", _("\
14396Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14397Usage: catch handlers [ARG] [if CONDITION]\n\
14398Without any argument, stop when any Ada exception is handled.\n\
14399With an argument, catch only exceptions with the given name.\n\
14400CONDITION is a boolean expression that is evaluated to see whether the\n\
14401exception should cause a stop."),
9f757bf7 14402 catch_ada_handlers_command,
dda83cd7 14403 catch_ada_completer,
9f757bf7
XR
14404 CATCH_PERMANENT,
14405 CATCH_TEMPORARY);
9ac4176b
PA
14406 add_catch_command ("assert", _("\
14407Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14408Usage: catch assert [if CONDITION]\n\
14409CONDITION is a boolean expression that is evaluated to see whether the\n\
14410exception should cause a stop."),
9ac4176b 14411 catch_assert_command,
dda83cd7 14412 NULL,
9ac4176b
PA
14413 CATCH_PERMANENT,
14414 CATCH_TEMPORARY);
14415
6c038f32 14416 varsize_limit = 65536;
3fcded8f
JB
14417 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14418 &varsize_limit, _("\
14419Set the maximum number of bytes allowed in a variable-size object."), _("\
14420Show the maximum number of bytes allowed in a variable-size object."), _("\
14421Attempts to access an object whose size is not a compile-time constant\n\
14422and exceeds this limit will cause an error."),
14423 NULL, NULL, &setlist, &showlist);
6c038f32 14424
778865d3
JB
14425 add_info ("exceptions", info_exceptions_command,
14426 _("\
14427List all Ada exception names.\n\
9bf7038b 14428Usage: info exceptions [REGEXP]\n\
778865d3
JB
14429If a regular expression is passed as an argument, only those matching\n\
14430the regular expression are listed."));
14431
0743fc83
TT
14432 add_basic_prefix_cmd ("ada", class_maintenance,
14433 _("Set Ada maintenance-related variables."),
14434 &maint_set_ada_cmdlist, "maintenance set ada ",
14435 0/*allow-unknown*/, &maintenance_set_cmdlist);
c6044dd1 14436
0743fc83
TT
14437 add_show_prefix_cmd ("ada", class_maintenance,
14438 _("Show Ada maintenance-related variables."),
14439 &maint_show_ada_cmdlist, "maintenance show ada ",
14440 0/*allow-unknown*/, &maintenance_show_cmdlist);
c6044dd1
JB
14441
14442 add_setshow_boolean_cmd
14443 ("ignore-descriptive-types", class_maintenance,
14444 &ada_ignore_descriptive_types_p,
14445 _("Set whether descriptive types generated by GNAT should be ignored."),
14446 _("Show whether descriptive types generated by GNAT should be ignored."),
14447 _("\
14448When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14449DWARF attribute."),
14450 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14451
459a2e4c
TT
14452 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14453 NULL, xcalloc, xfree);
6b69afc4 14454
3d9434b5 14455 /* The ada-lang observers. */
76727919
TT
14456 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14457 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14458 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14459}
This page took 2.969261 seconds and 4 git commands to generate.