Remove a use of target_read_string
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
4de283e4 52
40bc484c 53#include "value.h"
4de283e4
TT
54#include "mi/mi-common.h"
55#include "arch-utils.h"
56#include "cli/cli-utils.h"
268a13a5
TT
57#include "gdbsupport/function-view.h"
58#include "gdbsupport/byte-vector.h"
4de283e4 59#include <algorithm>
ccefe4c4 60
4c4b4cd2 61/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 62 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
63 Copied from valarith.c. */
64
65#ifndef TRUNCATION_TOWARDS_ZERO
66#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67#endif
68
d2e4a39e 69static struct type *desc_base_type (struct type *);
14f9c5c9 70
d2e4a39e 71static struct type *desc_bounds_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct value *desc_bounds (struct value *);
14f9c5c9 74
d2e4a39e 75static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 78
556bdfd4 79static struct type *desc_data_target_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_data (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 88
d2e4a39e 89static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static struct type *desc_index_type (struct type *, int);
14f9c5c9 94
d2e4a39e 95static int desc_arity (struct type *);
14f9c5c9 96
d2e4a39e 97static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
4c4b4cd2 103static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
22cee43f 108static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
22cee43f 111
d12307c1 112static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
d12307c1 119static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 120
e9d9f57e 121static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
122 struct type *, int,
123 innermost_block_tracker *);
14f9c5c9 124
e9d9f57e 125static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 126 struct symbol *, const struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
a121b7c1 130static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
131
132static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 133
d2e4a39e 134static int numeric_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int integer_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int scalar_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int discrete_type_p (struct type *);
14f9c5c9 141
a121b7c1 142static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 143 int, int);
4c4b4cd2 144
d2e4a39e 145static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 146
b4ba55a1
JB
147static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
d2e4a39e 150static int is_dynamic_field (struct type *, int);
14f9c5c9 151
10a2c479 152static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 153 const gdb_byte *,
4c4b4cd2
PH
154 CORE_ADDR, struct value *);
155
156static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 157
28c85d6c 158static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 159
d2e4a39e 160static struct type *to_static_fixed_type (struct type *);
f192137b 161static struct type *static_unwrap_type (struct type *type);
14f9c5c9 162
d2e4a39e 163static struct value *unwrap_value (struct value *);
14f9c5c9 164
ad82864c 165static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 166
ad82864c 167static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 168
ad82864c
JB
169static long decode_packed_array_bitsize (struct type *);
170
171static struct value *decode_constrained_packed_array (struct value *);
172
173static int ada_is_packed_array_type (struct type *);
174
175static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 176
d2e4a39e 177static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 178 struct value **);
14f9c5c9 179
4c4b4cd2
PH
180static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
14f9c5c9 182
d2e4a39e 183static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 184
d2e4a39e 185static int equiv_types (struct type *, struct type *);
14f9c5c9 186
d2e4a39e 187static int is_name_suffix (const char *);
14f9c5c9 188
73589123
PH
189static int advance_wild_match (const char **, const char *, int);
190
b5ec771e 191static bool wild_match (const char *name, const char *patn);
14f9c5c9 192
d2e4a39e 193static struct value *ada_coerce_ref (struct value *);
14f9c5c9 194
4c4b4cd2
PH
195static LONGEST pos_atr (struct value *);
196
3cb382c9 197static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 198
53a47a3e
TT
199static struct value *val_atr (struct type *, LONGEST);
200
d2e4a39e 201static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 202
4c4b4cd2
PH
203static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
14f9c5c9 205
108d56a4 206static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
207 struct type *);
208
0d5cff50 209static int find_struct_field (const char *, struct type *, int,
52ce6436 210 struct type **, int *, int *, int *, int *);
4c4b4cd2 211
d12307c1 212static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 213 struct value **, int, const char *,
2a612529 214 struct type *, int);
4c4b4cd2 215
4c4b4cd2
PH
216static int ada_is_direct_array_type (struct type *);
217
52ce6436
PH
218static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
222 struct expression *,
223 int *, enum noside);
52ce6436
PH
224
225static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
852dff6c
JB
249
250static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
251
252static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
4c4b4cd2
PH
255\f
256
ee01b665
JB
257/* The result of a symbol lookup to be stored in our symbol cache. */
258
259struct cache_entry
260{
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
fe978cb0 264 domain_enum domain;
ee01b665
JB
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273};
274
275/* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284#define HASH_SIZE 1009
285
286struct ada_symbol_cache
287{
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293};
294
295static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 296
4c4b4cd2 297/* Maximum-sized dynamic type. */
14f9c5c9
AS
298static unsigned int varsize_limit;
299
67cb5b2d 300static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
301#ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303#else
14f9c5c9 304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 305#endif
14f9c5c9 306
4c4b4cd2 307/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 308static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 309 = "__gnat_ada_main_program_name";
14f9c5c9 310
4c4b4cd2
PH
311/* Limit on the number of warnings to raise per expression evaluation. */
312static int warning_limit = 2;
313
314/* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316static int warnings_issued = 0;
317
318static const char *known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320};
321
322static const char *known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324};
325
c6044dd1
JB
326/* Maintenance-related settings for this module. */
327
328static struct cmd_list_element *maint_set_ada_cmdlist;
329static struct cmd_list_element *maint_show_ada_cmdlist;
330
c6044dd1
JB
331/* The "maintenance ada set/show ignore-descriptive-type" value. */
332
491144b5 333static bool ada_ignore_descriptive_types_p = false;
c6044dd1 334
e802dbe0
JB
335 /* Inferior-specific data. */
336
337/* Per-inferior data for this module. */
338
339struct ada_inferior_data
340{
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
f37b313d 345 struct type *tsd_type = nullptr;
3eecfa55
JB
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
f37b313d 350 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
351};
352
353/* Our key to this module's inferior data. */
f37b313d 354static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
355
356/* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364static struct ada_inferior_data *
365get_ada_inferior_data (struct inferior *inf)
366{
367 struct ada_inferior_data *data;
368
f37b313d 369 data = ada_inferior_data.get (inf);
e802dbe0 370 if (data == NULL)
f37b313d 371 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
372
373 return data;
374}
375
376/* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379static void
380ada_inferior_exit (struct inferior *inf)
381{
f37b313d 382 ada_inferior_data.clear (inf);
e802dbe0
JB
383}
384
ee01b665
JB
385
386 /* program-space-specific data. */
387
388/* This module's per-program-space data. */
389struct ada_pspace_data
390{
f37b313d
TT
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
ee01b665 397 /* The Ada symbol cache. */
f37b313d 398 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
399};
400
401/* Key to our per-program-space data. */
f37b313d 402static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
403
404/* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409static struct ada_pspace_data *
410get_ada_pspace_data (struct program_space *pspace)
411{
412 struct ada_pspace_data *data;
413
f37b313d 414 data = ada_pspace_data_handle.get (pspace);
ee01b665 415 if (data == NULL)
f37b313d 416 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
417
418 return data;
419}
420
4c4b4cd2
PH
421 /* Utilities */
422
720d1a40 423/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 424 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450static struct type *
451ada_typedef_target_type (struct type *type)
452{
78134374 453 while (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456}
457
41d27058
JB
458/* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462static const char *
463ada_unqualified_name (const char *decoded_name)
464{
2b0f535a
JB
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
41d27058
JB
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481}
482
39e7af3e 483/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 484
39e7af3e 485static std::string
41d27058
JB
486add_angle_brackets (const char *str)
487{
39e7af3e 488 return string_printf ("<%s>", str);
41d27058 489}
96d887e8 490
67cb5b2d 491static const char *
4c4b4cd2
PH
492ada_get_gdb_completer_word_break_characters (void)
493{
494 return ada_completer_word_break_characters;
495}
496
e2b7af72
JB
497/* la_watch_location_expression for Ada. */
498
de93309a 499static gdb::unique_xmalloc_ptr<char>
e2b7af72
JB
500ada_watch_location_expression (struct type *type, CORE_ADDR addr)
501{
502 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
503 std::string name = type_to_string (type);
504 return gdb::unique_xmalloc_ptr<char>
505 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
506}
507
de93309a
SM
508/* Assuming V points to an array of S objects, make sure that it contains at
509 least M objects, updating V and S as necessary. */
510
511#define GROW_VECT(v, s, m) \
512 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
513
f27cf670 514/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 515 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 516 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 517
de93309a 518static void *
f27cf670 519grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 520{
d2e4a39e
AS
521 if (*size < min_size)
522 {
523 *size *= 2;
524 if (*size < min_size)
4c4b4cd2 525 *size = min_size;
f27cf670 526 vect = xrealloc (vect, *size * element_size);
d2e4a39e 527 }
f27cf670 528 return vect;
14f9c5c9
AS
529}
530
531/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 532 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
533
534static int
ebf56fd3 535field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
536{
537 int len = strlen (target);
5b4ee69b 538
d2e4a39e 539 return
4c4b4cd2
PH
540 (strncmp (field_name, target, len) == 0
541 && (field_name[len] == '\0'
61012eef 542 || (startswith (field_name + len, "___")
76a01679
JB
543 && strcmp (field_name + strlen (field_name) - 6,
544 "___XVN") != 0)));
14f9c5c9
AS
545}
546
547
872c8b51
JB
548/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
549 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
550 and return its index. This function also handles fields whose name
551 have ___ suffixes because the compiler sometimes alters their name
552 by adding such a suffix to represent fields with certain constraints.
553 If the field could not be found, return a negative number if
554 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
555
556int
557ada_get_field_index (const struct type *type, const char *field_name,
558 int maybe_missing)
559{
560 int fieldno;
872c8b51
JB
561 struct type *struct_type = check_typedef ((struct type *) type);
562
1f704f76 563 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
872c8b51 564 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
565 return fieldno;
566
567 if (!maybe_missing)
323e0a4a 568 error (_("Unable to find field %s in struct %s. Aborting"),
7d93a1e0 569 field_name, struct_type->name ());
4c4b4cd2
PH
570
571 return -1;
572}
573
574/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
575
576int
d2e4a39e 577ada_name_prefix_len (const char *name)
14f9c5c9
AS
578{
579 if (name == NULL)
580 return 0;
d2e4a39e 581 else
14f9c5c9 582 {
d2e4a39e 583 const char *p = strstr (name, "___");
5b4ee69b 584
14f9c5c9 585 if (p == NULL)
4c4b4cd2 586 return strlen (name);
14f9c5c9 587 else
4c4b4cd2 588 return p - name;
14f9c5c9
AS
589 }
590}
591
4c4b4cd2
PH
592/* Return non-zero if SUFFIX is a suffix of STR.
593 Return zero if STR is null. */
594
14f9c5c9 595static int
d2e4a39e 596is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
597{
598 int len1, len2;
5b4ee69b 599
14f9c5c9
AS
600 if (str == NULL)
601 return 0;
602 len1 = strlen (str);
603 len2 = strlen (suffix);
4c4b4cd2 604 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
605}
606
4c4b4cd2
PH
607/* The contents of value VAL, treated as a value of type TYPE. The
608 result is an lval in memory if VAL is. */
14f9c5c9 609
d2e4a39e 610static struct value *
4c4b4cd2 611coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 612{
61ee279c 613 type = ada_check_typedef (type);
df407dfe 614 if (value_type (val) == type)
4c4b4cd2 615 return val;
d2e4a39e 616 else
14f9c5c9 617 {
4c4b4cd2
PH
618 struct value *result;
619
620 /* Make sure that the object size is not unreasonable before
621 trying to allocate some memory for it. */
c1b5a1a6 622 ada_ensure_varsize_limit (type);
4c4b4cd2 623
41e8491f
JK
624 if (value_lazy (val)
625 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
626 result = allocate_value_lazy (type);
627 else
628 {
629 result = allocate_value (type);
9a0dc9e3 630 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 631 }
74bcbdf3 632 set_value_component_location (result, val);
9bbda503
AC
633 set_value_bitsize (result, value_bitsize (val));
634 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
635 if (VALUE_LVAL (result) == lval_memory)
636 set_value_address (result, value_address (val));
14f9c5c9
AS
637 return result;
638 }
639}
640
fc1a4b47
AC
641static const gdb_byte *
642cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
643{
644 if (valaddr == NULL)
645 return NULL;
646 else
647 return valaddr + offset;
648}
649
650static CORE_ADDR
ebf56fd3 651cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
652{
653 if (address == 0)
654 return 0;
d2e4a39e 655 else
14f9c5c9
AS
656 return address + offset;
657}
658
4c4b4cd2
PH
659/* Issue a warning (as for the definition of warning in utils.c, but
660 with exactly one argument rather than ...), unless the limit on the
661 number of warnings has passed during the evaluation of the current
662 expression. */
a2249542 663
77109804
AC
664/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
665 provided by "complaint". */
a0b31db1 666static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 667
14f9c5c9 668static void
a2249542 669lim_warning (const char *format, ...)
14f9c5c9 670{
a2249542 671 va_list args;
a2249542 672
5b4ee69b 673 va_start (args, format);
4c4b4cd2
PH
674 warnings_issued += 1;
675 if (warnings_issued <= warning_limit)
a2249542
MK
676 vwarning (format, args);
677
678 va_end (args);
4c4b4cd2
PH
679}
680
714e53ab
PH
681/* Issue an error if the size of an object of type T is unreasonable,
682 i.e. if it would be a bad idea to allocate a value of this type in
683 GDB. */
684
c1b5a1a6
JB
685void
686ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
687{
688 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 689 error (_("object size is larger than varsize-limit"));
714e53ab
PH
690}
691
0963b4bd 692/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 693static LONGEST
c3e5cd34 694max_of_size (int size)
4c4b4cd2 695{
76a01679 696 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 697
76a01679 698 return top_bit | (top_bit - 1);
4c4b4cd2
PH
699}
700
0963b4bd 701/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 702static LONGEST
c3e5cd34 703min_of_size (int size)
4c4b4cd2 704{
c3e5cd34 705 return -max_of_size (size) - 1;
4c4b4cd2
PH
706}
707
0963b4bd 708/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 709static ULONGEST
c3e5cd34 710umax_of_size (int size)
4c4b4cd2 711{
76a01679 712 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 713
76a01679 714 return top_bit | (top_bit - 1);
4c4b4cd2
PH
715}
716
0963b4bd 717/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
718static LONGEST
719max_of_type (struct type *t)
4c4b4cd2 720{
c3e5cd34
PH
721 if (TYPE_UNSIGNED (t))
722 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
723 else
724 return max_of_size (TYPE_LENGTH (t));
725}
726
0963b4bd 727/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
728static LONGEST
729min_of_type (struct type *t)
730{
731 if (TYPE_UNSIGNED (t))
732 return 0;
733 else
734 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
735}
736
737/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
738LONGEST
739ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 740{
b249d2c2 741 type = resolve_dynamic_type (type, {}, 0);
78134374 742 switch (type->code ())
4c4b4cd2
PH
743 {
744 case TYPE_CODE_RANGE:
690cc4eb 745 return TYPE_HIGH_BOUND (type);
4c4b4cd2 746 case TYPE_CODE_ENUM:
1f704f76 747 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
690cc4eb
PH
748 case TYPE_CODE_BOOL:
749 return 1;
750 case TYPE_CODE_CHAR:
76a01679 751 case TYPE_CODE_INT:
690cc4eb 752 return max_of_type (type);
4c4b4cd2 753 default:
43bbcdc2 754 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
755 }
756}
757
14e75d8e 758/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
759LONGEST
760ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 761{
b249d2c2 762 type = resolve_dynamic_type (type, {}, 0);
78134374 763 switch (type->code ())
4c4b4cd2
PH
764 {
765 case TYPE_CODE_RANGE:
690cc4eb 766 return TYPE_LOW_BOUND (type);
4c4b4cd2 767 case TYPE_CODE_ENUM:
14e75d8e 768 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
769 case TYPE_CODE_BOOL:
770 return 0;
771 case TYPE_CODE_CHAR:
76a01679 772 case TYPE_CODE_INT:
690cc4eb 773 return min_of_type (type);
4c4b4cd2 774 default:
43bbcdc2 775 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
776 }
777}
778
779/* The identity on non-range types. For range types, the underlying
76a01679 780 non-range scalar type. */
4c4b4cd2
PH
781
782static struct type *
18af8284 783get_base_type (struct type *type)
4c4b4cd2 784{
78134374 785 while (type != NULL && type->code () == TYPE_CODE_RANGE)
4c4b4cd2 786 {
76a01679
JB
787 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
788 return type;
4c4b4cd2
PH
789 type = TYPE_TARGET_TYPE (type);
790 }
791 return type;
14f9c5c9 792}
41246937
JB
793
794/* Return a decoded version of the given VALUE. This means returning
795 a value whose type is obtained by applying all the GNAT-specific
85102364 796 encodings, making the resulting type a static but standard description
41246937
JB
797 of the initial type. */
798
799struct value *
800ada_get_decoded_value (struct value *value)
801{
802 struct type *type = ada_check_typedef (value_type (value));
803
804 if (ada_is_array_descriptor_type (type)
805 || (ada_is_constrained_packed_array_type (type)
78134374 806 && type->code () != TYPE_CODE_PTR))
41246937 807 {
78134374 808 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
41246937
JB
809 value = ada_coerce_to_simple_array_ptr (value);
810 else
811 value = ada_coerce_to_simple_array (value);
812 }
813 else
814 value = ada_to_fixed_value (value);
815
816 return value;
817}
818
819/* Same as ada_get_decoded_value, but with the given TYPE.
820 Because there is no associated actual value for this type,
821 the resulting type might be a best-effort approximation in
822 the case of dynamic types. */
823
824struct type *
825ada_get_decoded_type (struct type *type)
826{
827 type = to_static_fixed_type (type);
828 if (ada_is_constrained_packed_array_type (type))
829 type = ada_coerce_to_simple_array_type (type);
830 return type;
831}
832
4c4b4cd2 833\f
76a01679 834
4c4b4cd2 835 /* Language Selection */
14f9c5c9
AS
836
837/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 838 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 839
de93309a 840static enum language
ccefe4c4 841ada_update_initial_language (enum language lang)
14f9c5c9 842{
cafb3438 843 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 844 return language_ada;
14f9c5c9
AS
845
846 return lang;
847}
96d887e8
PH
848
849/* If the main procedure is written in Ada, then return its name.
850 The result is good until the next call. Return NULL if the main
851 procedure doesn't appear to be in Ada. */
852
853char *
854ada_main_name (void)
855{
3b7344d5 856 struct bound_minimal_symbol msym;
e83e4e24 857 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 858
96d887e8
PH
859 /* For Ada, the name of the main procedure is stored in a specific
860 string constant, generated by the binder. Look for that symbol,
861 extract its address, and then read that string. If we didn't find
862 that string, then most probably the main procedure is not written
863 in Ada. */
864 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
865
3b7344d5 866 if (msym.minsym != NULL)
96d887e8 867 {
f9bc20b9
JB
868 CORE_ADDR main_program_name_addr;
869 int err_code;
870
77e371c0 871 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 872 if (main_program_name_addr == 0)
323e0a4a 873 error (_("Invalid address for Ada main program name."));
96d887e8 874
f9bc20b9
JB
875 target_read_string (main_program_name_addr, &main_program_name,
876 1024, &err_code);
877
878 if (err_code != 0)
879 return NULL;
e83e4e24 880 return main_program_name.get ();
96d887e8
PH
881 }
882
883 /* The main procedure doesn't seem to be in Ada. */
884 return NULL;
885}
14f9c5c9 886\f
4c4b4cd2 887 /* Symbols */
d2e4a39e 888
4c4b4cd2
PH
889/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
890 of NULLs. */
14f9c5c9 891
d2e4a39e
AS
892const struct ada_opname_map ada_opname_table[] = {
893 {"Oadd", "\"+\"", BINOP_ADD},
894 {"Osubtract", "\"-\"", BINOP_SUB},
895 {"Omultiply", "\"*\"", BINOP_MUL},
896 {"Odivide", "\"/\"", BINOP_DIV},
897 {"Omod", "\"mod\"", BINOP_MOD},
898 {"Orem", "\"rem\"", BINOP_REM},
899 {"Oexpon", "\"**\"", BINOP_EXP},
900 {"Olt", "\"<\"", BINOP_LESS},
901 {"Ole", "\"<=\"", BINOP_LEQ},
902 {"Ogt", "\">\"", BINOP_GTR},
903 {"Oge", "\">=\"", BINOP_GEQ},
904 {"Oeq", "\"=\"", BINOP_EQUAL},
905 {"One", "\"/=\"", BINOP_NOTEQUAL},
906 {"Oand", "\"and\"", BINOP_BITWISE_AND},
907 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
908 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
909 {"Oconcat", "\"&\"", BINOP_CONCAT},
910 {"Oabs", "\"abs\"", UNOP_ABS},
911 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
912 {"Oadd", "\"+\"", UNOP_PLUS},
913 {"Osubtract", "\"-\"", UNOP_NEG},
914 {NULL, NULL}
14f9c5c9
AS
915};
916
b5ec771e
PA
917/* The "encoded" form of DECODED, according to GNAT conventions. The
918 result is valid until the next call to ada_encode. If
919 THROW_ERRORS, throw an error if invalid operator name is found.
920 Otherwise, return NULL in that case. */
4c4b4cd2 921
b5ec771e
PA
922static char *
923ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 924{
4c4b4cd2
PH
925 static char *encoding_buffer = NULL;
926 static size_t encoding_buffer_size = 0;
d2e4a39e 927 const char *p;
14f9c5c9 928 int k;
d2e4a39e 929
4c4b4cd2 930 if (decoded == NULL)
14f9c5c9
AS
931 return NULL;
932
4c4b4cd2
PH
933 GROW_VECT (encoding_buffer, encoding_buffer_size,
934 2 * strlen (decoded) + 10);
14f9c5c9
AS
935
936 k = 0;
4c4b4cd2 937 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 938 {
cdc7bb92 939 if (*p == '.')
4c4b4cd2
PH
940 {
941 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
942 k += 2;
943 }
14f9c5c9 944 else if (*p == '"')
4c4b4cd2
PH
945 {
946 const struct ada_opname_map *mapping;
947
948 for (mapping = ada_opname_table;
1265e4aa 949 mapping->encoded != NULL
61012eef 950 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
951 ;
952 if (mapping->encoded == NULL)
b5ec771e
PA
953 {
954 if (throw_errors)
955 error (_("invalid Ada operator name: %s"), p);
956 else
957 return NULL;
958 }
4c4b4cd2
PH
959 strcpy (encoding_buffer + k, mapping->encoded);
960 k += strlen (mapping->encoded);
961 break;
962 }
d2e4a39e 963 else
4c4b4cd2
PH
964 {
965 encoding_buffer[k] = *p;
966 k += 1;
967 }
14f9c5c9
AS
968 }
969
4c4b4cd2
PH
970 encoding_buffer[k] = '\0';
971 return encoding_buffer;
14f9c5c9
AS
972}
973
b5ec771e
PA
974/* The "encoded" form of DECODED, according to GNAT conventions.
975 The result is valid until the next call to ada_encode. */
976
977char *
978ada_encode (const char *decoded)
979{
980 return ada_encode_1 (decoded, true);
981}
982
14f9c5c9 983/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
984 quotes, unfolded, but with the quotes stripped away. Result good
985 to next call. */
986
de93309a 987static char *
e0802d59 988ada_fold_name (gdb::string_view name)
14f9c5c9 989{
d2e4a39e 990 static char *fold_buffer = NULL;
14f9c5c9
AS
991 static size_t fold_buffer_size = 0;
992
e0802d59 993 int len = name.size ();
d2e4a39e 994 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
995
996 if (name[0] == '\'')
997 {
e0802d59 998 strncpy (fold_buffer, name.data () + 1, len - 2);
d2e4a39e 999 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1000 }
1001 else
1002 {
1003 int i;
5b4ee69b 1004
14f9c5c9 1005 for (i = 0; i <= len; i += 1)
4c4b4cd2 1006 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1007 }
1008
1009 return fold_buffer;
1010}
1011
529cad9c
PH
1012/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1013
1014static int
1015is_lower_alphanum (const char c)
1016{
1017 return (isdigit (c) || (isalpha (c) && islower (c)));
1018}
1019
c90092fe
JB
1020/* ENCODED is the linkage name of a symbol and LEN contains its length.
1021 This function saves in LEN the length of that same symbol name but
1022 without either of these suffixes:
29480c32
JB
1023 . .{DIGIT}+
1024 . ${DIGIT}+
1025 . ___{DIGIT}+
1026 . __{DIGIT}+.
c90092fe 1027
29480c32
JB
1028 These are suffixes introduced by the compiler for entities such as
1029 nested subprogram for instance, in order to avoid name clashes.
1030 They do not serve any purpose for the debugger. */
1031
1032static void
1033ada_remove_trailing_digits (const char *encoded, int *len)
1034{
1035 if (*len > 1 && isdigit (encoded[*len - 1]))
1036 {
1037 int i = *len - 2;
5b4ee69b 1038
29480c32
JB
1039 while (i > 0 && isdigit (encoded[i]))
1040 i--;
1041 if (i >= 0 && encoded[i] == '.')
1042 *len = i;
1043 else if (i >= 0 && encoded[i] == '$')
1044 *len = i;
61012eef 1045 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1046 *len = i - 2;
61012eef 1047 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1048 *len = i - 1;
1049 }
1050}
1051
1052/* Remove the suffix introduced by the compiler for protected object
1053 subprograms. */
1054
1055static void
1056ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1057{
1058 /* Remove trailing N. */
1059
1060 /* Protected entry subprograms are broken into two
1061 separate subprograms: The first one is unprotected, and has
1062 a 'N' suffix; the second is the protected version, and has
0963b4bd 1063 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1064 the protection. Since the P subprograms are internally generated,
1065 we leave these names undecoded, giving the user a clue that this
1066 entity is internal. */
1067
1068 if (*len > 1
1069 && encoded[*len - 1] == 'N'
1070 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1071 *len = *len - 1;
1072}
1073
1074/* If ENCODED follows the GNAT entity encoding conventions, then return
1075 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1076 replaced by ENCODED. */
14f9c5c9 1077
f945dedf 1078std::string
4c4b4cd2 1079ada_decode (const char *encoded)
14f9c5c9
AS
1080{
1081 int i, j;
1082 int len0;
d2e4a39e 1083 const char *p;
14f9c5c9 1084 int at_start_name;
f945dedf 1085 std::string decoded;
d2e4a39e 1086
0d81f350
JG
1087 /* With function descriptors on PPC64, the value of a symbol named
1088 ".FN", if it exists, is the entry point of the function "FN". */
1089 if (encoded[0] == '.')
1090 encoded += 1;
1091
29480c32
JB
1092 /* The name of the Ada main procedure starts with "_ada_".
1093 This prefix is not part of the decoded name, so skip this part
1094 if we see this prefix. */
61012eef 1095 if (startswith (encoded, "_ada_"))
4c4b4cd2 1096 encoded += 5;
14f9c5c9 1097
29480c32
JB
1098 /* If the name starts with '_', then it is not a properly encoded
1099 name, so do not attempt to decode it. Similarly, if the name
1100 starts with '<', the name should not be decoded. */
4c4b4cd2 1101 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1102 goto Suppress;
1103
4c4b4cd2 1104 len0 = strlen (encoded);
4c4b4cd2 1105
29480c32
JB
1106 ada_remove_trailing_digits (encoded, &len0);
1107 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1108
4c4b4cd2
PH
1109 /* Remove the ___X.* suffix if present. Do not forget to verify that
1110 the suffix is located before the current "end" of ENCODED. We want
1111 to avoid re-matching parts of ENCODED that have previously been
1112 marked as discarded (by decrementing LEN0). */
1113 p = strstr (encoded, "___");
1114 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1115 {
1116 if (p[3] == 'X')
4c4b4cd2 1117 len0 = p - encoded;
14f9c5c9 1118 else
4c4b4cd2 1119 goto Suppress;
14f9c5c9 1120 }
4c4b4cd2 1121
29480c32
JB
1122 /* Remove any trailing TKB suffix. It tells us that this symbol
1123 is for the body of a task, but that information does not actually
1124 appear in the decoded name. */
1125
61012eef 1126 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1127 len0 -= 3;
76a01679 1128
a10967fa
JB
1129 /* Remove any trailing TB suffix. The TB suffix is slightly different
1130 from the TKB suffix because it is used for non-anonymous task
1131 bodies. */
1132
61012eef 1133 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1134 len0 -= 2;
1135
29480c32
JB
1136 /* Remove trailing "B" suffixes. */
1137 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1138
61012eef 1139 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1140 len0 -= 1;
1141
4c4b4cd2 1142 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1143
f945dedf 1144 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1145
29480c32
JB
1146 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1147
4c4b4cd2 1148 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1149 {
4c4b4cd2
PH
1150 i = len0 - 2;
1151 while ((i >= 0 && isdigit (encoded[i]))
1152 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1153 i -= 1;
1154 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1155 len0 = i - 1;
1156 else if (encoded[i] == '$')
1157 len0 = i;
d2e4a39e 1158 }
14f9c5c9 1159
29480c32
JB
1160 /* The first few characters that are not alphabetic are not part
1161 of any encoding we use, so we can copy them over verbatim. */
1162
4c4b4cd2
PH
1163 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1164 decoded[j] = encoded[i];
14f9c5c9
AS
1165
1166 at_start_name = 1;
1167 while (i < len0)
1168 {
29480c32 1169 /* Is this a symbol function? */
4c4b4cd2
PH
1170 if (at_start_name && encoded[i] == 'O')
1171 {
1172 int k;
5b4ee69b 1173
4c4b4cd2
PH
1174 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1175 {
1176 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1177 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1178 op_len - 1) == 0)
1179 && !isalnum (encoded[i + op_len]))
4c4b4cd2 1180 {
f945dedf 1181 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
4c4b4cd2
PH
1182 at_start_name = 0;
1183 i += op_len;
1184 j += strlen (ada_opname_table[k].decoded);
1185 break;
1186 }
1187 }
1188 if (ada_opname_table[k].encoded != NULL)
1189 continue;
1190 }
14f9c5c9
AS
1191 at_start_name = 0;
1192
529cad9c
PH
1193 /* Replace "TK__" with "__", which will eventually be translated
1194 into "." (just below). */
1195
61012eef 1196 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1197 i += 2;
529cad9c 1198
29480c32
JB
1199 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1200 be translated into "." (just below). These are internal names
1201 generated for anonymous blocks inside which our symbol is nested. */
1202
1203 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1204 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1205 && isdigit (encoded [i+4]))
1206 {
1207 int k = i + 5;
1208
1209 while (k < len0 && isdigit (encoded[k]))
1210 k++; /* Skip any extra digit. */
1211
1212 /* Double-check that the "__B_{DIGITS}+" sequence we found
1213 is indeed followed by "__". */
1214 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1215 i = k;
1216 }
1217
529cad9c
PH
1218 /* Remove _E{DIGITS}+[sb] */
1219
1220 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1221 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1222 one implements the actual entry code, and has a suffix following
1223 the convention above; the second one implements the barrier and
1224 uses the same convention as above, except that the 'E' is replaced
1225 by a 'B'.
1226
1227 Just as above, we do not decode the name of barrier functions
1228 to give the user a clue that the code he is debugging has been
1229 internally generated. */
1230
1231 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1232 && isdigit (encoded[i+2]))
1233 {
1234 int k = i + 3;
1235
1236 while (k < len0 && isdigit (encoded[k]))
1237 k++;
1238
1239 if (k < len0
1240 && (encoded[k] == 'b' || encoded[k] == 's'))
1241 {
1242 k++;
1243 /* Just as an extra precaution, make sure that if this
1244 suffix is followed by anything else, it is a '_'.
1245 Otherwise, we matched this sequence by accident. */
1246 if (k == len0
1247 || (k < len0 && encoded[k] == '_'))
1248 i = k;
1249 }
1250 }
1251
1252 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1253 the GNAT front-end in protected object subprograms. */
1254
1255 if (i < len0 + 3
1256 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1257 {
1258 /* Backtrack a bit up until we reach either the begining of
1259 the encoded name, or "__". Make sure that we only find
1260 digits or lowercase characters. */
1261 const char *ptr = encoded + i - 1;
1262
1263 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1264 ptr--;
1265 if (ptr < encoded
1266 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1267 i++;
1268 }
1269
4c4b4cd2
PH
1270 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1271 {
29480c32
JB
1272 /* This is a X[bn]* sequence not separated from the previous
1273 part of the name with a non-alpha-numeric character (in other
1274 words, immediately following an alpha-numeric character), then
1275 verify that it is placed at the end of the encoded name. If
1276 not, then the encoding is not valid and we should abort the
1277 decoding. Otherwise, just skip it, it is used in body-nested
1278 package names. */
4c4b4cd2
PH
1279 do
1280 i += 1;
1281 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1282 if (i < len0)
1283 goto Suppress;
1284 }
cdc7bb92 1285 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1286 {
29480c32 1287 /* Replace '__' by '.'. */
4c4b4cd2
PH
1288 decoded[j] = '.';
1289 at_start_name = 1;
1290 i += 2;
1291 j += 1;
1292 }
14f9c5c9 1293 else
4c4b4cd2 1294 {
29480c32
JB
1295 /* It's a character part of the decoded name, so just copy it
1296 over. */
4c4b4cd2
PH
1297 decoded[j] = encoded[i];
1298 i += 1;
1299 j += 1;
1300 }
14f9c5c9 1301 }
f945dedf 1302 decoded.resize (j);
14f9c5c9 1303
29480c32
JB
1304 /* Decoded names should never contain any uppercase character.
1305 Double-check this, and abort the decoding if we find one. */
1306
f945dedf 1307 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1308 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1309 goto Suppress;
1310
f945dedf 1311 return decoded;
14f9c5c9
AS
1312
1313Suppress:
4c4b4cd2 1314 if (encoded[0] == '<')
f945dedf 1315 decoded = encoded;
14f9c5c9 1316 else
f945dedf 1317 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1318 return decoded;
1319
1320}
1321
1322/* Table for keeping permanent unique copies of decoded names. Once
1323 allocated, names in this table are never released. While this is a
1324 storage leak, it should not be significant unless there are massive
1325 changes in the set of decoded names in successive versions of a
1326 symbol table loaded during a single session. */
1327static struct htab *decoded_names_store;
1328
1329/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1330 in the language-specific part of GSYMBOL, if it has not been
1331 previously computed. Tries to save the decoded name in the same
1332 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1333 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1334 GSYMBOL).
4c4b4cd2
PH
1335 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1336 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1337 when a decoded name is cached in it. */
4c4b4cd2 1338
45e6c716 1339const char *
f85f34ed 1340ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1341{
f85f34ed
TT
1342 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1343 const char **resultp =
615b3f62 1344 &gsymbol->language_specific.demangled_name;
5b4ee69b 1345
f85f34ed 1346 if (!gsymbol->ada_mangled)
4c4b4cd2 1347 {
4d4eaa30 1348 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1349 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1350
f85f34ed 1351 gsymbol->ada_mangled = 1;
5b4ee69b 1352
f85f34ed 1353 if (obstack != NULL)
f945dedf 1354 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1355 else
76a01679 1356 {
f85f34ed
TT
1357 /* Sometimes, we can't find a corresponding objfile, in
1358 which case, we put the result on the heap. Since we only
1359 decode when needed, we hope this usually does not cause a
1360 significant memory leak (FIXME). */
1361
76a01679 1362 char **slot = (char **) htab_find_slot (decoded_names_store,
f945dedf 1363 decoded.c_str (), INSERT);
5b4ee69b 1364
76a01679 1365 if (*slot == NULL)
f945dedf 1366 *slot = xstrdup (decoded.c_str ());
76a01679
JB
1367 *resultp = *slot;
1368 }
4c4b4cd2 1369 }
14f9c5c9 1370
4c4b4cd2
PH
1371 return *resultp;
1372}
76a01679 1373
2c0b251b 1374static char *
76a01679 1375ada_la_decode (const char *encoded, int options)
4c4b4cd2 1376{
f945dedf 1377 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1378}
1379
14f9c5c9 1380\f
d2e4a39e 1381
4c4b4cd2 1382 /* Arrays */
14f9c5c9 1383
28c85d6c
JB
1384/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1385 generated by the GNAT compiler to describe the index type used
1386 for each dimension of an array, check whether it follows the latest
1387 known encoding. If not, fix it up to conform to the latest encoding.
1388 Otherwise, do nothing. This function also does nothing if
1389 INDEX_DESC_TYPE is NULL.
1390
85102364 1391 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1392 Initially, the information would be provided through the name of each
1393 field of the structure type only, while the type of these fields was
1394 described as unspecified and irrelevant. The debugger was then expected
1395 to perform a global type lookup using the name of that field in order
1396 to get access to the full index type description. Because these global
1397 lookups can be very expensive, the encoding was later enhanced to make
1398 the global lookup unnecessary by defining the field type as being
1399 the full index type description.
1400
1401 The purpose of this routine is to allow us to support older versions
1402 of the compiler by detecting the use of the older encoding, and by
1403 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1404 we essentially replace each field's meaningless type by the associated
1405 index subtype). */
1406
1407void
1408ada_fixup_array_indexes_type (struct type *index_desc_type)
1409{
1410 int i;
1411
1412 if (index_desc_type == NULL)
1413 return;
1f704f76 1414 gdb_assert (index_desc_type->num_fields () > 0);
28c85d6c
JB
1415
1416 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1417 to check one field only, no need to check them all). If not, return
1418 now.
1419
1420 If our INDEX_DESC_TYPE was generated using the older encoding,
1421 the field type should be a meaningless integer type whose name
1422 is not equal to the field name. */
940da03e
SM
1423 if (index_desc_type->field (0).type ()->name () != NULL
1424 && strcmp (index_desc_type->field (0).type ()->name (),
28c85d6c
JB
1425 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1426 return;
1427
1428 /* Fixup each field of INDEX_DESC_TYPE. */
1f704f76 1429 for (i = 0; i < index_desc_type->num_fields (); i++)
28c85d6c 1430 {
0d5cff50 1431 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1432 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1433
1434 if (raw_type)
5d14b6e5 1435 index_desc_type->field (i).set_type (raw_type);
28c85d6c
JB
1436 }
1437}
1438
4c4b4cd2
PH
1439/* The desc_* routines return primitive portions of array descriptors
1440 (fat pointers). */
14f9c5c9
AS
1441
1442/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1443 level of indirection, if needed. */
1444
d2e4a39e
AS
1445static struct type *
1446desc_base_type (struct type *type)
14f9c5c9
AS
1447{
1448 if (type == NULL)
1449 return NULL;
61ee279c 1450 type = ada_check_typedef (type);
78134374 1451 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
1452 type = ada_typedef_target_type (type);
1453
1265e4aa 1454 if (type != NULL
78134374
SM
1455 && (type->code () == TYPE_CODE_PTR
1456 || type->code () == TYPE_CODE_REF))
61ee279c 1457 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1458 else
1459 return type;
1460}
1461
4c4b4cd2
PH
1462/* True iff TYPE indicates a "thin" array pointer type. */
1463
14f9c5c9 1464static int
d2e4a39e 1465is_thin_pntr (struct type *type)
14f9c5c9 1466{
d2e4a39e 1467 return
14f9c5c9
AS
1468 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1469 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1470}
1471
4c4b4cd2
PH
1472/* The descriptor type for thin pointer type TYPE. */
1473
d2e4a39e
AS
1474static struct type *
1475thin_descriptor_type (struct type *type)
14f9c5c9 1476{
d2e4a39e 1477 struct type *base_type = desc_base_type (type);
5b4ee69b 1478
14f9c5c9
AS
1479 if (base_type == NULL)
1480 return NULL;
1481 if (is_suffix (ada_type_name (base_type), "___XVE"))
1482 return base_type;
d2e4a39e 1483 else
14f9c5c9 1484 {
d2e4a39e 1485 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1486
14f9c5c9 1487 if (alt_type == NULL)
4c4b4cd2 1488 return base_type;
14f9c5c9 1489 else
4c4b4cd2 1490 return alt_type;
14f9c5c9
AS
1491 }
1492}
1493
4c4b4cd2
PH
1494/* A pointer to the array data for thin-pointer value VAL. */
1495
d2e4a39e
AS
1496static struct value *
1497thin_data_pntr (struct value *val)
14f9c5c9 1498{
828292f2 1499 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1500 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1501
556bdfd4
UW
1502 data_type = lookup_pointer_type (data_type);
1503
78134374 1504 if (type->code () == TYPE_CODE_PTR)
556bdfd4 1505 return value_cast (data_type, value_copy (val));
d2e4a39e 1506 else
42ae5230 1507 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1508}
1509
4c4b4cd2
PH
1510/* True iff TYPE indicates a "thick" array pointer type. */
1511
14f9c5c9 1512static int
d2e4a39e 1513is_thick_pntr (struct type *type)
14f9c5c9
AS
1514{
1515 type = desc_base_type (type);
78134374 1516 return (type != NULL && type->code () == TYPE_CODE_STRUCT
4c4b4cd2 1517 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1518}
1519
4c4b4cd2
PH
1520/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1521 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1522
d2e4a39e
AS
1523static struct type *
1524desc_bounds_type (struct type *type)
14f9c5c9 1525{
d2e4a39e 1526 struct type *r;
14f9c5c9
AS
1527
1528 type = desc_base_type (type);
1529
1530 if (type == NULL)
1531 return NULL;
1532 else if (is_thin_pntr (type))
1533 {
1534 type = thin_descriptor_type (type);
1535 if (type == NULL)
4c4b4cd2 1536 return NULL;
14f9c5c9
AS
1537 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1538 if (r != NULL)
61ee279c 1539 return ada_check_typedef (r);
14f9c5c9 1540 }
78134374 1541 else if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
1542 {
1543 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1544 if (r != NULL)
61ee279c 1545 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1546 }
1547 return NULL;
1548}
1549
1550/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1551 one, a pointer to its bounds data. Otherwise NULL. */
1552
d2e4a39e
AS
1553static struct value *
1554desc_bounds (struct value *arr)
14f9c5c9 1555{
df407dfe 1556 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1557
d2e4a39e 1558 if (is_thin_pntr (type))
14f9c5c9 1559 {
d2e4a39e 1560 struct type *bounds_type =
4c4b4cd2 1561 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1562 LONGEST addr;
1563
4cdfadb1 1564 if (bounds_type == NULL)
323e0a4a 1565 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1566
1567 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1568 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1569 the correct calculation is a real pain. FIXME (and fix GCC). */
78134374 1570 if (type->code () == TYPE_CODE_PTR)
4c4b4cd2 1571 addr = value_as_long (arr);
d2e4a39e 1572 else
42ae5230 1573 addr = value_address (arr);
14f9c5c9 1574
d2e4a39e 1575 return
4c4b4cd2
PH
1576 value_from_longest (lookup_pointer_type (bounds_type),
1577 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1578 }
1579
1580 else if (is_thick_pntr (type))
05e522ef
JB
1581 {
1582 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1583 _("Bad GNAT array descriptor"));
1584 struct type *p_bounds_type = value_type (p_bounds);
1585
1586 if (p_bounds_type
78134374 1587 && p_bounds_type->code () == TYPE_CODE_PTR)
05e522ef
JB
1588 {
1589 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1590
1591 if (TYPE_STUB (target_type))
1592 p_bounds = value_cast (lookup_pointer_type
1593 (ada_check_typedef (target_type)),
1594 p_bounds);
1595 }
1596 else
1597 error (_("Bad GNAT array descriptor"));
1598
1599 return p_bounds;
1600 }
14f9c5c9
AS
1601 else
1602 return NULL;
1603}
1604
4c4b4cd2
PH
1605/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1606 position of the field containing the address of the bounds data. */
1607
14f9c5c9 1608static int
d2e4a39e 1609fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1610{
1611 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1612}
1613
1614/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1615 size of the field containing the address of the bounds data. */
1616
14f9c5c9 1617static int
d2e4a39e 1618fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1619{
1620 type = desc_base_type (type);
1621
d2e4a39e 1622 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1623 return TYPE_FIELD_BITSIZE (type, 1);
1624 else
940da03e 1625 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
14f9c5c9
AS
1626}
1627
4c4b4cd2 1628/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1629 pointer to one, the type of its array data (a array-with-no-bounds type);
1630 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1631 data. */
4c4b4cd2 1632
d2e4a39e 1633static struct type *
556bdfd4 1634desc_data_target_type (struct type *type)
14f9c5c9
AS
1635{
1636 type = desc_base_type (type);
1637
4c4b4cd2 1638 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1639 if (is_thin_pntr (type))
940da03e 1640 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
14f9c5c9 1641 else if (is_thick_pntr (type))
556bdfd4
UW
1642 {
1643 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1644
1645 if (data_type
78134374 1646 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
05e522ef 1647 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1648 }
1649
1650 return NULL;
14f9c5c9
AS
1651}
1652
1653/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1654 its array data. */
4c4b4cd2 1655
d2e4a39e
AS
1656static struct value *
1657desc_data (struct value *arr)
14f9c5c9 1658{
df407dfe 1659 struct type *type = value_type (arr);
5b4ee69b 1660
14f9c5c9
AS
1661 if (is_thin_pntr (type))
1662 return thin_data_pntr (arr);
1663 else if (is_thick_pntr (type))
d2e4a39e 1664 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1665 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1666 else
1667 return NULL;
1668}
1669
1670
1671/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1672 position of the field containing the address of the data. */
1673
14f9c5c9 1674static int
d2e4a39e 1675fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1676{
1677 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1678}
1679
1680/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1681 size of the field containing the address of the data. */
1682
14f9c5c9 1683static int
d2e4a39e 1684fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1685{
1686 type = desc_base_type (type);
1687
1688 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1689 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1690 else
940da03e 1691 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
14f9c5c9
AS
1692}
1693
4c4b4cd2 1694/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1695 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1696 bound, if WHICH is 1. The first bound is I=1. */
1697
d2e4a39e
AS
1698static struct value *
1699desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1700{
250106a7
TT
1701 char bound_name[20];
1702 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1703 which ? 'U' : 'L', i - 1);
1704 return value_struct_elt (&bounds, NULL, bound_name, NULL,
323e0a4a 1705 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1706}
1707
1708/* If BOUNDS is an array-bounds structure type, return the bit position
1709 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1710 bound, if WHICH is 1. The first bound is I=1. */
1711
14f9c5c9 1712static int
d2e4a39e 1713desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1714{
d2e4a39e 1715 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1716}
1717
1718/* If BOUNDS is an array-bounds structure type, return the bit field size
1719 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1720 bound, if WHICH is 1. The first bound is I=1. */
1721
76a01679 1722static int
d2e4a39e 1723desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1724{
1725 type = desc_base_type (type);
1726
d2e4a39e
AS
1727 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1728 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1729 else
940da03e 1730 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
14f9c5c9
AS
1731}
1732
1733/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1734 Ith bound (numbering from 1). Otherwise, NULL. */
1735
d2e4a39e
AS
1736static struct type *
1737desc_index_type (struct type *type, int i)
14f9c5c9
AS
1738{
1739 type = desc_base_type (type);
1740
78134374 1741 if (type->code () == TYPE_CODE_STRUCT)
250106a7
TT
1742 {
1743 char bound_name[20];
1744 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1745 return lookup_struct_elt_type (type, bound_name, 1);
1746 }
d2e4a39e 1747 else
14f9c5c9
AS
1748 return NULL;
1749}
1750
4c4b4cd2
PH
1751/* The number of index positions in the array-bounds type TYPE.
1752 Return 0 if TYPE is NULL. */
1753
14f9c5c9 1754static int
d2e4a39e 1755desc_arity (struct type *type)
14f9c5c9
AS
1756{
1757 type = desc_base_type (type);
1758
1759 if (type != NULL)
1f704f76 1760 return type->num_fields () / 2;
14f9c5c9
AS
1761 return 0;
1762}
1763
4c4b4cd2
PH
1764/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1765 an array descriptor type (representing an unconstrained array
1766 type). */
1767
76a01679
JB
1768static int
1769ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1770{
1771 if (type == NULL)
1772 return 0;
61ee279c 1773 type = ada_check_typedef (type);
78134374 1774 return (type->code () == TYPE_CODE_ARRAY
76a01679 1775 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1776}
1777
52ce6436 1778/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1779 * to one. */
52ce6436 1780
2c0b251b 1781static int
52ce6436
PH
1782ada_is_array_type (struct type *type)
1783{
78134374
SM
1784 while (type != NULL
1785 && (type->code () == TYPE_CODE_PTR
1786 || type->code () == TYPE_CODE_REF))
52ce6436
PH
1787 type = TYPE_TARGET_TYPE (type);
1788 return ada_is_direct_array_type (type);
1789}
1790
4c4b4cd2 1791/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1792
14f9c5c9 1793int
4c4b4cd2 1794ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1795{
1796 if (type == NULL)
1797 return 0;
61ee279c 1798 type = ada_check_typedef (type);
78134374
SM
1799 return (type->code () == TYPE_CODE_ARRAY
1800 || (type->code () == TYPE_CODE_PTR
1801 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1802 == TYPE_CODE_ARRAY)));
14f9c5c9
AS
1803}
1804
4c4b4cd2
PH
1805/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1806
14f9c5c9 1807int
4c4b4cd2 1808ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1809{
556bdfd4 1810 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1811
1812 if (type == NULL)
1813 return 0;
61ee279c 1814 type = ada_check_typedef (type);
556bdfd4 1815 return (data_type != NULL
78134374 1816 && data_type->code () == TYPE_CODE_ARRAY
556bdfd4 1817 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1818}
1819
1820/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1821 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1822 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1823 is still needed. */
1824
14f9c5c9 1825int
ebf56fd3 1826ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1827{
d2e4a39e 1828 return
14f9c5c9 1829 type != NULL
78134374 1830 && type->code () == TYPE_CODE_STRUCT
14f9c5c9 1831 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1832 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1833 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1834}
1835
1836
4c4b4cd2 1837/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1838 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1839 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1840 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1841 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1842 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1843 a descriptor. */
de93309a
SM
1844
1845static struct type *
d2e4a39e 1846ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1847{
ad82864c
JB
1848 if (ada_is_constrained_packed_array_type (value_type (arr)))
1849 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1850
df407dfe
AC
1851 if (!ada_is_array_descriptor_type (value_type (arr)))
1852 return value_type (arr);
d2e4a39e
AS
1853
1854 if (!bounds)
ad82864c
JB
1855 {
1856 struct type *array_type =
1857 ada_check_typedef (desc_data_target_type (value_type (arr)));
1858
1859 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1860 TYPE_FIELD_BITSIZE (array_type, 0) =
1861 decode_packed_array_bitsize (value_type (arr));
1862
1863 return array_type;
1864 }
14f9c5c9
AS
1865 else
1866 {
d2e4a39e 1867 struct type *elt_type;
14f9c5c9 1868 int arity;
d2e4a39e 1869 struct value *descriptor;
14f9c5c9 1870
df407dfe
AC
1871 elt_type = ada_array_element_type (value_type (arr), -1);
1872 arity = ada_array_arity (value_type (arr));
14f9c5c9 1873
d2e4a39e 1874 if (elt_type == NULL || arity == 0)
df407dfe 1875 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1876
1877 descriptor = desc_bounds (arr);
d2e4a39e 1878 if (value_as_long (descriptor) == 0)
4c4b4cd2 1879 return NULL;
d2e4a39e 1880 while (arity > 0)
4c4b4cd2 1881 {
e9bb382b
UW
1882 struct type *range_type = alloc_type_copy (value_type (arr));
1883 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1884 struct value *low = desc_one_bound (descriptor, arity, 0);
1885 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1886
5b4ee69b 1887 arity -= 1;
0c9c3474
SA
1888 create_static_range_type (range_type, value_type (low),
1889 longest_to_int (value_as_long (low)),
1890 longest_to_int (value_as_long (high)));
4c4b4cd2 1891 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1892
1893 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1894 {
1895 /* We need to store the element packed bitsize, as well as
1896 recompute the array size, because it was previously
1897 computed based on the unpacked element size. */
1898 LONGEST lo = value_as_long (low);
1899 LONGEST hi = value_as_long (high);
1900
1901 TYPE_FIELD_BITSIZE (elt_type, 0) =
1902 decode_packed_array_bitsize (value_type (arr));
1903 /* If the array has no element, then the size is already
1904 zero, and does not need to be recomputed. */
1905 if (lo < hi)
1906 {
1907 int array_bitsize =
1908 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1909
1910 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1911 }
1912 }
4c4b4cd2 1913 }
14f9c5c9
AS
1914
1915 return lookup_pointer_type (elt_type);
1916 }
1917}
1918
1919/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1920 Otherwise, returns either a standard GDB array with bounds set
1921 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1922 GDB array. Returns NULL if ARR is a null fat pointer. */
1923
d2e4a39e
AS
1924struct value *
1925ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1926{
df407dfe 1927 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1928 {
d2e4a39e 1929 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1930
14f9c5c9 1931 if (arrType == NULL)
4c4b4cd2 1932 return NULL;
14f9c5c9
AS
1933 return value_cast (arrType, value_copy (desc_data (arr)));
1934 }
ad82864c
JB
1935 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1936 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1937 else
1938 return arr;
1939}
1940
1941/* If ARR does not represent an array, returns ARR unchanged.
1942 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1943 be ARR itself if it already is in the proper form). */
1944
720d1a40 1945struct value *
d2e4a39e 1946ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1947{
df407dfe 1948 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1949 {
d2e4a39e 1950 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1951
14f9c5c9 1952 if (arrVal == NULL)
323e0a4a 1953 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 1954 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1955 return value_ind (arrVal);
1956 }
ad82864c
JB
1957 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1958 return decode_constrained_packed_array (arr);
d2e4a39e 1959 else
14f9c5c9
AS
1960 return arr;
1961}
1962
1963/* If TYPE represents a GNAT array type, return it translated to an
1964 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1965 packing). For other types, is the identity. */
1966
d2e4a39e
AS
1967struct type *
1968ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1969{
ad82864c
JB
1970 if (ada_is_constrained_packed_array_type (type))
1971 return decode_constrained_packed_array_type (type);
17280b9f
UW
1972
1973 if (ada_is_array_descriptor_type (type))
556bdfd4 1974 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1975
1976 return type;
14f9c5c9
AS
1977}
1978
4c4b4cd2
PH
1979/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1980
ad82864c
JB
1981static int
1982ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1983{
1984 if (type == NULL)
1985 return 0;
4c4b4cd2 1986 type = desc_base_type (type);
61ee279c 1987 type = ada_check_typedef (type);
d2e4a39e 1988 return
14f9c5c9
AS
1989 ada_type_name (type) != NULL
1990 && strstr (ada_type_name (type), "___XP") != NULL;
1991}
1992
ad82864c
JB
1993/* Non-zero iff TYPE represents a standard GNAT constrained
1994 packed-array type. */
1995
1996int
1997ada_is_constrained_packed_array_type (struct type *type)
1998{
1999 return ada_is_packed_array_type (type)
2000 && !ada_is_array_descriptor_type (type);
2001}
2002
2003/* Non-zero iff TYPE represents an array descriptor for a
2004 unconstrained packed-array type. */
2005
2006static int
2007ada_is_unconstrained_packed_array_type (struct type *type)
2008{
2009 return ada_is_packed_array_type (type)
2010 && ada_is_array_descriptor_type (type);
2011}
2012
2013/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2014 return the size of its elements in bits. */
2015
2016static long
2017decode_packed_array_bitsize (struct type *type)
2018{
0d5cff50
DE
2019 const char *raw_name;
2020 const char *tail;
ad82864c
JB
2021 long bits;
2022
720d1a40
JB
2023 /* Access to arrays implemented as fat pointers are encoded as a typedef
2024 of the fat pointer type. We need the name of the fat pointer type
2025 to do the decoding, so strip the typedef layer. */
78134374 2026 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
2027 type = ada_typedef_target_type (type);
2028
2029 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2030 if (!raw_name)
2031 raw_name = ada_type_name (desc_base_type (type));
2032
2033 if (!raw_name)
2034 return 0;
2035
2036 tail = strstr (raw_name, "___XP");
720d1a40 2037 gdb_assert (tail != NULL);
ad82864c
JB
2038
2039 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2040 {
2041 lim_warning
2042 (_("could not understand bit size information on packed array"));
2043 return 0;
2044 }
2045
2046 return bits;
2047}
2048
14f9c5c9
AS
2049/* Given that TYPE is a standard GDB array type with all bounds filled
2050 in, and that the element size of its ultimate scalar constituents
2051 (that is, either its elements, or, if it is an array of arrays, its
2052 elements' elements, etc.) is *ELT_BITS, return an identical type,
2053 but with the bit sizes of its elements (and those of any
2054 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2055 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2056 in bits.
2057
2058 Note that, for arrays whose index type has an XA encoding where
2059 a bound references a record discriminant, getting that discriminant,
2060 and therefore the actual value of that bound, is not possible
2061 because none of the given parameters gives us access to the record.
2062 This function assumes that it is OK in the context where it is being
2063 used to return an array whose bounds are still dynamic and where
2064 the length is arbitrary. */
4c4b4cd2 2065
d2e4a39e 2066static struct type *
ad82864c 2067constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2068{
d2e4a39e
AS
2069 struct type *new_elt_type;
2070 struct type *new_type;
99b1c762
JB
2071 struct type *index_type_desc;
2072 struct type *index_type;
14f9c5c9
AS
2073 LONGEST low_bound, high_bound;
2074
61ee279c 2075 type = ada_check_typedef (type);
78134374 2076 if (type->code () != TYPE_CODE_ARRAY)
14f9c5c9
AS
2077 return type;
2078
99b1c762
JB
2079 index_type_desc = ada_find_parallel_type (type, "___XA");
2080 if (index_type_desc)
940da03e 2081 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
99b1c762
JB
2082 NULL);
2083 else
3d967001 2084 index_type = type->index_type ();
99b1c762 2085
e9bb382b 2086 new_type = alloc_type_copy (type);
ad82864c
JB
2087 new_elt_type =
2088 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2089 elt_bits);
99b1c762 2090 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9 2091 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
d0e39ea2 2092 new_type->set_name (ada_type_name (type));
14f9c5c9 2093
78134374 2094 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
4a46959e
JB
2095 && is_dynamic_type (check_typedef (index_type)))
2096 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2097 low_bound = high_bound = 0;
2098 if (high_bound < low_bound)
2099 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2100 else
14f9c5c9
AS
2101 {
2102 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2103 TYPE_LENGTH (new_type) =
4c4b4cd2 2104 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2105 }
2106
876cecd0 2107 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2108 return new_type;
2109}
2110
ad82864c
JB
2111/* The array type encoded by TYPE, where
2112 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2113
d2e4a39e 2114static struct type *
ad82864c 2115decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2116{
0d5cff50 2117 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2118 char *name;
0d5cff50 2119 const char *tail;
d2e4a39e 2120 struct type *shadow_type;
14f9c5c9 2121 long bits;
14f9c5c9 2122
727e3d2e
JB
2123 if (!raw_name)
2124 raw_name = ada_type_name (desc_base_type (type));
2125
2126 if (!raw_name)
2127 return NULL;
2128
2129 name = (char *) alloca (strlen (raw_name) + 1);
2130 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2131 type = desc_base_type (type);
2132
14f9c5c9
AS
2133 memcpy (name, raw_name, tail - raw_name);
2134 name[tail - raw_name] = '\000';
2135
b4ba55a1
JB
2136 shadow_type = ada_find_parallel_type_with_name (type, name);
2137
2138 if (shadow_type == NULL)
14f9c5c9 2139 {
323e0a4a 2140 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2141 return NULL;
2142 }
f168693b 2143 shadow_type = check_typedef (shadow_type);
14f9c5c9 2144
78134374 2145 if (shadow_type->code () != TYPE_CODE_ARRAY)
14f9c5c9 2146 {
0963b4bd
MS
2147 lim_warning (_("could not understand bounds "
2148 "information on packed array"));
14f9c5c9
AS
2149 return NULL;
2150 }
d2e4a39e 2151
ad82864c
JB
2152 bits = decode_packed_array_bitsize (type);
2153 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2154}
2155
ad82864c
JB
2156/* Given that ARR is a struct value *indicating a GNAT constrained packed
2157 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2158 standard GDB array type except that the BITSIZEs of the array
2159 target types are set to the number of bits in each element, and the
4c4b4cd2 2160 type length is set appropriately. */
14f9c5c9 2161
d2e4a39e 2162static struct value *
ad82864c 2163decode_constrained_packed_array (struct value *arr)
14f9c5c9 2164{
4c4b4cd2 2165 struct type *type;
14f9c5c9 2166
11aa919a
PMR
2167 /* If our value is a pointer, then dereference it. Likewise if
2168 the value is a reference. Make sure that this operation does not
2169 cause the target type to be fixed, as this would indirectly cause
2170 this array to be decoded. The rest of the routine assumes that
2171 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2172 and "value_ind" routines to perform the dereferencing, as opposed
2173 to using "ada_coerce_ref" or "ada_value_ind". */
2174 arr = coerce_ref (arr);
78134374 2175 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
284614f0 2176 arr = value_ind (arr);
4c4b4cd2 2177
ad82864c 2178 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2179 if (type == NULL)
2180 {
323e0a4a 2181 error (_("can't unpack array"));
14f9c5c9
AS
2182 return NULL;
2183 }
61ee279c 2184
d5a22e77 2185 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2186 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2187 {
2188 /* This is a (right-justified) modular type representing a packed
2189 array with no wrapper. In order to interpret the value through
2190 the (left-justified) packed array type we just built, we must
2191 first left-justify it. */
2192 int bit_size, bit_pos;
2193 ULONGEST mod;
2194
df407dfe 2195 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2196 bit_size = 0;
2197 while (mod > 0)
2198 {
2199 bit_size += 1;
2200 mod >>= 1;
2201 }
df407dfe 2202 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2203 arr = ada_value_primitive_packed_val (arr, NULL,
2204 bit_pos / HOST_CHAR_BIT,
2205 bit_pos % HOST_CHAR_BIT,
2206 bit_size,
2207 type);
2208 }
2209
4c4b4cd2 2210 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2211}
2212
2213
2214/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2215 given in IND. ARR must be a simple array. */
14f9c5c9 2216
d2e4a39e
AS
2217static struct value *
2218value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2219{
2220 int i;
2221 int bits, elt_off, bit_off;
2222 long elt_total_bit_offset;
d2e4a39e
AS
2223 struct type *elt_type;
2224 struct value *v;
14f9c5c9
AS
2225
2226 bits = 0;
2227 elt_total_bit_offset = 0;
df407dfe 2228 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2229 for (i = 0; i < arity; i += 1)
14f9c5c9 2230 {
78134374 2231 if (elt_type->code () != TYPE_CODE_ARRAY
4c4b4cd2
PH
2232 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2233 error
0963b4bd
MS
2234 (_("attempt to do packed indexing of "
2235 "something other than a packed array"));
14f9c5c9 2236 else
4c4b4cd2 2237 {
3d967001 2238 struct type *range_type = elt_type->index_type ();
4c4b4cd2
PH
2239 LONGEST lowerbound, upperbound;
2240 LONGEST idx;
2241
2242 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2243 {
323e0a4a 2244 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2245 lowerbound = upperbound = 0;
2246 }
2247
3cb382c9 2248 idx = pos_atr (ind[i]);
4c4b4cd2 2249 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2250 lim_warning (_("packed array index %ld out of bounds"),
2251 (long) idx);
4c4b4cd2
PH
2252 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2253 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2254 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2255 }
14f9c5c9
AS
2256 }
2257 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2258 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2259
2260 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2261 bits, elt_type);
14f9c5c9
AS
2262 return v;
2263}
2264
4c4b4cd2 2265/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2266
2267static int
d2e4a39e 2268has_negatives (struct type *type)
14f9c5c9 2269{
78134374 2270 switch (type->code ())
d2e4a39e
AS
2271 {
2272 default:
2273 return 0;
2274 case TYPE_CODE_INT:
2275 return !TYPE_UNSIGNED (type);
2276 case TYPE_CODE_RANGE:
4e962e74 2277 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2278 }
14f9c5c9 2279}
d2e4a39e 2280
f93fca70 2281/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2282 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2283 the unpacked buffer.
14f9c5c9 2284
5b639dea
JB
2285 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2286 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2287
f93fca70
JB
2288 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2289 zero otherwise.
14f9c5c9 2290
f93fca70 2291 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2292
f93fca70
JB
2293 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2294
2295static void
2296ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2297 gdb_byte *unpacked, int unpacked_len,
2298 int is_big_endian, int is_signed_type,
2299 int is_scalar)
2300{
a1c95e6b
JB
2301 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2302 int src_idx; /* Index into the source area */
2303 int src_bytes_left; /* Number of source bytes left to process. */
2304 int srcBitsLeft; /* Number of source bits left to move */
2305 int unusedLS; /* Number of bits in next significant
2306 byte of source that are unused */
2307
a1c95e6b
JB
2308 int unpacked_idx; /* Index into the unpacked buffer */
2309 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2310
4c4b4cd2 2311 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2312 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2313 unsigned char sign;
a1c95e6b 2314
4c4b4cd2
PH
2315 /* Transmit bytes from least to most significant; delta is the direction
2316 the indices move. */
f93fca70 2317 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2318
5b639dea
JB
2319 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2320 bits from SRC. .*/
2321 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2322 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2323 bit_size, unpacked_len);
2324
14f9c5c9 2325 srcBitsLeft = bit_size;
086ca51f 2326 src_bytes_left = src_len;
f93fca70 2327 unpacked_bytes_left = unpacked_len;
14f9c5c9 2328 sign = 0;
f93fca70
JB
2329
2330 if (is_big_endian)
14f9c5c9 2331 {
086ca51f 2332 src_idx = src_len - 1;
f93fca70
JB
2333 if (is_signed_type
2334 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2335 sign = ~0;
d2e4a39e
AS
2336
2337 unusedLS =
4c4b4cd2
PH
2338 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2339 % HOST_CHAR_BIT;
14f9c5c9 2340
f93fca70
JB
2341 if (is_scalar)
2342 {
2343 accumSize = 0;
2344 unpacked_idx = unpacked_len - 1;
2345 }
2346 else
2347 {
4c4b4cd2
PH
2348 /* Non-scalar values must be aligned at a byte boundary... */
2349 accumSize =
2350 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2351 /* ... And are placed at the beginning (most-significant) bytes
2352 of the target. */
086ca51f
JB
2353 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2354 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2355 }
14f9c5c9 2356 }
d2e4a39e 2357 else
14f9c5c9
AS
2358 {
2359 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2360
086ca51f 2361 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2362 unusedLS = bit_offset;
2363 accumSize = 0;
2364
f93fca70 2365 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2366 sign = ~0;
14f9c5c9 2367 }
d2e4a39e 2368
14f9c5c9 2369 accum = 0;
086ca51f 2370 while (src_bytes_left > 0)
14f9c5c9
AS
2371 {
2372 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2373 part of the value. */
d2e4a39e 2374 unsigned int unusedMSMask =
4c4b4cd2
PH
2375 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2376 1;
2377 /* Sign-extend bits for this byte. */
14f9c5c9 2378 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2379
d2e4a39e 2380 accum |=
086ca51f 2381 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2382 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2383 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2384 {
db297a65 2385 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2386 accumSize -= HOST_CHAR_BIT;
2387 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2388 unpacked_bytes_left -= 1;
2389 unpacked_idx += delta;
4c4b4cd2 2390 }
14f9c5c9
AS
2391 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2392 unusedLS = 0;
086ca51f
JB
2393 src_bytes_left -= 1;
2394 src_idx += delta;
14f9c5c9 2395 }
086ca51f 2396 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2397 {
2398 accum |= sign << accumSize;
db297a65 2399 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2400 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2401 if (accumSize < 0)
2402 accumSize = 0;
14f9c5c9 2403 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2404 unpacked_bytes_left -= 1;
2405 unpacked_idx += delta;
14f9c5c9 2406 }
f93fca70
JB
2407}
2408
2409/* Create a new value of type TYPE from the contents of OBJ starting
2410 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2411 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2412 assigning through the result will set the field fetched from.
2413 VALADDR is ignored unless OBJ is NULL, in which case,
2414 VALADDR+OFFSET must address the start of storage containing the
2415 packed value. The value returned in this case is never an lval.
2416 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2417
2418struct value *
2419ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2420 long offset, int bit_offset, int bit_size,
2421 struct type *type)
2422{
2423 struct value *v;
bfb1c796 2424 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2425 gdb_byte *unpacked;
220475ed 2426 const int is_scalar = is_scalar_type (type);
d5a22e77 2427 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2428 gdb::byte_vector staging;
f93fca70
JB
2429
2430 type = ada_check_typedef (type);
2431
d0a9e810 2432 if (obj == NULL)
bfb1c796 2433 src = valaddr + offset;
d0a9e810 2434 else
bfb1c796 2435 src = value_contents (obj) + offset;
d0a9e810
JB
2436
2437 if (is_dynamic_type (type))
2438 {
2439 /* The length of TYPE might by dynamic, so we need to resolve
2440 TYPE in order to know its actual size, which we then use
2441 to create the contents buffer of the value we return.
2442 The difficulty is that the data containing our object is
2443 packed, and therefore maybe not at a byte boundary. So, what
2444 we do, is unpack the data into a byte-aligned buffer, and then
2445 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2446 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2447 staging.resize (staging_len);
d0a9e810
JB
2448
2449 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2450 staging.data (), staging.size (),
d0a9e810
JB
2451 is_big_endian, has_negatives (type),
2452 is_scalar);
b249d2c2 2453 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2454 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2455 {
2456 /* This happens when the length of the object is dynamic,
2457 and is actually smaller than the space reserved for it.
2458 For instance, in an array of variant records, the bit_size
2459 we're given is the array stride, which is constant and
2460 normally equal to the maximum size of its element.
2461 But, in reality, each element only actually spans a portion
2462 of that stride. */
2463 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2464 }
d0a9e810
JB
2465 }
2466
f93fca70
JB
2467 if (obj == NULL)
2468 {
2469 v = allocate_value (type);
bfb1c796 2470 src = valaddr + offset;
f93fca70
JB
2471 }
2472 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2473 {
0cafa88c 2474 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2475 gdb_byte *buf;
0cafa88c 2476
f93fca70 2477 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2478 buf = (gdb_byte *) alloca (src_len);
2479 read_memory (value_address (v), buf, src_len);
2480 src = buf;
f93fca70
JB
2481 }
2482 else
2483 {
2484 v = allocate_value (type);
bfb1c796 2485 src = value_contents (obj) + offset;
f93fca70
JB
2486 }
2487
2488 if (obj != NULL)
2489 {
2490 long new_offset = offset;
2491
2492 set_value_component_location (v, obj);
2493 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2494 set_value_bitsize (v, bit_size);
2495 if (value_bitpos (v) >= HOST_CHAR_BIT)
2496 {
2497 ++new_offset;
2498 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2499 }
2500 set_value_offset (v, new_offset);
2501
2502 /* Also set the parent value. This is needed when trying to
2503 assign a new value (in inferior memory). */
2504 set_value_parent (v, obj);
2505 }
2506 else
2507 set_value_bitsize (v, bit_size);
bfb1c796 2508 unpacked = value_contents_writeable (v);
f93fca70
JB
2509
2510 if (bit_size == 0)
2511 {
2512 memset (unpacked, 0, TYPE_LENGTH (type));
2513 return v;
2514 }
2515
d5722aa2 2516 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2517 {
d0a9e810
JB
2518 /* Small short-cut: If we've unpacked the data into a buffer
2519 of the same size as TYPE's length, then we can reuse that,
2520 instead of doing the unpacking again. */
d5722aa2 2521 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2522 }
d0a9e810
JB
2523 else
2524 ada_unpack_from_contents (src, bit_offset, bit_size,
2525 unpacked, TYPE_LENGTH (type),
2526 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2527
14f9c5c9
AS
2528 return v;
2529}
d2e4a39e 2530
14f9c5c9
AS
2531/* Store the contents of FROMVAL into the location of TOVAL.
2532 Return a new value with the location of TOVAL and contents of
2533 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2534 floating-point or non-scalar types. */
14f9c5c9 2535
d2e4a39e
AS
2536static struct value *
2537ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2538{
df407dfe
AC
2539 struct type *type = value_type (toval);
2540 int bits = value_bitsize (toval);
14f9c5c9 2541
52ce6436
PH
2542 toval = ada_coerce_ref (toval);
2543 fromval = ada_coerce_ref (fromval);
2544
2545 if (ada_is_direct_array_type (value_type (toval)))
2546 toval = ada_coerce_to_simple_array (toval);
2547 if (ada_is_direct_array_type (value_type (fromval)))
2548 fromval = ada_coerce_to_simple_array (fromval);
2549
88e3b34b 2550 if (!deprecated_value_modifiable (toval))
323e0a4a 2551 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2552
d2e4a39e 2553 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2554 && bits > 0
78134374
SM
2555 && (type->code () == TYPE_CODE_FLT
2556 || type->code () == TYPE_CODE_STRUCT))
14f9c5c9 2557 {
df407dfe
AC
2558 int len = (value_bitpos (toval)
2559 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2560 int from_size;
224c3ddb 2561 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2562 struct value *val;
42ae5230 2563 CORE_ADDR to_addr = value_address (toval);
14f9c5c9 2564
78134374 2565 if (type->code () == TYPE_CODE_FLT)
4c4b4cd2 2566 fromval = value_cast (type, fromval);
14f9c5c9 2567
52ce6436 2568 read_memory (to_addr, buffer, len);
aced2898
PH
2569 from_size = value_bitsize (fromval);
2570 if (from_size == 0)
2571 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2572
d5a22e77 2573 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2574 ULONGEST from_offset = 0;
2575 if (is_big_endian && is_scalar_type (value_type (fromval)))
2576 from_offset = from_size - bits;
2577 copy_bitwise (buffer, value_bitpos (toval),
2578 value_contents (fromval), from_offset,
2579 bits, is_big_endian);
972daa01 2580 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2581
14f9c5c9 2582 val = value_copy (toval);
0fd88904 2583 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2584 TYPE_LENGTH (type));
04624583 2585 deprecated_set_value_type (val, type);
d2e4a39e 2586
14f9c5c9
AS
2587 return val;
2588 }
2589
2590 return value_assign (toval, fromval);
2591}
2592
2593
7c512744
JB
2594/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2595 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2596 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2597 COMPONENT, and not the inferior's memory. The current contents
2598 of COMPONENT are ignored.
2599
2600 Although not part of the initial design, this function also works
2601 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2602 had a null address, and COMPONENT had an address which is equal to
2603 its offset inside CONTAINER. */
2604
52ce6436
PH
2605static void
2606value_assign_to_component (struct value *container, struct value *component,
2607 struct value *val)
2608{
2609 LONGEST offset_in_container =
42ae5230 2610 (LONGEST) (value_address (component) - value_address (container));
7c512744 2611 int bit_offset_in_container =
52ce6436
PH
2612 value_bitpos (component) - value_bitpos (container);
2613 int bits;
7c512744 2614
52ce6436
PH
2615 val = value_cast (value_type (component), val);
2616
2617 if (value_bitsize (component) == 0)
2618 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2619 else
2620 bits = value_bitsize (component);
2621
d5a22e77 2622 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2623 {
2624 int src_offset;
2625
2626 if (is_scalar_type (check_typedef (value_type (component))))
2627 src_offset
2628 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2629 else
2630 src_offset = 0;
a99bc3d2
JB
2631 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2632 value_bitpos (container) + bit_offset_in_container,
2633 value_contents (val), src_offset, bits, 1);
2a62dfa9 2634 }
52ce6436 2635 else
a99bc3d2
JB
2636 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2637 value_bitpos (container) + bit_offset_in_container,
2638 value_contents (val), 0, bits, 0);
7c512744
JB
2639}
2640
736ade86
XR
2641/* Determine if TYPE is an access to an unconstrained array. */
2642
d91e9ea8 2643bool
736ade86
XR
2644ada_is_access_to_unconstrained_array (struct type *type)
2645{
78134374 2646 return (type->code () == TYPE_CODE_TYPEDEF
736ade86
XR
2647 && is_thick_pntr (ada_typedef_target_type (type)));
2648}
2649
4c4b4cd2
PH
2650/* The value of the element of array ARR at the ARITY indices given in IND.
2651 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2652 thereto. */
2653
d2e4a39e
AS
2654struct value *
2655ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2656{
2657 int k;
d2e4a39e
AS
2658 struct value *elt;
2659 struct type *elt_type;
14f9c5c9
AS
2660
2661 elt = ada_coerce_to_simple_array (arr);
2662
df407dfe 2663 elt_type = ada_check_typedef (value_type (elt));
78134374 2664 if (elt_type->code () == TYPE_CODE_ARRAY
14f9c5c9
AS
2665 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2666 return value_subscript_packed (elt, arity, ind);
2667
2668 for (k = 0; k < arity; k += 1)
2669 {
b9c50e9a
XR
2670 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2671
78134374 2672 if (elt_type->code () != TYPE_CODE_ARRAY)
323e0a4a 2673 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2674
2497b498 2675 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2676
2677 if (ada_is_access_to_unconstrained_array (saved_elt_type)
78134374 2678 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
b9c50e9a
XR
2679 {
2680 /* The element is a typedef to an unconstrained array,
2681 except that the value_subscript call stripped the
2682 typedef layer. The typedef layer is GNAT's way to
2683 specify that the element is, at the source level, an
2684 access to the unconstrained array, rather than the
2685 unconstrained array. So, we need to restore that
2686 typedef layer, which we can do by forcing the element's
2687 type back to its original type. Otherwise, the returned
2688 value is going to be printed as the array, rather
2689 than as an access. Another symptom of the same issue
2690 would be that an expression trying to dereference the
2691 element would also be improperly rejected. */
2692 deprecated_set_value_type (elt, saved_elt_type);
2693 }
2694
2695 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2696 }
b9c50e9a 2697
14f9c5c9
AS
2698 return elt;
2699}
2700
deede10c
JB
2701/* Assuming ARR is a pointer to a GDB array, the value of the element
2702 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2703 Does not read the entire array into memory.
2704
2705 Note: Unlike what one would expect, this function is used instead of
2706 ada_value_subscript for basically all non-packed array types. The reason
2707 for this is that a side effect of doing our own pointer arithmetics instead
2708 of relying on value_subscript is that there is no implicit typedef peeling.
2709 This is important for arrays of array accesses, where it allows us to
2710 preserve the fact that the array's element is an array access, where the
2711 access part os encoded in a typedef layer. */
14f9c5c9 2712
2c0b251b 2713static struct value *
deede10c 2714ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2715{
2716 int k;
919e6dbe 2717 struct value *array_ind = ada_value_ind (arr);
deede10c 2718 struct type *type
919e6dbe
PMR
2719 = check_typedef (value_enclosing_type (array_ind));
2720
78134374 2721 if (type->code () == TYPE_CODE_ARRAY
919e6dbe
PMR
2722 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2723 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2724
2725 for (k = 0; k < arity; k += 1)
2726 {
2727 LONGEST lwb, upb;
14f9c5c9 2728
78134374 2729 if (type->code () != TYPE_CODE_ARRAY)
323e0a4a 2730 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2731 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2732 value_copy (arr));
3d967001 2733 get_discrete_bounds (type->index_type (), &lwb, &upb);
53a47a3e 2734 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2735 type = TYPE_TARGET_TYPE (type);
2736 }
2737
2738 return value_ind (arr);
2739}
2740
0b5d8877 2741/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2742 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2743 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2744 this array is LOW, as per Ada rules. */
0b5d8877 2745static struct value *
f5938064
JG
2746ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2747 int low, int high)
0b5d8877 2748{
b0dd7688 2749 struct type *type0 = ada_check_typedef (type);
3d967001 2750 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
0c9c3474 2751 struct type *index_type
aa715135 2752 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2753 struct type *slice_type = create_array_type_with_stride
2754 (NULL, TYPE_TARGET_TYPE (type0), index_type,
24e99c6c 2755 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2756 TYPE_FIELD_BITSIZE (type0, 0));
3d967001 2757 int base_low = ada_discrete_type_low_bound (type0->index_type ());
aa715135
JG
2758 LONGEST base_low_pos, low_pos;
2759 CORE_ADDR base;
2760
2761 if (!discrete_position (base_index_type, low, &low_pos)
2762 || !discrete_position (base_index_type, base_low, &base_low_pos))
2763 {
2764 warning (_("unable to get positions in slice, use bounds instead"));
2765 low_pos = low;
2766 base_low_pos = base_low;
2767 }
5b4ee69b 2768
aa715135
JG
2769 base = value_as_address (array_ptr)
2770 + ((low_pos - base_low_pos)
2771 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2772 return value_at_lazy (slice_type, base);
0b5d8877
PH
2773}
2774
2775
2776static struct value *
2777ada_value_slice (struct value *array, int low, int high)
2778{
b0dd7688 2779 struct type *type = ada_check_typedef (value_type (array));
3d967001 2780 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
0c9c3474 2781 struct type *index_type
3d967001 2782 = create_static_range_type (NULL, type->index_type (), low, high);
9fe561ab
JB
2783 struct type *slice_type = create_array_type_with_stride
2784 (NULL, TYPE_TARGET_TYPE (type), index_type,
24e99c6c 2785 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
9fe561ab 2786 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2787 LONGEST low_pos, high_pos;
5b4ee69b 2788
aa715135
JG
2789 if (!discrete_position (base_index_type, low, &low_pos)
2790 || !discrete_position (base_index_type, high, &high_pos))
2791 {
2792 warning (_("unable to get positions in slice, use bounds instead"));
2793 low_pos = low;
2794 high_pos = high;
2795 }
2796
2797 return value_cast (slice_type,
2798 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2799}
2800
14f9c5c9
AS
2801/* If type is a record type in the form of a standard GNAT array
2802 descriptor, returns the number of dimensions for type. If arr is a
2803 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2804 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2805
2806int
d2e4a39e 2807ada_array_arity (struct type *type)
14f9c5c9
AS
2808{
2809 int arity;
2810
2811 if (type == NULL)
2812 return 0;
2813
2814 type = desc_base_type (type);
2815
2816 arity = 0;
78134374 2817 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9 2818 return desc_arity (desc_bounds_type (type));
d2e4a39e 2819 else
78134374 2820 while (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2821 {
4c4b4cd2 2822 arity += 1;
61ee279c 2823 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2824 }
d2e4a39e 2825
14f9c5c9
AS
2826 return arity;
2827}
2828
2829/* If TYPE is a record type in the form of a standard GNAT array
2830 descriptor or a simple array type, returns the element type for
2831 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2832 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2833
d2e4a39e
AS
2834struct type *
2835ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2836{
2837 type = desc_base_type (type);
2838
78134374 2839 if (type->code () == TYPE_CODE_STRUCT)
14f9c5c9
AS
2840 {
2841 int k;
d2e4a39e 2842 struct type *p_array_type;
14f9c5c9 2843
556bdfd4 2844 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2845
2846 k = ada_array_arity (type);
2847 if (k == 0)
4c4b4cd2 2848 return NULL;
d2e4a39e 2849
4c4b4cd2 2850 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2851 if (nindices >= 0 && k > nindices)
4c4b4cd2 2852 k = nindices;
d2e4a39e 2853 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2854 {
61ee279c 2855 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2856 k -= 1;
2857 }
14f9c5c9
AS
2858 return p_array_type;
2859 }
78134374 2860 else if (type->code () == TYPE_CODE_ARRAY)
14f9c5c9 2861 {
78134374 2862 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2863 {
2864 type = TYPE_TARGET_TYPE (type);
2865 nindices -= 1;
2866 }
14f9c5c9
AS
2867 return type;
2868 }
2869
2870 return NULL;
2871}
2872
4c4b4cd2 2873/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2874 Does not examine memory. Throws an error if N is invalid or TYPE
2875 is not an array type. NAME is the name of the Ada attribute being
2876 evaluated ('range, 'first, 'last, or 'length); it is used in building
2877 the error message. */
14f9c5c9 2878
1eea4ebd
UW
2879static struct type *
2880ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2881{
4c4b4cd2
PH
2882 struct type *result_type;
2883
14f9c5c9
AS
2884 type = desc_base_type (type);
2885
1eea4ebd
UW
2886 if (n < 0 || n > ada_array_arity (type))
2887 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2888
4c4b4cd2 2889 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2890 {
2891 int i;
2892
2893 for (i = 1; i < n; i += 1)
4c4b4cd2 2894 type = TYPE_TARGET_TYPE (type);
3d967001 2895 result_type = TYPE_TARGET_TYPE (type->index_type ());
4c4b4cd2
PH
2896 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2897 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2898 perhaps stabsread.c would make more sense. */
78134374 2899 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
1eea4ebd 2900 result_type = NULL;
14f9c5c9 2901 }
d2e4a39e 2902 else
1eea4ebd
UW
2903 {
2904 result_type = desc_index_type (desc_bounds_type (type), n);
2905 if (result_type == NULL)
2906 error (_("attempt to take bound of something that is not an array"));
2907 }
2908
2909 return result_type;
14f9c5c9
AS
2910}
2911
2912/* Given that arr is an array type, returns the lower bound of the
2913 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2914 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2915 array-descriptor type. It works for other arrays with bounds supplied
2916 by run-time quantities other than discriminants. */
14f9c5c9 2917
abb68b3e 2918static LONGEST
fb5e3d5c 2919ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2920{
8a48ac95 2921 struct type *type, *index_type_desc, *index_type;
1ce677a4 2922 int i;
262452ec
JK
2923
2924 gdb_assert (which == 0 || which == 1);
14f9c5c9 2925
ad82864c
JB
2926 if (ada_is_constrained_packed_array_type (arr_type))
2927 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2928
4c4b4cd2 2929 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2930 return (LONGEST) - which;
14f9c5c9 2931
78134374 2932 if (arr_type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
2933 type = TYPE_TARGET_TYPE (arr_type);
2934 else
2935 type = arr_type;
2936
bafffb51
JB
2937 if (TYPE_FIXED_INSTANCE (type))
2938 {
2939 /* The array has already been fixed, so we do not need to
2940 check the parallel ___XA type again. That encoding has
2941 already been applied, so ignore it now. */
2942 index_type_desc = NULL;
2943 }
2944 else
2945 {
2946 index_type_desc = ada_find_parallel_type (type, "___XA");
2947 ada_fixup_array_indexes_type (index_type_desc);
2948 }
2949
262452ec 2950 if (index_type_desc != NULL)
940da03e 2951 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
28c85d6c 2952 NULL);
262452ec 2953 else
8a48ac95
JB
2954 {
2955 struct type *elt_type = check_typedef (type);
2956
2957 for (i = 1; i < n; i++)
2958 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2959
3d967001 2960 index_type = elt_type->index_type ();
8a48ac95 2961 }
262452ec 2962
43bbcdc2
PH
2963 return
2964 (LONGEST) (which == 0
2965 ? ada_discrete_type_low_bound (index_type)
2966 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2967}
2968
2969/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2970 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2971 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2972 supplied by run-time quantities other than discriminants. */
14f9c5c9 2973
1eea4ebd 2974static LONGEST
4dc81987 2975ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2976{
eb479039
JB
2977 struct type *arr_type;
2978
78134374 2979 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
2980 arr = value_ind (arr);
2981 arr_type = value_enclosing_type (arr);
14f9c5c9 2982
ad82864c
JB
2983 if (ada_is_constrained_packed_array_type (arr_type))
2984 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2985 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2986 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2987 else
1eea4ebd 2988 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2989}
2990
2991/* Given that arr is an array value, returns the length of the
2992 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2993 supplied by run-time quantities other than discriminants.
2994 Does not work for arrays indexed by enumeration types with representation
2995 clauses at the moment. */
14f9c5c9 2996
1eea4ebd 2997static LONGEST
d2e4a39e 2998ada_array_length (struct value *arr, int n)
14f9c5c9 2999{
aa715135
JG
3000 struct type *arr_type, *index_type;
3001 int low, high;
eb479039 3002
78134374 3003 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
eb479039
JB
3004 arr = value_ind (arr);
3005 arr_type = value_enclosing_type (arr);
14f9c5c9 3006
ad82864c
JB
3007 if (ada_is_constrained_packed_array_type (arr_type))
3008 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3009
4c4b4cd2 3010 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3011 {
3012 low = ada_array_bound_from_type (arr_type, n, 0);
3013 high = ada_array_bound_from_type (arr_type, n, 1);
3014 }
14f9c5c9 3015 else
aa715135
JG
3016 {
3017 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3018 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3019 }
3020
f168693b 3021 arr_type = check_typedef (arr_type);
7150d33c 3022 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3023 if (index_type != NULL)
3024 {
3025 struct type *base_type;
78134374 3026 if (index_type->code () == TYPE_CODE_RANGE)
aa715135
JG
3027 base_type = TYPE_TARGET_TYPE (index_type);
3028 else
3029 base_type = index_type;
3030
3031 low = pos_atr (value_from_longest (base_type, low));
3032 high = pos_atr (value_from_longest (base_type, high));
3033 }
3034 return high - low + 1;
4c4b4cd2
PH
3035}
3036
bff8c71f
TT
3037/* An array whose type is that of ARR_TYPE (an array type), with
3038 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3039 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3040
3041static struct value *
bff8c71f 3042empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3043{
b0dd7688 3044 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3045 struct type *index_type
3046 = create_static_range_type
3d967001 3047 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
bff8c71f 3048 high < low ? low - 1 : high);
b0dd7688 3049 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3050
0b5d8877 3051 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3052}
14f9c5c9 3053\f
d2e4a39e 3054
4c4b4cd2 3055 /* Name resolution */
14f9c5c9 3056
4c4b4cd2
PH
3057/* The "decoded" name for the user-definable Ada operator corresponding
3058 to OP. */
14f9c5c9 3059
d2e4a39e 3060static const char *
4c4b4cd2 3061ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3062{
3063 int i;
3064
4c4b4cd2 3065 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3066 {
3067 if (ada_opname_table[i].op == op)
4c4b4cd2 3068 return ada_opname_table[i].decoded;
14f9c5c9 3069 }
323e0a4a 3070 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3071}
3072
de93309a
SM
3073/* Returns true (non-zero) iff decoded name N0 should appear before N1
3074 in a listing of choices during disambiguation (see sort_choices, below).
3075 The idea is that overloadings of a subprogram name from the
3076 same package should sort in their source order. We settle for ordering
3077 such symbols by their trailing number (__N or $N). */
14f9c5c9 3078
de93309a
SM
3079static int
3080encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3081{
de93309a
SM
3082 if (N1 == NULL)
3083 return 0;
3084 else if (N0 == NULL)
3085 return 1;
3086 else
3087 {
3088 int k0, k1;
30b15541 3089
de93309a
SM
3090 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3091 ;
3092 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3093 ;
3094 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3095 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3096 {
3097 int n0, n1;
30b15541 3098
de93309a
SM
3099 n0 = k0;
3100 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3101 n0 -= 1;
3102 n1 = k1;
3103 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3104 n1 -= 1;
3105 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3106 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3107 }
3108 return (strcmp (N0, N1) < 0);
3109 }
14f9c5c9
AS
3110}
3111
de93309a
SM
3112/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3113 encoded names. */
14f9c5c9 3114
de93309a
SM
3115static void
3116sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3117{
14f9c5c9 3118 int i;
14f9c5c9 3119
de93309a 3120 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3121 {
de93309a
SM
3122 struct block_symbol sym = syms[i];
3123 int j;
3124
3125 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3126 {
987012b8
CB
3127 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3128 sym.symbol->linkage_name ()))
de93309a
SM
3129 break;
3130 syms[j + 1] = syms[j];
4c4b4cd2 3131 }
de93309a
SM
3132 syms[j + 1] = sym;
3133 }
3134}
14f9c5c9 3135
de93309a
SM
3136/* Whether GDB should display formals and return types for functions in the
3137 overloads selection menu. */
3138static bool print_signatures = true;
4c4b4cd2 3139
de93309a
SM
3140/* Print the signature for SYM on STREAM according to the FLAGS options. For
3141 all but functions, the signature is just the name of the symbol. For
3142 functions, this is the name of the function, the list of types for formals
3143 and the return type (if any). */
4c4b4cd2 3144
de93309a
SM
3145static void
3146ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3147 const struct type_print_options *flags)
3148{
3149 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3150
987012b8 3151 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3152 if (!print_signatures
3153 || type == NULL
78134374 3154 || type->code () != TYPE_CODE_FUNC)
de93309a 3155 return;
4c4b4cd2 3156
1f704f76 3157 if (type->num_fields () > 0)
de93309a
SM
3158 {
3159 int i;
14f9c5c9 3160
de93309a 3161 fprintf_filtered (stream, " (");
1f704f76 3162 for (i = 0; i < type->num_fields (); ++i)
de93309a
SM
3163 {
3164 if (i > 0)
3165 fprintf_filtered (stream, "; ");
940da03e 3166 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
de93309a
SM
3167 flags);
3168 }
3169 fprintf_filtered (stream, ")");
3170 }
3171 if (TYPE_TARGET_TYPE (type) != NULL
78134374 3172 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
de93309a
SM
3173 {
3174 fprintf_filtered (stream, " return ");
3175 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3176 }
3177}
14f9c5c9 3178
de93309a
SM
3179/* Read and validate a set of numeric choices from the user in the
3180 range 0 .. N_CHOICES-1. Place the results in increasing
3181 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3182
de93309a
SM
3183 The user types choices as a sequence of numbers on one line
3184 separated by blanks, encoding them as follows:
14f9c5c9 3185
de93309a
SM
3186 + A choice of 0 means to cancel the selection, throwing an error.
3187 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3188 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3189
de93309a 3190 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3191
de93309a
SM
3192 ANNOTATION_SUFFIX, if present, is used to annotate the input
3193 prompts (for use with the -f switch). */
14f9c5c9 3194
de93309a
SM
3195static int
3196get_selections (int *choices, int n_choices, int max_results,
3197 int is_all_choice, const char *annotation_suffix)
3198{
992a7040 3199 const char *args;
de93309a
SM
3200 const char *prompt;
3201 int n_chosen;
3202 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3203
de93309a
SM
3204 prompt = getenv ("PS2");
3205 if (prompt == NULL)
3206 prompt = "> ";
4c4b4cd2 3207
de93309a 3208 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3209
de93309a
SM
3210 if (args == NULL)
3211 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3212
de93309a 3213 n_chosen = 0;
4c4b4cd2 3214
de93309a
SM
3215 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3216 order, as given in args. Choices are validated. */
3217 while (1)
14f9c5c9 3218 {
de93309a
SM
3219 char *args2;
3220 int choice, j;
76a01679 3221
de93309a
SM
3222 args = skip_spaces (args);
3223 if (*args == '\0' && n_chosen == 0)
3224 error_no_arg (_("one or more choice numbers"));
3225 else if (*args == '\0')
3226 break;
76a01679 3227
de93309a
SM
3228 choice = strtol (args, &args2, 10);
3229 if (args == args2 || choice < 0
3230 || choice > n_choices + first_choice - 1)
3231 error (_("Argument must be choice number"));
3232 args = args2;
76a01679 3233
de93309a
SM
3234 if (choice == 0)
3235 error (_("cancelled"));
76a01679 3236
de93309a
SM
3237 if (choice < first_choice)
3238 {
3239 n_chosen = n_choices;
3240 for (j = 0; j < n_choices; j += 1)
3241 choices[j] = j;
3242 break;
76a01679 3243 }
de93309a 3244 choice -= first_choice;
76a01679 3245
de93309a 3246 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
76a01679 3247 {
76a01679 3248 }
4c4b4cd2 3249
de93309a 3250 if (j < 0 || choice != choices[j])
4c4b4cd2 3251 {
de93309a 3252 int k;
4c4b4cd2 3253
de93309a
SM
3254 for (k = n_chosen - 1; k > j; k -= 1)
3255 choices[k + 1] = choices[k];
3256 choices[j + 1] = choice;
3257 n_chosen += 1;
4c4b4cd2 3258 }
14f9c5c9
AS
3259 }
3260
de93309a
SM
3261 if (n_chosen > max_results)
3262 error (_("Select no more than %d of the above"), max_results);
3263
3264 return n_chosen;
14f9c5c9
AS
3265}
3266
de93309a
SM
3267/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3268 by asking the user (if necessary), returning the number selected,
3269 and setting the first elements of SYMS items. Error if no symbols
3270 selected. */
3271
3272/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3273 to be re-integrated one of these days. */
14f9c5c9
AS
3274
3275static int
de93309a 3276user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3277{
de93309a
SM
3278 int i;
3279 int *chosen = XALLOCAVEC (int , nsyms);
3280 int n_chosen;
3281 int first_choice = (max_results == 1) ? 1 : 2;
3282 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3283
de93309a
SM
3284 if (max_results < 1)
3285 error (_("Request to select 0 symbols!"));
3286 if (nsyms <= 1)
3287 return nsyms;
14f9c5c9 3288
de93309a
SM
3289 if (select_mode == multiple_symbols_cancel)
3290 error (_("\
3291canceled because the command is ambiguous\n\
3292See set/show multiple-symbol."));
14f9c5c9 3293
de93309a
SM
3294 /* If select_mode is "all", then return all possible symbols.
3295 Only do that if more than one symbol can be selected, of course.
3296 Otherwise, display the menu as usual. */
3297 if (select_mode == multiple_symbols_all && max_results > 1)
3298 return nsyms;
14f9c5c9 3299
de93309a
SM
3300 printf_filtered (_("[0] cancel\n"));
3301 if (max_results > 1)
3302 printf_filtered (_("[1] all\n"));
14f9c5c9 3303
de93309a 3304 sort_choices (syms, nsyms);
14f9c5c9 3305
de93309a
SM
3306 for (i = 0; i < nsyms; i += 1)
3307 {
3308 if (syms[i].symbol == NULL)
3309 continue;
14f9c5c9 3310
de93309a
SM
3311 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3312 {
3313 struct symtab_and_line sal =
3314 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3315
de93309a
SM
3316 printf_filtered ("[%d] ", i + first_choice);
3317 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3318 &type_print_raw_options);
3319 if (sal.symtab == NULL)
3320 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3321 metadata_style.style ().ptr (), nullptr, sal.line);
3322 else
3323 printf_filtered
3324 (_(" at %ps:%d\n"),
3325 styled_string (file_name_style.style (),
3326 symtab_to_filename_for_display (sal.symtab)),
3327 sal.line);
3328 continue;
3329 }
76a01679
JB
3330 else
3331 {
de93309a
SM
3332 int is_enumeral =
3333 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3334 && SYMBOL_TYPE (syms[i].symbol) != NULL
78134374 3335 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
de93309a 3336 struct symtab *symtab = NULL;
4c4b4cd2 3337
de93309a
SM
3338 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3339 symtab = symbol_symtab (syms[i].symbol);
3340
3341 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3342 {
3343 printf_filtered ("[%d] ", i + first_choice);
3344 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3345 &type_print_raw_options);
3346 printf_filtered (_(" at %s:%d\n"),
3347 symtab_to_filename_for_display (symtab),
3348 SYMBOL_LINE (syms[i].symbol));
3349 }
3350 else if (is_enumeral
7d93a1e0 3351 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
de93309a
SM
3352 {
3353 printf_filtered (("[%d] "), i + first_choice);
3354 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3355 gdb_stdout, -1, 0, &type_print_raw_options);
3356 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3357 syms[i].symbol->print_name ());
de93309a
SM
3358 }
3359 else
3360 {
3361 printf_filtered ("[%d] ", i + first_choice);
3362 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3363 &type_print_raw_options);
3364
3365 if (symtab != NULL)
3366 printf_filtered (is_enumeral
3367 ? _(" in %s (enumeral)\n")
3368 : _(" at %s:?\n"),
3369 symtab_to_filename_for_display (symtab));
3370 else
3371 printf_filtered (is_enumeral
3372 ? _(" (enumeral)\n")
3373 : _(" at ?\n"));
3374 }
76a01679 3375 }
14f9c5c9 3376 }
14f9c5c9 3377
de93309a
SM
3378 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3379 "overload-choice");
14f9c5c9 3380
de93309a
SM
3381 for (i = 0; i < n_chosen; i += 1)
3382 syms[i] = syms[chosen[i]];
14f9c5c9 3383
de93309a
SM
3384 return n_chosen;
3385}
14f9c5c9 3386
de93309a
SM
3387/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3388 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3389 undefined namespace) and converts operators that are
3390 user-defined into appropriate function calls. If CONTEXT_TYPE is
3391 non-null, it provides a preferred result type [at the moment, only
3392 type void has any effect---causing procedures to be preferred over
3393 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3394 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3395
de93309a
SM
3396static void
3397resolve (expression_up *expp, int void_context_p, int parse_completion,
3398 innermost_block_tracker *tracker)
3399{
3400 struct type *context_type = NULL;
3401 int pc = 0;
14f9c5c9 3402
de93309a
SM
3403 if (void_context_p)
3404 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14f9c5c9 3405
de93309a
SM
3406 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3407}
4c4b4cd2 3408
de93309a
SM
3409/* Resolve the operator of the subexpression beginning at
3410 position *POS of *EXPP. "Resolving" consists of replacing
3411 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3412 with their resolutions, replacing built-in operators with
3413 function calls to user-defined operators, where appropriate, and,
3414 when DEPROCEDURE_P is non-zero, converting function-valued variables
3415 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3416 are as in ada_resolve, above. */
14f9c5c9 3417
de93309a
SM
3418static struct value *
3419resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3420 struct type *context_type, int parse_completion,
3421 innermost_block_tracker *tracker)
14f9c5c9 3422{
de93309a
SM
3423 int pc = *pos;
3424 int i;
3425 struct expression *exp; /* Convenience: == *expp. */
3426 enum exp_opcode op = (*expp)->elts[pc].opcode;
3427 struct value **argvec; /* Vector of operand types (alloca'ed). */
3428 int nargs; /* Number of operands. */
3429 int oplen;
14f9c5c9 3430
de93309a
SM
3431 argvec = NULL;
3432 nargs = 0;
3433 exp = expp->get ();
4c4b4cd2 3434
de93309a
SM
3435 /* Pass one: resolve operands, saving their types and updating *pos,
3436 if needed. */
3437 switch (op)
3438 {
3439 case OP_FUNCALL:
3440 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3441 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3442 *pos += 7;
3443 else
3444 {
3445 *pos += 3;
3446 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3447 }
de93309a
SM
3448 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3449 break;
14f9c5c9 3450
de93309a
SM
3451 case UNOP_ADDR:
3452 *pos += 1;
3453 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3454 break;
3455
3456 case UNOP_QUAL:
3457 *pos += 3;
3458 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3459 parse_completion, tracker);
3460 break;
3461
3462 case OP_ATR_MODULUS:
3463 case OP_ATR_SIZE:
3464 case OP_ATR_TAG:
3465 case OP_ATR_FIRST:
3466 case OP_ATR_LAST:
3467 case OP_ATR_LENGTH:
3468 case OP_ATR_POS:
3469 case OP_ATR_VAL:
3470 case OP_ATR_MIN:
3471 case OP_ATR_MAX:
3472 case TERNOP_IN_RANGE:
3473 case BINOP_IN_BOUNDS:
3474 case UNOP_IN_RANGE:
3475 case OP_AGGREGATE:
3476 case OP_OTHERS:
3477 case OP_CHOICES:
3478 case OP_POSITIONAL:
3479 case OP_DISCRETE_RANGE:
3480 case OP_NAME:
3481 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3482 *pos += oplen;
3483 break;
3484
3485 case BINOP_ASSIGN:
3486 {
3487 struct value *arg1;
3488
3489 *pos += 1;
3490 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3491 if (arg1 == NULL)
3492 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3493 else
3494 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3495 tracker);
3496 break;
3497 }
3498
3499 case UNOP_CAST:
3500 *pos += 3;
3501 nargs = 1;
3502 break;
3503
3504 case BINOP_ADD:
3505 case BINOP_SUB:
3506 case BINOP_MUL:
3507 case BINOP_DIV:
3508 case BINOP_REM:
3509 case BINOP_MOD:
3510 case BINOP_EXP:
3511 case BINOP_CONCAT:
3512 case BINOP_LOGICAL_AND:
3513 case BINOP_LOGICAL_OR:
3514 case BINOP_BITWISE_AND:
3515 case BINOP_BITWISE_IOR:
3516 case BINOP_BITWISE_XOR:
3517
3518 case BINOP_EQUAL:
3519 case BINOP_NOTEQUAL:
3520 case BINOP_LESS:
3521 case BINOP_GTR:
3522 case BINOP_LEQ:
3523 case BINOP_GEQ:
3524
3525 case BINOP_REPEAT:
3526 case BINOP_SUBSCRIPT:
3527 case BINOP_COMMA:
3528 *pos += 1;
3529 nargs = 2;
3530 break;
3531
3532 case UNOP_NEG:
3533 case UNOP_PLUS:
3534 case UNOP_LOGICAL_NOT:
3535 case UNOP_ABS:
3536 case UNOP_IND:
3537 *pos += 1;
3538 nargs = 1;
3539 break;
3540
3541 case OP_LONG:
3542 case OP_FLOAT:
3543 case OP_VAR_VALUE:
3544 case OP_VAR_MSYM_VALUE:
3545 *pos += 4;
3546 break;
3547
3548 case OP_TYPE:
3549 case OP_BOOL:
3550 case OP_LAST:
3551 case OP_INTERNALVAR:
3552 *pos += 3;
3553 break;
3554
3555 case UNOP_MEMVAL:
3556 *pos += 3;
3557 nargs = 1;
3558 break;
3559
3560 case OP_REGISTER:
3561 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3562 break;
3563
3564 case STRUCTOP_STRUCT:
3565 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3566 nargs = 1;
3567 break;
3568
3569 case TERNOP_SLICE:
3570 *pos += 1;
3571 nargs = 3;
3572 break;
3573
3574 case OP_STRING:
3575 break;
3576
3577 default:
3578 error (_("Unexpected operator during name resolution"));
14f9c5c9 3579 }
14f9c5c9 3580
de93309a
SM
3581 argvec = XALLOCAVEC (struct value *, nargs + 1);
3582 for (i = 0; i < nargs; i += 1)
3583 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3584 tracker);
3585 argvec[i] = NULL;
3586 exp = expp->get ();
4c4b4cd2 3587
de93309a
SM
3588 /* Pass two: perform any resolution on principal operator. */
3589 switch (op)
14f9c5c9 3590 {
de93309a
SM
3591 default:
3592 break;
5b4ee69b 3593
de93309a
SM
3594 case OP_VAR_VALUE:
3595 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3596 {
de93309a
SM
3597 std::vector<struct block_symbol> candidates;
3598 int n_candidates;
5b4ee69b 3599
de93309a 3600 n_candidates =
987012b8 3601 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3602 exp->elts[pc + 1].block, VAR_DOMAIN,
3603 &candidates);
d2e4a39e 3604
de93309a
SM
3605 if (n_candidates > 1)
3606 {
3607 /* Types tend to get re-introduced locally, so if there
3608 are any local symbols that are not types, first filter
3609 out all types. */
3610 int j;
3611 for (j = 0; j < n_candidates; j += 1)
3612 switch (SYMBOL_CLASS (candidates[j].symbol))
3613 {
3614 case LOC_REGISTER:
3615 case LOC_ARG:
3616 case LOC_REF_ARG:
3617 case LOC_REGPARM_ADDR:
3618 case LOC_LOCAL:
3619 case LOC_COMPUTED:
3620 goto FoundNonType;
3621 default:
3622 break;
3623 }
3624 FoundNonType:
3625 if (j < n_candidates)
3626 {
3627 j = 0;
3628 while (j < n_candidates)
3629 {
3630 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3631 {
3632 candidates[j] = candidates[n_candidates - 1];
3633 n_candidates -= 1;
3634 }
3635 else
3636 j += 1;
3637 }
3638 }
3639 }
4c4b4cd2 3640
de93309a
SM
3641 if (n_candidates == 0)
3642 error (_("No definition found for %s"),
987012b8 3643 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3644 else if (n_candidates == 1)
3645 i = 0;
3646 else if (deprocedure_p
3647 && !is_nonfunction (candidates.data (), n_candidates))
3648 {
3649 i = ada_resolve_function
3650 (candidates.data (), n_candidates, NULL, 0,
987012b8 3651 exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3652 context_type, parse_completion);
3653 if (i < 0)
3654 error (_("Could not find a match for %s"),
987012b8 3655 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3656 }
3657 else
3658 {
3659 printf_filtered (_("Multiple matches for %s\n"),
987012b8 3660 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3661 user_select_syms (candidates.data (), n_candidates, 1);
3662 i = 0;
3663 }
5b4ee69b 3664
de93309a
SM
3665 exp->elts[pc + 1].block = candidates[i].block;
3666 exp->elts[pc + 2].symbol = candidates[i].symbol;
3667 tracker->update (candidates[i]);
3668 }
14f9c5c9 3669
de93309a 3670 if (deprocedure_p
78134374 3671 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
de93309a 3672 == TYPE_CODE_FUNC))
4c4b4cd2 3673 {
de93309a
SM
3674 replace_operator_with_call (expp, pc, 0, 4,
3675 exp->elts[pc + 2].symbol,
3676 exp->elts[pc + 1].block);
3677 exp = expp->get ();
4c4b4cd2 3678 }
de93309a
SM
3679 break;
3680
3681 case OP_FUNCALL:
3682 {
3683 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3684 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3685 {
3686 std::vector<struct block_symbol> candidates;
3687 int n_candidates;
3688
3689 n_candidates =
987012b8 3690 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3691 exp->elts[pc + 4].block, VAR_DOMAIN,
3692 &candidates);
14f9c5c9 3693
de93309a
SM
3694 if (n_candidates == 1)
3695 i = 0;
3696 else
3697 {
3698 i = ada_resolve_function
3699 (candidates.data (), n_candidates,
3700 argvec, nargs,
987012b8 3701 exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3702 context_type, parse_completion);
3703 if (i < 0)
3704 error (_("Could not find a match for %s"),
987012b8 3705 exp->elts[pc + 5].symbol->print_name ());
de93309a 3706 }
d72413e6 3707
de93309a
SM
3708 exp->elts[pc + 4].block = candidates[i].block;
3709 exp->elts[pc + 5].symbol = candidates[i].symbol;
3710 tracker->update (candidates[i]);
3711 }
3712 }
3713 break;
3714 case BINOP_ADD:
3715 case BINOP_SUB:
3716 case BINOP_MUL:
3717 case BINOP_DIV:
3718 case BINOP_REM:
3719 case BINOP_MOD:
3720 case BINOP_CONCAT:
3721 case BINOP_BITWISE_AND:
3722 case BINOP_BITWISE_IOR:
3723 case BINOP_BITWISE_XOR:
3724 case BINOP_EQUAL:
3725 case BINOP_NOTEQUAL:
3726 case BINOP_LESS:
3727 case BINOP_GTR:
3728 case BINOP_LEQ:
3729 case BINOP_GEQ:
3730 case BINOP_EXP:
3731 case UNOP_NEG:
3732 case UNOP_PLUS:
3733 case UNOP_LOGICAL_NOT:
3734 case UNOP_ABS:
3735 if (possible_user_operator_p (op, argvec))
3736 {
3737 std::vector<struct block_symbol> candidates;
3738 int n_candidates;
d72413e6 3739
de93309a
SM
3740 n_candidates =
3741 ada_lookup_symbol_list (ada_decoded_op_name (op),
3742 NULL, VAR_DOMAIN,
3743 &candidates);
d72413e6 3744
de93309a
SM
3745 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3746 nargs, ada_decoded_op_name (op), NULL,
3747 parse_completion);
3748 if (i < 0)
3749 break;
d72413e6 3750
de93309a
SM
3751 replace_operator_with_call (expp, pc, nargs, 1,
3752 candidates[i].symbol,
3753 candidates[i].block);
3754 exp = expp->get ();
3755 }
3756 break;
d72413e6 3757
de93309a
SM
3758 case OP_TYPE:
3759 case OP_REGISTER:
3760 return NULL;
d72413e6 3761 }
d72413e6 3762
de93309a
SM
3763 *pos = pc;
3764 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3765 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3766 exp->elts[pc + 1].objfile,
3767 exp->elts[pc + 2].msymbol);
3768 else
3769 return evaluate_subexp_type (exp, pos);
3770}
14f9c5c9 3771
de93309a
SM
3772/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3773 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3774 a non-pointer. */
3775/* The term "match" here is rather loose. The match is heuristic and
3776 liberal. */
14f9c5c9 3777
de93309a
SM
3778static int
3779ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3780{
de93309a
SM
3781 ftype = ada_check_typedef (ftype);
3782 atype = ada_check_typedef (atype);
14f9c5c9 3783
78134374 3784 if (ftype->code () == TYPE_CODE_REF)
de93309a 3785 ftype = TYPE_TARGET_TYPE (ftype);
78134374 3786 if (atype->code () == TYPE_CODE_REF)
de93309a 3787 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3788
78134374 3789 switch (ftype->code ())
14f9c5c9 3790 {
de93309a 3791 default:
78134374 3792 return ftype->code () == atype->code ();
de93309a 3793 case TYPE_CODE_PTR:
78134374 3794 if (atype->code () == TYPE_CODE_PTR)
de93309a
SM
3795 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3796 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3797 else
de93309a
SM
3798 return (may_deref
3799 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3800 case TYPE_CODE_INT:
3801 case TYPE_CODE_ENUM:
3802 case TYPE_CODE_RANGE:
78134374 3803 switch (atype->code ())
4c4b4cd2 3804 {
de93309a
SM
3805 case TYPE_CODE_INT:
3806 case TYPE_CODE_ENUM:
3807 case TYPE_CODE_RANGE:
3808 return 1;
3809 default:
3810 return 0;
4c4b4cd2 3811 }
d2e4a39e 3812
de93309a 3813 case TYPE_CODE_ARRAY:
78134374 3814 return (atype->code () == TYPE_CODE_ARRAY
de93309a 3815 || ada_is_array_descriptor_type (atype));
14f9c5c9 3816
de93309a
SM
3817 case TYPE_CODE_STRUCT:
3818 if (ada_is_array_descriptor_type (ftype))
78134374 3819 return (atype->code () == TYPE_CODE_ARRAY
de93309a
SM
3820 || ada_is_array_descriptor_type (atype));
3821 else
78134374 3822 return (atype->code () == TYPE_CODE_STRUCT
de93309a 3823 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3824
de93309a
SM
3825 case TYPE_CODE_UNION:
3826 case TYPE_CODE_FLT:
78134374 3827 return (atype->code () == ftype->code ());
de93309a 3828 }
14f9c5c9
AS
3829}
3830
de93309a
SM
3831/* Return non-zero if the formals of FUNC "sufficiently match" the
3832 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3833 may also be an enumeral, in which case it is treated as a 0-
3834 argument function. */
14f9c5c9 3835
de93309a
SM
3836static int
3837ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3838{
3839 int i;
3840 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3841
de93309a 3842 if (SYMBOL_CLASS (func) == LOC_CONST
78134374 3843 && func_type->code () == TYPE_CODE_ENUM)
de93309a 3844 return (n_actuals == 0);
78134374 3845 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
de93309a 3846 return 0;
14f9c5c9 3847
1f704f76 3848 if (func_type->num_fields () != n_actuals)
de93309a 3849 return 0;
14f9c5c9 3850
de93309a
SM
3851 for (i = 0; i < n_actuals; i += 1)
3852 {
3853 if (actuals[i] == NULL)
3854 return 0;
3855 else
3856 {
940da03e 3857 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
de93309a 3858 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3859
de93309a
SM
3860 if (!ada_type_match (ftype, atype, 1))
3861 return 0;
3862 }
3863 }
3864 return 1;
3865}
d2e4a39e 3866
de93309a
SM
3867/* False iff function type FUNC_TYPE definitely does not produce a value
3868 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3869 FUNC_TYPE is not a valid function type with a non-null return type
3870 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3871
de93309a
SM
3872static int
3873return_match (struct type *func_type, struct type *context_type)
3874{
3875 struct type *return_type;
d2e4a39e 3876
de93309a
SM
3877 if (func_type == NULL)
3878 return 1;
14f9c5c9 3879
78134374 3880 if (func_type->code () == TYPE_CODE_FUNC)
de93309a
SM
3881 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3882 else
3883 return_type = get_base_type (func_type);
3884 if (return_type == NULL)
3885 return 1;
76a01679 3886
de93309a 3887 context_type = get_base_type (context_type);
14f9c5c9 3888
78134374 3889 if (return_type->code () == TYPE_CODE_ENUM)
de93309a
SM
3890 return context_type == NULL || return_type == context_type;
3891 else if (context_type == NULL)
78134374 3892 return return_type->code () != TYPE_CODE_VOID;
de93309a 3893 else
78134374 3894 return return_type->code () == context_type->code ();
de93309a 3895}
14f9c5c9 3896
14f9c5c9 3897
de93309a
SM
3898/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3899 function (if any) that matches the types of the NARGS arguments in
3900 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3901 that returns that type, then eliminate matches that don't. If
3902 CONTEXT_TYPE is void and there is at least one match that does not
3903 return void, eliminate all matches that do.
14f9c5c9 3904
de93309a
SM
3905 Asks the user if there is more than one match remaining. Returns -1
3906 if there is no such symbol or none is selected. NAME is used
3907 solely for messages. May re-arrange and modify SYMS in
3908 the process; the index returned is for the modified vector. */
14f9c5c9 3909
de93309a
SM
3910static int
3911ada_resolve_function (struct block_symbol syms[],
3912 int nsyms, struct value **args, int nargs,
3913 const char *name, struct type *context_type,
3914 int parse_completion)
3915{
3916 int fallback;
3917 int k;
3918 int m; /* Number of hits */
14f9c5c9 3919
de93309a
SM
3920 m = 0;
3921 /* In the first pass of the loop, we only accept functions matching
3922 context_type. If none are found, we add a second pass of the loop
3923 where every function is accepted. */
3924 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3925 {
3926 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3927 {
de93309a 3928 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 3929
de93309a
SM
3930 if (ada_args_match (syms[k].symbol, args, nargs)
3931 && (fallback || return_match (type, context_type)))
3932 {
3933 syms[m] = syms[k];
3934 m += 1;
3935 }
4c4b4cd2 3936 }
14f9c5c9
AS
3937 }
3938
de93309a
SM
3939 /* If we got multiple matches, ask the user which one to use. Don't do this
3940 interactive thing during completion, though, as the purpose of the
3941 completion is providing a list of all possible matches. Prompting the
3942 user to filter it down would be completely unexpected in this case. */
3943 if (m == 0)
3944 return -1;
3945 else if (m > 1 && !parse_completion)
3946 {
3947 printf_filtered (_("Multiple matches for %s\n"), name);
3948 user_select_syms (syms, m, 1);
3949 return 0;
3950 }
3951 return 0;
14f9c5c9
AS
3952}
3953
4c4b4cd2
PH
3954/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3955 on the function identified by SYM and BLOCK, and taking NARGS
3956 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3957
3958static void
e9d9f57e 3959replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 3960 int oplen, struct symbol *sym,
270140bd 3961 const struct block *block)
14f9c5c9
AS
3962{
3963 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3964 symbol, -oplen for operator being replaced). */
d2e4a39e 3965 struct expression *newexp = (struct expression *)
8c1a34e7 3966 xzalloc (sizeof (struct expression)
4c4b4cd2 3967 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 3968 struct expression *exp = expp->get ();
14f9c5c9
AS
3969
3970 newexp->nelts = exp->nelts + 7 - oplen;
3971 newexp->language_defn = exp->language_defn;
3489610d 3972 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3973 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3974 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3975 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3976
3977 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3978 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3979
3980 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3981 newexp->elts[pc + 4].block = block;
3982 newexp->elts[pc + 5].symbol = sym;
3983
e9d9f57e 3984 expp->reset (newexp);
d2e4a39e 3985}
14f9c5c9
AS
3986
3987/* Type-class predicates */
3988
4c4b4cd2
PH
3989/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3990 or FLOAT). */
14f9c5c9
AS
3991
3992static int
d2e4a39e 3993numeric_type_p (struct type *type)
14f9c5c9
AS
3994{
3995 if (type == NULL)
3996 return 0;
d2e4a39e
AS
3997 else
3998 {
78134374 3999 switch (type->code ())
4c4b4cd2
PH
4000 {
4001 case TYPE_CODE_INT:
4002 case TYPE_CODE_FLT:
4003 return 1;
4004 case TYPE_CODE_RANGE:
4005 return (type == TYPE_TARGET_TYPE (type)
4006 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4007 default:
4008 return 0;
4009 }
d2e4a39e 4010 }
14f9c5c9
AS
4011}
4012
4c4b4cd2 4013/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4014
4015static int
d2e4a39e 4016integer_type_p (struct type *type)
14f9c5c9
AS
4017{
4018 if (type == NULL)
4019 return 0;
d2e4a39e
AS
4020 else
4021 {
78134374 4022 switch (type->code ())
4c4b4cd2
PH
4023 {
4024 case TYPE_CODE_INT:
4025 return 1;
4026 case TYPE_CODE_RANGE:
4027 return (type == TYPE_TARGET_TYPE (type)
4028 || integer_type_p (TYPE_TARGET_TYPE (type)));
4029 default:
4030 return 0;
4031 }
d2e4a39e 4032 }
14f9c5c9
AS
4033}
4034
4c4b4cd2 4035/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4036
4037static int
d2e4a39e 4038scalar_type_p (struct type *type)
14f9c5c9
AS
4039{
4040 if (type == NULL)
4041 return 0;
d2e4a39e
AS
4042 else
4043 {
78134374 4044 switch (type->code ())
4c4b4cd2
PH
4045 {
4046 case TYPE_CODE_INT:
4047 case TYPE_CODE_RANGE:
4048 case TYPE_CODE_ENUM:
4049 case TYPE_CODE_FLT:
4050 return 1;
4051 default:
4052 return 0;
4053 }
d2e4a39e 4054 }
14f9c5c9
AS
4055}
4056
4c4b4cd2 4057/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4058
4059static int
d2e4a39e 4060discrete_type_p (struct type *type)
14f9c5c9
AS
4061{
4062 if (type == NULL)
4063 return 0;
d2e4a39e
AS
4064 else
4065 {
78134374 4066 switch (type->code ())
4c4b4cd2
PH
4067 {
4068 case TYPE_CODE_INT:
4069 case TYPE_CODE_RANGE:
4070 case TYPE_CODE_ENUM:
872f0337 4071 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4072 return 1;
4073 default:
4074 return 0;
4075 }
d2e4a39e 4076 }
14f9c5c9
AS
4077}
4078
4c4b4cd2
PH
4079/* Returns non-zero if OP with operands in the vector ARGS could be
4080 a user-defined function. Errs on the side of pre-defined operators
4081 (i.e., result 0). */
14f9c5c9
AS
4082
4083static int
d2e4a39e 4084possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4085{
76a01679 4086 struct type *type0 =
df407dfe 4087 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4088 struct type *type1 =
df407dfe 4089 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4090
4c4b4cd2
PH
4091 if (type0 == NULL)
4092 return 0;
4093
14f9c5c9
AS
4094 switch (op)
4095 {
4096 default:
4097 return 0;
4098
4099 case BINOP_ADD:
4100 case BINOP_SUB:
4101 case BINOP_MUL:
4102 case BINOP_DIV:
d2e4a39e 4103 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4104
4105 case BINOP_REM:
4106 case BINOP_MOD:
4107 case BINOP_BITWISE_AND:
4108 case BINOP_BITWISE_IOR:
4109 case BINOP_BITWISE_XOR:
d2e4a39e 4110 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4111
4112 case BINOP_EQUAL:
4113 case BINOP_NOTEQUAL:
4114 case BINOP_LESS:
4115 case BINOP_GTR:
4116 case BINOP_LEQ:
4117 case BINOP_GEQ:
d2e4a39e 4118 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4119
4120 case BINOP_CONCAT:
ee90b9ab 4121 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4122
4123 case BINOP_EXP:
d2e4a39e 4124 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4125
4126 case UNOP_NEG:
4127 case UNOP_PLUS:
4128 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4129 case UNOP_ABS:
4130 return (!numeric_type_p (type0));
14f9c5c9
AS
4131
4132 }
4133}
4134\f
4c4b4cd2 4135 /* Renaming */
14f9c5c9 4136
aeb5907d
JB
4137/* NOTES:
4138
4139 1. In the following, we assume that a renaming type's name may
4140 have an ___XD suffix. It would be nice if this went away at some
4141 point.
4142 2. We handle both the (old) purely type-based representation of
4143 renamings and the (new) variable-based encoding. At some point,
4144 it is devoutly to be hoped that the former goes away
4145 (FIXME: hilfinger-2007-07-09).
4146 3. Subprogram renamings are not implemented, although the XRS
4147 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4148
4149/* If SYM encodes a renaming,
4150
4151 <renaming> renames <renamed entity>,
4152
4153 sets *LEN to the length of the renamed entity's name,
4154 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4155 the string describing the subcomponent selected from the renamed
0963b4bd 4156 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4157 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4158 are undefined). Otherwise, returns a value indicating the category
4159 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4160 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4161 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4162 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4163 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4164 may be NULL, in which case they are not assigned.
4165
4166 [Currently, however, GCC does not generate subprogram renamings.] */
4167
4168enum ada_renaming_category
4169ada_parse_renaming (struct symbol *sym,
4170 const char **renamed_entity, int *len,
4171 const char **renaming_expr)
4172{
4173 enum ada_renaming_category kind;
4174 const char *info;
4175 const char *suffix;
4176
4177 if (sym == NULL)
4178 return ADA_NOT_RENAMING;
4179 switch (SYMBOL_CLASS (sym))
14f9c5c9 4180 {
aeb5907d
JB
4181 default:
4182 return ADA_NOT_RENAMING;
aeb5907d
JB
4183 case LOC_LOCAL:
4184 case LOC_STATIC:
4185 case LOC_COMPUTED:
4186 case LOC_OPTIMIZED_OUT:
987012b8 4187 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4188 if (info == NULL)
4189 return ADA_NOT_RENAMING;
4190 switch (info[5])
4191 {
4192 case '_':
4193 kind = ADA_OBJECT_RENAMING;
4194 info += 6;
4195 break;
4196 case 'E':
4197 kind = ADA_EXCEPTION_RENAMING;
4198 info += 7;
4199 break;
4200 case 'P':
4201 kind = ADA_PACKAGE_RENAMING;
4202 info += 7;
4203 break;
4204 case 'S':
4205 kind = ADA_SUBPROGRAM_RENAMING;
4206 info += 7;
4207 break;
4208 default:
4209 return ADA_NOT_RENAMING;
4210 }
14f9c5c9 4211 }
4c4b4cd2 4212
de93309a
SM
4213 if (renamed_entity != NULL)
4214 *renamed_entity = info;
4215 suffix = strstr (info, "___XE");
4216 if (suffix == NULL || suffix == info)
4217 return ADA_NOT_RENAMING;
4218 if (len != NULL)
4219 *len = strlen (info) - strlen (suffix);
4220 suffix += 5;
4221 if (renaming_expr != NULL)
4222 *renaming_expr = suffix;
4223 return kind;
4224}
4225
4226/* Compute the value of the given RENAMING_SYM, which is expected to
4227 be a symbol encoding a renaming expression. BLOCK is the block
4228 used to evaluate the renaming. */
4229
4230static struct value *
4231ada_read_renaming_var_value (struct symbol *renaming_sym,
4232 const struct block *block)
4233{
4234 const char *sym_name;
4235
987012b8 4236 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4237 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4238 return evaluate_expression (expr.get ());
4239}
4240\f
4241
4242 /* Evaluation: Function Calls */
4243
4244/* Return an lvalue containing the value VAL. This is the identity on
4245 lvalues, and otherwise has the side-effect of allocating memory
4246 in the inferior where a copy of the value contents is copied. */
4247
4248static struct value *
4249ensure_lval (struct value *val)
4250{
4251 if (VALUE_LVAL (val) == not_lval
4252 || VALUE_LVAL (val) == lval_internalvar)
4253 {
4254 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4255 const CORE_ADDR addr =
4256 value_as_long (value_allocate_space_in_inferior (len));
4257
4258 VALUE_LVAL (val) = lval_memory;
4259 set_value_address (val, addr);
4260 write_memory (addr, value_contents (val), len);
4261 }
4262
4263 return val;
4264}
4265
4266/* Given ARG, a value of type (pointer or reference to a)*
4267 structure/union, extract the component named NAME from the ultimate
4268 target structure/union and return it as a value with its
4269 appropriate type.
4270
4271 The routine searches for NAME among all members of the structure itself
4272 and (recursively) among all members of any wrapper members
4273 (e.g., '_parent').
4274
4275 If NO_ERR, then simply return NULL in case of error, rather than
4276 calling error. */
4277
4278static struct value *
4279ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4280{
4281 struct type *t, *t1;
4282 struct value *v;
4283 int check_tag;
4284
4285 v = NULL;
4286 t1 = t = ada_check_typedef (value_type (arg));
78134374 4287 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4288 {
4289 t1 = TYPE_TARGET_TYPE (t);
4290 if (t1 == NULL)
4291 goto BadValue;
4292 t1 = ada_check_typedef (t1);
78134374 4293 if (t1->code () == TYPE_CODE_PTR)
de93309a
SM
4294 {
4295 arg = coerce_ref (arg);
4296 t = t1;
4297 }
4298 }
4299
78134374 4300 while (t->code () == TYPE_CODE_PTR)
de93309a
SM
4301 {
4302 t1 = TYPE_TARGET_TYPE (t);
4303 if (t1 == NULL)
4304 goto BadValue;
4305 t1 = ada_check_typedef (t1);
78134374 4306 if (t1->code () == TYPE_CODE_PTR)
de93309a
SM
4307 {
4308 arg = value_ind (arg);
4309 t = t1;
4310 }
4311 else
4312 break;
4313 }
aeb5907d 4314
78134374 4315 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
de93309a 4316 goto BadValue;
52ce6436 4317
de93309a
SM
4318 if (t1 == t)
4319 v = ada_search_struct_field (name, arg, 0, t);
4320 else
4321 {
4322 int bit_offset, bit_size, byte_offset;
4323 struct type *field_type;
4324 CORE_ADDR address;
a5ee536b 4325
78134374 4326 if (t->code () == TYPE_CODE_PTR)
de93309a
SM
4327 address = value_address (ada_value_ind (arg));
4328 else
4329 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4330
de93309a
SM
4331 /* Check to see if this is a tagged type. We also need to handle
4332 the case where the type is a reference to a tagged type, but
4333 we have to be careful to exclude pointers to tagged types.
4334 The latter should be shown as usual (as a pointer), whereas
4335 a reference should mostly be transparent to the user. */
14f9c5c9 4336
de93309a 4337 if (ada_is_tagged_type (t1, 0)
78134374 4338 || (t1->code () == TYPE_CODE_REF
de93309a
SM
4339 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4340 {
4341 /* We first try to find the searched field in the current type.
4342 If not found then let's look in the fixed type. */
14f9c5c9 4343
de93309a
SM
4344 if (!find_struct_field (name, t1, 0,
4345 &field_type, &byte_offset, &bit_offset,
4346 &bit_size, NULL))
4347 check_tag = 1;
4348 else
4349 check_tag = 0;
4350 }
4351 else
4352 check_tag = 0;
c3e5cd34 4353
de93309a
SM
4354 /* Convert to fixed type in all cases, so that we have proper
4355 offsets to each field in unconstrained record types. */
4356 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4357 address, NULL, check_tag);
4358
4359 if (find_struct_field (name, t1, 0,
4360 &field_type, &byte_offset, &bit_offset,
4361 &bit_size, NULL))
4362 {
4363 if (bit_size != 0)
4364 {
78134374 4365 if (t->code () == TYPE_CODE_REF)
de93309a
SM
4366 arg = ada_coerce_ref (arg);
4367 else
4368 arg = ada_value_ind (arg);
4369 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4370 bit_offset, bit_size,
4371 field_type);
4372 }
4373 else
4374 v = value_at_lazy (field_type, address + byte_offset);
4375 }
c3e5cd34 4376 }
14f9c5c9 4377
de93309a
SM
4378 if (v != NULL || no_err)
4379 return v;
4380 else
4381 error (_("There is no member named %s."), name);
4382
4383 BadValue:
4384 if (no_err)
4385 return NULL;
4386 else
4387 error (_("Attempt to extract a component of "
4388 "a value that is not a record."));
14f9c5c9
AS
4389}
4390
4391/* Return the value ACTUAL, converted to be an appropriate value for a
4392 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4393 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4394 values not residing in memory, updating it as needed. */
14f9c5c9 4395
a93c0eb6 4396struct value *
40bc484c 4397ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4398{
df407dfe 4399 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4400 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e 4401 struct type *formal_target =
78134374 4402 formal_type->code () == TYPE_CODE_PTR
61ee279c 4403 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e 4404 struct type *actual_target =
78134374 4405 actual_type->code () == TYPE_CODE_PTR
61ee279c 4406 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4407
4c4b4cd2 4408 if (ada_is_array_descriptor_type (formal_target)
78134374 4409 && actual_target->code () == TYPE_CODE_ARRAY)
40bc484c 4410 return make_array_descriptor (formal_type, actual);
78134374
SM
4411 else if (formal_type->code () == TYPE_CODE_PTR
4412 || formal_type->code () == TYPE_CODE_REF)
14f9c5c9 4413 {
a84a8a0d 4414 struct value *result;
5b4ee69b 4415
78134374 4416 if (formal_target->code () == TYPE_CODE_ARRAY
4c4b4cd2 4417 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4418 result = desc_data (actual);
78134374 4419 else if (formal_type->code () != TYPE_CODE_PTR)
4c4b4cd2
PH
4420 {
4421 if (VALUE_LVAL (actual) != lval_memory)
4422 {
4423 struct value *val;
5b4ee69b 4424
df407dfe 4425 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4426 val = allocate_value (actual_type);
990a07ab 4427 memcpy ((char *) value_contents_raw (val),
0fd88904 4428 (char *) value_contents (actual),
4c4b4cd2 4429 TYPE_LENGTH (actual_type));
40bc484c 4430 actual = ensure_lval (val);
4c4b4cd2 4431 }
a84a8a0d 4432 result = value_addr (actual);
4c4b4cd2 4433 }
a84a8a0d
JB
4434 else
4435 return actual;
b1af9e97 4436 return value_cast_pointers (formal_type, result, 0);
14f9c5c9 4437 }
78134374 4438 else if (actual_type->code () == TYPE_CODE_PTR)
14f9c5c9 4439 return ada_value_ind (actual);
8344af1e
JB
4440 else if (ada_is_aligner_type (formal_type))
4441 {
4442 /* We need to turn this parameter into an aligner type
4443 as well. */
4444 struct value *aligner = allocate_value (formal_type);
4445 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4446
4447 value_assign_to_component (aligner, component, actual);
4448 return aligner;
4449 }
14f9c5c9
AS
4450
4451 return actual;
4452}
4453
438c98a1
JB
4454/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4455 type TYPE. This is usually an inefficient no-op except on some targets
4456 (such as AVR) where the representation of a pointer and an address
4457 differs. */
4458
4459static CORE_ADDR
4460value_pointer (struct value *value, struct type *type)
4461{
4462 struct gdbarch *gdbarch = get_type_arch (type);
4463 unsigned len = TYPE_LENGTH (type);
224c3ddb 4464 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4465 CORE_ADDR addr;
4466
4467 addr = value_address (value);
4468 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
34877895 4469 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4470 return addr;
4471}
4472
14f9c5c9 4473
4c4b4cd2
PH
4474/* Push a descriptor of type TYPE for array value ARR on the stack at
4475 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4476 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4477 to-descriptor type rather than a descriptor type), a struct value *
4478 representing a pointer to this descriptor. */
14f9c5c9 4479
d2e4a39e 4480static struct value *
40bc484c 4481make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4482{
d2e4a39e
AS
4483 struct type *bounds_type = desc_bounds_type (type);
4484 struct type *desc_type = desc_base_type (type);
4485 struct value *descriptor = allocate_value (desc_type);
4486 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4487 int i;
d2e4a39e 4488
0963b4bd
MS
4489 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4490 i > 0; i -= 1)
14f9c5c9 4491 {
19f220c3
JK
4492 modify_field (value_type (bounds), value_contents_writeable (bounds),
4493 ada_array_bound (arr, i, 0),
4494 desc_bound_bitpos (bounds_type, i, 0),
4495 desc_bound_bitsize (bounds_type, i, 0));
4496 modify_field (value_type (bounds), value_contents_writeable (bounds),
4497 ada_array_bound (arr, i, 1),
4498 desc_bound_bitpos (bounds_type, i, 1),
4499 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4500 }
d2e4a39e 4501
40bc484c 4502 bounds = ensure_lval (bounds);
d2e4a39e 4503
19f220c3
JK
4504 modify_field (value_type (descriptor),
4505 value_contents_writeable (descriptor),
4506 value_pointer (ensure_lval (arr),
940da03e 4507 desc_type->field (0).type ()),
19f220c3
JK
4508 fat_pntr_data_bitpos (desc_type),
4509 fat_pntr_data_bitsize (desc_type));
4510
4511 modify_field (value_type (descriptor),
4512 value_contents_writeable (descriptor),
4513 value_pointer (bounds,
940da03e 4514 desc_type->field (1).type ()),
19f220c3
JK
4515 fat_pntr_bounds_bitpos (desc_type),
4516 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4517
40bc484c 4518 descriptor = ensure_lval (descriptor);
14f9c5c9 4519
78134374 4520 if (type->code () == TYPE_CODE_PTR)
14f9c5c9
AS
4521 return value_addr (descriptor);
4522 else
4523 return descriptor;
4524}
14f9c5c9 4525\f
3d9434b5
JB
4526 /* Symbol Cache Module */
4527
3d9434b5 4528/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4529 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4530 on the type of entity being printed, the cache can make it as much
4531 as an order of magnitude faster than without it.
4532
4533 The descriptive type DWARF extension has significantly reduced
4534 the need for this cache, at least when DWARF is being used. However,
4535 even in this case, some expensive name-based symbol searches are still
4536 sometimes necessary - to find an XVZ variable, mostly. */
4537
ee01b665 4538/* Initialize the contents of SYM_CACHE. */
3d9434b5 4539
ee01b665
JB
4540static void
4541ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4542{
4543 obstack_init (&sym_cache->cache_space);
4544 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4545}
3d9434b5 4546
ee01b665
JB
4547/* Free the memory used by SYM_CACHE. */
4548
4549static void
4550ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4551{
ee01b665
JB
4552 obstack_free (&sym_cache->cache_space, NULL);
4553 xfree (sym_cache);
4554}
3d9434b5 4555
ee01b665
JB
4556/* Return the symbol cache associated to the given program space PSPACE.
4557 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4558
ee01b665
JB
4559static struct ada_symbol_cache *
4560ada_get_symbol_cache (struct program_space *pspace)
4561{
4562 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4563
66c168ae 4564 if (pspace_data->sym_cache == NULL)
ee01b665 4565 {
66c168ae
JB
4566 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4567 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4568 }
4569
66c168ae 4570 return pspace_data->sym_cache;
ee01b665 4571}
3d9434b5
JB
4572
4573/* Clear all entries from the symbol cache. */
4574
4575static void
4576ada_clear_symbol_cache (void)
4577{
ee01b665
JB
4578 struct ada_symbol_cache *sym_cache
4579 = ada_get_symbol_cache (current_program_space);
4580
4581 obstack_free (&sym_cache->cache_space, NULL);
4582 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4583}
4584
fe978cb0 4585/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4586 Return it if found, or NULL otherwise. */
4587
4588static struct cache_entry **
fe978cb0 4589find_entry (const char *name, domain_enum domain)
3d9434b5 4590{
ee01b665
JB
4591 struct ada_symbol_cache *sym_cache
4592 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4593 int h = msymbol_hash (name) % HASH_SIZE;
4594 struct cache_entry **e;
4595
ee01b665 4596 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4597 {
fe978cb0 4598 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4599 return e;
4600 }
4601 return NULL;
4602}
4603
fe978cb0 4604/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4605 Return 1 if found, 0 otherwise.
4606
4607 If an entry was found and SYM is not NULL, set *SYM to the entry's
4608 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4609
96d887e8 4610static int
fe978cb0 4611lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4612 struct symbol **sym, const struct block **block)
96d887e8 4613{
fe978cb0 4614 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4615
4616 if (e == NULL)
4617 return 0;
4618 if (sym != NULL)
4619 *sym = (*e)->sym;
4620 if (block != NULL)
4621 *block = (*e)->block;
4622 return 1;
96d887e8
PH
4623}
4624
3d9434b5 4625/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4626 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4627
96d887e8 4628static void
fe978cb0 4629cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4630 const struct block *block)
96d887e8 4631{
ee01b665
JB
4632 struct ada_symbol_cache *sym_cache
4633 = ada_get_symbol_cache (current_program_space);
3d9434b5 4634 int h;
3d9434b5
JB
4635 struct cache_entry *e;
4636
1994afbf
DE
4637 /* Symbols for builtin types don't have a block.
4638 For now don't cache such symbols. */
4639 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4640 return;
4641
3d9434b5
JB
4642 /* If the symbol is a local symbol, then do not cache it, as a search
4643 for that symbol depends on the context. To determine whether
4644 the symbol is local or not, we check the block where we found it
4645 against the global and static blocks of its associated symtab. */
4646 if (sym
08be3fe3 4647 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4648 GLOBAL_BLOCK) != block
08be3fe3 4649 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4650 STATIC_BLOCK) != block)
3d9434b5
JB
4651 return;
4652
4653 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4654 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4655 e->next = sym_cache->root[h];
4656 sym_cache->root[h] = e;
2ef5453b 4657 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4658 e->sym = sym;
fe978cb0 4659 e->domain = domain;
3d9434b5 4660 e->block = block;
96d887e8 4661}
4c4b4cd2
PH
4662\f
4663 /* Symbol Lookup */
4664
b5ec771e
PA
4665/* Return the symbol name match type that should be used used when
4666 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4667
4668 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4669 for Ada lookups. */
c0431670 4670
b5ec771e
PA
4671static symbol_name_match_type
4672name_match_type_from_name (const char *lookup_name)
c0431670 4673{
b5ec771e
PA
4674 return (strstr (lookup_name, "__") == NULL
4675 ? symbol_name_match_type::WILD
4676 : symbol_name_match_type::FULL);
c0431670
JB
4677}
4678
4c4b4cd2
PH
4679/* Return the result of a standard (literal, C-like) lookup of NAME in
4680 given DOMAIN, visible from lexical block BLOCK. */
4681
4682static struct symbol *
4683standard_lookup (const char *name, const struct block *block,
4684 domain_enum domain)
4685{
acbd605d 4686 /* Initialize it just to avoid a GCC false warning. */
6640a367 4687 struct block_symbol sym = {};
4c4b4cd2 4688
d12307c1
PMR
4689 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4690 return sym.symbol;
a2cd4f14 4691 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4692 cache_symbol (name, domain, sym.symbol, sym.block);
4693 return sym.symbol;
4c4b4cd2
PH
4694}
4695
4696
4697/* Non-zero iff there is at least one non-function/non-enumeral symbol
4698 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4699 since they contend in overloading in the same way. */
4700static int
d12307c1 4701is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4702{
4703 int i;
4704
4705 for (i = 0; i < n; i += 1)
78134374
SM
4706 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4707 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
d12307c1 4708 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4709 return 1;
4710
4711 return 0;
4712}
4713
4714/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4715 struct types. Otherwise, they may not. */
14f9c5c9
AS
4716
4717static int
d2e4a39e 4718equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4719{
d2e4a39e 4720 if (type0 == type1)
14f9c5c9 4721 return 1;
d2e4a39e 4722 if (type0 == NULL || type1 == NULL
78134374 4723 || type0->code () != type1->code ())
14f9c5c9 4724 return 0;
78134374
SM
4725 if ((type0->code () == TYPE_CODE_STRUCT
4726 || type0->code () == TYPE_CODE_ENUM)
14f9c5c9 4727 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4728 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4729 return 1;
d2e4a39e 4730
14f9c5c9
AS
4731 return 0;
4732}
4733
4734/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4735 no more defined than that of SYM1. */
14f9c5c9
AS
4736
4737static int
d2e4a39e 4738lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4739{
4740 if (sym0 == sym1)
4741 return 1;
176620f1 4742 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4743 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4744 return 0;
4745
d2e4a39e 4746 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4747 {
4748 case LOC_UNDEF:
4749 return 1;
4750 case LOC_TYPEDEF:
4751 {
4c4b4cd2
PH
4752 struct type *type0 = SYMBOL_TYPE (sym0);
4753 struct type *type1 = SYMBOL_TYPE (sym1);
987012b8
CB
4754 const char *name0 = sym0->linkage_name ();
4755 const char *name1 = sym1->linkage_name ();
4c4b4cd2 4756 int len0 = strlen (name0);
5b4ee69b 4757
4c4b4cd2 4758 return
78134374 4759 type0->code () == type1->code ()
4c4b4cd2
PH
4760 && (equiv_types (type0, type1)
4761 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4762 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4763 }
4764 case LOC_CONST:
4765 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4766 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4767
4768 case LOC_STATIC:
4769 {
987012b8
CB
4770 const char *name0 = sym0->linkage_name ();
4771 const char *name1 = sym1->linkage_name ();
4b610737
TT
4772 return (strcmp (name0, name1) == 0
4773 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4774 }
4775
d2e4a39e
AS
4776 default:
4777 return 0;
14f9c5c9
AS
4778 }
4779}
4780
d12307c1 4781/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4782 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4783
4784static void
76a01679
JB
4785add_defn_to_vec (struct obstack *obstackp,
4786 struct symbol *sym,
f0c5f9b2 4787 const struct block *block)
14f9c5c9
AS
4788{
4789 int i;
d12307c1 4790 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4791
529cad9c
PH
4792 /* Do not try to complete stub types, as the debugger is probably
4793 already scanning all symbols matching a certain name at the
4794 time when this function is called. Trying to replace the stub
4795 type by its associated full type will cause us to restart a scan
4796 which may lead to an infinite recursion. Instead, the client
4797 collecting the matching symbols will end up collecting several
4798 matches, with at least one of them complete. It can then filter
4799 out the stub ones if needed. */
4800
4c4b4cd2
PH
4801 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4802 {
d12307c1 4803 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4804 return;
d12307c1 4805 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4806 {
d12307c1 4807 prevDefns[i].symbol = sym;
4c4b4cd2 4808 prevDefns[i].block = block;
4c4b4cd2 4809 return;
76a01679 4810 }
4c4b4cd2
PH
4811 }
4812
4813 {
d12307c1 4814 struct block_symbol info;
4c4b4cd2 4815
d12307c1 4816 info.symbol = sym;
4c4b4cd2 4817 info.block = block;
d12307c1 4818 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4819 }
4820}
4821
d12307c1
PMR
4822/* Number of block_symbol structures currently collected in current vector in
4823 OBSTACKP. */
4c4b4cd2 4824
76a01679
JB
4825static int
4826num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4827{
d12307c1 4828 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4829}
4830
d12307c1
PMR
4831/* Vector of block_symbol structures currently collected in current vector in
4832 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4833
d12307c1 4834static struct block_symbol *
4c4b4cd2
PH
4835defns_collected (struct obstack *obstackp, int finish)
4836{
4837 if (finish)
224c3ddb 4838 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4839 else
d12307c1 4840 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4841}
4842
7c7b6655
TT
4843/* Return a bound minimal symbol matching NAME according to Ada
4844 decoding rules. Returns an invalid symbol if there is no such
4845 minimal symbol. Names prefixed with "standard__" are handled
4846 specially: "standard__" is first stripped off, and only static and
4847 global symbols are searched. */
4c4b4cd2 4848
7c7b6655 4849struct bound_minimal_symbol
96d887e8 4850ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4851{
7c7b6655 4852 struct bound_minimal_symbol result;
4c4b4cd2 4853
7c7b6655
TT
4854 memset (&result, 0, sizeof (result));
4855
b5ec771e
PA
4856 symbol_name_match_type match_type = name_match_type_from_name (name);
4857 lookup_name_info lookup_name (name, match_type);
4858
4859 symbol_name_matcher_ftype *match_name
4860 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4861
2030c079 4862 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4863 {
7932255d 4864 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4865 {
c9d95fa3 4866 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4867 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4868 {
4869 result.minsym = msymbol;
4870 result.objfile = objfile;
4871 break;
4872 }
4873 }
4874 }
4c4b4cd2 4875
7c7b6655 4876 return result;
96d887e8 4877}
4c4b4cd2 4878
96d887e8
PH
4879/* For all subprograms that statically enclose the subprogram of the
4880 selected frame, add symbols matching identifier NAME in DOMAIN
4881 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4882 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4883 with a wildcard prefix. */
4c4b4cd2 4884
96d887e8
PH
4885static void
4886add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4887 const lookup_name_info &lookup_name,
4888 domain_enum domain)
96d887e8 4889{
96d887e8 4890}
14f9c5c9 4891
96d887e8
PH
4892/* True if TYPE is definitely an artificial type supplied to a symbol
4893 for which no debugging information was given in the symbol file. */
14f9c5c9 4894
96d887e8
PH
4895static int
4896is_nondebugging_type (struct type *type)
4897{
0d5cff50 4898 const char *name = ada_type_name (type);
5b4ee69b 4899
96d887e8
PH
4900 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4901}
4c4b4cd2 4902
8f17729f
JB
4903/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4904 that are deemed "identical" for practical purposes.
4905
4906 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4907 types and that their number of enumerals is identical (in other
1f704f76 4908 words, type1->num_fields () == type2->num_fields ()). */
8f17729f
JB
4909
4910static int
4911ada_identical_enum_types_p (struct type *type1, struct type *type2)
4912{
4913 int i;
4914
4915 /* The heuristic we use here is fairly conservative. We consider
4916 that 2 enumerate types are identical if they have the same
4917 number of enumerals and that all enumerals have the same
4918 underlying value and name. */
4919
4920 /* All enums in the type should have an identical underlying value. */
1f704f76 4921 for (i = 0; i < type1->num_fields (); i++)
14e75d8e 4922 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4923 return 0;
4924
4925 /* All enumerals should also have the same name (modulo any numerical
4926 suffix). */
1f704f76 4927 for (i = 0; i < type1->num_fields (); i++)
8f17729f 4928 {
0d5cff50
DE
4929 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4930 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4931 int len_1 = strlen (name_1);
4932 int len_2 = strlen (name_2);
4933
4934 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4935 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4936 if (len_1 != len_2
4937 || strncmp (TYPE_FIELD_NAME (type1, i),
4938 TYPE_FIELD_NAME (type2, i),
4939 len_1) != 0)
4940 return 0;
4941 }
4942
4943 return 1;
4944}
4945
4946/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4947 that are deemed "identical" for practical purposes. Sometimes,
4948 enumerals are not strictly identical, but their types are so similar
4949 that they can be considered identical.
4950
4951 For instance, consider the following code:
4952
4953 type Color is (Black, Red, Green, Blue, White);
4954 type RGB_Color is new Color range Red .. Blue;
4955
4956 Type RGB_Color is a subrange of an implicit type which is a copy
4957 of type Color. If we call that implicit type RGB_ColorB ("B" is
4958 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4959 As a result, when an expression references any of the enumeral
4960 by name (Eg. "print green"), the expression is technically
4961 ambiguous and the user should be asked to disambiguate. But
4962 doing so would only hinder the user, since it wouldn't matter
4963 what choice he makes, the outcome would always be the same.
4964 So, for practical purposes, we consider them as the same. */
4965
4966static int
54d343a2 4967symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4968{
4969 int i;
4970
4971 /* Before performing a thorough comparison check of each type,
4972 we perform a series of inexpensive checks. We expect that these
4973 checks will quickly fail in the vast majority of cases, and thus
4974 help prevent the unnecessary use of a more expensive comparison.
4975 Said comparison also expects us to make some of these checks
4976 (see ada_identical_enum_types_p). */
4977
4978 /* Quick check: All symbols should have an enum type. */
54d343a2 4979 for (i = 0; i < syms.size (); i++)
78134374 4980 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
8f17729f
JB
4981 return 0;
4982
4983 /* Quick check: They should all have the same value. */
54d343a2 4984 for (i = 1; i < syms.size (); i++)
d12307c1 4985 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4986 return 0;
4987
4988 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4989 for (i = 1; i < syms.size (); i++)
1f704f76
SM
4990 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4991 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
8f17729f
JB
4992 return 0;
4993
4994 /* All the sanity checks passed, so we might have a set of
4995 identical enumeration types. Perform a more complete
4996 comparison of the type of each symbol. */
54d343a2 4997 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4998 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4999 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5000 return 0;
5001
5002 return 1;
5003}
5004
54d343a2 5005/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5006 duplicate other symbols in the list (The only case I know of where
5007 this happens is when object files containing stabs-in-ecoff are
5008 linked with files containing ordinary ecoff debugging symbols (or no
5009 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5010 Returns the number of items in the modified list. */
4c4b4cd2 5011
96d887e8 5012static int
54d343a2 5013remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5014{
5015 int i, j;
4c4b4cd2 5016
8f17729f
JB
5017 /* We should never be called with less than 2 symbols, as there
5018 cannot be any extra symbol in that case. But it's easy to
5019 handle, since we have nothing to do in that case. */
54d343a2
TT
5020 if (syms->size () < 2)
5021 return syms->size ();
8f17729f 5022
96d887e8 5023 i = 0;
54d343a2 5024 while (i < syms->size ())
96d887e8 5025 {
a35ddb44 5026 int remove_p = 0;
339c13b6
JB
5027
5028 /* If two symbols have the same name and one of them is a stub type,
5029 the get rid of the stub. */
5030
54d343a2 5031 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
987012b8 5032 && (*syms)[i].symbol->linkage_name () != NULL)
339c13b6 5033 {
54d343a2 5034 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5035 {
5036 if (j != i
54d343a2 5037 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
987012b8
CB
5038 && (*syms)[j].symbol->linkage_name () != NULL
5039 && strcmp ((*syms)[i].symbol->linkage_name (),
5040 (*syms)[j].symbol->linkage_name ()) == 0)
a35ddb44 5041 remove_p = 1;
339c13b6
JB
5042 }
5043 }
5044
5045 /* Two symbols with the same name, same class and same address
5046 should be identical. */
5047
987012b8 5048 else if ((*syms)[i].symbol->linkage_name () != NULL
54d343a2
TT
5049 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5050 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5051 {
54d343a2 5052 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5053 {
5054 if (i != j
987012b8
CB
5055 && (*syms)[j].symbol->linkage_name () != NULL
5056 && strcmp ((*syms)[i].symbol->linkage_name (),
5057 (*syms)[j].symbol->linkage_name ()) == 0
54d343a2
TT
5058 && SYMBOL_CLASS ((*syms)[i].symbol)
5059 == SYMBOL_CLASS ((*syms)[j].symbol)
5060 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5061 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5062 remove_p = 1;
4c4b4cd2 5063 }
4c4b4cd2 5064 }
339c13b6 5065
a35ddb44 5066 if (remove_p)
54d343a2 5067 syms->erase (syms->begin () + i);
339c13b6 5068
96d887e8 5069 i += 1;
14f9c5c9 5070 }
8f17729f
JB
5071
5072 /* If all the remaining symbols are identical enumerals, then
5073 just keep the first one and discard the rest.
5074
5075 Unlike what we did previously, we do not discard any entry
5076 unless they are ALL identical. This is because the symbol
5077 comparison is not a strict comparison, but rather a practical
5078 comparison. If all symbols are considered identical, then
5079 we can just go ahead and use the first one and discard the rest.
5080 But if we cannot reduce the list to a single element, we have
5081 to ask the user to disambiguate anyways. And if we have to
5082 present a multiple-choice menu, it's less confusing if the list
5083 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5084 if (symbols_are_identical_enums (*syms))
5085 syms->resize (1);
8f17729f 5086
54d343a2 5087 return syms->size ();
14f9c5c9
AS
5088}
5089
96d887e8
PH
5090/* Given a type that corresponds to a renaming entity, use the type name
5091 to extract the scope (package name or function name, fully qualified,
5092 and following the GNAT encoding convention) where this renaming has been
49d83361 5093 defined. */
4c4b4cd2 5094
49d83361 5095static std::string
96d887e8 5096xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5097{
96d887e8 5098 /* The renaming types adhere to the following convention:
0963b4bd 5099 <scope>__<rename>___<XR extension>.
96d887e8
PH
5100 So, to extract the scope, we search for the "___XR" extension,
5101 and then backtrack until we find the first "__". */
76a01679 5102
7d93a1e0 5103 const char *name = renaming_type->name ();
108d56a4
SM
5104 const char *suffix = strstr (name, "___XR");
5105 const char *last;
14f9c5c9 5106
96d887e8
PH
5107 /* Now, backtrack a bit until we find the first "__". Start looking
5108 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5109
96d887e8
PH
5110 for (last = suffix - 3; last > name; last--)
5111 if (last[0] == '_' && last[1] == '_')
5112 break;
76a01679 5113
96d887e8 5114 /* Make a copy of scope and return it. */
49d83361 5115 return std::string (name, last);
4c4b4cd2
PH
5116}
5117
96d887e8 5118/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5119
96d887e8
PH
5120static int
5121is_package_name (const char *name)
4c4b4cd2 5122{
96d887e8
PH
5123 /* Here, We take advantage of the fact that no symbols are generated
5124 for packages, while symbols are generated for each function.
5125 So the condition for NAME represent a package becomes equivalent
5126 to NAME not existing in our list of symbols. There is only one
5127 small complication with library-level functions (see below). */
4c4b4cd2 5128
96d887e8
PH
5129 /* If it is a function that has not been defined at library level,
5130 then we should be able to look it up in the symbols. */
5131 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5132 return 0;
14f9c5c9 5133
96d887e8
PH
5134 /* Library-level function names start with "_ada_". See if function
5135 "_ada_" followed by NAME can be found. */
14f9c5c9 5136
96d887e8 5137 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5138 functions names cannot contain "__" in them. */
96d887e8
PH
5139 if (strstr (name, "__") != NULL)
5140 return 0;
4c4b4cd2 5141
528e1572 5142 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5143
528e1572 5144 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5145}
14f9c5c9 5146
96d887e8 5147/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5148 not visible from FUNCTION_NAME. */
14f9c5c9 5149
96d887e8 5150static int
0d5cff50 5151old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5152{
aeb5907d
JB
5153 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5154 return 0;
5155
49d83361 5156 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5157
96d887e8 5158 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5159 if (is_package_name (scope.c_str ()))
5160 return 0;
14f9c5c9 5161
96d887e8
PH
5162 /* Check that the rename is in the current function scope by checking
5163 that its name starts with SCOPE. */
76a01679 5164
96d887e8
PH
5165 /* If the function name starts with "_ada_", it means that it is
5166 a library-level function. Strip this prefix before doing the
5167 comparison, as the encoding for the renaming does not contain
5168 this prefix. */
61012eef 5169 if (startswith (function_name, "_ada_"))
96d887e8 5170 function_name += 5;
f26caa11 5171
49d83361 5172 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5173}
5174
aeb5907d
JB
5175/* Remove entries from SYMS that corresponds to a renaming entity that
5176 is not visible from the function associated with CURRENT_BLOCK or
5177 that is superfluous due to the presence of more specific renaming
5178 information. Places surviving symbols in the initial entries of
5179 SYMS and returns the number of surviving symbols.
96d887e8
PH
5180
5181 Rationale:
aeb5907d
JB
5182 First, in cases where an object renaming is implemented as a
5183 reference variable, GNAT may produce both the actual reference
5184 variable and the renaming encoding. In this case, we discard the
5185 latter.
5186
5187 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5188 entity. Unfortunately, STABS currently does not support the definition
5189 of types that are local to a given lexical block, so all renamings types
5190 are emitted at library level. As a consequence, if an application
5191 contains two renaming entities using the same name, and a user tries to
5192 print the value of one of these entities, the result of the ada symbol
5193 lookup will also contain the wrong renaming type.
f26caa11 5194
96d887e8
PH
5195 This function partially covers for this limitation by attempting to
5196 remove from the SYMS list renaming symbols that should be visible
5197 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5198 method with the current information available. The implementation
5199 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5200
5201 - When the user tries to print a rename in a function while there
5202 is another rename entity defined in a package: Normally, the
5203 rename in the function has precedence over the rename in the
5204 package, so the latter should be removed from the list. This is
5205 currently not the case.
5206
5207 - This function will incorrectly remove valid renames if
5208 the CURRENT_BLOCK corresponds to a function which symbol name
5209 has been changed by an "Export" pragma. As a consequence,
5210 the user will be unable to print such rename entities. */
4c4b4cd2 5211
14f9c5c9 5212static int
54d343a2
TT
5213remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5214 const struct block *current_block)
4c4b4cd2
PH
5215{
5216 struct symbol *current_function;
0d5cff50 5217 const char *current_function_name;
4c4b4cd2 5218 int i;
aeb5907d
JB
5219 int is_new_style_renaming;
5220
5221 /* If there is both a renaming foo___XR... encoded as a variable and
5222 a simple variable foo in the same block, discard the latter.
0963b4bd 5223 First, zero out such symbols, then compress. */
aeb5907d 5224 is_new_style_renaming = 0;
54d343a2 5225 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5226 {
54d343a2
TT
5227 struct symbol *sym = (*syms)[i].symbol;
5228 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5229 const char *name;
5230 const char *suffix;
5231
5232 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5233 continue;
987012b8 5234 name = sym->linkage_name ();
aeb5907d
JB
5235 suffix = strstr (name, "___XR");
5236
5237 if (suffix != NULL)
5238 {
5239 int name_len = suffix - name;
5240 int j;
5b4ee69b 5241
aeb5907d 5242 is_new_style_renaming = 1;
54d343a2
TT
5243 for (j = 0; j < syms->size (); j += 1)
5244 if (i != j && (*syms)[j].symbol != NULL
987012b8 5245 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5246 name_len) == 0
54d343a2
TT
5247 && block == (*syms)[j].block)
5248 (*syms)[j].symbol = NULL;
aeb5907d
JB
5249 }
5250 }
5251 if (is_new_style_renaming)
5252 {
5253 int j, k;
5254
54d343a2
TT
5255 for (j = k = 0; j < syms->size (); j += 1)
5256 if ((*syms)[j].symbol != NULL)
aeb5907d 5257 {
54d343a2 5258 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5259 k += 1;
5260 }
5261 return k;
5262 }
4c4b4cd2
PH
5263
5264 /* Extract the function name associated to CURRENT_BLOCK.
5265 Abort if unable to do so. */
76a01679 5266
4c4b4cd2 5267 if (current_block == NULL)
54d343a2 5268 return syms->size ();
76a01679 5269
7f0df278 5270 current_function = block_linkage_function (current_block);
4c4b4cd2 5271 if (current_function == NULL)
54d343a2 5272 return syms->size ();
4c4b4cd2 5273
987012b8 5274 current_function_name = current_function->linkage_name ();
4c4b4cd2 5275 if (current_function_name == NULL)
54d343a2 5276 return syms->size ();
4c4b4cd2
PH
5277
5278 /* Check each of the symbols, and remove it from the list if it is
5279 a type corresponding to a renaming that is out of the scope of
5280 the current block. */
5281
5282 i = 0;
54d343a2 5283 while (i < syms->size ())
4c4b4cd2 5284 {
54d343a2 5285 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5286 == ADA_OBJECT_RENAMING
54d343a2
TT
5287 && old_renaming_is_invisible ((*syms)[i].symbol,
5288 current_function_name))
5289 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5290 else
5291 i += 1;
5292 }
5293
54d343a2 5294 return syms->size ();
4c4b4cd2
PH
5295}
5296
339c13b6
JB
5297/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5298 whose name and domain match NAME and DOMAIN respectively.
5299 If no match was found, then extend the search to "enclosing"
5300 routines (in other words, if we're inside a nested function,
5301 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5302 If WILD_MATCH_P is nonzero, perform the naming matching in
5303 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5304
5305 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5306
5307static void
b5ec771e
PA
5308ada_add_local_symbols (struct obstack *obstackp,
5309 const lookup_name_info &lookup_name,
5310 const struct block *block, domain_enum domain)
339c13b6
JB
5311{
5312 int block_depth = 0;
5313
5314 while (block != NULL)
5315 {
5316 block_depth += 1;
b5ec771e 5317 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5318
5319 /* If we found a non-function match, assume that's the one. */
5320 if (is_nonfunction (defns_collected (obstackp, 0),
5321 num_defns_collected (obstackp)))
5322 return;
5323
5324 block = BLOCK_SUPERBLOCK (block);
5325 }
5326
5327 /* If no luck so far, try to find NAME as a local symbol in some lexically
5328 enclosing subprogram. */
5329 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5330 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5331}
5332
ccefe4c4 5333/* An object of this type is used as the user_data argument when
40658b94 5334 calling the map_matching_symbols method. */
ccefe4c4 5335
40658b94 5336struct match_data
ccefe4c4 5337{
40658b94 5338 struct objfile *objfile;
ccefe4c4 5339 struct obstack *obstackp;
40658b94
PH
5340 struct symbol *arg_sym;
5341 int found_sym;
ccefe4c4
TT
5342};
5343
199b4314
TT
5344/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5345 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5346 containing the obstack that collects the symbol list, the file that SYM
5347 must come from, a flag indicating whether a non-argument symbol has
5348 been found in the current block, and the last argument symbol
5349 passed in SYM within the current block (if any). When SYM is null,
5350 marking the end of a block, the argument symbol is added if no
5351 other has been found. */
ccefe4c4 5352
199b4314
TT
5353static bool
5354aux_add_nonlocal_symbols (struct block_symbol *bsym,
5355 struct match_data *data)
ccefe4c4 5356{
199b4314
TT
5357 const struct block *block = bsym->block;
5358 struct symbol *sym = bsym->symbol;
5359
40658b94
PH
5360 if (sym == NULL)
5361 {
5362 if (!data->found_sym && data->arg_sym != NULL)
5363 add_defn_to_vec (data->obstackp,
5364 fixup_symbol_section (data->arg_sym, data->objfile),
5365 block);
5366 data->found_sym = 0;
5367 data->arg_sym = NULL;
5368 }
5369 else
5370 {
5371 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5372 return true;
40658b94
PH
5373 else if (SYMBOL_IS_ARGUMENT (sym))
5374 data->arg_sym = sym;
5375 else
5376 {
5377 data->found_sym = 1;
5378 add_defn_to_vec (data->obstackp,
5379 fixup_symbol_section (sym, data->objfile),
5380 block);
5381 }
5382 }
199b4314 5383 return true;
40658b94
PH
5384}
5385
b5ec771e
PA
5386/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5387 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5388 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5389
5390static int
5391ada_add_block_renamings (struct obstack *obstackp,
5392 const struct block *block,
b5ec771e
PA
5393 const lookup_name_info &lookup_name,
5394 domain_enum domain)
22cee43f
PMR
5395{
5396 struct using_direct *renaming;
5397 int defns_mark = num_defns_collected (obstackp);
5398
b5ec771e
PA
5399 symbol_name_matcher_ftype *name_match
5400 = ada_get_symbol_name_matcher (lookup_name);
5401
22cee43f
PMR
5402 for (renaming = block_using (block);
5403 renaming != NULL;
5404 renaming = renaming->next)
5405 {
5406 const char *r_name;
22cee43f
PMR
5407
5408 /* Avoid infinite recursions: skip this renaming if we are actually
5409 already traversing it.
5410
5411 Currently, symbol lookup in Ada don't use the namespace machinery from
5412 C++/Fortran support: skip namespace imports that use them. */
5413 if (renaming->searched
5414 || (renaming->import_src != NULL
5415 && renaming->import_src[0] != '\0')
5416 || (renaming->import_dest != NULL
5417 && renaming->import_dest[0] != '\0'))
5418 continue;
5419 renaming->searched = 1;
5420
5421 /* TODO: here, we perform another name-based symbol lookup, which can
5422 pull its own multiple overloads. In theory, we should be able to do
5423 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5424 not a simple name. But in order to do this, we would need to enhance
5425 the DWARF reader to associate a symbol to this renaming, instead of a
5426 name. So, for now, we do something simpler: re-use the C++/Fortran
5427 namespace machinery. */
5428 r_name = (renaming->alias != NULL
5429 ? renaming->alias
5430 : renaming->declaration);
b5ec771e
PA
5431 if (name_match (r_name, lookup_name, NULL))
5432 {
5433 lookup_name_info decl_lookup_name (renaming->declaration,
5434 lookup_name.match_type ());
5435 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5436 1, NULL);
5437 }
22cee43f
PMR
5438 renaming->searched = 0;
5439 }
5440 return num_defns_collected (obstackp) != defns_mark;
5441}
5442
db230ce3
JB
5443/* Implements compare_names, but only applying the comparision using
5444 the given CASING. */
5b4ee69b 5445
40658b94 5446static int
db230ce3
JB
5447compare_names_with_case (const char *string1, const char *string2,
5448 enum case_sensitivity casing)
40658b94
PH
5449{
5450 while (*string1 != '\0' && *string2 != '\0')
5451 {
db230ce3
JB
5452 char c1, c2;
5453
40658b94
PH
5454 if (isspace (*string1) || isspace (*string2))
5455 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5456
5457 if (casing == case_sensitive_off)
5458 {
5459 c1 = tolower (*string1);
5460 c2 = tolower (*string2);
5461 }
5462 else
5463 {
5464 c1 = *string1;
5465 c2 = *string2;
5466 }
5467 if (c1 != c2)
40658b94 5468 break;
db230ce3 5469
40658b94
PH
5470 string1 += 1;
5471 string2 += 1;
5472 }
db230ce3 5473
40658b94
PH
5474 switch (*string1)
5475 {
5476 case '(':
5477 return strcmp_iw_ordered (string1, string2);
5478 case '_':
5479 if (*string2 == '\0')
5480 {
052874e8 5481 if (is_name_suffix (string1))
40658b94
PH
5482 return 0;
5483 else
1a1d5513 5484 return 1;
40658b94 5485 }
dbb8534f 5486 /* FALLTHROUGH */
40658b94
PH
5487 default:
5488 if (*string2 == '(')
5489 return strcmp_iw_ordered (string1, string2);
5490 else
db230ce3
JB
5491 {
5492 if (casing == case_sensitive_off)
5493 return tolower (*string1) - tolower (*string2);
5494 else
5495 return *string1 - *string2;
5496 }
40658b94 5497 }
ccefe4c4
TT
5498}
5499
db230ce3
JB
5500/* Compare STRING1 to STRING2, with results as for strcmp.
5501 Compatible with strcmp_iw_ordered in that...
5502
5503 strcmp_iw_ordered (STRING1, STRING2) <= 0
5504
5505 ... implies...
5506
5507 compare_names (STRING1, STRING2) <= 0
5508
5509 (they may differ as to what symbols compare equal). */
5510
5511static int
5512compare_names (const char *string1, const char *string2)
5513{
5514 int result;
5515
5516 /* Similar to what strcmp_iw_ordered does, we need to perform
5517 a case-insensitive comparison first, and only resort to
5518 a second, case-sensitive, comparison if the first one was
5519 not sufficient to differentiate the two strings. */
5520
5521 result = compare_names_with_case (string1, string2, case_sensitive_off);
5522 if (result == 0)
5523 result = compare_names_with_case (string1, string2, case_sensitive_on);
5524
5525 return result;
5526}
5527
b5ec771e
PA
5528/* Convenience function to get at the Ada encoded lookup name for
5529 LOOKUP_NAME, as a C string. */
5530
5531static const char *
5532ada_lookup_name (const lookup_name_info &lookup_name)
5533{
5534 return lookup_name.ada ().lookup_name ().c_str ();
5535}
5536
339c13b6 5537/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5538 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5539 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5540 symbols otherwise. */
339c13b6
JB
5541
5542static void
b5ec771e
PA
5543add_nonlocal_symbols (struct obstack *obstackp,
5544 const lookup_name_info &lookup_name,
5545 domain_enum domain, int global)
339c13b6 5546{
40658b94 5547 struct match_data data;
339c13b6 5548
6475f2fe 5549 memset (&data, 0, sizeof data);
ccefe4c4 5550 data.obstackp = obstackp;
339c13b6 5551
b5ec771e
PA
5552 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5553
199b4314
TT
5554 auto callback = [&] (struct block_symbol *bsym)
5555 {
5556 return aux_add_nonlocal_symbols (bsym, &data);
5557 };
5558
2030c079 5559 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5560 {
5561 data.objfile = objfile;
5562
b054970d
TT
5563 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5564 domain, global, callback,
5565 (is_wild_match
5566 ? NULL : compare_names));
22cee43f 5567
b669c953 5568 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5569 {
5570 const struct block *global_block
5571 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5572
b5ec771e
PA
5573 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5574 domain))
22cee43f
PMR
5575 data.found_sym = 1;
5576 }
40658b94
PH
5577 }
5578
5579 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5580 {
b5ec771e 5581 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5582 std::string bracket_name = std::string ("<_ada_") + name + '>';
5583 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5584
2030c079 5585 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5586 {
40658b94 5587 data.objfile = objfile;
b054970d 5588 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5589 domain, global, callback,
b5ec771e 5590 compare_names);
40658b94
PH
5591 }
5592 }
339c13b6
JB
5593}
5594
b5ec771e
PA
5595/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5596 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5597 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5598
22cee43f
PMR
5599 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5600 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5601 is the one match returned (no other matches in that or
d9680e73 5602 enclosing blocks is returned). If there are any matches in or
22cee43f 5603 surrounding BLOCK, then these alone are returned.
4eeaa230 5604
b5ec771e
PA
5605 Names prefixed with "standard__" are handled specially:
5606 "standard__" is first stripped off (by the lookup_name
5607 constructor), and only static and global symbols are searched.
14f9c5c9 5608
22cee43f
PMR
5609 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5610 to lookup global symbols. */
5611
5612static void
5613ada_add_all_symbols (struct obstack *obstackp,
5614 const struct block *block,
b5ec771e 5615 const lookup_name_info &lookup_name,
22cee43f
PMR
5616 domain_enum domain,
5617 int full_search,
5618 int *made_global_lookup_p)
14f9c5c9
AS
5619{
5620 struct symbol *sym;
14f9c5c9 5621
22cee43f
PMR
5622 if (made_global_lookup_p)
5623 *made_global_lookup_p = 0;
339c13b6
JB
5624
5625 /* Special case: If the user specifies a symbol name inside package
5626 Standard, do a non-wild matching of the symbol name without
5627 the "standard__" prefix. This was primarily introduced in order
5628 to allow the user to specifically access the standard exceptions
5629 using, for instance, Standard.Constraint_Error when Constraint_Error
5630 is ambiguous (due to the user defining its own Constraint_Error
5631 entity inside its program). */
b5ec771e
PA
5632 if (lookup_name.ada ().standard_p ())
5633 block = NULL;
4c4b4cd2 5634
339c13b6 5635 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5636
4eeaa230
DE
5637 if (block != NULL)
5638 {
5639 if (full_search)
b5ec771e 5640 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5641 else
5642 {
5643 /* In the !full_search case we're are being called by
4009ee92 5644 iterate_over_symbols, and we don't want to search
4eeaa230 5645 superblocks. */
b5ec771e 5646 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5647 }
22cee43f
PMR
5648 if (num_defns_collected (obstackp) > 0 || !full_search)
5649 return;
4eeaa230 5650 }
d2e4a39e 5651
339c13b6
JB
5652 /* No non-global symbols found. Check our cache to see if we have
5653 already performed this search before. If we have, then return
5654 the same result. */
5655
b5ec771e
PA
5656 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5657 domain, &sym, &block))
4c4b4cd2
PH
5658 {
5659 if (sym != NULL)
b5ec771e 5660 add_defn_to_vec (obstackp, sym, block);
22cee43f 5661 return;
4c4b4cd2 5662 }
14f9c5c9 5663
22cee43f
PMR
5664 if (made_global_lookup_p)
5665 *made_global_lookup_p = 1;
b1eedac9 5666
339c13b6
JB
5667 /* Search symbols from all global blocks. */
5668
b5ec771e 5669 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5670
4c4b4cd2 5671 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5672 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5673
22cee43f 5674 if (num_defns_collected (obstackp) == 0)
b5ec771e 5675 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5676}
5677
b5ec771e
PA
5678/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5679 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5680 matches.
54d343a2
TT
5681 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5682 found and the blocks and symbol tables (if any) in which they were
5683 found.
22cee43f
PMR
5684
5685 When full_search is non-zero, any non-function/non-enumeral
5686 symbol match within the nest of blocks whose innermost member is BLOCK,
5687 is the one match returned (no other matches in that or
5688 enclosing blocks is returned). If there are any matches in or
5689 surrounding BLOCK, then these alone are returned.
5690
5691 Names prefixed with "standard__" are handled specially: "standard__"
5692 is first stripped off, and only static and global symbols are searched. */
5693
5694static int
b5ec771e
PA
5695ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5696 const struct block *block,
22cee43f 5697 domain_enum domain,
54d343a2 5698 std::vector<struct block_symbol> *results,
22cee43f
PMR
5699 int full_search)
5700{
22cee43f
PMR
5701 int syms_from_global_search;
5702 int ndefns;
ec6a20c2 5703 auto_obstack obstack;
22cee43f 5704
ec6a20c2 5705 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5706 domain, full_search, &syms_from_global_search);
14f9c5c9 5707
ec6a20c2
JB
5708 ndefns = num_defns_collected (&obstack);
5709
54d343a2
TT
5710 struct block_symbol *base = defns_collected (&obstack, 1);
5711 for (int i = 0; i < ndefns; ++i)
5712 results->push_back (base[i]);
4c4b4cd2 5713
54d343a2 5714 ndefns = remove_extra_symbols (results);
4c4b4cd2 5715
b1eedac9 5716 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5717 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5718
b1eedac9 5719 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5720 cache_symbol (ada_lookup_name (lookup_name), domain,
5721 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5722
54d343a2 5723 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5724
14f9c5c9
AS
5725 return ndefns;
5726}
5727
b5ec771e 5728/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5729 in global scopes, returning the number of matches, and filling *RESULTS
5730 with (SYM,BLOCK) tuples.
ec6a20c2 5731
4eeaa230
DE
5732 See ada_lookup_symbol_list_worker for further details. */
5733
5734int
b5ec771e 5735ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5736 domain_enum domain,
5737 std::vector<struct block_symbol> *results)
4eeaa230 5738{
b5ec771e
PA
5739 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5740 lookup_name_info lookup_name (name, name_match_type);
5741
5742 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5743}
5744
4e5c77fe
JB
5745/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5746 to 1, but choosing the first symbol found if there are multiple
5747 choices.
5748
5e2336be
JB
5749 The result is stored in *INFO, which must be non-NULL.
5750 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5751
5752void
5753ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5754 domain_enum domain,
d12307c1 5755 struct block_symbol *info)
14f9c5c9 5756{
b5ec771e
PA
5757 /* Since we already have an encoded name, wrap it in '<>' to force a
5758 verbatim match. Otherwise, if the name happens to not look like
5759 an encoded name (because it doesn't include a "__"),
5760 ada_lookup_name_info would re-encode/fold it again, and that
5761 would e.g., incorrectly lowercase object renaming names like
5762 "R28b" -> "r28b". */
5763 std::string verbatim = std::string ("<") + name + '>';
5764
5e2336be 5765 gdb_assert (info != NULL);
65392b3e 5766 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5767}
aeb5907d
JB
5768
5769/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5770 scope and in global scopes, or NULL if none. NAME is folded and
5771 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5772 choosing the first symbol if there are multiple choices. */
4e5c77fe 5773
d12307c1 5774struct block_symbol
aeb5907d 5775ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5776 domain_enum domain)
aeb5907d 5777{
54d343a2 5778 std::vector<struct block_symbol> candidates;
f98fc17b 5779 int n_candidates;
f98fc17b
PA
5780
5781 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5782
5783 if (n_candidates == 0)
54d343a2 5784 return {};
f98fc17b
PA
5785
5786 block_symbol info = candidates[0];
5787 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5788 return info;
4c4b4cd2 5789}
14f9c5c9 5790
d12307c1 5791static struct block_symbol
f606139a
DE
5792ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5793 const char *name,
76a01679 5794 const struct block *block,
21b556f4 5795 const domain_enum domain)
4c4b4cd2 5796{
d12307c1 5797 struct block_symbol sym;
04dccad0 5798
65392b3e 5799 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5800 if (sym.symbol != NULL)
04dccad0
JB
5801 return sym;
5802
5803 /* If we haven't found a match at this point, try the primitive
5804 types. In other languages, this search is performed before
5805 searching for global symbols in order to short-circuit that
5806 global-symbol search if it happens that the name corresponds
5807 to a primitive type. But we cannot do the same in Ada, because
5808 it is perfectly legitimate for a program to declare a type which
5809 has the same name as a standard type. If looking up a type in
5810 that situation, we have traditionally ignored the primitive type
5811 in favor of user-defined types. This is why, unlike most other
5812 languages, we search the primitive types this late and only after
5813 having searched the global symbols without success. */
5814
5815 if (domain == VAR_DOMAIN)
5816 {
5817 struct gdbarch *gdbarch;
5818
5819 if (block == NULL)
5820 gdbarch = target_gdbarch ();
5821 else
5822 gdbarch = block_gdbarch (block);
d12307c1
PMR
5823 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5824 if (sym.symbol != NULL)
04dccad0
JB
5825 return sym;
5826 }
5827
6640a367 5828 return {};
14f9c5c9
AS
5829}
5830
5831
4c4b4cd2
PH
5832/* True iff STR is a possible encoded suffix of a normal Ada name
5833 that is to be ignored for matching purposes. Suffixes of parallel
5834 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5835 are given by any of the regular expressions:
4c4b4cd2 5836
babe1480
JB
5837 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5838 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5839 TKB [subprogram suffix for task bodies]
babe1480 5840 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5841 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5842
5843 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5844 match is performed. This sequence is used to differentiate homonyms,
5845 is an optional part of a valid name suffix. */
4c4b4cd2 5846
14f9c5c9 5847static int
d2e4a39e 5848is_name_suffix (const char *str)
14f9c5c9
AS
5849{
5850 int k;
4c4b4cd2
PH
5851 const char *matching;
5852 const int len = strlen (str);
5853
babe1480
JB
5854 /* Skip optional leading __[0-9]+. */
5855
4c4b4cd2
PH
5856 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5857 {
babe1480
JB
5858 str += 3;
5859 while (isdigit (str[0]))
5860 str += 1;
4c4b4cd2 5861 }
babe1480
JB
5862
5863 /* [.$][0-9]+ */
4c4b4cd2 5864
babe1480 5865 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5866 {
babe1480 5867 matching = str + 1;
4c4b4cd2
PH
5868 while (isdigit (matching[0]))
5869 matching += 1;
5870 if (matching[0] == '\0')
5871 return 1;
5872 }
5873
5874 /* ___[0-9]+ */
babe1480 5875
4c4b4cd2
PH
5876 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5877 {
5878 matching = str + 3;
5879 while (isdigit (matching[0]))
5880 matching += 1;
5881 if (matching[0] == '\0')
5882 return 1;
5883 }
5884
9ac7f98e
JB
5885 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5886
5887 if (strcmp (str, "TKB") == 0)
5888 return 1;
5889
529cad9c
PH
5890#if 0
5891 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5892 with a N at the end. Unfortunately, the compiler uses the same
5893 convention for other internal types it creates. So treating
529cad9c 5894 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5895 some regressions. For instance, consider the case of an enumerated
5896 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5897 name ends with N.
5898 Having a single character like this as a suffix carrying some
0963b4bd 5899 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5900 to be something like "_N" instead. In the meantime, do not do
5901 the following check. */
5902 /* Protected Object Subprograms */
5903 if (len == 1 && str [0] == 'N')
5904 return 1;
5905#endif
5906
5907 /* _E[0-9]+[bs]$ */
5908 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5909 {
5910 matching = str + 3;
5911 while (isdigit (matching[0]))
5912 matching += 1;
5913 if ((matching[0] == 'b' || matching[0] == 's')
5914 && matching [1] == '\0')
5915 return 1;
5916 }
5917
4c4b4cd2
PH
5918 /* ??? We should not modify STR directly, as we are doing below. This
5919 is fine in this case, but may become problematic later if we find
5920 that this alternative did not work, and want to try matching
5921 another one from the begining of STR. Since we modified it, we
5922 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5923 if (str[0] == 'X')
5924 {
5925 str += 1;
d2e4a39e 5926 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5927 {
5928 if (str[0] != 'n' && str[0] != 'b')
5929 return 0;
5930 str += 1;
5931 }
14f9c5c9 5932 }
babe1480 5933
14f9c5c9
AS
5934 if (str[0] == '\000')
5935 return 1;
babe1480 5936
d2e4a39e 5937 if (str[0] == '_')
14f9c5c9
AS
5938 {
5939 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5940 return 0;
d2e4a39e 5941 if (str[2] == '_')
4c4b4cd2 5942 {
61ee279c
PH
5943 if (strcmp (str + 3, "JM") == 0)
5944 return 1;
5945 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5946 the LJM suffix in favor of the JM one. But we will
5947 still accept LJM as a valid suffix for a reasonable
5948 amount of time, just to allow ourselves to debug programs
5949 compiled using an older version of GNAT. */
4c4b4cd2
PH
5950 if (strcmp (str + 3, "LJM") == 0)
5951 return 1;
5952 if (str[3] != 'X')
5953 return 0;
1265e4aa
JB
5954 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5955 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5956 return 1;
5957 if (str[4] == 'R' && str[5] != 'T')
5958 return 1;
5959 return 0;
5960 }
5961 if (!isdigit (str[2]))
5962 return 0;
5963 for (k = 3; str[k] != '\0'; k += 1)
5964 if (!isdigit (str[k]) && str[k] != '_')
5965 return 0;
14f9c5c9
AS
5966 return 1;
5967 }
4c4b4cd2 5968 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5969 {
4c4b4cd2
PH
5970 for (k = 2; str[k] != '\0'; k += 1)
5971 if (!isdigit (str[k]) && str[k] != '_')
5972 return 0;
14f9c5c9
AS
5973 return 1;
5974 }
5975 return 0;
5976}
d2e4a39e 5977
aeb5907d
JB
5978/* Return non-zero if the string starting at NAME and ending before
5979 NAME_END contains no capital letters. */
529cad9c
PH
5980
5981static int
5982is_valid_name_for_wild_match (const char *name0)
5983{
f945dedf 5984 std::string decoded_name = ada_decode (name0);
529cad9c
PH
5985 int i;
5986
5823c3ef
JB
5987 /* If the decoded name starts with an angle bracket, it means that
5988 NAME0 does not follow the GNAT encoding format. It should then
5989 not be allowed as a possible wild match. */
5990 if (decoded_name[0] == '<')
5991 return 0;
5992
529cad9c
PH
5993 for (i=0; decoded_name[i] != '\0'; i++)
5994 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5995 return 0;
5996
5997 return 1;
5998}
5999
73589123
PH
6000/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6001 that could start a simple name. Assumes that *NAMEP points into
6002 the string beginning at NAME0. */
4c4b4cd2 6003
14f9c5c9 6004static int
73589123 6005advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6006{
73589123 6007 const char *name = *namep;
5b4ee69b 6008
5823c3ef 6009 while (1)
14f9c5c9 6010 {
aa27d0b3 6011 int t0, t1;
73589123
PH
6012
6013 t0 = *name;
6014 if (t0 == '_')
6015 {
6016 t1 = name[1];
6017 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6018 {
6019 name += 1;
61012eef 6020 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6021 break;
6022 else
6023 name += 1;
6024 }
aa27d0b3
JB
6025 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6026 || name[2] == target0))
73589123
PH
6027 {
6028 name += 2;
6029 break;
6030 }
6031 else
6032 return 0;
6033 }
6034 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6035 name += 1;
6036 else
5823c3ef 6037 return 0;
73589123
PH
6038 }
6039
6040 *namep = name;
6041 return 1;
6042}
6043
b5ec771e
PA
6044/* Return true iff NAME encodes a name of the form prefix.PATN.
6045 Ignores any informational suffixes of NAME (i.e., for which
6046 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6047 simple name. */
73589123 6048
b5ec771e 6049static bool
73589123
PH
6050wild_match (const char *name, const char *patn)
6051{
22e048c9 6052 const char *p;
73589123
PH
6053 const char *name0 = name;
6054
6055 while (1)
6056 {
6057 const char *match = name;
6058
6059 if (*name == *patn)
6060 {
6061 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6062 if (*p != *name)
6063 break;
6064 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6065 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6066
6067 if (name[-1] == '_')
6068 name -= 1;
6069 }
6070 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6071 return false;
96d887e8 6072 }
96d887e8
PH
6073}
6074
b5ec771e
PA
6075/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6076 any trailing suffixes that encode debugging information or leading
6077 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6078 information that is ignored). */
40658b94 6079
b5ec771e 6080static bool
c4d840bd
PH
6081full_match (const char *sym_name, const char *search_name)
6082{
b5ec771e
PA
6083 size_t search_name_len = strlen (search_name);
6084
6085 if (strncmp (sym_name, search_name, search_name_len) == 0
6086 && is_name_suffix (sym_name + search_name_len))
6087 return true;
6088
6089 if (startswith (sym_name, "_ada_")
6090 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6091 && is_name_suffix (sym_name + search_name_len + 5))
6092 return true;
c4d840bd 6093
b5ec771e
PA
6094 return false;
6095}
c4d840bd 6096
b5ec771e
PA
6097/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6098 *defn_symbols, updating the list of symbols in OBSTACKP (if
6099 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6100
6101static void
6102ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6103 const struct block *block,
6104 const lookup_name_info &lookup_name,
6105 domain_enum domain, struct objfile *objfile)
96d887e8 6106{
8157b174 6107 struct block_iterator iter;
96d887e8
PH
6108 /* A matching argument symbol, if any. */
6109 struct symbol *arg_sym;
6110 /* Set true when we find a matching non-argument symbol. */
6111 int found_sym;
6112 struct symbol *sym;
6113
6114 arg_sym = NULL;
6115 found_sym = 0;
b5ec771e
PA
6116 for (sym = block_iter_match_first (block, lookup_name, &iter);
6117 sym != NULL;
6118 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6119 {
c1b5c1eb 6120 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
6121 {
6122 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6123 {
6124 if (SYMBOL_IS_ARGUMENT (sym))
6125 arg_sym = sym;
6126 else
6127 {
6128 found_sym = 1;
6129 add_defn_to_vec (obstackp,
6130 fixup_symbol_section (sym, objfile),
6131 block);
6132 }
6133 }
6134 }
96d887e8
PH
6135 }
6136
22cee43f
PMR
6137 /* Handle renamings. */
6138
b5ec771e 6139 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6140 found_sym = 1;
6141
96d887e8
PH
6142 if (!found_sym && arg_sym != NULL)
6143 {
76a01679
JB
6144 add_defn_to_vec (obstackp,
6145 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6146 block);
96d887e8
PH
6147 }
6148
b5ec771e 6149 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6150 {
6151 arg_sym = NULL;
6152 found_sym = 0;
b5ec771e
PA
6153 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6154 const char *name = ada_lookup_name.c_str ();
6155 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6156
6157 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6158 {
c1b5c1eb 6159 if (symbol_matches_domain (sym->language (),
4186eb54 6160 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6161 {
6162 int cmp;
6163
987012b8 6164 cmp = (int) '_' - (int) sym->linkage_name ()[0];
76a01679
JB
6165 if (cmp == 0)
6166 {
987012b8 6167 cmp = !startswith (sym->linkage_name (), "_ada_");
76a01679 6168 if (cmp == 0)
987012b8 6169 cmp = strncmp (name, sym->linkage_name () + 5,
76a01679
JB
6170 name_len);
6171 }
6172
6173 if (cmp == 0
987012b8 6174 && is_name_suffix (sym->linkage_name () + name_len + 5))
76a01679 6175 {
2a2d4dc3
AS
6176 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6177 {
6178 if (SYMBOL_IS_ARGUMENT (sym))
6179 arg_sym = sym;
6180 else
6181 {
6182 found_sym = 1;
6183 add_defn_to_vec (obstackp,
6184 fixup_symbol_section (sym, objfile),
6185 block);
6186 }
6187 }
76a01679
JB
6188 }
6189 }
76a01679 6190 }
96d887e8
PH
6191
6192 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6193 They aren't parameters, right? */
6194 if (!found_sym && arg_sym != NULL)
6195 {
6196 add_defn_to_vec (obstackp,
76a01679 6197 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6198 block);
96d887e8
PH
6199 }
6200 }
6201}
6202\f
41d27058
JB
6203
6204 /* Symbol Completion */
6205
b5ec771e 6206/* See symtab.h. */
41d27058 6207
b5ec771e
PA
6208bool
6209ada_lookup_name_info::matches
6210 (const char *sym_name,
6211 symbol_name_match_type match_type,
a207cff2 6212 completion_match_result *comp_match_res) const
41d27058 6213{
b5ec771e
PA
6214 bool match = false;
6215 const char *text = m_encoded_name.c_str ();
6216 size_t text_len = m_encoded_name.size ();
41d27058
JB
6217
6218 /* First, test against the fully qualified name of the symbol. */
6219
6220 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6221 match = true;
41d27058 6222
f945dedf 6223 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6224 if (match && !m_encoded_p)
41d27058
JB
6225 {
6226 /* One needed check before declaring a positive match is to verify
6227 that iff we are doing a verbatim match, the decoded version
6228 of the symbol name starts with '<'. Otherwise, this symbol name
6229 is not a suitable completion. */
41d27058 6230
f945dedf 6231 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6232 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6233 }
6234
b5ec771e 6235 if (match && !m_verbatim_p)
41d27058
JB
6236 {
6237 /* When doing non-verbatim match, another check that needs to
6238 be done is to verify that the potentially matching symbol name
6239 does not include capital letters, because the ada-mode would
6240 not be able to understand these symbol names without the
6241 angle bracket notation. */
6242 const char *tmp;
6243
6244 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6245 if (*tmp != '\0')
b5ec771e 6246 match = false;
41d27058
JB
6247 }
6248
6249 /* Second: Try wild matching... */
6250
b5ec771e 6251 if (!match && m_wild_match_p)
41d27058
JB
6252 {
6253 /* Since we are doing wild matching, this means that TEXT
6254 may represent an unqualified symbol name. We therefore must
6255 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6256 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6257
6258 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6259 match = true;
41d27058
JB
6260 }
6261
b5ec771e 6262 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6263
6264 if (!match)
b5ec771e 6265 return false;
41d27058 6266
a207cff2 6267 if (comp_match_res != NULL)
b5ec771e 6268 {
a207cff2 6269 std::string &match_str = comp_match_res->match.storage ();
41d27058 6270
b5ec771e 6271 if (!m_encoded_p)
a207cff2 6272 match_str = ada_decode (sym_name);
b5ec771e
PA
6273 else
6274 {
6275 if (m_verbatim_p)
6276 match_str = add_angle_brackets (sym_name);
6277 else
6278 match_str = sym_name;
41d27058 6279
b5ec771e 6280 }
a207cff2
PA
6281
6282 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6283 }
6284
b5ec771e 6285 return true;
41d27058
JB
6286}
6287
b5ec771e 6288/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6289 WORD is the entire command on which completion is made. */
41d27058 6290
eb3ff9a5
PA
6291static void
6292ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6293 complete_symbol_mode mode,
b5ec771e
PA
6294 symbol_name_match_type name_match_type,
6295 const char *text, const char *word,
eb3ff9a5 6296 enum type_code code)
41d27058 6297{
41d27058 6298 struct symbol *sym;
3977b71f 6299 const struct block *b, *surrounding_static_block = 0;
8157b174 6300 struct block_iterator iter;
41d27058 6301
2f68a895
TT
6302 gdb_assert (code == TYPE_CODE_UNDEF);
6303
1b026119 6304 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6305
6306 /* First, look at the partial symtab symbols. */
14bc53a8 6307 expand_symtabs_matching (NULL,
b5ec771e
PA
6308 lookup_name,
6309 NULL,
14bc53a8
PA
6310 NULL,
6311 ALL_DOMAIN);
41d27058
JB
6312
6313 /* At this point scan through the misc symbol vectors and add each
6314 symbol you find to the list. Eventually we want to ignore
6315 anything that isn't a text symbol (everything else will be
6316 handled by the psymtab code above). */
6317
2030c079 6318 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6319 {
7932255d 6320 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6321 {
6322 QUIT;
6323
6324 if (completion_skip_symbol (mode, msymbol))
6325 continue;
6326
c1b5c1eb 6327 language symbol_language = msymbol->language ();
5325b9bf
TT
6328
6329 /* Ada minimal symbols won't have their language set to Ada. If
6330 we let completion_list_add_name compare using the
6331 default/C-like matcher, then when completing e.g., symbols in a
6332 package named "pck", we'd match internal Ada symbols like
6333 "pckS", which are invalid in an Ada expression, unless you wrap
6334 them in '<' '>' to request a verbatim match.
6335
6336 Unfortunately, some Ada encoded names successfully demangle as
6337 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6338 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6339 with the wrong language set. Paper over that issue here. */
6340 if (symbol_language == language_auto
6341 || symbol_language == language_cplus)
6342 symbol_language = language_ada;
6343
6344 completion_list_add_name (tracker,
6345 symbol_language,
c9d95fa3 6346 msymbol->linkage_name (),
5325b9bf
TT
6347 lookup_name, text, word);
6348 }
6349 }
41d27058
JB
6350
6351 /* Search upwards from currently selected frame (so that we can
6352 complete on local vars. */
6353
6354 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6355 {
6356 if (!BLOCK_SUPERBLOCK (b))
6357 surrounding_static_block = b; /* For elmin of dups */
6358
6359 ALL_BLOCK_SYMBOLS (b, iter, sym)
6360 {
f9d67a22
PA
6361 if (completion_skip_symbol (mode, sym))
6362 continue;
6363
b5ec771e 6364 completion_list_add_name (tracker,
c1b5c1eb 6365 sym->language (),
987012b8 6366 sym->linkage_name (),
1b026119 6367 lookup_name, text, word);
41d27058
JB
6368 }
6369 }
6370
6371 /* Go through the symtabs and check the externs and statics for
43f3e411 6372 symbols which match. */
41d27058 6373
2030c079 6374 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6375 {
b669c953 6376 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6377 {
6378 QUIT;
6379 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6380 ALL_BLOCK_SYMBOLS (b, iter, sym)
6381 {
6382 if (completion_skip_symbol (mode, sym))
6383 continue;
f9d67a22 6384
d8aeb77f 6385 completion_list_add_name (tracker,
c1b5c1eb 6386 sym->language (),
987012b8 6387 sym->linkage_name (),
d8aeb77f
TT
6388 lookup_name, text, word);
6389 }
6390 }
41d27058 6391 }
41d27058 6392
2030c079 6393 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6394 {
b669c953 6395 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6396 {
6397 QUIT;
6398 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6399 /* Don't do this block twice. */
6400 if (b == surrounding_static_block)
6401 continue;
6402 ALL_BLOCK_SYMBOLS (b, iter, sym)
6403 {
6404 if (completion_skip_symbol (mode, sym))
6405 continue;
f9d67a22 6406
d8aeb77f 6407 completion_list_add_name (tracker,
c1b5c1eb 6408 sym->language (),
987012b8 6409 sym->linkage_name (),
d8aeb77f
TT
6410 lookup_name, text, word);
6411 }
6412 }
41d27058 6413 }
41d27058
JB
6414}
6415
963a6417 6416 /* Field Access */
96d887e8 6417
73fb9985
JB
6418/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6419 for tagged types. */
6420
6421static int
6422ada_is_dispatch_table_ptr_type (struct type *type)
6423{
0d5cff50 6424 const char *name;
73fb9985 6425
78134374 6426 if (type->code () != TYPE_CODE_PTR)
73fb9985
JB
6427 return 0;
6428
7d93a1e0 6429 name = TYPE_TARGET_TYPE (type)->name ();
73fb9985
JB
6430 if (name == NULL)
6431 return 0;
6432
6433 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6434}
6435
ac4a2da4
JG
6436/* Return non-zero if TYPE is an interface tag. */
6437
6438static int
6439ada_is_interface_tag (struct type *type)
6440{
7d93a1e0 6441 const char *name = type->name ();
ac4a2da4
JG
6442
6443 if (name == NULL)
6444 return 0;
6445
6446 return (strcmp (name, "ada__tags__interface_tag") == 0);
6447}
6448
963a6417
PH
6449/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6450 to be invisible to users. */
96d887e8 6451
963a6417
PH
6452int
6453ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6454{
1f704f76 6455 if (field_num < 0 || field_num > type->num_fields ())
963a6417 6456 return 1;
ffde82bf 6457
73fb9985
JB
6458 /* Check the name of that field. */
6459 {
6460 const char *name = TYPE_FIELD_NAME (type, field_num);
6461
6462 /* Anonymous field names should not be printed.
6463 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6464 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6465 if (name == NULL)
6466 return 1;
6467
ffde82bf
JB
6468 /* Normally, fields whose name start with an underscore ("_")
6469 are fields that have been internally generated by the compiler,
6470 and thus should not be printed. The "_parent" field is special,
6471 however: This is a field internally generated by the compiler
6472 for tagged types, and it contains the components inherited from
6473 the parent type. This field should not be printed as is, but
6474 should not be ignored either. */
61012eef 6475 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6476 return 1;
6477 }
6478
ac4a2da4
JG
6479 /* If this is the dispatch table of a tagged type or an interface tag,
6480 then ignore. */
73fb9985 6481 if (ada_is_tagged_type (type, 1)
940da03e
SM
6482 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6483 || ada_is_interface_tag (type->field (field_num).type ())))
73fb9985
JB
6484 return 1;
6485
6486 /* Not a special field, so it should not be ignored. */
6487 return 0;
963a6417 6488}
96d887e8 6489
963a6417 6490/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6491 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6492
963a6417
PH
6493int
6494ada_is_tagged_type (struct type *type, int refok)
6495{
988f6b3d 6496 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6497}
96d887e8 6498
963a6417 6499/* True iff TYPE represents the type of X'Tag */
96d887e8 6500
963a6417
PH
6501int
6502ada_is_tag_type (struct type *type)
6503{
460efde1
JB
6504 type = ada_check_typedef (type);
6505
78134374 6506 if (type == NULL || type->code () != TYPE_CODE_PTR)
963a6417
PH
6507 return 0;
6508 else
96d887e8 6509 {
963a6417 6510 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6511
963a6417
PH
6512 return (name != NULL
6513 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6514 }
96d887e8
PH
6515}
6516
963a6417 6517/* The type of the tag on VAL. */
76a01679 6518
de93309a 6519static struct type *
963a6417 6520ada_tag_type (struct value *val)
96d887e8 6521{
988f6b3d 6522 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6523}
96d887e8 6524
b50d69b5
JG
6525/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6526 retired at Ada 05). */
6527
6528static int
6529is_ada95_tag (struct value *tag)
6530{
6531 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6532}
6533
963a6417 6534/* The value of the tag on VAL. */
96d887e8 6535
de93309a 6536static struct value *
963a6417
PH
6537ada_value_tag (struct value *val)
6538{
03ee6b2e 6539 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6540}
6541
963a6417
PH
6542/* The value of the tag on the object of type TYPE whose contents are
6543 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6544 ADDRESS. */
96d887e8 6545
963a6417 6546static struct value *
10a2c479 6547value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6548 const gdb_byte *valaddr,
963a6417 6549 CORE_ADDR address)
96d887e8 6550{
b5385fc0 6551 int tag_byte_offset;
963a6417 6552 struct type *tag_type;
5b4ee69b 6553
963a6417 6554 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6555 NULL, NULL, NULL))
96d887e8 6556 {
fc1a4b47 6557 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6558 ? NULL
6559 : valaddr + tag_byte_offset);
963a6417 6560 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6561
963a6417 6562 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6563 }
963a6417
PH
6564 return NULL;
6565}
96d887e8 6566
963a6417
PH
6567static struct type *
6568type_from_tag (struct value *tag)
6569{
f5272a3b 6570 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5b4ee69b 6571
963a6417 6572 if (type_name != NULL)
f5272a3b 6573 return ada_find_any_type (ada_encode (type_name.get ()));
963a6417
PH
6574 return NULL;
6575}
96d887e8 6576
b50d69b5
JG
6577/* Given a value OBJ of a tagged type, return a value of this
6578 type at the base address of the object. The base address, as
6579 defined in Ada.Tags, it is the address of the primary tag of
6580 the object, and therefore where the field values of its full
6581 view can be fetched. */
6582
6583struct value *
6584ada_tag_value_at_base_address (struct value *obj)
6585{
b50d69b5
JG
6586 struct value *val;
6587 LONGEST offset_to_top = 0;
6588 struct type *ptr_type, *obj_type;
6589 struct value *tag;
6590 CORE_ADDR base_address;
6591
6592 obj_type = value_type (obj);
6593
6594 /* It is the responsability of the caller to deref pointers. */
6595
78134374 6596 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
b50d69b5
JG
6597 return obj;
6598
6599 tag = ada_value_tag (obj);
6600 if (!tag)
6601 return obj;
6602
6603 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6604
6605 if (is_ada95_tag (tag))
6606 return obj;
6607
08f49010
XR
6608 ptr_type = language_lookup_primitive_type
6609 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6610 ptr_type = lookup_pointer_type (ptr_type);
6611 val = value_cast (ptr_type, tag);
6612 if (!val)
6613 return obj;
6614
6615 /* It is perfectly possible that an exception be raised while
6616 trying to determine the base address, just like for the tag;
6617 see ada_tag_name for more details. We do not print the error
6618 message for the same reason. */
6619
a70b8144 6620 try
b50d69b5
JG
6621 {
6622 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6623 }
6624
230d2906 6625 catch (const gdb_exception_error &e)
492d29ea
PA
6626 {
6627 return obj;
6628 }
b50d69b5
JG
6629
6630 /* If offset is null, nothing to do. */
6631
6632 if (offset_to_top == 0)
6633 return obj;
6634
6635 /* -1 is a special case in Ada.Tags; however, what should be done
6636 is not quite clear from the documentation. So do nothing for
6637 now. */
6638
6639 if (offset_to_top == -1)
6640 return obj;
6641
08f49010
XR
6642 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6643 from the base address. This was however incompatible with
6644 C++ dispatch table: C++ uses a *negative* value to *add*
6645 to the base address. Ada's convention has therefore been
6646 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6647 use the same convention. Here, we support both cases by
6648 checking the sign of OFFSET_TO_TOP. */
6649
6650 if (offset_to_top > 0)
6651 offset_to_top = -offset_to_top;
6652
6653 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6654 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6655
6656 /* Make sure that we have a proper tag at the new address.
6657 Otherwise, offset_to_top is bogus (which can happen when
6658 the object is not initialized yet). */
6659
6660 if (!tag)
6661 return obj;
6662
6663 obj_type = type_from_tag (tag);
6664
6665 if (!obj_type)
6666 return obj;
6667
6668 return value_from_contents_and_address (obj_type, NULL, base_address);
6669}
6670
1b611343
JB
6671/* Return the "ada__tags__type_specific_data" type. */
6672
6673static struct type *
6674ada_get_tsd_type (struct inferior *inf)
963a6417 6675{
1b611343 6676 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6677
1b611343
JB
6678 if (data->tsd_type == 0)
6679 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6680 return data->tsd_type;
6681}
529cad9c 6682
1b611343
JB
6683/* Return the TSD (type-specific data) associated to the given TAG.
6684 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6685
1b611343 6686 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6687
1b611343
JB
6688static struct value *
6689ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6690{
4c4b4cd2 6691 struct value *val;
1b611343 6692 struct type *type;
5b4ee69b 6693
1b611343
JB
6694 /* First option: The TSD is simply stored as a field of our TAG.
6695 Only older versions of GNAT would use this format, but we have
6696 to test it first, because there are no visible markers for
6697 the current approach except the absence of that field. */
529cad9c 6698
1b611343
JB
6699 val = ada_value_struct_elt (tag, "tsd", 1);
6700 if (val)
6701 return val;
e802dbe0 6702
1b611343
JB
6703 /* Try the second representation for the dispatch table (in which
6704 there is no explicit 'tsd' field in the referent of the tag pointer,
6705 and instead the tsd pointer is stored just before the dispatch
6706 table. */
e802dbe0 6707
1b611343
JB
6708 type = ada_get_tsd_type (current_inferior());
6709 if (type == NULL)
6710 return NULL;
6711 type = lookup_pointer_type (lookup_pointer_type (type));
6712 val = value_cast (type, tag);
6713 if (val == NULL)
6714 return NULL;
6715 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6716}
6717
1b611343
JB
6718/* Given the TSD of a tag (type-specific data), return a string
6719 containing the name of the associated type.
6720
f5272a3b 6721 May return NULL if we are unable to determine the tag name. */
1b611343 6722
f5272a3b 6723static gdb::unique_xmalloc_ptr<char>
1b611343 6724ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6725{
529cad9c 6726 char *p;
1b611343 6727 struct value *val;
529cad9c 6728
1b611343 6729 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6730 if (val == NULL)
1b611343 6731 return NULL;
f5272a3b
TT
6732 gdb::unique_xmalloc_ptr<char> buffer;
6733 int err;
6734 if (target_read_string (value_as_address (val), &buffer, INT_MAX, &err) == 0
6735 || err != 0)
6736 return nullptr;
6737
6738 for (p = buffer.get (); *p != '\0'; ++p)
6739 {
6740 if (isalpha (*p))
6741 *p = tolower (*p);
6742 }
6743
6744 return buffer;
4c4b4cd2
PH
6745}
6746
6747/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6748 a C string.
6749
6750 Return NULL if the TAG is not an Ada tag, or if we were unable to
f5272a3b 6751 determine the name of that tag. */
4c4b4cd2 6752
f5272a3b 6753gdb::unique_xmalloc_ptr<char>
4c4b4cd2
PH
6754ada_tag_name (struct value *tag)
6755{
f5272a3b 6756 gdb::unique_xmalloc_ptr<char> name;
5b4ee69b 6757
df407dfe 6758 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6759 return NULL;
1b611343
JB
6760
6761 /* It is perfectly possible that an exception be raised while trying
6762 to determine the TAG's name, even under normal circumstances:
6763 The associated variable may be uninitialized or corrupted, for
6764 instance. We do not let any exception propagate past this point.
6765 instead we return NULL.
6766
6767 We also do not print the error message either (which often is very
6768 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6769 the caller print a more meaningful message if necessary. */
a70b8144 6770 try
1b611343
JB
6771 {
6772 struct value *tsd = ada_get_tsd_from_tag (tag);
6773
6774 if (tsd != NULL)
6775 name = ada_tag_name_from_tsd (tsd);
6776 }
230d2906 6777 catch (const gdb_exception_error &e)
492d29ea
PA
6778 {
6779 }
1b611343
JB
6780
6781 return name;
4c4b4cd2
PH
6782}
6783
6784/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6785
d2e4a39e 6786struct type *
ebf56fd3 6787ada_parent_type (struct type *type)
14f9c5c9
AS
6788{
6789 int i;
6790
61ee279c 6791 type = ada_check_typedef (type);
14f9c5c9 6792
78134374 6793 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
6794 return NULL;
6795
1f704f76 6796 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 6797 if (ada_is_parent_field (type, i))
0c1f74cf 6798 {
940da03e 6799 struct type *parent_type = type->field (i).type ();
0c1f74cf
JB
6800
6801 /* If the _parent field is a pointer, then dereference it. */
78134374 6802 if (parent_type->code () == TYPE_CODE_PTR)
0c1f74cf
JB
6803 parent_type = TYPE_TARGET_TYPE (parent_type);
6804 /* If there is a parallel XVS type, get the actual base type. */
6805 parent_type = ada_get_base_type (parent_type);
6806
6807 return ada_check_typedef (parent_type);
6808 }
14f9c5c9
AS
6809
6810 return NULL;
6811}
6812
4c4b4cd2
PH
6813/* True iff field number FIELD_NUM of structure type TYPE contains the
6814 parent-type (inherited) fields of a derived type. Assumes TYPE is
6815 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6816
6817int
ebf56fd3 6818ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6819{
61ee279c 6820 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6821
4c4b4cd2 6822 return (name != NULL
61012eef
GB
6823 && (startswith (name, "PARENT")
6824 || startswith (name, "_parent")));
14f9c5c9
AS
6825}
6826
4c4b4cd2 6827/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6828 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6829 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6830 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6831 structures. */
14f9c5c9
AS
6832
6833int
ebf56fd3 6834ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6835{
d2e4a39e 6836 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6837
dddc0e16
JB
6838 if (name != NULL && strcmp (name, "RETVAL") == 0)
6839 {
6840 /* This happens in functions with "out" or "in out" parameters
6841 which are passed by copy. For such functions, GNAT describes
6842 the function's return type as being a struct where the return
6843 value is in a field called RETVAL, and where the other "out"
6844 or "in out" parameters are fields of that struct. This is not
6845 a wrapper. */
6846 return 0;
6847 }
6848
d2e4a39e 6849 return (name != NULL
61012eef 6850 && (startswith (name, "PARENT")
4c4b4cd2 6851 || strcmp (name, "REP") == 0
61012eef 6852 || startswith (name, "_parent")
4c4b4cd2 6853 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6854}
6855
4c4b4cd2
PH
6856/* True iff field number FIELD_NUM of structure or union type TYPE
6857 is a variant wrapper. Assumes TYPE is a structure type with at least
6858 FIELD_NUM+1 fields. */
14f9c5c9
AS
6859
6860int
ebf56fd3 6861ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6862{
8ecb59f8
TT
6863 /* Only Ada types are eligible. */
6864 if (!ADA_TYPE_P (type))
6865 return 0;
6866
940da03e 6867 struct type *field_type = type->field (field_num).type ();
5b4ee69b 6868
78134374
SM
6869 return (field_type->code () == TYPE_CODE_UNION
6870 || (is_dynamic_field (type, field_num)
6871 && (TYPE_TARGET_TYPE (field_type)->code ()
c3e5cd34 6872 == TYPE_CODE_UNION)));
14f9c5c9
AS
6873}
6874
6875/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6876 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6877 returns the type of the controlling discriminant for the variant.
6878 May return NULL if the type could not be found. */
14f9c5c9 6879
d2e4a39e 6880struct type *
ebf56fd3 6881ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6882{
a121b7c1 6883 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6884
988f6b3d 6885 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6886}
6887
4c4b4cd2 6888/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6889 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6890 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6891
de93309a 6892static int
ebf56fd3 6893ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6894{
d2e4a39e 6895 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6896
14f9c5c9
AS
6897 return (name != NULL && name[0] == 'O');
6898}
6899
6900/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6901 returns the name of the discriminant controlling the variant.
6902 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6903
a121b7c1 6904const char *
ebf56fd3 6905ada_variant_discrim_name (struct type *type0)
14f9c5c9 6906{
d2e4a39e 6907 static char *result = NULL;
14f9c5c9 6908 static size_t result_len = 0;
d2e4a39e
AS
6909 struct type *type;
6910 const char *name;
6911 const char *discrim_end;
6912 const char *discrim_start;
14f9c5c9 6913
78134374 6914 if (type0->code () == TYPE_CODE_PTR)
14f9c5c9
AS
6915 type = TYPE_TARGET_TYPE (type0);
6916 else
6917 type = type0;
6918
6919 name = ada_type_name (type);
6920
6921 if (name == NULL || name[0] == '\000')
6922 return "";
6923
6924 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6925 discrim_end -= 1)
6926 {
61012eef 6927 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6928 break;
14f9c5c9
AS
6929 }
6930 if (discrim_end == name)
6931 return "";
6932
d2e4a39e 6933 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6934 discrim_start -= 1)
6935 {
d2e4a39e 6936 if (discrim_start == name + 1)
4c4b4cd2 6937 return "";
76a01679 6938 if ((discrim_start > name + 3
61012eef 6939 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6940 || discrim_start[-1] == '.')
6941 break;
14f9c5c9
AS
6942 }
6943
6944 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6945 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6946 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6947 return result;
6948}
6949
4c4b4cd2
PH
6950/* Scan STR for a subtype-encoded number, beginning at position K.
6951 Put the position of the character just past the number scanned in
6952 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6953 Return 1 if there was a valid number at the given position, and 0
6954 otherwise. A "subtype-encoded" number consists of the absolute value
6955 in decimal, followed by the letter 'm' to indicate a negative number.
6956 Assumes 0m does not occur. */
14f9c5c9
AS
6957
6958int
d2e4a39e 6959ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6960{
6961 ULONGEST RU;
6962
d2e4a39e 6963 if (!isdigit (str[k]))
14f9c5c9
AS
6964 return 0;
6965
4c4b4cd2 6966 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6967 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6968 LONGEST. */
14f9c5c9
AS
6969 RU = 0;
6970 while (isdigit (str[k]))
6971 {
d2e4a39e 6972 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6973 k += 1;
6974 }
6975
d2e4a39e 6976 if (str[k] == 'm')
14f9c5c9
AS
6977 {
6978 if (R != NULL)
4c4b4cd2 6979 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6980 k += 1;
6981 }
6982 else if (R != NULL)
6983 *R = (LONGEST) RU;
6984
4c4b4cd2 6985 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6986 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6987 number representable as a LONGEST (although either would probably work
6988 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6989 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6990
6991 if (new_k != NULL)
6992 *new_k = k;
6993 return 1;
6994}
6995
4c4b4cd2
PH
6996/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6997 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6998 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6999
de93309a 7000static int
ebf56fd3 7001ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7002{
d2e4a39e 7003 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7004 int p;
7005
7006 p = 0;
7007 while (1)
7008 {
d2e4a39e 7009 switch (name[p])
4c4b4cd2
PH
7010 {
7011 case '\0':
7012 return 0;
7013 case 'S':
7014 {
7015 LONGEST W;
5b4ee69b 7016
4c4b4cd2
PH
7017 if (!ada_scan_number (name, p + 1, &W, &p))
7018 return 0;
7019 if (val == W)
7020 return 1;
7021 break;
7022 }
7023 case 'R':
7024 {
7025 LONGEST L, U;
5b4ee69b 7026
4c4b4cd2
PH
7027 if (!ada_scan_number (name, p + 1, &L, &p)
7028 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7029 return 0;
7030 if (val >= L && val <= U)
7031 return 1;
7032 break;
7033 }
7034 case 'O':
7035 return 1;
7036 default:
7037 return 0;
7038 }
7039 }
7040}
7041
0963b4bd 7042/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7043
7044/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7045 ARG_TYPE, extract and return the value of one of its (non-static)
7046 fields. FIELDNO says which field. Differs from value_primitive_field
7047 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7048
5eb68a39 7049struct value *
d2e4a39e 7050ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7051 struct type *arg_type)
14f9c5c9 7052{
14f9c5c9
AS
7053 struct type *type;
7054
61ee279c 7055 arg_type = ada_check_typedef (arg_type);
940da03e 7056 type = arg_type->field (fieldno).type ();
14f9c5c9 7057
4504bbde
TT
7058 /* Handle packed fields. It might be that the field is not packed
7059 relative to its containing structure, but the structure itself is
7060 packed; in this case we must take the bit-field path. */
7061 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7062 {
7063 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7064 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7065
0fd88904 7066 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7067 offset + bit_pos / 8,
7068 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7069 }
7070 else
7071 return value_primitive_field (arg1, offset, fieldno, arg_type);
7072}
7073
52ce6436
PH
7074/* Find field with name NAME in object of type TYPE. If found,
7075 set the following for each argument that is non-null:
7076 - *FIELD_TYPE_P to the field's type;
7077 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7078 an object of that type;
7079 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7080 - *BIT_SIZE_P to its size in bits if the field is packed, and
7081 0 otherwise;
7082 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7083 fields up to but not including the desired field, or by the total
7084 number of fields if not found. A NULL value of NAME never
7085 matches; the function just counts visible fields in this case.
7086
828d5846
XR
7087 Notice that we need to handle when a tagged record hierarchy
7088 has some components with the same name, like in this scenario:
7089
7090 type Top_T is tagged record
7091 N : Integer := 1;
7092 U : Integer := 974;
7093 A : Integer := 48;
7094 end record;
7095
7096 type Middle_T is new Top.Top_T with record
7097 N : Character := 'a';
7098 C : Integer := 3;
7099 end record;
7100
7101 type Bottom_T is new Middle.Middle_T with record
7102 N : Float := 4.0;
7103 C : Character := '5';
7104 X : Integer := 6;
7105 A : Character := 'J';
7106 end record;
7107
7108 Let's say we now have a variable declared and initialized as follow:
7109
7110 TC : Top_A := new Bottom_T;
7111
7112 And then we use this variable to call this function
7113
7114 procedure Assign (Obj: in out Top_T; TV : Integer);
7115
7116 as follow:
7117
7118 Assign (Top_T (B), 12);
7119
7120 Now, we're in the debugger, and we're inside that procedure
7121 then and we want to print the value of obj.c:
7122
7123 Usually, the tagged record or one of the parent type owns the
7124 component to print and there's no issue but in this particular
7125 case, what does it mean to ask for Obj.C? Since the actual
7126 type for object is type Bottom_T, it could mean two things: type
7127 component C from the Middle_T view, but also component C from
7128 Bottom_T. So in that "undefined" case, when the component is
7129 not found in the non-resolved type (which includes all the
7130 components of the parent type), then resolve it and see if we
7131 get better luck once expanded.
7132
7133 In the case of homonyms in the derived tagged type, we don't
7134 guaranty anything, and pick the one that's easiest for us
7135 to program.
7136
0963b4bd 7137 Returns 1 if found, 0 otherwise. */
52ce6436 7138
4c4b4cd2 7139static int
0d5cff50 7140find_struct_field (const char *name, struct type *type, int offset,
76a01679 7141 struct type **field_type_p,
52ce6436
PH
7142 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7143 int *index_p)
4c4b4cd2
PH
7144{
7145 int i;
828d5846 7146 int parent_offset = -1;
4c4b4cd2 7147
61ee279c 7148 type = ada_check_typedef (type);
76a01679 7149
52ce6436
PH
7150 if (field_type_p != NULL)
7151 *field_type_p = NULL;
7152 if (byte_offset_p != NULL)
d5d6fca5 7153 *byte_offset_p = 0;
52ce6436
PH
7154 if (bit_offset_p != NULL)
7155 *bit_offset_p = 0;
7156 if (bit_size_p != NULL)
7157 *bit_size_p = 0;
7158
1f704f76 7159 for (i = 0; i < type->num_fields (); i += 1)
4c4b4cd2
PH
7160 {
7161 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7162 int fld_offset = offset + bit_pos / 8;
0d5cff50 7163 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7164
4c4b4cd2
PH
7165 if (t_field_name == NULL)
7166 continue;
7167
828d5846
XR
7168 else if (ada_is_parent_field (type, i))
7169 {
7170 /* This is a field pointing us to the parent type of a tagged
7171 type. As hinted in this function's documentation, we give
7172 preference to fields in the current record first, so what
7173 we do here is just record the index of this field before
7174 we skip it. If it turns out we couldn't find our field
7175 in the current record, then we'll get back to it and search
7176 inside it whether the field might exist in the parent. */
7177
7178 parent_offset = i;
7179 continue;
7180 }
7181
52ce6436 7182 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7183 {
7184 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7185
52ce6436 7186 if (field_type_p != NULL)
940da03e 7187 *field_type_p = type->field (i).type ();
52ce6436
PH
7188 if (byte_offset_p != NULL)
7189 *byte_offset_p = fld_offset;
7190 if (bit_offset_p != NULL)
7191 *bit_offset_p = bit_pos % 8;
7192 if (bit_size_p != NULL)
7193 *bit_size_p = bit_size;
76a01679
JB
7194 return 1;
7195 }
4c4b4cd2
PH
7196 else if (ada_is_wrapper_field (type, i))
7197 {
940da03e 7198 if (find_struct_field (name, type->field (i).type (), fld_offset,
52ce6436
PH
7199 field_type_p, byte_offset_p, bit_offset_p,
7200 bit_size_p, index_p))
76a01679
JB
7201 return 1;
7202 }
4c4b4cd2
PH
7203 else if (ada_is_variant_part (type, i))
7204 {
52ce6436
PH
7205 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7206 fixed type?? */
4c4b4cd2 7207 int j;
52ce6436 7208 struct type *field_type
940da03e 7209 = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7210
1f704f76 7211 for (j = 0; j < field_type->num_fields (); j += 1)
4c4b4cd2 7212 {
940da03e 7213 if (find_struct_field (name, field_type->field (j).type (),
76a01679
JB
7214 fld_offset
7215 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7216 field_type_p, byte_offset_p,
52ce6436 7217 bit_offset_p, bit_size_p, index_p))
76a01679 7218 return 1;
4c4b4cd2
PH
7219 }
7220 }
52ce6436
PH
7221 else if (index_p != NULL)
7222 *index_p += 1;
4c4b4cd2 7223 }
828d5846
XR
7224
7225 /* Field not found so far. If this is a tagged type which
7226 has a parent, try finding that field in the parent now. */
7227
7228 if (parent_offset != -1)
7229 {
7230 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7231 int fld_offset = offset + bit_pos / 8;
7232
940da03e 7233 if (find_struct_field (name, type->field (parent_offset).type (),
828d5846
XR
7234 fld_offset, field_type_p, byte_offset_p,
7235 bit_offset_p, bit_size_p, index_p))
7236 return 1;
7237 }
7238
4c4b4cd2
PH
7239 return 0;
7240}
7241
0963b4bd 7242/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7243
52ce6436
PH
7244static int
7245num_visible_fields (struct type *type)
7246{
7247 int n;
5b4ee69b 7248
52ce6436
PH
7249 n = 0;
7250 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7251 return n;
7252}
14f9c5c9 7253
4c4b4cd2 7254/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7255 and search in it assuming it has (class) type TYPE.
7256 If found, return value, else return NULL.
7257
828d5846
XR
7258 Searches recursively through wrapper fields (e.g., '_parent').
7259
7260 In the case of homonyms in the tagged types, please refer to the
7261 long explanation in find_struct_field's function documentation. */
14f9c5c9 7262
4c4b4cd2 7263static struct value *
108d56a4 7264ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7265 struct type *type)
14f9c5c9
AS
7266{
7267 int i;
828d5846 7268 int parent_offset = -1;
14f9c5c9 7269
5b4ee69b 7270 type = ada_check_typedef (type);
1f704f76 7271 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7272 {
0d5cff50 7273 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7274
7275 if (t_field_name == NULL)
4c4b4cd2 7276 continue;
14f9c5c9 7277
828d5846
XR
7278 else if (ada_is_parent_field (type, i))
7279 {
7280 /* This is a field pointing us to the parent type of a tagged
7281 type. As hinted in this function's documentation, we give
7282 preference to fields in the current record first, so what
7283 we do here is just record the index of this field before
7284 we skip it. If it turns out we couldn't find our field
7285 in the current record, then we'll get back to it and search
7286 inside it whether the field might exist in the parent. */
7287
7288 parent_offset = i;
7289 continue;
7290 }
7291
14f9c5c9 7292 else if (field_name_match (t_field_name, name))
4c4b4cd2 7293 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7294
7295 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7296 {
0963b4bd 7297 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7298 ada_search_struct_field (name, arg,
7299 offset + TYPE_FIELD_BITPOS (type, i) / 8,
940da03e 7300 type->field (i).type ());
5b4ee69b 7301
4c4b4cd2
PH
7302 if (v != NULL)
7303 return v;
7304 }
14f9c5c9
AS
7305
7306 else if (ada_is_variant_part (type, i))
4c4b4cd2 7307 {
0963b4bd 7308 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7309 int j;
940da03e 7310 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2
PH
7311 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7312
1f704f76 7313 for (j = 0; j < field_type->num_fields (); j += 1)
4c4b4cd2 7314 {
0963b4bd
MS
7315 struct value *v = ada_search_struct_field /* Force line
7316 break. */
06d5cf63
JB
7317 (name, arg,
7318 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
940da03e 7319 field_type->field (j).type ());
5b4ee69b 7320
4c4b4cd2
PH
7321 if (v != NULL)
7322 return v;
7323 }
7324 }
14f9c5c9 7325 }
828d5846
XR
7326
7327 /* Field not found so far. If this is a tagged type which
7328 has a parent, try finding that field in the parent now. */
7329
7330 if (parent_offset != -1)
7331 {
7332 struct value *v = ada_search_struct_field (
7333 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
940da03e 7334 type->field (parent_offset).type ());
828d5846
XR
7335
7336 if (v != NULL)
7337 return v;
7338 }
7339
14f9c5c9
AS
7340 return NULL;
7341}
d2e4a39e 7342
52ce6436
PH
7343static struct value *ada_index_struct_field_1 (int *, struct value *,
7344 int, struct type *);
7345
7346
7347/* Return field #INDEX in ARG, where the index is that returned by
7348 * find_struct_field through its INDEX_P argument. Adjust the address
7349 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7350 * If found, return value, else return NULL. */
52ce6436
PH
7351
7352static struct value *
7353ada_index_struct_field (int index, struct value *arg, int offset,
7354 struct type *type)
7355{
7356 return ada_index_struct_field_1 (&index, arg, offset, type);
7357}
7358
7359
7360/* Auxiliary function for ada_index_struct_field. Like
7361 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7362 * *INDEX_P. */
52ce6436
PH
7363
7364static struct value *
7365ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7366 struct type *type)
7367{
7368 int i;
7369 type = ada_check_typedef (type);
7370
1f704f76 7371 for (i = 0; i < type->num_fields (); i += 1)
52ce6436
PH
7372 {
7373 if (TYPE_FIELD_NAME (type, i) == NULL)
7374 continue;
7375 else if (ada_is_wrapper_field (type, i))
7376 {
0963b4bd 7377 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7378 ada_index_struct_field_1 (index_p, arg,
7379 offset + TYPE_FIELD_BITPOS (type, i) / 8,
940da03e 7380 type->field (i).type ());
5b4ee69b 7381
52ce6436
PH
7382 if (v != NULL)
7383 return v;
7384 }
7385
7386 else if (ada_is_variant_part (type, i))
7387 {
7388 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7389 find_struct_field. */
52ce6436
PH
7390 error (_("Cannot assign this kind of variant record"));
7391 }
7392 else if (*index_p == 0)
7393 return ada_value_primitive_field (arg, offset, i, type);
7394 else
7395 *index_p -= 1;
7396 }
7397 return NULL;
7398}
7399
3b4de39c 7400/* Return a string representation of type TYPE. */
99bbb428 7401
3b4de39c 7402static std::string
99bbb428
PA
7403type_as_string (struct type *type)
7404{
d7e74731 7405 string_file tmp_stream;
99bbb428 7406
d7e74731 7407 type_print (type, "", &tmp_stream, -1);
99bbb428 7408
d7e74731 7409 return std::move (tmp_stream.string ());
99bbb428
PA
7410}
7411
14f9c5c9 7412/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7413 If DISPP is non-null, add its byte displacement from the beginning of a
7414 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7415 work for packed fields).
7416
7417 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7418 followed by "___".
14f9c5c9 7419
0963b4bd 7420 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7421 be a (pointer or reference)+ to a struct or union, and the
7422 ultimate target type will be searched.
14f9c5c9
AS
7423
7424 Looks recursively into variant clauses and parent types.
7425
828d5846
XR
7426 In the case of homonyms in the tagged types, please refer to the
7427 long explanation in find_struct_field's function documentation.
7428
4c4b4cd2
PH
7429 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7430 TYPE is not a type of the right kind. */
14f9c5c9 7431
4c4b4cd2 7432static struct type *
a121b7c1 7433ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7434 int noerr)
14f9c5c9
AS
7435{
7436 int i;
828d5846 7437 int parent_offset = -1;
14f9c5c9
AS
7438
7439 if (name == NULL)
7440 goto BadName;
7441
76a01679 7442 if (refok && type != NULL)
4c4b4cd2
PH
7443 while (1)
7444 {
61ee279c 7445 type = ada_check_typedef (type);
78134374 7446 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
76a01679
JB
7447 break;
7448 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7449 }
14f9c5c9 7450
76a01679 7451 if (type == NULL
78134374
SM
7452 || (type->code () != TYPE_CODE_STRUCT
7453 && type->code () != TYPE_CODE_UNION))
14f9c5c9 7454 {
4c4b4cd2 7455 if (noerr)
76a01679 7456 return NULL;
99bbb428 7457
3b4de39c
PA
7458 error (_("Type %s is not a structure or union type"),
7459 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7460 }
7461
7462 type = to_static_fixed_type (type);
7463
1f704f76 7464 for (i = 0; i < type->num_fields (); i += 1)
14f9c5c9 7465 {
0d5cff50 7466 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7467 struct type *t;
d2e4a39e 7468
14f9c5c9 7469 if (t_field_name == NULL)
4c4b4cd2 7470 continue;
14f9c5c9 7471
828d5846
XR
7472 else if (ada_is_parent_field (type, i))
7473 {
7474 /* This is a field pointing us to the parent type of a tagged
7475 type. As hinted in this function's documentation, we give
7476 preference to fields in the current record first, so what
7477 we do here is just record the index of this field before
7478 we skip it. If it turns out we couldn't find our field
7479 in the current record, then we'll get back to it and search
7480 inside it whether the field might exist in the parent. */
7481
7482 parent_offset = i;
7483 continue;
7484 }
7485
14f9c5c9 7486 else if (field_name_match (t_field_name, name))
940da03e 7487 return type->field (i).type ();
14f9c5c9
AS
7488
7489 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7490 {
940da03e 7491 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
988f6b3d 7492 0, 1);
4c4b4cd2 7493 if (t != NULL)
988f6b3d 7494 return t;
4c4b4cd2 7495 }
14f9c5c9
AS
7496
7497 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7498 {
7499 int j;
940da03e 7500 struct type *field_type = ada_check_typedef (type->field (i).type ());
4c4b4cd2 7501
1f704f76 7502 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
4c4b4cd2 7503 {
b1f33ddd
JB
7504 /* FIXME pnh 2008/01/26: We check for a field that is
7505 NOT wrapped in a struct, since the compiler sometimes
7506 generates these for unchecked variant types. Revisit
0963b4bd 7507 if the compiler changes this practice. */
0d5cff50 7508 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7509
b1f33ddd
JB
7510 if (v_field_name != NULL
7511 && field_name_match (v_field_name, name))
940da03e 7512 t = field_type->field (j).type ();
b1f33ddd 7513 else
940da03e 7514 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
988f6b3d 7515 name, 0, 1);
b1f33ddd 7516
4c4b4cd2 7517 if (t != NULL)
988f6b3d 7518 return t;
4c4b4cd2
PH
7519 }
7520 }
14f9c5c9
AS
7521
7522 }
7523
828d5846
XR
7524 /* Field not found so far. If this is a tagged type which
7525 has a parent, try finding that field in the parent now. */
7526
7527 if (parent_offset != -1)
7528 {
7529 struct type *t;
7530
940da03e 7531 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
828d5846
XR
7532 name, 0, 1);
7533 if (t != NULL)
7534 return t;
7535 }
7536
14f9c5c9 7537BadName:
d2e4a39e 7538 if (!noerr)
14f9c5c9 7539 {
2b2798cc 7540 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7541
7542 error (_("Type %s has no component named %s"),
3b4de39c 7543 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7544 }
7545
7546 return NULL;
7547}
7548
b1f33ddd
JB
7549/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7550 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7551 represents an unchecked union (that is, the variant part of a
0963b4bd 7552 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7553
7554static int
7555is_unchecked_variant (struct type *var_type, struct type *outer_type)
7556{
a121b7c1 7557 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7558
988f6b3d 7559 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7560}
7561
7562
14f9c5c9 7563/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7564 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7565 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7566
d2e4a39e 7567int
d8af9068 7568ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7569{
7570 int others_clause;
7571 int i;
a121b7c1 7572 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7573 struct value *discrim;
14f9c5c9
AS
7574 LONGEST discrim_val;
7575
012370f6
TT
7576 /* Using plain value_from_contents_and_address here causes problems
7577 because we will end up trying to resolve a type that is currently
7578 being constructed. */
0c281816
JB
7579 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7580 if (discrim == NULL)
14f9c5c9 7581 return -1;
0c281816 7582 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7583
7584 others_clause = -1;
1f704f76 7585 for (i = 0; i < var_type->num_fields (); i += 1)
14f9c5c9
AS
7586 {
7587 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7588 others_clause = i;
14f9c5c9 7589 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7590 return i;
14f9c5c9
AS
7591 }
7592
7593 return others_clause;
7594}
d2e4a39e 7595\f
14f9c5c9
AS
7596
7597
4c4b4cd2 7598 /* Dynamic-Sized Records */
14f9c5c9
AS
7599
7600/* Strategy: The type ostensibly attached to a value with dynamic size
7601 (i.e., a size that is not statically recorded in the debugging
7602 data) does not accurately reflect the size or layout of the value.
7603 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7604 conventional types that are constructed on the fly. */
14f9c5c9
AS
7605
7606/* There is a subtle and tricky problem here. In general, we cannot
7607 determine the size of dynamic records without its data. However,
7608 the 'struct value' data structure, which GDB uses to represent
7609 quantities in the inferior process (the target), requires the size
7610 of the type at the time of its allocation in order to reserve space
7611 for GDB's internal copy of the data. That's why the
7612 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7613 rather than struct value*s.
14f9c5c9
AS
7614
7615 However, GDB's internal history variables ($1, $2, etc.) are
7616 struct value*s containing internal copies of the data that are not, in
7617 general, the same as the data at their corresponding addresses in
7618 the target. Fortunately, the types we give to these values are all
7619 conventional, fixed-size types (as per the strategy described
7620 above), so that we don't usually have to perform the
7621 'to_fixed_xxx_type' conversions to look at their values.
7622 Unfortunately, there is one exception: if one of the internal
7623 history variables is an array whose elements are unconstrained
7624 records, then we will need to create distinct fixed types for each
7625 element selected. */
7626
7627/* The upshot of all of this is that many routines take a (type, host
7628 address, target address) triple as arguments to represent a value.
7629 The host address, if non-null, is supposed to contain an internal
7630 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7631 target at the target address. */
14f9c5c9
AS
7632
7633/* Assuming that VAL0 represents a pointer value, the result of
7634 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7635 dynamic-sized types. */
14f9c5c9 7636
d2e4a39e
AS
7637struct value *
7638ada_value_ind (struct value *val0)
14f9c5c9 7639{
c48db5ca 7640 struct value *val = value_ind (val0);
5b4ee69b 7641
b50d69b5
JG
7642 if (ada_is_tagged_type (value_type (val), 0))
7643 val = ada_tag_value_at_base_address (val);
7644
4c4b4cd2 7645 return ada_to_fixed_value (val);
14f9c5c9
AS
7646}
7647
7648/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7649 qualifiers on VAL0. */
7650
d2e4a39e
AS
7651static struct value *
7652ada_coerce_ref (struct value *val0)
7653{
78134374 7654 if (value_type (val0)->code () == TYPE_CODE_REF)
d2e4a39e
AS
7655 {
7656 struct value *val = val0;
5b4ee69b 7657
994b9211 7658 val = coerce_ref (val);
b50d69b5
JG
7659
7660 if (ada_is_tagged_type (value_type (val), 0))
7661 val = ada_tag_value_at_base_address (val);
7662
4c4b4cd2 7663 return ada_to_fixed_value (val);
d2e4a39e
AS
7664 }
7665 else
14f9c5c9
AS
7666 return val0;
7667}
7668
4c4b4cd2 7669/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7670
7671static unsigned int
ebf56fd3 7672field_alignment (struct type *type, int f)
14f9c5c9 7673{
d2e4a39e 7674 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7675 int len;
14f9c5c9
AS
7676 int align_offset;
7677
64a1bf19
JB
7678 /* The field name should never be null, unless the debugging information
7679 is somehow malformed. In this case, we assume the field does not
7680 require any alignment. */
7681 if (name == NULL)
7682 return 1;
7683
7684 len = strlen (name);
7685
4c4b4cd2
PH
7686 if (!isdigit (name[len - 1]))
7687 return 1;
14f9c5c9 7688
d2e4a39e 7689 if (isdigit (name[len - 2]))
14f9c5c9
AS
7690 align_offset = len - 2;
7691 else
7692 align_offset = len - 1;
7693
61012eef 7694 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7695 return TARGET_CHAR_BIT;
7696
4c4b4cd2
PH
7697 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7698}
7699
852dff6c 7700/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7701
852dff6c
JB
7702static struct symbol *
7703ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7704{
7705 struct symbol *sym;
7706
7707 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7708 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7709 return sym;
7710
4186eb54
KS
7711 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7712 return sym;
14f9c5c9
AS
7713}
7714
dddfab26
UW
7715/* Find a type named NAME. Ignores ambiguity. This routine will look
7716 solely for types defined by debug info, it will not search the GDB
7717 primitive types. */
4c4b4cd2 7718
852dff6c 7719static struct type *
ebf56fd3 7720ada_find_any_type (const char *name)
14f9c5c9 7721{
852dff6c 7722 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7723
14f9c5c9 7724 if (sym != NULL)
dddfab26 7725 return SYMBOL_TYPE (sym);
14f9c5c9 7726
dddfab26 7727 return NULL;
14f9c5c9
AS
7728}
7729
739593e0
JB
7730/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7731 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7732 symbol, in which case it is returned. Otherwise, this looks for
7733 symbols whose name is that of NAME_SYM suffixed with "___XR".
7734 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7735
c0e70c62
TT
7736static bool
7737ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7738{
987012b8 7739 const char *name = name_sym->linkage_name ();
c0e70c62 7740 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7741}
7742
14f9c5c9 7743/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7744 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7745 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7746 otherwise return 0. */
7747
14f9c5c9 7748int
d2e4a39e 7749ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7750{
7751 if (type1 == NULL)
7752 return 1;
7753 else if (type0 == NULL)
7754 return 0;
78134374 7755 else if (type1->code () == TYPE_CODE_VOID)
14f9c5c9 7756 return 1;
78134374 7757 else if (type0->code () == TYPE_CODE_VOID)
14f9c5c9 7758 return 0;
7d93a1e0 7759 else if (type1->name () == NULL && type0->name () != NULL)
4c4b4cd2 7760 return 1;
ad82864c 7761 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7762 return 1;
4c4b4cd2
PH
7763 else if (ada_is_array_descriptor_type (type0)
7764 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7765 return 1;
aeb5907d
JB
7766 else
7767 {
7d93a1e0
SM
7768 const char *type0_name = type0->name ();
7769 const char *type1_name = type1->name ();
aeb5907d
JB
7770
7771 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7772 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7773 return 1;
7774 }
14f9c5c9
AS
7775 return 0;
7776}
7777
e86ca25f
TT
7778/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7779 null. */
4c4b4cd2 7780
0d5cff50 7781const char *
d2e4a39e 7782ada_type_name (struct type *type)
14f9c5c9 7783{
d2e4a39e 7784 if (type == NULL)
14f9c5c9 7785 return NULL;
7d93a1e0 7786 return type->name ();
14f9c5c9
AS
7787}
7788
b4ba55a1
JB
7789/* Search the list of "descriptive" types associated to TYPE for a type
7790 whose name is NAME. */
7791
7792static struct type *
7793find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7794{
931e5bc3 7795 struct type *result, *tmp;
b4ba55a1 7796
c6044dd1
JB
7797 if (ada_ignore_descriptive_types_p)
7798 return NULL;
7799
b4ba55a1
JB
7800 /* If there no descriptive-type info, then there is no parallel type
7801 to be found. */
7802 if (!HAVE_GNAT_AUX_INFO (type))
7803 return NULL;
7804
7805 result = TYPE_DESCRIPTIVE_TYPE (type);
7806 while (result != NULL)
7807 {
0d5cff50 7808 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7809
7810 if (result_name == NULL)
7811 {
7812 warning (_("unexpected null name on descriptive type"));
7813 return NULL;
7814 }
7815
7816 /* If the names match, stop. */
7817 if (strcmp (result_name, name) == 0)
7818 break;
7819
7820 /* Otherwise, look at the next item on the list, if any. */
7821 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7822 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7823 else
7824 tmp = NULL;
7825
7826 /* If not found either, try after having resolved the typedef. */
7827 if (tmp != NULL)
7828 result = tmp;
b4ba55a1 7829 else
931e5bc3 7830 {
f168693b 7831 result = check_typedef (result);
931e5bc3
JG
7832 if (HAVE_GNAT_AUX_INFO (result))
7833 result = TYPE_DESCRIPTIVE_TYPE (result);
7834 else
7835 result = NULL;
7836 }
b4ba55a1
JB
7837 }
7838
7839 /* If we didn't find a match, see whether this is a packed array. With
7840 older compilers, the descriptive type information is either absent or
7841 irrelevant when it comes to packed arrays so the above lookup fails.
7842 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7843 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7844 return ada_find_any_type (name);
7845
7846 return result;
7847}
7848
7849/* Find a parallel type to TYPE with the specified NAME, using the
7850 descriptive type taken from the debugging information, if available,
7851 and otherwise using the (slower) name-based method. */
7852
7853static struct type *
7854ada_find_parallel_type_with_name (struct type *type, const char *name)
7855{
7856 struct type *result = NULL;
7857
7858 if (HAVE_GNAT_AUX_INFO (type))
7859 result = find_parallel_type_by_descriptive_type (type, name);
7860 else
7861 result = ada_find_any_type (name);
7862
7863 return result;
7864}
7865
7866/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7867 SUFFIX to the name of TYPE. */
14f9c5c9 7868
d2e4a39e 7869struct type *
ebf56fd3 7870ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7871{
0d5cff50 7872 char *name;
fe978cb0 7873 const char *type_name = ada_type_name (type);
14f9c5c9 7874 int len;
d2e4a39e 7875
fe978cb0 7876 if (type_name == NULL)
14f9c5c9
AS
7877 return NULL;
7878
fe978cb0 7879 len = strlen (type_name);
14f9c5c9 7880
b4ba55a1 7881 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7882
fe978cb0 7883 strcpy (name, type_name);
14f9c5c9
AS
7884 strcpy (name + len, suffix);
7885
b4ba55a1 7886 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7887}
7888
14f9c5c9 7889/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7890 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7891
d2e4a39e
AS
7892static struct type *
7893dynamic_template_type (struct type *type)
14f9c5c9 7894{
61ee279c 7895 type = ada_check_typedef (type);
14f9c5c9 7896
78134374 7897 if (type == NULL || type->code () != TYPE_CODE_STRUCT
d2e4a39e 7898 || ada_type_name (type) == NULL)
14f9c5c9 7899 return NULL;
d2e4a39e 7900 else
14f9c5c9
AS
7901 {
7902 int len = strlen (ada_type_name (type));
5b4ee69b 7903
4c4b4cd2
PH
7904 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7905 return type;
14f9c5c9 7906 else
4c4b4cd2 7907 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7908 }
7909}
7910
7911/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7912 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7913
d2e4a39e
AS
7914static int
7915is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7916{
7917 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7918
d2e4a39e 7919 return name != NULL
940da03e 7920 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
14f9c5c9
AS
7921 && strstr (name, "___XVL") != NULL;
7922}
7923
4c4b4cd2
PH
7924/* The index of the variant field of TYPE, or -1 if TYPE does not
7925 represent a variant record type. */
14f9c5c9 7926
d2e4a39e 7927static int
4c4b4cd2 7928variant_field_index (struct type *type)
14f9c5c9
AS
7929{
7930 int f;
7931
78134374 7932 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
4c4b4cd2
PH
7933 return -1;
7934
1f704f76 7935 for (f = 0; f < type->num_fields (); f += 1)
4c4b4cd2
PH
7936 {
7937 if (ada_is_variant_part (type, f))
7938 return f;
7939 }
7940 return -1;
14f9c5c9
AS
7941}
7942
4c4b4cd2
PH
7943/* A record type with no fields. */
7944
d2e4a39e 7945static struct type *
fe978cb0 7946empty_record (struct type *templ)
14f9c5c9 7947{
fe978cb0 7948 struct type *type = alloc_type_copy (templ);
5b4ee69b 7949
67607e24 7950 type->set_code (TYPE_CODE_STRUCT);
8ecb59f8 7951 INIT_NONE_SPECIFIC (type);
d0e39ea2 7952 type->set_name ("<empty>");
14f9c5c9
AS
7953 TYPE_LENGTH (type) = 0;
7954 return type;
7955}
7956
7957/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7958 the value of type TYPE at VALADDR or ADDRESS (see comments at
7959 the beginning of this section) VAL according to GNAT conventions.
7960 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7961 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7962 an outer-level type (i.e., as opposed to a branch of a variant.) A
7963 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7964 of the variant.
14f9c5c9 7965
4c4b4cd2
PH
7966 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7967 length are not statically known are discarded. As a consequence,
7968 VALADDR, ADDRESS and DVAL0 are ignored.
7969
7970 NOTE: Limitations: For now, we assume that dynamic fields and
7971 variants occupy whole numbers of bytes. However, they need not be
7972 byte-aligned. */
7973
7974struct type *
10a2c479 7975ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7976 const gdb_byte *valaddr,
4c4b4cd2
PH
7977 CORE_ADDR address, struct value *dval0,
7978 int keep_dynamic_fields)
14f9c5c9 7979{
d2e4a39e
AS
7980 struct value *mark = value_mark ();
7981 struct value *dval;
7982 struct type *rtype;
14f9c5c9 7983 int nfields, bit_len;
4c4b4cd2 7984 int variant_field;
14f9c5c9 7985 long off;
d94e4f4f 7986 int fld_bit_len;
14f9c5c9
AS
7987 int f;
7988
4c4b4cd2
PH
7989 /* Compute the number of fields in this record type that are going
7990 to be processed: unless keep_dynamic_fields, this includes only
7991 fields whose position and length are static will be processed. */
7992 if (keep_dynamic_fields)
1f704f76 7993 nfields = type->num_fields ();
4c4b4cd2
PH
7994 else
7995 {
7996 nfields = 0;
1f704f76 7997 while (nfields < type->num_fields ()
4c4b4cd2
PH
7998 && !ada_is_variant_part (type, nfields)
7999 && !is_dynamic_field (type, nfields))
8000 nfields++;
8001 }
8002
e9bb382b 8003 rtype = alloc_type_copy (type);
67607e24 8004 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8005 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8006 rtype->set_num_fields (nfields);
3cabb6b0
SM
8007 rtype->set_fields
8008 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
d0e39ea2 8009 rtype->set_name (ada_type_name (type));
876cecd0 8010 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8011
d2e4a39e
AS
8012 off = 0;
8013 bit_len = 0;
4c4b4cd2
PH
8014 variant_field = -1;
8015
14f9c5c9
AS
8016 for (f = 0; f < nfields; f += 1)
8017 {
a89febbd 8018 off = align_up (off, field_alignment (type, f))
6c038f32 8019 + TYPE_FIELD_BITPOS (type, f);
ceacbf6e 8020 SET_FIELD_BITPOS (rtype->field (f), off);
d2e4a39e 8021 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8022
d2e4a39e 8023 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8024 {
8025 variant_field = f;
d94e4f4f 8026 fld_bit_len = 0;
4c4b4cd2 8027 }
14f9c5c9 8028 else if (is_dynamic_field (type, f))
4c4b4cd2 8029 {
284614f0
JB
8030 const gdb_byte *field_valaddr = valaddr;
8031 CORE_ADDR field_address = address;
8032 struct type *field_type =
940da03e 8033 TYPE_TARGET_TYPE (type->field (f).type ());
284614f0 8034
4c4b4cd2 8035 if (dval0 == NULL)
b5304971
JG
8036 {
8037 /* rtype's length is computed based on the run-time
8038 value of discriminants. If the discriminants are not
8039 initialized, the type size may be completely bogus and
0963b4bd 8040 GDB may fail to allocate a value for it. So check the
b5304971 8041 size first before creating the value. */
c1b5a1a6 8042 ada_ensure_varsize_limit (rtype);
012370f6
TT
8043 /* Using plain value_from_contents_and_address here
8044 causes problems because we will end up trying to
8045 resolve a type that is currently being
8046 constructed. */
8047 dval = value_from_contents_and_address_unresolved (rtype,
8048 valaddr,
8049 address);
9f1f738a 8050 rtype = value_type (dval);
b5304971 8051 }
4c4b4cd2
PH
8052 else
8053 dval = dval0;
8054
284614f0
JB
8055 /* If the type referenced by this field is an aligner type, we need
8056 to unwrap that aligner type, because its size might not be set.
8057 Keeping the aligner type would cause us to compute the wrong
8058 size for this field, impacting the offset of the all the fields
8059 that follow this one. */
8060 if (ada_is_aligner_type (field_type))
8061 {
8062 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8063
8064 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8065 field_address = cond_offset_target (field_address, field_offset);
8066 field_type = ada_aligned_type (field_type);
8067 }
8068
8069 field_valaddr = cond_offset_host (field_valaddr,
8070 off / TARGET_CHAR_BIT);
8071 field_address = cond_offset_target (field_address,
8072 off / TARGET_CHAR_BIT);
8073
8074 /* Get the fixed type of the field. Note that, in this case,
8075 we do not want to get the real type out of the tag: if
8076 the current field is the parent part of a tagged record,
8077 we will get the tag of the object. Clearly wrong: the real
8078 type of the parent is not the real type of the child. We
8079 would end up in an infinite loop. */
8080 field_type = ada_get_base_type (field_type);
8081 field_type = ada_to_fixed_type (field_type, field_valaddr,
8082 field_address, dval, 0);
27f2a97b
JB
8083 /* If the field size is already larger than the maximum
8084 object size, then the record itself will necessarily
8085 be larger than the maximum object size. We need to make
8086 this check now, because the size might be so ridiculously
8087 large (due to an uninitialized variable in the inferior)
8088 that it would cause an overflow when adding it to the
8089 record size. */
c1b5a1a6 8090 ada_ensure_varsize_limit (field_type);
284614f0 8091
5d14b6e5 8092 rtype->field (f).set_type (field_type);
4c4b4cd2 8093 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8094 /* The multiplication can potentially overflow. But because
8095 the field length has been size-checked just above, and
8096 assuming that the maximum size is a reasonable value,
8097 an overflow should not happen in practice. So rather than
8098 adding overflow recovery code to this already complex code,
8099 we just assume that it's not going to happen. */
d94e4f4f 8100 fld_bit_len =
940da03e 8101 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
4c4b4cd2 8102 }
14f9c5c9 8103 else
4c4b4cd2 8104 {
5ded5331
JB
8105 /* Note: If this field's type is a typedef, it is important
8106 to preserve the typedef layer.
8107
8108 Otherwise, we might be transforming a typedef to a fat
8109 pointer (encoding a pointer to an unconstrained array),
8110 into a basic fat pointer (encoding an unconstrained
8111 array). As both types are implemented using the same
8112 structure, the typedef is the only clue which allows us
8113 to distinguish between the two options. Stripping it
8114 would prevent us from printing this field appropriately. */
940da03e 8115 rtype->field (f).set_type (type->field (f).type ());
4c4b4cd2
PH
8116 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8117 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8118 fld_bit_len =
4c4b4cd2
PH
8119 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8120 else
5ded5331 8121 {
940da03e 8122 struct type *field_type = type->field (f).type ();
5ded5331
JB
8123
8124 /* We need to be careful of typedefs when computing
8125 the length of our field. If this is a typedef,
8126 get the length of the target type, not the length
8127 of the typedef. */
78134374 8128 if (field_type->code () == TYPE_CODE_TYPEDEF)
5ded5331
JB
8129 field_type = ada_typedef_target_type (field_type);
8130
8131 fld_bit_len =
8132 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8133 }
4c4b4cd2 8134 }
14f9c5c9 8135 if (off + fld_bit_len > bit_len)
4c4b4cd2 8136 bit_len = off + fld_bit_len;
d94e4f4f 8137 off += fld_bit_len;
4c4b4cd2 8138 TYPE_LENGTH (rtype) =
a89febbd 8139 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8140 }
4c4b4cd2
PH
8141
8142 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8143 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8144 the record. This can happen in the presence of representation
8145 clauses. */
8146 if (variant_field >= 0)
8147 {
8148 struct type *branch_type;
8149
8150 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8151
8152 if (dval0 == NULL)
9f1f738a 8153 {
012370f6
TT
8154 /* Using plain value_from_contents_and_address here causes
8155 problems because we will end up trying to resolve a type
8156 that is currently being constructed. */
8157 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8158 address);
9f1f738a
SA
8159 rtype = value_type (dval);
8160 }
4c4b4cd2
PH
8161 else
8162 dval = dval0;
8163
8164 branch_type =
8165 to_fixed_variant_branch_type
940da03e 8166 (type->field (variant_field).type (),
4c4b4cd2
PH
8167 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8168 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8169 if (branch_type == NULL)
8170 {
1f704f76 8171 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
80fc5e77 8172 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8173 rtype->set_num_fields (rtype->num_fields () - 1);
4c4b4cd2
PH
8174 }
8175 else
8176 {
5d14b6e5 8177 rtype->field (variant_field).set_type (branch_type);
4c4b4cd2
PH
8178 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8179 fld_bit_len =
940da03e 8180 TYPE_LENGTH (rtype->field (variant_field).type ()) *
4c4b4cd2
PH
8181 TARGET_CHAR_BIT;
8182 if (off + fld_bit_len > bit_len)
8183 bit_len = off + fld_bit_len;
8184 TYPE_LENGTH (rtype) =
a89febbd 8185 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
4c4b4cd2
PH
8186 }
8187 }
8188
714e53ab
PH
8189 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8190 should contain the alignment of that record, which should be a strictly
8191 positive value. If null or negative, then something is wrong, most
8192 probably in the debug info. In that case, we don't round up the size
0963b4bd 8193 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8194 the current RTYPE length might be good enough for our purposes. */
8195 if (TYPE_LENGTH (type) <= 0)
8196 {
7d93a1e0 8197 if (rtype->name ())
cc1defb1 8198 warning (_("Invalid type size for `%s' detected: %s."),
7d93a1e0 8199 rtype->name (), pulongest (TYPE_LENGTH (type)));
323e0a4a 8200 else
cc1defb1
KS
8201 warning (_("Invalid type size for <unnamed> detected: %s."),
8202 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8203 }
8204 else
8205 {
a89febbd
TT
8206 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8207 TYPE_LENGTH (type));
714e53ab 8208 }
14f9c5c9
AS
8209
8210 value_free_to_mark (mark);
d2e4a39e 8211 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8212 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8213 return rtype;
8214}
8215
4c4b4cd2
PH
8216/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8217 of 1. */
14f9c5c9 8218
d2e4a39e 8219static struct type *
fc1a4b47 8220template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8221 CORE_ADDR address, struct value *dval0)
8222{
8223 return ada_template_to_fixed_record_type_1 (type, valaddr,
8224 address, dval0, 1);
8225}
8226
8227/* An ordinary record type in which ___XVL-convention fields and
8228 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8229 static approximations, containing all possible fields. Uses
8230 no runtime values. Useless for use in values, but that's OK,
8231 since the results are used only for type determinations. Works on both
8232 structs and unions. Representation note: to save space, we memorize
8233 the result of this function in the TYPE_TARGET_TYPE of the
8234 template type. */
8235
8236static struct type *
8237template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8238{
8239 struct type *type;
8240 int nfields;
8241 int f;
8242
9e195661
PMR
8243 /* No need no do anything if the input type is already fixed. */
8244 if (TYPE_FIXED_INSTANCE (type0))
8245 return type0;
8246
8247 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8248 if (TYPE_TARGET_TYPE (type0) != NULL)
8249 return TYPE_TARGET_TYPE (type0);
8250
9e195661 8251 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8252 type = type0;
1f704f76 8253 nfields = type0->num_fields ();
9e195661
PMR
8254
8255 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8256 recompute all over next time. */
8257 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8258
8259 for (f = 0; f < nfields; f += 1)
8260 {
940da03e 8261 struct type *field_type = type0->field (f).type ();
4c4b4cd2 8262 struct type *new_type;
14f9c5c9 8263
4c4b4cd2 8264 if (is_dynamic_field (type0, f))
460efde1
JB
8265 {
8266 field_type = ada_check_typedef (field_type);
8267 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8268 }
14f9c5c9 8269 else
f192137b 8270 new_type = static_unwrap_type (field_type);
9e195661
PMR
8271
8272 if (new_type != field_type)
8273 {
8274 /* Clone TYPE0 only the first time we get a new field type. */
8275 if (type == type0)
8276 {
8277 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
78134374 8278 type->set_code (type0->code ());
8ecb59f8 8279 INIT_NONE_SPECIFIC (type);
5e33d5f4 8280 type->set_num_fields (nfields);
3cabb6b0
SM
8281
8282 field *fields =
8283 ((struct field *)
8284 TYPE_ALLOC (type, nfields * sizeof (struct field)));
80fc5e77 8285 memcpy (fields, type0->fields (),
9e195661 8286 sizeof (struct field) * nfields);
3cabb6b0
SM
8287 type->set_fields (fields);
8288
d0e39ea2 8289 type->set_name (ada_type_name (type0));
9e195661
PMR
8290 TYPE_FIXED_INSTANCE (type) = 1;
8291 TYPE_LENGTH (type) = 0;
8292 }
5d14b6e5 8293 type->field (f).set_type (new_type);
9e195661
PMR
8294 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8295 }
14f9c5c9 8296 }
9e195661 8297
14f9c5c9
AS
8298 return type;
8299}
8300
4c4b4cd2 8301/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8302 whose address in memory is ADDRESS, returns a revision of TYPE,
8303 which should be a non-dynamic-sized record, in which the variant
8304 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8305 for discriminant values in DVAL0, which can be NULL if the record
8306 contains the necessary discriminant values. */
8307
d2e4a39e 8308static struct type *
fc1a4b47 8309to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8310 CORE_ADDR address, struct value *dval0)
14f9c5c9 8311{
d2e4a39e 8312 struct value *mark = value_mark ();
4c4b4cd2 8313 struct value *dval;
d2e4a39e 8314 struct type *rtype;
14f9c5c9 8315 struct type *branch_type;
1f704f76 8316 int nfields = type->num_fields ();
4c4b4cd2 8317 int variant_field = variant_field_index (type);
14f9c5c9 8318
4c4b4cd2 8319 if (variant_field == -1)
14f9c5c9
AS
8320 return type;
8321
4c4b4cd2 8322 if (dval0 == NULL)
9f1f738a
SA
8323 {
8324 dval = value_from_contents_and_address (type, valaddr, address);
8325 type = value_type (dval);
8326 }
4c4b4cd2
PH
8327 else
8328 dval = dval0;
8329
e9bb382b 8330 rtype = alloc_type_copy (type);
67607e24 8331 rtype->set_code (TYPE_CODE_STRUCT);
8ecb59f8 8332 INIT_NONE_SPECIFIC (rtype);
5e33d5f4 8333 rtype->set_num_fields (nfields);
3cabb6b0
SM
8334
8335 field *fields =
d2e4a39e 8336 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
80fc5e77 8337 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
3cabb6b0
SM
8338 rtype->set_fields (fields);
8339
d0e39ea2 8340 rtype->set_name (ada_type_name (type));
876cecd0 8341 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8342 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8343
4c4b4cd2 8344 branch_type = to_fixed_variant_branch_type
940da03e 8345 (type->field (variant_field).type (),
d2e4a39e 8346 cond_offset_host (valaddr,
4c4b4cd2
PH
8347 TYPE_FIELD_BITPOS (type, variant_field)
8348 / TARGET_CHAR_BIT),
d2e4a39e 8349 cond_offset_target (address,
4c4b4cd2
PH
8350 TYPE_FIELD_BITPOS (type, variant_field)
8351 / TARGET_CHAR_BIT), dval);
d2e4a39e 8352 if (branch_type == NULL)
14f9c5c9 8353 {
4c4b4cd2 8354 int f;
5b4ee69b 8355
4c4b4cd2 8356 for (f = variant_field + 1; f < nfields; f += 1)
80fc5e77 8357 rtype->field (f - 1) = rtype->field (f);
5e33d5f4 8358 rtype->set_num_fields (rtype->num_fields () - 1);
14f9c5c9
AS
8359 }
8360 else
8361 {
5d14b6e5 8362 rtype->field (variant_field).set_type (branch_type);
4c4b4cd2
PH
8363 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8364 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8365 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8366 }
940da03e 8367 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
d2e4a39e 8368
4c4b4cd2 8369 value_free_to_mark (mark);
14f9c5c9
AS
8370 return rtype;
8371}
8372
8373/* An ordinary record type (with fixed-length fields) that describes
8374 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8375 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8376 should be in DVAL, a record value; it may be NULL if the object
8377 at ADDR itself contains any necessary discriminant values.
8378 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8379 values from the record are needed. Except in the case that DVAL,
8380 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8381 unchecked) is replaced by a particular branch of the variant.
8382
8383 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8384 is questionable and may be removed. It can arise during the
8385 processing of an unconstrained-array-of-record type where all the
8386 variant branches have exactly the same size. This is because in
8387 such cases, the compiler does not bother to use the XVS convention
8388 when encoding the record. I am currently dubious of this
8389 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8390
d2e4a39e 8391static struct type *
fc1a4b47 8392to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8393 CORE_ADDR address, struct value *dval)
14f9c5c9 8394{
d2e4a39e 8395 struct type *templ_type;
14f9c5c9 8396
876cecd0 8397 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8398 return type0;
8399
d2e4a39e 8400 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8401
8402 if (templ_type != NULL)
8403 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8404 else if (variant_field_index (type0) >= 0)
8405 {
8406 if (dval == NULL && valaddr == NULL && address == 0)
8407 return type0;
8408 return to_record_with_fixed_variant_part (type0, valaddr, address,
8409 dval);
8410 }
14f9c5c9
AS
8411 else
8412 {
876cecd0 8413 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8414 return type0;
8415 }
8416
8417}
8418
8419/* An ordinary record type (with fixed-length fields) that describes
8420 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8421 union type. Any necessary discriminants' values should be in DVAL,
8422 a record value. That is, this routine selects the appropriate
8423 branch of the union at ADDR according to the discriminant value
b1f33ddd 8424 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8425 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8426
d2e4a39e 8427static struct type *
fc1a4b47 8428to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8429 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8430{
8431 int which;
d2e4a39e
AS
8432 struct type *templ_type;
8433 struct type *var_type;
14f9c5c9 8434
78134374 8435 if (var_type0->code () == TYPE_CODE_PTR)
14f9c5c9 8436 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8437 else
14f9c5c9
AS
8438 var_type = var_type0;
8439
8440 templ_type = ada_find_parallel_type (var_type, "___XVU");
8441
8442 if (templ_type != NULL)
8443 var_type = templ_type;
8444
b1f33ddd
JB
8445 if (is_unchecked_variant (var_type, value_type (dval)))
8446 return var_type0;
d8af9068 8447 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
8448
8449 if (which < 0)
e9bb382b 8450 return empty_record (var_type);
14f9c5c9 8451 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8452 return to_fixed_record_type
940da03e 8453 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
d2e4a39e 8454 valaddr, address, dval);
940da03e 8455 else if (variant_field_index (var_type->field (which).type ()) >= 0)
d2e4a39e
AS
8456 return
8457 to_fixed_record_type
940da03e 8458 (var_type->field (which).type (), valaddr, address, dval);
14f9c5c9 8459 else
940da03e 8460 return var_type->field (which).type ();
14f9c5c9
AS
8461}
8462
8908fca5
JB
8463/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8464 ENCODING_TYPE, a type following the GNAT conventions for discrete
8465 type encodings, only carries redundant information. */
8466
8467static int
8468ada_is_redundant_range_encoding (struct type *range_type,
8469 struct type *encoding_type)
8470{
108d56a4 8471 const char *bounds_str;
8908fca5
JB
8472 int n;
8473 LONGEST lo, hi;
8474
78134374 8475 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8908fca5 8476
78134374
SM
8477 if (get_base_type (range_type)->code ()
8478 != get_base_type (encoding_type)->code ())
005e2509
JB
8479 {
8480 /* The compiler probably used a simple base type to describe
8481 the range type instead of the range's actual base type,
8482 expecting us to get the real base type from the encoding
8483 anyway. In this situation, the encoding cannot be ignored
8484 as redundant. */
8485 return 0;
8486 }
8487
8908fca5
JB
8488 if (is_dynamic_type (range_type))
8489 return 0;
8490
7d93a1e0 8491 if (encoding_type->name () == NULL)
8908fca5
JB
8492 return 0;
8493
7d93a1e0 8494 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8908fca5
JB
8495 if (bounds_str == NULL)
8496 return 0;
8497
8498 n = 8; /* Skip "___XDLU_". */
8499 if (!ada_scan_number (bounds_str, n, &lo, &n))
8500 return 0;
8501 if (TYPE_LOW_BOUND (range_type) != lo)
8502 return 0;
8503
8504 n += 2; /* Skip the "__" separator between the two bounds. */
8505 if (!ada_scan_number (bounds_str, n, &hi, &n))
8506 return 0;
8507 if (TYPE_HIGH_BOUND (range_type) != hi)
8508 return 0;
8509
8510 return 1;
8511}
8512
8513/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8514 a type following the GNAT encoding for describing array type
8515 indices, only carries redundant information. */
8516
8517static int
8518ada_is_redundant_index_type_desc (struct type *array_type,
8519 struct type *desc_type)
8520{
8521 struct type *this_layer = check_typedef (array_type);
8522 int i;
8523
1f704f76 8524 for (i = 0; i < desc_type->num_fields (); i++)
8908fca5 8525 {
3d967001 8526 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
940da03e 8527 desc_type->field (i).type ()))
8908fca5
JB
8528 return 0;
8529 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8530 }
8531
8532 return 1;
8533}
8534
14f9c5c9
AS
8535/* Assuming that TYPE0 is an array type describing the type of a value
8536 at ADDR, and that DVAL describes a record containing any
8537 discriminants used in TYPE0, returns a type for the value that
8538 contains no dynamic components (that is, no components whose sizes
8539 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8540 true, gives an error message if the resulting type's size is over
4c4b4cd2 8541 varsize_limit. */
14f9c5c9 8542
d2e4a39e
AS
8543static struct type *
8544to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8545 int ignore_too_big)
14f9c5c9 8546{
d2e4a39e
AS
8547 struct type *index_type_desc;
8548 struct type *result;
ad82864c 8549 int constrained_packed_array_p;
931e5bc3 8550 static const char *xa_suffix = "___XA";
14f9c5c9 8551
b0dd7688 8552 type0 = ada_check_typedef (type0);
284614f0 8553 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8554 return type0;
14f9c5c9 8555
ad82864c
JB
8556 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8557 if (constrained_packed_array_p)
8558 type0 = decode_constrained_packed_array_type (type0);
284614f0 8559
931e5bc3
JG
8560 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8561
8562 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8563 encoding suffixed with 'P' may still be generated. If so,
8564 it should be used to find the XA type. */
8565
8566 if (index_type_desc == NULL)
8567 {
1da0522e 8568 const char *type_name = ada_type_name (type0);
931e5bc3 8569
1da0522e 8570 if (type_name != NULL)
931e5bc3 8571 {
1da0522e 8572 const int len = strlen (type_name);
931e5bc3
JG
8573 char *name = (char *) alloca (len + strlen (xa_suffix));
8574
1da0522e 8575 if (type_name[len - 1] == 'P')
931e5bc3 8576 {
1da0522e 8577 strcpy (name, type_name);
931e5bc3
JG
8578 strcpy (name + len - 1, xa_suffix);
8579 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8580 }
8581 }
8582 }
8583
28c85d6c 8584 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8585 if (index_type_desc != NULL
8586 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8587 {
8588 /* Ignore this ___XA parallel type, as it does not bring any
8589 useful information. This allows us to avoid creating fixed
8590 versions of the array's index types, which would be identical
8591 to the original ones. This, in turn, can also help avoid
8592 the creation of fixed versions of the array itself. */
8593 index_type_desc = NULL;
8594 }
8595
14f9c5c9
AS
8596 if (index_type_desc == NULL)
8597 {
61ee279c 8598 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8599
14f9c5c9 8600 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8601 depend on the contents of the array in properly constructed
8602 debugging data. */
529cad9c
PH
8603 /* Create a fixed version of the array element type.
8604 We're not providing the address of an element here,
e1d5a0d2 8605 and thus the actual object value cannot be inspected to do
529cad9c
PH
8606 the conversion. This should not be a problem, since arrays of
8607 unconstrained objects are not allowed. In particular, all
8608 the elements of an array of a tagged type should all be of
8609 the same type specified in the debugging info. No need to
8610 consult the object tag. */
1ed6ede0 8611 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8612
284614f0
JB
8613 /* Make sure we always create a new array type when dealing with
8614 packed array types, since we're going to fix-up the array
8615 type length and element bitsize a little further down. */
ad82864c 8616 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8617 result = type0;
14f9c5c9 8618 else
e9bb382b 8619 result = create_array_type (alloc_type_copy (type0),
3d967001 8620 elt_type, type0->index_type ());
14f9c5c9
AS
8621 }
8622 else
8623 {
8624 int i;
8625 struct type *elt_type0;
8626
8627 elt_type0 = type0;
1f704f76 8628 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
4c4b4cd2 8629 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8630
8631 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8632 depend on the contents of the array in properly constructed
8633 debugging data. */
529cad9c
PH
8634 /* Create a fixed version of the array element type.
8635 We're not providing the address of an element here,
e1d5a0d2 8636 and thus the actual object value cannot be inspected to do
529cad9c
PH
8637 the conversion. This should not be a problem, since arrays of
8638 unconstrained objects are not allowed. In particular, all
8639 the elements of an array of a tagged type should all be of
8640 the same type specified in the debugging info. No need to
8641 consult the object tag. */
1ed6ede0
JB
8642 result =
8643 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8644
8645 elt_type0 = type0;
1f704f76 8646 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8647 {
8648 struct type *range_type =
940da03e 8649 to_fixed_range_type (index_type_desc->field (i).type (), dval);
5b4ee69b 8650
e9bb382b 8651 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8652 result, range_type);
1ce677a4 8653 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8654 }
d2e4a39e 8655 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8656 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8657 }
8658
2e6fda7d
JB
8659 /* We want to preserve the type name. This can be useful when
8660 trying to get the type name of a value that has already been
8661 printed (for instance, if the user did "print VAR; whatis $". */
7d93a1e0 8662 result->set_name (type0->name ());
2e6fda7d 8663
ad82864c 8664 if (constrained_packed_array_p)
284614f0
JB
8665 {
8666 /* So far, the resulting type has been created as if the original
8667 type was a regular (non-packed) array type. As a result, the
8668 bitsize of the array elements needs to be set again, and the array
8669 length needs to be recomputed based on that bitsize. */
8670 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8671 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8672
8673 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8674 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8675 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8676 TYPE_LENGTH (result)++;
8677 }
8678
876cecd0 8679 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8680 return result;
d2e4a39e 8681}
14f9c5c9
AS
8682
8683
8684/* A standard type (containing no dynamically sized components)
8685 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8686 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8687 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8688 ADDRESS or in VALADDR contains these discriminants.
8689
1ed6ede0
JB
8690 If CHECK_TAG is not null, in the case of tagged types, this function
8691 attempts to locate the object's tag and use it to compute the actual
8692 type. However, when ADDRESS is null, we cannot use it to determine the
8693 location of the tag, and therefore compute the tagged type's actual type.
8694 So we return the tagged type without consulting the tag. */
529cad9c 8695
f192137b
JB
8696static struct type *
8697ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8698 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8699{
61ee279c 8700 type = ada_check_typedef (type);
8ecb59f8
TT
8701
8702 /* Only un-fixed types need to be handled here. */
8703 if (!HAVE_GNAT_AUX_INFO (type))
8704 return type;
8705
78134374 8706 switch (type->code ())
d2e4a39e
AS
8707 {
8708 default:
14f9c5c9 8709 return type;
d2e4a39e 8710 case TYPE_CODE_STRUCT:
4c4b4cd2 8711 {
76a01679 8712 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8713 struct type *fixed_record_type =
8714 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8715
529cad9c
PH
8716 /* If STATIC_TYPE is a tagged type and we know the object's address,
8717 then we can determine its tag, and compute the object's actual
0963b4bd 8718 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8719 type (the parent part of the record may have dynamic fields
8720 and the way the location of _tag is expressed may depend on
8721 them). */
529cad9c 8722
1ed6ede0 8723 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8724 {
b50d69b5
JG
8725 struct value *tag =
8726 value_tag_from_contents_and_address
8727 (fixed_record_type,
8728 valaddr,
8729 address);
8730 struct type *real_type = type_from_tag (tag);
8731 struct value *obj =
8732 value_from_contents_and_address (fixed_record_type,
8733 valaddr,
8734 address);
9f1f738a 8735 fixed_record_type = value_type (obj);
76a01679 8736 if (real_type != NULL)
b50d69b5
JG
8737 return to_fixed_record_type
8738 (real_type, NULL,
8739 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8740 }
4af88198
JB
8741
8742 /* Check to see if there is a parallel ___XVZ variable.
8743 If there is, then it provides the actual size of our type. */
8744 else if (ada_type_name (fixed_record_type) != NULL)
8745 {
0d5cff50 8746 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8747 char *xvz_name
8748 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8749 bool xvz_found = false;
4af88198
JB
8750 LONGEST size;
8751
88c15c34 8752 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8753 try
eccab96d
JB
8754 {
8755 xvz_found = get_int_var_value (xvz_name, size);
8756 }
230d2906 8757 catch (const gdb_exception_error &except)
eccab96d
JB
8758 {
8759 /* We found the variable, but somehow failed to read
8760 its value. Rethrow the same error, but with a little
8761 bit more information, to help the user understand
8762 what went wrong (Eg: the variable might have been
8763 optimized out). */
8764 throw_error (except.error,
8765 _("unable to read value of %s (%s)"),
3d6e9d23 8766 xvz_name, except.what ());
eccab96d 8767 }
eccab96d
JB
8768
8769 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8770 {
8771 fixed_record_type = copy_type (fixed_record_type);
8772 TYPE_LENGTH (fixed_record_type) = size;
8773
8774 /* The FIXED_RECORD_TYPE may have be a stub. We have
8775 observed this when the debugging info is STABS, and
8776 apparently it is something that is hard to fix.
8777
8778 In practice, we don't need the actual type definition
8779 at all, because the presence of the XVZ variable allows us
8780 to assume that there must be a XVS type as well, which we
8781 should be able to use later, when we need the actual type
8782 definition.
8783
8784 In the meantime, pretend that the "fixed" type we are
8785 returning is NOT a stub, because this can cause trouble
8786 when using this type to create new types targeting it.
8787 Indeed, the associated creation routines often check
8788 whether the target type is a stub and will try to replace
0963b4bd 8789 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8790 might cause the new type to have the wrong size too.
8791 Consider the case of an array, for instance, where the size
8792 of the array is computed from the number of elements in
8793 our array multiplied by the size of its element. */
8794 TYPE_STUB (fixed_record_type) = 0;
8795 }
8796 }
1ed6ede0 8797 return fixed_record_type;
4c4b4cd2 8798 }
d2e4a39e 8799 case TYPE_CODE_ARRAY:
4c4b4cd2 8800 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8801 case TYPE_CODE_UNION:
8802 if (dval == NULL)
4c4b4cd2 8803 return type;
d2e4a39e 8804 else
4c4b4cd2 8805 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8806 }
14f9c5c9
AS
8807}
8808
f192137b
JB
8809/* The same as ada_to_fixed_type_1, except that it preserves the type
8810 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8811
8812 The typedef layer needs be preserved in order to differentiate between
8813 arrays and array pointers when both types are implemented using the same
8814 fat pointer. In the array pointer case, the pointer is encoded as
8815 a typedef of the pointer type. For instance, considering:
8816
8817 type String_Access is access String;
8818 S1 : String_Access := null;
8819
8820 To the debugger, S1 is defined as a typedef of type String. But
8821 to the user, it is a pointer. So if the user tries to print S1,
8822 we should not dereference the array, but print the array address
8823 instead.
8824
8825 If we didn't preserve the typedef layer, we would lose the fact that
8826 the type is to be presented as a pointer (needs de-reference before
8827 being printed). And we would also use the source-level type name. */
f192137b
JB
8828
8829struct type *
8830ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8831 CORE_ADDR address, struct value *dval, int check_tag)
8832
8833{
8834 struct type *fixed_type =
8835 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8836
96dbd2c1
JB
8837 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8838 then preserve the typedef layer.
8839
8840 Implementation note: We can only check the main-type portion of
8841 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8842 from TYPE now returns a type that has the same instance flags
8843 as TYPE. For instance, if TYPE is a "typedef const", and its
8844 target type is a "struct", then the typedef elimination will return
8845 a "const" version of the target type. See check_typedef for more
8846 details about how the typedef layer elimination is done.
8847
8848 brobecker/2010-11-19: It seems to me that the only case where it is
8849 useful to preserve the typedef layer is when dealing with fat pointers.
8850 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8851 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8852 because we call check_typedef/ada_check_typedef pretty much everywhere.
8853 */
78134374 8854 if (type->code () == TYPE_CODE_TYPEDEF
720d1a40 8855 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8856 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8857 return type;
8858
8859 return fixed_type;
8860}
8861
14f9c5c9 8862/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8863 TYPE0, but based on no runtime data. */
14f9c5c9 8864
d2e4a39e
AS
8865static struct type *
8866to_static_fixed_type (struct type *type0)
14f9c5c9 8867{
d2e4a39e 8868 struct type *type;
14f9c5c9
AS
8869
8870 if (type0 == NULL)
8871 return NULL;
8872
876cecd0 8873 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8874 return type0;
8875
61ee279c 8876 type0 = ada_check_typedef (type0);
d2e4a39e 8877
78134374 8878 switch (type0->code ())
14f9c5c9
AS
8879 {
8880 default:
8881 return type0;
8882 case TYPE_CODE_STRUCT:
8883 type = dynamic_template_type (type0);
d2e4a39e 8884 if (type != NULL)
4c4b4cd2
PH
8885 return template_to_static_fixed_type (type);
8886 else
8887 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8888 case TYPE_CODE_UNION:
8889 type = ada_find_parallel_type (type0, "___XVU");
8890 if (type != NULL)
4c4b4cd2
PH
8891 return template_to_static_fixed_type (type);
8892 else
8893 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8894 }
8895}
8896
4c4b4cd2
PH
8897/* A static approximation of TYPE with all type wrappers removed. */
8898
d2e4a39e
AS
8899static struct type *
8900static_unwrap_type (struct type *type)
14f9c5c9
AS
8901{
8902 if (ada_is_aligner_type (type))
8903 {
940da03e 8904 struct type *type1 = ada_check_typedef (type)->field (0).type ();
14f9c5c9 8905 if (ada_type_name (type1) == NULL)
d0e39ea2 8906 type1->set_name (ada_type_name (type));
14f9c5c9
AS
8907
8908 return static_unwrap_type (type1);
8909 }
d2e4a39e 8910 else
14f9c5c9 8911 {
d2e4a39e 8912 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8913
d2e4a39e 8914 if (raw_real_type == type)
4c4b4cd2 8915 return type;
14f9c5c9 8916 else
4c4b4cd2 8917 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8918 }
8919}
8920
8921/* In some cases, incomplete and private types require
4c4b4cd2 8922 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8923 type Foo;
8924 type FooP is access Foo;
8925 V: FooP;
8926 type Foo is array ...;
4c4b4cd2 8927 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8928 cross-references to such types, we instead substitute for FooP a
8929 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8930 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8931
8932/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8933 exists, otherwise TYPE. */
8934
d2e4a39e 8935struct type *
61ee279c 8936ada_check_typedef (struct type *type)
14f9c5c9 8937{
727e3d2e
JB
8938 if (type == NULL)
8939 return NULL;
8940
736ade86
XR
8941 /* If our type is an access to an unconstrained array, which is encoded
8942 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
8943 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8944 what allows us to distinguish between fat pointers that represent
8945 array types, and fat pointers that represent array access types
8946 (in both cases, the compiler implements them as fat pointers). */
736ade86 8947 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
8948 return type;
8949
f168693b 8950 type = check_typedef (type);
78134374 8951 if (type == NULL || type->code () != TYPE_CODE_ENUM
529cad9c 8952 || !TYPE_STUB (type)
7d93a1e0 8953 || type->name () == NULL)
14f9c5c9 8954 return type;
d2e4a39e 8955 else
14f9c5c9 8956 {
7d93a1e0 8957 const char *name = type->name ();
d2e4a39e 8958 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8959
05e522ef
JB
8960 if (type1 == NULL)
8961 return type;
8962
8963 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8964 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8965 types, only for the typedef-to-array types). If that's the case,
8966 strip the typedef layer. */
78134374 8967 if (type1->code () == TYPE_CODE_TYPEDEF)
3a867c22
JB
8968 type1 = ada_check_typedef (type1);
8969
8970 return type1;
14f9c5c9
AS
8971 }
8972}
8973
8974/* A value representing the data at VALADDR/ADDRESS as described by
8975 type TYPE0, but with a standard (static-sized) type that correctly
8976 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8977 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8978 creation of struct values]. */
14f9c5c9 8979
4c4b4cd2
PH
8980static struct value *
8981ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8982 struct value *val0)
14f9c5c9 8983{
1ed6ede0 8984 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8985
14f9c5c9
AS
8986 if (type == type0 && val0 != NULL)
8987 return val0;
cc0e770c
JB
8988
8989 if (VALUE_LVAL (val0) != lval_memory)
8990 {
8991 /* Our value does not live in memory; it could be a convenience
8992 variable, for instance. Create a not_lval value using val0's
8993 contents. */
8994 return value_from_contents (type, value_contents (val0));
8995 }
8996
8997 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
8998}
8999
9000/* A value representing VAL, but with a standard (static-sized) type
9001 that correctly describes it. Does not necessarily create a new
9002 value. */
9003
0c3acc09 9004struct value *
4c4b4cd2
PH
9005ada_to_fixed_value (struct value *val)
9006{
c48db5ca 9007 val = unwrap_value (val);
d8ce9127 9008 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9009 return val;
14f9c5c9 9010}
d2e4a39e 9011\f
14f9c5c9 9012
14f9c5c9
AS
9013/* Attributes */
9014
4c4b4cd2
PH
9015/* Table mapping attribute numbers to names.
9016 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9017
d2e4a39e 9018static const char *attribute_names[] = {
14f9c5c9
AS
9019 "<?>",
9020
d2e4a39e 9021 "first",
14f9c5c9
AS
9022 "last",
9023 "length",
9024 "image",
14f9c5c9
AS
9025 "max",
9026 "min",
4c4b4cd2
PH
9027 "modulus",
9028 "pos",
9029 "size",
9030 "tag",
14f9c5c9 9031 "val",
14f9c5c9
AS
9032 0
9033};
9034
de93309a 9035static const char *
4c4b4cd2 9036ada_attribute_name (enum exp_opcode n)
14f9c5c9 9037{
4c4b4cd2
PH
9038 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9039 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9040 else
9041 return attribute_names[0];
9042}
9043
4c4b4cd2 9044/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9045
4c4b4cd2
PH
9046static LONGEST
9047pos_atr (struct value *arg)
14f9c5c9 9048{
24209737
PH
9049 struct value *val = coerce_ref (arg);
9050 struct type *type = value_type (val);
aa715135 9051 LONGEST result;
14f9c5c9 9052
d2e4a39e 9053 if (!discrete_type_p (type))
323e0a4a 9054 error (_("'POS only defined on discrete types"));
14f9c5c9 9055
aa715135
JG
9056 if (!discrete_position (type, value_as_long (val), &result))
9057 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9058
aa715135 9059 return result;
4c4b4cd2
PH
9060}
9061
9062static struct value *
3cb382c9 9063value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9064{
3cb382c9 9065 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9066}
9067
4c4b4cd2 9068/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9069
d2e4a39e 9070static struct value *
53a47a3e 9071val_atr (struct type *type, LONGEST val)
14f9c5c9 9072{
53a47a3e 9073 gdb_assert (discrete_type_p (type));
0bc2354b
TT
9074 if (type->code () == TYPE_CODE_RANGE)
9075 type = TYPE_TARGET_TYPE (type);
78134374 9076 if (type->code () == TYPE_CODE_ENUM)
14f9c5c9 9077 {
53a47a3e 9078 if (val < 0 || val >= type->num_fields ())
323e0a4a 9079 error (_("argument to 'VAL out of range"));
53a47a3e 9080 val = TYPE_FIELD_ENUMVAL (type, val);
14f9c5c9 9081 }
53a47a3e
TT
9082 return value_from_longest (type, val);
9083}
9084
9085static struct value *
9086value_val_atr (struct type *type, struct value *arg)
9087{
9088 if (!discrete_type_p (type))
9089 error (_("'VAL only defined on discrete types"));
9090 if (!integer_type_p (value_type (arg)))
9091 error (_("'VAL requires integral argument"));
9092
9093 return val_atr (type, value_as_long (arg));
14f9c5c9 9094}
14f9c5c9 9095\f
d2e4a39e 9096
4c4b4cd2 9097 /* Evaluation */
14f9c5c9 9098
4c4b4cd2
PH
9099/* True if TYPE appears to be an Ada character type.
9100 [At the moment, this is true only for Character and Wide_Character;
9101 It is a heuristic test that could stand improvement]. */
14f9c5c9 9102
fc913e53 9103bool
d2e4a39e 9104ada_is_character_type (struct type *type)
14f9c5c9 9105{
7b9f71f2
JB
9106 const char *name;
9107
9108 /* If the type code says it's a character, then assume it really is,
9109 and don't check any further. */
78134374 9110 if (type->code () == TYPE_CODE_CHAR)
fc913e53 9111 return true;
7b9f71f2
JB
9112
9113 /* Otherwise, assume it's a character type iff it is a discrete type
9114 with a known character type name. */
9115 name = ada_type_name (type);
9116 return (name != NULL
78134374
SM
9117 && (type->code () == TYPE_CODE_INT
9118 || type->code () == TYPE_CODE_RANGE)
7b9f71f2
JB
9119 && (strcmp (name, "character") == 0
9120 || strcmp (name, "wide_character") == 0
5a517ebd 9121 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9122 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9123}
9124
4c4b4cd2 9125/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9126
fc913e53 9127bool
ebf56fd3 9128ada_is_string_type (struct type *type)
14f9c5c9 9129{
61ee279c 9130 type = ada_check_typedef (type);
d2e4a39e 9131 if (type != NULL
78134374 9132 && type->code () != TYPE_CODE_PTR
76a01679
JB
9133 && (ada_is_simple_array_type (type)
9134 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9135 && ada_array_arity (type) == 1)
9136 {
9137 struct type *elttype = ada_array_element_type (type, 1);
9138
9139 return ada_is_character_type (elttype);
9140 }
d2e4a39e 9141 else
fc913e53 9142 return false;
14f9c5c9
AS
9143}
9144
5bf03f13
JB
9145/* The compiler sometimes provides a parallel XVS type for a given
9146 PAD type. Normally, it is safe to follow the PAD type directly,
9147 but older versions of the compiler have a bug that causes the offset
9148 of its "F" field to be wrong. Following that field in that case
9149 would lead to incorrect results, but this can be worked around
9150 by ignoring the PAD type and using the associated XVS type instead.
9151
9152 Set to True if the debugger should trust the contents of PAD types.
9153 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9154static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9155
9156/* True if TYPE is a struct type introduced by the compiler to force the
9157 alignment of a value. Such types have a single field with a
4c4b4cd2 9158 distinctive name. */
14f9c5c9
AS
9159
9160int
ebf56fd3 9161ada_is_aligner_type (struct type *type)
14f9c5c9 9162{
61ee279c 9163 type = ada_check_typedef (type);
714e53ab 9164
5bf03f13 9165 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9166 return 0;
9167
78134374 9168 return (type->code () == TYPE_CODE_STRUCT
1f704f76 9169 && type->num_fields () == 1
4c4b4cd2 9170 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9171}
9172
9173/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9174 the parallel type. */
14f9c5c9 9175
d2e4a39e
AS
9176struct type *
9177ada_get_base_type (struct type *raw_type)
14f9c5c9 9178{
d2e4a39e
AS
9179 struct type *real_type_namer;
9180 struct type *raw_real_type;
14f9c5c9 9181
78134374 9182 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
14f9c5c9
AS
9183 return raw_type;
9184
284614f0
JB
9185 if (ada_is_aligner_type (raw_type))
9186 /* The encoding specifies that we should always use the aligner type.
9187 So, even if this aligner type has an associated XVS type, we should
9188 simply ignore it.
9189
9190 According to the compiler gurus, an XVS type parallel to an aligner
9191 type may exist because of a stabs limitation. In stabs, aligner
9192 types are empty because the field has a variable-sized type, and
9193 thus cannot actually be used as an aligner type. As a result,
9194 we need the associated parallel XVS type to decode the type.
9195 Since the policy in the compiler is to not change the internal
9196 representation based on the debugging info format, we sometimes
9197 end up having a redundant XVS type parallel to the aligner type. */
9198 return raw_type;
9199
14f9c5c9 9200 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9201 if (real_type_namer == NULL
78134374 9202 || real_type_namer->code () != TYPE_CODE_STRUCT
1f704f76 9203 || real_type_namer->num_fields () != 1)
14f9c5c9
AS
9204 return raw_type;
9205
940da03e 9206 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
f80d3ff2
JB
9207 {
9208 /* This is an older encoding form where the base type needs to be
85102364 9209 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
9210 more efficient. */
9211 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9212 if (raw_real_type == NULL)
9213 return raw_type;
9214 else
9215 return raw_real_type;
9216 }
9217
9218 /* The field in our XVS type is a reference to the base type. */
940da03e 9219 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
d2e4a39e 9220}
14f9c5c9 9221
4c4b4cd2 9222/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9223
d2e4a39e
AS
9224struct type *
9225ada_aligned_type (struct type *type)
14f9c5c9
AS
9226{
9227 if (ada_is_aligner_type (type))
940da03e 9228 return ada_aligned_type (type->field (0).type ());
14f9c5c9
AS
9229 else
9230 return ada_get_base_type (type);
9231}
9232
9233
9234/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9235 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9236
fc1a4b47
AC
9237const gdb_byte *
9238ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9239{
d2e4a39e 9240 if (ada_is_aligner_type (type))
940da03e 9241 return ada_aligned_value_addr (type->field (0).type (),
4c4b4cd2
PH
9242 valaddr +
9243 TYPE_FIELD_BITPOS (type,
9244 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9245 else
9246 return valaddr;
9247}
9248
4c4b4cd2
PH
9249
9250
14f9c5c9 9251/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9252 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9253const char *
9254ada_enum_name (const char *name)
14f9c5c9 9255{
4c4b4cd2
PH
9256 static char *result;
9257 static size_t result_len = 0;
e6a959d6 9258 const char *tmp;
14f9c5c9 9259
4c4b4cd2
PH
9260 /* First, unqualify the enumeration name:
9261 1. Search for the last '.' character. If we find one, then skip
177b42fe 9262 all the preceding characters, the unqualified name starts
76a01679 9263 right after that dot.
4c4b4cd2 9264 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9265 translates dots into "__". Search forward for double underscores,
9266 but stop searching when we hit an overloading suffix, which is
9267 of the form "__" followed by digits. */
4c4b4cd2 9268
c3e5cd34
PH
9269 tmp = strrchr (name, '.');
9270 if (tmp != NULL)
4c4b4cd2
PH
9271 name = tmp + 1;
9272 else
14f9c5c9 9273 {
4c4b4cd2
PH
9274 while ((tmp = strstr (name, "__")) != NULL)
9275 {
9276 if (isdigit (tmp[2]))
9277 break;
9278 else
9279 name = tmp + 2;
9280 }
14f9c5c9
AS
9281 }
9282
9283 if (name[0] == 'Q')
9284 {
14f9c5c9 9285 int v;
5b4ee69b 9286
14f9c5c9 9287 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9288 {
9289 if (sscanf (name + 2, "%x", &v) != 1)
9290 return name;
9291 }
272560b5
TT
9292 else if (((name[1] >= '0' && name[1] <= '9')
9293 || (name[1] >= 'a' && name[1] <= 'z'))
9294 && name[2] == '\0')
9295 {
9296 GROW_VECT (result, result_len, 4);
9297 xsnprintf (result, result_len, "'%c'", name[1]);
9298 return result;
9299 }
14f9c5c9 9300 else
4c4b4cd2 9301 return name;
14f9c5c9 9302
4c4b4cd2 9303 GROW_VECT (result, result_len, 16);
14f9c5c9 9304 if (isascii (v) && isprint (v))
88c15c34 9305 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9306 else if (name[1] == 'U')
88c15c34 9307 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9308 else
88c15c34 9309 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9310
9311 return result;
9312 }
d2e4a39e 9313 else
4c4b4cd2 9314 {
c3e5cd34
PH
9315 tmp = strstr (name, "__");
9316 if (tmp == NULL)
9317 tmp = strstr (name, "$");
9318 if (tmp != NULL)
4c4b4cd2
PH
9319 {
9320 GROW_VECT (result, result_len, tmp - name + 1);
9321 strncpy (result, name, tmp - name);
9322 result[tmp - name] = '\0';
9323 return result;
9324 }
9325
9326 return name;
9327 }
14f9c5c9
AS
9328}
9329
14f9c5c9
AS
9330/* Evaluate the subexpression of EXP starting at *POS as for
9331 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9332 expression. */
14f9c5c9 9333
d2e4a39e
AS
9334static struct value *
9335evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9336{
4b27a620 9337 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9338}
9339
9340/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9341 value it wraps. */
14f9c5c9 9342
d2e4a39e
AS
9343static struct value *
9344unwrap_value (struct value *val)
14f9c5c9 9345{
df407dfe 9346 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9347
14f9c5c9
AS
9348 if (ada_is_aligner_type (type))
9349 {
de4d072f 9350 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9351 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9352
14f9c5c9 9353 if (ada_type_name (val_type) == NULL)
d0e39ea2 9354 val_type->set_name (ada_type_name (type));
14f9c5c9
AS
9355
9356 return unwrap_value (v);
9357 }
d2e4a39e 9358 else
14f9c5c9 9359 {
d2e4a39e 9360 struct type *raw_real_type =
61ee279c 9361 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9362
5bf03f13
JB
9363 /* If there is no parallel XVS or XVE type, then the value is
9364 already unwrapped. Return it without further modification. */
9365 if ((type == raw_real_type)
9366 && ada_find_parallel_type (type, "___XVE") == NULL)
9367 return val;
14f9c5c9 9368
d2e4a39e 9369 return
4c4b4cd2
PH
9370 coerce_unspec_val_to_type
9371 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9372 value_address (val),
1ed6ede0 9373 NULL, 1));
14f9c5c9
AS
9374 }
9375}
d2e4a39e
AS
9376
9377static struct value *
50eff16b 9378cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9379{
50eff16b
UW
9380 struct value *scale = ada_scaling_factor (value_type (arg));
9381 arg = value_cast (value_type (scale), arg);
14f9c5c9 9382
50eff16b
UW
9383 arg = value_binop (arg, scale, BINOP_MUL);
9384 return value_cast (type, arg);
14f9c5c9
AS
9385}
9386
d2e4a39e 9387static struct value *
50eff16b 9388cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9389{
50eff16b
UW
9390 if (type == value_type (arg))
9391 return arg;
5b4ee69b 9392
50eff16b 9393 struct value *scale = ada_scaling_factor (type);
b2188a06 9394 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
50eff16b
UW
9395 arg = cast_from_fixed (value_type (scale), arg);
9396 else
9397 arg = value_cast (value_type (scale), arg);
9398
9399 arg = value_binop (arg, scale, BINOP_DIV);
9400 return value_cast (type, arg);
14f9c5c9
AS
9401}
9402
d99dcf51
JB
9403/* Given two array types T1 and T2, return nonzero iff both arrays
9404 contain the same number of elements. */
9405
9406static int
9407ada_same_array_size_p (struct type *t1, struct type *t2)
9408{
9409 LONGEST lo1, hi1, lo2, hi2;
9410
9411 /* Get the array bounds in order to verify that the size of
9412 the two arrays match. */
9413 if (!get_array_bounds (t1, &lo1, &hi1)
9414 || !get_array_bounds (t2, &lo2, &hi2))
9415 error (_("unable to determine array bounds"));
9416
9417 /* To make things easier for size comparison, normalize a bit
9418 the case of empty arrays by making sure that the difference
9419 between upper bound and lower bound is always -1. */
9420 if (lo1 > hi1)
9421 hi1 = lo1 - 1;
9422 if (lo2 > hi2)
9423 hi2 = lo2 - 1;
9424
9425 return (hi1 - lo1 == hi2 - lo2);
9426}
9427
9428/* Assuming that VAL is an array of integrals, and TYPE represents
9429 an array with the same number of elements, but with wider integral
9430 elements, return an array "casted" to TYPE. In practice, this
9431 means that the returned array is built by casting each element
9432 of the original array into TYPE's (wider) element type. */
9433
9434static struct value *
9435ada_promote_array_of_integrals (struct type *type, struct value *val)
9436{
9437 struct type *elt_type = TYPE_TARGET_TYPE (type);
9438 LONGEST lo, hi;
9439 struct value *res;
9440 LONGEST i;
9441
9442 /* Verify that both val and type are arrays of scalars, and
9443 that the size of val's elements is smaller than the size
9444 of type's element. */
78134374 9445 gdb_assert (type->code () == TYPE_CODE_ARRAY);
d99dcf51 9446 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
78134374 9447 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
d99dcf51
JB
9448 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9449 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9450 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9451
9452 if (!get_array_bounds (type, &lo, &hi))
9453 error (_("unable to determine array bounds"));
9454
9455 res = allocate_value (type);
9456
9457 /* Promote each array element. */
9458 for (i = 0; i < hi - lo + 1; i++)
9459 {
9460 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9461
9462 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9463 value_contents_all (elt), TYPE_LENGTH (elt_type));
9464 }
9465
9466 return res;
9467}
9468
4c4b4cd2
PH
9469/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9470 return the converted value. */
9471
d2e4a39e
AS
9472static struct value *
9473coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9474{
df407dfe 9475 struct type *type2 = value_type (val);
5b4ee69b 9476
14f9c5c9
AS
9477 if (type == type2)
9478 return val;
9479
61ee279c
PH
9480 type2 = ada_check_typedef (type2);
9481 type = ada_check_typedef (type);
14f9c5c9 9482
78134374
SM
9483 if (type2->code () == TYPE_CODE_PTR
9484 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9
AS
9485 {
9486 val = ada_value_ind (val);
df407dfe 9487 type2 = value_type (val);
14f9c5c9
AS
9488 }
9489
78134374
SM
9490 if (type2->code () == TYPE_CODE_ARRAY
9491 && type->code () == TYPE_CODE_ARRAY)
14f9c5c9 9492 {
d99dcf51
JB
9493 if (!ada_same_array_size_p (type, type2))
9494 error (_("cannot assign arrays of different length"));
9495
9496 if (is_integral_type (TYPE_TARGET_TYPE (type))
9497 && is_integral_type (TYPE_TARGET_TYPE (type2))
9498 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9499 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9500 {
9501 /* Allow implicit promotion of the array elements to
9502 a wider type. */
9503 return ada_promote_array_of_integrals (type, val);
9504 }
9505
9506 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9507 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9508 error (_("Incompatible types in assignment"));
04624583 9509 deprecated_set_value_type (val, type);
14f9c5c9 9510 }
d2e4a39e 9511 return val;
14f9c5c9
AS
9512}
9513
4c4b4cd2
PH
9514static struct value *
9515ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9516{
9517 struct value *val;
9518 struct type *type1, *type2;
9519 LONGEST v, v1, v2;
9520
994b9211
AC
9521 arg1 = coerce_ref (arg1);
9522 arg2 = coerce_ref (arg2);
18af8284
JB
9523 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9524 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9525
78134374
SM
9526 if (type1->code () != TYPE_CODE_INT
9527 || type2->code () != TYPE_CODE_INT)
4c4b4cd2
PH
9528 return value_binop (arg1, arg2, op);
9529
76a01679 9530 switch (op)
4c4b4cd2
PH
9531 {
9532 case BINOP_MOD:
9533 case BINOP_DIV:
9534 case BINOP_REM:
9535 break;
9536 default:
9537 return value_binop (arg1, arg2, op);
9538 }
9539
9540 v2 = value_as_long (arg2);
9541 if (v2 == 0)
323e0a4a 9542 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9543
9544 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9545 return value_binop (arg1, arg2, op);
9546
9547 v1 = value_as_long (arg1);
9548 switch (op)
9549 {
9550 case BINOP_DIV:
9551 v = v1 / v2;
76a01679
JB
9552 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9553 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9554 break;
9555 case BINOP_REM:
9556 v = v1 % v2;
76a01679
JB
9557 if (v * v1 < 0)
9558 v -= v2;
4c4b4cd2
PH
9559 break;
9560 default:
9561 /* Should not reach this point. */
9562 v = 0;
9563 }
9564
9565 val = allocate_value (type1);
990a07ab 9566 store_unsigned_integer (value_contents_raw (val),
e17a4113 9567 TYPE_LENGTH (value_type (val)),
34877895 9568 type_byte_order (type1), v);
4c4b4cd2
PH
9569 return val;
9570}
9571
9572static int
9573ada_value_equal (struct value *arg1, struct value *arg2)
9574{
df407dfe
AC
9575 if (ada_is_direct_array_type (value_type (arg1))
9576 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9577 {
79e8fcaa
JB
9578 struct type *arg1_type, *arg2_type;
9579
f58b38bf
JB
9580 /* Automatically dereference any array reference before
9581 we attempt to perform the comparison. */
9582 arg1 = ada_coerce_ref (arg1);
9583 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9584
4c4b4cd2
PH
9585 arg1 = ada_coerce_to_simple_array (arg1);
9586 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9587
9588 arg1_type = ada_check_typedef (value_type (arg1));
9589 arg2_type = ada_check_typedef (value_type (arg2));
9590
78134374
SM
9591 if (arg1_type->code () != TYPE_CODE_ARRAY
9592 || arg2_type->code () != TYPE_CODE_ARRAY)
323e0a4a 9593 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9594 /* FIXME: The following works only for types whose
76a01679
JB
9595 representations use all bits (no padding or undefined bits)
9596 and do not have user-defined equality. */
79e8fcaa
JB
9597 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9598 && memcmp (value_contents (arg1), value_contents (arg2),
9599 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9600 }
9601 return value_equal (arg1, arg2);
9602}
9603
52ce6436
PH
9604/* Total number of component associations in the aggregate starting at
9605 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9606 OP_AGGREGATE. */
52ce6436
PH
9607
9608static int
9609num_component_specs (struct expression *exp, int pc)
9610{
9611 int n, m, i;
5b4ee69b 9612
52ce6436
PH
9613 m = exp->elts[pc + 1].longconst;
9614 pc += 3;
9615 n = 0;
9616 for (i = 0; i < m; i += 1)
9617 {
9618 switch (exp->elts[pc].opcode)
9619 {
9620 default:
9621 n += 1;
9622 break;
9623 case OP_CHOICES:
9624 n += exp->elts[pc + 1].longconst;
9625 break;
9626 }
9627 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9628 }
9629 return n;
9630}
9631
9632/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9633 component of LHS (a simple array or a record), updating *POS past
9634 the expression, assuming that LHS is contained in CONTAINER. Does
9635 not modify the inferior's memory, nor does it modify LHS (unless
9636 LHS == CONTAINER). */
9637
9638static void
9639assign_component (struct value *container, struct value *lhs, LONGEST index,
9640 struct expression *exp, int *pos)
9641{
9642 struct value *mark = value_mark ();
9643 struct value *elt;
0e2da9f0 9644 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9645
78134374 9646 if (lhs_type->code () == TYPE_CODE_ARRAY)
52ce6436 9647 {
22601c15
UW
9648 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9649 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9650
52ce6436
PH
9651 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9652 }
9653 else
9654 {
9655 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9656 elt = ada_to_fixed_value (elt);
52ce6436
PH
9657 }
9658
9659 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9660 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9661 else
9662 value_assign_to_component (container, elt,
9663 ada_evaluate_subexp (NULL, exp, pos,
9664 EVAL_NORMAL));
9665
9666 value_free_to_mark (mark);
9667}
9668
9669/* Assuming that LHS represents an lvalue having a record or array
9670 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9671 of that aggregate's value to LHS, advancing *POS past the
9672 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9673 lvalue containing LHS (possibly LHS itself). Does not modify
9674 the inferior's memory, nor does it modify the contents of
0963b4bd 9675 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9676
9677static struct value *
9678assign_aggregate (struct value *container,
9679 struct value *lhs, struct expression *exp,
9680 int *pos, enum noside noside)
9681{
9682 struct type *lhs_type;
9683 int n = exp->elts[*pos+1].longconst;
9684 LONGEST low_index, high_index;
9685 int num_specs;
9686 LONGEST *indices;
9687 int max_indices, num_indices;
52ce6436 9688 int i;
52ce6436
PH
9689
9690 *pos += 3;
9691 if (noside != EVAL_NORMAL)
9692 {
52ce6436
PH
9693 for (i = 0; i < n; i += 1)
9694 ada_evaluate_subexp (NULL, exp, pos, noside);
9695 return container;
9696 }
9697
9698 container = ada_coerce_ref (container);
9699 if (ada_is_direct_array_type (value_type (container)))
9700 container = ada_coerce_to_simple_array (container);
9701 lhs = ada_coerce_ref (lhs);
9702 if (!deprecated_value_modifiable (lhs))
9703 error (_("Left operand of assignment is not a modifiable lvalue."));
9704
0e2da9f0 9705 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9706 if (ada_is_direct_array_type (lhs_type))
9707 {
9708 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9709 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9710 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9711 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436 9712 }
78134374 9713 else if (lhs_type->code () == TYPE_CODE_STRUCT)
52ce6436
PH
9714 {
9715 low_index = 0;
9716 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9717 }
9718 else
9719 error (_("Left-hand side must be array or record."));
9720
9721 num_specs = num_component_specs (exp, *pos - 3);
9722 max_indices = 4 * num_specs + 4;
8d749320 9723 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9724 indices[0] = indices[1] = low_index - 1;
9725 indices[2] = indices[3] = high_index + 1;
9726 num_indices = 4;
9727
9728 for (i = 0; i < n; i += 1)
9729 {
9730 switch (exp->elts[*pos].opcode)
9731 {
1fbf5ada
JB
9732 case OP_CHOICES:
9733 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9734 &num_indices, max_indices,
9735 low_index, high_index);
9736 break;
9737 case OP_POSITIONAL:
9738 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9739 &num_indices, max_indices,
9740 low_index, high_index);
1fbf5ada
JB
9741 break;
9742 case OP_OTHERS:
9743 if (i != n-1)
9744 error (_("Misplaced 'others' clause"));
9745 aggregate_assign_others (container, lhs, exp, pos, indices,
9746 num_indices, low_index, high_index);
9747 break;
9748 default:
9749 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9750 }
9751 }
9752
9753 return container;
9754}
9755
9756/* Assign into the component of LHS indexed by the OP_POSITIONAL
9757 construct at *POS, updating *POS past the construct, given that
9758 the positions are relative to lower bound LOW, where HIGH is the
9759 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9760 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9761 assign_aggregate. */
52ce6436
PH
9762static void
9763aggregate_assign_positional (struct value *container,
9764 struct value *lhs, struct expression *exp,
9765 int *pos, LONGEST *indices, int *num_indices,
9766 int max_indices, LONGEST low, LONGEST high)
9767{
9768 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9769
9770 if (ind - 1 == high)
e1d5a0d2 9771 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9772 if (ind <= high)
9773 {
9774 add_component_interval (ind, ind, indices, num_indices, max_indices);
9775 *pos += 3;
9776 assign_component (container, lhs, ind, exp, pos);
9777 }
9778 else
9779 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9780}
9781
9782/* Assign into the components of LHS indexed by the OP_CHOICES
9783 construct at *POS, updating *POS past the construct, given that
9784 the allowable indices are LOW..HIGH. Record the indices assigned
9785 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9786 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9787static void
9788aggregate_assign_from_choices (struct value *container,
9789 struct value *lhs, struct expression *exp,
9790 int *pos, LONGEST *indices, int *num_indices,
9791 int max_indices, LONGEST low, LONGEST high)
9792{
9793 int j;
9794 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9795 int choice_pos, expr_pc;
9796 int is_array = ada_is_direct_array_type (value_type (lhs));
9797
9798 choice_pos = *pos += 3;
9799
9800 for (j = 0; j < n_choices; j += 1)
9801 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9802 expr_pc = *pos;
9803 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9804
9805 for (j = 0; j < n_choices; j += 1)
9806 {
9807 LONGEST lower, upper;
9808 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9809
52ce6436
PH
9810 if (op == OP_DISCRETE_RANGE)
9811 {
9812 choice_pos += 1;
9813 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9814 EVAL_NORMAL));
9815 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9816 EVAL_NORMAL));
9817 }
9818 else if (is_array)
9819 {
9820 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9821 EVAL_NORMAL));
9822 upper = lower;
9823 }
9824 else
9825 {
9826 int ind;
0d5cff50 9827 const char *name;
5b4ee69b 9828
52ce6436
PH
9829 switch (op)
9830 {
9831 case OP_NAME:
9832 name = &exp->elts[choice_pos + 2].string;
9833 break;
9834 case OP_VAR_VALUE:
987012b8 9835 name = exp->elts[choice_pos + 2].symbol->natural_name ();
52ce6436
PH
9836 break;
9837 default:
9838 error (_("Invalid record component association."));
9839 }
9840 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9841 ind = 0;
9842 if (! find_struct_field (name, value_type (lhs), 0,
9843 NULL, NULL, NULL, NULL, &ind))
9844 error (_("Unknown component name: %s."), name);
9845 lower = upper = ind;
9846 }
9847
9848 if (lower <= upper && (lower < low || upper > high))
9849 error (_("Index in component association out of bounds."));
9850
9851 add_component_interval (lower, upper, indices, num_indices,
9852 max_indices);
9853 while (lower <= upper)
9854 {
9855 int pos1;
5b4ee69b 9856
52ce6436
PH
9857 pos1 = expr_pc;
9858 assign_component (container, lhs, lower, exp, &pos1);
9859 lower += 1;
9860 }
9861 }
9862}
9863
9864/* Assign the value of the expression in the OP_OTHERS construct in
9865 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9866 have not been previously assigned. The index intervals already assigned
9867 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9868 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9869static void
9870aggregate_assign_others (struct value *container,
9871 struct value *lhs, struct expression *exp,
9872 int *pos, LONGEST *indices, int num_indices,
9873 LONGEST low, LONGEST high)
9874{
9875 int i;
5ce64950 9876 int expr_pc = *pos + 1;
52ce6436
PH
9877
9878 for (i = 0; i < num_indices - 2; i += 2)
9879 {
9880 LONGEST ind;
5b4ee69b 9881
52ce6436
PH
9882 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9883 {
5ce64950 9884 int localpos;
5b4ee69b 9885
5ce64950
MS
9886 localpos = expr_pc;
9887 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9888 }
9889 }
9890 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9891}
9892
9893/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9894 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9895 modifying *SIZE as needed. It is an error if *SIZE exceeds
9896 MAX_SIZE. The resulting intervals do not overlap. */
9897static void
9898add_component_interval (LONGEST low, LONGEST high,
9899 LONGEST* indices, int *size, int max_size)
9900{
9901 int i, j;
5b4ee69b 9902
52ce6436
PH
9903 for (i = 0; i < *size; i += 2) {
9904 if (high >= indices[i] && low <= indices[i + 1])
9905 {
9906 int kh;
5b4ee69b 9907
52ce6436
PH
9908 for (kh = i + 2; kh < *size; kh += 2)
9909 if (high < indices[kh])
9910 break;
9911 if (low < indices[i])
9912 indices[i] = low;
9913 indices[i + 1] = indices[kh - 1];
9914 if (high > indices[i + 1])
9915 indices[i + 1] = high;
9916 memcpy (indices + i + 2, indices + kh, *size - kh);
9917 *size -= kh - i - 2;
9918 return;
9919 }
9920 else if (high < indices[i])
9921 break;
9922 }
9923
9924 if (*size == max_size)
9925 error (_("Internal error: miscounted aggregate components."));
9926 *size += 2;
9927 for (j = *size-1; j >= i+2; j -= 1)
9928 indices[j] = indices[j - 2];
9929 indices[i] = low;
9930 indices[i + 1] = high;
9931}
9932
6e48bd2c
JB
9933/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9934 is different. */
9935
9936static struct value *
b7e22850 9937ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
9938{
9939 if (type == ada_check_typedef (value_type (arg2)))
9940 return arg2;
9941
b2188a06 9942 if (ada_is_gnat_encoded_fixed_point_type (type))
95f39a5b 9943 return cast_to_fixed (type, arg2);
6e48bd2c 9944
b2188a06 9945 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
a53b7a21 9946 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9947
9948 return value_cast (type, arg2);
9949}
9950
284614f0
JB
9951/* Evaluating Ada expressions, and printing their result.
9952 ------------------------------------------------------
9953
21649b50
JB
9954 1. Introduction:
9955 ----------------
9956
284614f0
JB
9957 We usually evaluate an Ada expression in order to print its value.
9958 We also evaluate an expression in order to print its type, which
9959 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9960 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9961 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9962 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9963 similar.
9964
9965 Evaluating expressions is a little more complicated for Ada entities
9966 than it is for entities in languages such as C. The main reason for
9967 this is that Ada provides types whose definition might be dynamic.
9968 One example of such types is variant records. Or another example
9969 would be an array whose bounds can only be known at run time.
9970
9971 The following description is a general guide as to what should be
9972 done (and what should NOT be done) in order to evaluate an expression
9973 involving such types, and when. This does not cover how the semantic
9974 information is encoded by GNAT as this is covered separatly. For the
9975 document used as the reference for the GNAT encoding, see exp_dbug.ads
9976 in the GNAT sources.
9977
9978 Ideally, we should embed each part of this description next to its
9979 associated code. Unfortunately, the amount of code is so vast right
9980 now that it's hard to see whether the code handling a particular
9981 situation might be duplicated or not. One day, when the code is
9982 cleaned up, this guide might become redundant with the comments
9983 inserted in the code, and we might want to remove it.
9984
21649b50
JB
9985 2. ``Fixing'' an Entity, the Simple Case:
9986 -----------------------------------------
9987
284614f0
JB
9988 When evaluating Ada expressions, the tricky issue is that they may
9989 reference entities whose type contents and size are not statically
9990 known. Consider for instance a variant record:
9991
9992 type Rec (Empty : Boolean := True) is record
9993 case Empty is
9994 when True => null;
9995 when False => Value : Integer;
9996 end case;
9997 end record;
9998 Yes : Rec := (Empty => False, Value => 1);
9999 No : Rec := (empty => True);
10000
10001 The size and contents of that record depends on the value of the
10002 descriminant (Rec.Empty). At this point, neither the debugging
10003 information nor the associated type structure in GDB are able to
10004 express such dynamic types. So what the debugger does is to create
10005 "fixed" versions of the type that applies to the specific object.
30baf67b 10006 We also informally refer to this operation as "fixing" an object,
284614f0
JB
10007 which means creating its associated fixed type.
10008
10009 Example: when printing the value of variable "Yes" above, its fixed
10010 type would look like this:
10011
10012 type Rec is record
10013 Empty : Boolean;
10014 Value : Integer;
10015 end record;
10016
10017 On the other hand, if we printed the value of "No", its fixed type
10018 would become:
10019
10020 type Rec is record
10021 Empty : Boolean;
10022 end record;
10023
10024 Things become a little more complicated when trying to fix an entity
10025 with a dynamic type that directly contains another dynamic type,
10026 such as an array of variant records, for instance. There are
10027 two possible cases: Arrays, and records.
10028
21649b50
JB
10029 3. ``Fixing'' Arrays:
10030 ---------------------
10031
10032 The type structure in GDB describes an array in terms of its bounds,
10033 and the type of its elements. By design, all elements in the array
10034 have the same type and we cannot represent an array of variant elements
10035 using the current type structure in GDB. When fixing an array,
10036 we cannot fix the array element, as we would potentially need one
10037 fixed type per element of the array. As a result, the best we can do
10038 when fixing an array is to produce an array whose bounds and size
10039 are correct (allowing us to read it from memory), but without having
10040 touched its element type. Fixing each element will be done later,
10041 when (if) necessary.
10042
10043 Arrays are a little simpler to handle than records, because the same
10044 amount of memory is allocated for each element of the array, even if
1b536f04 10045 the amount of space actually used by each element differs from element
21649b50 10046 to element. Consider for instance the following array of type Rec:
284614f0
JB
10047
10048 type Rec_Array is array (1 .. 2) of Rec;
10049
1b536f04
JB
10050 The actual amount of memory occupied by each element might be different
10051 from element to element, depending on the value of their discriminant.
21649b50 10052 But the amount of space reserved for each element in the array remains
1b536f04 10053 fixed regardless. So we simply need to compute that size using
21649b50
JB
10054 the debugging information available, from which we can then determine
10055 the array size (we multiply the number of elements of the array by
10056 the size of each element).
10057
10058 The simplest case is when we have an array of a constrained element
10059 type. For instance, consider the following type declarations:
10060
10061 type Bounded_String (Max_Size : Integer) is
10062 Length : Integer;
10063 Buffer : String (1 .. Max_Size);
10064 end record;
10065 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10066
10067 In this case, the compiler describes the array as an array of
10068 variable-size elements (identified by its XVS suffix) for which
10069 the size can be read in the parallel XVZ variable.
10070
10071 In the case of an array of an unconstrained element type, the compiler
10072 wraps the array element inside a private PAD type. This type should not
10073 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10074 that we also use the adjective "aligner" in our code to designate
10075 these wrapper types.
10076
1b536f04 10077 In some cases, the size allocated for each element is statically
21649b50
JB
10078 known. In that case, the PAD type already has the correct size,
10079 and the array element should remain unfixed.
10080
10081 But there are cases when this size is not statically known.
10082 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10083
10084 type Dynamic is array (1 .. Five) of Integer;
10085 type Wrapper (Has_Length : Boolean := False) is record
10086 Data : Dynamic;
10087 case Has_Length is
10088 when True => Length : Integer;
10089 when False => null;
10090 end case;
10091 end record;
10092 type Wrapper_Array is array (1 .. 2) of Wrapper;
10093
10094 Hello : Wrapper_Array := (others => (Has_Length => True,
10095 Data => (others => 17),
10096 Length => 1));
10097
10098
10099 The debugging info would describe variable Hello as being an
10100 array of a PAD type. The size of that PAD type is not statically
10101 known, but can be determined using a parallel XVZ variable.
10102 In that case, a copy of the PAD type with the correct size should
10103 be used for the fixed array.
10104
21649b50
JB
10105 3. ``Fixing'' record type objects:
10106 ----------------------------------
10107
10108 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10109 record types. In this case, in order to compute the associated
10110 fixed type, we need to determine the size and offset of each of
10111 its components. This, in turn, requires us to compute the fixed
10112 type of each of these components.
10113
10114 Consider for instance the example:
10115
10116 type Bounded_String (Max_Size : Natural) is record
10117 Str : String (1 .. Max_Size);
10118 Length : Natural;
10119 end record;
10120 My_String : Bounded_String (Max_Size => 10);
10121
10122 In that case, the position of field "Length" depends on the size
10123 of field Str, which itself depends on the value of the Max_Size
21649b50 10124 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10125 we need to fix the type of field Str. Therefore, fixing a variant
10126 record requires us to fix each of its components.
10127
10128 However, if a component does not have a dynamic size, the component
10129 should not be fixed. In particular, fields that use a PAD type
10130 should not fixed. Here is an example where this might happen
10131 (assuming type Rec above):
10132
10133 type Container (Big : Boolean) is record
10134 First : Rec;
10135 After : Integer;
10136 case Big is
10137 when True => Another : Integer;
10138 when False => null;
10139 end case;
10140 end record;
10141 My_Container : Container := (Big => False,
10142 First => (Empty => True),
10143 After => 42);
10144
10145 In that example, the compiler creates a PAD type for component First,
10146 whose size is constant, and then positions the component After just
10147 right after it. The offset of component After is therefore constant
10148 in this case.
10149
10150 The debugger computes the position of each field based on an algorithm
10151 that uses, among other things, the actual position and size of the field
21649b50
JB
10152 preceding it. Let's now imagine that the user is trying to print
10153 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10154 end up computing the offset of field After based on the size of the
10155 fixed version of field First. And since in our example First has
10156 only one actual field, the size of the fixed type is actually smaller
10157 than the amount of space allocated to that field, and thus we would
10158 compute the wrong offset of field After.
10159
21649b50
JB
10160 To make things more complicated, we need to watch out for dynamic
10161 components of variant records (identified by the ___XVL suffix in
10162 the component name). Even if the target type is a PAD type, the size
10163 of that type might not be statically known. So the PAD type needs
10164 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10165 we might end up with the wrong size for our component. This can be
10166 observed with the following type declarations:
284614f0
JB
10167
10168 type Octal is new Integer range 0 .. 7;
10169 type Octal_Array is array (Positive range <>) of Octal;
10170 pragma Pack (Octal_Array);
10171
10172 type Octal_Buffer (Size : Positive) is record
10173 Buffer : Octal_Array (1 .. Size);
10174 Length : Integer;
10175 end record;
10176
10177 In that case, Buffer is a PAD type whose size is unset and needs
10178 to be computed by fixing the unwrapped type.
10179
21649b50
JB
10180 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10181 ----------------------------------------------------------
10182
10183 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10184 thus far, be actually fixed?
10185
10186 The answer is: Only when referencing that element. For instance
10187 when selecting one component of a record, this specific component
10188 should be fixed at that point in time. Or when printing the value
10189 of a record, each component should be fixed before its value gets
10190 printed. Similarly for arrays, the element of the array should be
10191 fixed when printing each element of the array, or when extracting
10192 one element out of that array. On the other hand, fixing should
10193 not be performed on the elements when taking a slice of an array!
10194
31432a67 10195 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10196 size of each field is that we end up also miscomputing the size
10197 of the containing type. This can have adverse results when computing
10198 the value of an entity. GDB fetches the value of an entity based
10199 on the size of its type, and thus a wrong size causes GDB to fetch
10200 the wrong amount of memory. In the case where the computed size is
10201 too small, GDB fetches too little data to print the value of our
31432a67 10202 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10203 past the buffer containing the data =:-o. */
10204
ced9779b
JB
10205/* Evaluate a subexpression of EXP, at index *POS, and return a value
10206 for that subexpression cast to TO_TYPE. Advance *POS over the
10207 subexpression. */
10208
10209static value *
10210ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10211 enum noside noside, struct type *to_type)
10212{
10213 int pc = *pos;
10214
10215 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10216 || exp->elts[pc].opcode == OP_VAR_VALUE)
10217 {
10218 (*pos) += 4;
10219
10220 value *val;
10221 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10222 {
10223 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10224 return value_zero (to_type, not_lval);
10225
10226 val = evaluate_var_msym_value (noside,
10227 exp->elts[pc + 1].objfile,
10228 exp->elts[pc + 2].msymbol);
10229 }
10230 else
10231 val = evaluate_var_value (noside,
10232 exp->elts[pc + 1].block,
10233 exp->elts[pc + 2].symbol);
10234
10235 if (noside == EVAL_SKIP)
10236 return eval_skip_value (exp);
10237
10238 val = ada_value_cast (to_type, val);
10239
10240 /* Follow the Ada language semantics that do not allow taking
10241 an address of the result of a cast (view conversion in Ada). */
10242 if (VALUE_LVAL (val) == lval_memory)
10243 {
10244 if (value_lazy (val))
10245 value_fetch_lazy (val);
10246 VALUE_LVAL (val) = not_lval;
10247 }
10248 return val;
10249 }
10250
10251 value *val = evaluate_subexp (to_type, exp, pos, noside);
10252 if (noside == EVAL_SKIP)
10253 return eval_skip_value (exp);
10254 return ada_value_cast (to_type, val);
10255}
10256
284614f0
JB
10257/* Implement the evaluate_exp routine in the exp_descriptor structure
10258 for the Ada language. */
10259
52ce6436 10260static struct value *
ebf56fd3 10261ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10262 int *pos, enum noside noside)
14f9c5c9
AS
10263{
10264 enum exp_opcode op;
b5385fc0 10265 int tem;
14f9c5c9 10266 int pc;
5ec18f2b 10267 int preeval_pos;
14f9c5c9
AS
10268 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10269 struct type *type;
52ce6436 10270 int nargs, oplen;
d2e4a39e 10271 struct value **argvec;
14f9c5c9 10272
d2e4a39e
AS
10273 pc = *pos;
10274 *pos += 1;
14f9c5c9
AS
10275 op = exp->elts[pc].opcode;
10276
d2e4a39e 10277 switch (op)
14f9c5c9
AS
10278 {
10279 default:
10280 *pos -= 1;
6e48bd2c 10281 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10282
10283 if (noside == EVAL_NORMAL)
10284 arg1 = unwrap_value (arg1);
6e48bd2c 10285
edd079d9 10286 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10287 then we need to perform the conversion manually, because
10288 evaluate_subexp_standard doesn't do it. This conversion is
10289 necessary in Ada because the different kinds of float/fixed
10290 types in Ada have different representations.
10291
10292 Similarly, we need to perform the conversion from OP_LONG
10293 ourselves. */
edd079d9 10294 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10295 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10296
10297 return arg1;
4c4b4cd2
PH
10298
10299 case OP_STRING:
10300 {
76a01679 10301 struct value *result;
5b4ee69b 10302
76a01679
JB
10303 *pos -= 1;
10304 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10305 /* The result type will have code OP_STRING, bashed there from
10306 OP_ARRAY. Bash it back. */
78134374 10307 if (value_type (result)->code () == TYPE_CODE_STRING)
67607e24 10308 value_type (result)->set_code (TYPE_CODE_ARRAY);
76a01679 10309 return result;
4c4b4cd2 10310 }
14f9c5c9
AS
10311
10312 case UNOP_CAST:
10313 (*pos) += 2;
10314 type = exp->elts[pc + 1].type;
ced9779b 10315 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10316
4c4b4cd2
PH
10317 case UNOP_QUAL:
10318 (*pos) += 2;
10319 type = exp->elts[pc + 1].type;
10320 return ada_evaluate_subexp (type, exp, pos, noside);
10321
14f9c5c9
AS
10322 case BINOP_ASSIGN:
10323 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10324 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10325 {
10326 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10327 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10328 return arg1;
10329 return ada_value_assign (arg1, arg1);
10330 }
003f3813
JB
10331 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10332 except if the lhs of our assignment is a convenience variable.
10333 In the case of assigning to a convenience variable, the lhs
10334 should be exactly the result of the evaluation of the rhs. */
10335 type = value_type (arg1);
10336 if (VALUE_LVAL (arg1) == lval_internalvar)
10337 type = NULL;
10338 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10339 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10340 return arg1;
f411722c
TT
10341 if (VALUE_LVAL (arg1) == lval_internalvar)
10342 {
10343 /* Nothing. */
10344 }
b2188a06 10345 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
df407dfe 10346 arg2 = cast_to_fixed (value_type (arg1), arg2);
b2188a06 10347 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
76a01679 10348 error
323e0a4a 10349 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10350 else
df407dfe 10351 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10352 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10353
10354 case BINOP_ADD:
10355 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10356 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10357 if (noside == EVAL_SKIP)
4c4b4cd2 10358 goto nosideret;
78134374 10359 if (value_type (arg1)->code () == TYPE_CODE_PTR)
2ac8a782
JB
10360 return (value_from_longest
10361 (value_type (arg1),
10362 value_as_long (arg1) + value_as_long (arg2)));
78134374 10363 if (value_type (arg2)->code () == TYPE_CODE_PTR)
c40cc657
JB
10364 return (value_from_longest
10365 (value_type (arg2),
10366 value_as_long (arg1) + value_as_long (arg2)));
b2188a06
JB
10367 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10368 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
df407dfe 10369 && value_type (arg1) != value_type (arg2))
323e0a4a 10370 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10371 /* Do the addition, and cast the result to the type of the first
10372 argument. We cannot cast the result to a reference type, so if
10373 ARG1 is a reference type, find its underlying type. */
10374 type = value_type (arg1);
78134374 10375 while (type->code () == TYPE_CODE_REF)
b7789565 10376 type = TYPE_TARGET_TYPE (type);
f44316fa 10377 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10378 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10379
10380 case BINOP_SUB:
10381 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10382 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10383 if (noside == EVAL_SKIP)
4c4b4cd2 10384 goto nosideret;
78134374 10385 if (value_type (arg1)->code () == TYPE_CODE_PTR)
2ac8a782
JB
10386 return (value_from_longest
10387 (value_type (arg1),
10388 value_as_long (arg1) - value_as_long (arg2)));
78134374 10389 if (value_type (arg2)->code () == TYPE_CODE_PTR)
c40cc657
JB
10390 return (value_from_longest
10391 (value_type (arg2),
10392 value_as_long (arg1) - value_as_long (arg2)));
b2188a06
JB
10393 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10394 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
df407dfe 10395 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10396 error (_("Operands of fixed-point subtraction "
10397 "must have the same type"));
b7789565
JB
10398 /* Do the substraction, and cast the result to the type of the first
10399 argument. We cannot cast the result to a reference type, so if
10400 ARG1 is a reference type, find its underlying type. */
10401 type = value_type (arg1);
78134374 10402 while (type->code () == TYPE_CODE_REF)
b7789565 10403 type = TYPE_TARGET_TYPE (type);
f44316fa 10404 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10405 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10406
10407 case BINOP_MUL:
10408 case BINOP_DIV:
e1578042
JB
10409 case BINOP_REM:
10410 case BINOP_MOD:
14f9c5c9
AS
10411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10412 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10413 if (noside == EVAL_SKIP)
4c4b4cd2 10414 goto nosideret;
e1578042 10415 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10416 {
10417 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10418 return value_zero (value_type (arg1), not_lval);
10419 }
14f9c5c9 10420 else
4c4b4cd2 10421 {
a53b7a21 10422 type = builtin_type (exp->gdbarch)->builtin_double;
b2188a06 10423 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
a53b7a21 10424 arg1 = cast_from_fixed (type, arg1);
b2188a06 10425 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
a53b7a21 10426 arg2 = cast_from_fixed (type, arg2);
f44316fa 10427 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10428 return ada_value_binop (arg1, arg2, op);
10429 }
10430
4c4b4cd2
PH
10431 case BINOP_EQUAL:
10432 case BINOP_NOTEQUAL:
14f9c5c9 10433 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10434 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10435 if (noside == EVAL_SKIP)
76a01679 10436 goto nosideret;
4c4b4cd2 10437 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10438 tem = 0;
4c4b4cd2 10439 else
f44316fa
UW
10440 {
10441 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10442 tem = ada_value_equal (arg1, arg2);
10443 }
4c4b4cd2 10444 if (op == BINOP_NOTEQUAL)
76a01679 10445 tem = !tem;
fbb06eb1
UW
10446 type = language_bool_type (exp->language_defn, exp->gdbarch);
10447 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10448
10449 case UNOP_NEG:
10450 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10451 if (noside == EVAL_SKIP)
10452 goto nosideret;
b2188a06 10453 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
df407dfe 10454 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10455 else
f44316fa
UW
10456 {
10457 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10458 return value_neg (arg1);
10459 }
4c4b4cd2 10460
2330c6c6
JB
10461 case BINOP_LOGICAL_AND:
10462 case BINOP_LOGICAL_OR:
10463 case UNOP_LOGICAL_NOT:
000d5124
JB
10464 {
10465 struct value *val;
10466
10467 *pos -= 1;
10468 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10469 type = language_bool_type (exp->language_defn, exp->gdbarch);
10470 return value_cast (type, val);
000d5124 10471 }
2330c6c6
JB
10472
10473 case BINOP_BITWISE_AND:
10474 case BINOP_BITWISE_IOR:
10475 case BINOP_BITWISE_XOR:
000d5124
JB
10476 {
10477 struct value *val;
10478
10479 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10480 *pos = pc;
10481 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10482
10483 return value_cast (value_type (arg1), val);
10484 }
2330c6c6 10485
14f9c5c9
AS
10486 case OP_VAR_VALUE:
10487 *pos -= 1;
6799def4 10488
14f9c5c9 10489 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10490 {
10491 *pos += 4;
10492 goto nosideret;
10493 }
da5c522f
JB
10494
10495 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10496 /* Only encountered when an unresolved symbol occurs in a
10497 context other than a function call, in which case, it is
52ce6436 10498 invalid. */
323e0a4a 10499 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10500 exp->elts[pc + 2].symbol->print_name ());
da5c522f
JB
10501
10502 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10503 {
0c1f74cf 10504 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10505 /* Check to see if this is a tagged type. We also need to handle
10506 the case where the type is a reference to a tagged type, but
10507 we have to be careful to exclude pointers to tagged types.
10508 The latter should be shown as usual (as a pointer), whereas
10509 a reference should mostly be transparent to the user. */
10510 if (ada_is_tagged_type (type, 0)
78134374 10511 || (type->code () == TYPE_CODE_REF
31dbc1c5 10512 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10513 {
10514 /* Tagged types are a little special in the fact that the real
10515 type is dynamic and can only be determined by inspecting the
10516 object's tag. This means that we need to get the object's
10517 value first (EVAL_NORMAL) and then extract the actual object
10518 type from its tag.
10519
10520 Note that we cannot skip the final step where we extract
10521 the object type from its tag, because the EVAL_NORMAL phase
10522 results in dynamic components being resolved into fixed ones.
10523 This can cause problems when trying to print the type
10524 description of tagged types whose parent has a dynamic size:
10525 We use the type name of the "_parent" component in order
10526 to print the name of the ancestor type in the type description.
10527 If that component had a dynamic size, the resolution into
10528 a fixed type would result in the loss of that type name,
10529 thus preventing us from printing the name of the ancestor
10530 type in the type description. */
10531 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10532
78134374 10533 if (type->code () != TYPE_CODE_REF)
0d72a7c3
JB
10534 {
10535 struct type *actual_type;
10536
10537 actual_type = type_from_tag (ada_value_tag (arg1));
10538 if (actual_type == NULL)
10539 /* If, for some reason, we were unable to determine
10540 the actual type from the tag, then use the static
10541 approximation that we just computed as a fallback.
10542 This can happen if the debugging information is
10543 incomplete, for instance. */
10544 actual_type = type;
10545 return value_zero (actual_type, not_lval);
10546 }
10547 else
10548 {
10549 /* In the case of a ref, ada_coerce_ref takes care
10550 of determining the actual type. But the evaluation
10551 should return a ref as it should be valid to ask
10552 for its address; so rebuild a ref after coerce. */
10553 arg1 = ada_coerce_ref (arg1);
a65cfae5 10554 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10555 }
10556 }
0c1f74cf 10557
84754697
JB
10558 /* Records and unions for which GNAT encodings have been
10559 generated need to be statically fixed as well.
10560 Otherwise, non-static fixing produces a type where
10561 all dynamic properties are removed, which prevents "ptype"
10562 from being able to completely describe the type.
10563 For instance, a case statement in a variant record would be
10564 replaced by the relevant components based on the actual
10565 value of the discriminants. */
78134374 10566 if ((type->code () == TYPE_CODE_STRUCT
84754697 10567 && dynamic_template_type (type) != NULL)
78134374 10568 || (type->code () == TYPE_CODE_UNION
84754697
JB
10569 && ada_find_parallel_type (type, "___XVU") != NULL))
10570 {
10571 *pos += 4;
10572 return value_zero (to_static_fixed_type (type), not_lval);
10573 }
4c4b4cd2 10574 }
da5c522f
JB
10575
10576 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10577 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10578
10579 case OP_FUNCALL:
10580 (*pos) += 2;
10581
10582 /* Allocate arg vector, including space for the function to be
10583 called in argvec[0] and a terminating NULL. */
10584 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10585 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10586
10587 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10588 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10589 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10590 exp->elts[pc + 5].symbol->print_name ());
4c4b4cd2
PH
10591 else
10592 {
10593 for (tem = 0; tem <= nargs; tem += 1)
10594 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10595 argvec[tem] = 0;
10596
10597 if (noside == EVAL_SKIP)
10598 goto nosideret;
10599 }
10600
ad82864c
JB
10601 if (ada_is_constrained_packed_array_type
10602 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10603 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
78134374 10604 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
284614f0
JB
10605 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10606 /* This is a packed array that has already been fixed, and
10607 therefore already coerced to a simple array. Nothing further
10608 to do. */
10609 ;
78134374 10610 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
e6c2c623
PMR
10611 {
10612 /* Make sure we dereference references so that all the code below
10613 feels like it's really handling the referenced value. Wrapping
10614 types (for alignment) may be there, so make sure we strip them as
10615 well. */
10616 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10617 }
78134374 10618 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
e6c2c623
PMR
10619 && VALUE_LVAL (argvec[0]) == lval_memory)
10620 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10621
df407dfe 10622 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10623
10624 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10625 them. So, if this is an array typedef (encoding use for array
10626 access types encoded as fat pointers), strip it now. */
78134374 10627 if (type->code () == TYPE_CODE_TYPEDEF)
720d1a40
JB
10628 type = ada_typedef_target_type (type);
10629
78134374 10630 if (type->code () == TYPE_CODE_PTR)
4c4b4cd2 10631 {
78134374 10632 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
4c4b4cd2
PH
10633 {
10634 case TYPE_CODE_FUNC:
61ee279c 10635 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10636 break;
10637 case TYPE_CODE_ARRAY:
10638 break;
10639 case TYPE_CODE_STRUCT:
10640 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10641 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10642 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10643 break;
10644 default:
323e0a4a 10645 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10646 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10647 break;
10648 }
10649 }
10650
78134374 10651 switch (type->code ())
4c4b4cd2
PH
10652 {
10653 case TYPE_CODE_FUNC:
10654 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10655 {
7022349d
PA
10656 if (TYPE_TARGET_TYPE (type) == NULL)
10657 error_call_unknown_return_type (NULL);
10658 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10659 }
e71585ff
PA
10660 return call_function_by_hand (argvec[0], NULL,
10661 gdb::make_array_view (argvec + 1,
10662 nargs));
c8ea1972
PH
10663 case TYPE_CODE_INTERNAL_FUNCTION:
10664 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10665 /* We don't know anything about what the internal
10666 function might return, but we have to return
10667 something. */
10668 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10669 not_lval);
10670 else
10671 return call_internal_function (exp->gdbarch, exp->language_defn,
10672 argvec[0], nargs, argvec + 1);
10673
4c4b4cd2
PH
10674 case TYPE_CODE_STRUCT:
10675 {
10676 int arity;
10677
4c4b4cd2
PH
10678 arity = ada_array_arity (type);
10679 type = ada_array_element_type (type, nargs);
10680 if (type == NULL)
323e0a4a 10681 error (_("cannot subscript or call a record"));
4c4b4cd2 10682 if (arity != nargs)
323e0a4a 10683 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10684 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10685 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10686 return
10687 unwrap_value (ada_value_subscript
10688 (argvec[0], nargs, argvec + 1));
10689 }
10690 case TYPE_CODE_ARRAY:
10691 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10692 {
10693 type = ada_array_element_type (type, nargs);
10694 if (type == NULL)
323e0a4a 10695 error (_("element type of array unknown"));
4c4b4cd2 10696 else
0a07e705 10697 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10698 }
10699 return
10700 unwrap_value (ada_value_subscript
10701 (ada_coerce_to_simple_array (argvec[0]),
10702 nargs, argvec + 1));
10703 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10704 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10705 {
deede10c 10706 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10707 type = ada_array_element_type (type, nargs);
10708 if (type == NULL)
323e0a4a 10709 error (_("element type of array unknown"));
4c4b4cd2 10710 else
0a07e705 10711 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10712 }
10713 return
deede10c
JB
10714 unwrap_value (ada_value_ptr_subscript (argvec[0],
10715 nargs, argvec + 1));
4c4b4cd2
PH
10716
10717 default:
e1d5a0d2
PH
10718 error (_("Attempt to index or call something other than an "
10719 "array or function"));
4c4b4cd2
PH
10720 }
10721
10722 case TERNOP_SLICE:
10723 {
10724 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10725 struct value *low_bound_val =
10726 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10727 struct value *high_bound_val =
10728 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10729 LONGEST low_bound;
10730 LONGEST high_bound;
5b4ee69b 10731
994b9211
AC
10732 low_bound_val = coerce_ref (low_bound_val);
10733 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10734 low_bound = value_as_long (low_bound_val);
10735 high_bound = value_as_long (high_bound_val);
963a6417 10736
4c4b4cd2
PH
10737 if (noside == EVAL_SKIP)
10738 goto nosideret;
10739
4c4b4cd2
PH
10740 /* If this is a reference to an aligner type, then remove all
10741 the aligners. */
78134374 10742 if (value_type (array)->code () == TYPE_CODE_REF
df407dfe
AC
10743 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10744 TYPE_TARGET_TYPE (value_type (array)) =
10745 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10746
ad82864c 10747 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10748 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10749
10750 /* If this is a reference to an array or an array lvalue,
10751 convert to a pointer. */
78134374
SM
10752 if (value_type (array)->code () == TYPE_CODE_REF
10753 || (value_type (array)->code () == TYPE_CODE_ARRAY
4c4b4cd2
PH
10754 && VALUE_LVAL (array) == lval_memory))
10755 array = value_addr (array);
10756
1265e4aa 10757 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10758 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10759 (value_type (array))))
bff8c71f
TT
10760 return empty_array (ada_type_of_array (array, 0), low_bound,
10761 high_bound);
4c4b4cd2
PH
10762
10763 array = ada_coerce_to_simple_array_ptr (array);
10764
714e53ab
PH
10765 /* If we have more than one level of pointer indirection,
10766 dereference the value until we get only one level. */
78134374
SM
10767 while (value_type (array)->code () == TYPE_CODE_PTR
10768 && (TYPE_TARGET_TYPE (value_type (array))->code ()
714e53ab
PH
10769 == TYPE_CODE_PTR))
10770 array = value_ind (array);
10771
10772 /* Make sure we really do have an array type before going further,
10773 to avoid a SEGV when trying to get the index type or the target
10774 type later down the road if the debug info generated by
10775 the compiler is incorrect or incomplete. */
df407dfe 10776 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10777 error (_("cannot take slice of non-array"));
714e53ab 10778
78134374 10779 if (ada_check_typedef (value_type (array))->code ()
828292f2 10780 == TYPE_CODE_PTR)
4c4b4cd2 10781 {
828292f2
JB
10782 struct type *type0 = ada_check_typedef (value_type (array));
10783
0b5d8877 10784 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10785 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10786 else
10787 {
10788 struct type *arr_type0 =
828292f2 10789 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10790
f5938064
JG
10791 return ada_value_slice_from_ptr (array, arr_type0,
10792 longest_to_int (low_bound),
10793 longest_to_int (high_bound));
4c4b4cd2
PH
10794 }
10795 }
10796 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10797 return array;
10798 else if (high_bound < low_bound)
bff8c71f 10799 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10800 else
529cad9c
PH
10801 return ada_value_slice (array, longest_to_int (low_bound),
10802 longest_to_int (high_bound));
4c4b4cd2 10803 }
14f9c5c9 10804
4c4b4cd2
PH
10805 case UNOP_IN_RANGE:
10806 (*pos) += 2;
10807 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10808 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10809
14f9c5c9 10810 if (noside == EVAL_SKIP)
4c4b4cd2 10811 goto nosideret;
14f9c5c9 10812
78134374 10813 switch (type->code ())
4c4b4cd2
PH
10814 {
10815 default:
e1d5a0d2
PH
10816 lim_warning (_("Membership test incompletely implemented; "
10817 "always returns true"));
fbb06eb1
UW
10818 type = language_bool_type (exp->language_defn, exp->gdbarch);
10819 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10820
10821 case TYPE_CODE_RANGE:
030b4912
UW
10822 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10823 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10824 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10825 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10826 type = language_bool_type (exp->language_defn, exp->gdbarch);
10827 return
10828 value_from_longest (type,
4c4b4cd2
PH
10829 (value_less (arg1, arg3)
10830 || value_equal (arg1, arg3))
10831 && (value_less (arg2, arg1)
10832 || value_equal (arg2, arg1)));
10833 }
10834
10835 case BINOP_IN_BOUNDS:
14f9c5c9 10836 (*pos) += 2;
4c4b4cd2
PH
10837 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10838 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10839
4c4b4cd2
PH
10840 if (noside == EVAL_SKIP)
10841 goto nosideret;
14f9c5c9 10842
4c4b4cd2 10843 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10844 {
10845 type = language_bool_type (exp->language_defn, exp->gdbarch);
10846 return value_zero (type, not_lval);
10847 }
14f9c5c9 10848
4c4b4cd2 10849 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10850
1eea4ebd
UW
10851 type = ada_index_type (value_type (arg2), tem, "range");
10852 if (!type)
10853 type = value_type (arg1);
14f9c5c9 10854
1eea4ebd
UW
10855 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10856 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10857
f44316fa
UW
10858 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10859 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10860 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10861 return
fbb06eb1 10862 value_from_longest (type,
4c4b4cd2
PH
10863 (value_less (arg1, arg3)
10864 || value_equal (arg1, arg3))
10865 && (value_less (arg2, arg1)
10866 || value_equal (arg2, arg1)));
10867
10868 case TERNOP_IN_RANGE:
10869 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10870 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10871 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10872
10873 if (noside == EVAL_SKIP)
10874 goto nosideret;
10875
f44316fa
UW
10876 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10877 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10878 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10879 return
fbb06eb1 10880 value_from_longest (type,
4c4b4cd2
PH
10881 (value_less (arg1, arg3)
10882 || value_equal (arg1, arg3))
10883 && (value_less (arg2, arg1)
10884 || value_equal (arg2, arg1)));
10885
10886 case OP_ATR_FIRST:
10887 case OP_ATR_LAST:
10888 case OP_ATR_LENGTH:
10889 {
76a01679 10890 struct type *type_arg;
5b4ee69b 10891
76a01679
JB
10892 if (exp->elts[*pos].opcode == OP_TYPE)
10893 {
10894 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10895 arg1 = NULL;
5bc23cb3 10896 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10897 }
10898 else
10899 {
10900 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10901 type_arg = NULL;
10902 }
10903
10904 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10905 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10906 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10907 *pos += 4;
10908
10909 if (noside == EVAL_SKIP)
10910 goto nosideret;
680e1bee
TT
10911 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10912 {
10913 if (type_arg == NULL)
10914 type_arg = value_type (arg1);
76a01679 10915
680e1bee
TT
10916 if (ada_is_constrained_packed_array_type (type_arg))
10917 type_arg = decode_constrained_packed_array_type (type_arg);
10918
10919 if (!discrete_type_p (type_arg))
10920 {
10921 switch (op)
10922 {
10923 default: /* Should never happen. */
10924 error (_("unexpected attribute encountered"));
10925 case OP_ATR_FIRST:
10926 case OP_ATR_LAST:
10927 type_arg = ada_index_type (type_arg, tem,
10928 ada_attribute_name (op));
10929 break;
10930 case OP_ATR_LENGTH:
10931 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10932 break;
10933 }
10934 }
10935
10936 return value_zero (type_arg, not_lval);
10937 }
10938 else if (type_arg == NULL)
76a01679
JB
10939 {
10940 arg1 = ada_coerce_ref (arg1);
10941
ad82864c 10942 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10943 arg1 = ada_coerce_to_simple_array (arg1);
10944
aa4fb036 10945 if (op == OP_ATR_LENGTH)
1eea4ebd 10946 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10947 else
10948 {
10949 type = ada_index_type (value_type (arg1), tem,
10950 ada_attribute_name (op));
10951 if (type == NULL)
10952 type = builtin_type (exp->gdbarch)->builtin_int;
10953 }
76a01679 10954
76a01679
JB
10955 switch (op)
10956 {
10957 default: /* Should never happen. */
323e0a4a 10958 error (_("unexpected attribute encountered"));
76a01679 10959 case OP_ATR_FIRST:
1eea4ebd
UW
10960 return value_from_longest
10961 (type, ada_array_bound (arg1, tem, 0));
76a01679 10962 case OP_ATR_LAST:
1eea4ebd
UW
10963 return value_from_longest
10964 (type, ada_array_bound (arg1, tem, 1));
76a01679 10965 case OP_ATR_LENGTH:
1eea4ebd
UW
10966 return value_from_longest
10967 (type, ada_array_length (arg1, tem));
76a01679
JB
10968 }
10969 }
10970 else if (discrete_type_p (type_arg))
10971 {
10972 struct type *range_type;
0d5cff50 10973 const char *name = ada_type_name (type_arg);
5b4ee69b 10974
76a01679 10975 range_type = NULL;
78134374 10976 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
28c85d6c 10977 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10978 if (range_type == NULL)
10979 range_type = type_arg;
10980 switch (op)
10981 {
10982 default:
323e0a4a 10983 error (_("unexpected attribute encountered"));
76a01679 10984 case OP_ATR_FIRST:
690cc4eb 10985 return value_from_longest
43bbcdc2 10986 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10987 case OP_ATR_LAST:
690cc4eb 10988 return value_from_longest
43bbcdc2 10989 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10990 case OP_ATR_LENGTH:
323e0a4a 10991 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10992 }
10993 }
78134374 10994 else if (type_arg->code () == TYPE_CODE_FLT)
323e0a4a 10995 error (_("unimplemented type attribute"));
76a01679
JB
10996 else
10997 {
10998 LONGEST low, high;
10999
ad82864c
JB
11000 if (ada_is_constrained_packed_array_type (type_arg))
11001 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11002
aa4fb036 11003 if (op == OP_ATR_LENGTH)
1eea4ebd 11004 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11005 else
11006 {
11007 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11008 if (type == NULL)
11009 type = builtin_type (exp->gdbarch)->builtin_int;
11010 }
1eea4ebd 11011
76a01679
JB
11012 switch (op)
11013 {
11014 default:
323e0a4a 11015 error (_("unexpected attribute encountered"));
76a01679 11016 case OP_ATR_FIRST:
1eea4ebd 11017 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11018 return value_from_longest (type, low);
11019 case OP_ATR_LAST:
1eea4ebd 11020 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11021 return value_from_longest (type, high);
11022 case OP_ATR_LENGTH:
1eea4ebd
UW
11023 low = ada_array_bound_from_type (type_arg, tem, 0);
11024 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11025 return value_from_longest (type, high - low + 1);
11026 }
11027 }
14f9c5c9
AS
11028 }
11029
4c4b4cd2
PH
11030 case OP_ATR_TAG:
11031 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11032 if (noside == EVAL_SKIP)
76a01679 11033 goto nosideret;
4c4b4cd2
PH
11034
11035 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11036 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11037
11038 return ada_value_tag (arg1);
11039
11040 case OP_ATR_MIN:
11041 case OP_ATR_MAX:
11042 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11043 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11044 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11045 if (noside == EVAL_SKIP)
76a01679 11046 goto nosideret;
d2e4a39e 11047 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11048 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11049 else
f44316fa
UW
11050 {
11051 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11052 return value_binop (arg1, arg2,
11053 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11054 }
14f9c5c9 11055
4c4b4cd2
PH
11056 case OP_ATR_MODULUS:
11057 {
31dedfee 11058 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11059
5b4ee69b 11060 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11061 if (noside == EVAL_SKIP)
11062 goto nosideret;
4c4b4cd2 11063
76a01679 11064 if (!ada_is_modular_type (type_arg))
323e0a4a 11065 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11066
76a01679
JB
11067 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11068 ada_modulus (type_arg));
4c4b4cd2
PH
11069 }
11070
11071
11072 case OP_ATR_POS:
11073 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11074 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11075 if (noside == EVAL_SKIP)
76a01679 11076 goto nosideret;
3cb382c9
UW
11077 type = builtin_type (exp->gdbarch)->builtin_int;
11078 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11079 return value_zero (type, not_lval);
14f9c5c9 11080 else
3cb382c9 11081 return value_pos_atr (type, arg1);
14f9c5c9 11082
4c4b4cd2
PH
11083 case OP_ATR_SIZE:
11084 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11085 type = value_type (arg1);
11086
11087 /* If the argument is a reference, then dereference its type, since
11088 the user is really asking for the size of the actual object,
11089 not the size of the pointer. */
78134374 11090 if (type->code () == TYPE_CODE_REF)
8c1c099f
JB
11091 type = TYPE_TARGET_TYPE (type);
11092
4c4b4cd2 11093 if (noside == EVAL_SKIP)
76a01679 11094 goto nosideret;
4c4b4cd2 11095 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11096 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11097 else
22601c15 11098 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11099 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11100
11101 case OP_ATR_VAL:
11102 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11103 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11104 type = exp->elts[pc + 2].type;
14f9c5c9 11105 if (noside == EVAL_SKIP)
76a01679 11106 goto nosideret;
4c4b4cd2 11107 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11108 return value_zero (type, not_lval);
4c4b4cd2 11109 else
76a01679 11110 return value_val_atr (type, arg1);
4c4b4cd2
PH
11111
11112 case BINOP_EXP:
11113 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11114 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11115 if (noside == EVAL_SKIP)
11116 goto nosideret;
11117 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11118 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11119 else
f44316fa
UW
11120 {
11121 /* For integer exponentiation operations,
11122 only promote the first argument. */
11123 if (is_integral_type (value_type (arg2)))
11124 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11125 else
11126 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11127
11128 return value_binop (arg1, arg2, op);
11129 }
4c4b4cd2
PH
11130
11131 case UNOP_PLUS:
11132 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11133 if (noside == EVAL_SKIP)
11134 goto nosideret;
11135 else
11136 return arg1;
11137
11138 case UNOP_ABS:
11139 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11140 if (noside == EVAL_SKIP)
11141 goto nosideret;
f44316fa 11142 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11143 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11144 return value_neg (arg1);
14f9c5c9 11145 else
4c4b4cd2 11146 return arg1;
14f9c5c9
AS
11147
11148 case UNOP_IND:
5ec18f2b 11149 preeval_pos = *pos;
6b0d7253 11150 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11151 if (noside == EVAL_SKIP)
4c4b4cd2 11152 goto nosideret;
df407dfe 11153 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11154 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11155 {
11156 if (ada_is_array_descriptor_type (type))
11157 /* GDB allows dereferencing GNAT array descriptors. */
11158 {
11159 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11160
4c4b4cd2 11161 if (arrType == NULL)
323e0a4a 11162 error (_("Attempt to dereference null array pointer."));
00a4c844 11163 return value_at_lazy (arrType, 0);
4c4b4cd2 11164 }
78134374
SM
11165 else if (type->code () == TYPE_CODE_PTR
11166 || type->code () == TYPE_CODE_REF
4c4b4cd2 11167 /* In C you can dereference an array to get the 1st elt. */
78134374 11168 || type->code () == TYPE_CODE_ARRAY)
714e53ab 11169 {
5ec18f2b
JG
11170 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11171 only be determined by inspecting the object's tag.
11172 This means that we need to evaluate completely the
11173 expression in order to get its type. */
11174
78134374
SM
11175 if ((type->code () == TYPE_CODE_REF
11176 || type->code () == TYPE_CODE_PTR)
5ec18f2b
JG
11177 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11178 {
11179 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11180 EVAL_NORMAL);
11181 type = value_type (ada_value_ind (arg1));
11182 }
11183 else
11184 {
11185 type = to_static_fixed_type
11186 (ada_aligned_type
11187 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11188 }
c1b5a1a6 11189 ada_ensure_varsize_limit (type);
714e53ab
PH
11190 return value_zero (type, lval_memory);
11191 }
78134374 11192 else if (type->code () == TYPE_CODE_INT)
6b0d7253
JB
11193 {
11194 /* GDB allows dereferencing an int. */
11195 if (expect_type == NULL)
11196 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11197 lval_memory);
11198 else
11199 {
11200 expect_type =
11201 to_static_fixed_type (ada_aligned_type (expect_type));
11202 return value_zero (expect_type, lval_memory);
11203 }
11204 }
4c4b4cd2 11205 else
323e0a4a 11206 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11207 }
0963b4bd 11208 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11209 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11210
78134374 11211 if (type->code () == TYPE_CODE_INT)
96967637
JB
11212 /* GDB allows dereferencing an int. If we were given
11213 the expect_type, then use that as the target type.
11214 Otherwise, assume that the target type is an int. */
11215 {
11216 if (expect_type != NULL)
11217 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11218 arg1));
11219 else
11220 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11221 (CORE_ADDR) value_as_address (arg1));
11222 }
6b0d7253 11223
4c4b4cd2
PH
11224 if (ada_is_array_descriptor_type (type))
11225 /* GDB allows dereferencing GNAT array descriptors. */
11226 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11227 else
4c4b4cd2 11228 return ada_value_ind (arg1);
14f9c5c9
AS
11229
11230 case STRUCTOP_STRUCT:
11231 tem = longest_to_int (exp->elts[pc + 1].longconst);
11232 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11233 preeval_pos = *pos;
14f9c5c9
AS
11234 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11235 if (noside == EVAL_SKIP)
4c4b4cd2 11236 goto nosideret;
14f9c5c9 11237 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11238 {
df407dfe 11239 struct type *type1 = value_type (arg1);
5b4ee69b 11240
76a01679
JB
11241 if (ada_is_tagged_type (type1, 1))
11242 {
11243 type = ada_lookup_struct_elt_type (type1,
11244 &exp->elts[pc + 2].string,
988f6b3d 11245 1, 1);
5ec18f2b
JG
11246
11247 /* If the field is not found, check if it exists in the
11248 extension of this object's type. This means that we
11249 need to evaluate completely the expression. */
11250
76a01679 11251 if (type == NULL)
5ec18f2b
JG
11252 {
11253 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11254 EVAL_NORMAL);
11255 arg1 = ada_value_struct_elt (arg1,
11256 &exp->elts[pc + 2].string,
11257 0);
11258 arg1 = unwrap_value (arg1);
11259 type = value_type (ada_to_fixed_value (arg1));
11260 }
76a01679
JB
11261 }
11262 else
11263 type =
11264 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11265 0);
76a01679
JB
11266
11267 return value_zero (ada_aligned_type (type), lval_memory);
11268 }
14f9c5c9 11269 else
a579cd9a
MW
11270 {
11271 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11272 arg1 = unwrap_value (arg1);
11273 return ada_to_fixed_value (arg1);
11274 }
284614f0 11275
14f9c5c9 11276 case OP_TYPE:
4c4b4cd2
PH
11277 /* The value is not supposed to be used. This is here to make it
11278 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11279 (*pos) += 2;
11280 if (noside == EVAL_SKIP)
4c4b4cd2 11281 goto nosideret;
14f9c5c9 11282 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11283 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11284 else
323e0a4a 11285 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11286
11287 case OP_AGGREGATE:
11288 case OP_CHOICES:
11289 case OP_OTHERS:
11290 case OP_DISCRETE_RANGE:
11291 case OP_POSITIONAL:
11292 case OP_NAME:
11293 if (noside == EVAL_NORMAL)
11294 switch (op)
11295 {
11296 case OP_NAME:
11297 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11298 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11299 case OP_AGGREGATE:
11300 error (_("Aggregates only allowed on the right of an assignment"));
11301 default:
0963b4bd
MS
11302 internal_error (__FILE__, __LINE__,
11303 _("aggregate apparently mangled"));
52ce6436
PH
11304 }
11305
11306 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11307 *pos += oplen - 1;
11308 for (tem = 0; tem < nargs; tem += 1)
11309 ada_evaluate_subexp (NULL, exp, pos, noside);
11310 goto nosideret;
14f9c5c9
AS
11311 }
11312
11313nosideret:
ced9779b 11314 return eval_skip_value (exp);
14f9c5c9 11315}
14f9c5c9 11316\f
d2e4a39e 11317
4c4b4cd2 11318 /* Fixed point */
14f9c5c9
AS
11319
11320/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11321 type name that encodes the 'small and 'delta information.
4c4b4cd2 11322 Otherwise, return NULL. */
14f9c5c9 11323
d2e4a39e 11324static const char *
b2188a06 11325gnat_encoded_fixed_type_info (struct type *type)
14f9c5c9 11326{
d2e4a39e 11327 const char *name = ada_type_name (type);
78134374 11328 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
14f9c5c9 11329
d2e4a39e
AS
11330 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11331 {
14f9c5c9 11332 const char *tail = strstr (name, "___XF_");
5b4ee69b 11333
14f9c5c9 11334 if (tail == NULL)
4c4b4cd2 11335 return NULL;
d2e4a39e 11336 else
4c4b4cd2 11337 return tail + 5;
14f9c5c9
AS
11338 }
11339 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
b2188a06 11340 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
11341 else
11342 return NULL;
11343}
11344
4c4b4cd2 11345/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11346
11347int
b2188a06 11348ada_is_gnat_encoded_fixed_point_type (struct type *type)
14f9c5c9 11349{
b2188a06 11350 return gnat_encoded_fixed_type_info (type) != NULL;
14f9c5c9
AS
11351}
11352
4c4b4cd2
PH
11353/* Return non-zero iff TYPE represents a System.Address type. */
11354
11355int
11356ada_is_system_address_type (struct type *type)
11357{
7d93a1e0 11358 return (type->name () && strcmp (type->name (), "system__address") == 0);
4c4b4cd2
PH
11359}
11360
14f9c5c9 11361/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11362 type, return the target floating-point type to be used to represent
11363 of this type during internal computation. */
11364
11365static struct type *
11366ada_scaling_type (struct type *type)
11367{
11368 return builtin_type (get_type_arch (type))->builtin_long_double;
11369}
11370
11371/* Assuming that TYPE is the representation of an Ada fixed-point
11372 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11373 delta cannot be determined. */
14f9c5c9 11374
50eff16b 11375struct value *
b2188a06 11376gnat_encoded_fixed_point_delta (struct type *type)
14f9c5c9 11377{
b2188a06 11378 const char *encoding = gnat_encoded_fixed_type_info (type);
50eff16b
UW
11379 struct type *scale_type = ada_scaling_type (type);
11380
11381 long long num, den;
11382
11383 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11384 return nullptr;
d2e4a39e 11385 else
50eff16b
UW
11386 return value_binop (value_from_longest (scale_type, num),
11387 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11388}
11389
b2188a06
JB
11390/* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11391 the scaling factor ('SMALL value) associated with the type. */
14f9c5c9 11392
50eff16b
UW
11393struct value *
11394ada_scaling_factor (struct type *type)
14f9c5c9 11395{
b2188a06 11396 const char *encoding = gnat_encoded_fixed_type_info (type);
50eff16b
UW
11397 struct type *scale_type = ada_scaling_type (type);
11398
11399 long long num0, den0, num1, den1;
14f9c5c9 11400 int n;
d2e4a39e 11401
50eff16b 11402 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11403 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11404
11405 if (n < 2)
50eff16b 11406 return value_from_longest (scale_type, 1);
14f9c5c9 11407 else if (n == 4)
50eff16b
UW
11408 return value_binop (value_from_longest (scale_type, num1),
11409 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11410 else
50eff16b
UW
11411 return value_binop (value_from_longest (scale_type, num0),
11412 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11413}
11414
14f9c5c9 11415\f
d2e4a39e 11416
4c4b4cd2 11417 /* Range types */
14f9c5c9
AS
11418
11419/* Scan STR beginning at position K for a discriminant name, and
11420 return the value of that discriminant field of DVAL in *PX. If
11421 PNEW_K is not null, put the position of the character beyond the
11422 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11423 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11424
11425static int
108d56a4 11426scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11427 int *pnew_k)
14f9c5c9
AS
11428{
11429 static char *bound_buffer = NULL;
11430 static size_t bound_buffer_len = 0;
5da1a4d3 11431 const char *pstart, *pend, *bound;
d2e4a39e 11432 struct value *bound_val;
14f9c5c9
AS
11433
11434 if (dval == NULL || str == NULL || str[k] == '\0')
11435 return 0;
11436
5da1a4d3
SM
11437 pstart = str + k;
11438 pend = strstr (pstart, "__");
14f9c5c9
AS
11439 if (pend == NULL)
11440 {
5da1a4d3 11441 bound = pstart;
14f9c5c9
AS
11442 k += strlen (bound);
11443 }
d2e4a39e 11444 else
14f9c5c9 11445 {
5da1a4d3
SM
11446 int len = pend - pstart;
11447
11448 /* Strip __ and beyond. */
11449 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11450 strncpy (bound_buffer, pstart, len);
11451 bound_buffer[len] = '\0';
11452
14f9c5c9 11453 bound = bound_buffer;
d2e4a39e 11454 k = pend - str;
14f9c5c9 11455 }
d2e4a39e 11456
df407dfe 11457 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11458 if (bound_val == NULL)
11459 return 0;
11460
11461 *px = value_as_long (bound_val);
11462 if (pnew_k != NULL)
11463 *pnew_k = k;
11464 return 1;
11465}
11466
11467/* Value of variable named NAME in the current environment. If
11468 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11469 otherwise causes an error with message ERR_MSG. */
11470
d2e4a39e 11471static struct value *
edb0c9cb 11472get_var_value (const char *name, const char *err_msg)
14f9c5c9 11473{
b5ec771e 11474 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11475
54d343a2 11476 std::vector<struct block_symbol> syms;
b5ec771e
PA
11477 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11478 get_selected_block (0),
11479 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11480
11481 if (nsyms != 1)
11482 {
11483 if (err_msg == NULL)
4c4b4cd2 11484 return 0;
14f9c5c9 11485 else
8a3fe4f8 11486 error (("%s"), err_msg);
14f9c5c9
AS
11487 }
11488
54d343a2 11489 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11490}
d2e4a39e 11491
edb0c9cb
PA
11492/* Value of integer variable named NAME in the current environment.
11493 If no such variable is found, returns false. Otherwise, sets VALUE
11494 to the variable's value and returns true. */
4c4b4cd2 11495
edb0c9cb
PA
11496bool
11497get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11498{
4c4b4cd2 11499 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11500
14f9c5c9 11501 if (var_val == 0)
edb0c9cb
PA
11502 return false;
11503
11504 value = value_as_long (var_val);
11505 return true;
14f9c5c9 11506}
d2e4a39e 11507
14f9c5c9
AS
11508
11509/* Return a range type whose base type is that of the range type named
11510 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11511 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11512 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11513 corresponding range type from debug information; fall back to using it
11514 if symbol lookup fails. If a new type must be created, allocate it
11515 like ORIG_TYPE was. The bounds information, in general, is encoded
11516 in NAME, the base type given in the named range type. */
14f9c5c9 11517
d2e4a39e 11518static struct type *
28c85d6c 11519to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11520{
0d5cff50 11521 const char *name;
14f9c5c9 11522 struct type *base_type;
108d56a4 11523 const char *subtype_info;
14f9c5c9 11524
28c85d6c 11525 gdb_assert (raw_type != NULL);
7d93a1e0 11526 gdb_assert (raw_type->name () != NULL);
dddfab26 11527
78134374 11528 if (raw_type->code () == TYPE_CODE_RANGE)
14f9c5c9
AS
11529 base_type = TYPE_TARGET_TYPE (raw_type);
11530 else
11531 base_type = raw_type;
11532
7d93a1e0 11533 name = raw_type->name ();
14f9c5c9
AS
11534 subtype_info = strstr (name, "___XD");
11535 if (subtype_info == NULL)
690cc4eb 11536 {
43bbcdc2
PH
11537 LONGEST L = ada_discrete_type_low_bound (raw_type);
11538 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11539
690cc4eb
PH
11540 if (L < INT_MIN || U > INT_MAX)
11541 return raw_type;
11542 else
0c9c3474
SA
11543 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11544 L, U);
690cc4eb 11545 }
14f9c5c9
AS
11546 else
11547 {
11548 static char *name_buf = NULL;
11549 static size_t name_len = 0;
11550 int prefix_len = subtype_info - name;
11551 LONGEST L, U;
11552 struct type *type;
108d56a4 11553 const char *bounds_str;
14f9c5c9
AS
11554 int n;
11555
11556 GROW_VECT (name_buf, name_len, prefix_len + 5);
11557 strncpy (name_buf, name, prefix_len);
11558 name_buf[prefix_len] = '\0';
11559
11560 subtype_info += 5;
11561 bounds_str = strchr (subtype_info, '_');
11562 n = 1;
11563
d2e4a39e 11564 if (*subtype_info == 'L')
4c4b4cd2
PH
11565 {
11566 if (!ada_scan_number (bounds_str, n, &L, &n)
11567 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11568 return raw_type;
11569 if (bounds_str[n] == '_')
11570 n += 2;
0963b4bd 11571 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11572 n += 1;
11573 subtype_info += 1;
11574 }
d2e4a39e 11575 else
4c4b4cd2 11576 {
4c4b4cd2 11577 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11578 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11579 {
323e0a4a 11580 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11581 L = 1;
11582 }
11583 }
14f9c5c9 11584
d2e4a39e 11585 if (*subtype_info == 'U')
4c4b4cd2
PH
11586 {
11587 if (!ada_scan_number (bounds_str, n, &U, &n)
11588 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11589 return raw_type;
11590 }
d2e4a39e 11591 else
4c4b4cd2 11592 {
4c4b4cd2 11593 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11594 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11595 {
323e0a4a 11596 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11597 U = L;
11598 }
11599 }
14f9c5c9 11600
0c9c3474
SA
11601 type = create_static_range_type (alloc_type_copy (raw_type),
11602 base_type, L, U);
f5a91472
JB
11603 /* create_static_range_type alters the resulting type's length
11604 to match the size of the base_type, which is not what we want.
11605 Set it back to the original range type's length. */
11606 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d0e39ea2 11607 type->set_name (name);
14f9c5c9
AS
11608 return type;
11609 }
11610}
11611
4c4b4cd2
PH
11612/* True iff NAME is the name of a range type. */
11613
14f9c5c9 11614int
d2e4a39e 11615ada_is_range_type_name (const char *name)
14f9c5c9
AS
11616{
11617 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11618}
14f9c5c9 11619\f
d2e4a39e 11620
4c4b4cd2
PH
11621 /* Modular types */
11622
11623/* True iff TYPE is an Ada modular type. */
14f9c5c9 11624
14f9c5c9 11625int
d2e4a39e 11626ada_is_modular_type (struct type *type)
14f9c5c9 11627{
18af8284 11628 struct type *subranged_type = get_base_type (type);
14f9c5c9 11629
78134374
SM
11630 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11631 && subranged_type->code () == TYPE_CODE_INT
4c4b4cd2 11632 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11633}
11634
4c4b4cd2
PH
11635/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11636
61ee279c 11637ULONGEST
0056e4d5 11638ada_modulus (struct type *type)
14f9c5c9 11639{
43bbcdc2 11640 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11641}
d2e4a39e 11642\f
f7f9143b
JB
11643
11644/* Ada exception catchpoint support:
11645 ---------------------------------
11646
11647 We support 3 kinds of exception catchpoints:
11648 . catchpoints on Ada exceptions
11649 . catchpoints on unhandled Ada exceptions
11650 . catchpoints on failed assertions
11651
11652 Exceptions raised during failed assertions, or unhandled exceptions
11653 could perfectly be caught with the general catchpoint on Ada exceptions.
11654 However, we can easily differentiate these two special cases, and having
11655 the option to distinguish these two cases from the rest can be useful
11656 to zero-in on certain situations.
11657
11658 Exception catchpoints are a specialized form of breakpoint,
11659 since they rely on inserting breakpoints inside known routines
11660 of the GNAT runtime. The implementation therefore uses a standard
11661 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11662 of breakpoint_ops.
11663
0259addd
JB
11664 Support in the runtime for exception catchpoints have been changed
11665 a few times already, and these changes affect the implementation
11666 of these catchpoints. In order to be able to support several
11667 variants of the runtime, we use a sniffer that will determine
28010a5d 11668 the runtime variant used by the program being debugged. */
f7f9143b 11669
82eacd52
JB
11670/* Ada's standard exceptions.
11671
11672 The Ada 83 standard also defined Numeric_Error. But there so many
11673 situations where it was unclear from the Ada 83 Reference Manual
11674 (RM) whether Constraint_Error or Numeric_Error should be raised,
11675 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11676 Interpretation saying that anytime the RM says that Numeric_Error
11677 should be raised, the implementation may raise Constraint_Error.
11678 Ada 95 went one step further and pretty much removed Numeric_Error
11679 from the list of standard exceptions (it made it a renaming of
11680 Constraint_Error, to help preserve compatibility when compiling
11681 an Ada83 compiler). As such, we do not include Numeric_Error from
11682 this list of standard exceptions. */
3d0b0fa3 11683
a121b7c1 11684static const char *standard_exc[] = {
3d0b0fa3
JB
11685 "constraint_error",
11686 "program_error",
11687 "storage_error",
11688 "tasking_error"
11689};
11690
0259addd
JB
11691typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11692
11693/* A structure that describes how to support exception catchpoints
11694 for a given executable. */
11695
11696struct exception_support_info
11697{
11698 /* The name of the symbol to break on in order to insert
11699 a catchpoint on exceptions. */
11700 const char *catch_exception_sym;
11701
11702 /* The name of the symbol to break on in order to insert
11703 a catchpoint on unhandled exceptions. */
11704 const char *catch_exception_unhandled_sym;
11705
11706 /* The name of the symbol to break on in order to insert
11707 a catchpoint on failed assertions. */
11708 const char *catch_assert_sym;
11709
9f757bf7
XR
11710 /* The name of the symbol to break on in order to insert
11711 a catchpoint on exception handling. */
11712 const char *catch_handlers_sym;
11713
0259addd
JB
11714 /* Assuming that the inferior just triggered an unhandled exception
11715 catchpoint, this function is responsible for returning the address
11716 in inferior memory where the name of that exception is stored.
11717 Return zero if the address could not be computed. */
11718 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11719};
11720
11721static CORE_ADDR ada_unhandled_exception_name_addr (void);
11722static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11723
11724/* The following exception support info structure describes how to
11725 implement exception catchpoints with the latest version of the
ca683e3a 11726 Ada runtime (as of 2019-08-??). */
0259addd
JB
11727
11728static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11729{
11730 "__gnat_debug_raise_exception", /* catch_exception_sym */
11731 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11732 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11733 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11734 ada_unhandled_exception_name_addr
11735};
11736
11737/* The following exception support info structure describes how to
11738 implement exception catchpoints with an earlier version of the
11739 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11740
11741static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11742{
11743 "__gnat_debug_raise_exception", /* catch_exception_sym */
11744 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11745 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11746 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11747 ada_unhandled_exception_name_addr
11748};
11749
11750/* The following exception support info structure describes how to
11751 implement exception catchpoints with a slightly older version
11752 of the Ada runtime. */
11753
11754static const struct exception_support_info exception_support_info_fallback =
11755{
11756 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11757 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11758 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11759 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11760 ada_unhandled_exception_name_addr_from_raise
11761};
11762
f17011e0
JB
11763/* Return nonzero if we can detect the exception support routines
11764 described in EINFO.
11765
11766 This function errors out if an abnormal situation is detected
11767 (for instance, if we find the exception support routines, but
11768 that support is found to be incomplete). */
11769
11770static int
11771ada_has_this_exception_support (const struct exception_support_info *einfo)
11772{
11773 struct symbol *sym;
11774
11775 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11776 that should be compiled with debugging information. As a result, we
11777 expect to find that symbol in the symtabs. */
11778
11779 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11780 if (sym == NULL)
a6af7abe
JB
11781 {
11782 /* Perhaps we did not find our symbol because the Ada runtime was
11783 compiled without debugging info, or simply stripped of it.
11784 It happens on some GNU/Linux distributions for instance, where
11785 users have to install a separate debug package in order to get
11786 the runtime's debugging info. In that situation, let the user
11787 know why we cannot insert an Ada exception catchpoint.
11788
11789 Note: Just for the purpose of inserting our Ada exception
11790 catchpoint, we could rely purely on the associated minimal symbol.
11791 But we would be operating in degraded mode anyway, since we are
11792 still lacking the debugging info needed later on to extract
11793 the name of the exception being raised (this name is printed in
11794 the catchpoint message, and is also used when trying to catch
11795 a specific exception). We do not handle this case for now. */
3b7344d5 11796 struct bound_minimal_symbol msym
1c8e84b0
JB
11797 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11798
3b7344d5 11799 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11800 error (_("Your Ada runtime appears to be missing some debugging "
11801 "information.\nCannot insert Ada exception catchpoint "
11802 "in this configuration."));
11803
11804 return 0;
11805 }
f17011e0
JB
11806
11807 /* Make sure that the symbol we found corresponds to a function. */
11808
11809 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11810 {
11811 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11812 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11813 return 0;
11814 }
11815
11816 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11817 if (sym == NULL)
11818 {
11819 struct bound_minimal_symbol msym
11820 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11821
11822 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11823 error (_("Your Ada runtime appears to be missing some debugging "
11824 "information.\nCannot insert Ada exception catchpoint "
11825 "in this configuration."));
11826
11827 return 0;
11828 }
11829
11830 /* Make sure that the symbol we found corresponds to a function. */
11831
11832 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11833 {
11834 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11835 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11836 return 0;
11837 }
f17011e0
JB
11838
11839 return 1;
11840}
11841
0259addd
JB
11842/* Inspect the Ada runtime and determine which exception info structure
11843 should be used to provide support for exception catchpoints.
11844
3eecfa55
JB
11845 This function will always set the per-inferior exception_info,
11846 or raise an error. */
0259addd
JB
11847
11848static void
11849ada_exception_support_info_sniffer (void)
11850{
3eecfa55 11851 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11852
11853 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11854 if (data->exception_info != NULL)
0259addd
JB
11855 return;
11856
11857 /* Check the latest (default) exception support info. */
f17011e0 11858 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11859 {
3eecfa55 11860 data->exception_info = &default_exception_support_info;
0259addd
JB
11861 return;
11862 }
11863
ca683e3a
AO
11864 /* Try the v0 exception suport info. */
11865 if (ada_has_this_exception_support (&exception_support_info_v0))
11866 {
11867 data->exception_info = &exception_support_info_v0;
11868 return;
11869 }
11870
0259addd 11871 /* Try our fallback exception suport info. */
f17011e0 11872 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11873 {
3eecfa55 11874 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11875 return;
11876 }
11877
11878 /* Sometimes, it is normal for us to not be able to find the routine
11879 we are looking for. This happens when the program is linked with
11880 the shared version of the GNAT runtime, and the program has not been
11881 started yet. Inform the user of these two possible causes if
11882 applicable. */
11883
ccefe4c4 11884 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11885 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11886
11887 /* If the symbol does not exist, then check that the program is
11888 already started, to make sure that shared libraries have been
11889 loaded. If it is not started, this may mean that the symbol is
11890 in a shared library. */
11891
e99b03dc 11892 if (inferior_ptid.pid () == 0)
0259addd
JB
11893 error (_("Unable to insert catchpoint. Try to start the program first."));
11894
11895 /* At this point, we know that we are debugging an Ada program and
11896 that the inferior has been started, but we still are not able to
0963b4bd 11897 find the run-time symbols. That can mean that we are in
0259addd
JB
11898 configurable run time mode, or that a-except as been optimized
11899 out by the linker... In any case, at this point it is not worth
11900 supporting this feature. */
11901
7dda8cff 11902 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11903}
11904
f7f9143b
JB
11905/* True iff FRAME is very likely to be that of a function that is
11906 part of the runtime system. This is all very heuristic, but is
11907 intended to be used as advice as to what frames are uninteresting
11908 to most users. */
11909
11910static int
11911is_known_support_routine (struct frame_info *frame)
11912{
692465f1 11913 enum language func_lang;
f7f9143b 11914 int i;
f35a17b5 11915 const char *fullname;
f7f9143b 11916
4ed6b5be
JB
11917 /* If this code does not have any debugging information (no symtab),
11918 This cannot be any user code. */
f7f9143b 11919
51abb421 11920 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11921 if (sal.symtab == NULL)
11922 return 1;
11923
4ed6b5be
JB
11924 /* If there is a symtab, but the associated source file cannot be
11925 located, then assume this is not user code: Selecting a frame
11926 for which we cannot display the code would not be very helpful
11927 for the user. This should also take care of case such as VxWorks
11928 where the kernel has some debugging info provided for a few units. */
f7f9143b 11929
f35a17b5
JK
11930 fullname = symtab_to_fullname (sal.symtab);
11931 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11932 return 1;
11933
85102364 11934 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
11935 We also check the name of the objfile against the name of some
11936 known system libraries that sometimes come with debugging info
11937 too. */
11938
f7f9143b
JB
11939 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11940 {
11941 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11942 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11943 return 1;
eb822aa6
DE
11944 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11945 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11946 return 1;
f7f9143b
JB
11947 }
11948
4ed6b5be 11949 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11950
c6dc63a1
TT
11951 gdb::unique_xmalloc_ptr<char> func_name
11952 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11953 if (func_name == NULL)
11954 return 1;
11955
11956 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11957 {
11958 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11959 if (re_exec (func_name.get ()))
11960 return 1;
f7f9143b
JB
11961 }
11962
11963 return 0;
11964}
11965
11966/* Find the first frame that contains debugging information and that is not
11967 part of the Ada run-time, starting from FI and moving upward. */
11968
0ef643c8 11969void
f7f9143b
JB
11970ada_find_printable_frame (struct frame_info *fi)
11971{
11972 for (; fi != NULL; fi = get_prev_frame (fi))
11973 {
11974 if (!is_known_support_routine (fi))
11975 {
11976 select_frame (fi);
11977 break;
11978 }
11979 }
11980
11981}
11982
11983/* Assuming that the inferior just triggered an unhandled exception
11984 catchpoint, return the address in inferior memory where the name
11985 of the exception is stored.
11986
11987 Return zero if the address could not be computed. */
11988
11989static CORE_ADDR
11990ada_unhandled_exception_name_addr (void)
0259addd
JB
11991{
11992 return parse_and_eval_address ("e.full_name");
11993}
11994
11995/* Same as ada_unhandled_exception_name_addr, except that this function
11996 should be used when the inferior uses an older version of the runtime,
11997 where the exception name needs to be extracted from a specific frame
11998 several frames up in the callstack. */
11999
12000static CORE_ADDR
12001ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12002{
12003 int frame_level;
12004 struct frame_info *fi;
3eecfa55 12005 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12006
12007 /* To determine the name of this exception, we need to select
12008 the frame corresponding to RAISE_SYM_NAME. This frame is
12009 at least 3 levels up, so we simply skip the first 3 frames
12010 without checking the name of their associated function. */
12011 fi = get_current_frame ();
12012 for (frame_level = 0; frame_level < 3; frame_level += 1)
12013 if (fi != NULL)
12014 fi = get_prev_frame (fi);
12015
12016 while (fi != NULL)
12017 {
692465f1
JB
12018 enum language func_lang;
12019
c6dc63a1
TT
12020 gdb::unique_xmalloc_ptr<char> func_name
12021 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12022 if (func_name != NULL)
12023 {
c6dc63a1 12024 if (strcmp (func_name.get (),
55b87a52
KS
12025 data->exception_info->catch_exception_sym) == 0)
12026 break; /* We found the frame we were looking for... */
55b87a52 12027 }
fb44b1a7 12028 fi = get_prev_frame (fi);
f7f9143b
JB
12029 }
12030
12031 if (fi == NULL)
12032 return 0;
12033
12034 select_frame (fi);
12035 return parse_and_eval_address ("id.full_name");
12036}
12037
12038/* Assuming the inferior just triggered an Ada exception catchpoint
12039 (of any type), return the address in inferior memory where the name
12040 of the exception is stored, if applicable.
12041
45db7c09
PA
12042 Assumes the selected frame is the current frame.
12043
f7f9143b
JB
12044 Return zero if the address could not be computed, or if not relevant. */
12045
12046static CORE_ADDR
761269c8 12047ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12048 struct breakpoint *b)
12049{
3eecfa55
JB
12050 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12051
f7f9143b
JB
12052 switch (ex)
12053 {
761269c8 12054 case ada_catch_exception:
f7f9143b
JB
12055 return (parse_and_eval_address ("e.full_name"));
12056 break;
12057
761269c8 12058 case ada_catch_exception_unhandled:
3eecfa55 12059 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12060 break;
9f757bf7
XR
12061
12062 case ada_catch_handlers:
12063 return 0; /* The runtimes does not provide access to the exception
12064 name. */
12065 break;
12066
761269c8 12067 case ada_catch_assert:
f7f9143b
JB
12068 return 0; /* Exception name is not relevant in this case. */
12069 break;
12070
12071 default:
12072 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12073 break;
12074 }
12075
12076 return 0; /* Should never be reached. */
12077}
12078
e547c119
JB
12079/* Assuming the inferior is stopped at an exception catchpoint,
12080 return the message which was associated to the exception, if
12081 available. Return NULL if the message could not be retrieved.
12082
e547c119
JB
12083 Note: The exception message can be associated to an exception
12084 either through the use of the Raise_Exception function, or
12085 more simply (Ada 2005 and later), via:
12086
12087 raise Exception_Name with "exception message";
12088
12089 */
12090
6f46ac85 12091static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12092ada_exception_message_1 (void)
12093{
12094 struct value *e_msg_val;
e547c119 12095 int e_msg_len;
e547c119
JB
12096
12097 /* For runtimes that support this feature, the exception message
12098 is passed as an unbounded string argument called "message". */
12099 e_msg_val = parse_and_eval ("message");
12100 if (e_msg_val == NULL)
12101 return NULL; /* Exception message not supported. */
12102
12103 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12104 gdb_assert (e_msg_val != NULL);
12105 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12106
12107 /* If the message string is empty, then treat it as if there was
12108 no exception message. */
12109 if (e_msg_len <= 0)
12110 return NULL;
12111
f5272a3b
TT
12112 gdb::unique_xmalloc_ptr<char> e_msg;
12113 int err;
12114 if (target_read_string (value_address (e_msg_val), &e_msg, INT_MAX, &err) == 0
12115 || err != 0)
12116 return nullptr;
e547c119 12117
e547c119
JB
12118 return e_msg;
12119}
12120
12121/* Same as ada_exception_message_1, except that all exceptions are
12122 contained here (returning NULL instead). */
12123
6f46ac85 12124static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12125ada_exception_message (void)
12126{
6f46ac85 12127 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12128
a70b8144 12129 try
e547c119
JB
12130 {
12131 e_msg = ada_exception_message_1 ();
12132 }
230d2906 12133 catch (const gdb_exception_error &e)
e547c119 12134 {
6f46ac85 12135 e_msg.reset (nullptr);
e547c119 12136 }
e547c119
JB
12137
12138 return e_msg;
12139}
12140
f7f9143b
JB
12141/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12142 any error that ada_exception_name_addr_1 might cause to be thrown.
12143 When an error is intercepted, a warning with the error message is printed,
12144 and zero is returned. */
12145
12146static CORE_ADDR
761269c8 12147ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12148 struct breakpoint *b)
12149{
f7f9143b
JB
12150 CORE_ADDR result = 0;
12151
a70b8144 12152 try
f7f9143b
JB
12153 {
12154 result = ada_exception_name_addr_1 (ex, b);
12155 }
12156
230d2906 12157 catch (const gdb_exception_error &e)
f7f9143b 12158 {
3d6e9d23 12159 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12160 return 0;
12161 }
12162
12163 return result;
12164}
12165
cb7de75e 12166static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12167 (const char *excep_string,
12168 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12169
12170/* Ada catchpoints.
12171
12172 In the case of catchpoints on Ada exceptions, the catchpoint will
12173 stop the target on every exception the program throws. When a user
12174 specifies the name of a specific exception, we translate this
12175 request into a condition expression (in text form), and then parse
12176 it into an expression stored in each of the catchpoint's locations.
12177 We then use this condition to check whether the exception that was
12178 raised is the one the user is interested in. If not, then the
12179 target is resumed again. We store the name of the requested
12180 exception, in order to be able to re-set the condition expression
12181 when symbols change. */
12182
12183/* An instance of this type is used to represent an Ada catchpoint
5625a286 12184 breakpoint location. */
28010a5d 12185
5625a286 12186class ada_catchpoint_location : public bp_location
28010a5d 12187{
5625a286 12188public:
5f486660 12189 ada_catchpoint_location (breakpoint *owner)
f06f1252 12190 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12191 {}
28010a5d
PA
12192
12193 /* The condition that checks whether the exception that was raised
12194 is the specific exception the user specified on catchpoint
12195 creation. */
4d01a485 12196 expression_up excep_cond_expr;
28010a5d
PA
12197};
12198
c1fc2657 12199/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12200
c1fc2657 12201struct ada_catchpoint : public breakpoint
28010a5d 12202{
37f6a7f4
TT
12203 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12204 : m_kind (kind)
12205 {
12206 }
12207
28010a5d 12208 /* The name of the specific exception the user specified. */
bc18fbb5 12209 std::string excep_string;
37f6a7f4
TT
12210
12211 /* What kind of catchpoint this is. */
12212 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12213};
12214
12215/* Parse the exception condition string in the context of each of the
12216 catchpoint's locations, and store them for later evaluation. */
12217
12218static void
9f757bf7
XR
12219create_excep_cond_exprs (struct ada_catchpoint *c,
12220 enum ada_exception_catchpoint_kind ex)
28010a5d 12221{
fccf9de1
TT
12222 struct bp_location *bl;
12223
28010a5d 12224 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12225 if (c->excep_string.empty ())
28010a5d
PA
12226 return;
12227
12228 /* Same if there are no locations... */
c1fc2657 12229 if (c->loc == NULL)
28010a5d
PA
12230 return;
12231
fccf9de1
TT
12232 /* Compute the condition expression in text form, from the specific
12233 expection we want to catch. */
12234 std::string cond_string
12235 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12236
fccf9de1
TT
12237 /* Iterate over all the catchpoint's locations, and parse an
12238 expression for each. */
12239 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12240 {
12241 struct ada_catchpoint_location *ada_loc
fccf9de1 12242 = (struct ada_catchpoint_location *) bl;
4d01a485 12243 expression_up exp;
28010a5d 12244
fccf9de1 12245 if (!bl->shlib_disabled)
28010a5d 12246 {
bbc13ae3 12247 const char *s;
28010a5d 12248
cb7de75e 12249 s = cond_string.c_str ();
a70b8144 12250 try
28010a5d 12251 {
fccf9de1
TT
12252 exp = parse_exp_1 (&s, bl->address,
12253 block_for_pc (bl->address),
036e657b 12254 0);
28010a5d 12255 }
230d2906 12256 catch (const gdb_exception_error &e)
849f2b52
JB
12257 {
12258 warning (_("failed to reevaluate internal exception condition "
12259 "for catchpoint %d: %s"),
3d6e9d23 12260 c->number, e.what ());
849f2b52 12261 }
28010a5d
PA
12262 }
12263
b22e99fd 12264 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12265 }
28010a5d
PA
12266}
12267
28010a5d
PA
12268/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12269 structure for all exception catchpoint kinds. */
12270
12271static struct bp_location *
37f6a7f4 12272allocate_location_exception (struct breakpoint *self)
28010a5d 12273{
5f486660 12274 return new ada_catchpoint_location (self);
28010a5d
PA
12275}
12276
12277/* Implement the RE_SET method in the breakpoint_ops structure for all
12278 exception catchpoint kinds. */
12279
12280static void
37f6a7f4 12281re_set_exception (struct breakpoint *b)
28010a5d
PA
12282{
12283 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12284
12285 /* Call the base class's method. This updates the catchpoint's
12286 locations. */
2060206e 12287 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12288
12289 /* Reparse the exception conditional expressions. One for each
12290 location. */
37f6a7f4 12291 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12292}
12293
12294/* Returns true if we should stop for this breakpoint hit. If the
12295 user specified a specific exception, we only want to cause a stop
12296 if the program thrown that exception. */
12297
12298static int
12299should_stop_exception (const struct bp_location *bl)
12300{
12301 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12302 const struct ada_catchpoint_location *ada_loc
12303 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12304 int stop;
12305
37f6a7f4
TT
12306 struct internalvar *var = lookup_internalvar ("_ada_exception");
12307 if (c->m_kind == ada_catch_assert)
12308 clear_internalvar (var);
12309 else
12310 {
12311 try
12312 {
12313 const char *expr;
12314
12315 if (c->m_kind == ada_catch_handlers)
12316 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12317 ".all.occurrence.id");
12318 else
12319 expr = "e";
12320
12321 struct value *exc = parse_and_eval (expr);
12322 set_internalvar (var, exc);
12323 }
12324 catch (const gdb_exception_error &ex)
12325 {
12326 clear_internalvar (var);
12327 }
12328 }
12329
28010a5d 12330 /* With no specific exception, should always stop. */
bc18fbb5 12331 if (c->excep_string.empty ())
28010a5d
PA
12332 return 1;
12333
12334 if (ada_loc->excep_cond_expr == NULL)
12335 {
12336 /* We will have a NULL expression if back when we were creating
12337 the expressions, this location's had failed to parse. */
12338 return 1;
12339 }
12340
12341 stop = 1;
a70b8144 12342 try
28010a5d
PA
12343 {
12344 struct value *mark;
12345
12346 mark = value_mark ();
4d01a485 12347 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12348 value_free_to_mark (mark);
12349 }
230d2906 12350 catch (const gdb_exception &ex)
492d29ea
PA
12351 {
12352 exception_fprintf (gdb_stderr, ex,
12353 _("Error in testing exception condition:\n"));
12354 }
492d29ea 12355
28010a5d
PA
12356 return stop;
12357}
12358
12359/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12360 for all exception catchpoint kinds. */
12361
12362static void
37f6a7f4 12363check_status_exception (bpstat bs)
28010a5d
PA
12364{
12365 bs->stop = should_stop_exception (bs->bp_location_at);
12366}
12367
f7f9143b
JB
12368/* Implement the PRINT_IT method in the breakpoint_ops structure
12369 for all exception catchpoint kinds. */
12370
12371static enum print_stop_action
37f6a7f4 12372print_it_exception (bpstat bs)
f7f9143b 12373{
79a45e25 12374 struct ui_out *uiout = current_uiout;
348d480f
PA
12375 struct breakpoint *b = bs->breakpoint_at;
12376
956a9fb9 12377 annotate_catchpoint (b->number);
f7f9143b 12378
112e8700 12379 if (uiout->is_mi_like_p ())
f7f9143b 12380 {
112e8700 12381 uiout->field_string ("reason",
956a9fb9 12382 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12383 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12384 }
12385
112e8700
SM
12386 uiout->text (b->disposition == disp_del
12387 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12388 uiout->field_signed ("bkptno", b->number);
112e8700 12389 uiout->text (", ");
f7f9143b 12390
45db7c09
PA
12391 /* ada_exception_name_addr relies on the selected frame being the
12392 current frame. Need to do this here because this function may be
12393 called more than once when printing a stop, and below, we'll
12394 select the first frame past the Ada run-time (see
12395 ada_find_printable_frame). */
12396 select_frame (get_current_frame ());
12397
37f6a7f4
TT
12398 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12399 switch (c->m_kind)
f7f9143b 12400 {
761269c8
JB
12401 case ada_catch_exception:
12402 case ada_catch_exception_unhandled:
9f757bf7 12403 case ada_catch_handlers:
956a9fb9 12404 {
37f6a7f4 12405 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12406 char exception_name[256];
12407
12408 if (addr != 0)
12409 {
c714b426
PA
12410 read_memory (addr, (gdb_byte *) exception_name,
12411 sizeof (exception_name) - 1);
956a9fb9
JB
12412 exception_name [sizeof (exception_name) - 1] = '\0';
12413 }
12414 else
12415 {
12416 /* For some reason, we were unable to read the exception
12417 name. This could happen if the Runtime was compiled
12418 without debugging info, for instance. In that case,
12419 just replace the exception name by the generic string
12420 "exception" - it will read as "an exception" in the
12421 notification we are about to print. */
967cff16 12422 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12423 }
12424 /* In the case of unhandled exception breakpoints, we print
12425 the exception name as "unhandled EXCEPTION_NAME", to make
12426 it clearer to the user which kind of catchpoint just got
12427 hit. We used ui_out_text to make sure that this extra
12428 info does not pollute the exception name in the MI case. */
37f6a7f4 12429 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12430 uiout->text ("unhandled ");
12431 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12432 }
12433 break;
761269c8 12434 case ada_catch_assert:
956a9fb9
JB
12435 /* In this case, the name of the exception is not really
12436 important. Just print "failed assertion" to make it clearer
12437 that his program just hit an assertion-failure catchpoint.
12438 We used ui_out_text because this info does not belong in
12439 the MI output. */
112e8700 12440 uiout->text ("failed assertion");
956a9fb9 12441 break;
f7f9143b 12442 }
e547c119 12443
6f46ac85 12444 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12445 if (exception_message != NULL)
12446 {
e547c119 12447 uiout->text (" (");
6f46ac85 12448 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12449 uiout->text (")");
e547c119
JB
12450 }
12451
112e8700 12452 uiout->text (" at ");
956a9fb9 12453 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12454
12455 return PRINT_SRC_AND_LOC;
12456}
12457
12458/* Implement the PRINT_ONE method in the breakpoint_ops structure
12459 for all exception catchpoint kinds. */
12460
12461static void
37f6a7f4 12462print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12463{
79a45e25 12464 struct ui_out *uiout = current_uiout;
28010a5d 12465 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12466 struct value_print_options opts;
12467
12468 get_user_print_options (&opts);
f06f1252 12469
79a45b7d 12470 if (opts.addressprint)
f06f1252 12471 uiout->field_skip ("addr");
f7f9143b
JB
12472
12473 annotate_field (5);
37f6a7f4 12474 switch (c->m_kind)
f7f9143b 12475 {
761269c8 12476 case ada_catch_exception:
bc18fbb5 12477 if (!c->excep_string.empty ())
f7f9143b 12478 {
bc18fbb5
TT
12479 std::string msg = string_printf (_("`%s' Ada exception"),
12480 c->excep_string.c_str ());
28010a5d 12481
112e8700 12482 uiout->field_string ("what", msg);
f7f9143b
JB
12483 }
12484 else
112e8700 12485 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12486
12487 break;
12488
761269c8 12489 case ada_catch_exception_unhandled:
112e8700 12490 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12491 break;
12492
9f757bf7 12493 case ada_catch_handlers:
bc18fbb5 12494 if (!c->excep_string.empty ())
9f757bf7
XR
12495 {
12496 uiout->field_fmt ("what",
12497 _("`%s' Ada exception handlers"),
bc18fbb5 12498 c->excep_string.c_str ());
9f757bf7
XR
12499 }
12500 else
12501 uiout->field_string ("what", "all Ada exceptions handlers");
12502 break;
12503
761269c8 12504 case ada_catch_assert:
112e8700 12505 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12506 break;
12507
12508 default:
12509 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12510 break;
12511 }
12512}
12513
12514/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12515 for all exception catchpoint kinds. */
12516
12517static void
37f6a7f4 12518print_mention_exception (struct breakpoint *b)
f7f9143b 12519{
28010a5d 12520 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12521 struct ui_out *uiout = current_uiout;
28010a5d 12522
112e8700 12523 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12524 : _("Catchpoint "));
381befee 12525 uiout->field_signed ("bkptno", b->number);
112e8700 12526 uiout->text (": ");
00eb2c4a 12527
37f6a7f4 12528 switch (c->m_kind)
f7f9143b 12529 {
761269c8 12530 case ada_catch_exception:
bc18fbb5 12531 if (!c->excep_string.empty ())
00eb2c4a 12532 {
862d101a 12533 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12534 c->excep_string.c_str ());
862d101a 12535 uiout->text (info.c_str ());
00eb2c4a 12536 }
f7f9143b 12537 else
112e8700 12538 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12539 break;
12540
761269c8 12541 case ada_catch_exception_unhandled:
112e8700 12542 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12543 break;
9f757bf7
XR
12544
12545 case ada_catch_handlers:
bc18fbb5 12546 if (!c->excep_string.empty ())
9f757bf7
XR
12547 {
12548 std::string info
12549 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12550 c->excep_string.c_str ());
9f757bf7
XR
12551 uiout->text (info.c_str ());
12552 }
12553 else
12554 uiout->text (_("all Ada exceptions handlers"));
12555 break;
12556
761269c8 12557 case ada_catch_assert:
112e8700 12558 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12559 break;
12560
12561 default:
12562 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12563 break;
12564 }
12565}
12566
6149aea9
PA
12567/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12568 for all exception catchpoint kinds. */
12569
12570static void
37f6a7f4 12571print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12572{
28010a5d
PA
12573 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12574
37f6a7f4 12575 switch (c->m_kind)
6149aea9 12576 {
761269c8 12577 case ada_catch_exception:
6149aea9 12578 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12579 if (!c->excep_string.empty ())
12580 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12581 break;
12582
761269c8 12583 case ada_catch_exception_unhandled:
78076abc 12584 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12585 break;
12586
9f757bf7
XR
12587 case ada_catch_handlers:
12588 fprintf_filtered (fp, "catch handlers");
12589 break;
12590
761269c8 12591 case ada_catch_assert:
6149aea9
PA
12592 fprintf_filtered (fp, "catch assert");
12593 break;
12594
12595 default:
12596 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12597 }
d9b3f62e 12598 print_recreate_thread (b, fp);
6149aea9
PA
12599}
12600
37f6a7f4 12601/* Virtual tables for various breakpoint types. */
2060206e 12602static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12603static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12604static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12605static struct breakpoint_ops catch_handlers_breakpoint_ops;
12606
f06f1252
TT
12607/* See ada-lang.h. */
12608
12609bool
12610is_ada_exception_catchpoint (breakpoint *bp)
12611{
12612 return (bp->ops == &catch_exception_breakpoint_ops
12613 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12614 || bp->ops == &catch_assert_breakpoint_ops
12615 || bp->ops == &catch_handlers_breakpoint_ops);
12616}
12617
f7f9143b
JB
12618/* Split the arguments specified in a "catch exception" command.
12619 Set EX to the appropriate catchpoint type.
28010a5d 12620 Set EXCEP_STRING to the name of the specific exception if
5845583d 12621 specified by the user.
9f757bf7
XR
12622 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12623 "catch handlers" command. False otherwise.
5845583d
JB
12624 If a condition is found at the end of the arguments, the condition
12625 expression is stored in COND_STRING (memory must be deallocated
12626 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12627
12628static void
a121b7c1 12629catch_ada_exception_command_split (const char *args,
9f757bf7 12630 bool is_catch_handlers_cmd,
761269c8 12631 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12632 std::string *excep_string,
12633 std::string *cond_string)
f7f9143b 12634{
bc18fbb5 12635 std::string exception_name;
f7f9143b 12636
bc18fbb5
TT
12637 exception_name = extract_arg (&args);
12638 if (exception_name == "if")
5845583d
JB
12639 {
12640 /* This is not an exception name; this is the start of a condition
12641 expression for a catchpoint on all exceptions. So, "un-get"
12642 this token, and set exception_name to NULL. */
bc18fbb5 12643 exception_name.clear ();
5845583d
JB
12644 args -= 2;
12645 }
f7f9143b 12646
5845583d 12647 /* Check to see if we have a condition. */
f7f9143b 12648
f1735a53 12649 args = skip_spaces (args);
61012eef 12650 if (startswith (args, "if")
5845583d
JB
12651 && (isspace (args[2]) || args[2] == '\0'))
12652 {
12653 args += 2;
f1735a53 12654 args = skip_spaces (args);
5845583d
JB
12655
12656 if (args[0] == '\0')
12657 error (_("Condition missing after `if' keyword"));
bc18fbb5 12658 *cond_string = args;
5845583d
JB
12659
12660 args += strlen (args);
12661 }
12662
12663 /* Check that we do not have any more arguments. Anything else
12664 is unexpected. */
f7f9143b
JB
12665
12666 if (args[0] != '\0')
12667 error (_("Junk at end of expression"));
12668
9f757bf7
XR
12669 if (is_catch_handlers_cmd)
12670 {
12671 /* Catch handling of exceptions. */
12672 *ex = ada_catch_handlers;
12673 *excep_string = exception_name;
12674 }
bc18fbb5 12675 else if (exception_name.empty ())
f7f9143b
JB
12676 {
12677 /* Catch all exceptions. */
761269c8 12678 *ex = ada_catch_exception;
bc18fbb5 12679 excep_string->clear ();
f7f9143b 12680 }
bc18fbb5 12681 else if (exception_name == "unhandled")
f7f9143b
JB
12682 {
12683 /* Catch unhandled exceptions. */
761269c8 12684 *ex = ada_catch_exception_unhandled;
bc18fbb5 12685 excep_string->clear ();
f7f9143b
JB
12686 }
12687 else
12688 {
12689 /* Catch a specific exception. */
761269c8 12690 *ex = ada_catch_exception;
28010a5d 12691 *excep_string = exception_name;
f7f9143b
JB
12692 }
12693}
12694
12695/* Return the name of the symbol on which we should break in order to
12696 implement a catchpoint of the EX kind. */
12697
12698static const char *
761269c8 12699ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12700{
3eecfa55
JB
12701 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12702
12703 gdb_assert (data->exception_info != NULL);
0259addd 12704
f7f9143b
JB
12705 switch (ex)
12706 {
761269c8 12707 case ada_catch_exception:
3eecfa55 12708 return (data->exception_info->catch_exception_sym);
f7f9143b 12709 break;
761269c8 12710 case ada_catch_exception_unhandled:
3eecfa55 12711 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12712 break;
761269c8 12713 case ada_catch_assert:
3eecfa55 12714 return (data->exception_info->catch_assert_sym);
f7f9143b 12715 break;
9f757bf7
XR
12716 case ada_catch_handlers:
12717 return (data->exception_info->catch_handlers_sym);
12718 break;
f7f9143b
JB
12719 default:
12720 internal_error (__FILE__, __LINE__,
12721 _("unexpected catchpoint kind (%d)"), ex);
12722 }
12723}
12724
12725/* Return the breakpoint ops "virtual table" used for catchpoints
12726 of the EX kind. */
12727
c0a91b2b 12728static const struct breakpoint_ops *
761269c8 12729ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12730{
12731 switch (ex)
12732 {
761269c8 12733 case ada_catch_exception:
f7f9143b
JB
12734 return (&catch_exception_breakpoint_ops);
12735 break;
761269c8 12736 case ada_catch_exception_unhandled:
f7f9143b
JB
12737 return (&catch_exception_unhandled_breakpoint_ops);
12738 break;
761269c8 12739 case ada_catch_assert:
f7f9143b
JB
12740 return (&catch_assert_breakpoint_ops);
12741 break;
9f757bf7
XR
12742 case ada_catch_handlers:
12743 return (&catch_handlers_breakpoint_ops);
12744 break;
f7f9143b
JB
12745 default:
12746 internal_error (__FILE__, __LINE__,
12747 _("unexpected catchpoint kind (%d)"), ex);
12748 }
12749}
12750
12751/* Return the condition that will be used to match the current exception
12752 being raised with the exception that the user wants to catch. This
12753 assumes that this condition is used when the inferior just triggered
12754 an exception catchpoint.
cb7de75e 12755 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12756
cb7de75e 12757static std::string
9f757bf7
XR
12758ada_exception_catchpoint_cond_string (const char *excep_string,
12759 enum ada_exception_catchpoint_kind ex)
f7f9143b 12760{
3d0b0fa3 12761 int i;
fccf9de1 12762 bool is_standard_exc = false;
cb7de75e 12763 std::string result;
9f757bf7
XR
12764
12765 if (ex == ada_catch_handlers)
12766 {
12767 /* For exception handlers catchpoints, the condition string does
12768 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12769 result = ("long_integer (GNAT_GCC_exception_Access"
12770 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12771 }
12772 else
fccf9de1 12773 result = "long_integer (e)";
3d0b0fa3 12774
0963b4bd 12775 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12776 runtime units that have been compiled without debugging info; if
28010a5d 12777 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12778 exception (e.g. "constraint_error") then, during the evaluation
12779 of the condition expression, the symbol lookup on this name would
0963b4bd 12780 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12781 may then be set only on user-defined exceptions which have the
12782 same not-fully-qualified name (e.g. my_package.constraint_error).
12783
12784 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12785 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12786 exception constraint_error" is rewritten into "catch exception
12787 standard.constraint_error".
12788
85102364 12789 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12790 the inferior program, then the only way to specify this exception as a
12791 breakpoint condition is to use its fully-qualified named:
fccf9de1 12792 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12793
12794 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12795 {
28010a5d 12796 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12797 {
fccf9de1 12798 is_standard_exc = true;
9f757bf7 12799 break;
3d0b0fa3
JB
12800 }
12801 }
9f757bf7 12802
fccf9de1
TT
12803 result += " = ";
12804
12805 if (is_standard_exc)
12806 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12807 else
12808 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12809
9f757bf7 12810 return result;
f7f9143b
JB
12811}
12812
12813/* Return the symtab_and_line that should be used to insert an exception
12814 catchpoint of the TYPE kind.
12815
28010a5d
PA
12816 ADDR_STRING returns the name of the function where the real
12817 breakpoint that implements the catchpoints is set, depending on the
12818 type of catchpoint we need to create. */
f7f9143b
JB
12819
12820static struct symtab_and_line
bc18fbb5 12821ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12822 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12823{
12824 const char *sym_name;
12825 struct symbol *sym;
f7f9143b 12826
0259addd
JB
12827 /* First, find out which exception support info to use. */
12828 ada_exception_support_info_sniffer ();
12829
12830 /* Then lookup the function on which we will break in order to catch
f7f9143b 12831 the Ada exceptions requested by the user. */
f7f9143b
JB
12832 sym_name = ada_exception_sym_name (ex);
12833 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12834
57aff202
JB
12835 if (sym == NULL)
12836 error (_("Catchpoint symbol not found: %s"), sym_name);
12837
12838 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12839 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12840
12841 /* Set ADDR_STRING. */
cc12f4a8 12842 *addr_string = sym_name;
f7f9143b 12843
f7f9143b 12844 /* Set OPS. */
4b9eee8c 12845 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12846
f17011e0 12847 return find_function_start_sal (sym, 1);
f7f9143b
JB
12848}
12849
b4a5b78b 12850/* Create an Ada exception catchpoint.
f7f9143b 12851
b4a5b78b 12852 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12853
bc18fbb5 12854 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12855 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12856 of the exception to which this catchpoint applies.
2df4d1d5 12857
bc18fbb5 12858 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12859
b4a5b78b
JB
12860 TEMPFLAG, if nonzero, means that the underlying breakpoint
12861 should be temporary.
28010a5d 12862
b4a5b78b 12863 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12864
349774ef 12865void
28010a5d 12866create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12867 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12868 const std::string &excep_string,
56ecd069 12869 const std::string &cond_string,
28010a5d 12870 int tempflag,
349774ef 12871 int disabled,
28010a5d
PA
12872 int from_tty)
12873{
cc12f4a8 12874 std::string addr_string;
b4a5b78b 12875 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12876 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12877
37f6a7f4 12878 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12879 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12880 ops, tempflag, disabled, from_tty);
28010a5d 12881 c->excep_string = excep_string;
9f757bf7 12882 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
12883 if (!cond_string.empty ())
12884 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 12885 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12886}
12887
9ac4176b
PA
12888/* Implement the "catch exception" command. */
12889
12890static void
eb4c3f4a 12891catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12892 struct cmd_list_element *command)
12893{
a121b7c1 12894 const char *arg = arg_entry;
9ac4176b
PA
12895 struct gdbarch *gdbarch = get_current_arch ();
12896 int tempflag;
761269c8 12897 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12898 std::string excep_string;
56ecd069 12899 std::string cond_string;
9ac4176b
PA
12900
12901 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12902
12903 if (!arg)
12904 arg = "";
9f757bf7 12905 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 12906 &cond_string);
9f757bf7
XR
12907 create_ada_exception_catchpoint (gdbarch, ex_kind,
12908 excep_string, cond_string,
12909 tempflag, 1 /* enabled */,
12910 from_tty);
12911}
12912
12913/* Implement the "catch handlers" command. */
12914
12915static void
12916catch_ada_handlers_command (const char *arg_entry, int from_tty,
12917 struct cmd_list_element *command)
12918{
12919 const char *arg = arg_entry;
12920 struct gdbarch *gdbarch = get_current_arch ();
12921 int tempflag;
12922 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12923 std::string excep_string;
56ecd069 12924 std::string cond_string;
9f757bf7
XR
12925
12926 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12927
12928 if (!arg)
12929 arg = "";
12930 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 12931 &cond_string);
b4a5b78b
JB
12932 create_ada_exception_catchpoint (gdbarch, ex_kind,
12933 excep_string, cond_string,
349774ef
JB
12934 tempflag, 1 /* enabled */,
12935 from_tty);
9ac4176b
PA
12936}
12937
71bed2db
TT
12938/* Completion function for the Ada "catch" commands. */
12939
12940static void
12941catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12942 const char *text, const char *word)
12943{
12944 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12945
12946 for (const ada_exc_info &info : exceptions)
12947 {
12948 if (startswith (info.name, word))
b02f78f9 12949 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
12950 }
12951}
12952
b4a5b78b 12953/* Split the arguments specified in a "catch assert" command.
5845583d 12954
b4a5b78b
JB
12955 ARGS contains the command's arguments (or the empty string if
12956 no arguments were passed).
5845583d
JB
12957
12958 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12959 (the memory needs to be deallocated after use). */
5845583d 12960
b4a5b78b 12961static void
56ecd069 12962catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 12963{
f1735a53 12964 args = skip_spaces (args);
f7f9143b 12965
5845583d 12966 /* Check whether a condition was provided. */
61012eef 12967 if (startswith (args, "if")
5845583d 12968 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12969 {
5845583d 12970 args += 2;
f1735a53 12971 args = skip_spaces (args);
5845583d
JB
12972 if (args[0] == '\0')
12973 error (_("condition missing after `if' keyword"));
56ecd069 12974 cond_string.assign (args);
f7f9143b
JB
12975 }
12976
5845583d
JB
12977 /* Otherwise, there should be no other argument at the end of
12978 the command. */
12979 else if (args[0] != '\0')
12980 error (_("Junk at end of arguments."));
f7f9143b
JB
12981}
12982
9ac4176b
PA
12983/* Implement the "catch assert" command. */
12984
12985static void
eb4c3f4a 12986catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12987 struct cmd_list_element *command)
12988{
a121b7c1 12989 const char *arg = arg_entry;
9ac4176b
PA
12990 struct gdbarch *gdbarch = get_current_arch ();
12991 int tempflag;
56ecd069 12992 std::string cond_string;
9ac4176b
PA
12993
12994 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12995
12996 if (!arg)
12997 arg = "";
56ecd069 12998 catch_ada_assert_command_split (arg, cond_string);
761269c8 12999 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13000 "", cond_string,
349774ef
JB
13001 tempflag, 1 /* enabled */,
13002 from_tty);
9ac4176b 13003}
778865d3
JB
13004
13005/* Return non-zero if the symbol SYM is an Ada exception object. */
13006
13007static int
13008ada_is_exception_sym (struct symbol *sym)
13009{
7d93a1e0 13010 const char *type_name = SYMBOL_TYPE (sym)->name ();
778865d3
JB
13011
13012 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13013 && SYMBOL_CLASS (sym) != LOC_BLOCK
13014 && SYMBOL_CLASS (sym) != LOC_CONST
13015 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13016 && type_name != NULL && strcmp (type_name, "exception") == 0);
13017}
13018
13019/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13020 Ada exception object. This matches all exceptions except the ones
13021 defined by the Ada language. */
13022
13023static int
13024ada_is_non_standard_exception_sym (struct symbol *sym)
13025{
13026 int i;
13027
13028 if (!ada_is_exception_sym (sym))
13029 return 0;
13030
13031 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 13032 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
13033 return 0; /* A standard exception. */
13034
13035 /* Numeric_Error is also a standard exception, so exclude it.
13036 See the STANDARD_EXC description for more details as to why
13037 this exception is not listed in that array. */
987012b8 13038 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
13039 return 0;
13040
13041 return 1;
13042}
13043
ab816a27 13044/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13045 objects.
13046
13047 The comparison is determined first by exception name, and then
13048 by exception address. */
13049
ab816a27 13050bool
cc536b21 13051ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13052{
778865d3
JB
13053 int result;
13054
ab816a27
TT
13055 result = strcmp (name, other.name);
13056 if (result < 0)
13057 return true;
13058 if (result == 0 && addr < other.addr)
13059 return true;
13060 return false;
13061}
778865d3 13062
ab816a27 13063bool
cc536b21 13064ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13065{
13066 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13067}
13068
13069/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13070 routine, but keeping the first SKIP elements untouched.
13071
13072 All duplicates are also removed. */
13073
13074static void
ab816a27 13075sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13076 int skip)
13077{
ab816a27
TT
13078 std::sort (exceptions->begin () + skip, exceptions->end ());
13079 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13080 exceptions->end ());
778865d3
JB
13081}
13082
778865d3
JB
13083/* Add all exceptions defined by the Ada standard whose name match
13084 a regular expression.
13085
13086 If PREG is not NULL, then this regexp_t object is used to
13087 perform the symbol name matching. Otherwise, no name-based
13088 filtering is performed.
13089
13090 EXCEPTIONS is a vector of exceptions to which matching exceptions
13091 gets pushed. */
13092
13093static void
2d7cc5c7 13094ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13095 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13096{
13097 int i;
13098
13099 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13100 {
13101 if (preg == NULL
2d7cc5c7 13102 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13103 {
13104 struct bound_minimal_symbol msymbol
13105 = ada_lookup_simple_minsym (standard_exc[i]);
13106
13107 if (msymbol.minsym != NULL)
13108 {
13109 struct ada_exc_info info
77e371c0 13110 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13111
ab816a27 13112 exceptions->push_back (info);
778865d3
JB
13113 }
13114 }
13115 }
13116}
13117
13118/* Add all Ada exceptions defined locally and accessible from the given
13119 FRAME.
13120
13121 If PREG is not NULL, then this regexp_t object is used to
13122 perform the symbol name matching. Otherwise, no name-based
13123 filtering is performed.
13124
13125 EXCEPTIONS is a vector of exceptions to which matching exceptions
13126 gets pushed. */
13127
13128static void
2d7cc5c7
PA
13129ada_add_exceptions_from_frame (compiled_regex *preg,
13130 struct frame_info *frame,
ab816a27 13131 std::vector<ada_exc_info> *exceptions)
778865d3 13132{
3977b71f 13133 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13134
13135 while (block != 0)
13136 {
13137 struct block_iterator iter;
13138 struct symbol *sym;
13139
13140 ALL_BLOCK_SYMBOLS (block, iter, sym)
13141 {
13142 switch (SYMBOL_CLASS (sym))
13143 {
13144 case LOC_TYPEDEF:
13145 case LOC_BLOCK:
13146 case LOC_CONST:
13147 break;
13148 default:
13149 if (ada_is_exception_sym (sym))
13150 {
987012b8 13151 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
13152 SYMBOL_VALUE_ADDRESS (sym)};
13153
ab816a27 13154 exceptions->push_back (info);
778865d3
JB
13155 }
13156 }
13157 }
13158 if (BLOCK_FUNCTION (block) != NULL)
13159 break;
13160 block = BLOCK_SUPERBLOCK (block);
13161 }
13162}
13163
14bc53a8
PA
13164/* Return true if NAME matches PREG or if PREG is NULL. */
13165
13166static bool
2d7cc5c7 13167name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13168{
13169 return (preg == NULL
f945dedf 13170 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13171}
13172
778865d3
JB
13173/* Add all exceptions defined globally whose name name match
13174 a regular expression, excluding standard exceptions.
13175
13176 The reason we exclude standard exceptions is that they need
13177 to be handled separately: Standard exceptions are defined inside
13178 a runtime unit which is normally not compiled with debugging info,
13179 and thus usually do not show up in our symbol search. However,
13180 if the unit was in fact built with debugging info, we need to
13181 exclude them because they would duplicate the entry we found
13182 during the special loop that specifically searches for those
13183 standard exceptions.
13184
13185 If PREG is not NULL, then this regexp_t object is used to
13186 perform the symbol name matching. Otherwise, no name-based
13187 filtering is performed.
13188
13189 EXCEPTIONS is a vector of exceptions to which matching exceptions
13190 gets pushed. */
13191
13192static void
2d7cc5c7 13193ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13194 std::vector<ada_exc_info> *exceptions)
778865d3 13195{
14bc53a8
PA
13196 /* In Ada, the symbol "search name" is a linkage name, whereas the
13197 regular expression used to do the matching refers to the natural
13198 name. So match against the decoded name. */
13199 expand_symtabs_matching (NULL,
b5ec771e 13200 lookup_name_info::match_any (),
14bc53a8
PA
13201 [&] (const char *search_name)
13202 {
f945dedf
CB
13203 std::string decoded = ada_decode (search_name);
13204 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13205 },
13206 NULL,
13207 VARIABLES_DOMAIN);
778865d3 13208
2030c079 13209 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13210 {
b669c953 13211 for (compunit_symtab *s : objfile->compunits ())
778865d3 13212 {
d8aeb77f
TT
13213 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13214 int i;
778865d3 13215
d8aeb77f
TT
13216 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13217 {
582942f4 13218 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13219 struct block_iterator iter;
13220 struct symbol *sym;
778865d3 13221
d8aeb77f
TT
13222 ALL_BLOCK_SYMBOLS (b, iter, sym)
13223 if (ada_is_non_standard_exception_sym (sym)
987012b8 13224 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13225 {
13226 struct ada_exc_info info
987012b8 13227 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
13228
13229 exceptions->push_back (info);
13230 }
13231 }
778865d3
JB
13232 }
13233 }
13234}
13235
13236/* Implements ada_exceptions_list with the regular expression passed
13237 as a regex_t, rather than a string.
13238
13239 If not NULL, PREG is used to filter out exceptions whose names
13240 do not match. Otherwise, all exceptions are listed. */
13241
ab816a27 13242static std::vector<ada_exc_info>
2d7cc5c7 13243ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13244{
ab816a27 13245 std::vector<ada_exc_info> result;
778865d3
JB
13246 int prev_len;
13247
13248 /* First, list the known standard exceptions. These exceptions
13249 need to be handled separately, as they are usually defined in
13250 runtime units that have been compiled without debugging info. */
13251
13252 ada_add_standard_exceptions (preg, &result);
13253
13254 /* Next, find all exceptions whose scope is local and accessible
13255 from the currently selected frame. */
13256
13257 if (has_stack_frames ())
13258 {
ab816a27 13259 prev_len = result.size ();
778865d3
JB
13260 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13261 &result);
ab816a27 13262 if (result.size () > prev_len)
778865d3
JB
13263 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13264 }
13265
13266 /* Add all exceptions whose scope is global. */
13267
ab816a27 13268 prev_len = result.size ();
778865d3 13269 ada_add_global_exceptions (preg, &result);
ab816a27 13270 if (result.size () > prev_len)
778865d3
JB
13271 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13272
778865d3
JB
13273 return result;
13274}
13275
13276/* Return a vector of ada_exc_info.
13277
13278 If REGEXP is NULL, all exceptions are included in the result.
13279 Otherwise, it should contain a valid regular expression,
13280 and only the exceptions whose names match that regular expression
13281 are included in the result.
13282
13283 The exceptions are sorted in the following order:
13284 - Standard exceptions (defined by the Ada language), in
13285 alphabetical order;
13286 - Exceptions only visible from the current frame, in
13287 alphabetical order;
13288 - Exceptions whose scope is global, in alphabetical order. */
13289
ab816a27 13290std::vector<ada_exc_info>
778865d3
JB
13291ada_exceptions_list (const char *regexp)
13292{
2d7cc5c7
PA
13293 if (regexp == NULL)
13294 return ada_exceptions_list_1 (NULL);
778865d3 13295
2d7cc5c7
PA
13296 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13297 return ada_exceptions_list_1 (&reg);
778865d3
JB
13298}
13299
13300/* Implement the "info exceptions" command. */
13301
13302static void
1d12d88f 13303info_exceptions_command (const char *regexp, int from_tty)
778865d3 13304{
778865d3 13305 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13306
ab816a27 13307 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13308
13309 if (regexp != NULL)
13310 printf_filtered
13311 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13312 else
13313 printf_filtered (_("All defined Ada exceptions:\n"));
13314
ab816a27
TT
13315 for (const ada_exc_info &info : exceptions)
13316 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13317}
13318
4c4b4cd2
PH
13319 /* Operators */
13320/* Information about operators given special treatment in functions
13321 below. */
13322/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13323
13324#define ADA_OPERATORS \
13325 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13326 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13327 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13328 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13329 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13330 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13331 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13332 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13333 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13334 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13335 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13336 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13337 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13338 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13339 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13340 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13341 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13342 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13343 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13344
13345static void
554794dc
SDJ
13346ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13347 int *argsp)
4c4b4cd2
PH
13348{
13349 switch (exp->elts[pc - 1].opcode)
13350 {
76a01679 13351 default:
4c4b4cd2
PH
13352 operator_length_standard (exp, pc, oplenp, argsp);
13353 break;
13354
13355#define OP_DEFN(op, len, args, binop) \
13356 case op: *oplenp = len; *argsp = args; break;
13357 ADA_OPERATORS;
13358#undef OP_DEFN
52ce6436
PH
13359
13360 case OP_AGGREGATE:
13361 *oplenp = 3;
13362 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13363 break;
13364
13365 case OP_CHOICES:
13366 *oplenp = 3;
13367 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13368 break;
4c4b4cd2
PH
13369 }
13370}
13371
c0201579
JK
13372/* Implementation of the exp_descriptor method operator_check. */
13373
13374static int
13375ada_operator_check (struct expression *exp, int pos,
13376 int (*objfile_func) (struct objfile *objfile, void *data),
13377 void *data)
13378{
13379 const union exp_element *const elts = exp->elts;
13380 struct type *type = NULL;
13381
13382 switch (elts[pos].opcode)
13383 {
13384 case UNOP_IN_RANGE:
13385 case UNOP_QUAL:
13386 type = elts[pos + 1].type;
13387 break;
13388
13389 default:
13390 return operator_check_standard (exp, pos, objfile_func, data);
13391 }
13392
13393 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13394
13395 if (type && TYPE_OBJFILE (type)
13396 && (*objfile_func) (TYPE_OBJFILE (type), data))
13397 return 1;
13398
13399 return 0;
13400}
13401
a121b7c1 13402static const char *
4c4b4cd2
PH
13403ada_op_name (enum exp_opcode opcode)
13404{
13405 switch (opcode)
13406 {
76a01679 13407 default:
4c4b4cd2 13408 return op_name_standard (opcode);
52ce6436 13409
4c4b4cd2
PH
13410#define OP_DEFN(op, len, args, binop) case op: return #op;
13411 ADA_OPERATORS;
13412#undef OP_DEFN
52ce6436
PH
13413
13414 case OP_AGGREGATE:
13415 return "OP_AGGREGATE";
13416 case OP_CHOICES:
13417 return "OP_CHOICES";
13418 case OP_NAME:
13419 return "OP_NAME";
4c4b4cd2
PH
13420 }
13421}
13422
13423/* As for operator_length, but assumes PC is pointing at the first
13424 element of the operator, and gives meaningful results only for the
52ce6436 13425 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13426
13427static void
76a01679
JB
13428ada_forward_operator_length (struct expression *exp, int pc,
13429 int *oplenp, int *argsp)
4c4b4cd2 13430{
76a01679 13431 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13432 {
13433 default:
13434 *oplenp = *argsp = 0;
13435 break;
52ce6436 13436
4c4b4cd2
PH
13437#define OP_DEFN(op, len, args, binop) \
13438 case op: *oplenp = len; *argsp = args; break;
13439 ADA_OPERATORS;
13440#undef OP_DEFN
52ce6436
PH
13441
13442 case OP_AGGREGATE:
13443 *oplenp = 3;
13444 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13445 break;
13446
13447 case OP_CHOICES:
13448 *oplenp = 3;
13449 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13450 break;
13451
13452 case OP_STRING:
13453 case OP_NAME:
13454 {
13455 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13456
52ce6436
PH
13457 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13458 *argsp = 0;
13459 break;
13460 }
4c4b4cd2
PH
13461 }
13462}
13463
13464static int
13465ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13466{
13467 enum exp_opcode op = exp->elts[elt].opcode;
13468 int oplen, nargs;
13469 int pc = elt;
13470 int i;
76a01679 13471
4c4b4cd2
PH
13472 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13473
76a01679 13474 switch (op)
4c4b4cd2 13475 {
76a01679 13476 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13477 case OP_ATR_FIRST:
13478 case OP_ATR_LAST:
13479 case OP_ATR_LENGTH:
13480 case OP_ATR_IMAGE:
13481 case OP_ATR_MAX:
13482 case OP_ATR_MIN:
13483 case OP_ATR_MODULUS:
13484 case OP_ATR_POS:
13485 case OP_ATR_SIZE:
13486 case OP_ATR_TAG:
13487 case OP_ATR_VAL:
13488 break;
13489
13490 case UNOP_IN_RANGE:
13491 case UNOP_QUAL:
323e0a4a
AC
13492 /* XXX: gdb_sprint_host_address, type_sprint */
13493 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13494 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13495 fprintf_filtered (stream, " (");
13496 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13497 fprintf_filtered (stream, ")");
13498 break;
13499 case BINOP_IN_BOUNDS:
52ce6436
PH
13500 fprintf_filtered (stream, " (%d)",
13501 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13502 break;
13503 case TERNOP_IN_RANGE:
13504 break;
13505
52ce6436
PH
13506 case OP_AGGREGATE:
13507 case OP_OTHERS:
13508 case OP_DISCRETE_RANGE:
13509 case OP_POSITIONAL:
13510 case OP_CHOICES:
13511 break;
13512
13513 case OP_NAME:
13514 case OP_STRING:
13515 {
13516 char *name = &exp->elts[elt + 2].string;
13517 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13518
52ce6436
PH
13519 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13520 break;
13521 }
13522
4c4b4cd2
PH
13523 default:
13524 return dump_subexp_body_standard (exp, stream, elt);
13525 }
13526
13527 elt += oplen;
13528 for (i = 0; i < nargs; i += 1)
13529 elt = dump_subexp (exp, stream, elt);
13530
13531 return elt;
13532}
13533
13534/* The Ada extension of print_subexp (q.v.). */
13535
76a01679
JB
13536static void
13537ada_print_subexp (struct expression *exp, int *pos,
13538 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13539{
52ce6436 13540 int oplen, nargs, i;
4c4b4cd2
PH
13541 int pc = *pos;
13542 enum exp_opcode op = exp->elts[pc].opcode;
13543
13544 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13545
52ce6436 13546 *pos += oplen;
4c4b4cd2
PH
13547 switch (op)
13548 {
13549 default:
52ce6436 13550 *pos -= oplen;
4c4b4cd2
PH
13551 print_subexp_standard (exp, pos, stream, prec);
13552 return;
13553
13554 case OP_VAR_VALUE:
987012b8 13555 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
4c4b4cd2
PH
13556 return;
13557
13558 case BINOP_IN_BOUNDS:
323e0a4a 13559 /* XXX: sprint_subexp */
4c4b4cd2 13560 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13561 fputs_filtered (" in ", stream);
4c4b4cd2 13562 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13563 fputs_filtered ("'range", stream);
4c4b4cd2 13564 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13565 fprintf_filtered (stream, "(%ld)",
13566 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13567 return;
13568
13569 case TERNOP_IN_RANGE:
4c4b4cd2 13570 if (prec >= PREC_EQUAL)
76a01679 13571 fputs_filtered ("(", stream);
323e0a4a 13572 /* XXX: sprint_subexp */
4c4b4cd2 13573 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13574 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13575 print_subexp (exp, pos, stream, PREC_EQUAL);
13576 fputs_filtered (" .. ", stream);
13577 print_subexp (exp, pos, stream, PREC_EQUAL);
13578 if (prec >= PREC_EQUAL)
76a01679
JB
13579 fputs_filtered (")", stream);
13580 return;
4c4b4cd2
PH
13581
13582 case OP_ATR_FIRST:
13583 case OP_ATR_LAST:
13584 case OP_ATR_LENGTH:
13585 case OP_ATR_IMAGE:
13586 case OP_ATR_MAX:
13587 case OP_ATR_MIN:
13588 case OP_ATR_MODULUS:
13589 case OP_ATR_POS:
13590 case OP_ATR_SIZE:
13591 case OP_ATR_TAG:
13592 case OP_ATR_VAL:
4c4b4cd2 13593 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679 13594 {
78134374 13595 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
79d43c61
TT
13596 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13597 &type_print_raw_options);
76a01679
JB
13598 *pos += 3;
13599 }
4c4b4cd2 13600 else
76a01679 13601 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13602 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13603 if (nargs > 1)
76a01679
JB
13604 {
13605 int tem;
5b4ee69b 13606
76a01679
JB
13607 for (tem = 1; tem < nargs; tem += 1)
13608 {
13609 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13610 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13611 }
13612 fputs_filtered (")", stream);
13613 }
4c4b4cd2 13614 return;
14f9c5c9 13615
4c4b4cd2 13616 case UNOP_QUAL:
4c4b4cd2
PH
13617 type_print (exp->elts[pc + 1].type, "", stream, 0);
13618 fputs_filtered ("'(", stream);
13619 print_subexp (exp, pos, stream, PREC_PREFIX);
13620 fputs_filtered (")", stream);
13621 return;
14f9c5c9 13622
4c4b4cd2 13623 case UNOP_IN_RANGE:
323e0a4a 13624 /* XXX: sprint_subexp */
4c4b4cd2 13625 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13626 fputs_filtered (" in ", stream);
79d43c61
TT
13627 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13628 &type_print_raw_options);
4c4b4cd2 13629 return;
52ce6436
PH
13630
13631 case OP_DISCRETE_RANGE:
13632 print_subexp (exp, pos, stream, PREC_SUFFIX);
13633 fputs_filtered ("..", stream);
13634 print_subexp (exp, pos, stream, PREC_SUFFIX);
13635 return;
13636
13637 case OP_OTHERS:
13638 fputs_filtered ("others => ", stream);
13639 print_subexp (exp, pos, stream, PREC_SUFFIX);
13640 return;
13641
13642 case OP_CHOICES:
13643 for (i = 0; i < nargs-1; i += 1)
13644 {
13645 if (i > 0)
13646 fputs_filtered ("|", stream);
13647 print_subexp (exp, pos, stream, PREC_SUFFIX);
13648 }
13649 fputs_filtered (" => ", stream);
13650 print_subexp (exp, pos, stream, PREC_SUFFIX);
13651 return;
13652
13653 case OP_POSITIONAL:
13654 print_subexp (exp, pos, stream, PREC_SUFFIX);
13655 return;
13656
13657 case OP_AGGREGATE:
13658 fputs_filtered ("(", stream);
13659 for (i = 0; i < nargs; i += 1)
13660 {
13661 if (i > 0)
13662 fputs_filtered (", ", stream);
13663 print_subexp (exp, pos, stream, PREC_SUFFIX);
13664 }
13665 fputs_filtered (")", stream);
13666 return;
4c4b4cd2
PH
13667 }
13668}
14f9c5c9
AS
13669
13670/* Table mapping opcodes into strings for printing operators
13671 and precedences of the operators. */
13672
d2e4a39e
AS
13673static const struct op_print ada_op_print_tab[] = {
13674 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13675 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13676 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13677 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13678 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13679 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13680 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13681 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13682 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13683 {">=", BINOP_GEQ, PREC_ORDER, 0},
13684 {">", BINOP_GTR, PREC_ORDER, 0},
13685 {"<", BINOP_LESS, PREC_ORDER, 0},
13686 {">>", BINOP_RSH, PREC_SHIFT, 0},
13687 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13688 {"+", BINOP_ADD, PREC_ADD, 0},
13689 {"-", BINOP_SUB, PREC_ADD, 0},
13690 {"&", BINOP_CONCAT, PREC_ADD, 0},
13691 {"*", BINOP_MUL, PREC_MUL, 0},
13692 {"/", BINOP_DIV, PREC_MUL, 0},
13693 {"rem", BINOP_REM, PREC_MUL, 0},
13694 {"mod", BINOP_MOD, PREC_MUL, 0},
13695 {"**", BINOP_EXP, PREC_REPEAT, 0},
13696 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13697 {"-", UNOP_NEG, PREC_PREFIX, 0},
13698 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13699 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13700 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13701 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13702 {".all", UNOP_IND, PREC_SUFFIX, 1},
13703 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13704 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13705 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13706};
13707\f
72d5681a
PH
13708enum ada_primitive_types {
13709 ada_primitive_type_int,
13710 ada_primitive_type_long,
13711 ada_primitive_type_short,
13712 ada_primitive_type_char,
13713 ada_primitive_type_float,
13714 ada_primitive_type_double,
13715 ada_primitive_type_void,
13716 ada_primitive_type_long_long,
13717 ada_primitive_type_long_double,
13718 ada_primitive_type_natural,
13719 ada_primitive_type_positive,
13720 ada_primitive_type_system_address,
08f49010 13721 ada_primitive_type_storage_offset,
72d5681a
PH
13722 nr_ada_primitive_types
13723};
6c038f32 13724
6c038f32
PH
13725\f
13726 /* Language vector */
13727
13728/* Not really used, but needed in the ada_language_defn. */
13729
13730static void
6c7a06a3 13731emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13732{
6c7a06a3 13733 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13734}
13735
13736static int
410a0ff2 13737parse (struct parser_state *ps)
6c038f32
PH
13738{
13739 warnings_issued = 0;
410a0ff2 13740 return ada_parse (ps);
6c038f32
PH
13741}
13742
13743static const struct exp_descriptor ada_exp_descriptor = {
13744 ada_print_subexp,
13745 ada_operator_length,
c0201579 13746 ada_operator_check,
6c038f32
PH
13747 ada_op_name,
13748 ada_dump_subexp_body,
13749 ada_evaluate_subexp
13750};
13751
b5ec771e
PA
13752/* symbol_name_matcher_ftype adapter for wild_match. */
13753
13754static bool
13755do_wild_match (const char *symbol_search_name,
13756 const lookup_name_info &lookup_name,
a207cff2 13757 completion_match_result *comp_match_res)
b5ec771e
PA
13758{
13759 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13760}
13761
13762/* symbol_name_matcher_ftype adapter for full_match. */
13763
13764static bool
13765do_full_match (const char *symbol_search_name,
13766 const lookup_name_info &lookup_name,
a207cff2 13767 completion_match_result *comp_match_res)
b5ec771e
PA
13768{
13769 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13770}
13771
a2cd4f14
JB
13772/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13773
13774static bool
13775do_exact_match (const char *symbol_search_name,
13776 const lookup_name_info &lookup_name,
13777 completion_match_result *comp_match_res)
13778{
13779 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13780}
13781
b5ec771e
PA
13782/* Build the Ada lookup name for LOOKUP_NAME. */
13783
13784ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13785{
e0802d59 13786 gdb::string_view user_name = lookup_name.name ();
b5ec771e
PA
13787
13788 if (user_name[0] == '<')
13789 {
13790 if (user_name.back () == '>')
e0802d59
TT
13791 m_encoded_name
13792 = user_name.substr (1, user_name.size () - 2).to_string ();
b5ec771e 13793 else
e0802d59
TT
13794 m_encoded_name
13795 = user_name.substr (1, user_name.size () - 1).to_string ();
b5ec771e
PA
13796 m_encoded_p = true;
13797 m_verbatim_p = true;
13798 m_wild_match_p = false;
13799 m_standard_p = false;
13800 }
13801 else
13802 {
13803 m_verbatim_p = false;
13804
e0802d59 13805 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
13806
13807 if (!m_encoded_p)
13808 {
e0802d59 13809 const char *folded = ada_fold_name (user_name);
b5ec771e
PA
13810 const char *encoded = ada_encode_1 (folded, false);
13811 if (encoded != NULL)
13812 m_encoded_name = encoded;
13813 else
e0802d59 13814 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13815 }
13816 else
e0802d59 13817 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13818
13819 /* Handle the 'package Standard' special case. See description
13820 of m_standard_p. */
13821 if (startswith (m_encoded_name.c_str (), "standard__"))
13822 {
13823 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13824 m_standard_p = true;
13825 }
13826 else
13827 m_standard_p = false;
74ccd7f5 13828
b5ec771e
PA
13829 /* If the name contains a ".", then the user is entering a fully
13830 qualified entity name, and the match must not be done in wild
13831 mode. Similarly, if the user wants to complete what looks
13832 like an encoded name, the match must not be done in wild
13833 mode. Also, in the standard__ special case always do
13834 non-wild matching. */
13835 m_wild_match_p
13836 = (lookup_name.match_type () != symbol_name_match_type::FULL
13837 && !m_encoded_p
13838 && !m_standard_p
13839 && user_name.find ('.') == std::string::npos);
13840 }
13841}
13842
13843/* symbol_name_matcher_ftype method for Ada. This only handles
13844 completion mode. */
13845
13846static bool
13847ada_symbol_name_matches (const char *symbol_search_name,
13848 const lookup_name_info &lookup_name,
a207cff2 13849 completion_match_result *comp_match_res)
74ccd7f5 13850{
b5ec771e
PA
13851 return lookup_name.ada ().matches (symbol_search_name,
13852 lookup_name.match_type (),
a207cff2 13853 comp_match_res);
b5ec771e
PA
13854}
13855
de63c46b
PA
13856/* A name matcher that matches the symbol name exactly, with
13857 strcmp. */
13858
13859static bool
13860literal_symbol_name_matcher (const char *symbol_search_name,
13861 const lookup_name_info &lookup_name,
13862 completion_match_result *comp_match_res)
13863{
e0802d59 13864 gdb::string_view name_view = lookup_name.name ();
de63c46b 13865
e0802d59
TT
13866 if (lookup_name.completion_mode ()
13867 ? (strncmp (symbol_search_name, name_view.data (),
13868 name_view.size ()) == 0)
13869 : symbol_search_name == name_view)
de63c46b
PA
13870 {
13871 if (comp_match_res != NULL)
13872 comp_match_res->set_match (symbol_search_name);
13873 return true;
13874 }
13875 else
13876 return false;
13877}
13878
b5ec771e
PA
13879/* Implement the "la_get_symbol_name_matcher" language_defn method for
13880 Ada. */
13881
13882static symbol_name_matcher_ftype *
13883ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13884{
de63c46b
PA
13885 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13886 return literal_symbol_name_matcher;
13887
b5ec771e
PA
13888 if (lookup_name.completion_mode ())
13889 return ada_symbol_name_matches;
74ccd7f5 13890 else
b5ec771e
PA
13891 {
13892 if (lookup_name.ada ().wild_match_p ())
13893 return do_wild_match;
a2cd4f14
JB
13894 else if (lookup_name.ada ().verbatim_p ())
13895 return do_exact_match;
b5ec771e
PA
13896 else
13897 return do_full_match;
13898 }
74ccd7f5
JB
13899}
13900
56618e20
TT
13901static const char *ada_extensions[] =
13902{
13903 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13904};
13905
0874fd07
AB
13906/* Constant data that describes the Ada language. */
13907
13908extern const struct language_data ada_language_data =
13909{
6c038f32 13910 "ada", /* Language name */
6abde28f 13911 "Ada",
6c038f32 13912 language_ada,
6c038f32 13913 range_check_off,
6c038f32
PH
13914 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13915 that's not quite what this means. */
6c038f32 13916 array_row_major,
9a044a89 13917 macro_expansion_no,
56618e20 13918 ada_extensions,
6c038f32
PH
13919 &ada_exp_descriptor,
13920 parse,
6c038f32
PH
13921 resolve,
13922 ada_printchar, /* Print a character constant */
13923 ada_printstr, /* Function to print string constant */
13924 emit_char, /* Function to print single char (not used) */
be942545 13925 ada_print_typedef, /* Print a typedef using appropriate syntax */
26792ee0 13926 ada_value_print_inner, /* la_value_print_inner */
6c038f32 13927 ada_value_print, /* Print a top-level value */
2b2d9e11 13928 NULL, /* name_of_this */
59cc4834 13929 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32 13930 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
0963b4bd
MS
13931 NULL, /* Language specific
13932 class_name_from_physname */
6c038f32
PH
13933 ada_op_print_tab, /* expression operators for printing */
13934 0, /* c-style arrays */
13935 1, /* String lower bound */
6c038f32 13936 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 13937 ada_collect_symbol_completion_matches,
e2b7af72 13938 ada_watch_location_expression,
b5ec771e 13939 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
a53b64ea 13940 &ada_varobj_ops,
bb2ec1b3 13941 NULL,
4be290b2 13942 ada_is_string_type,
721b08c6 13943 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
13944};
13945
0874fd07
AB
13946/* Class representing the Ada language. */
13947
13948class ada_language : public language_defn
13949{
13950public:
13951 ada_language ()
13952 : language_defn (language_ada, ada_language_data)
13953 { /* Nothing. */ }
5bd40f2a
AB
13954
13955 /* Print an array element index using the Ada syntax. */
13956
13957 void print_array_index (struct type *index_type,
13958 LONGEST index,
13959 struct ui_file *stream,
13960 const value_print_options *options) const override
13961 {
13962 struct value *index_value = val_atr (index_type, index);
13963
13964 LA_VALUE_PRINT (index_value, stream, options);
13965 fprintf_filtered (stream, " => ");
13966 }
15e5fd35
AB
13967
13968 /* Implement the "read_var_value" language_defn method for Ada. */
13969
13970 struct value *read_var_value (struct symbol *var,
13971 const struct block *var_block,
13972 struct frame_info *frame) const override
13973 {
13974 /* The only case where default_read_var_value is not sufficient
13975 is when VAR is a renaming... */
13976 if (frame != nullptr)
13977 {
13978 const struct block *frame_block = get_frame_block (frame, NULL);
13979 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13980 return ada_read_renaming_var_value (var, frame_block);
13981 }
13982
13983 /* This is a typical case where we expect the default_read_var_value
13984 function to work. */
13985 return language_defn::read_var_value (var, var_block, frame);
13986 }
1fb314aa
AB
13987
13988 /* See language.h. */
13989 void language_arch_info (struct gdbarch *gdbarch,
13990 struct language_arch_info *lai) const override
13991 {
13992 const struct builtin_type *builtin = builtin_type (gdbarch);
13993
13994 lai->primitive_type_vector
13995 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13996 struct type *);
13997
13998 lai->primitive_type_vector [ada_primitive_type_int]
13999 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14000 0, "integer");
14001 lai->primitive_type_vector [ada_primitive_type_long]
14002 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14003 0, "long_integer");
14004 lai->primitive_type_vector [ada_primitive_type_short]
14005 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14006 0, "short_integer");
14007 lai->string_char_type
14008 = lai->primitive_type_vector [ada_primitive_type_char]
14009 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14010 lai->primitive_type_vector [ada_primitive_type_float]
14011 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14012 "float", gdbarch_float_format (gdbarch));
14013 lai->primitive_type_vector [ada_primitive_type_double]
14014 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14015 "long_float", gdbarch_double_format (gdbarch));
14016 lai->primitive_type_vector [ada_primitive_type_long_long]
14017 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14018 0, "long_long_integer");
14019 lai->primitive_type_vector [ada_primitive_type_long_double]
14020 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14021 "long_long_float", gdbarch_long_double_format (gdbarch));
14022 lai->primitive_type_vector [ada_primitive_type_natural]
14023 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14024 0, "natural");
14025 lai->primitive_type_vector [ada_primitive_type_positive]
14026 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14027 0, "positive");
14028 lai->primitive_type_vector [ada_primitive_type_void]
14029 = builtin->builtin_void;
14030
14031 lai->primitive_type_vector [ada_primitive_type_system_address]
14032 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14033 "void"));
14034 lai->primitive_type_vector [ada_primitive_type_system_address]
14035 ->set_name ("system__address");
14036
14037 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14038 type. This is a signed integral type whose size is the same as
14039 the size of addresses. */
14040 {
14041 unsigned int addr_length = TYPE_LENGTH
14042 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14043
14044 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14045 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14046 "storage_offset");
14047 }
14048
14049 lai->bool_type_symbol = NULL;
14050 lai->bool_type_default = builtin->builtin_bool;
14051 }
4009ee92
AB
14052
14053 /* See language.h. */
14054
14055 bool iterate_over_symbols
14056 (const struct block *block, const lookup_name_info &name,
14057 domain_enum domain,
14058 gdb::function_view<symbol_found_callback_ftype> callback) const override
14059 {
14060 std::vector<struct block_symbol> results;
14061
14062 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
14063 for (block_symbol &sym : results)
14064 {
14065 if (!callback (&sym))
14066 return false;
14067 }
14068
14069 return true;
14070 }
6f827019
AB
14071
14072 /* See language.h. */
14073 bool sniff_from_mangled_name (const char *mangled,
14074 char **out) const override
14075 {
14076 std::string demangled = ada_decode (mangled);
14077
14078 *out = NULL;
14079
14080 if (demangled != mangled && demangled[0] != '<')
14081 {
14082 /* Set the gsymbol language to Ada, but still return 0.
14083 Two reasons for that:
14084
14085 1. For Ada, we prefer computing the symbol's decoded name
14086 on the fly rather than pre-compute it, in order to save
14087 memory (Ada projects are typically very large).
14088
14089 2. There are some areas in the definition of the GNAT
14090 encoding where, with a bit of bad luck, we might be able
14091 to decode a non-Ada symbol, generating an incorrect
14092 demangled name (Eg: names ending with "TB" for instance
14093 are identified as task bodies and so stripped from
14094 the decoded name returned).
14095
14096 Returning true, here, but not setting *DEMANGLED, helps us get
14097 a little bit of the best of both worlds. Because we're last,
14098 we should not affect any of the other languages that were
14099 able to demangle the symbol before us; we get to correctly
14100 tag Ada symbols as such; and even if we incorrectly tagged a
14101 non-Ada symbol, which should be rare, any routing through the
14102 Ada language should be transparent (Ada tries to behave much
14103 like C/C++ with non-Ada symbols). */
14104 return true;
14105 }
14106
14107 return false;
14108 }
fbfb0a46
AB
14109
14110 /* See language.h. */
14111
0a50df5d
AB
14112 char *demangle (const char *mangled, int options) const override
14113 {
14114 return ada_la_decode (mangled, options);
14115 }
14116
14117 /* See language.h. */
14118
fbfb0a46
AB
14119 void print_type (struct type *type, const char *varstring,
14120 struct ui_file *stream, int show, int level,
14121 const struct type_print_options *flags) const override
14122 {
14123 ada_print_type (type, varstring, stream, show, level, flags);
14124 }
0874fd07
AB
14125};
14126
14127/* Single instance of the Ada language class. */
14128
14129static ada_language ada_language_defn;
14130
5bf03f13
JB
14131/* Command-list for the "set/show ada" prefix command. */
14132static struct cmd_list_element *set_ada_list;
14133static struct cmd_list_element *show_ada_list;
14134
2060206e
PA
14135static void
14136initialize_ada_catchpoint_ops (void)
14137{
14138 struct breakpoint_ops *ops;
14139
14140 initialize_breakpoint_ops ();
14141
14142 ops = &catch_exception_breakpoint_ops;
14143 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14144 ops->allocate_location = allocate_location_exception;
14145 ops->re_set = re_set_exception;
14146 ops->check_status = check_status_exception;
14147 ops->print_it = print_it_exception;
14148 ops->print_one = print_one_exception;
14149 ops->print_mention = print_mention_exception;
14150 ops->print_recreate = print_recreate_exception;
2060206e
PA
14151
14152 ops = &catch_exception_unhandled_breakpoint_ops;
14153 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14154 ops->allocate_location = allocate_location_exception;
14155 ops->re_set = re_set_exception;
14156 ops->check_status = check_status_exception;
14157 ops->print_it = print_it_exception;
14158 ops->print_one = print_one_exception;
14159 ops->print_mention = print_mention_exception;
14160 ops->print_recreate = print_recreate_exception;
2060206e
PA
14161
14162 ops = &catch_assert_breakpoint_ops;
14163 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14164 ops->allocate_location = allocate_location_exception;
14165 ops->re_set = re_set_exception;
14166 ops->check_status = check_status_exception;
14167 ops->print_it = print_it_exception;
14168 ops->print_one = print_one_exception;
14169 ops->print_mention = print_mention_exception;
14170 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14171
14172 ops = &catch_handlers_breakpoint_ops;
14173 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14174 ops->allocate_location = allocate_location_exception;
14175 ops->re_set = re_set_exception;
14176 ops->check_status = check_status_exception;
14177 ops->print_it = print_it_exception;
14178 ops->print_one = print_one_exception;
14179 ops->print_mention = print_mention_exception;
14180 ops->print_recreate = print_recreate_exception;
2060206e
PA
14181}
14182
3d9434b5
JB
14183/* This module's 'new_objfile' observer. */
14184
14185static void
14186ada_new_objfile_observer (struct objfile *objfile)
14187{
14188 ada_clear_symbol_cache ();
14189}
14190
14191/* This module's 'free_objfile' observer. */
14192
14193static void
14194ada_free_objfile_observer (struct objfile *objfile)
14195{
14196 ada_clear_symbol_cache ();
14197}
14198
6c265988 14199void _initialize_ada_language ();
d2e4a39e 14200void
6c265988 14201_initialize_ada_language ()
14f9c5c9 14202{
2060206e
PA
14203 initialize_ada_catchpoint_ops ();
14204
0743fc83
TT
14205 add_basic_prefix_cmd ("ada", no_class,
14206 _("Prefix command for changing Ada-specific settings."),
14207 &set_ada_list, "set ada ", 0, &setlist);
5bf03f13 14208
0743fc83
TT
14209 add_show_prefix_cmd ("ada", no_class,
14210 _("Generic command for showing Ada-specific settings."),
14211 &show_ada_list, "show ada ", 0, &showlist);
5bf03f13
JB
14212
14213 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14214 &trust_pad_over_xvs, _("\
590042fc
PW
14215Enable or disable an optimization trusting PAD types over XVS types."), _("\
14216Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14217 _("\
14218This is related to the encoding used by the GNAT compiler. The debugger\n\
14219should normally trust the contents of PAD types, but certain older versions\n\
14220of GNAT have a bug that sometimes causes the information in the PAD type\n\
14221to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14222work around this bug. It is always safe to turn this option \"off\", but\n\
14223this incurs a slight performance penalty, so it is recommended to NOT change\n\
14224this option to \"off\" unless necessary."),
14225 NULL, NULL, &set_ada_list, &show_ada_list);
14226
d72413e6
PMR
14227 add_setshow_boolean_cmd ("print-signatures", class_vars,
14228 &print_signatures, _("\
14229Enable or disable the output of formal and return types for functions in the \
590042fc 14230overloads selection menu."), _("\
d72413e6 14231Show whether the output of formal and return types for functions in the \
590042fc 14232overloads selection menu is activated."),
d72413e6
PMR
14233 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14234
9ac4176b
PA
14235 add_catch_command ("exception", _("\
14236Catch Ada exceptions, when raised.\n\
9bf7038b 14237Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14238Without any argument, stop when any Ada exception is raised.\n\
14239If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14240being raised does not have a handler (and will therefore lead to the task's\n\
14241termination).\n\
14242Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14243raised is the same as ARG.\n\
14244CONDITION is a boolean expression that is evaluated to see whether the\n\
14245exception should cause a stop."),
9ac4176b 14246 catch_ada_exception_command,
71bed2db 14247 catch_ada_completer,
9ac4176b
PA
14248 CATCH_PERMANENT,
14249 CATCH_TEMPORARY);
9f757bf7
XR
14250
14251 add_catch_command ("handlers", _("\
14252Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14253Usage: catch handlers [ARG] [if CONDITION]\n\
14254Without any argument, stop when any Ada exception is handled.\n\
14255With an argument, catch only exceptions with the given name.\n\
14256CONDITION is a boolean expression that is evaluated to see whether the\n\
14257exception should cause a stop."),
9f757bf7 14258 catch_ada_handlers_command,
71bed2db 14259 catch_ada_completer,
9f757bf7
XR
14260 CATCH_PERMANENT,
14261 CATCH_TEMPORARY);
9ac4176b
PA
14262 add_catch_command ("assert", _("\
14263Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14264Usage: catch assert [if CONDITION]\n\
14265CONDITION is a boolean expression that is evaluated to see whether the\n\
14266exception should cause a stop."),
9ac4176b
PA
14267 catch_assert_command,
14268 NULL,
14269 CATCH_PERMANENT,
14270 CATCH_TEMPORARY);
14271
6c038f32 14272 varsize_limit = 65536;
3fcded8f
JB
14273 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14274 &varsize_limit, _("\
14275Set the maximum number of bytes allowed in a variable-size object."), _("\
14276Show the maximum number of bytes allowed in a variable-size object."), _("\
14277Attempts to access an object whose size is not a compile-time constant\n\
14278and exceeds this limit will cause an error."),
14279 NULL, NULL, &setlist, &showlist);
6c038f32 14280
778865d3
JB
14281 add_info ("exceptions", info_exceptions_command,
14282 _("\
14283List all Ada exception names.\n\
9bf7038b 14284Usage: info exceptions [REGEXP]\n\
778865d3
JB
14285If a regular expression is passed as an argument, only those matching\n\
14286the regular expression are listed."));
14287
0743fc83
TT
14288 add_basic_prefix_cmd ("ada", class_maintenance,
14289 _("Set Ada maintenance-related variables."),
14290 &maint_set_ada_cmdlist, "maintenance set ada ",
14291 0/*allow-unknown*/, &maintenance_set_cmdlist);
c6044dd1 14292
0743fc83
TT
14293 add_show_prefix_cmd ("ada", class_maintenance,
14294 _("Show Ada maintenance-related variables."),
14295 &maint_show_ada_cmdlist, "maintenance show ada ",
14296 0/*allow-unknown*/, &maintenance_show_cmdlist);
c6044dd1
JB
14297
14298 add_setshow_boolean_cmd
14299 ("ignore-descriptive-types", class_maintenance,
14300 &ada_ignore_descriptive_types_p,
14301 _("Set whether descriptive types generated by GNAT should be ignored."),
14302 _("Show whether descriptive types generated by GNAT should be ignored."),
14303 _("\
14304When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14305DWARF attribute."),
14306 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14307
459a2e4c
TT
14308 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14309 NULL, xcalloc, xfree);
6b69afc4 14310
3d9434b5 14311 /* The ada-lang observers. */
76727919
TT
14312 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14313 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14314 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14315}
This page took 7.997816 seconds and 4 git commands to generate.