Target remote mode fork and exec test updates
[deliverable/binutils-gdb.git] / gdb / ada-varobj.c
CommitLineData
181875a4
JB
1/* varobj support for Ada.
2
32d0add0 3 Copyright (C) 2012-2015 Free Software Foundation, Inc.
181875a4
JB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
181875a4 21#include "ada-lang.h"
99ad9427 22#include "varobj.h"
181875a4
JB
23#include "language.h"
24#include "valprint.h"
25
26/* Implementation principle used in this unit:
27
28 For our purposes, the meat of the varobj object is made of two
29 elements: The varobj's (struct) value, and the varobj's (struct)
30 type. In most situations, the varobj has a non-NULL value, and
31 the type becomes redundant, as it can be directly derived from
32 the value. In the initial implementation of this unit, most
33 routines would only take a value, and return a value.
34
35 But there are many situations where it is possible for a varobj
36 to have a NULL value. For instance, if the varobj becomes out of
37 scope. Or better yet, when the varobj is the child of another
38 NULL pointer varobj. In that situation, we must rely on the type
39 instead of the value to create the child varobj.
40
41 That's why most functions below work with a (value, type) pair.
42 The value may or may not be NULL. But the type is always expected
43 to be set. When the value is NULL, then we work with the type
44 alone, and keep the value NULL. But when the value is not NULL,
45 then we work using the value, because it provides more information.
46 But we still always set the type as well, even if that type could
47 easily be derived from the value. The reason behind this is that
48 it allows the code to use the type without having to worry about
49 it being set or not. It makes the code clearer. */
50
c4124bf1
YQ
51static int ada_varobj_get_number_of_children (struct value *parent_value,
52 struct type *parent_type);
53
181875a4
JB
54/* A convenience function that decodes the VALUE_PTR/TYPE_PTR couple:
55 If there is a value (*VALUE_PTR not NULL), then perform the decoding
56 using it, and compute the associated type from the resulting value.
57 Otherwise, compute a static approximation of *TYPE_PTR, leaving
58 *VALUE_PTR unchanged.
59
60 The results are written in place. */
61
62static void
63ada_varobj_decode_var (struct value **value_ptr, struct type **type_ptr)
64{
65 if (*value_ptr)
66 {
67 *value_ptr = ada_get_decoded_value (*value_ptr);
68 *type_ptr = ada_check_typedef (value_type (*value_ptr));
69 }
70 else
71 *type_ptr = ada_get_decoded_type (*type_ptr);
72}
73
74/* Return a string containing an image of the given scalar value.
75 VAL is the numeric value, while TYPE is the value's type.
76 This is useful for plain integers, of course, but even more
77 so for enumerated types.
78
79 The result should be deallocated by xfree after use. */
80
81static char *
82ada_varobj_scalar_image (struct type *type, LONGEST val)
83{
84 struct ui_file *buf = mem_fileopen ();
85 struct cleanup *cleanups = make_cleanup_ui_file_delete (buf);
86 char *result;
87
88 ada_print_scalar (type, val, buf);
89 result = ui_file_xstrdup (buf, NULL);
90 do_cleanups (cleanups);
91
92 return result;
93}
94
95/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
96 a struct or union, compute the (CHILD_VALUE, CHILD_TYPE) couple
97 corresponding to the field number FIELDNO. */
98
99static void
100ada_varobj_struct_elt (struct value *parent_value,
101 struct type *parent_type,
102 int fieldno,
103 struct value **child_value,
104 struct type **child_type)
105{
106 struct value *value = NULL;
107 struct type *type = NULL;
108
109 if (parent_value)
110 {
111 value = value_field (parent_value, fieldno);
112 type = value_type (value);
113 }
114 else
115 type = TYPE_FIELD_TYPE (parent_type, fieldno);
116
117 if (child_value)
118 *child_value = value;
119 if (child_type)
120 *child_type = type;
121}
122
123/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a pointer or
124 reference, return a (CHILD_VALUE, CHILD_TYPE) couple corresponding
125 to the dereferenced value. */
126
127static void
128ada_varobj_ind (struct value *parent_value,
129 struct type *parent_type,
130 struct value **child_value,
131 struct type **child_type)
132{
133 struct value *value = NULL;
134 struct type *type = NULL;
135
136 if (ada_is_array_descriptor_type (parent_type))
137 {
138 /* This can only happen when PARENT_VALUE is NULL. Otherwise,
139 ada_get_decoded_value would have transformed our parent_type
140 into a simple array pointer type. */
141 gdb_assert (parent_value == NULL);
142 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF);
143
144 /* Decode parent_type by the equivalent pointer to (decoded)
145 array. */
146 while (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF)
147 parent_type = TYPE_TARGET_TYPE (parent_type);
148 parent_type = ada_coerce_to_simple_array_type (parent_type);
149 parent_type = lookup_pointer_type (parent_type);
150 }
151
152 /* If parent_value is a null pointer, then only perform static
153 dereferencing. We cannot dereference null pointers. */
154 if (parent_value && value_as_address (parent_value) == 0)
155 parent_value = NULL;
156
157 if (parent_value)
158 {
159 value = ada_value_ind (parent_value);
160 type = value_type (value);
161 }
162 else
163 type = TYPE_TARGET_TYPE (parent_type);
164
165 if (child_value)
166 *child_value = value;
167 if (child_type)
168 *child_type = type;
169}
170
171/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a simple
172 array (TYPE_CODE_ARRAY), return the (CHILD_VALUE, CHILD_TYPE)
173 pair corresponding to the element at ELT_INDEX. */
174
175static void
176ada_varobj_simple_array_elt (struct value *parent_value,
177 struct type *parent_type,
178 int elt_index,
179 struct value **child_value,
180 struct type **child_type)
181{
182 struct value *value = NULL;
183 struct type *type = NULL;
184
185 if (parent_value)
186 {
187 struct value *index_value =
188 value_from_longest (TYPE_INDEX_TYPE (parent_type), elt_index);
189
190 value = ada_value_subscript (parent_value, 1, &index_value);
191 type = value_type (value);
192 }
193 else
194 type = TYPE_TARGET_TYPE (parent_type);
195
196 if (child_value)
197 *child_value = value;
198 if (child_type)
199 *child_type = type;
200}
201
202/* Given the decoded value and decoded type of a variable object,
203 adjust the value and type to those necessary for getting children
204 of the variable object.
205
206 The replacement is performed in place. */
207
208static void
209ada_varobj_adjust_for_child_access (struct value **value,
210 struct type **type)
211{
212 /* Pointers to struct/union types are special: Instead of having
213 one child (the struct), their children are the components of
214 the struct/union type. We handle this situation by dereferencing
215 the (value, type) couple. */
216 if (TYPE_CODE (*type) == TYPE_CODE_PTR
217 && (TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_STRUCT
218 || TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_UNION)
219 && !ada_is_array_descriptor_type (TYPE_TARGET_TYPE (*type))
220 && !ada_is_constrained_packed_array_type (TYPE_TARGET_TYPE (*type)))
221 ada_varobj_ind (*value, *type, value, type);
f30b8b38
JB
222
223 /* If this is a tagged type, we need to transform it a bit in order
224 to be able to fetch its full view. As always with tagged types,
225 we can only do that if we have a value. */
226 if (*value != NULL && ada_is_tagged_type (*type, 1))
227 {
228 *value = ada_tag_value_at_base_address (*value);
229 *type = value_type (*value);
230 }
181875a4
JB
231}
232
233/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is an array
234 (any type of array, "simple" or not), return the number of children
235 that this array contains. */
236
237static int
238ada_varobj_get_array_number_of_children (struct value *parent_value,
239 struct type *parent_type)
240{
241 LONGEST lo, hi;
181875a4 242
4a0ca9ec
JB
243 if (parent_value == NULL
244 && is_dynamic_type (TYPE_INDEX_TYPE (parent_type)))
245 {
246 /* This happens when listing the children of an object
247 which does not exist in memory (Eg: when requesting
248 the children of a null pointer, which is allowed by
249 varobj). The array index type being dynamic, we cannot
250 determine how many elements this array has. Just assume
251 it has none. */
252 return 0;
253 }
254
181875a4
JB
255 if (!get_array_bounds (parent_type, &lo, &hi))
256 {
257 /* Could not get the array bounds. Pretend this is an empty array. */
258 warning (_("unable to get bounds of array, assuming null array"));
259 return 0;
260 }
261
262 /* Ada allows the upper bound to be less than the lower bound,
263 in order to specify empty arrays... */
264 if (hi < lo)
265 return 0;
266
267 return hi - lo + 1;
268}
269
270/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a struct or
271 union, return the number of children this struct contains. */
272
273static int
274ada_varobj_get_struct_number_of_children (struct value *parent_value,
275 struct type *parent_type)
276{
277 int n_children = 0;
278 int i;
279
280 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
281 || TYPE_CODE (parent_type) == TYPE_CODE_UNION);
282
283 for (i = 0; i < TYPE_NFIELDS (parent_type); i++)
284 {
285 if (ada_is_ignored_field (parent_type, i))
286 continue;
287
288 if (ada_is_wrapper_field (parent_type, i))
289 {
290 struct value *elt_value;
291 struct type *elt_type;
292
293 ada_varobj_struct_elt (parent_value, parent_type, i,
294 &elt_value, &elt_type);
295 if (ada_is_tagged_type (elt_type, 0))
296 {
297 /* We must not use ada_varobj_get_number_of_children
298 to determine is element's number of children, because
299 this function first calls ada_varobj_decode_var,
300 which "fixes" the element. For tagged types, this
301 includes reading the object's tag to determine its
302 real type, which happens to be the parent_type, and
303 leads to an infinite loop (because the element gets
304 fixed back into the parent). */
305 n_children += ada_varobj_get_struct_number_of_children
306 (elt_value, elt_type);
307 }
308 else
309 n_children += ada_varobj_get_number_of_children (elt_value, elt_type);
310 }
311 else if (ada_is_variant_part (parent_type, i))
312 {
313 /* In normal situations, the variant part of the record should
314 have been "fixed". Or, in other words, it should have been
315 replaced by the branch of the variant part that is relevant
316 for our value. But there are still situations where this
317 can happen, however (Eg. when our parent is a NULL pointer).
318 We do not support showing this part of the record for now,
319 so just pretend this field does not exist. */
320 }
321 else
322 n_children++;
323 }
324
325 return n_children;
326}
327
328/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
329 a pointer, return the number of children this pointer has. */
330
331static int
332ada_varobj_get_ptr_number_of_children (struct value *parent_value,
333 struct type *parent_type)
334{
335 struct type *child_type = TYPE_TARGET_TYPE (parent_type);
336
337 /* Pointer to functions and to void do not have a child, since
338 you cannot print what they point to. */
339 if (TYPE_CODE (child_type) == TYPE_CODE_FUNC
340 || TYPE_CODE (child_type) == TYPE_CODE_VOID)
341 return 0;
342
343 /* All other types have 1 child. */
344 return 1;
345}
346
347/* Return the number of children for the (PARENT_VALUE, PARENT_TYPE)
348 pair. */
349
c4124bf1 350static int
181875a4
JB
351ada_varobj_get_number_of_children (struct value *parent_value,
352 struct type *parent_type)
353{
354 ada_varobj_decode_var (&parent_value, &parent_type);
355 ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
356
357 /* A typedef to an array descriptor in fact represents a pointer
358 to an unconstrained array. These types always have one child
359 (the unconstrained array). */
360 if (ada_is_array_descriptor_type (parent_type)
361 && TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF)
362 return 1;
363
364 if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY)
365 return ada_varobj_get_array_number_of_children (parent_value,
366 parent_type);
367
368 if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
369 || TYPE_CODE (parent_type) == TYPE_CODE_UNION)
370 return ada_varobj_get_struct_number_of_children (parent_value,
371 parent_type);
372
373 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
374 return ada_varobj_get_ptr_number_of_children (parent_value,
375 parent_type);
376
377 /* All other types have no child. */
378 return 0;
379}
380
381/* Describe the child of the (PARENT_VALUE, PARENT_TYPE) pair
382 whose index is CHILD_INDEX:
383
384 - If CHILD_NAME is not NULL, then a copy of the child's name
385 is saved in *CHILD_NAME. This copy must be deallocated
386 with xfree after use.
387
388 - If CHILD_VALUE is not NULL, then save the child's value
389 in *CHILD_VALUE. Same thing for the child's type with
390 CHILD_TYPE if not NULL.
391
392 - If CHILD_PATH_EXPR is not NULL, then compute the child's
393 path expression. The resulting string must be deallocated
394 after use with xfree.
395
396 Computing the child's path expression requires the PARENT_PATH_EXPR
397 to be non-NULL. Otherwise, PARENT_PATH_EXPR may be null if
398 CHILD_PATH_EXPR is NULL.
399
400 PARENT_NAME is the name of the parent, and should never be NULL. */
401
402static void ada_varobj_describe_child (struct value *parent_value,
403 struct type *parent_type,
404 const char *parent_name,
405 const char *parent_path_expr,
406 int child_index,
407 char **child_name,
408 struct value **child_value,
409 struct type **child_type,
410 char **child_path_expr);
411
412/* Same as ada_varobj_describe_child, but limited to struct/union
413 objects. */
414
415static void
416ada_varobj_describe_struct_child (struct value *parent_value,
417 struct type *parent_type,
418 const char *parent_name,
419 const char *parent_path_expr,
420 int child_index,
421 char **child_name,
422 struct value **child_value,
423 struct type **child_type,
424 char **child_path_expr)
425{
426 int fieldno;
427 int childno = 0;
428
429 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT);
430
431 for (fieldno = 0; fieldno < TYPE_NFIELDS (parent_type); fieldno++)
432 {
433 if (ada_is_ignored_field (parent_type, fieldno))
434 continue;
435
436 if (ada_is_wrapper_field (parent_type, fieldno))
437 {
438 struct value *elt_value;
439 struct type *elt_type;
440 int elt_n_children;
441
442 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
443 &elt_value, &elt_type);
444 if (ada_is_tagged_type (elt_type, 0))
445 {
446 /* Same as in ada_varobj_get_struct_number_of_children:
447 For tagged types, we must be careful to not call
448 ada_varobj_get_number_of_children, to prevent our
449 element from being fixed back into the parent. */
450 elt_n_children = ada_varobj_get_struct_number_of_children
451 (elt_value, elt_type);
452 }
453 else
454 elt_n_children =
455 ada_varobj_get_number_of_children (elt_value, elt_type);
456
457 /* Is the child we're looking for one of the children
458 of this wrapper field? */
459 if (child_index - childno < elt_n_children)
460 {
461 if (ada_is_tagged_type (elt_type, 0))
462 {
463 /* Same as in ada_varobj_get_struct_number_of_children:
464 For tagged types, we must be careful to not call
465 ada_varobj_describe_child, to prevent our element
466 from being fixed back into the parent. */
467 ada_varobj_describe_struct_child
468 (elt_value, elt_type, parent_name, parent_path_expr,
469 child_index - childno, child_name, child_value,
470 child_type, child_path_expr);
471 }
472 else
473 ada_varobj_describe_child (elt_value, elt_type,
474 parent_name, parent_path_expr,
475 child_index - childno,
476 child_name, child_value,
477 child_type, child_path_expr);
478 return;
479 }
480
481 /* The child we're looking for is beyond this wrapper
482 field, so skip all its children. */
483 childno += elt_n_children;
484 continue;
485 }
486 else if (ada_is_variant_part (parent_type, fieldno))
487 {
488 /* In normal situations, the variant part of the record should
489 have been "fixed". Or, in other words, it should have been
490 replaced by the branch of the variant part that is relevant
491 for our value. But there are still situations where this
492 can happen, however (Eg. when our parent is a NULL pointer).
493 We do not support showing this part of the record for now,
494 so just pretend this field does not exist. */
495 continue;
496 }
497
498 if (childno == child_index)
499 {
500 if (child_name)
501 {
502 /* The name of the child is none other than the field's
503 name, except that we need to strip suffixes from it.
504 For instance, fields with alignment constraints will
505 have an __XVA suffix added to them. */
506 const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
507 int child_name_len = ada_name_prefix_len (field_name);
508
509 *child_name = xstrprintf ("%.*s", child_name_len, field_name);
510 }
511
512 if (child_value && parent_value)
513 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
514 child_value, NULL);
515
516 if (child_type)
517 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
518 NULL, child_type);
519
520 if (child_path_expr)
521 {
522 /* The name of the child is none other than the field's
523 name, except that we need to strip suffixes from it.
524 For instance, fields with alignment constraints will
525 have an __XVA suffix added to them. */
526 const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
527 int child_name_len = ada_name_prefix_len (field_name);
528
529 *child_path_expr =
530 xstrprintf ("(%s).%.*s", parent_path_expr,
531 child_name_len, field_name);
532 }
533
534 return;
535 }
536
537 childno++;
538 }
539
540 /* Something went wrong. Either we miscounted the number of
541 children, or CHILD_INDEX was too high. But we should never
542 reach here. We don't have enough information to recover
543 nicely, so just raise an assertion failure. */
544 gdb_assert_not_reached ("unexpected code path");
545}
546
547/* Same as ada_varobj_describe_child, but limited to pointer objects.
548
549 Note that CHILD_INDEX is unused in this situation, but still provided
550 for consistency of interface with other routines describing an object's
551 child. */
552
553static void
554ada_varobj_describe_ptr_child (struct value *parent_value,
555 struct type *parent_type,
556 const char *parent_name,
557 const char *parent_path_expr,
558 int child_index,
559 char **child_name,
560 struct value **child_value,
561 struct type **child_type,
562 char **child_path_expr)
563{
564 if (child_name)
565 *child_name = xstrprintf ("%s.all", parent_name);
566
567 if (child_value && parent_value)
568 ada_varobj_ind (parent_value, parent_type, child_value, NULL);
569
570 if (child_type)
571 ada_varobj_ind (parent_value, parent_type, NULL, child_type);
572
573 if (child_path_expr)
574 *child_path_expr = xstrprintf ("(%s).all", parent_path_expr);
575}
576
577/* Same as ada_varobj_describe_child, limited to simple array objects
578 (TYPE_CODE_ARRAY only).
579
580 Assumes that the (PARENT_VALUE, PARENT_TYPE) pair is properly decoded.
581 This is done by ada_varobj_describe_child before calling us. */
582
583static void
584ada_varobj_describe_simple_array_child (struct value *parent_value,
585 struct type *parent_type,
586 const char *parent_name,
587 const char *parent_path_expr,
588 int child_index,
589 char **child_name,
590 struct value **child_value,
591 struct type **child_type,
592 char **child_path_expr)
593{
181875a4
JB
594 struct type *index_type;
595 int real_index;
596
597 gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY);
598
4d072ce4 599 index_type = TYPE_INDEX_TYPE (parent_type);
181875a4
JB
600 real_index = child_index + ada_discrete_type_low_bound (index_type);
601
602 if (child_name)
603 *child_name = ada_varobj_scalar_image (index_type, real_index);
604
605 if (child_value && parent_value)
606 ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
607 child_value, NULL);
608
609 if (child_type)
610 ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
611 NULL, child_type);
612
613 if (child_path_expr)
614 {
615 char *index_img = ada_varobj_scalar_image (index_type, real_index);
616 struct cleanup *cleanups = make_cleanup (xfree, index_img);
617
618 /* Enumeration litterals by themselves are potentially ambiguous.
619 For instance, consider the following package spec:
620
621 package Pck is
622 type Color is (Red, Green, Blue, White);
623 type Blood_Cells is (White, Red);
624 end Pck;
625
626 In this case, the litteral "red" for instance, or even
627 the fully-qualified litteral "pck.red" cannot be resolved
628 by itself. Type qualification is needed to determine which
629 enumeration litterals should be used.
630
631 The following variable will be used to contain the name
632 of the array index type when such type qualification is
633 needed. */
634 const char *index_type_name = NULL;
635
636 /* If the index type is a range type, find the base type. */
637 while (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
638 index_type = TYPE_TARGET_TYPE (index_type);
639
640 if (TYPE_CODE (index_type) == TYPE_CODE_ENUM
641 || TYPE_CODE (index_type) == TYPE_CODE_BOOL)
642 {
643 index_type_name = ada_type_name (index_type);
644 if (index_type_name)
645 index_type_name = ada_decode (index_type_name);
646 }
647
648 if (index_type_name != NULL)
649 *child_path_expr =
650 xstrprintf ("(%s)(%.*s'(%s))", parent_path_expr,
651 ada_name_prefix_len (index_type_name),
652 index_type_name, index_img);
653 else
654 *child_path_expr =
655 xstrprintf ("(%s)(%s)", parent_path_expr, index_img);
656 do_cleanups (cleanups);
657 }
658}
659
660/* See description at declaration above. */
661
662static void
663ada_varobj_describe_child (struct value *parent_value,
664 struct type *parent_type,
665 const char *parent_name,
666 const char *parent_path_expr,
667 int child_index,
668 char **child_name,
669 struct value **child_value,
670 struct type **child_type,
671 char **child_path_expr)
672{
673 /* We cannot compute the child's path expression without
674 the parent's path expression. This is a pre-condition
675 for calling this function. */
676 if (child_path_expr)
677 gdb_assert (parent_path_expr != NULL);
678
679 ada_varobj_decode_var (&parent_value, &parent_type);
680 ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
681
682 if (child_name)
683 *child_name = NULL;
684 if (child_value)
685 *child_value = NULL;
686 if (child_type)
687 *child_type = NULL;
688 if (child_path_expr)
689 *child_path_expr = NULL;
690
691 if (ada_is_array_descriptor_type (parent_type)
692 && TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF)
693 {
694 ada_varobj_describe_ptr_child (parent_value, parent_type,
695 parent_name, parent_path_expr,
696 child_index, child_name,
697 child_value, child_type,
698 child_path_expr);
699 return;
700 }
701
702 if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY)
703 {
704 ada_varobj_describe_simple_array_child
705 (parent_value, parent_type, parent_name, parent_path_expr,
706 child_index, child_name, child_value, child_type,
707 child_path_expr);
708 return;
709 }
710
711 if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT)
712 {
713 ada_varobj_describe_struct_child (parent_value, parent_type,
714 parent_name, parent_path_expr,
715 child_index, child_name,
716 child_value, child_type,
717 child_path_expr);
718 return;
719 }
720
721 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
722 {
723 ada_varobj_describe_ptr_child (parent_value, parent_type,
724 parent_name, parent_path_expr,
725 child_index, child_name,
726 child_value, child_type,
727 child_path_expr);
728 return;
729 }
730
731 /* It should never happen. But rather than crash, report dummy names
732 and return a NULL child_value. */
733 if (child_name)
734 *child_name = xstrdup ("???");
735}
736
737/* Return the name of the child number CHILD_INDEX of the (PARENT_VALUE,
738 PARENT_TYPE) pair. PARENT_NAME is the name of the PARENT.
739
740 The result should be deallocated after use with xfree. */
741
c4124bf1 742static char *
181875a4
JB
743ada_varobj_get_name_of_child (struct value *parent_value,
744 struct type *parent_type,
745 const char *parent_name, int child_index)
746{
747 char *child_name;
748
749 ada_varobj_describe_child (parent_value, parent_type, parent_name,
750 NULL, child_index, &child_name, NULL,
751 NULL, NULL);
752 return child_name;
753}
754
755/* Return the path expression of the child number CHILD_INDEX of
756 the (PARENT_VALUE, PARENT_TYPE) pair. PARENT_NAME is the name
757 of the parent, and PARENT_PATH_EXPR is the parent's path expression.
758 Both must be non-NULL.
759
760 The result must be deallocated after use with xfree. */
761
c4124bf1 762static char *
181875a4
JB
763ada_varobj_get_path_expr_of_child (struct value *parent_value,
764 struct type *parent_type,
765 const char *parent_name,
766 const char *parent_path_expr,
767 int child_index)
768{
769 char *child_path_expr;
770
771 ada_varobj_describe_child (parent_value, parent_type, parent_name,
772 parent_path_expr, child_index, NULL,
773 NULL, NULL, &child_path_expr);
774
775 return child_path_expr;
776}
777
778/* Return the value of child number CHILD_INDEX of the (PARENT_VALUE,
779 PARENT_TYPE) pair. PARENT_NAME is the name of the parent. */
780
c4124bf1 781static struct value *
181875a4
JB
782ada_varobj_get_value_of_child (struct value *parent_value,
783 struct type *parent_type,
784 const char *parent_name, int child_index)
785{
786 struct value *child_value;
787
788 ada_varobj_describe_child (parent_value, parent_type, parent_name,
789 NULL, child_index, NULL, &child_value,
790 NULL, NULL);
791
792 return child_value;
793}
794
795/* Return the type of child number CHILD_INDEX of the (PARENT_VALUE,
796 PARENT_TYPE) pair. */
797
c4124bf1 798static struct type *
181875a4
JB
799ada_varobj_get_type_of_child (struct value *parent_value,
800 struct type *parent_type,
801 int child_index)
802{
803 struct type *child_type;
804
805 ada_varobj_describe_child (parent_value, parent_type, NULL, NULL,
806 child_index, NULL, NULL, &child_type, NULL);
807
808 return child_type;
809}
810
811/* Return a string that contains the image of the given VALUE, using
812 the print options OPTS as the options for formatting the result.
813
814 The resulting string must be deallocated after use with xfree. */
815
816static char *
817ada_varobj_get_value_image (struct value *value,
818 struct value_print_options *opts)
819{
820 char *result;
821 struct ui_file *buffer;
822 struct cleanup *old_chain;
823
824 buffer = mem_fileopen ();
825 old_chain = make_cleanup_ui_file_delete (buffer);
826
827 common_val_print (value, buffer, 0, opts, current_language);
828 result = ui_file_xstrdup (buffer, NULL);
829
830 do_cleanups (old_chain);
831 return result;
832}
833
834/* Assuming that the (VALUE, TYPE) pair designates an array varobj,
835 return a string that is suitable for use in the "value" field of
836 the varobj output. Most of the time, this is the number of elements
837 in the array inside square brackets, but there are situations where
838 it's useful to add more info.
839
840 OPTS are the print options used when formatting the result.
841
842 The result should be deallocated after use using xfree. */
843
844static char *
845ada_varobj_get_value_of_array_variable (struct value *value,
846 struct type *type,
847 struct value_print_options *opts)
848{
849 char *result;
850 const int numchild = ada_varobj_get_array_number_of_children (value, type);
851
852 /* If we have a string, provide its contents in the "value" field.
853 Otherwise, the only other way to inspect the contents of the string
854 is by looking at the value of each element, as in any other array,
855 which is not very convenient... */
856 if (value
857 && ada_is_string_type (type)
858 && (opts->format == 0 || opts->format == 's'))
859 {
860 char *str;
861 struct cleanup *old_chain;
862
863 str = ada_varobj_get_value_image (value, opts);
864 old_chain = make_cleanup (xfree, str);
865 result = xstrprintf ("[%d] %s", numchild, str);
866 do_cleanups (old_chain);
867 }
868 else
869 result = xstrprintf ("[%d]", numchild);
870
871 return result;
872}
873
874/* Return a string representation of the (VALUE, TYPE) pair, using
875 the given print options OPTS as our formatting options. */
876
c4124bf1 877static char *
181875a4
JB
878ada_varobj_get_value_of_variable (struct value *value,
879 struct type *type,
880 struct value_print_options *opts)
881{
882 char *result = NULL;
883
884 ada_varobj_decode_var (&value, &type);
885
886 switch (TYPE_CODE (type))
887 {
888 case TYPE_CODE_STRUCT:
889 case TYPE_CODE_UNION:
890 result = xstrdup ("{...}");
891 break;
892 case TYPE_CODE_ARRAY:
893 result = ada_varobj_get_value_of_array_variable (value, type, opts);
894 break;
895 default:
896 if (!value)
897 result = xstrdup ("");
898 else
899 result = ada_varobj_get_value_image (value, opts);
900 break;
901 }
902
903 return result;
904}
905
99ad9427 906/* Ada specific callbacks for VAROBJs. */
181875a4 907
99ad9427 908static int
b09e2c59 909ada_number_of_children (const struct varobj *var)
99ad9427
YQ
910{
911 return ada_varobj_get_number_of_children (var->value, var->type);
912}
913
914static char *
b09e2c59 915ada_name_of_variable (const struct varobj *parent)
99ad9427
YQ
916{
917 return c_varobj_ops.name_of_variable (parent);
918}
919
920static char *
c1cc6152 921ada_name_of_child (const struct varobj *parent, int index)
99ad9427
YQ
922{
923 return ada_varobj_get_name_of_child (parent->value, parent->type,
924 parent->name, index);
925}
926
927static char*
b09e2c59 928ada_path_expr_of_child (const struct varobj *child)
99ad9427 929{
c1cc6152 930 const struct varobj *parent = child->parent;
99ad9427
YQ
931 const char *parent_path_expr = varobj_get_path_expr (parent);
932
933 return ada_varobj_get_path_expr_of_child (parent->value,
934 parent->type,
935 parent->name,
936 parent_path_expr,
937 child->index);
938}
939
940static struct value *
c1cc6152 941ada_value_of_child (const struct varobj *parent, int index)
99ad9427
YQ
942{
943 return ada_varobj_get_value_of_child (parent->value, parent->type,
944 parent->name, index);
945}
946
947static struct type *
c1cc6152 948ada_type_of_child (const struct varobj *parent, int index)
99ad9427
YQ
949{
950 return ada_varobj_get_type_of_child (parent->value, parent->type,
951 index);
952}
953
954static char *
b09e2c59
SM
955ada_value_of_variable (const struct varobj *var,
956 enum varobj_display_formats format)
99ad9427
YQ
957{
958 struct value_print_options opts;
959
960 varobj_formatted_print_options (&opts, format);
961
962 return ada_varobj_get_value_of_variable (var->value, var->type, &opts);
963}
964
965/* Implement the "value_is_changeable_p" routine for Ada. */
966
967static int
b09e2c59 968ada_value_is_changeable_p (const struct varobj *var)
99ad9427
YQ
969{
970 struct type *type = var->value ? value_type (var->value) : var->type;
971
972 if (ada_is_array_descriptor_type (type)
973 && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
974 {
975 /* This is in reality a pointer to an unconstrained array.
976 its value is changeable. */
977 return 1;
978 }
979
980 if (ada_is_string_type (type))
981 {
982 /* We display the contents of the string in the array's
983 "value" field. The contents can change, so consider
984 that the array is changeable. */
985 return 1;
986 }
987
988 return varobj_default_value_is_changeable_p (var);
989}
990
991/* Implement the "value_has_mutated" routine for Ada. */
992
993static int
b09e2c59 994ada_value_has_mutated (const struct varobj *var, struct value *new_val,
99ad9427
YQ
995 struct type *new_type)
996{
997 int i;
998 int from = -1;
999 int to = -1;
1000
1001 /* If the number of fields have changed, then for sure the type
1002 has mutated. */
1003 if (ada_varobj_get_number_of_children (new_val, new_type)
1004 != var->num_children)
1005 return 1;
1006
1007 /* If the number of fields have remained the same, then we need
1008 to check the name of each field. If they remain the same,
1009 then chances are the type hasn't mutated. This is technically
1010 an incomplete test, as the child's type might have changed
1011 despite the fact that the name remains the same. But we'll
1012 handle this situation by saying that the child has mutated,
1013 not this value.
1014
1015 If only part (or none!) of the children have been fetched,
1016 then only check the ones we fetched. It does not matter
1017 to the frontend whether a child that it has not fetched yet
1018 has mutated or not. So just assume it hasn't. */
1019
1020 varobj_restrict_range (var->children, &from, &to);
1021 for (i = from; i < to; i++)
1022 if (strcmp (ada_varobj_get_name_of_child (new_val, new_type,
1023 var->name, i),
1024 VEC_index (varobj_p, var->children, i)->name) != 0)
1025 return 1;
1026
1027 return 0;
1028}
1029
1030/* varobj operations for ada. */
1031
1032const struct lang_varobj_ops ada_varobj_ops =
1033{
1034 ada_number_of_children,
1035 ada_name_of_variable,
1036 ada_name_of_child,
1037 ada_path_expr_of_child,
1038 ada_value_of_child,
1039 ada_type_of_child,
1040 ada_value_of_variable,
1041 ada_value_is_changeable_p,
9a9a7608
AB
1042 ada_value_has_mutated,
1043 varobj_default_is_path_expr_parent
99ad9427 1044};
This page took 0.303958 seconds and 4 git commands to generate.