* nto-tdep.h: Include osabi.h. Prototypes for generic Neutrino
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
1e698235 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
b6ba6518 3 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
615967cb 23#include "doublest.h"
c906108c 24#include "frame.h"
d2427a71
RH
25#include "frame-unwind.h"
26#include "frame-base.h"
baa490c4 27#include "dwarf2-frame.h"
c906108c
SS
28#include "inferior.h"
29#include "symtab.h"
30#include "value.h"
31#include "gdbcmd.h"
32#include "gdbcore.h"
33#include "dis-asm.h"
34#include "symfile.h"
35#include "objfiles.h"
36#include "gdb_string.h"
c5f0f3d0 37#include "linespec.h"
4e052eda 38#include "regcache.h"
615967cb 39#include "reggroups.h"
dc129d82 40#include "arch-utils.h"
4be87837 41#include "osabi.h"
fe898f56 42#include "block.h"
7d9b040b 43#include "infcall.h"
dc129d82
JT
44
45#include "elf-bfd.h"
46
47#include "alpha-tdep.h"
48
c906108c 49\f
515921d7
JB
50/* Return the name of the REGNO register.
51
52 An empty name corresponds to a register number that used to
53 be used for a virtual register. That virtual register has
54 been removed, but the index is still reserved to maintain
55 compatibility with existing remote alpha targets. */
56
fa88f677 57static const char *
636a6dfc
JT
58alpha_register_name (int regno)
59{
5ab84872 60 static const char * const register_names[] =
636a6dfc
JT
61 {
62 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
63 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
64 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
65 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
66 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
67 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
68 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
69 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 70 "pc", "", "unique"
636a6dfc
JT
71 };
72
73 if (regno < 0)
5ab84872 74 return NULL;
636a6dfc 75 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
5ab84872
RH
76 return NULL;
77 return register_names[regno];
636a6dfc 78}
d734c450 79
dc129d82 80static int
d734c450
JT
81alpha_cannot_fetch_register (int regno)
82{
515921d7
JB
83 return (regno == ALPHA_ZERO_REGNUM
84 || strlen (alpha_register_name (regno)) == 0);
d734c450
JT
85}
86
dc129d82 87static int
d734c450
JT
88alpha_cannot_store_register (int regno)
89{
515921d7
JB
90 return (regno == ALPHA_ZERO_REGNUM
91 || strlen (alpha_register_name (regno)) == 0);
d734c450
JT
92}
93
dc129d82 94static struct type *
c483c494 95alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 96{
72667056
RH
97 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
98 return builtin_type_void_data_ptr;
99 if (regno == ALPHA_PC_REGNUM)
100 return builtin_type_void_func_ptr;
101
102 /* Don't need to worry about little vs big endian until
103 some jerk tries to port to alpha-unicosmk. */
b38b6be2 104 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
72667056
RH
105 return builtin_type_ieee_double_little;
106
107 return builtin_type_int64;
0d056799 108}
f8453e34 109
615967cb
RH
110/* Is REGNUM a member of REGGROUP? */
111
112static int
113alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
114 struct reggroup *group)
115{
116 /* Filter out any registers eliminated, but whose regnum is
117 reserved for backward compatibility, e.g. the vfp. */
118 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
119 return 0;
120
df4a182b
RH
121 if (group == all_reggroup)
122 return 1;
123
124 /* Zero should not be saved or restored. Technically it is a general
125 register (just as $f31 would be a float if we represented it), but
126 there's no point displaying it during "info regs", so leave it out
127 of all groups except for "all". */
128 if (regnum == ALPHA_ZERO_REGNUM)
129 return 0;
130
131 /* All other registers are saved and restored. */
132 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
133 return 1;
134
135 /* All other groups are non-overlapping. */
136
137 /* Since this is really a PALcode memory slot... */
138 if (regnum == ALPHA_UNIQUE_REGNUM)
139 return group == system_reggroup;
140
141 /* Force the FPCR to be considered part of the floating point state. */
142 if (regnum == ALPHA_FPCR_REGNUM)
143 return group == float_reggroup;
144
145 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
146 return group == float_reggroup;
147 else
148 return group == general_reggroup;
149}
150
dc129d82 151static int
f8453e34
JT
152alpha_register_byte (int regno)
153{
154 return (regno * 8);
155}
156
c483c494
RH
157/* The following represents exactly the conversion performed by
158 the LDS instruction. This applies to both single-precision
159 floating point and 32-bit integers. */
160
161static void
162alpha_lds (void *out, const void *in)
163{
164 ULONGEST mem = extract_unsigned_integer (in, 4);
165 ULONGEST frac = (mem >> 0) & 0x7fffff;
166 ULONGEST sign = (mem >> 31) & 1;
167 ULONGEST exp_msb = (mem >> 30) & 1;
168 ULONGEST exp_low = (mem >> 23) & 0x7f;
169 ULONGEST exp, reg;
170
171 exp = (exp_msb << 10) | exp_low;
172 if (exp_msb)
173 {
174 if (exp_low == 0x7f)
175 exp = 0x7ff;
176 }
177 else
178 {
179 if (exp_low != 0x00)
180 exp |= 0x380;
181 }
182
183 reg = (sign << 63) | (exp << 52) | (frac << 29);
184 store_unsigned_integer (out, 8, reg);
185}
186
187/* Similarly, this represents exactly the conversion performed by
188 the STS instruction. */
189
39efb398 190static void
c483c494
RH
191alpha_sts (void *out, const void *in)
192{
193 ULONGEST reg, mem;
194
195 reg = extract_unsigned_integer (in, 8);
196 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
197 store_unsigned_integer (out, 4, mem);
198}
199
d2427a71
RH
200/* The alpha needs a conversion between register and memory format if the
201 register is a floating point register and memory format is float, as the
202 register format must be double or memory format is an integer with 4
203 bytes or less, as the representation of integers in floating point
204 registers is different. */
205
c483c494 206static int
ff2e87ac 207alpha_convert_register_p (int regno, struct type *type)
14696584 208{
c483c494 209 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31);
14696584
RH
210}
211
d2427a71 212static void
ff2e87ac
AC
213alpha_register_to_value (struct frame_info *frame, int regnum,
214 struct type *valtype, void *out)
5868c862 215{
ff2e87ac
AC
216 char in[MAX_REGISTER_SIZE];
217 frame_register_read (frame, regnum, in);
c483c494 218 switch (TYPE_LENGTH (valtype))
d2427a71 219 {
c483c494
RH
220 case 4:
221 alpha_sts (out, in);
222 break;
223 case 8:
224 memcpy (out, in, 8);
225 break;
226 default:
227 error ("Cannot retrieve value from floating point register");
d2427a71 228 }
d2427a71 229}
5868c862 230
d2427a71 231static void
ff2e87ac
AC
232alpha_value_to_register (struct frame_info *frame, int regnum,
233 struct type *valtype, const void *in)
d2427a71 234{
ff2e87ac 235 char out[MAX_REGISTER_SIZE];
c483c494 236 switch (TYPE_LENGTH (valtype))
d2427a71 237 {
c483c494
RH
238 case 4:
239 alpha_lds (out, in);
240 break;
241 case 8:
242 memcpy (out, in, 8);
243 break;
244 default:
245 error ("Cannot store value in floating point register");
d2427a71 246 }
ff2e87ac 247 put_frame_register (frame, regnum, out);
5868c862
JT
248}
249
d2427a71
RH
250\f
251/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
252 the stack. The register arguments are stored in ARG_REG_BUFFER, and
253 then moved into the register file; this simplifies the passing of a
254 large struct which extends from the registers to the stack, plus avoids
255 three ptrace invocations per word.
256
257 We don't bother tracking which register values should go in integer
258 regs or fp regs; we load the same values into both.
259
d2427a71
RH
260 If the called function is returning a structure, the address of the
261 structure to be returned is passed as a hidden first argument. */
c906108c 262
d2427a71 263static CORE_ADDR
7d9b040b 264alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
265 struct regcache *regcache, CORE_ADDR bp_addr,
266 int nargs, struct value **args, CORE_ADDR sp,
267 int struct_return, CORE_ADDR struct_addr)
c906108c 268{
d2427a71
RH
269 int i;
270 int accumulate_size = struct_return ? 8 : 0;
d2427a71 271 struct alpha_arg
c906108c 272 {
d2427a71
RH
273 char *contents;
274 int len;
275 int offset;
276 };
c88e30c0
RH
277 struct alpha_arg *alpha_args
278 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
52f0bd74 279 struct alpha_arg *m_arg;
c88e30c0 280 char arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 281 int required_arg_regs;
7d9b040b 282 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 283
c88e30c0
RH
284 /* The ABI places the address of the called function in T12. */
285 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
286
287 /* Set the return address register to point to the entry point
288 of the program, where a breakpoint lies in wait. */
289 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
290
291 /* Lay out the arguments in memory. */
d2427a71
RH
292 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
293 {
294 struct value *arg = args[i];
4991999e 295 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 296
d2427a71
RH
297 /* Cast argument to long if necessary as the compiler does it too. */
298 switch (TYPE_CODE (arg_type))
c906108c 299 {
d2427a71
RH
300 case TYPE_CODE_INT:
301 case TYPE_CODE_BOOL:
302 case TYPE_CODE_CHAR:
303 case TYPE_CODE_RANGE:
304 case TYPE_CODE_ENUM:
0ede8eca 305 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 306 {
0ede8eca
RH
307 /* 32-bit values must be sign-extended to 64 bits
308 even if the base data type is unsigned. */
309 arg_type = builtin_type_int32;
310 arg = value_cast (arg_type, arg);
311 }
312 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
313 {
314 arg_type = builtin_type_int64;
d2427a71
RH
315 arg = value_cast (arg_type, arg);
316 }
317 break;
7b5e1cb3 318
c88e30c0
RH
319 case TYPE_CODE_FLT:
320 /* "float" arguments loaded in registers must be passed in
321 register format, aka "double". */
322 if (accumulate_size < sizeof (arg_reg_buffer)
323 && TYPE_LENGTH (arg_type) == 4)
324 {
eb4edb88 325 arg_type = builtin_type_ieee_double_little;
c88e30c0
RH
326 arg = value_cast (arg_type, arg);
327 }
328 /* Tru64 5.1 has a 128-bit long double, and passes this by
329 invisible reference. No one else uses this data type. */
330 else if (TYPE_LENGTH (arg_type) == 16)
331 {
332 /* Allocate aligned storage. */
333 sp = (sp & -16) - 16;
334
335 /* Write the real data into the stack. */
336 write_memory (sp, VALUE_CONTENTS (arg), 16);
337
338 /* Construct the indirection. */
339 arg_type = lookup_pointer_type (arg_type);
340 arg = value_from_pointer (arg_type, sp);
341 }
342 break;
7b5e1cb3
RH
343
344 case TYPE_CODE_COMPLEX:
345 /* ??? The ABI says that complex values are passed as two
346 separate scalar values. This distinction only matters
347 for complex float. However, GCC does not implement this. */
348
349 /* Tru64 5.1 has a 128-bit long double, and passes this by
350 invisible reference. */
351 if (TYPE_LENGTH (arg_type) == 32)
352 {
353 /* Allocate aligned storage. */
354 sp = (sp & -16) - 16;
355
356 /* Write the real data into the stack. */
357 write_memory (sp, VALUE_CONTENTS (arg), 32);
358
359 /* Construct the indirection. */
360 arg_type = lookup_pointer_type (arg_type);
361 arg = value_from_pointer (arg_type, sp);
362 }
363 break;
364
d2427a71
RH
365 default:
366 break;
c906108c 367 }
d2427a71
RH
368 m_arg->len = TYPE_LENGTH (arg_type);
369 m_arg->offset = accumulate_size;
370 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
371 m_arg->contents = VALUE_CONTENTS (arg);
c906108c
SS
372 }
373
d2427a71
RH
374 /* Determine required argument register loads, loading an argument register
375 is expensive as it uses three ptrace calls. */
376 required_arg_regs = accumulate_size / 8;
377 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
378 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 379
d2427a71 380 /* Make room for the arguments on the stack. */
c88e30c0
RH
381 if (accumulate_size < sizeof(arg_reg_buffer))
382 accumulate_size = 0;
383 else
384 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 385 sp -= accumulate_size;
c906108c 386
c88e30c0 387 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 388 sp &= ~15;
c906108c 389
d2427a71
RH
390 /* `Push' arguments on the stack. */
391 for (i = nargs; m_arg--, --i >= 0;)
c906108c 392 {
c88e30c0
RH
393 char *contents = m_arg->contents;
394 int offset = m_arg->offset;
395 int len = m_arg->len;
396
397 /* Copy the bytes destined for registers into arg_reg_buffer. */
398 if (offset < sizeof(arg_reg_buffer))
399 {
400 if (offset + len <= sizeof(arg_reg_buffer))
401 {
402 memcpy (arg_reg_buffer + offset, contents, len);
403 continue;
404 }
405 else
406 {
407 int tlen = sizeof(arg_reg_buffer) - offset;
408 memcpy (arg_reg_buffer + offset, contents, tlen);
409 offset += tlen;
410 contents += tlen;
411 len -= tlen;
412 }
413 }
414
415 /* Everything else goes to the stack. */
416 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 417 }
c88e30c0
RH
418 if (struct_return)
419 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
c906108c 420
d2427a71
RH
421 /* Load the argument registers. */
422 for (i = 0; i < required_arg_regs; i++)
423 {
09cc52fd
RH
424 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
425 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
426 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
427 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
d2427a71 428 }
c906108c 429
09cc52fd
RH
430 /* Finally, update the stack pointer. */
431 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
432
c88e30c0 433 return sp;
c906108c
SS
434}
435
5ec2bb99
RH
436/* Extract from REGCACHE the value about to be returned from a function
437 and copy it into VALBUF. */
d2427a71 438
dc129d82 439static void
5ec2bb99
RH
440alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
441 void *valbuf)
140f9984 442{
7b5e1cb3 443 int length = TYPE_LENGTH (valtype);
5ec2bb99
RH
444 char raw_buffer[ALPHA_REGISTER_SIZE];
445 ULONGEST l;
446
447 switch (TYPE_CODE (valtype))
448 {
449 case TYPE_CODE_FLT:
7b5e1cb3 450 switch (length)
5ec2bb99
RH
451 {
452 case 4:
453 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
c483c494 454 alpha_sts (valbuf, raw_buffer);
5ec2bb99
RH
455 break;
456
457 case 8:
458 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
459 break;
460
24064b5c
RH
461 case 16:
462 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
463 read_memory (l, valbuf, 16);
464 break;
465
5ec2bb99 466 default:
67dfac52 467 internal_error (__FILE__, __LINE__, "unknown floating point width");
5ec2bb99
RH
468 }
469 break;
470
7b5e1cb3
RH
471 case TYPE_CODE_COMPLEX:
472 switch (length)
473 {
474 case 8:
475 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
476 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
477 break;
478
479 case 16:
480 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
481 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM+1,
482 (char *)valbuf + 8);
483 break;
484
485 case 32:
486 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
487 read_memory (l, valbuf, 32);
488 break;
489
490 default:
67dfac52 491 internal_error (__FILE__, __LINE__, "unknown floating point width");
7b5e1cb3
RH
492 }
493 break;
494
5ec2bb99
RH
495 default:
496 /* Assume everything else degenerates to an integer. */
497 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
7b5e1cb3 498 store_unsigned_integer (valbuf, length, l);
5ec2bb99
RH
499 break;
500 }
140f9984
JT
501}
502
5ec2bb99
RH
503/* Extract from REGCACHE the address of a structure about to be returned
504 from a function. */
505
506static CORE_ADDR
507alpha_extract_struct_value_address (struct regcache *regcache)
508{
509 ULONGEST addr;
510 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
511 return addr;
512}
513
514/* Insert the given value into REGCACHE as if it was being
515 returned by a function. */
0d056799 516
d2427a71 517static void
5ec2bb99
RH
518alpha_store_return_value (struct type *valtype, struct regcache *regcache,
519 const void *valbuf)
c906108c 520{
d2427a71 521 int length = TYPE_LENGTH (valtype);
5ec2bb99
RH
522 char raw_buffer[ALPHA_REGISTER_SIZE];
523 ULONGEST l;
d2427a71 524
5ec2bb99 525 switch (TYPE_CODE (valtype))
c906108c 526 {
5ec2bb99
RH
527 case TYPE_CODE_FLT:
528 switch (length)
529 {
530 case 4:
c483c494 531 alpha_lds (raw_buffer, valbuf);
f75d70cc
RH
532 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
533 break;
5ec2bb99
RH
534
535 case 8:
536 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
537 break;
538
24064b5c
RH
539 case 16:
540 /* FIXME: 128-bit long doubles are returned like structures:
541 by writing into indirect storage provided by the caller
542 as the first argument. */
543 error ("Cannot set a 128-bit long double return value.");
544
5ec2bb99 545 default:
67dfac52 546 internal_error (__FILE__, __LINE__, "unknown floating point width");
5ec2bb99
RH
547 }
548 break;
d2427a71 549
7b5e1cb3
RH
550 case TYPE_CODE_COMPLEX:
551 switch (length)
552 {
553 case 8:
554 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
555 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
556 break;
557
558 case 16:
559 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
560 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM+1,
561 (const char *)valbuf + 8);
562 break;
563
564 case 32:
565 /* FIXME: 128-bit long doubles are returned like structures:
566 by writing into indirect storage provided by the caller
567 as the first argument. */
568 error ("Cannot set a 128-bit long double return value.");
569
570 default:
67dfac52 571 internal_error (__FILE__, __LINE__, "unknown floating point width");
7b5e1cb3
RH
572 }
573 break;
574
5ec2bb99
RH
575 default:
576 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
577 /* 32-bit values must be sign-extended to 64 bits
578 even if the base data type is unsigned. */
579 if (length == 4)
580 valtype = builtin_type_int32;
5ec2bb99
RH
581 l = unpack_long (valtype, valbuf);
582 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
583 break;
584 }
c906108c
SS
585}
586
d2427a71
RH
587\f
588static const unsigned char *
589alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 590{
d2427a71
RH
591 static const unsigned char alpha_breakpoint[] =
592 { 0x80, 0, 0, 0 }; /* call_pal bpt */
c906108c 593
d2427a71
RH
594 *lenptr = sizeof(alpha_breakpoint);
595 return (alpha_breakpoint);
596}
c906108c 597
d2427a71
RH
598\f
599/* This returns the PC of the first insn after the prologue.
600 If we can't find the prologue, then return 0. */
c906108c 601
d2427a71
RH
602CORE_ADDR
603alpha_after_prologue (CORE_ADDR pc)
c906108c 604{
d2427a71
RH
605 struct symtab_and_line sal;
606 CORE_ADDR func_addr, func_end;
c906108c 607
d2427a71 608 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 609 return 0;
c906108c 610
d2427a71
RH
611 sal = find_pc_line (func_addr, 0);
612 if (sal.end < func_end)
613 return sal.end;
c5aa993b 614
d2427a71
RH
615 /* The line after the prologue is after the end of the function. In this
616 case, tell the caller to find the prologue the hard way. */
617 return 0;
c906108c
SS
618}
619
d2427a71
RH
620/* Read an instruction from memory at PC, looking through breakpoints. */
621
622unsigned int
623alpha_read_insn (CORE_ADDR pc)
c906108c 624{
d2427a71
RH
625 char buf[4];
626 int status;
c5aa993b 627
1f602b35 628 status = deprecated_read_memory_nobpt (pc, buf, 4);
d2427a71
RH
629 if (status)
630 memory_error (status, pc);
631 return extract_unsigned_integer (buf, 4);
632}
c5aa993b 633
d2427a71
RH
634/* To skip prologues, I use this predicate. Returns either PC itself
635 if the code at PC does not look like a function prologue; otherwise
636 returns an address that (if we're lucky) follows the prologue. If
637 LENIENT, then we must skip everything which is involved in setting
638 up the frame (it's OK to skip more, just so long as we don't skip
639 anything which might clobber the registers which are being saved. */
c906108c 640
d2427a71
RH
641static CORE_ADDR
642alpha_skip_prologue (CORE_ADDR pc)
643{
644 unsigned long inst;
645 int offset;
646 CORE_ADDR post_prologue_pc;
647 char buf[4];
c906108c 648
d2427a71
RH
649 /* Silently return the unaltered pc upon memory errors.
650 This could happen on OSF/1 if decode_line_1 tries to skip the
651 prologue for quickstarted shared library functions when the
652 shared library is not yet mapped in.
653 Reading target memory is slow over serial lines, so we perform
654 this check only if the target has shared libraries (which all
655 Alpha targets do). */
656 if (target_read_memory (pc, buf, 4))
657 return pc;
c906108c 658
d2427a71
RH
659 /* See if we can determine the end of the prologue via the symbol table.
660 If so, then return either PC, or the PC after the prologue, whichever
661 is greater. */
c906108c 662
d2427a71
RH
663 post_prologue_pc = alpha_after_prologue (pc);
664 if (post_prologue_pc != 0)
665 return max (pc, post_prologue_pc);
c906108c 666
d2427a71
RH
667 /* Can't determine prologue from the symbol table, need to examine
668 instructions. */
dc1b0db2 669
d2427a71
RH
670 /* Skip the typical prologue instructions. These are the stack adjustment
671 instruction and the instructions that save registers on the stack
672 or in the gcc frame. */
673 for (offset = 0; offset < 100; offset += 4)
674 {
675 inst = alpha_read_insn (pc + offset);
c906108c 676
d2427a71
RH
677 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
678 continue;
679 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
680 continue;
681 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
682 continue;
683 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
684 continue;
c906108c 685
d2427a71
RH
686 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
687 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
688 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
689 continue;
c906108c 690
d2427a71
RH
691 if (inst == 0x47de040f) /* bis sp,sp,fp */
692 continue;
693 if (inst == 0x47fe040f) /* bis zero,sp,fp */
694 continue;
c906108c 695
d2427a71 696 break;
c906108c 697 }
d2427a71
RH
698 return pc + offset;
699}
c906108c 700
d2427a71
RH
701\f
702/* Figure out where the longjmp will land.
703 We expect the first arg to be a pointer to the jmp_buf structure from
704 which we extract the PC (JB_PC) that we will land at. The PC is copied
705 into the "pc". This routine returns true on success. */
c906108c
SS
706
707static int
d2427a71 708alpha_get_longjmp_target (CORE_ADDR *pc)
c906108c 709{
d2427a71
RH
710 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
711 CORE_ADDR jb_addr;
5ab84872 712 char raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 713
d2427a71 714 jb_addr = read_register (ALPHA_A0_REGNUM);
c906108c 715
d2427a71
RH
716 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
717 raw_buffer, tdep->jb_elt_size))
c906108c 718 return 0;
d2427a71 719
7c0b4a20 720 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
d2427a71 721 return 1;
c906108c
SS
722}
723
d2427a71
RH
724\f
725/* Frame unwinder for signal trampolines. We use alpha tdep bits that
726 describe the location and shape of the sigcontext structure. After
727 that, all registers are in memory, so it's easy. */
728/* ??? Shouldn't we be able to do this generically, rather than with
729 OSABI data specific to Alpha? */
730
731struct alpha_sigtramp_unwind_cache
c906108c 732{
d2427a71
RH
733 CORE_ADDR sigcontext_addr;
734};
c906108c 735
d2427a71
RH
736static struct alpha_sigtramp_unwind_cache *
737alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
738 void **this_prologue_cache)
739{
740 struct alpha_sigtramp_unwind_cache *info;
741 struct gdbarch_tdep *tdep;
c906108c 742
d2427a71
RH
743 if (*this_prologue_cache)
744 return *this_prologue_cache;
c906108c 745
d2427a71
RH
746 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
747 *this_prologue_cache = info;
c906108c 748
d2427a71
RH
749 tdep = gdbarch_tdep (current_gdbarch);
750 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
c906108c 751
d2427a71 752 return info;
c906108c
SS
753}
754
138e7be5
MK
755/* Return the address of REGNUM in a sigtramp frame. Since this is
756 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 757
d2427a71 758static CORE_ADDR
138e7be5 759alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, int regnum)
d2427a71 760{
138e7be5
MK
761 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
762
763 if (regnum >= 0 && regnum < 32)
764 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
765 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
766 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
767 else if (regnum == ALPHA_PC_REGNUM)
768 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 769
d2427a71 770 return 0;
c906108c
SS
771}
772
d2427a71
RH
773/* Given a GDB frame, determine the address of the calling function's
774 frame. This will be used to create a new GDB frame struct. */
140f9984 775
dc129d82 776static void
d2427a71
RH
777alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
778 void **this_prologue_cache,
779 struct frame_id *this_id)
c906108c 780{
d2427a71
RH
781 struct alpha_sigtramp_unwind_cache *info
782 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
783 struct gdbarch_tdep *tdep;
784 CORE_ADDR stack_addr, code_addr;
785
786 /* If the OSABI couldn't locate the sigcontext, give up. */
787 if (info->sigcontext_addr == 0)
788 return;
789
790 /* If we have dynamic signal trampolines, find their start.
791 If we do not, then we must assume there is a symbol record
792 that can provide the start address. */
793 tdep = gdbarch_tdep (current_gdbarch);
794 if (tdep->dynamic_sigtramp_offset)
c906108c 795 {
d2427a71
RH
796 int offset;
797 code_addr = frame_pc_unwind (next_frame);
798 offset = tdep->dynamic_sigtramp_offset (code_addr);
799 if (offset >= 0)
800 code_addr -= offset;
c906108c 801 else
d2427a71 802 code_addr = 0;
c906108c 803 }
d2427a71
RH
804 else
805 code_addr = frame_func_unwind (next_frame);
c906108c 806
d2427a71
RH
807 /* The stack address is trivially read from the sigcontext. */
808 stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr,
809 ALPHA_SP_REGNUM);
b21fd293
RH
810 stack_addr = get_frame_memory_unsigned (next_frame, stack_addr,
811 ALPHA_REGISTER_SIZE);
c906108c 812
d2427a71 813 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
814}
815
d2427a71 816/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 817
d2427a71
RH
818static void
819alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
820 void **this_prologue_cache,
821 int regnum, int *optimizedp,
822 enum lval_type *lvalp, CORE_ADDR *addrp,
823 int *realnump, void *bufferp)
c906108c 824{
d2427a71
RH
825 struct alpha_sigtramp_unwind_cache *info
826 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
827 CORE_ADDR addr;
c906108c 828
d2427a71 829 if (info->sigcontext_addr != 0)
c906108c 830 {
d2427a71
RH
831 /* All integer and fp registers are stored in memory. */
832 addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum);
833 if (addr != 0)
c906108c 834 {
d2427a71
RH
835 *optimizedp = 0;
836 *lvalp = lval_memory;
837 *addrp = addr;
838 *realnump = -1;
839 if (bufferp != NULL)
b21fd293 840 get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE);
d2427a71 841 return;
c906108c 842 }
c906108c
SS
843 }
844
d2427a71
RH
845 /* This extra register may actually be in the sigcontext, but our
846 current description of it in alpha_sigtramp_frame_unwind_cache
847 doesn't include it. Too bad. Fall back on whatever's in the
848 outer frame. */
849 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
850 realnump, bufferp);
851}
c906108c 852
d2427a71
RH
853static const struct frame_unwind alpha_sigtramp_frame_unwind = {
854 SIGTRAMP_FRAME,
855 alpha_sigtramp_frame_this_id,
856 alpha_sigtramp_frame_prev_register
857};
c906108c 858
d2427a71 859static const struct frame_unwind *
336d1bba 860alpha_sigtramp_frame_sniffer (struct frame_info *next_frame)
d2427a71 861{
336d1bba 862 CORE_ADDR pc = frame_pc_unwind (next_frame);
d2427a71 863 char *name;
c906108c 864
f2524b93
AC
865 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
866 look at tramp-frame.h and other simplier per-architecture
867 sigtramp unwinders. */
868
869 /* We shouldn't even bother to try if the OSABI didn't register a
870 sigcontext_addr handler or pc_in_sigtramp hander. */
871 if (gdbarch_tdep (current_gdbarch)->sigcontext_addr == NULL)
872 return NULL;
873 if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp == NULL)
d2427a71 874 return NULL;
c906108c 875
d2427a71
RH
876 /* Otherwise we should be in a signal frame. */
877 find_pc_partial_function (pc, &name, NULL, NULL);
f2524b93 878 if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp (pc, name))
d2427a71 879 return &alpha_sigtramp_frame_unwind;
c906108c 880
d2427a71 881 return NULL;
c906108c 882}
d2427a71
RH
883\f
884/* Fallback alpha frame unwinder. Uses instruction scanning and knows
885 something about the traditional layout of alpha stack frames. */
c906108c 886
d2427a71 887struct alpha_heuristic_unwind_cache
c906108c 888{
d2427a71
RH
889 CORE_ADDR *saved_regs;
890 CORE_ADDR vfp;
891 CORE_ADDR start_pc;
892 int return_reg;
893};
c906108c 894
d2427a71
RH
895/* Heuristic_proc_start may hunt through the text section for a long
896 time across a 2400 baud serial line. Allows the user to limit this
897 search. */
898static unsigned int heuristic_fence_post = 0;
c906108c 899
d2427a71
RH
900/* Attempt to locate the start of the function containing PC. We assume that
901 the previous function ends with an about_to_return insn. Not foolproof by
902 any means, since gcc is happy to put the epilogue in the middle of a
903 function. But we're guessing anyway... */
c906108c 904
d2427a71
RH
905static CORE_ADDR
906alpha_heuristic_proc_start (CORE_ADDR pc)
907{
908 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
909 CORE_ADDR last_non_nop = pc;
910 CORE_ADDR fence = pc - heuristic_fence_post;
911 CORE_ADDR orig_pc = pc;
fbe586ae 912 CORE_ADDR func;
9e0b60a8 913
d2427a71
RH
914 if (pc == 0)
915 return 0;
9e0b60a8 916
fbe586ae
RH
917 /* First see if we can find the start of the function from minimal
918 symbol information. This can succeed with a binary that doesn't
919 have debug info, but hasn't been stripped. */
920 func = get_pc_function_start (pc);
921 if (func)
922 return func;
923
d2427a71
RH
924 if (heuristic_fence_post == UINT_MAX
925 || fence < tdep->vm_min_address)
926 fence = tdep->vm_min_address;
c906108c 927
d2427a71
RH
928 /* Search back for previous return; also stop at a 0, which might be
929 seen for instance before the start of a code section. Don't include
930 nops, since this usually indicates padding between functions. */
931 for (pc -= 4; pc >= fence; pc -= 4)
c906108c 932 {
d2427a71
RH
933 unsigned int insn = alpha_read_insn (pc);
934 switch (insn)
c906108c 935 {
d2427a71
RH
936 case 0: /* invalid insn */
937 case 0x6bfa8001: /* ret $31,($26),1 */
938 return last_non_nop;
939
940 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
941 case 0x47ff041f: /* nop: bis $31,$31,$31 */
942 break;
943
944 default:
945 last_non_nop = pc;
946 break;
c906108c 947 }
d2427a71 948 }
c906108c 949
d2427a71
RH
950 /* It's not clear to me why we reach this point when stopping quietly,
951 but with this test, at least we don't print out warnings for every
952 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
953 if (stop_soon == NO_STOP_QUIETLY)
954 {
955 static int blurb_printed = 0;
c906108c 956
d2427a71
RH
957 if (fence == tdep->vm_min_address)
958 warning ("Hit beginning of text section without finding");
c906108c 959 else
d2427a71
RH
960 warning ("Hit heuristic-fence-post without finding");
961 warning ("enclosing function for address 0x%s", paddr_nz (orig_pc));
c906108c 962
d2427a71
RH
963 if (!blurb_printed)
964 {
965 printf_filtered ("\
966This warning occurs if you are debugging a function without any symbols\n\
967(for example, in a stripped executable). In that case, you may wish to\n\
968increase the size of the search with the `set heuristic-fence-post' command.\n\
969\n\
970Otherwise, you told GDB there was a function where there isn't one, or\n\
971(more likely) you have encountered a bug in GDB.\n");
972 blurb_printed = 1;
973 }
974 }
c906108c 975
d2427a71
RH
976 return 0;
977}
c906108c 978
fbe586ae 979static struct alpha_heuristic_unwind_cache *
d2427a71
RH
980alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
981 void **this_prologue_cache,
982 CORE_ADDR start_pc)
983{
984 struct alpha_heuristic_unwind_cache *info;
985 ULONGEST val;
986 CORE_ADDR limit_pc, cur_pc;
987 int frame_reg, frame_size, return_reg, reg;
c906108c 988
d2427a71
RH
989 if (*this_prologue_cache)
990 return *this_prologue_cache;
c906108c 991
d2427a71
RH
992 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
993 *this_prologue_cache = info;
994 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
c906108c 995
d2427a71
RH
996 limit_pc = frame_pc_unwind (next_frame);
997 if (start_pc == 0)
998 start_pc = alpha_heuristic_proc_start (limit_pc);
999 info->start_pc = start_pc;
c906108c 1000
d2427a71
RH
1001 frame_reg = ALPHA_SP_REGNUM;
1002 frame_size = 0;
1003 return_reg = -1;
c906108c 1004
d2427a71
RH
1005 /* If we've identified a likely place to start, do code scanning. */
1006 if (start_pc != 0)
c5aa993b 1007 {
d2427a71
RH
1008 /* Limit the forward search to 50 instructions. */
1009 if (start_pc + 200 < limit_pc)
1010 limit_pc = start_pc + 200;
c5aa993b 1011
d2427a71
RH
1012 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
1013 {
1014 unsigned int word = alpha_read_insn (cur_pc);
c5aa993b 1015
d2427a71
RH
1016 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1017 {
1018 if (word & 0x8000)
1019 {
1020 /* Consider only the first stack allocation instruction
1021 to contain the static size of the frame. */
1022 if (frame_size == 0)
1023 frame_size = (-word) & 0xffff;
1024 }
1025 else
1026 {
1027 /* Exit loop if a positive stack adjustment is found, which
1028 usually means that the stack cleanup code in the function
1029 epilogue is reached. */
1030 break;
1031 }
1032 }
1033 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1034 {
1035 reg = (word & 0x03e00000) >> 21;
1036
d15bfd3a
AC
1037 /* Ignore this instruction if we have already encountered
1038 an instruction saving the same register earlier in the
1039 function code. The current instruction does not tell
1040 us where the original value upon function entry is saved.
1041 All it says is that the function we are scanning reused
1042 that register for some computation of its own, and is now
1043 saving its result. */
1044 if (info->saved_regs[reg])
1045 continue;
1046
d2427a71
RH
1047 if (reg == 31)
1048 continue;
1049
1050 /* Do not compute the address where the register was saved yet,
1051 because we don't know yet if the offset will need to be
1052 relative to $sp or $fp (we can not compute the address
1053 relative to $sp if $sp is updated during the execution of
1054 the current subroutine, for instance when doing some alloca).
1055 So just store the offset for the moment, and compute the
1056 address later when we know whether this frame has a frame
1057 pointer or not. */
1058 /* Hack: temporarily add one, so that the offset is non-zero
1059 and we can tell which registers have save offsets below. */
1060 info->saved_regs[reg] = (word & 0xffff) + 1;
1061
1062 /* Starting with OSF/1-3.2C, the system libraries are shipped
1063 without local symbols, but they still contain procedure
1064 descriptors without a symbol reference. GDB is currently
1065 unable to find these procedure descriptors and uses
1066 heuristic_proc_desc instead.
1067 As some low level compiler support routines (__div*, __add*)
1068 use a non-standard return address register, we have to
1069 add some heuristics to determine the return address register,
1070 or stepping over these routines will fail.
1071 Usually the return address register is the first register
1072 saved on the stack, but assembler optimization might
1073 rearrange the register saves.
1074 So we recognize only a few registers (t7, t9, ra) within
1075 the procedure prologue as valid return address registers.
1076 If we encounter a return instruction, we extract the
1077 the return address register from it.
1078
1079 FIXME: Rewriting GDB to access the procedure descriptors,
1080 e.g. via the minimal symbol table, might obviate this hack. */
1081 if (return_reg == -1
1082 && cur_pc < (start_pc + 80)
1083 && (reg == ALPHA_T7_REGNUM
1084 || reg == ALPHA_T9_REGNUM
1085 || reg == ALPHA_RA_REGNUM))
1086 return_reg = reg;
1087 }
1088 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1089 return_reg = (word >> 16) & 0x1f;
1090 else if (word == 0x47de040f) /* bis sp,sp,fp */
1091 frame_reg = ALPHA_GCC_FP_REGNUM;
1092 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1093 frame_reg = ALPHA_GCC_FP_REGNUM;
1094 }
c5aa993b 1095
d2427a71
RH
1096 /* If we haven't found a valid return address register yet, keep
1097 searching in the procedure prologue. */
1098 if (return_reg == -1)
1099 {
1100 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1101 {
1102 unsigned int word = alpha_read_insn (cur_pc);
c5aa993b 1103
d2427a71
RH
1104 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1105 {
1106 reg = (word & 0x03e00000) >> 21;
1107 if (reg == ALPHA_T7_REGNUM
1108 || reg == ALPHA_T9_REGNUM
1109 || reg == ALPHA_RA_REGNUM)
1110 {
1111 return_reg = reg;
1112 break;
1113 }
1114 }
1115 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1116 {
1117 return_reg = (word >> 16) & 0x1f;
1118 break;
1119 }
85b32d22
RH
1120
1121 cur_pc += 4;
d2427a71
RH
1122 }
1123 }
c906108c 1124 }
c906108c 1125
d2427a71
RH
1126 /* Failing that, do default to the customary RA. */
1127 if (return_reg == -1)
1128 return_reg = ALPHA_RA_REGNUM;
1129 info->return_reg = return_reg;
f8453e34 1130
d2427a71
RH
1131 frame_unwind_unsigned_register (next_frame, frame_reg, &val);
1132 info->vfp = val + frame_size;
c906108c 1133
d2427a71
RH
1134 /* Convert offsets to absolute addresses. See above about adding
1135 one to the offsets to make all detected offsets non-zero. */
1136 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1137 if (info->saved_regs[reg])
1138 info->saved_regs[reg] += val - 1;
1139
1140 return info;
c906108c 1141}
c906108c 1142
d2427a71
RH
1143/* Given a GDB frame, determine the address of the calling function's
1144 frame. This will be used to create a new GDB frame struct. */
1145
fbe586ae 1146static void
d2427a71
RH
1147alpha_heuristic_frame_this_id (struct frame_info *next_frame,
1148 void **this_prologue_cache,
1149 struct frame_id *this_id)
c906108c 1150{
d2427a71
RH
1151 struct alpha_heuristic_unwind_cache *info
1152 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
c906108c 1153
d2427a71 1154 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1155}
1156
d2427a71
RH
1157/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1158
fbe586ae 1159static void
d2427a71
RH
1160alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1161 void **this_prologue_cache,
1162 int regnum, int *optimizedp,
1163 enum lval_type *lvalp, CORE_ADDR *addrp,
1164 int *realnump, void *bufferp)
c906108c 1165{
d2427a71
RH
1166 struct alpha_heuristic_unwind_cache *info
1167 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1168
1169 /* The PC of the previous frame is stored in the link register of
1170 the current frame. Frob regnum so that we pull the value from
1171 the correct place. */
1172 if (regnum == ALPHA_PC_REGNUM)
1173 regnum = info->return_reg;
1174
1175 /* For all registers known to be saved in the current frame,
1176 do the obvious and pull the value out. */
1177 if (info->saved_regs[regnum])
c906108c 1178 {
d2427a71
RH
1179 *optimizedp = 0;
1180 *lvalp = lval_memory;
1181 *addrp = info->saved_regs[regnum];
1182 *realnump = -1;
1183 if (bufferp != NULL)
b21fd293 1184 get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE);
c906108c
SS
1185 return;
1186 }
1187
d2427a71
RH
1188 /* The stack pointer of the previous frame is computed by popping
1189 the current stack frame. */
1190 if (regnum == ALPHA_SP_REGNUM)
c906108c 1191 {
d2427a71
RH
1192 *optimizedp = 0;
1193 *lvalp = not_lval;
1194 *addrp = 0;
1195 *realnump = -1;
1196 if (bufferp != NULL)
1197 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1198 return;
c906108c 1199 }
95b80706 1200
d2427a71 1201 /* Otherwise assume the next frame has the same register value. */
1cc759c3
JB
1202 frame_register_unwind (next_frame, regnum, optimizedp, lvalp, addrp,
1203 realnump, bufferp);
95b80706
JT
1204}
1205
d2427a71
RH
1206static const struct frame_unwind alpha_heuristic_frame_unwind = {
1207 NORMAL_FRAME,
1208 alpha_heuristic_frame_this_id,
1209 alpha_heuristic_frame_prev_register
1210};
c906108c 1211
d2427a71 1212static const struct frame_unwind *
336d1bba 1213alpha_heuristic_frame_sniffer (struct frame_info *next_frame)
c906108c 1214{
d2427a71 1215 return &alpha_heuristic_frame_unwind;
c906108c
SS
1216}
1217
fbe586ae 1218static CORE_ADDR
d2427a71
RH
1219alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1220 void **this_prologue_cache)
c906108c 1221{
d2427a71
RH
1222 struct alpha_heuristic_unwind_cache *info
1223 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
c906108c 1224
d2427a71 1225 return info->vfp;
c906108c
SS
1226}
1227
d2427a71
RH
1228static const struct frame_base alpha_heuristic_frame_base = {
1229 &alpha_heuristic_frame_unwind,
1230 alpha_heuristic_frame_base_address,
1231 alpha_heuristic_frame_base_address,
1232 alpha_heuristic_frame_base_address
1233};
1234
c906108c 1235/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1236 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1237
1238static void
fba45db2 1239reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1240{
1241 reinit_frame_cache ();
1242}
1243
d2427a71 1244\f
d2427a71
RH
1245/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1246 dummy frame. The frame ID's base needs to match the TOS value
1247 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1248 breakpoint. */
d734c450 1249
d2427a71
RH
1250static struct frame_id
1251alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
0d056799 1252{
d2427a71
RH
1253 ULONGEST base;
1254 frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base);
1255 return frame_id_build (base, frame_pc_unwind (next_frame));
0d056799
JT
1256}
1257
dc129d82 1258static CORE_ADDR
d2427a71 1259alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
accc6d1f 1260{
d2427a71
RH
1261 ULONGEST pc;
1262 frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc);
1263 return pc;
accc6d1f
JT
1264}
1265
98a8e1e5
RH
1266\f
1267/* Helper routines for alpha*-nat.c files to move register sets to and
1268 from core files. The UNIQUE pointer is allowed to be NULL, as most
1269 targets don't supply this value in their core files. */
1270
1271void
1272alpha_supply_int_regs (int regno, const void *r0_r30,
1273 const void *pc, const void *unique)
1274{
1275 int i;
1276
1277 for (i = 0; i < 31; ++i)
1278 if (regno == i || regno == -1)
23a6d369 1279 regcache_raw_supply (current_regcache, i, (const char *)r0_r30 + i*8);
98a8e1e5
RH
1280
1281 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
23a6d369 1282 regcache_raw_supply (current_regcache, ALPHA_ZERO_REGNUM, NULL);
98a8e1e5
RH
1283
1284 if (regno == ALPHA_PC_REGNUM || regno == -1)
23a6d369 1285 regcache_raw_supply (current_regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1286
1287 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
23a6d369 1288 regcache_raw_supply (current_regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1289}
1290
1291void
1292alpha_fill_int_regs (int regno, void *r0_r30, void *pc, void *unique)
1293{
1294 int i;
1295
1296 for (i = 0; i < 31; ++i)
1297 if (regno == i || regno == -1)
822c9732 1298 regcache_raw_collect (current_regcache, i, (char *)r0_r30 + i*8);
98a8e1e5
RH
1299
1300 if (regno == ALPHA_PC_REGNUM || regno == -1)
822c9732 1301 regcache_raw_collect (current_regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1302
1303 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
822c9732 1304 regcache_raw_collect (current_regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1305}
1306
1307void
1308alpha_supply_fp_regs (int regno, const void *f0_f30, const void *fpcr)
1309{
1310 int i;
1311
1312 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1313 if (regno == i || regno == -1)
23a6d369
AC
1314 regcache_raw_supply (current_regcache, i,
1315 (const char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1316
1317 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
23a6d369 1318 regcache_raw_supply (current_regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1319}
1320
1321void
1322alpha_fill_fp_regs (int regno, void *f0_f30, void *fpcr)
1323{
1324 int i;
1325
1326 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1327 if (regno == i || regno == -1)
822c9732
AC
1328 regcache_raw_collect (current_regcache, i,
1329 (char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1330
1331 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
822c9732 1332 regcache_raw_collect (current_regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1333}
1334
d2427a71 1335\f
ec32e4be
JT
1336/* alpha_software_single_step() is called just before we want to resume
1337 the inferior, if we want to single-step it but there is no hardware
1338 or kernel single-step support (NetBSD on Alpha, for example). We find
1339 the target of the coming instruction and breakpoint it.
1340
1341 single_step is also called just after the inferior stops. If we had
1342 set up a simulated single-step, we undo our damage. */
1343
1344static CORE_ADDR
1345alpha_next_pc (CORE_ADDR pc)
1346{
1347 unsigned int insn;
1348 unsigned int op;
1349 int offset;
1350 LONGEST rav;
1351
b21fd293 1352 insn = alpha_read_insn (pc);
ec32e4be
JT
1353
1354 /* Opcode is top 6 bits. */
1355 op = (insn >> 26) & 0x3f;
1356
1357 if (op == 0x1a)
1358 {
1359 /* Jump format: target PC is:
1360 RB & ~3 */
1361 return (read_register ((insn >> 16) & 0x1f) & ~3);
1362 }
1363
1364 if ((op & 0x30) == 0x30)
1365 {
1366 /* Branch format: target PC is:
1367 (new PC) + (4 * sext(displacement)) */
1368 if (op == 0x30 || /* BR */
1369 op == 0x34) /* BSR */
1370 {
1371 branch_taken:
1372 offset = (insn & 0x001fffff);
1373 if (offset & 0x00100000)
1374 offset |= 0xffe00000;
1375 offset *= 4;
1376 return (pc + 4 + offset);
1377 }
1378
1379 /* Need to determine if branch is taken; read RA. */
1380 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1381 switch (op)
1382 {
1383 case 0x38: /* BLBC */
1384 if ((rav & 1) == 0)
1385 goto branch_taken;
1386 break;
1387 case 0x3c: /* BLBS */
1388 if (rav & 1)
1389 goto branch_taken;
1390 break;
1391 case 0x39: /* BEQ */
1392 if (rav == 0)
1393 goto branch_taken;
1394 break;
1395 case 0x3d: /* BNE */
1396 if (rav != 0)
1397 goto branch_taken;
1398 break;
1399 case 0x3a: /* BLT */
1400 if (rav < 0)
1401 goto branch_taken;
1402 break;
1403 case 0x3b: /* BLE */
1404 if (rav <= 0)
1405 goto branch_taken;
1406 break;
1407 case 0x3f: /* BGT */
1408 if (rav > 0)
1409 goto branch_taken;
1410 break;
1411 case 0x3e: /* BGE */
1412 if (rav >= 0)
1413 goto branch_taken;
1414 break;
d2427a71
RH
1415
1416 /* ??? Missing floating-point branches. */
ec32e4be
JT
1417 }
1418 }
1419
1420 /* Not a branch or branch not taken; target PC is:
1421 pc + 4 */
1422 return (pc + 4);
1423}
1424
1425void
1426alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1427{
1428 static CORE_ADDR next_pc;
1429 typedef char binsn_quantum[BREAKPOINT_MAX];
1430 static binsn_quantum break_mem;
1431 CORE_ADDR pc;
1432
1433 if (insert_breakpoints_p)
1434 {
1435 pc = read_pc ();
1436 next_pc = alpha_next_pc (pc);
1437
1438 target_insert_breakpoint (next_pc, break_mem);
1439 }
1440 else
1441 {
1442 target_remove_breakpoint (next_pc, break_mem);
1443 write_pc (next_pc);
1444 }
c906108c
SS
1445}
1446
dc129d82 1447\f
dc129d82
JT
1448/* Initialize the current architecture based on INFO. If possible, re-use an
1449 architecture from ARCHES, which is a list of architectures already created
1450 during this debugging session.
1451
1452 Called e.g. at program startup, when reading a core file, and when reading
1453 a binary file. */
1454
1455static struct gdbarch *
1456alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1457{
1458 struct gdbarch_tdep *tdep;
1459 struct gdbarch *gdbarch;
dc129d82
JT
1460
1461 /* Try to determine the ABI of the object we are loading. */
4be87837 1462 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
dc129d82 1463 {
4be87837
DJ
1464 /* If it's an ECOFF file, assume it's OSF/1. */
1465 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
aff87235 1466 info.osabi = GDB_OSABI_OSF1;
dc129d82
JT
1467 }
1468
1469 /* Find a candidate among extant architectures. */
4be87837
DJ
1470 arches = gdbarch_list_lookup_by_info (arches, &info);
1471 if (arches != NULL)
1472 return arches->gdbarch;
dc129d82
JT
1473
1474 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1475 gdbarch = gdbarch_alloc (&info, tdep);
1476
d2427a71
RH
1477 /* Lowest text address. This is used by heuristic_proc_start()
1478 to decide when to stop looking. */
594706e6 1479 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1480
36a6271d 1481 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1482 tdep->sigcontext_addr = NULL;
138e7be5
MK
1483 tdep->sc_pc_offset = 2 * 8;
1484 tdep->sc_regs_offset = 4 * 8;
1485 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1486
accc6d1f
JT
1487 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1488
dc129d82
JT
1489 /* Type sizes */
1490 set_gdbarch_short_bit (gdbarch, 16);
1491 set_gdbarch_int_bit (gdbarch, 32);
1492 set_gdbarch_long_bit (gdbarch, 64);
1493 set_gdbarch_long_long_bit (gdbarch, 64);
1494 set_gdbarch_float_bit (gdbarch, 32);
1495 set_gdbarch_double_bit (gdbarch, 64);
1496 set_gdbarch_long_double_bit (gdbarch, 64);
1497 set_gdbarch_ptr_bit (gdbarch, 64);
1498
1499 /* Register info */
1500 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1501 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1502 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1503 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1504
1505 set_gdbarch_register_name (gdbarch, alpha_register_name);
9c04cab7 1506 set_gdbarch_deprecated_register_byte (gdbarch, alpha_register_byte);
c483c494 1507 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1508
1509 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1510 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1511
c483c494
RH
1512 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1513 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1514 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1515
615967cb
RH
1516 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1517
d2427a71 1518 /* Prologue heuristics. */
dc129d82
JT
1519 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1520
5ef165c2
RH
1521 /* Disassembler. */
1522 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1523
d2427a71 1524 /* Call info. */
dc129d82 1525
b5622e8d 1526 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
5ec2bb99
RH
1527 set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value);
1528 set_gdbarch_store_return_value (gdbarch, alpha_store_return_value);
74055713 1529 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, alpha_extract_struct_value_address);
dc129d82
JT
1530
1531 /* Settings for calling functions in the inferior. */
c88e30c0 1532 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71
RH
1533
1534 /* Methods for saving / extracting a dummy frame's ID. */
1535 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
d2427a71
RH
1536
1537 /* Return the unwound PC value. */
1538 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
dc129d82
JT
1539
1540 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1541 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1542
95b80706 1543 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
dc129d82 1544 set_gdbarch_decr_pc_after_break (gdbarch, 4);
95b80706 1545
44dffaac 1546 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1547 gdbarch_init_osabi (info, gdbarch);
44dffaac 1548
accc6d1f
JT
1549 /* Now that we have tuned the configuration, set a few final things
1550 based on what the OS ABI has told us. */
1551
1552 if (tdep->jb_pc >= 0)
1553 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1554
336d1bba
AC
1555 frame_unwind_append_sniffer (gdbarch, alpha_sigtramp_frame_sniffer);
1556 frame_unwind_append_sniffer (gdbarch, alpha_heuristic_frame_sniffer);
dc129d82 1557
d2427a71 1558 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1559
d2427a71 1560 return gdbarch;
dc129d82
JT
1561}
1562
baa490c4
RH
1563void
1564alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1565{
336d1bba
AC
1566 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1567 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1568}
1569
a78f21af
AC
1570extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1571
c906108c 1572void
fba45db2 1573_initialize_alpha_tdep (void)
c906108c
SS
1574{
1575 struct cmd_list_element *c;
1576
d2427a71 1577 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1578
1579 /* Let the user set the fence post for heuristic_proc_start. */
1580
1581 /* We really would like to have both "0" and "unlimited" work, but
1582 command.c doesn't deal with that. So make it a var_zinteger
1583 because the user can always use "999999" or some such for unlimited. */
1584 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1585 (char *) &heuristic_fence_post,
1586 "\
1587Set the distance searched for the start of a function.\n\
1588If you are debugging a stripped executable, GDB needs to search through the\n\
1589program for the start of a function. This command sets the distance of the\n\
1590search. The only need to set it is when debugging a stripped executable.",
1591 &setlist);
1592 /* We need to throw away the frame cache when we set this, since it
1593 might change our ability to get backtraces. */
9f60d481 1594 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
cb1a6d5f 1595 deprecated_add_show_from_set (c, &showlist);
c906108c 1596}
This page took 0.415816 seconds and 4 git commands to generate.