* arparse.y: make END call ar_end
[deliverable/binutils-gdb.git] / gdb / am29k-tdep.c
CommitLineData
dd3b648e 1/* Target-machine dependent code for the AMD 29000
7d9884b9 2 Copyright 1990, 1991 Free Software Foundation, Inc.
dd3b648e
RP
3 Contributed by Cygnus Support. Written by Jim Kingdon.
4
5This file is part of GDB.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
99a7de40
JG
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
dd3b648e
RP
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
99a7de40
JG
18along with this program; if not, write to the Free Software
19Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
dd3b648e
RP
20
21#include "defs.h"
22#include "gdbcore.h"
dd3b648e
RP
23#include "frame.h"
24#include "value.h"
dd3b648e
RP
25#include "symtab.h"
26#include "inferior.h"
27
7730bd5a
JG
28extern CORE_ADDR text_start; /* FIXME, kludge... */
29
dd3b648e
RP
30/* Structure to hold cached info about function prologues. */
31struct prologue_info
32{
33 CORE_ADDR pc; /* First addr after fn prologue */
34 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
35 unsigned mfp_used : 1; /* memory frame pointer used */
36 unsigned rsize_valid : 1; /* Validity bits for the above */
37 unsigned msize_valid : 1;
38 unsigned mfp_valid : 1;
39};
40
41/* Examine the prologue of a function which starts at PC. Return
42 the first addess past the prologue. If MSIZE is non-NULL, then
43 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
44 then set *RSIZE to the register stack frame size (not including
45 incoming arguments and the return address & frame pointer stored
46 with them). If no prologue is found, *RSIZE is set to zero.
47 If no prologue is found, or a prologue which doesn't involve
48 allocating a memory stack frame, then set *MSIZE to zero.
49
50 Note that both msize and rsize are in bytes. This is not consistent
51 with the _User's Manual_ with respect to rsize, but it is much more
52 convenient.
53
54 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
55 frame pointer is being used. */
56CORE_ADDR
57examine_prologue (pc, rsize, msize, mfp_used)
58 CORE_ADDR pc;
59 unsigned *msize;
60 unsigned *rsize;
61 int *mfp_used;
62{
63 long insn;
64 CORE_ADDR p = pc;
1ab3bf1b 65 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
dd3b648e
RP
66 struct prologue_info *mi = 0;
67
1ab3bf1b 68 if (msymbol != NULL)
07df4831 69 mi = (struct prologue_info *) msymbol -> info;
dd3b648e
RP
70
71 if (mi != 0)
72 {
73 int valid = 1;
74 if (rsize != NULL)
75 {
76 *rsize = mi->rsize;
77 valid &= mi->rsize_valid;
78 }
79 if (msize != NULL)
80 {
81 *msize = mi->msize;
82 valid &= mi->msize_valid;
83 }
84 if (mfp_used != NULL)
85 {
86 *mfp_used = mi->mfp_used;
87 valid &= mi->mfp_valid;
88 }
89 if (valid)
90 return mi->pc;
91 }
92
93 if (rsize != NULL)
94 *rsize = 0;
95 if (msize != NULL)
96 *msize = 0;
97 if (mfp_used != NULL)
98 *mfp_used = 0;
99
100 /* Prologue must start with subtracting a constant from gr1.
101 Normally this is sub gr1,gr1,<rsize * 4>. */
102 insn = read_memory_integer (p, 4);
103 if ((insn & 0xffffff00) != 0x25010100)
104 {
105 /* If the frame is large, instead of a single instruction it
106 might be a pair of instructions:
107 const <reg>, <rsize * 4>
108 sub gr1,gr1,<reg>
109 */
110 int reg;
111 /* Possible value for rsize. */
112 unsigned int rsize0;
113
114 if ((insn & 0xff000000) != 0x03000000)
115 {
116 p = pc;
117 goto done;
118 }
119 reg = (insn >> 8) & 0xff;
120 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
121 p += 4;
122 insn = read_memory_integer (p, 4);
123 if ((insn & 0xffffff00) != 0x24010100
124 || (insn & 0xff) != reg)
125 {
126 p = pc;
127 goto done;
128 }
129 if (rsize != NULL)
130 *rsize = rsize0;
131 }
132 else
133 {
134 if (rsize != NULL)
135 *rsize = (insn & 0xff);
136 }
137 p += 4;
138
139 /* Next instruction must be asgeu V_SPILL,gr1,rab. */
140 insn = read_memory_integer (p, 4);
141 if (insn != 0x5e40017e)
142 {
143 p = pc;
144 goto done;
145 }
146 p += 4;
147
148 /* Next instruction usually sets the frame pointer (lr1) by adding
149 <size * 4> from gr1. However, this can (and high C does) be
150 deferred until anytime before the first function call. So it is
151 OK if we don't see anything which sets lr1. */
152 /* Normally this is just add lr1,gr1,<size * 4>. */
153 insn = read_memory_integer (p, 4);
154 if ((insn & 0xffffff00) == 0x15810100)
155 p += 4;
156 else
157 {
158 /* However, for large frames it can be
159 const <reg>, <size *4>
160 add lr1,gr1,<reg>
161 */
162 int reg;
163 CORE_ADDR q;
164
165 if ((insn & 0xff000000) == 0x03000000)
166 {
167 reg = (insn >> 8) & 0xff;
168 q = p + 4;
169 insn = read_memory_integer (q, 4);
170 if ((insn & 0xffffff00) == 0x14810100
171 && (insn & 0xff) == reg)
172 p = q;
173 }
174 }
175
176 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
177 frame pointer is in use. We just check for add lr<anything>,msp,0;
178 we don't check this rsize against the first instruction, and
179 we don't check that the trace-back tag indicates a memory frame pointer
180 is in use.
181
182 The recommended instruction is actually "sll lr<whatever>,msp,0".
183 We check for that, too. Originally Jim Kingdon's code seemed
184 to be looking for a "sub" instruction here, but the mask was set
185 up to lose all the time. */
186 insn = read_memory_integer (p, 4);
187 if (((insn & 0xff80ffff) == 0x15807d00) /* add */
188 || ((insn & 0xff80ffff) == 0x81807d00) ) /* sll */
189 {
190 p += 4;
191 if (mfp_used != NULL)
192 *mfp_used = 1;
193 }
194
195 /* Next comes a subtraction from msp to allocate a memory frame,
196 but only if a memory frame is
197 being used. We don't check msize against the trace-back tag.
198
199 Normally this is just
200 sub msp,msp,<msize>
201 */
202 insn = read_memory_integer (p, 4);
203 if ((insn & 0xffffff00) == 0x257d7d00)
204 {
205 p += 4;
206 if (msize != NULL)
207 *msize = insn & 0xff;
208 }
209 else
210 {
211 /* For large frames, instead of a single instruction it might
212 be
213
214 const <reg>, <msize>
215 consth <reg>, <msize> ; optional
216 sub msp,msp,<reg>
217 */
218 int reg;
219 unsigned msize0;
220 CORE_ADDR q = p;
221
222 if ((insn & 0xff000000) == 0x03000000)
223 {
224 reg = (insn >> 8) & 0xff;
225 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
226 q += 4;
227 insn = read_memory_integer (q, 4);
228 /* Check for consth. */
229 if ((insn & 0xff000000) == 0x02000000
230 && (insn & 0x0000ff00) == reg)
231 {
232 msize0 |= (insn << 8) & 0xff000000;
233 msize0 |= (insn << 16) & 0x00ff0000;
234 q += 4;
235 insn = read_memory_integer (q, 4);
236 }
237 /* Check for sub msp,msp,<reg>. */
238 if ((insn & 0xffffff00) == 0x247d7d00
239 && (insn & 0xff) == reg)
240 {
241 p = q + 4;
242 if (msize != NULL)
243 *msize = msize0;
244 }
245 }
246 }
247
248 done:
1ab3bf1b 249 if (msymbol != NULL)
dd3b648e
RP
250 {
251 if (mi == 0)
252 {
253 /* Add a new cache entry. */
254 mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
07df4831 255 msymbol -> info = (char *)mi;
dd3b648e
RP
256 mi->rsize_valid = 0;
257 mi->msize_valid = 0;
258 mi->mfp_valid = 0;
259 }
260 /* else, cache entry exists, but info is incomplete. */
261 mi->pc = p;
262 if (rsize != NULL)
263 {
264 mi->rsize = *rsize;
265 mi->rsize_valid = 1;
266 }
267 if (msize != NULL)
268 {
269 mi->msize = *msize;
270 mi->msize_valid = 1;
271 }
272 if (mfp_used != NULL)
273 {
274 mi->mfp_used = *mfp_used;
275 mi->mfp_valid = 1;
276 }
277 }
278 return p;
279}
280
281/* Advance PC across any function entry prologue instructions
282 to reach some "real" code. */
283
284CORE_ADDR
285skip_prologue (pc)
286 CORE_ADDR pc;
287{
288 return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL,
289 (int *)NULL);
290}
291
292/* Initialize the frame. In addition to setting "extra" frame info,
293 we also set ->frame because we use it in a nonstandard way, and ->pc
294 because we need to know it to get the other stuff. See the diagram
295 of stacks and the frame cache in tm-29k.h for more detail. */
296static void
297init_frame_info (innermost_frame, fci)
298 int innermost_frame;
299 struct frame_info *fci;
300{
301 CORE_ADDR p;
302 long insn;
303 unsigned rsize;
304 unsigned msize;
305 int mfp_used;
306 struct symbol *func;
307
308 p = fci->pc;
309
310 if (innermost_frame)
311 fci->frame = read_register (GR1_REGNUM);
312 else
313 fci->frame = fci->next_frame + fci->next->rsize;
314
315#if CALL_DUMMY_LOCATION == ON_STACK
316 This wont work;
317#else
318 if (PC_IN_CALL_DUMMY (p, 0, 0))
319#endif
320 {
321 fci->rsize = DUMMY_FRAME_RSIZE;
322 /* This doesn't matter since we never try to get locals or args
323 from a dummy frame. */
324 fci->msize = 0;
325 /* Dummy frames always use a memory frame pointer. */
326 fci->saved_msp =
327 read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4);
328 return;
329 }
330
331 func = find_pc_function (p);
332 if (func != NULL)
333 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
334 else
335 {
336 /* Search backward to find the trace-back tag. However,
337 do not trace back beyond the start of the text segment
338 (just as a sanity check to avoid going into never-never land). */
339 while (p >= text_start
340 && ((insn = read_memory_integer (p, 4)) & 0xff000000) != 0)
341 p -= 4;
342
343 if (p < text_start)
344 {
345 /* Couldn't find the trace-back tag.
346 Something strange is going on. */
347 fci->saved_msp = 0;
348 fci->rsize = 0;
349 fci->msize = 0;
350 return;
351 }
352 else
353 /* Advance to the first word of the function, i.e. the word
354 after the trace-back tag. */
355 p += 4;
356 }
357 /* We've found the start of the function. Since High C interchanges
358 the meanings of bits 23 and 22 (as of Jul 90), and we
359 need to look at the prologue anyway to figure out
360 what rsize is, ignore the contents of the trace-back tag. */
361 examine_prologue (p, &rsize, &msize, &mfp_used);
362 fci->rsize = rsize;
363 fci->msize = msize;
364 if (innermost_frame)
365 {
366 fci->saved_msp = read_register (MSP_REGNUM) + msize;
367 }
368 else
369 {
370 if (mfp_used)
371 fci->saved_msp =
372 read_register_stack_integer (fci->frame + rsize - 1, 4);
373 else
374 fci->saved_msp = fci->next->saved_msp + msize;
375 }
376}
377
378void
379init_extra_frame_info (fci)
380 struct frame_info *fci;
381{
382 if (fci->next == 0)
383 /* Assume innermost frame. May produce strange results for "info frame"
384 but there isn't any way to tell the difference. */
385 init_frame_info (1, fci);
17f7e032
JG
386 else {
387 /* We're in get_prev_frame_info.
388 Take care of everything in init_frame_pc. */
389 ;
390 }
dd3b648e
RP
391}
392
393void
394init_frame_pc (fromleaf, fci)
395 int fromleaf;
396 struct frame_info *fci;
397{
398 fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) :
399 fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ());
400 init_frame_info (0, fci);
401}
402\f
403/* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
404 offsets being relative to the memory stack pointer (high C) or
405 saved_msp (gcc). */
406
407CORE_ADDR
408frame_locals_address (fi)
409 struct frame_info *fi;
410{
411 struct block *b = block_for_pc (fi->pc);
412 /* If compiled without -g, assume GCC. */
413 if (b == NULL || BLOCK_GCC_COMPILED (b))
414 return fi->saved_msp;
415 else
416 return fi->saved_msp - fi->msize;
417}
418\f
419/* Routines for reading the register stack. The caller gets to treat
420 the register stack as a uniform stack in memory, from address $gr1
421 straight through $rfb and beyond. */
422
423/* Analogous to read_memory except the length is understood to be 4.
424 Also, myaddr can be NULL (meaning don't bother to read), and
425 if actual_mem_addr is non-NULL, store there the address that it
426 was fetched from (or if from a register the offset within
427 registers). Set *LVAL to lval_memory or lval_register, depending
428 on where it came from. */
429void
430read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
431 CORE_ADDR memaddr;
432 char *myaddr;
433 CORE_ADDR *actual_mem_addr;
434 enum lval_type *lval;
435{
436 long rfb = read_register (RFB_REGNUM);
437 long rsp = read_register (RSP_REGNUM);
438 if (memaddr < rfb)
439 {
440 /* It's in a register. */
441 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
442 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
443 error ("Attempt to read register stack out of range.");
444 if (myaddr != NULL)
445 read_register_gen (regnum, myaddr);
446 if (lval != NULL)
447 *lval = lval_register;
448 if (actual_mem_addr != NULL)
449 *actual_mem_addr = REGISTER_BYTE (regnum);
450 }
451 else
452 {
453 /* It's in the memory portion of the register stack. */
454 if (myaddr != NULL)
455 read_memory (memaddr, myaddr, 4);
456 if (lval != NULL)
457 *lval = lval_memory;
458 if (actual_mem_addr != NULL)
17f7e032 459 *actual_mem_addr = memaddr;
dd3b648e
RP
460 }
461}
462
463/* Analogous to read_memory_integer
464 except the length is understood to be 4. */
465long
466read_register_stack_integer (memaddr, len)
467 CORE_ADDR memaddr;
468 int len;
469{
470 long buf;
471 read_register_stack (memaddr, &buf, NULL, NULL);
472 SWAP_TARGET_AND_HOST (&buf, 4);
473 return buf;
474}
475
476/* Copy 4 bytes from GDB memory at MYADDR into inferior memory
477 at MEMADDR and put the actual address written into in
478 *ACTUAL_MEM_ADDR. */
479static void
480write_register_stack (memaddr, myaddr, actual_mem_addr)
481 CORE_ADDR memaddr;
482 char *myaddr;
483 CORE_ADDR *actual_mem_addr;
484{
485 long rfb = read_register (RFB_REGNUM);
486 long rsp = read_register (RSP_REGNUM);
487 if (memaddr < rfb)
488 {
489 /* It's in a register. */
490 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
491 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
492 error ("Attempt to read register stack out of range.");
493 if (myaddr != NULL)
494 write_register (regnum, *(long *)myaddr);
495 if (actual_mem_addr != NULL)
07df4831 496 *actual_mem_addr = 0;
dd3b648e
RP
497 }
498 else
499 {
500 /* It's in the memory portion of the register stack. */
501 if (myaddr != NULL)
502 write_memory (memaddr, myaddr, 4);
503 if (actual_mem_addr != NULL)
17f7e032 504 *actual_mem_addr = memaddr;
dd3b648e
RP
505 }
506}
507\f
508/* Find register number REGNUM relative to FRAME and put its
509 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
510 was optimized out (and thus can't be fetched). If the variable
511 was fetched from memory, set *ADDRP to where it was fetched from,
512 otherwise it was fetched from a register.
513
514 The argument RAW_BUFFER must point to aligned memory. */
515void
516get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
517 char *raw_buffer;
518 int *optimized;
519 CORE_ADDR *addrp;
520 FRAME frame;
521 int regnum;
522 enum lval_type *lvalp;
523{
524 struct frame_info *fi = get_frame_info (frame);
525 CORE_ADDR addr;
526 enum lval_type lval;
527
528 /* Once something has a register number, it doesn't get optimized out. */
529 if (optimized != NULL)
530 *optimized = 0;
531 if (regnum == RSP_REGNUM)
532 {
533 if (raw_buffer != NULL)
534 *(CORE_ADDR *)raw_buffer = fi->frame;
535 if (lvalp != NULL)
536 *lvalp = not_lval;
537 return;
538 }
539 else if (regnum == PC_REGNUM)
540 {
541 if (raw_buffer != NULL)
542 *(CORE_ADDR *)raw_buffer = fi->pc;
543
544 /* Not sure we have to do this. */
545 if (lvalp != NULL)
546 *lvalp = not_lval;
547
548 return;
549 }
550 else if (regnum == MSP_REGNUM)
551 {
552 if (raw_buffer != NULL)
553 {
554 if (fi->next != NULL)
555 *(CORE_ADDR *)raw_buffer = fi->next->saved_msp;
556 else
557 *(CORE_ADDR *)raw_buffer = read_register (MSP_REGNUM);
558 }
559 /* The value may have been computed, not fetched. */
560 if (lvalp != NULL)
561 *lvalp = not_lval;
562 return;
563 }
564 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
565 {
566 /* These registers are not saved over procedure calls,
567 so just print out the current values. */
568 if (raw_buffer != NULL)
569 *(CORE_ADDR *)raw_buffer = read_register (regnum);
570 if (lvalp != NULL)
571 *lvalp = lval_register;
572 if (addrp != NULL)
573 *addrp = REGISTER_BYTE (regnum);
574 return;
575 }
576
577 addr = fi->frame + (regnum - LR0_REGNUM) * 4;
578 if (raw_buffer != NULL)
579 read_register_stack (addr, raw_buffer, &addr, &lval);
580 if (lvalp != NULL)
581 *lvalp = lval;
582 if (addrp != NULL)
583 *addrp = addr;
584}
585\f
586/* Discard from the stack the innermost frame,
587 restoring all saved registers. */
588
589void
590pop_frame ()
591{
592 FRAME frame = get_current_frame ();
593 struct frame_info *fi = get_frame_info (frame);
594 CORE_ADDR rfb = read_register (RFB_REGNUM);
595 CORE_ADDR gr1 = fi->frame + fi->rsize;
596 CORE_ADDR lr1;
597 CORE_ADDR ret_addr;
598 int i;
599
600 /* If popping a dummy frame, need to restore registers. */
601 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
602 read_register (SP_REGNUM),
603 FRAME_FP (fi)))
604 {
605 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
606 write_register
607 (SR_REGNUM (i + 128),
608 read_register (LR0_REGNUM + DUMMY_ARG / 4 + i));
6093e5b0 609 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
dd3b648e 610 write_register
6093e5b0 611 (RETURN_REGNUM + i,
dd3b648e
RP
612 read_register (LR0_REGNUM + DUMMY_ARG / 4 + DUMMY_SAVE_SR128 + i));
613 }
614
615 /* Restore the memory stack pointer. */
616 write_register (MSP_REGNUM, fi->saved_msp);
617 /* Restore the register stack pointer. */
618 write_register (GR1_REGNUM, gr1);
619 /* Check whether we need to fill registers. */
620 lr1 = read_register (LR0_REGNUM + 1);
621 if (lr1 > rfb)
622 {
623 /* Fill. */
624 int num_bytes = lr1 - rfb;
625 int i;
626 long word;
627 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
628 write_register (RFB_REGNUM, lr1);
629 for (i = 0; i < num_bytes; i += 4)
630 {
631 /* Note: word is in host byte order. */
632 word = read_memory_integer (rfb + i, 4);
633 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
634 }
635 }
636 ret_addr = read_register (LR0_REGNUM);
637 write_register (PC_REGNUM, ret_addr);
638 write_register (NPC_REGNUM, ret_addr + 4);
639 flush_cached_frames ();
640 set_current_frame (create_new_frame (0, read_pc()));
641}
642
643/* Push an empty stack frame, to record the current PC, etc. */
644
645void
646push_dummy_frame ()
647{
648 long w;
649 CORE_ADDR rab, gr1;
650 CORE_ADDR msp = read_register (MSP_REGNUM);
651 int i;
652
653 /* Save the PC. */
654 write_register (LR0_REGNUM, read_register (PC_REGNUM));
655
656 /* Allocate the new frame. */
657 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
658 write_register (GR1_REGNUM, gr1);
659
660 rab = read_register (RAB_REGNUM);
661 if (gr1 < rab)
662 {
663 /* We need to spill registers. */
664 int num_bytes = rab - gr1;
665 CORE_ADDR rfb = read_register (RFB_REGNUM);
666 int i;
667 long word;
668
669 write_register (RFB_REGNUM, rfb - num_bytes);
670 write_register (RAB_REGNUM, gr1);
671 for (i = 0; i < num_bytes; i += 4)
672 {
673 /* Note: word is in target byte order. */
07df4831
SG
674 read_register_gen (LR0_REGNUM + i / 4, (char *)&word);
675 write_memory (rfb - num_bytes + i, (char *)&word, 4);
dd3b648e
RP
676 }
677 }
678
679 /* There are no arguments in to the dummy frame, so we don't need
680 more than rsize plus the return address and lr1. */
681 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
682
683 /* Set the memory frame pointer. */
684 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
685
686 /* Allocate arg_slop. */
687 write_register (MSP_REGNUM, msp - 16 * 4);
688
689 /* Save registers. */
690 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
691 write_register (LR0_REGNUM + DUMMY_ARG / 4 + i,
692 read_register (SR_REGNUM (i + 128)));
6093e5b0 693 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
dd3b648e 694 write_register (LR0_REGNUM + DUMMY_ARG / 4 + DUMMY_SAVE_SR128 + i,
6093e5b0 695 read_register (RETURN_REGNUM + i));
dd3b648e 696}
This page took 0.07482 seconds and 4 git commands to generate.