Commit | Line | Data |
---|---|---|
e53bef9f | 1 | /* Target-dependent code for AMD64. |
ce0eebec | 2 | |
42a4f53d | 3 | Copyright (C) 2001-2019 Free Software Foundation, Inc. |
5ae96ec1 MK |
4 | |
5 | Contributed by Jiri Smid, SuSE Labs. | |
53e95fcf JS |
6 | |
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
53e95fcf JS |
12 | (at your option) any later version. |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
53e95fcf JS |
21 | |
22 | #include "defs.h" | |
4de283e4 TT |
23 | #include "opcode/i386.h" |
24 | #include "dis-asm.h" | |
c4f35dd8 MK |
25 | #include "arch-utils.h" |
26 | #include "block.h" | |
27 | #include "dummy-frame.h" | |
4de283e4 | 28 | #include "frame.h" |
c4f35dd8 MK |
29 | #include "frame-base.h" |
30 | #include "frame-unwind.h" | |
d55e5aa6 TT |
31 | #include "inferior.h" |
32 | #include "infrun.h" | |
4de283e4 TT |
33 | #include "gdbcmd.h" |
34 | #include "gdbcore.h" | |
c4f35dd8 | 35 | #include "objfiles.h" |
53e95fcf | 36 | #include "regcache.h" |
2c261fae | 37 | #include "regset.h" |
53e95fcf | 38 | #include "symfile.h" |
4de283e4 TT |
39 | #include "disasm.h" |
40 | #include "amd64-tdep.h" | |
41 | #include "i387-tdep.h" | |
42 | #include "common/x86-xstate.h" | |
43 | #include <algorithm> | |
22916b07 | 44 | #include "target-descriptions.h" |
4de283e4 TT |
45 | #include "arch/amd64.h" |
46 | #include "producer.h" | |
47 | #include "ax.h" | |
48 | #include "ax-gdb.h" | |
49 | #include "common/byte-vector.h" | |
50 | #include "osabi.h" | |
1d509aa6 | 51 | #include "x86-tdep.h" |
6710bf39 | 52 | |
e53bef9f MK |
53 | /* Note that the AMD64 architecture was previously known as x86-64. |
54 | The latter is (forever) engraved into the canonical system name as | |
90f90721 | 55 | returned by config.guess, and used as the name for the AMD64 port |
e53bef9f MK |
56 | of GNU/Linux. The BSD's have renamed their ports to amd64; they |
57 | don't like to shout. For GDB we prefer the amd64_-prefix over the | |
58 | x86_64_-prefix since it's so much easier to type. */ | |
59 | ||
402ecd56 | 60 | /* Register information. */ |
c4f35dd8 | 61 | |
6707b003 | 62 | static const char *amd64_register_names[] = |
de220d0f | 63 | { |
6707b003 | 64 | "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp", |
c4f35dd8 MK |
65 | |
66 | /* %r8 is indeed register number 8. */ | |
6707b003 UW |
67 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
68 | "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs", | |
c4f35dd8 | 69 | |
af233647 | 70 | /* %st0 is register number 24. */ |
6707b003 UW |
71 | "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7", |
72 | "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop", | |
c4f35dd8 | 73 | |
af233647 | 74 | /* %xmm0 is register number 40. */ |
6707b003 UW |
75 | "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", |
76 | "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", | |
77 | "mxcsr", | |
0e04a514 ML |
78 | }; |
79 | ||
a055a187 L |
80 | static const char *amd64_ymm_names[] = |
81 | { | |
82 | "ymm0", "ymm1", "ymm2", "ymm3", | |
83 | "ymm4", "ymm5", "ymm6", "ymm7", | |
84 | "ymm8", "ymm9", "ymm10", "ymm11", | |
85 | "ymm12", "ymm13", "ymm14", "ymm15" | |
86 | }; | |
87 | ||
01f9f808 MS |
88 | static const char *amd64_ymm_avx512_names[] = |
89 | { | |
90 | "ymm16", "ymm17", "ymm18", "ymm19", | |
91 | "ymm20", "ymm21", "ymm22", "ymm23", | |
92 | "ymm24", "ymm25", "ymm26", "ymm27", | |
93 | "ymm28", "ymm29", "ymm30", "ymm31" | |
94 | }; | |
95 | ||
a055a187 L |
96 | static const char *amd64_ymmh_names[] = |
97 | { | |
98 | "ymm0h", "ymm1h", "ymm2h", "ymm3h", | |
99 | "ymm4h", "ymm5h", "ymm6h", "ymm7h", | |
100 | "ymm8h", "ymm9h", "ymm10h", "ymm11h", | |
101 | "ymm12h", "ymm13h", "ymm14h", "ymm15h" | |
102 | }; | |
de220d0f | 103 | |
01f9f808 MS |
104 | static const char *amd64_ymmh_avx512_names[] = |
105 | { | |
106 | "ymm16h", "ymm17h", "ymm18h", "ymm19h", | |
107 | "ymm20h", "ymm21h", "ymm22h", "ymm23h", | |
108 | "ymm24h", "ymm25h", "ymm26h", "ymm27h", | |
109 | "ymm28h", "ymm29h", "ymm30h", "ymm31h" | |
110 | }; | |
111 | ||
e43e105e WT |
112 | static const char *amd64_mpx_names[] = |
113 | { | |
114 | "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus" | |
115 | }; | |
116 | ||
01f9f808 MS |
117 | static const char *amd64_k_names[] = |
118 | { | |
119 | "k0", "k1", "k2", "k3", | |
120 | "k4", "k5", "k6", "k7" | |
121 | }; | |
122 | ||
123 | static const char *amd64_zmmh_names[] = | |
124 | { | |
125 | "zmm0h", "zmm1h", "zmm2h", "zmm3h", | |
126 | "zmm4h", "zmm5h", "zmm6h", "zmm7h", | |
127 | "zmm8h", "zmm9h", "zmm10h", "zmm11h", | |
128 | "zmm12h", "zmm13h", "zmm14h", "zmm15h", | |
129 | "zmm16h", "zmm17h", "zmm18h", "zmm19h", | |
130 | "zmm20h", "zmm21h", "zmm22h", "zmm23h", | |
131 | "zmm24h", "zmm25h", "zmm26h", "zmm27h", | |
132 | "zmm28h", "zmm29h", "zmm30h", "zmm31h" | |
133 | }; | |
134 | ||
135 | static const char *amd64_zmm_names[] = | |
136 | { | |
137 | "zmm0", "zmm1", "zmm2", "zmm3", | |
138 | "zmm4", "zmm5", "zmm6", "zmm7", | |
139 | "zmm8", "zmm9", "zmm10", "zmm11", | |
140 | "zmm12", "zmm13", "zmm14", "zmm15", | |
141 | "zmm16", "zmm17", "zmm18", "zmm19", | |
142 | "zmm20", "zmm21", "zmm22", "zmm23", | |
143 | "zmm24", "zmm25", "zmm26", "zmm27", | |
144 | "zmm28", "zmm29", "zmm30", "zmm31" | |
145 | }; | |
146 | ||
147 | static const char *amd64_xmm_avx512_names[] = { | |
148 | "xmm16", "xmm17", "xmm18", "xmm19", | |
149 | "xmm20", "xmm21", "xmm22", "xmm23", | |
150 | "xmm24", "xmm25", "xmm26", "xmm27", | |
151 | "xmm28", "xmm29", "xmm30", "xmm31" | |
152 | }; | |
153 | ||
51547df6 MS |
154 | static const char *amd64_pkeys_names[] = { |
155 | "pkru" | |
156 | }; | |
157 | ||
c4f35dd8 MK |
158 | /* DWARF Register Number Mapping as defined in the System V psABI, |
159 | section 3.6. */ | |
53e95fcf | 160 | |
e53bef9f | 161 | static int amd64_dwarf_regmap[] = |
0e04a514 | 162 | { |
c4f35dd8 | 163 | /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */ |
90f90721 MK |
164 | AMD64_RAX_REGNUM, AMD64_RDX_REGNUM, |
165 | AMD64_RCX_REGNUM, AMD64_RBX_REGNUM, | |
166 | AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, | |
c4f35dd8 MK |
167 | |
168 | /* Frame Pointer Register RBP. */ | |
90f90721 | 169 | AMD64_RBP_REGNUM, |
c4f35dd8 MK |
170 | |
171 | /* Stack Pointer Register RSP. */ | |
90f90721 | 172 | AMD64_RSP_REGNUM, |
c4f35dd8 MK |
173 | |
174 | /* Extended Integer Registers 8 - 15. */ | |
5b856f36 PM |
175 | AMD64_R8_REGNUM, /* %r8 */ |
176 | AMD64_R9_REGNUM, /* %r9 */ | |
177 | AMD64_R10_REGNUM, /* %r10 */ | |
178 | AMD64_R11_REGNUM, /* %r11 */ | |
179 | AMD64_R12_REGNUM, /* %r12 */ | |
180 | AMD64_R13_REGNUM, /* %r13 */ | |
181 | AMD64_R14_REGNUM, /* %r14 */ | |
182 | AMD64_R15_REGNUM, /* %r15 */ | |
c4f35dd8 | 183 | |
59207364 | 184 | /* Return Address RA. Mapped to RIP. */ |
90f90721 | 185 | AMD64_RIP_REGNUM, |
c4f35dd8 MK |
186 | |
187 | /* SSE Registers 0 - 7. */ | |
90f90721 MK |
188 | AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, |
189 | AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | |
190 | AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | |
191 | AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | |
c4f35dd8 MK |
192 | |
193 | /* Extended SSE Registers 8 - 15. */ | |
90f90721 MK |
194 | AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9, |
195 | AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11, | |
196 | AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13, | |
197 | AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15, | |
c4f35dd8 MK |
198 | |
199 | /* Floating Point Registers 0-7. */ | |
90f90721 MK |
200 | AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1, |
201 | AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3, | |
202 | AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5, | |
c6f4c129 | 203 | AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7, |
f7ca3fcf PM |
204 | |
205 | /* MMX Registers 0 - 7. | |
206 | We have to handle those registers specifically, as their register | |
207 | number within GDB depends on the target (or they may even not be | |
208 | available at all). */ | |
209 | -1, -1, -1, -1, -1, -1, -1, -1, | |
210 | ||
c6f4c129 JB |
211 | /* Control and Status Flags Register. */ |
212 | AMD64_EFLAGS_REGNUM, | |
213 | ||
214 | /* Selector Registers. */ | |
215 | AMD64_ES_REGNUM, | |
216 | AMD64_CS_REGNUM, | |
217 | AMD64_SS_REGNUM, | |
218 | AMD64_DS_REGNUM, | |
219 | AMD64_FS_REGNUM, | |
220 | AMD64_GS_REGNUM, | |
221 | -1, | |
222 | -1, | |
223 | ||
224 | /* Segment Base Address Registers. */ | |
225 | -1, | |
226 | -1, | |
227 | -1, | |
228 | -1, | |
229 | ||
230 | /* Special Selector Registers. */ | |
231 | -1, | |
232 | -1, | |
233 | ||
234 | /* Floating Point Control Registers. */ | |
235 | AMD64_MXCSR_REGNUM, | |
236 | AMD64_FCTRL_REGNUM, | |
237 | AMD64_FSTAT_REGNUM | |
c4f35dd8 | 238 | }; |
0e04a514 | 239 | |
e53bef9f MK |
240 | static const int amd64_dwarf_regmap_len = |
241 | (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0])); | |
0e04a514 | 242 | |
c4f35dd8 MK |
243 | /* Convert DWARF register number REG to the appropriate register |
244 | number used by GDB. */ | |
26abbdc4 | 245 | |
c4f35dd8 | 246 | static int |
d3f73121 | 247 | amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
53e95fcf | 248 | { |
a055a187 L |
249 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
250 | int ymm0_regnum = tdep->ymm0_regnum; | |
c4f35dd8 | 251 | int regnum = -1; |
53e95fcf | 252 | |
16aff9a6 | 253 | if (reg >= 0 && reg < amd64_dwarf_regmap_len) |
e53bef9f | 254 | regnum = amd64_dwarf_regmap[reg]; |
53e95fcf | 255 | |
0fde2c53 | 256 | if (ymm0_regnum >= 0 |
a055a187 L |
257 | && i386_xmm_regnum_p (gdbarch, regnum)) |
258 | regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep); | |
c4f35dd8 MK |
259 | |
260 | return regnum; | |
53e95fcf | 261 | } |
d532c08f | 262 | |
35669430 DE |
263 | /* Map architectural register numbers to gdb register numbers. */ |
264 | ||
265 | static const int amd64_arch_regmap[16] = | |
266 | { | |
267 | AMD64_RAX_REGNUM, /* %rax */ | |
268 | AMD64_RCX_REGNUM, /* %rcx */ | |
269 | AMD64_RDX_REGNUM, /* %rdx */ | |
270 | AMD64_RBX_REGNUM, /* %rbx */ | |
271 | AMD64_RSP_REGNUM, /* %rsp */ | |
272 | AMD64_RBP_REGNUM, /* %rbp */ | |
273 | AMD64_RSI_REGNUM, /* %rsi */ | |
274 | AMD64_RDI_REGNUM, /* %rdi */ | |
275 | AMD64_R8_REGNUM, /* %r8 */ | |
276 | AMD64_R9_REGNUM, /* %r9 */ | |
277 | AMD64_R10_REGNUM, /* %r10 */ | |
278 | AMD64_R11_REGNUM, /* %r11 */ | |
279 | AMD64_R12_REGNUM, /* %r12 */ | |
280 | AMD64_R13_REGNUM, /* %r13 */ | |
281 | AMD64_R14_REGNUM, /* %r14 */ | |
282 | AMD64_R15_REGNUM /* %r15 */ | |
283 | }; | |
284 | ||
285 | static const int amd64_arch_regmap_len = | |
286 | (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0])); | |
287 | ||
288 | /* Convert architectural register number REG to the appropriate register | |
289 | number used by GDB. */ | |
290 | ||
291 | static int | |
292 | amd64_arch_reg_to_regnum (int reg) | |
293 | { | |
294 | gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len); | |
295 | ||
296 | return amd64_arch_regmap[reg]; | |
297 | } | |
298 | ||
1ba53b71 L |
299 | /* Register names for byte pseudo-registers. */ |
300 | ||
301 | static const char *amd64_byte_names[] = | |
302 | { | |
303 | "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl", | |
fe01d668 L |
304 | "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l", |
305 | "ah", "bh", "ch", "dh" | |
1ba53b71 L |
306 | }; |
307 | ||
fe01d668 L |
308 | /* Number of lower byte registers. */ |
309 | #define AMD64_NUM_LOWER_BYTE_REGS 16 | |
310 | ||
1ba53b71 L |
311 | /* Register names for word pseudo-registers. */ |
312 | ||
313 | static const char *amd64_word_names[] = | |
314 | { | |
9cad29ac | 315 | "ax", "bx", "cx", "dx", "si", "di", "bp", "", |
1ba53b71 L |
316 | "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w" |
317 | }; | |
318 | ||
319 | /* Register names for dword pseudo-registers. */ | |
320 | ||
321 | static const char *amd64_dword_names[] = | |
322 | { | |
323 | "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp", | |
fff4548b MK |
324 | "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d", |
325 | "eip" | |
1ba53b71 L |
326 | }; |
327 | ||
328 | /* Return the name of register REGNUM. */ | |
329 | ||
330 | static const char * | |
331 | amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum) | |
332 | { | |
333 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
334 | if (i386_byte_regnum_p (gdbarch, regnum)) | |
335 | return amd64_byte_names[regnum - tdep->al_regnum]; | |
01f9f808 MS |
336 | else if (i386_zmm_regnum_p (gdbarch, regnum)) |
337 | return amd64_zmm_names[regnum - tdep->zmm0_regnum]; | |
a055a187 L |
338 | else if (i386_ymm_regnum_p (gdbarch, regnum)) |
339 | return amd64_ymm_names[regnum - tdep->ymm0_regnum]; | |
01f9f808 MS |
340 | else if (i386_ymm_avx512_regnum_p (gdbarch, regnum)) |
341 | return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum]; | |
1ba53b71 L |
342 | else if (i386_word_regnum_p (gdbarch, regnum)) |
343 | return amd64_word_names[regnum - tdep->ax_regnum]; | |
344 | else if (i386_dword_regnum_p (gdbarch, regnum)) | |
345 | return amd64_dword_names[regnum - tdep->eax_regnum]; | |
346 | else | |
347 | return i386_pseudo_register_name (gdbarch, regnum); | |
348 | } | |
349 | ||
3543a589 TT |
350 | static struct value * |
351 | amd64_pseudo_register_read_value (struct gdbarch *gdbarch, | |
849d0ba8 | 352 | readable_regcache *regcache, |
3543a589 | 353 | int regnum) |
1ba53b71 | 354 | { |
1ba53b71 | 355 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
3543a589 | 356 | |
925047fe | 357 | value *result_value = allocate_value (register_type (gdbarch, regnum)); |
3543a589 TT |
358 | VALUE_LVAL (result_value) = lval_register; |
359 | VALUE_REGNUM (result_value) = regnum; | |
925047fe | 360 | gdb_byte *buf = value_contents_raw (result_value); |
1ba53b71 L |
361 | |
362 | if (i386_byte_regnum_p (gdbarch, regnum)) | |
363 | { | |
364 | int gpnum = regnum - tdep->al_regnum; | |
365 | ||
366 | /* Extract (always little endian). */ | |
fe01d668 L |
367 | if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) |
368 | { | |
925047fe SM |
369 | gpnum -= AMD64_NUM_LOWER_BYTE_REGS; |
370 | gdb_byte raw_buf[register_size (gdbarch, gpnum)]; | |
371 | ||
fe01d668 | 372 | /* Special handling for AH, BH, CH, DH. */ |
925047fe | 373 | register_status status = regcache->raw_read (gpnum, raw_buf); |
05d1431c PA |
374 | if (status == REG_VALID) |
375 | memcpy (buf, raw_buf + 1, 1); | |
3543a589 TT |
376 | else |
377 | mark_value_bytes_unavailable (result_value, 0, | |
378 | TYPE_LENGTH (value_type (result_value))); | |
fe01d668 L |
379 | } |
380 | else | |
381 | { | |
925047fe SM |
382 | gdb_byte raw_buf[register_size (gdbarch, gpnum)]; |
383 | register_status status = regcache->raw_read (gpnum, raw_buf); | |
05d1431c PA |
384 | if (status == REG_VALID) |
385 | memcpy (buf, raw_buf, 1); | |
3543a589 TT |
386 | else |
387 | mark_value_bytes_unavailable (result_value, 0, | |
388 | TYPE_LENGTH (value_type (result_value))); | |
fe01d668 | 389 | } |
1ba53b71 L |
390 | } |
391 | else if (i386_dword_regnum_p (gdbarch, regnum)) | |
392 | { | |
393 | int gpnum = regnum - tdep->eax_regnum; | |
925047fe | 394 | gdb_byte raw_buf[register_size (gdbarch, gpnum)]; |
1ba53b71 | 395 | /* Extract (always little endian). */ |
925047fe | 396 | register_status status = regcache->raw_read (gpnum, raw_buf); |
05d1431c PA |
397 | if (status == REG_VALID) |
398 | memcpy (buf, raw_buf, 4); | |
3543a589 TT |
399 | else |
400 | mark_value_bytes_unavailable (result_value, 0, | |
401 | TYPE_LENGTH (value_type (result_value))); | |
1ba53b71 L |
402 | } |
403 | else | |
3543a589 TT |
404 | i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, |
405 | result_value); | |
406 | ||
407 | return result_value; | |
1ba53b71 L |
408 | } |
409 | ||
410 | static void | |
411 | amd64_pseudo_register_write (struct gdbarch *gdbarch, | |
412 | struct regcache *regcache, | |
413 | int regnum, const gdb_byte *buf) | |
414 | { | |
1ba53b71 L |
415 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
416 | ||
417 | if (i386_byte_regnum_p (gdbarch, regnum)) | |
418 | { | |
419 | int gpnum = regnum - tdep->al_regnum; | |
420 | ||
fe01d668 L |
421 | if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) |
422 | { | |
925047fe SM |
423 | gpnum -= AMD64_NUM_LOWER_BYTE_REGS; |
424 | gdb_byte raw_buf[register_size (gdbarch, gpnum)]; | |
425 | ||
fe01d668 | 426 | /* Read ... AH, BH, CH, DH. */ |
925047fe | 427 | regcache->raw_read (gpnum, raw_buf); |
fe01d668 L |
428 | /* ... Modify ... (always little endian). */ |
429 | memcpy (raw_buf + 1, buf, 1); | |
430 | /* ... Write. */ | |
925047fe | 431 | regcache->raw_write (gpnum, raw_buf); |
fe01d668 L |
432 | } |
433 | else | |
434 | { | |
925047fe SM |
435 | gdb_byte raw_buf[register_size (gdbarch, gpnum)]; |
436 | ||
fe01d668 | 437 | /* Read ... */ |
0b883586 | 438 | regcache->raw_read (gpnum, raw_buf); |
fe01d668 L |
439 | /* ... Modify ... (always little endian). */ |
440 | memcpy (raw_buf, buf, 1); | |
441 | /* ... Write. */ | |
10eaee5f | 442 | regcache->raw_write (gpnum, raw_buf); |
fe01d668 | 443 | } |
1ba53b71 L |
444 | } |
445 | else if (i386_dword_regnum_p (gdbarch, regnum)) | |
446 | { | |
447 | int gpnum = regnum - tdep->eax_regnum; | |
925047fe | 448 | gdb_byte raw_buf[register_size (gdbarch, gpnum)]; |
1ba53b71 L |
449 | |
450 | /* Read ... */ | |
0b883586 | 451 | regcache->raw_read (gpnum, raw_buf); |
1ba53b71 L |
452 | /* ... Modify ... (always little endian). */ |
453 | memcpy (raw_buf, buf, 4); | |
454 | /* ... Write. */ | |
10eaee5f | 455 | regcache->raw_write (gpnum, raw_buf); |
1ba53b71 L |
456 | } |
457 | else | |
458 | i386_pseudo_register_write (gdbarch, regcache, regnum, buf); | |
459 | } | |
460 | ||
62e5fd57 MK |
461 | /* Implement the 'ax_pseudo_register_collect' gdbarch method. */ |
462 | ||
463 | static int | |
464 | amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch, | |
465 | struct agent_expr *ax, int regnum) | |
466 | { | |
467 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
468 | ||
469 | if (i386_byte_regnum_p (gdbarch, regnum)) | |
470 | { | |
471 | int gpnum = regnum - tdep->al_regnum; | |
472 | ||
473 | if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) | |
474 | ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS); | |
475 | else | |
476 | ax_reg_mask (ax, gpnum); | |
477 | return 0; | |
478 | } | |
479 | else if (i386_dword_regnum_p (gdbarch, regnum)) | |
480 | { | |
481 | int gpnum = regnum - tdep->eax_regnum; | |
482 | ||
483 | ax_reg_mask (ax, gpnum); | |
484 | return 0; | |
485 | } | |
486 | else | |
487 | return i386_ax_pseudo_register_collect (gdbarch, ax, regnum); | |
488 | } | |
489 | ||
53e95fcf JS |
490 | \f |
491 | ||
bf4d6c1c JB |
492 | /* Register classes as defined in the psABI. */ |
493 | ||
494 | enum amd64_reg_class | |
495 | { | |
496 | AMD64_INTEGER, | |
497 | AMD64_SSE, | |
498 | AMD64_SSEUP, | |
499 | AMD64_X87, | |
500 | AMD64_X87UP, | |
501 | AMD64_COMPLEX_X87, | |
502 | AMD64_NO_CLASS, | |
503 | AMD64_MEMORY | |
504 | }; | |
505 | ||
efb1c01c MK |
506 | /* Return the union class of CLASS1 and CLASS2. See the psABI for |
507 | details. */ | |
508 | ||
509 | static enum amd64_reg_class | |
510 | amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2) | |
511 | { | |
512 | /* Rule (a): If both classes are equal, this is the resulting class. */ | |
513 | if (class1 == class2) | |
514 | return class1; | |
515 | ||
516 | /* Rule (b): If one of the classes is NO_CLASS, the resulting class | |
517 | is the other class. */ | |
518 | if (class1 == AMD64_NO_CLASS) | |
519 | return class2; | |
520 | if (class2 == AMD64_NO_CLASS) | |
521 | return class1; | |
522 | ||
523 | /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */ | |
524 | if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY) | |
525 | return AMD64_MEMORY; | |
526 | ||
527 | /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */ | |
528 | if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER) | |
529 | return AMD64_INTEGER; | |
530 | ||
531 | /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class, | |
532 | MEMORY is used as class. */ | |
533 | if (class1 == AMD64_X87 || class1 == AMD64_X87UP | |
534 | || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87 | |
535 | || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87) | |
536 | return AMD64_MEMORY; | |
537 | ||
538 | /* Rule (f): Otherwise class SSE is used. */ | |
539 | return AMD64_SSE; | |
540 | } | |
541 | ||
fe978cb0 | 542 | static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]); |
bf4d6c1c | 543 | |
4aa866af | 544 | /* Return true if TYPE is a structure or union with unaligned fields. */ |
79b1ab3d | 545 | |
4aa866af LS |
546 | static bool |
547 | amd64_has_unaligned_fields (struct type *type) | |
79b1ab3d | 548 | { |
4aa866af LS |
549 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT |
550 | || TYPE_CODE (type) == TYPE_CODE_UNION) | |
551 | { | |
552 | for (int i = 0; i < TYPE_NFIELDS (type); i++) | |
553 | { | |
554 | struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i)); | |
555 | int bitpos = TYPE_FIELD_BITPOS (type, i); | |
556 | int align = type_align(subtype); | |
557 | ||
a59240a4 TT |
558 | /* Ignore static fields, empty fields (for example nested |
559 | empty structures), and bitfields (these are handled by | |
560 | the caller). */ | |
4aa866af LS |
561 | if (field_is_static (&TYPE_FIELD (type, i)) |
562 | || (TYPE_FIELD_BITSIZE (type, i) == 0 | |
a59240a4 TT |
563 | && TYPE_LENGTH (subtype) == 0) |
564 | || TYPE_FIELD_PACKED (type, i)) | |
4aa866af LS |
565 | continue; |
566 | ||
567 | if (bitpos % 8 != 0) | |
568 | return true; | |
569 | ||
570 | int bytepos = bitpos / 8; | |
571 | if (bytepos % align != 0) | |
572 | return true; | |
573 | ||
a59240a4 | 574 | if (amd64_has_unaligned_fields (subtype)) |
4aa866af LS |
575 | return true; |
576 | } | |
577 | } | |
79b1ab3d | 578 | |
4aa866af | 579 | return false; |
79b1ab3d MK |
580 | } |
581 | ||
efb1c01c MK |
582 | /* Classify TYPE according to the rules for aggregate (structures and |
583 | arrays) and union types, and store the result in CLASS. */ | |
c4f35dd8 MK |
584 | |
585 | static void | |
fe978cb0 | 586 | amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2]) |
53e95fcf | 587 | { |
4aa866af | 588 | /* 1. If the size of an object is larger than two eightbytes, or it has |
efb1c01c | 589 | unaligned fields, it has class memory. */ |
4aa866af | 590 | if (TYPE_LENGTH (type) > 16 || amd64_has_unaligned_fields (type)) |
53e95fcf | 591 | { |
fe978cb0 | 592 | theclass[0] = theclass[1] = AMD64_MEMORY; |
efb1c01c | 593 | return; |
53e95fcf | 594 | } |
efb1c01c MK |
595 | |
596 | /* 2. Both eightbytes get initialized to class NO_CLASS. */ | |
fe978cb0 | 597 | theclass[0] = theclass[1] = AMD64_NO_CLASS; |
efb1c01c MK |
598 | |
599 | /* 3. Each field of an object is classified recursively so that | |
600 | always two fields are considered. The resulting class is | |
601 | calculated according to the classes of the fields in the | |
602 | eightbyte: */ | |
603 | ||
604 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
8ffd9b1b | 605 | { |
efb1c01c MK |
606 | struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type)); |
607 | ||
608 | /* All fields in an array have the same type. */ | |
fe978cb0 PA |
609 | amd64_classify (subtype, theclass); |
610 | if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS) | |
611 | theclass[1] = theclass[0]; | |
8ffd9b1b | 612 | } |
53e95fcf JS |
613 | else |
614 | { | |
efb1c01c | 615 | int i; |
53e95fcf | 616 | |
efb1c01c MK |
617 | /* Structure or union. */ |
618 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
619 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
620 | ||
621 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
53e95fcf | 622 | { |
efb1c01c MK |
623 | struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i)); |
624 | int pos = TYPE_FIELD_BITPOS (type, i) / 64; | |
625 | enum amd64_reg_class subclass[2]; | |
e4e2711a JB |
626 | int bitsize = TYPE_FIELD_BITSIZE (type, i); |
627 | int endpos; | |
628 | ||
629 | if (bitsize == 0) | |
630 | bitsize = TYPE_LENGTH (subtype) * 8; | |
631 | endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64; | |
efb1c01c | 632 | |
5dc43913 AB |
633 | /* Ignore static fields, or empty fields, for example nested |
634 | empty structures.*/ | |
635 | if (field_is_static (&TYPE_FIELD (type, i)) || bitsize == 0) | |
562c50c2 MK |
636 | continue; |
637 | ||
efb1c01c MK |
638 | gdb_assert (pos == 0 || pos == 1); |
639 | ||
640 | amd64_classify (subtype, subclass); | |
fe978cb0 | 641 | theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]); |
e4e2711a JB |
642 | if (bitsize <= 64 && pos == 0 && endpos == 1) |
643 | /* This is a bit of an odd case: We have a field that would | |
644 | normally fit in one of the two eightbytes, except that | |
645 | it is placed in a way that this field straddles them. | |
646 | This has been seen with a structure containing an array. | |
647 | ||
648 | The ABI is a bit unclear in this case, but we assume that | |
649 | this field's class (stored in subclass[0]) must also be merged | |
650 | into class[1]. In other words, our field has a piece stored | |
651 | in the second eight-byte, and thus its class applies to | |
652 | the second eight-byte as well. | |
653 | ||
654 | In the case where the field length exceeds 8 bytes, | |
655 | it should not be necessary to merge the field class | |
656 | into class[1]. As LEN > 8, subclass[1] is necessarily | |
657 | different from AMD64_NO_CLASS. If subclass[1] is equal | |
658 | to subclass[0], then the normal class[1]/subclass[1] | |
659 | merging will take care of everything. For subclass[1] | |
660 | to be different from subclass[0], I can only see the case | |
661 | where we have a SSE/SSEUP or X87/X87UP pair, which both | |
662 | use up all 16 bytes of the aggregate, and are already | |
663 | handled just fine (because each portion sits on its own | |
664 | 8-byte). */ | |
fe978cb0 | 665 | theclass[1] = amd64_merge_classes (theclass[1], subclass[0]); |
efb1c01c | 666 | if (pos == 0) |
fe978cb0 | 667 | theclass[1] = amd64_merge_classes (theclass[1], subclass[1]); |
53e95fcf | 668 | } |
53e95fcf | 669 | } |
efb1c01c MK |
670 | |
671 | /* 4. Then a post merger cleanup is done: */ | |
672 | ||
673 | /* Rule (a): If one of the classes is MEMORY, the whole argument is | |
674 | passed in memory. */ | |
fe978cb0 PA |
675 | if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY) |
676 | theclass[0] = theclass[1] = AMD64_MEMORY; | |
efb1c01c | 677 | |
177b42fe | 678 | /* Rule (b): If SSEUP is not preceded by SSE, it is converted to |
efb1c01c | 679 | SSE. */ |
fe978cb0 PA |
680 | if (theclass[0] == AMD64_SSEUP) |
681 | theclass[0] = AMD64_SSE; | |
682 | if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE) | |
683 | theclass[1] = AMD64_SSE; | |
efb1c01c MK |
684 | } |
685 | ||
686 | /* Classify TYPE, and store the result in CLASS. */ | |
687 | ||
bf4d6c1c | 688 | static void |
fe978cb0 | 689 | amd64_classify (struct type *type, enum amd64_reg_class theclass[2]) |
efb1c01c MK |
690 | { |
691 | enum type_code code = TYPE_CODE (type); | |
692 | int len = TYPE_LENGTH (type); | |
693 | ||
fe978cb0 | 694 | theclass[0] = theclass[1] = AMD64_NO_CLASS; |
efb1c01c MK |
695 | |
696 | /* Arguments of types (signed and unsigned) _Bool, char, short, int, | |
5a7225ed JB |
697 | long, long long, and pointers are in the INTEGER class. Similarly, |
698 | range types, used by languages such as Ada, are also in the INTEGER | |
699 | class. */ | |
efb1c01c | 700 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM |
b929c77f | 701 | || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE |
9db13498 | 702 | || code == TYPE_CODE_CHAR |
aa006118 | 703 | || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type)) |
efb1c01c | 704 | && (len == 1 || len == 2 || len == 4 || len == 8)) |
fe978cb0 | 705 | theclass[0] = AMD64_INTEGER; |
efb1c01c | 706 | |
5daa78cc TJB |
707 | /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64 |
708 | are in class SSE. */ | |
709 | else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT) | |
710 | && (len == 4 || len == 8)) | |
efb1c01c | 711 | /* FIXME: __m64 . */ |
fe978cb0 | 712 | theclass[0] = AMD64_SSE; |
efb1c01c | 713 | |
5daa78cc TJB |
714 | /* Arguments of types __float128, _Decimal128 and __m128 are split into |
715 | two halves. The least significant ones belong to class SSE, the most | |
efb1c01c | 716 | significant one to class SSEUP. */ |
5daa78cc TJB |
717 | else if (code == TYPE_CODE_DECFLOAT && len == 16) |
718 | /* FIXME: __float128, __m128. */ | |
fe978cb0 | 719 | theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP; |
efb1c01c MK |
720 | |
721 | /* The 64-bit mantissa of arguments of type long double belongs to | |
722 | class X87, the 16-bit exponent plus 6 bytes of padding belongs to | |
723 | class X87UP. */ | |
724 | else if (code == TYPE_CODE_FLT && len == 16) | |
725 | /* Class X87 and X87UP. */ | |
fe978cb0 | 726 | theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP; |
efb1c01c | 727 | |
7f7930dd MK |
728 | /* Arguments of complex T where T is one of the types float or |
729 | double get treated as if they are implemented as: | |
730 | ||
731 | struct complexT { | |
732 | T real; | |
733 | T imag; | |
5f52445b YQ |
734 | }; |
735 | ||
736 | */ | |
7f7930dd | 737 | else if (code == TYPE_CODE_COMPLEX && len == 8) |
fe978cb0 | 738 | theclass[0] = AMD64_SSE; |
7f7930dd | 739 | else if (code == TYPE_CODE_COMPLEX && len == 16) |
fe978cb0 | 740 | theclass[0] = theclass[1] = AMD64_SSE; |
7f7930dd MK |
741 | |
742 | /* A variable of type complex long double is classified as type | |
743 | COMPLEX_X87. */ | |
744 | else if (code == TYPE_CODE_COMPLEX && len == 32) | |
fe978cb0 | 745 | theclass[0] = AMD64_COMPLEX_X87; |
7f7930dd | 746 | |
efb1c01c MK |
747 | /* Aggregates. */ |
748 | else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT | |
749 | || code == TYPE_CODE_UNION) | |
fe978cb0 | 750 | amd64_classify_aggregate (type, theclass); |
efb1c01c MK |
751 | } |
752 | ||
753 | static enum return_value_convention | |
6a3a010b | 754 | amd64_return_value (struct gdbarch *gdbarch, struct value *function, |
c055b101 | 755 | struct type *type, struct regcache *regcache, |
42835c2b | 756 | gdb_byte *readbuf, const gdb_byte *writebuf) |
efb1c01c | 757 | { |
fe978cb0 | 758 | enum amd64_reg_class theclass[2]; |
efb1c01c | 759 | int len = TYPE_LENGTH (type); |
90f90721 MK |
760 | static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM }; |
761 | static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM }; | |
efb1c01c MK |
762 | int integer_reg = 0; |
763 | int sse_reg = 0; | |
764 | int i; | |
765 | ||
766 | gdb_assert (!(readbuf && writebuf)); | |
767 | ||
768 | /* 1. Classify the return type with the classification algorithm. */ | |
fe978cb0 | 769 | amd64_classify (type, theclass); |
efb1c01c MK |
770 | |
771 | /* 2. If the type has class MEMORY, then the caller provides space | |
6fa57a7d | 772 | for the return value and passes the address of this storage in |
0963b4bd | 773 | %rdi as if it were the first argument to the function. In effect, |
6fa57a7d MK |
774 | this address becomes a hidden first argument. |
775 | ||
776 | On return %rax will contain the address that has been passed in | |
777 | by the caller in %rdi. */ | |
fe978cb0 | 778 | if (theclass[0] == AMD64_MEMORY) |
6fa57a7d MK |
779 | { |
780 | /* As indicated by the comment above, the ABI guarantees that we | |
781 | can always find the return value just after the function has | |
782 | returned. */ | |
783 | ||
784 | if (readbuf) | |
785 | { | |
786 | ULONGEST addr; | |
787 | ||
788 | regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr); | |
789 | read_memory (addr, readbuf, TYPE_LENGTH (type)); | |
790 | } | |
791 | ||
792 | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | |
793 | } | |
efb1c01c | 794 | |
7f7930dd MK |
795 | /* 8. If the class is COMPLEX_X87, the real part of the value is |
796 | returned in %st0 and the imaginary part in %st1. */ | |
fe978cb0 | 797 | if (theclass[0] == AMD64_COMPLEX_X87) |
7f7930dd MK |
798 | { |
799 | if (readbuf) | |
800 | { | |
0b883586 SM |
801 | regcache->raw_read (AMD64_ST0_REGNUM, readbuf); |
802 | regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16); | |
7f7930dd MK |
803 | } |
804 | ||
805 | if (writebuf) | |
806 | { | |
807 | i387_return_value (gdbarch, regcache); | |
10eaee5f SM |
808 | regcache->raw_write (AMD64_ST0_REGNUM, writebuf); |
809 | regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16); | |
7f7930dd MK |
810 | |
811 | /* Fix up the tag word such that both %st(0) and %st(1) are | |
812 | marked as valid. */ | |
813 | regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff); | |
814 | } | |
815 | ||
816 | return RETURN_VALUE_REGISTER_CONVENTION; | |
817 | } | |
818 | ||
fe978cb0 | 819 | gdb_assert (theclass[1] != AMD64_MEMORY); |
bad43aa5 | 820 | gdb_assert (len <= 16); |
efb1c01c MK |
821 | |
822 | for (i = 0; len > 0; i++, len -= 8) | |
823 | { | |
824 | int regnum = -1; | |
825 | int offset = 0; | |
826 | ||
fe978cb0 | 827 | switch (theclass[i]) |
efb1c01c MK |
828 | { |
829 | case AMD64_INTEGER: | |
830 | /* 3. If the class is INTEGER, the next available register | |
831 | of the sequence %rax, %rdx is used. */ | |
832 | regnum = integer_regnum[integer_reg++]; | |
833 | break; | |
834 | ||
835 | case AMD64_SSE: | |
836 | /* 4. If the class is SSE, the next available SSE register | |
837 | of the sequence %xmm0, %xmm1 is used. */ | |
838 | regnum = sse_regnum[sse_reg++]; | |
839 | break; | |
840 | ||
841 | case AMD64_SSEUP: | |
842 | /* 5. If the class is SSEUP, the eightbyte is passed in the | |
843 | upper half of the last used SSE register. */ | |
844 | gdb_assert (sse_reg > 0); | |
845 | regnum = sse_regnum[sse_reg - 1]; | |
846 | offset = 8; | |
847 | break; | |
848 | ||
849 | case AMD64_X87: | |
850 | /* 6. If the class is X87, the value is returned on the X87 | |
851 | stack in %st0 as 80-bit x87 number. */ | |
90f90721 | 852 | regnum = AMD64_ST0_REGNUM; |
efb1c01c MK |
853 | if (writebuf) |
854 | i387_return_value (gdbarch, regcache); | |
855 | break; | |
856 | ||
857 | case AMD64_X87UP: | |
858 | /* 7. If the class is X87UP, the value is returned together | |
859 | with the previous X87 value in %st0. */ | |
fe978cb0 | 860 | gdb_assert (i > 0 && theclass[0] == AMD64_X87); |
90f90721 | 861 | regnum = AMD64_ST0_REGNUM; |
efb1c01c MK |
862 | offset = 8; |
863 | len = 2; | |
864 | break; | |
865 | ||
866 | case AMD64_NO_CLASS: | |
867 | continue; | |
868 | ||
869 | default: | |
870 | gdb_assert (!"Unexpected register class."); | |
871 | } | |
872 | ||
873 | gdb_assert (regnum != -1); | |
874 | ||
875 | if (readbuf) | |
502fe83e SM |
876 | regcache->raw_read_part (regnum, offset, std::min (len, 8), |
877 | readbuf + i * 8); | |
efb1c01c | 878 | if (writebuf) |
4f0420fd SM |
879 | regcache->raw_write_part (regnum, offset, std::min (len, 8), |
880 | writebuf + i * 8); | |
efb1c01c MK |
881 | } |
882 | ||
883 | return RETURN_VALUE_REGISTER_CONVENTION; | |
53e95fcf JS |
884 | } |
885 | \f | |
886 | ||
720aa428 | 887 | static CORE_ADDR |
cf84fa6b AH |
888 | amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args, |
889 | CORE_ADDR sp, function_call_return_method return_method) | |
720aa428 | 890 | { |
bf4d6c1c JB |
891 | static int integer_regnum[] = |
892 | { | |
893 | AMD64_RDI_REGNUM, /* %rdi */ | |
894 | AMD64_RSI_REGNUM, /* %rsi */ | |
895 | AMD64_RDX_REGNUM, /* %rdx */ | |
896 | AMD64_RCX_REGNUM, /* %rcx */ | |
5b856f36 PM |
897 | AMD64_R8_REGNUM, /* %r8 */ |
898 | AMD64_R9_REGNUM /* %r9 */ | |
bf4d6c1c | 899 | }; |
720aa428 MK |
900 | static int sse_regnum[] = |
901 | { | |
902 | /* %xmm0 ... %xmm7 */ | |
90f90721 MK |
903 | AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, |
904 | AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | |
905 | AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | |
906 | AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | |
720aa428 | 907 | }; |
224c3ddb | 908 | struct value **stack_args = XALLOCAVEC (struct value *, nargs); |
720aa428 MK |
909 | int num_stack_args = 0; |
910 | int num_elements = 0; | |
911 | int element = 0; | |
912 | int integer_reg = 0; | |
913 | int sse_reg = 0; | |
914 | int i; | |
915 | ||
6470d250 | 916 | /* Reserve a register for the "hidden" argument. */ |
cf84fa6b | 917 | if (return_method == return_method_struct) |
6470d250 MK |
918 | integer_reg++; |
919 | ||
720aa428 MK |
920 | for (i = 0; i < nargs; i++) |
921 | { | |
4991999e | 922 | struct type *type = value_type (args[i]); |
720aa428 | 923 | int len = TYPE_LENGTH (type); |
fe978cb0 | 924 | enum amd64_reg_class theclass[2]; |
720aa428 MK |
925 | int needed_integer_regs = 0; |
926 | int needed_sse_regs = 0; | |
927 | int j; | |
928 | ||
929 | /* Classify argument. */ | |
fe978cb0 | 930 | amd64_classify (type, theclass); |
720aa428 MK |
931 | |
932 | /* Calculate the number of integer and SSE registers needed for | |
933 | this argument. */ | |
934 | for (j = 0; j < 2; j++) | |
935 | { | |
fe978cb0 | 936 | if (theclass[j] == AMD64_INTEGER) |
720aa428 | 937 | needed_integer_regs++; |
fe978cb0 | 938 | else if (theclass[j] == AMD64_SSE) |
720aa428 MK |
939 | needed_sse_regs++; |
940 | } | |
941 | ||
942 | /* Check whether enough registers are available, and if the | |
943 | argument should be passed in registers at all. */ | |
bf4d6c1c | 944 | if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum) |
720aa428 MK |
945 | || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum) |
946 | || (needed_integer_regs == 0 && needed_sse_regs == 0)) | |
947 | { | |
948 | /* The argument will be passed on the stack. */ | |
949 | num_elements += ((len + 7) / 8); | |
849e9755 | 950 | stack_args[num_stack_args++] = args[i]; |
720aa428 MK |
951 | } |
952 | else | |
953 | { | |
954 | /* The argument will be passed in registers. */ | |
d8de1ef7 MK |
955 | const gdb_byte *valbuf = value_contents (args[i]); |
956 | gdb_byte buf[8]; | |
720aa428 MK |
957 | |
958 | gdb_assert (len <= 16); | |
959 | ||
960 | for (j = 0; len > 0; j++, len -= 8) | |
961 | { | |
962 | int regnum = -1; | |
963 | int offset = 0; | |
964 | ||
fe978cb0 | 965 | switch (theclass[j]) |
720aa428 MK |
966 | { |
967 | case AMD64_INTEGER: | |
bf4d6c1c | 968 | regnum = integer_regnum[integer_reg++]; |
720aa428 MK |
969 | break; |
970 | ||
971 | case AMD64_SSE: | |
972 | regnum = sse_regnum[sse_reg++]; | |
973 | break; | |
974 | ||
975 | case AMD64_SSEUP: | |
976 | gdb_assert (sse_reg > 0); | |
977 | regnum = sse_regnum[sse_reg - 1]; | |
978 | offset = 8; | |
979 | break; | |
980 | ||
981 | default: | |
982 | gdb_assert (!"Unexpected register class."); | |
983 | } | |
984 | ||
985 | gdb_assert (regnum != -1); | |
986 | memset (buf, 0, sizeof buf); | |
325fac50 | 987 | memcpy (buf, valbuf + j * 8, std::min (len, 8)); |
4f0420fd | 988 | regcache->raw_write_part (regnum, offset, 8, buf); |
720aa428 MK |
989 | } |
990 | } | |
991 | } | |
992 | ||
993 | /* Allocate space for the arguments on the stack. */ | |
994 | sp -= num_elements * 8; | |
995 | ||
996 | /* The psABI says that "The end of the input argument area shall be | |
997 | aligned on a 16 byte boundary." */ | |
998 | sp &= ~0xf; | |
999 | ||
1000 | /* Write out the arguments to the stack. */ | |
1001 | for (i = 0; i < num_stack_args; i++) | |
1002 | { | |
4991999e | 1003 | struct type *type = value_type (stack_args[i]); |
d8de1ef7 | 1004 | const gdb_byte *valbuf = value_contents (stack_args[i]); |
849e9755 JB |
1005 | int len = TYPE_LENGTH (type); |
1006 | ||
1007 | write_memory (sp + element * 8, valbuf, len); | |
1008 | element += ((len + 7) / 8); | |
720aa428 MK |
1009 | } |
1010 | ||
1011 | /* The psABI says that "For calls that may call functions that use | |
1012 | varargs or stdargs (prototype-less calls or calls to functions | |
1013 | containing ellipsis (...) in the declaration) %al is used as | |
1014 | hidden argument to specify the number of SSE registers used. */ | |
90f90721 | 1015 | regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg); |
720aa428 MK |
1016 | return sp; |
1017 | } | |
1018 | ||
c4f35dd8 | 1019 | static CORE_ADDR |
7d9b040b | 1020 | amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
e53bef9f MK |
1021 | struct regcache *regcache, CORE_ADDR bp_addr, |
1022 | int nargs, struct value **args, CORE_ADDR sp, | |
cf84fa6b AH |
1023 | function_call_return_method return_method, |
1024 | CORE_ADDR struct_addr) | |
53e95fcf | 1025 | { |
e17a4113 | 1026 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
d8de1ef7 | 1027 | gdb_byte buf[8]; |
c4f35dd8 | 1028 | |
4a612d6f WT |
1029 | /* BND registers can be in arbitrary values at the moment of the |
1030 | inferior call. This can cause boundary violations that are not | |
1031 | due to a real bug or even desired by the user. The best to be done | |
1032 | is set the BND registers to allow access to the whole memory, INIT | |
1033 | state, before pushing the inferior call. */ | |
1034 | i387_reset_bnd_regs (gdbarch, regcache); | |
1035 | ||
c4f35dd8 | 1036 | /* Pass arguments. */ |
cf84fa6b | 1037 | sp = amd64_push_arguments (regcache, nargs, args, sp, return_method); |
c4f35dd8 MK |
1038 | |
1039 | /* Pass "hidden" argument". */ | |
cf84fa6b | 1040 | if (return_method == return_method_struct) |
c4f35dd8 | 1041 | { |
e17a4113 | 1042 | store_unsigned_integer (buf, 8, byte_order, struct_addr); |
b66f5587 | 1043 | regcache->cooked_write (AMD64_RDI_REGNUM, buf); |
c4f35dd8 MK |
1044 | } |
1045 | ||
1046 | /* Store return address. */ | |
1047 | sp -= 8; | |
e17a4113 | 1048 | store_unsigned_integer (buf, 8, byte_order, bp_addr); |
c4f35dd8 MK |
1049 | write_memory (sp, buf, 8); |
1050 | ||
1051 | /* Finally, update the stack pointer... */ | |
e17a4113 | 1052 | store_unsigned_integer (buf, 8, byte_order, sp); |
b66f5587 | 1053 | regcache->cooked_write (AMD64_RSP_REGNUM, buf); |
c4f35dd8 MK |
1054 | |
1055 | /* ...and fake a frame pointer. */ | |
b66f5587 | 1056 | regcache->cooked_write (AMD64_RBP_REGNUM, buf); |
c4f35dd8 | 1057 | |
3e210248 | 1058 | return sp + 16; |
53e95fcf | 1059 | } |
c4f35dd8 | 1060 | \f |
35669430 DE |
1061 | /* Displaced instruction handling. */ |
1062 | ||
1063 | /* A partially decoded instruction. | |
1064 | This contains enough details for displaced stepping purposes. */ | |
1065 | ||
1066 | struct amd64_insn | |
1067 | { | |
1068 | /* The number of opcode bytes. */ | |
1069 | int opcode_len; | |
50a1fdd5 PA |
1070 | /* The offset of the REX/VEX instruction encoding prefix or -1 if |
1071 | not present. */ | |
1072 | int enc_prefix_offset; | |
35669430 DE |
1073 | /* The offset to the first opcode byte. */ |
1074 | int opcode_offset; | |
1075 | /* The offset to the modrm byte or -1 if not present. */ | |
1076 | int modrm_offset; | |
1077 | ||
1078 | /* The raw instruction. */ | |
1079 | gdb_byte *raw_insn; | |
1080 | }; | |
1081 | ||
cfba9872 | 1082 | struct amd64_displaced_step_closure : public displaced_step_closure |
35669430 | 1083 | { |
cfba9872 SM |
1084 | amd64_displaced_step_closure (int insn_buf_len) |
1085 | : insn_buf (insn_buf_len, 0) | |
1086 | {} | |
1087 | ||
35669430 | 1088 | /* For rip-relative insns, saved copy of the reg we use instead of %rip. */ |
cfba9872 | 1089 | int tmp_used = 0; |
35669430 DE |
1090 | int tmp_regno; |
1091 | ULONGEST tmp_save; | |
1092 | ||
1093 | /* Details of the instruction. */ | |
1094 | struct amd64_insn insn_details; | |
1095 | ||
cfba9872 SM |
1096 | /* The possibly modified insn. */ |
1097 | gdb::byte_vector insn_buf; | |
35669430 DE |
1098 | }; |
1099 | ||
1100 | /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with | |
1101 | ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative, | |
1102 | at which point delete these in favor of libopcodes' versions). */ | |
1103 | ||
1104 | static const unsigned char onebyte_has_modrm[256] = { | |
1105 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | |
1106 | /* ------------------------------- */ | |
1107 | /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */ | |
1108 | /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */ | |
1109 | /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */ | |
1110 | /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */ | |
1111 | /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */ | |
1112 | /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */ | |
1113 | /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */ | |
1114 | /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */ | |
1115 | /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */ | |
1116 | /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */ | |
1117 | /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */ | |
1118 | /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */ | |
1119 | /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */ | |
1120 | /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */ | |
1121 | /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */ | |
1122 | /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */ | |
1123 | /* ------------------------------- */ | |
1124 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | |
1125 | }; | |
1126 | ||
1127 | static const unsigned char twobyte_has_modrm[256] = { | |
1128 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | |
1129 | /* ------------------------------- */ | |
1130 | /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */ | |
1131 | /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */ | |
1132 | /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */ | |
1133 | /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */ | |
1134 | /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */ | |
1135 | /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */ | |
1136 | /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */ | |
1137 | /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */ | |
1138 | /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */ | |
1139 | /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */ | |
1140 | /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */ | |
1141 | /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */ | |
1142 | /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */ | |
1143 | /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */ | |
1144 | /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */ | |
1145 | /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */ | |
1146 | /* ------------------------------- */ | |
1147 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | |
1148 | }; | |
1149 | ||
1150 | static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp); | |
1151 | ||
1152 | static int | |
1153 | rex_prefix_p (gdb_byte pfx) | |
1154 | { | |
1155 | return REX_PREFIX_P (pfx); | |
1156 | } | |
1157 | ||
50a1fdd5 PA |
1158 | /* True if PFX is the start of the 2-byte VEX prefix. */ |
1159 | ||
1160 | static bool | |
1161 | vex2_prefix_p (gdb_byte pfx) | |
1162 | { | |
1163 | return pfx == 0xc5; | |
1164 | } | |
1165 | ||
1166 | /* True if PFX is the start of the 3-byte VEX prefix. */ | |
1167 | ||
1168 | static bool | |
1169 | vex3_prefix_p (gdb_byte pfx) | |
1170 | { | |
1171 | return pfx == 0xc4; | |
1172 | } | |
1173 | ||
35669430 DE |
1174 | /* Skip the legacy instruction prefixes in INSN. |
1175 | We assume INSN is properly sentineled so we don't have to worry | |
1176 | about falling off the end of the buffer. */ | |
1177 | ||
1178 | static gdb_byte * | |
1903f0e6 | 1179 | amd64_skip_prefixes (gdb_byte *insn) |
35669430 DE |
1180 | { |
1181 | while (1) | |
1182 | { | |
1183 | switch (*insn) | |
1184 | { | |
1185 | case DATA_PREFIX_OPCODE: | |
1186 | case ADDR_PREFIX_OPCODE: | |
1187 | case CS_PREFIX_OPCODE: | |
1188 | case DS_PREFIX_OPCODE: | |
1189 | case ES_PREFIX_OPCODE: | |
1190 | case FS_PREFIX_OPCODE: | |
1191 | case GS_PREFIX_OPCODE: | |
1192 | case SS_PREFIX_OPCODE: | |
1193 | case LOCK_PREFIX_OPCODE: | |
1194 | case REPE_PREFIX_OPCODE: | |
1195 | case REPNE_PREFIX_OPCODE: | |
1196 | ++insn; | |
1197 | continue; | |
1198 | default: | |
1199 | break; | |
1200 | } | |
1201 | break; | |
1202 | } | |
1203 | ||
1204 | return insn; | |
1205 | } | |
1206 | ||
35669430 DE |
1207 | /* Return an integer register (other than RSP) that is unused as an input |
1208 | operand in INSN. | |
1209 | In order to not require adding a rex prefix if the insn doesn't already | |
1210 | have one, the result is restricted to RAX ... RDI, sans RSP. | |
1211 | The register numbering of the result follows architecture ordering, | |
1212 | e.g. RDI = 7. */ | |
1213 | ||
1214 | static int | |
1215 | amd64_get_unused_input_int_reg (const struct amd64_insn *details) | |
1216 | { | |
1217 | /* 1 bit for each reg */ | |
1218 | int used_regs_mask = 0; | |
1219 | ||
1220 | /* There can be at most 3 int regs used as inputs in an insn, and we have | |
1221 | 7 to choose from (RAX ... RDI, sans RSP). | |
1222 | This allows us to take a conservative approach and keep things simple. | |
1223 | E.g. By avoiding RAX, we don't have to specifically watch for opcodes | |
1224 | that implicitly specify RAX. */ | |
1225 | ||
1226 | /* Avoid RAX. */ | |
1227 | used_regs_mask |= 1 << EAX_REG_NUM; | |
1228 | /* Similarily avoid RDX, implicit operand in divides. */ | |
1229 | used_regs_mask |= 1 << EDX_REG_NUM; | |
1230 | /* Avoid RSP. */ | |
1231 | used_regs_mask |= 1 << ESP_REG_NUM; | |
1232 | ||
1233 | /* If the opcode is one byte long and there's no ModRM byte, | |
1234 | assume the opcode specifies a register. */ | |
1235 | if (details->opcode_len == 1 && details->modrm_offset == -1) | |
1236 | used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7); | |
1237 | ||
1238 | /* Mark used regs in the modrm/sib bytes. */ | |
1239 | if (details->modrm_offset != -1) | |
1240 | { | |
1241 | int modrm = details->raw_insn[details->modrm_offset]; | |
1242 | int mod = MODRM_MOD_FIELD (modrm); | |
1243 | int reg = MODRM_REG_FIELD (modrm); | |
1244 | int rm = MODRM_RM_FIELD (modrm); | |
1245 | int have_sib = mod != 3 && rm == 4; | |
1246 | ||
1247 | /* Assume the reg field of the modrm byte specifies a register. */ | |
1248 | used_regs_mask |= 1 << reg; | |
1249 | ||
1250 | if (have_sib) | |
1251 | { | |
1252 | int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]); | |
d48ebb5b | 1253 | int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]); |
35669430 | 1254 | used_regs_mask |= 1 << base; |
d48ebb5b | 1255 | used_regs_mask |= 1 << idx; |
35669430 DE |
1256 | } |
1257 | else | |
1258 | { | |
1259 | used_regs_mask |= 1 << rm; | |
1260 | } | |
1261 | } | |
1262 | ||
1263 | gdb_assert (used_regs_mask < 256); | |
1264 | gdb_assert (used_regs_mask != 255); | |
1265 | ||
1266 | /* Finally, find a free reg. */ | |
1267 | { | |
1268 | int i; | |
1269 | ||
1270 | for (i = 0; i < 8; ++i) | |
1271 | { | |
1272 | if (! (used_regs_mask & (1 << i))) | |
1273 | return i; | |
1274 | } | |
1275 | ||
1276 | /* We shouldn't get here. */ | |
1277 | internal_error (__FILE__, __LINE__, _("unable to find free reg")); | |
1278 | } | |
1279 | } | |
1280 | ||
1281 | /* Extract the details of INSN that we need. */ | |
1282 | ||
1283 | static void | |
1284 | amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details) | |
1285 | { | |
1286 | gdb_byte *start = insn; | |
1287 | int need_modrm; | |
1288 | ||
1289 | details->raw_insn = insn; | |
1290 | ||
1291 | details->opcode_len = -1; | |
50a1fdd5 | 1292 | details->enc_prefix_offset = -1; |
35669430 DE |
1293 | details->opcode_offset = -1; |
1294 | details->modrm_offset = -1; | |
1295 | ||
1296 | /* Skip legacy instruction prefixes. */ | |
1903f0e6 | 1297 | insn = amd64_skip_prefixes (insn); |
35669430 | 1298 | |
50a1fdd5 | 1299 | /* Skip REX/VEX instruction encoding prefixes. */ |
35669430 DE |
1300 | if (rex_prefix_p (*insn)) |
1301 | { | |
50a1fdd5 | 1302 | details->enc_prefix_offset = insn - start; |
35669430 DE |
1303 | ++insn; |
1304 | } | |
50a1fdd5 PA |
1305 | else if (vex2_prefix_p (*insn)) |
1306 | { | |
1307 | /* Don't record the offset in this case because this prefix has | |
1308 | no REX.B equivalent. */ | |
1309 | insn += 2; | |
1310 | } | |
1311 | else if (vex3_prefix_p (*insn)) | |
1312 | { | |
1313 | details->enc_prefix_offset = insn - start; | |
1314 | insn += 3; | |
1315 | } | |
35669430 DE |
1316 | |
1317 | details->opcode_offset = insn - start; | |
1318 | ||
1319 | if (*insn == TWO_BYTE_OPCODE_ESCAPE) | |
1320 | { | |
1321 | /* Two or three-byte opcode. */ | |
1322 | ++insn; | |
1323 | need_modrm = twobyte_has_modrm[*insn]; | |
1324 | ||
1325 | /* Check for three-byte opcode. */ | |
1903f0e6 | 1326 | switch (*insn) |
35669430 | 1327 | { |
1903f0e6 DE |
1328 | case 0x24: |
1329 | case 0x25: | |
1330 | case 0x38: | |
1331 | case 0x3a: | |
1332 | case 0x7a: | |
1333 | case 0x7b: | |
35669430 DE |
1334 | ++insn; |
1335 | details->opcode_len = 3; | |
1903f0e6 DE |
1336 | break; |
1337 | default: | |
1338 | details->opcode_len = 2; | |
1339 | break; | |
35669430 | 1340 | } |
35669430 DE |
1341 | } |
1342 | else | |
1343 | { | |
1344 | /* One-byte opcode. */ | |
1345 | need_modrm = onebyte_has_modrm[*insn]; | |
1346 | details->opcode_len = 1; | |
1347 | } | |
1348 | ||
1349 | if (need_modrm) | |
1350 | { | |
1351 | ++insn; | |
1352 | details->modrm_offset = insn - start; | |
1353 | } | |
1354 | } | |
1355 | ||
1356 | /* Update %rip-relative addressing in INSN. | |
1357 | ||
1358 | %rip-relative addressing only uses a 32-bit displacement. | |
1359 | 32 bits is not enough to be guaranteed to cover the distance between where | |
1360 | the real instruction is and where its copy is. | |
1361 | Convert the insn to use base+disp addressing. | |
1362 | We set base = pc + insn_length so we can leave disp unchanged. */ | |
c4f35dd8 | 1363 | |
35669430 | 1364 | static void |
cfba9872 | 1365 | fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_closure *dsc, |
35669430 DE |
1366 | CORE_ADDR from, CORE_ADDR to, struct regcache *regs) |
1367 | { | |
1368 | const struct amd64_insn *insn_details = &dsc->insn_details; | |
1369 | int modrm_offset = insn_details->modrm_offset; | |
1370 | gdb_byte *insn = insn_details->raw_insn + modrm_offset; | |
1371 | CORE_ADDR rip_base; | |
35669430 DE |
1372 | int insn_length; |
1373 | int arch_tmp_regno, tmp_regno; | |
1374 | ULONGEST orig_value; | |
1375 | ||
1376 | /* %rip+disp32 addressing mode, displacement follows ModRM byte. */ | |
1377 | ++insn; | |
1378 | ||
1379 | /* Compute the rip-relative address. */ | |
cfba9872 SM |
1380 | insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (), |
1381 | dsc->insn_buf.size (), from); | |
35669430 DE |
1382 | rip_base = from + insn_length; |
1383 | ||
1384 | /* We need a register to hold the address. | |
1385 | Pick one not used in the insn. | |
1386 | NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */ | |
1387 | arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details); | |
1388 | tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno); | |
1389 | ||
50a1fdd5 PA |
1390 | /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */ |
1391 | static constexpr gdb_byte VEX3_NOT_B = 0x20; | |
1392 | ||
1393 | /* REX.B should be unset (VEX.!B set) as we were using rip-relative | |
1394 | addressing, but ensure it's unset (set for VEX) anyway, tmp_regno | |
1395 | is not r8-r15. */ | |
1396 | if (insn_details->enc_prefix_offset != -1) | |
1397 | { | |
1398 | gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset]; | |
1399 | if (rex_prefix_p (pfx[0])) | |
1400 | pfx[0] &= ~REX_B; | |
1401 | else if (vex3_prefix_p (pfx[0])) | |
1402 | pfx[1] |= VEX3_NOT_B; | |
1403 | else | |
1404 | gdb_assert_not_reached ("unhandled prefix"); | |
1405 | } | |
35669430 DE |
1406 | |
1407 | regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value); | |
1408 | dsc->tmp_regno = tmp_regno; | |
1409 | dsc->tmp_save = orig_value; | |
1410 | dsc->tmp_used = 1; | |
1411 | ||
1412 | /* Convert the ModRM field to be base+disp. */ | |
1413 | dsc->insn_buf[modrm_offset] &= ~0xc7; | |
1414 | dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno; | |
1415 | ||
1416 | regcache_cooked_write_unsigned (regs, tmp_regno, rip_base); | |
1417 | ||
1418 | if (debug_displaced) | |
1419 | fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n" | |
5af949e3 UW |
1420 | "displaced: using temp reg %d, old value %s, new value %s\n", |
1421 | dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save), | |
1422 | paddress (gdbarch, rip_base)); | |
35669430 DE |
1423 | } |
1424 | ||
1425 | static void | |
1426 | fixup_displaced_copy (struct gdbarch *gdbarch, | |
cfba9872 | 1427 | amd64_displaced_step_closure *dsc, |
35669430 DE |
1428 | CORE_ADDR from, CORE_ADDR to, struct regcache *regs) |
1429 | { | |
1430 | const struct amd64_insn *details = &dsc->insn_details; | |
1431 | ||
1432 | if (details->modrm_offset != -1) | |
1433 | { | |
1434 | gdb_byte modrm = details->raw_insn[details->modrm_offset]; | |
1435 | ||
1436 | if ((modrm & 0xc7) == 0x05) | |
1437 | { | |
1438 | /* The insn uses rip-relative addressing. | |
1439 | Deal with it. */ | |
1440 | fixup_riprel (gdbarch, dsc, from, to, regs); | |
1441 | } | |
1442 | } | |
1443 | } | |
1444 | ||
1445 | struct displaced_step_closure * | |
1446 | amd64_displaced_step_copy_insn (struct gdbarch *gdbarch, | |
1447 | CORE_ADDR from, CORE_ADDR to, | |
1448 | struct regcache *regs) | |
1449 | { | |
1450 | int len = gdbarch_max_insn_length (gdbarch); | |
741e63d7 | 1451 | /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to |
35669430 DE |
1452 | continually watch for running off the end of the buffer. */ |
1453 | int fixup_sentinel_space = len; | |
cfba9872 SM |
1454 | amd64_displaced_step_closure *dsc |
1455 | = new amd64_displaced_step_closure (len + fixup_sentinel_space); | |
35669430 DE |
1456 | gdb_byte *buf = &dsc->insn_buf[0]; |
1457 | struct amd64_insn *details = &dsc->insn_details; | |
1458 | ||
35669430 DE |
1459 | read_memory (from, buf, len); |
1460 | ||
1461 | /* Set up the sentinel space so we don't have to worry about running | |
1462 | off the end of the buffer. An excessive number of leading prefixes | |
1463 | could otherwise cause this. */ | |
1464 | memset (buf + len, 0, fixup_sentinel_space); | |
1465 | ||
1466 | amd64_get_insn_details (buf, details); | |
1467 | ||
1468 | /* GDB may get control back after the insn after the syscall. | |
1469 | Presumably this is a kernel bug. | |
1470 | If this is a syscall, make sure there's a nop afterwards. */ | |
1471 | { | |
1472 | int syscall_length; | |
1473 | ||
1474 | if (amd64_syscall_p (details, &syscall_length)) | |
1475 | buf[details->opcode_offset + syscall_length] = NOP_OPCODE; | |
1476 | } | |
1477 | ||
1478 | /* Modify the insn to cope with the address where it will be executed from. | |
1479 | In particular, handle any rip-relative addressing. */ | |
1480 | fixup_displaced_copy (gdbarch, dsc, from, to, regs); | |
1481 | ||
1482 | write_memory (to, buf, len); | |
1483 | ||
1484 | if (debug_displaced) | |
1485 | { | |
5af949e3 UW |
1486 | fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", |
1487 | paddress (gdbarch, from), paddress (gdbarch, to)); | |
35669430 DE |
1488 | displaced_step_dump_bytes (gdb_stdlog, buf, len); |
1489 | } | |
1490 | ||
1491 | return dsc; | |
1492 | } | |
1493 | ||
1494 | static int | |
1495 | amd64_absolute_jmp_p (const struct amd64_insn *details) | |
1496 | { | |
1497 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1498 | ||
1499 | if (insn[0] == 0xff) | |
1500 | { | |
1501 | /* jump near, absolute indirect (/4) */ | |
1502 | if ((insn[1] & 0x38) == 0x20) | |
1503 | return 1; | |
1504 | ||
1505 | /* jump far, absolute indirect (/5) */ | |
1506 | if ((insn[1] & 0x38) == 0x28) | |
1507 | return 1; | |
1508 | } | |
1509 | ||
1510 | return 0; | |
1511 | } | |
1512 | ||
c2170eef MM |
1513 | /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */ |
1514 | ||
1515 | static int | |
1516 | amd64_jmp_p (const struct amd64_insn *details) | |
1517 | { | |
1518 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1519 | ||
1520 | /* jump short, relative. */ | |
1521 | if (insn[0] == 0xeb) | |
1522 | return 1; | |
1523 | ||
1524 | /* jump near, relative. */ | |
1525 | if (insn[0] == 0xe9) | |
1526 | return 1; | |
1527 | ||
1528 | return amd64_absolute_jmp_p (details); | |
1529 | } | |
1530 | ||
35669430 DE |
1531 | static int |
1532 | amd64_absolute_call_p (const struct amd64_insn *details) | |
1533 | { | |
1534 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1535 | ||
1536 | if (insn[0] == 0xff) | |
1537 | { | |
1538 | /* Call near, absolute indirect (/2) */ | |
1539 | if ((insn[1] & 0x38) == 0x10) | |
1540 | return 1; | |
1541 | ||
1542 | /* Call far, absolute indirect (/3) */ | |
1543 | if ((insn[1] & 0x38) == 0x18) | |
1544 | return 1; | |
1545 | } | |
1546 | ||
1547 | return 0; | |
1548 | } | |
1549 | ||
1550 | static int | |
1551 | amd64_ret_p (const struct amd64_insn *details) | |
1552 | { | |
1553 | /* NOTE: gcc can emit "repz ; ret". */ | |
1554 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1555 | ||
1556 | switch (insn[0]) | |
1557 | { | |
1558 | case 0xc2: /* ret near, pop N bytes */ | |
1559 | case 0xc3: /* ret near */ | |
1560 | case 0xca: /* ret far, pop N bytes */ | |
1561 | case 0xcb: /* ret far */ | |
1562 | case 0xcf: /* iret */ | |
1563 | return 1; | |
1564 | ||
1565 | default: | |
1566 | return 0; | |
1567 | } | |
1568 | } | |
1569 | ||
1570 | static int | |
1571 | amd64_call_p (const struct amd64_insn *details) | |
1572 | { | |
1573 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1574 | ||
1575 | if (amd64_absolute_call_p (details)) | |
1576 | return 1; | |
1577 | ||
1578 | /* call near, relative */ | |
1579 | if (insn[0] == 0xe8) | |
1580 | return 1; | |
1581 | ||
1582 | return 0; | |
1583 | } | |
1584 | ||
35669430 DE |
1585 | /* Return non-zero if INSN is a system call, and set *LENGTHP to its |
1586 | length in bytes. Otherwise, return zero. */ | |
1587 | ||
1588 | static int | |
1589 | amd64_syscall_p (const struct amd64_insn *details, int *lengthp) | |
1590 | { | |
1591 | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | |
1592 | ||
1593 | if (insn[0] == 0x0f && insn[1] == 0x05) | |
1594 | { | |
1595 | *lengthp = 2; | |
1596 | return 1; | |
1597 | } | |
1598 | ||
1599 | return 0; | |
1600 | } | |
1601 | ||
c2170eef MM |
1602 | /* Classify the instruction at ADDR using PRED. |
1603 | Throw an error if the memory can't be read. */ | |
1604 | ||
1605 | static int | |
1606 | amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr, | |
1607 | int (*pred) (const struct amd64_insn *)) | |
1608 | { | |
1609 | struct amd64_insn details; | |
1610 | gdb_byte *buf; | |
1611 | int len, classification; | |
1612 | ||
1613 | len = gdbarch_max_insn_length (gdbarch); | |
224c3ddb | 1614 | buf = (gdb_byte *) alloca (len); |
c2170eef MM |
1615 | |
1616 | read_code (addr, buf, len); | |
1617 | amd64_get_insn_details (buf, &details); | |
1618 | ||
1619 | classification = pred (&details); | |
1620 | ||
1621 | return classification; | |
1622 | } | |
1623 | ||
1624 | /* The gdbarch insn_is_call method. */ | |
1625 | ||
1626 | static int | |
1627 | amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1628 | { | |
1629 | return amd64_classify_insn_at (gdbarch, addr, amd64_call_p); | |
1630 | } | |
1631 | ||
1632 | /* The gdbarch insn_is_ret method. */ | |
1633 | ||
1634 | static int | |
1635 | amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1636 | { | |
1637 | return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p); | |
1638 | } | |
1639 | ||
1640 | /* The gdbarch insn_is_jump method. */ | |
1641 | ||
1642 | static int | |
1643 | amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1644 | { | |
1645 | return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p); | |
1646 | } | |
1647 | ||
35669430 DE |
1648 | /* Fix up the state of registers and memory after having single-stepped |
1649 | a displaced instruction. */ | |
1650 | ||
1651 | void | |
1652 | amd64_displaced_step_fixup (struct gdbarch *gdbarch, | |
cfba9872 | 1653 | struct displaced_step_closure *dsc_, |
35669430 DE |
1654 | CORE_ADDR from, CORE_ADDR to, |
1655 | struct regcache *regs) | |
1656 | { | |
cfba9872 | 1657 | amd64_displaced_step_closure *dsc = (amd64_displaced_step_closure *) dsc_; |
e17a4113 | 1658 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
35669430 DE |
1659 | /* The offset we applied to the instruction's address. */ |
1660 | ULONGEST insn_offset = to - from; | |
cfba9872 | 1661 | gdb_byte *insn = dsc->insn_buf.data (); |
35669430 DE |
1662 | const struct amd64_insn *insn_details = &dsc->insn_details; |
1663 | ||
1664 | if (debug_displaced) | |
1665 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 | 1666 | "displaced: fixup (%s, %s), " |
35669430 | 1667 | "insn = 0x%02x 0x%02x ...\n", |
5af949e3 UW |
1668 | paddress (gdbarch, from), paddress (gdbarch, to), |
1669 | insn[0], insn[1]); | |
35669430 DE |
1670 | |
1671 | /* If we used a tmp reg, restore it. */ | |
1672 | ||
1673 | if (dsc->tmp_used) | |
1674 | { | |
1675 | if (debug_displaced) | |
5af949e3 UW |
1676 | fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n", |
1677 | dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save)); | |
35669430 DE |
1678 | regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save); |
1679 | } | |
1680 | ||
1681 | /* The list of issues to contend with here is taken from | |
1682 | resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28. | |
1683 | Yay for Free Software! */ | |
1684 | ||
1685 | /* Relocate the %rip back to the program's instruction stream, | |
1686 | if necessary. */ | |
1687 | ||
1688 | /* Except in the case of absolute or indirect jump or call | |
1689 | instructions, or a return instruction, the new rip is relative to | |
1690 | the displaced instruction; make it relative to the original insn. | |
1691 | Well, signal handler returns don't need relocation either, but we use the | |
1692 | value of %rip to recognize those; see below. */ | |
1693 | if (! amd64_absolute_jmp_p (insn_details) | |
1694 | && ! amd64_absolute_call_p (insn_details) | |
1695 | && ! amd64_ret_p (insn_details)) | |
1696 | { | |
1697 | ULONGEST orig_rip; | |
1698 | int insn_len; | |
1699 | ||
1700 | regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip); | |
1701 | ||
1702 | /* A signal trampoline system call changes the %rip, resuming | |
1703 | execution of the main program after the signal handler has | |
1704 | returned. That makes them like 'return' instructions; we | |
1705 | shouldn't relocate %rip. | |
1706 | ||
1707 | But most system calls don't, and we do need to relocate %rip. | |
1708 | ||
1709 | Our heuristic for distinguishing these cases: if stepping | |
1710 | over the system call instruction left control directly after | |
1711 | the instruction, the we relocate --- control almost certainly | |
1712 | doesn't belong in the displaced copy. Otherwise, we assume | |
1713 | the instruction has put control where it belongs, and leave | |
1714 | it unrelocated. Goodness help us if there are PC-relative | |
1715 | system calls. */ | |
1716 | if (amd64_syscall_p (insn_details, &insn_len) | |
1717 | && orig_rip != to + insn_len | |
1718 | /* GDB can get control back after the insn after the syscall. | |
1719 | Presumably this is a kernel bug. | |
1720 | Fixup ensures its a nop, we add one to the length for it. */ | |
1721 | && orig_rip != to + insn_len + 1) | |
1722 | { | |
1723 | if (debug_displaced) | |
1724 | fprintf_unfiltered (gdb_stdlog, | |
1725 | "displaced: syscall changed %%rip; " | |
1726 | "not relocating\n"); | |
1727 | } | |
1728 | else | |
1729 | { | |
1730 | ULONGEST rip = orig_rip - insn_offset; | |
1731 | ||
1903f0e6 DE |
1732 | /* If we just stepped over a breakpoint insn, we don't backup |
1733 | the pc on purpose; this is to match behaviour without | |
1734 | stepping. */ | |
35669430 DE |
1735 | |
1736 | regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip); | |
1737 | ||
1738 | if (debug_displaced) | |
1739 | fprintf_unfiltered (gdb_stdlog, | |
1740 | "displaced: " | |
5af949e3 UW |
1741 | "relocated %%rip from %s to %s\n", |
1742 | paddress (gdbarch, orig_rip), | |
1743 | paddress (gdbarch, rip)); | |
35669430 DE |
1744 | } |
1745 | } | |
1746 | ||
1747 | /* If the instruction was PUSHFL, then the TF bit will be set in the | |
1748 | pushed value, and should be cleared. We'll leave this for later, | |
1749 | since GDB already messes up the TF flag when stepping over a | |
1750 | pushfl. */ | |
1751 | ||
1752 | /* If the instruction was a call, the return address now atop the | |
1753 | stack is the address following the copied instruction. We need | |
1754 | to make it the address following the original instruction. */ | |
1755 | if (amd64_call_p (insn_details)) | |
1756 | { | |
1757 | ULONGEST rsp; | |
1758 | ULONGEST retaddr; | |
1759 | const ULONGEST retaddr_len = 8; | |
1760 | ||
1761 | regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp); | |
e17a4113 | 1762 | retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order); |
4dafcdeb | 1763 | retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL; |
e17a4113 | 1764 | write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr); |
35669430 DE |
1765 | |
1766 | if (debug_displaced) | |
1767 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
1768 | "displaced: relocated return addr at %s " |
1769 | "to %s\n", | |
1770 | paddress (gdbarch, rsp), | |
1771 | paddress (gdbarch, retaddr)); | |
35669430 DE |
1772 | } |
1773 | } | |
dde08ee1 PA |
1774 | |
1775 | /* If the instruction INSN uses RIP-relative addressing, return the | |
1776 | offset into the raw INSN where the displacement to be adjusted is | |
1777 | found. Returns 0 if the instruction doesn't use RIP-relative | |
1778 | addressing. */ | |
1779 | ||
1780 | static int | |
1781 | rip_relative_offset (struct amd64_insn *insn) | |
1782 | { | |
1783 | if (insn->modrm_offset != -1) | |
1784 | { | |
1785 | gdb_byte modrm = insn->raw_insn[insn->modrm_offset]; | |
1786 | ||
1787 | if ((modrm & 0xc7) == 0x05) | |
1788 | { | |
1789 | /* The displacement is found right after the ModRM byte. */ | |
1790 | return insn->modrm_offset + 1; | |
1791 | } | |
1792 | } | |
1793 | ||
1794 | return 0; | |
1795 | } | |
1796 | ||
1797 | static void | |
1798 | append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf) | |
1799 | { | |
1800 | target_write_memory (*to, buf, len); | |
1801 | *to += len; | |
1802 | } | |
1803 | ||
60965737 | 1804 | static void |
dde08ee1 PA |
1805 | amd64_relocate_instruction (struct gdbarch *gdbarch, |
1806 | CORE_ADDR *to, CORE_ADDR oldloc) | |
1807 | { | |
1808 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1809 | int len = gdbarch_max_insn_length (gdbarch); | |
1810 | /* Extra space for sentinels. */ | |
1811 | int fixup_sentinel_space = len; | |
224c3ddb | 1812 | gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space); |
dde08ee1 PA |
1813 | struct amd64_insn insn_details; |
1814 | int offset = 0; | |
1815 | LONGEST rel32, newrel; | |
1816 | gdb_byte *insn; | |
1817 | int insn_length; | |
1818 | ||
1819 | read_memory (oldloc, buf, len); | |
1820 | ||
1821 | /* Set up the sentinel space so we don't have to worry about running | |
1822 | off the end of the buffer. An excessive number of leading prefixes | |
1823 | could otherwise cause this. */ | |
1824 | memset (buf + len, 0, fixup_sentinel_space); | |
1825 | ||
1826 | insn = buf; | |
1827 | amd64_get_insn_details (insn, &insn_details); | |
1828 | ||
1829 | insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc); | |
1830 | ||
1831 | /* Skip legacy instruction prefixes. */ | |
1832 | insn = amd64_skip_prefixes (insn); | |
1833 | ||
1834 | /* Adjust calls with 32-bit relative addresses as push/jump, with | |
1835 | the address pushed being the location where the original call in | |
1836 | the user program would return to. */ | |
1837 | if (insn[0] == 0xe8) | |
1838 | { | |
f077e978 PA |
1839 | gdb_byte push_buf[32]; |
1840 | CORE_ADDR ret_addr; | |
1841 | int i = 0; | |
dde08ee1 PA |
1842 | |
1843 | /* Where "ret" in the original code will return to. */ | |
1844 | ret_addr = oldloc + insn_length; | |
f077e978 PA |
1845 | |
1846 | /* If pushing an address higher than or equal to 0x80000000, | |
1847 | avoid 'pushq', as that sign extends its 32-bit operand, which | |
1848 | would be incorrect. */ | |
1849 | if (ret_addr <= 0x7fffffff) | |
1850 | { | |
1851 | push_buf[0] = 0x68; /* pushq $... */ | |
1852 | store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr); | |
1853 | i = 5; | |
1854 | } | |
1855 | else | |
1856 | { | |
1857 | push_buf[i++] = 0x48; /* sub $0x8,%rsp */ | |
1858 | push_buf[i++] = 0x83; | |
1859 | push_buf[i++] = 0xec; | |
1860 | push_buf[i++] = 0x08; | |
1861 | ||
1862 | push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */ | |
1863 | push_buf[i++] = 0x04; | |
1864 | push_buf[i++] = 0x24; | |
1865 | store_unsigned_integer (&push_buf[i], 4, byte_order, | |
1866 | ret_addr & 0xffffffff); | |
1867 | i += 4; | |
1868 | ||
1869 | push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */ | |
1870 | push_buf[i++] = 0x44; | |
1871 | push_buf[i++] = 0x24; | |
1872 | push_buf[i++] = 0x04; | |
1873 | store_unsigned_integer (&push_buf[i], 4, byte_order, | |
1874 | ret_addr >> 32); | |
1875 | i += 4; | |
1876 | } | |
1877 | gdb_assert (i <= sizeof (push_buf)); | |
dde08ee1 | 1878 | /* Push the push. */ |
f077e978 | 1879 | append_insns (to, i, push_buf); |
dde08ee1 PA |
1880 | |
1881 | /* Convert the relative call to a relative jump. */ | |
1882 | insn[0] = 0xe9; | |
1883 | ||
1884 | /* Adjust the destination offset. */ | |
1885 | rel32 = extract_signed_integer (insn + 1, 4, byte_order); | |
1886 | newrel = (oldloc - *to) + rel32; | |
f4a1794a KY |
1887 | store_signed_integer (insn + 1, 4, byte_order, newrel); |
1888 | ||
1889 | if (debug_displaced) | |
1890 | fprintf_unfiltered (gdb_stdlog, | |
1891 | "Adjusted insn rel32=%s at %s to" | |
1892 | " rel32=%s at %s\n", | |
1893 | hex_string (rel32), paddress (gdbarch, oldloc), | |
1894 | hex_string (newrel), paddress (gdbarch, *to)); | |
dde08ee1 PA |
1895 | |
1896 | /* Write the adjusted jump into its displaced location. */ | |
1897 | append_insns (to, 5, insn); | |
1898 | return; | |
1899 | } | |
1900 | ||
1901 | offset = rip_relative_offset (&insn_details); | |
1902 | if (!offset) | |
1903 | { | |
1904 | /* Adjust jumps with 32-bit relative addresses. Calls are | |
1905 | already handled above. */ | |
1906 | if (insn[0] == 0xe9) | |
1907 | offset = 1; | |
1908 | /* Adjust conditional jumps. */ | |
1909 | else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80) | |
1910 | offset = 2; | |
1911 | } | |
1912 | ||
1913 | if (offset) | |
1914 | { | |
1915 | rel32 = extract_signed_integer (insn + offset, 4, byte_order); | |
1916 | newrel = (oldloc - *to) + rel32; | |
f4a1794a | 1917 | store_signed_integer (insn + offset, 4, byte_order, newrel); |
dde08ee1 PA |
1918 | if (debug_displaced) |
1919 | fprintf_unfiltered (gdb_stdlog, | |
f4a1794a KY |
1920 | "Adjusted insn rel32=%s at %s to" |
1921 | " rel32=%s at %s\n", | |
dde08ee1 PA |
1922 | hex_string (rel32), paddress (gdbarch, oldloc), |
1923 | hex_string (newrel), paddress (gdbarch, *to)); | |
1924 | } | |
1925 | ||
1926 | /* Write the adjusted instruction into its displaced location. */ | |
1927 | append_insns (to, insn_length, buf); | |
1928 | } | |
1929 | ||
35669430 | 1930 | \f |
c4f35dd8 | 1931 | /* The maximum number of saved registers. This should include %rip. */ |
90f90721 | 1932 | #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS |
c4f35dd8 | 1933 | |
e53bef9f | 1934 | struct amd64_frame_cache |
c4f35dd8 MK |
1935 | { |
1936 | /* Base address. */ | |
1937 | CORE_ADDR base; | |
8fbca658 | 1938 | int base_p; |
c4f35dd8 MK |
1939 | CORE_ADDR sp_offset; |
1940 | CORE_ADDR pc; | |
1941 | ||
1942 | /* Saved registers. */ | |
e53bef9f | 1943 | CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS]; |
c4f35dd8 | 1944 | CORE_ADDR saved_sp; |
e0c62198 | 1945 | int saved_sp_reg; |
c4f35dd8 MK |
1946 | |
1947 | /* Do we have a frame? */ | |
1948 | int frameless_p; | |
1949 | }; | |
8dda9770 | 1950 | |
d2449ee8 | 1951 | /* Initialize a frame cache. */ |
c4f35dd8 | 1952 | |
d2449ee8 DJ |
1953 | static void |
1954 | amd64_init_frame_cache (struct amd64_frame_cache *cache) | |
8dda9770 | 1955 | { |
c4f35dd8 MK |
1956 | int i; |
1957 | ||
c4f35dd8 MK |
1958 | /* Base address. */ |
1959 | cache->base = 0; | |
8fbca658 | 1960 | cache->base_p = 0; |
c4f35dd8 MK |
1961 | cache->sp_offset = -8; |
1962 | cache->pc = 0; | |
1963 | ||
1964 | /* Saved registers. We initialize these to -1 since zero is a valid | |
bba66b87 DE |
1965 | offset (that's where %rbp is supposed to be stored). |
1966 | The values start out as being offsets, and are later converted to | |
1967 | addresses (at which point -1 is interpreted as an address, still meaning | |
1968 | "invalid"). */ | |
e53bef9f | 1969 | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
c4f35dd8 MK |
1970 | cache->saved_regs[i] = -1; |
1971 | cache->saved_sp = 0; | |
e0c62198 | 1972 | cache->saved_sp_reg = -1; |
c4f35dd8 MK |
1973 | |
1974 | /* Frameless until proven otherwise. */ | |
1975 | cache->frameless_p = 1; | |
d2449ee8 | 1976 | } |
c4f35dd8 | 1977 | |
d2449ee8 DJ |
1978 | /* Allocate and initialize a frame cache. */ |
1979 | ||
1980 | static struct amd64_frame_cache * | |
1981 | amd64_alloc_frame_cache (void) | |
1982 | { | |
1983 | struct amd64_frame_cache *cache; | |
1984 | ||
1985 | cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache); | |
1986 | amd64_init_frame_cache (cache); | |
c4f35dd8 | 1987 | return cache; |
8dda9770 | 1988 | } |
53e95fcf | 1989 | |
e0c62198 L |
1990 | /* GCC 4.4 and later, can put code in the prologue to realign the |
1991 | stack pointer. Check whether PC points to such code, and update | |
1992 | CACHE accordingly. Return the first instruction after the code | |
1993 | sequence or CURRENT_PC, whichever is smaller. If we don't | |
1994 | recognize the code, return PC. */ | |
1995 | ||
1996 | static CORE_ADDR | |
1997 | amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, | |
1998 | struct amd64_frame_cache *cache) | |
1999 | { | |
2000 | /* There are 2 code sequences to re-align stack before the frame | |
2001 | gets set up: | |
2002 | ||
2003 | 1. Use a caller-saved saved register: | |
2004 | ||
2005 | leaq 8(%rsp), %reg | |
2006 | andq $-XXX, %rsp | |
2007 | pushq -8(%reg) | |
2008 | ||
2009 | 2. Use a callee-saved saved register: | |
2010 | ||
2011 | pushq %reg | |
2012 | leaq 16(%rsp), %reg | |
2013 | andq $-XXX, %rsp | |
2014 | pushq -8(%reg) | |
2015 | ||
2016 | "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes: | |
2017 | ||
2018 | 0x48 0x83 0xe4 0xf0 andq $-16, %rsp | |
2019 | 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp | |
2020 | */ | |
2021 | ||
2022 | gdb_byte buf[18]; | |
2023 | int reg, r; | |
2024 | int offset, offset_and; | |
e0c62198 | 2025 | |
bae8a07a | 2026 | if (target_read_code (pc, buf, sizeof buf)) |
e0c62198 L |
2027 | return pc; |
2028 | ||
2029 | /* Check caller-saved saved register. The first instruction has | |
2030 | to be "leaq 8(%rsp), %reg". */ | |
2031 | if ((buf[0] & 0xfb) == 0x48 | |
2032 | && buf[1] == 0x8d | |
2033 | && buf[3] == 0x24 | |
2034 | && buf[4] == 0x8) | |
2035 | { | |
2036 | /* MOD must be binary 10 and R/M must be binary 100. */ | |
2037 | if ((buf[2] & 0xc7) != 0x44) | |
2038 | return pc; | |
2039 | ||
2040 | /* REG has register number. */ | |
2041 | reg = (buf[2] >> 3) & 7; | |
2042 | ||
2043 | /* Check the REX.R bit. */ | |
2044 | if (buf[0] == 0x4c) | |
2045 | reg += 8; | |
2046 | ||
2047 | offset = 5; | |
2048 | } | |
2049 | else | |
2050 | { | |
2051 | /* Check callee-saved saved register. The first instruction | |
2052 | has to be "pushq %reg". */ | |
2053 | reg = 0; | |
2054 | if ((buf[0] & 0xf8) == 0x50) | |
2055 | offset = 0; | |
2056 | else if ((buf[0] & 0xf6) == 0x40 | |
2057 | && (buf[1] & 0xf8) == 0x50) | |
2058 | { | |
2059 | /* Check the REX.B bit. */ | |
2060 | if ((buf[0] & 1) != 0) | |
2061 | reg = 8; | |
2062 | ||
2063 | offset = 1; | |
2064 | } | |
2065 | else | |
2066 | return pc; | |
2067 | ||
2068 | /* Get register. */ | |
2069 | reg += buf[offset] & 0x7; | |
2070 | ||
2071 | offset++; | |
2072 | ||
2073 | /* The next instruction has to be "leaq 16(%rsp), %reg". */ | |
2074 | if ((buf[offset] & 0xfb) != 0x48 | |
2075 | || buf[offset + 1] != 0x8d | |
2076 | || buf[offset + 3] != 0x24 | |
2077 | || buf[offset + 4] != 0x10) | |
2078 | return pc; | |
2079 | ||
2080 | /* MOD must be binary 10 and R/M must be binary 100. */ | |
2081 | if ((buf[offset + 2] & 0xc7) != 0x44) | |
2082 | return pc; | |
2083 | ||
2084 | /* REG has register number. */ | |
2085 | r = (buf[offset + 2] >> 3) & 7; | |
2086 | ||
2087 | /* Check the REX.R bit. */ | |
2088 | if (buf[offset] == 0x4c) | |
2089 | r += 8; | |
2090 | ||
2091 | /* Registers in pushq and leaq have to be the same. */ | |
2092 | if (reg != r) | |
2093 | return pc; | |
2094 | ||
2095 | offset += 5; | |
2096 | } | |
2097 | ||
2098 | /* Rigister can't be %rsp nor %rbp. */ | |
2099 | if (reg == 4 || reg == 5) | |
2100 | return pc; | |
2101 | ||
2102 | /* The next instruction has to be "andq $-XXX, %rsp". */ | |
2103 | if (buf[offset] != 0x48 | |
2104 | || buf[offset + 2] != 0xe4 | |
2105 | || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83)) | |
2106 | return pc; | |
2107 | ||
2108 | offset_and = offset; | |
2109 | offset += buf[offset + 1] == 0x81 ? 7 : 4; | |
2110 | ||
2111 | /* The next instruction has to be "pushq -8(%reg)". */ | |
2112 | r = 0; | |
2113 | if (buf[offset] == 0xff) | |
2114 | offset++; | |
2115 | else if ((buf[offset] & 0xf6) == 0x40 | |
2116 | && buf[offset + 1] == 0xff) | |
2117 | { | |
2118 | /* Check the REX.B bit. */ | |
2119 | if ((buf[offset] & 0x1) != 0) | |
2120 | r = 8; | |
2121 | offset += 2; | |
2122 | } | |
2123 | else | |
2124 | return pc; | |
2125 | ||
2126 | /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary | |
2127 | 01. */ | |
2128 | if (buf[offset + 1] != 0xf8 | |
2129 | || (buf[offset] & 0xf8) != 0x70) | |
2130 | return pc; | |
2131 | ||
2132 | /* R/M has register. */ | |
2133 | r += buf[offset] & 7; | |
2134 | ||
2135 | /* Registers in leaq and pushq have to be the same. */ | |
2136 | if (reg != r) | |
2137 | return pc; | |
2138 | ||
2139 | if (current_pc > pc + offset_and) | |
35669430 | 2140 | cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg); |
e0c62198 | 2141 | |
325fac50 | 2142 | return std::min (pc + offset + 2, current_pc); |
e0c62198 L |
2143 | } |
2144 | ||
ac142d96 L |
2145 | /* Similar to amd64_analyze_stack_align for x32. */ |
2146 | ||
2147 | static CORE_ADDR | |
2148 | amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, | |
2149 | struct amd64_frame_cache *cache) | |
2150 | { | |
2151 | /* There are 2 code sequences to re-align stack before the frame | |
2152 | gets set up: | |
2153 | ||
2154 | 1. Use a caller-saved saved register: | |
2155 | ||
2156 | leaq 8(%rsp), %reg | |
2157 | andq $-XXX, %rsp | |
2158 | pushq -8(%reg) | |
2159 | ||
2160 | or | |
2161 | ||
2162 | [addr32] leal 8(%rsp), %reg | |
2163 | andl $-XXX, %esp | |
2164 | [addr32] pushq -8(%reg) | |
2165 | ||
2166 | 2. Use a callee-saved saved register: | |
2167 | ||
2168 | pushq %reg | |
2169 | leaq 16(%rsp), %reg | |
2170 | andq $-XXX, %rsp | |
2171 | pushq -8(%reg) | |
2172 | ||
2173 | or | |
2174 | ||
2175 | pushq %reg | |
2176 | [addr32] leal 16(%rsp), %reg | |
2177 | andl $-XXX, %esp | |
2178 | [addr32] pushq -8(%reg) | |
2179 | ||
2180 | "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes: | |
2181 | ||
2182 | 0x48 0x83 0xe4 0xf0 andq $-16, %rsp | |
2183 | 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp | |
2184 | ||
2185 | "andl $-XXX, %esp" can be either 3 bytes or 6 bytes: | |
2186 | ||
2187 | 0x83 0xe4 0xf0 andl $-16, %esp | |
2188 | 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp | |
2189 | */ | |
2190 | ||
2191 | gdb_byte buf[19]; | |
2192 | int reg, r; | |
2193 | int offset, offset_and; | |
2194 | ||
2195 | if (target_read_memory (pc, buf, sizeof buf)) | |
2196 | return pc; | |
2197 | ||
2198 | /* Skip optional addr32 prefix. */ | |
2199 | offset = buf[0] == 0x67 ? 1 : 0; | |
2200 | ||
2201 | /* Check caller-saved saved register. The first instruction has | |
2202 | to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */ | |
2203 | if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40) | |
2204 | && buf[offset + 1] == 0x8d | |
2205 | && buf[offset + 3] == 0x24 | |
2206 | && buf[offset + 4] == 0x8) | |
2207 | { | |
2208 | /* MOD must be binary 10 and R/M must be binary 100. */ | |
2209 | if ((buf[offset + 2] & 0xc7) != 0x44) | |
2210 | return pc; | |
2211 | ||
2212 | /* REG has register number. */ | |
2213 | reg = (buf[offset + 2] >> 3) & 7; | |
2214 | ||
2215 | /* Check the REX.R bit. */ | |
2216 | if ((buf[offset] & 0x4) != 0) | |
2217 | reg += 8; | |
2218 | ||
2219 | offset += 5; | |
2220 | } | |
2221 | else | |
2222 | { | |
2223 | /* Check callee-saved saved register. The first instruction | |
2224 | has to be "pushq %reg". */ | |
2225 | reg = 0; | |
2226 | if ((buf[offset] & 0xf6) == 0x40 | |
2227 | && (buf[offset + 1] & 0xf8) == 0x50) | |
2228 | { | |
2229 | /* Check the REX.B bit. */ | |
2230 | if ((buf[offset] & 1) != 0) | |
2231 | reg = 8; | |
2232 | ||
2233 | offset += 1; | |
2234 | } | |
2235 | else if ((buf[offset] & 0xf8) != 0x50) | |
2236 | return pc; | |
2237 | ||
2238 | /* Get register. */ | |
2239 | reg += buf[offset] & 0x7; | |
2240 | ||
2241 | offset++; | |
2242 | ||
2243 | /* Skip optional addr32 prefix. */ | |
2244 | if (buf[offset] == 0x67) | |
2245 | offset++; | |
2246 | ||
2247 | /* The next instruction has to be "leaq 16(%rsp), %reg" or | |
2248 | "leal 16(%rsp), %reg". */ | |
2249 | if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40) | |
2250 | || buf[offset + 1] != 0x8d | |
2251 | || buf[offset + 3] != 0x24 | |
2252 | || buf[offset + 4] != 0x10) | |
2253 | return pc; | |
2254 | ||
2255 | /* MOD must be binary 10 and R/M must be binary 100. */ | |
2256 | if ((buf[offset + 2] & 0xc7) != 0x44) | |
2257 | return pc; | |
2258 | ||
2259 | /* REG has register number. */ | |
2260 | r = (buf[offset + 2] >> 3) & 7; | |
2261 | ||
2262 | /* Check the REX.R bit. */ | |
2263 | if ((buf[offset] & 0x4) != 0) | |
2264 | r += 8; | |
2265 | ||
2266 | /* Registers in pushq and leaq have to be the same. */ | |
2267 | if (reg != r) | |
2268 | return pc; | |
2269 | ||
2270 | offset += 5; | |
2271 | } | |
2272 | ||
2273 | /* Rigister can't be %rsp nor %rbp. */ | |
2274 | if (reg == 4 || reg == 5) | |
2275 | return pc; | |
2276 | ||
2277 | /* The next instruction may be "andq $-XXX, %rsp" or | |
2278 | "andl $-XXX, %esp". */ | |
2279 | if (buf[offset] != 0x48) | |
2280 | offset--; | |
2281 | ||
2282 | if (buf[offset + 2] != 0xe4 | |
2283 | || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83)) | |
2284 | return pc; | |
2285 | ||
2286 | offset_and = offset; | |
2287 | offset += buf[offset + 1] == 0x81 ? 7 : 4; | |
2288 | ||
2289 | /* Skip optional addr32 prefix. */ | |
2290 | if (buf[offset] == 0x67) | |
2291 | offset++; | |
2292 | ||
2293 | /* The next instruction has to be "pushq -8(%reg)". */ | |
2294 | r = 0; | |
2295 | if (buf[offset] == 0xff) | |
2296 | offset++; | |
2297 | else if ((buf[offset] & 0xf6) == 0x40 | |
2298 | && buf[offset + 1] == 0xff) | |
2299 | { | |
2300 | /* Check the REX.B bit. */ | |
2301 | if ((buf[offset] & 0x1) != 0) | |
2302 | r = 8; | |
2303 | offset += 2; | |
2304 | } | |
2305 | else | |
2306 | return pc; | |
2307 | ||
2308 | /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary | |
2309 | 01. */ | |
2310 | if (buf[offset + 1] != 0xf8 | |
2311 | || (buf[offset] & 0xf8) != 0x70) | |
2312 | return pc; | |
2313 | ||
2314 | /* R/M has register. */ | |
2315 | r += buf[offset] & 7; | |
2316 | ||
2317 | /* Registers in leaq and pushq have to be the same. */ | |
2318 | if (reg != r) | |
2319 | return pc; | |
2320 | ||
2321 | if (current_pc > pc + offset_and) | |
2322 | cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg); | |
2323 | ||
325fac50 | 2324 | return std::min (pc + offset + 2, current_pc); |
ac142d96 L |
2325 | } |
2326 | ||
c4f35dd8 MK |
2327 | /* Do a limited analysis of the prologue at PC and update CACHE |
2328 | accordingly. Bail out early if CURRENT_PC is reached. Return the | |
2329 | address where the analysis stopped. | |
2330 | ||
2331 | We will handle only functions beginning with: | |
2332 | ||
2333 | pushq %rbp 0x55 | |
50f1ae7b | 2334 | movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec) |
c4f35dd8 | 2335 | |
649e6d92 MK |
2336 | or (for the X32 ABI): |
2337 | ||
2338 | pushq %rbp 0x55 | |
2339 | movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec) | |
2340 | ||
2341 | Any function that doesn't start with one of these sequences will be | |
2342 | assumed to have no prologue and thus no valid frame pointer in | |
2343 | %rbp. */ | |
c4f35dd8 MK |
2344 | |
2345 | static CORE_ADDR | |
e17a4113 UW |
2346 | amd64_analyze_prologue (struct gdbarch *gdbarch, |
2347 | CORE_ADDR pc, CORE_ADDR current_pc, | |
e53bef9f | 2348 | struct amd64_frame_cache *cache) |
53e95fcf | 2349 | { |
e17a4113 | 2350 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
50f1ae7b DE |
2351 | /* There are two variations of movq %rsp, %rbp. */ |
2352 | static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 }; | |
2353 | static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec }; | |
649e6d92 MK |
2354 | /* Ditto for movl %esp, %ebp. */ |
2355 | static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 }; | |
2356 | static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec }; | |
2357 | ||
d8de1ef7 MK |
2358 | gdb_byte buf[3]; |
2359 | gdb_byte op; | |
c4f35dd8 MK |
2360 | |
2361 | if (current_pc <= pc) | |
2362 | return current_pc; | |
2363 | ||
ac142d96 L |
2364 | if (gdbarch_ptr_bit (gdbarch) == 32) |
2365 | pc = amd64_x32_analyze_stack_align (pc, current_pc, cache); | |
2366 | else | |
2367 | pc = amd64_analyze_stack_align (pc, current_pc, cache); | |
e0c62198 | 2368 | |
bae8a07a | 2369 | op = read_code_unsigned_integer (pc, 1, byte_order); |
c4f35dd8 MK |
2370 | |
2371 | if (op == 0x55) /* pushq %rbp */ | |
2372 | { | |
2373 | /* Take into account that we've executed the `pushq %rbp' that | |
2374 | starts this instruction sequence. */ | |
90f90721 | 2375 | cache->saved_regs[AMD64_RBP_REGNUM] = 0; |
c4f35dd8 MK |
2376 | cache->sp_offset += 8; |
2377 | ||
2378 | /* If that's all, return now. */ | |
2379 | if (current_pc <= pc + 1) | |
2380 | return current_pc; | |
2381 | ||
bae8a07a | 2382 | read_code (pc + 1, buf, 3); |
c4f35dd8 | 2383 | |
649e6d92 MK |
2384 | /* Check for `movq %rsp, %rbp'. */ |
2385 | if (memcmp (buf, mov_rsp_rbp_1, 3) == 0 | |
2386 | || memcmp (buf, mov_rsp_rbp_2, 3) == 0) | |
2387 | { | |
2388 | /* OK, we actually have a frame. */ | |
2389 | cache->frameless_p = 0; | |
2390 | return pc + 4; | |
2391 | } | |
2392 | ||
2393 | /* For X32, also check for `movq %esp, %ebp'. */ | |
2394 | if (gdbarch_ptr_bit (gdbarch) == 32) | |
2395 | { | |
2396 | if (memcmp (buf, mov_esp_ebp_1, 2) == 0 | |
2397 | || memcmp (buf, mov_esp_ebp_2, 2) == 0) | |
2398 | { | |
2399 | /* OK, we actually have a frame. */ | |
2400 | cache->frameless_p = 0; | |
2401 | return pc + 3; | |
2402 | } | |
2403 | } | |
2404 | ||
2405 | return pc + 1; | |
c4f35dd8 MK |
2406 | } |
2407 | ||
2408 | return pc; | |
53e95fcf JS |
2409 | } |
2410 | ||
df15bd07 JK |
2411 | /* Work around false termination of prologue - GCC PR debug/48827. |
2412 | ||
2413 | START_PC is the first instruction of a function, PC is its minimal already | |
2414 | determined advanced address. Function returns PC if it has nothing to do. | |
2415 | ||
2416 | 84 c0 test %al,%al | |
2417 | 74 23 je after | |
2418 | <-- here is 0 lines advance - the false prologue end marker. | |
2419 | 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp) | |
2420 | 0f 29 4d 80 movaps %xmm1,-0x80(%rbp) | |
2421 | 0f 29 55 90 movaps %xmm2,-0x70(%rbp) | |
2422 | 0f 29 5d a0 movaps %xmm3,-0x60(%rbp) | |
2423 | 0f 29 65 b0 movaps %xmm4,-0x50(%rbp) | |
2424 | 0f 29 6d c0 movaps %xmm5,-0x40(%rbp) | |
2425 | 0f 29 75 d0 movaps %xmm6,-0x30(%rbp) | |
2426 | 0f 29 7d e0 movaps %xmm7,-0x20(%rbp) | |
2427 | after: */ | |
c4f35dd8 MK |
2428 | |
2429 | static CORE_ADDR | |
df15bd07 | 2430 | amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc) |
53e95fcf | 2431 | { |
08711b9a JK |
2432 | struct symtab_and_line start_pc_sal, next_sal; |
2433 | gdb_byte buf[4 + 8 * 7]; | |
2434 | int offset, xmmreg; | |
c4f35dd8 | 2435 | |
08711b9a JK |
2436 | if (pc == start_pc) |
2437 | return pc; | |
2438 | ||
2439 | start_pc_sal = find_pc_sect_line (start_pc, NULL, 0); | |
2440 | if (start_pc_sal.symtab == NULL | |
43f3e411 DE |
2441 | || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER |
2442 | (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6 | |
08711b9a JK |
2443 | || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end) |
2444 | return pc; | |
2445 | ||
2446 | next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0); | |
2447 | if (next_sal.line != start_pc_sal.line) | |
2448 | return pc; | |
2449 | ||
2450 | /* START_PC can be from overlayed memory, ignored here. */ | |
bae8a07a | 2451 | if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0) |
08711b9a JK |
2452 | return pc; |
2453 | ||
2454 | /* test %al,%al */ | |
2455 | if (buf[0] != 0x84 || buf[1] != 0xc0) | |
2456 | return pc; | |
2457 | /* je AFTER */ | |
2458 | if (buf[2] != 0x74) | |
2459 | return pc; | |
2460 | ||
2461 | offset = 4; | |
2462 | for (xmmreg = 0; xmmreg < 8; xmmreg++) | |
2463 | { | |
bede5f5f | 2464 | /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */ |
08711b9a | 2465 | if (buf[offset] != 0x0f || buf[offset + 1] != 0x29 |
bede5f5f | 2466 | || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5)) |
08711b9a JK |
2467 | return pc; |
2468 | ||
bede5f5f JK |
2469 | /* 0b01?????? */ |
2470 | if ((buf[offset + 2] & 0xc0) == 0x40) | |
08711b9a JK |
2471 | { |
2472 | /* 8-bit displacement. */ | |
2473 | offset += 4; | |
2474 | } | |
bede5f5f JK |
2475 | /* 0b10?????? */ |
2476 | else if ((buf[offset + 2] & 0xc0) == 0x80) | |
08711b9a JK |
2477 | { |
2478 | /* 32-bit displacement. */ | |
2479 | offset += 7; | |
2480 | } | |
2481 | else | |
2482 | return pc; | |
2483 | } | |
2484 | ||
2485 | /* je AFTER */ | |
2486 | if (offset - 4 != buf[3]) | |
2487 | return pc; | |
2488 | ||
2489 | return next_sal.end; | |
53e95fcf | 2490 | } |
df15bd07 JK |
2491 | |
2492 | /* Return PC of first real instruction. */ | |
2493 | ||
2494 | static CORE_ADDR | |
2495 | amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) | |
2496 | { | |
2497 | struct amd64_frame_cache cache; | |
2498 | CORE_ADDR pc; | |
56bf0743 KB |
2499 | CORE_ADDR func_addr; |
2500 | ||
2501 | if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL)) | |
2502 | { | |
2503 | CORE_ADDR post_prologue_pc | |
2504 | = skip_prologue_using_sal (gdbarch, func_addr); | |
43f3e411 | 2505 | struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr); |
56bf0743 KB |
2506 | |
2507 | /* Clang always emits a line note before the prologue and another | |
2508 | one after. We trust clang to emit usable line notes. */ | |
2509 | if (post_prologue_pc | |
43f3e411 DE |
2510 | && (cust != NULL |
2511 | && COMPUNIT_PRODUCER (cust) != NULL | |
61012eef | 2512 | && startswith (COMPUNIT_PRODUCER (cust), "clang "))) |
325fac50 | 2513 | return std::max (start_pc, post_prologue_pc); |
56bf0743 | 2514 | } |
df15bd07 JK |
2515 | |
2516 | amd64_init_frame_cache (&cache); | |
2517 | pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL, | |
2518 | &cache); | |
2519 | if (cache.frameless_p) | |
2520 | return start_pc; | |
2521 | ||
2522 | return amd64_skip_xmm_prologue (pc, start_pc); | |
2523 | } | |
c4f35dd8 | 2524 | \f |
53e95fcf | 2525 | |
c4f35dd8 MK |
2526 | /* Normal frames. */ |
2527 | ||
8fbca658 PA |
2528 | static void |
2529 | amd64_frame_cache_1 (struct frame_info *this_frame, | |
2530 | struct amd64_frame_cache *cache) | |
6d686a84 | 2531 | { |
e17a4113 UW |
2532 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
2533 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
d8de1ef7 | 2534 | gdb_byte buf[8]; |
6d686a84 | 2535 | int i; |
6d686a84 | 2536 | |
10458914 | 2537 | cache->pc = get_frame_func (this_frame); |
c4f35dd8 | 2538 | if (cache->pc != 0) |
e17a4113 UW |
2539 | amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame), |
2540 | cache); | |
c4f35dd8 MK |
2541 | |
2542 | if (cache->frameless_p) | |
2543 | { | |
4a28816e MK |
2544 | /* We didn't find a valid frame. If we're at the start of a |
2545 | function, or somewhere half-way its prologue, the function's | |
2546 | frame probably hasn't been fully setup yet. Try to | |
2547 | reconstruct the base address for the stack frame by looking | |
2548 | at the stack pointer. For truly "frameless" functions this | |
2549 | might work too. */ | |
c4f35dd8 | 2550 | |
e0c62198 L |
2551 | if (cache->saved_sp_reg != -1) |
2552 | { | |
8fbca658 PA |
2553 | /* Stack pointer has been saved. */ |
2554 | get_frame_register (this_frame, cache->saved_sp_reg, buf); | |
2555 | cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order); | |
2556 | ||
e0c62198 L |
2557 | /* We're halfway aligning the stack. */ |
2558 | cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8; | |
2559 | cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8; | |
2560 | ||
2561 | /* This will be added back below. */ | |
2562 | cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base; | |
2563 | } | |
2564 | else | |
2565 | { | |
2566 | get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); | |
e17a4113 UW |
2567 | cache->base = extract_unsigned_integer (buf, 8, byte_order) |
2568 | + cache->sp_offset; | |
e0c62198 | 2569 | } |
c4f35dd8 | 2570 | } |
35883a3f MK |
2571 | else |
2572 | { | |
10458914 | 2573 | get_frame_register (this_frame, AMD64_RBP_REGNUM, buf); |
e17a4113 | 2574 | cache->base = extract_unsigned_integer (buf, 8, byte_order); |
35883a3f | 2575 | } |
c4f35dd8 MK |
2576 | |
2577 | /* Now that we have the base address for the stack frame we can | |
2578 | calculate the value of %rsp in the calling frame. */ | |
2579 | cache->saved_sp = cache->base + 16; | |
2580 | ||
35883a3f MK |
2581 | /* For normal frames, %rip is stored at 8(%rbp). If we don't have a |
2582 | frame we find it at the same offset from the reconstructed base | |
e0c62198 L |
2583 | address. If we're halfway aligning the stack, %rip is handled |
2584 | differently (see above). */ | |
2585 | if (!cache->frameless_p || cache->saved_sp_reg == -1) | |
2586 | cache->saved_regs[AMD64_RIP_REGNUM] = 8; | |
35883a3f | 2587 | |
c4f35dd8 MK |
2588 | /* Adjust all the saved registers such that they contain addresses |
2589 | instead of offsets. */ | |
e53bef9f | 2590 | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
c4f35dd8 MK |
2591 | if (cache->saved_regs[i] != -1) |
2592 | cache->saved_regs[i] += cache->base; | |
2593 | ||
8fbca658 PA |
2594 | cache->base_p = 1; |
2595 | } | |
2596 | ||
2597 | static struct amd64_frame_cache * | |
2598 | amd64_frame_cache (struct frame_info *this_frame, void **this_cache) | |
2599 | { | |
8fbca658 PA |
2600 | struct amd64_frame_cache *cache; |
2601 | ||
2602 | if (*this_cache) | |
9a3c8263 | 2603 | return (struct amd64_frame_cache *) *this_cache; |
8fbca658 PA |
2604 | |
2605 | cache = amd64_alloc_frame_cache (); | |
2606 | *this_cache = cache; | |
2607 | ||
a70b8144 | 2608 | try |
8fbca658 PA |
2609 | { |
2610 | amd64_frame_cache_1 (this_frame, cache); | |
2611 | } | |
230d2906 | 2612 | catch (const gdb_exception_error &ex) |
7556d4a4 PA |
2613 | { |
2614 | if (ex.error != NOT_AVAILABLE_ERROR) | |
eedc3f4f | 2615 | throw; |
7556d4a4 | 2616 | } |
8fbca658 | 2617 | |
c4f35dd8 | 2618 | return cache; |
6d686a84 ML |
2619 | } |
2620 | ||
8fbca658 PA |
2621 | static enum unwind_stop_reason |
2622 | amd64_frame_unwind_stop_reason (struct frame_info *this_frame, | |
2623 | void **this_cache) | |
2624 | { | |
2625 | struct amd64_frame_cache *cache = | |
2626 | amd64_frame_cache (this_frame, this_cache); | |
2627 | ||
2628 | if (!cache->base_p) | |
2629 | return UNWIND_UNAVAILABLE; | |
2630 | ||
2631 | /* This marks the outermost frame. */ | |
2632 | if (cache->base == 0) | |
2633 | return UNWIND_OUTERMOST; | |
2634 | ||
2635 | return UNWIND_NO_REASON; | |
2636 | } | |
2637 | ||
c4f35dd8 | 2638 | static void |
10458914 | 2639 | amd64_frame_this_id (struct frame_info *this_frame, void **this_cache, |
e53bef9f | 2640 | struct frame_id *this_id) |
c4f35dd8 | 2641 | { |
e53bef9f | 2642 | struct amd64_frame_cache *cache = |
10458914 | 2643 | amd64_frame_cache (this_frame, this_cache); |
c4f35dd8 | 2644 | |
8fbca658 | 2645 | if (!cache->base_p) |
5ce0145d PA |
2646 | (*this_id) = frame_id_build_unavailable_stack (cache->pc); |
2647 | else if (cache->base == 0) | |
2648 | { | |
2649 | /* This marks the outermost frame. */ | |
2650 | return; | |
2651 | } | |
2652 | else | |
2653 | (*this_id) = frame_id_build (cache->base + 16, cache->pc); | |
c4f35dd8 | 2654 | } |
e76e1718 | 2655 | |
10458914 DJ |
2656 | static struct value * |
2657 | amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache, | |
2658 | int regnum) | |
53e95fcf | 2659 | { |
10458914 | 2660 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
e53bef9f | 2661 | struct amd64_frame_cache *cache = |
10458914 | 2662 | amd64_frame_cache (this_frame, this_cache); |
e76e1718 | 2663 | |
c4f35dd8 | 2664 | gdb_assert (regnum >= 0); |
b1ab997b | 2665 | |
2ae02b47 | 2666 | if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp) |
10458914 | 2667 | return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp); |
e76e1718 | 2668 | |
e53bef9f | 2669 | if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) |
10458914 DJ |
2670 | return frame_unwind_got_memory (this_frame, regnum, |
2671 | cache->saved_regs[regnum]); | |
e76e1718 | 2672 | |
10458914 | 2673 | return frame_unwind_got_register (this_frame, regnum, regnum); |
c4f35dd8 | 2674 | } |
e76e1718 | 2675 | |
e53bef9f | 2676 | static const struct frame_unwind amd64_frame_unwind = |
c4f35dd8 MK |
2677 | { |
2678 | NORMAL_FRAME, | |
8fbca658 | 2679 | amd64_frame_unwind_stop_reason, |
e53bef9f | 2680 | amd64_frame_this_id, |
10458914 DJ |
2681 | amd64_frame_prev_register, |
2682 | NULL, | |
2683 | default_frame_sniffer | |
c4f35dd8 | 2684 | }; |
c4f35dd8 | 2685 | \f |
6710bf39 SS |
2686 | /* Generate a bytecode expression to get the value of the saved PC. */ |
2687 | ||
2688 | static void | |
2689 | amd64_gen_return_address (struct gdbarch *gdbarch, | |
2690 | struct agent_expr *ax, struct axs_value *value, | |
2691 | CORE_ADDR scope) | |
2692 | { | |
2693 | /* The following sequence assumes the traditional use of the base | |
2694 | register. */ | |
2695 | ax_reg (ax, AMD64_RBP_REGNUM); | |
2696 | ax_const_l (ax, 8); | |
2697 | ax_simple (ax, aop_add); | |
2698 | value->type = register_type (gdbarch, AMD64_RIP_REGNUM); | |
2699 | value->kind = axs_lvalue_memory; | |
2700 | } | |
2701 | \f | |
e76e1718 | 2702 | |
c4f35dd8 MK |
2703 | /* Signal trampolines. */ |
2704 | ||
2705 | /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and | |
2706 | 64-bit variants. This would require using identical frame caches | |
2707 | on both platforms. */ | |
2708 | ||
e53bef9f | 2709 | static struct amd64_frame_cache * |
10458914 | 2710 | amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache) |
c4f35dd8 | 2711 | { |
e17a4113 UW |
2712 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
2713 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2714 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
e53bef9f | 2715 | struct amd64_frame_cache *cache; |
c4f35dd8 | 2716 | CORE_ADDR addr; |
d8de1ef7 | 2717 | gdb_byte buf[8]; |
2b5e0749 | 2718 | int i; |
c4f35dd8 MK |
2719 | |
2720 | if (*this_cache) | |
9a3c8263 | 2721 | return (struct amd64_frame_cache *) *this_cache; |
c4f35dd8 | 2722 | |
e53bef9f | 2723 | cache = amd64_alloc_frame_cache (); |
c4f35dd8 | 2724 | |
a70b8144 | 2725 | try |
8fbca658 PA |
2726 | { |
2727 | get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); | |
2728 | cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8; | |
2729 | ||
2730 | addr = tdep->sigcontext_addr (this_frame); | |
2731 | gdb_assert (tdep->sc_reg_offset); | |
2732 | gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS); | |
2733 | for (i = 0; i < tdep->sc_num_regs; i++) | |
2734 | if (tdep->sc_reg_offset[i] != -1) | |
2735 | cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; | |
c4f35dd8 | 2736 | |
8fbca658 PA |
2737 | cache->base_p = 1; |
2738 | } | |
230d2906 | 2739 | catch (const gdb_exception_error &ex) |
7556d4a4 PA |
2740 | { |
2741 | if (ex.error != NOT_AVAILABLE_ERROR) | |
eedc3f4f | 2742 | throw; |
7556d4a4 | 2743 | } |
c4f35dd8 MK |
2744 | |
2745 | *this_cache = cache; | |
2746 | return cache; | |
53e95fcf JS |
2747 | } |
2748 | ||
8fbca658 PA |
2749 | static enum unwind_stop_reason |
2750 | amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame, | |
2751 | void **this_cache) | |
2752 | { | |
2753 | struct amd64_frame_cache *cache = | |
2754 | amd64_sigtramp_frame_cache (this_frame, this_cache); | |
2755 | ||
2756 | if (!cache->base_p) | |
2757 | return UNWIND_UNAVAILABLE; | |
2758 | ||
2759 | return UNWIND_NO_REASON; | |
2760 | } | |
2761 | ||
c4f35dd8 | 2762 | static void |
10458914 | 2763 | amd64_sigtramp_frame_this_id (struct frame_info *this_frame, |
e53bef9f | 2764 | void **this_cache, struct frame_id *this_id) |
c4f35dd8 | 2765 | { |
e53bef9f | 2766 | struct amd64_frame_cache *cache = |
10458914 | 2767 | amd64_sigtramp_frame_cache (this_frame, this_cache); |
c4f35dd8 | 2768 | |
8fbca658 | 2769 | if (!cache->base_p) |
5ce0145d PA |
2770 | (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame)); |
2771 | else if (cache->base == 0) | |
2772 | { | |
2773 | /* This marks the outermost frame. */ | |
2774 | return; | |
2775 | } | |
2776 | else | |
2777 | (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame)); | |
c4f35dd8 MK |
2778 | } |
2779 | ||
10458914 DJ |
2780 | static struct value * |
2781 | amd64_sigtramp_frame_prev_register (struct frame_info *this_frame, | |
2782 | void **this_cache, int regnum) | |
c4f35dd8 MK |
2783 | { |
2784 | /* Make sure we've initialized the cache. */ | |
10458914 | 2785 | amd64_sigtramp_frame_cache (this_frame, this_cache); |
c4f35dd8 | 2786 | |
10458914 | 2787 | return amd64_frame_prev_register (this_frame, this_cache, regnum); |
c4f35dd8 MK |
2788 | } |
2789 | ||
10458914 DJ |
2790 | static int |
2791 | amd64_sigtramp_frame_sniffer (const struct frame_unwind *self, | |
2792 | struct frame_info *this_frame, | |
2793 | void **this_cache) | |
c4f35dd8 | 2794 | { |
10458914 | 2795 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame)); |
911bc6ee MK |
2796 | |
2797 | /* We shouldn't even bother if we don't have a sigcontext_addr | |
2798 | handler. */ | |
2799 | if (tdep->sigcontext_addr == NULL) | |
10458914 | 2800 | return 0; |
911bc6ee MK |
2801 | |
2802 | if (tdep->sigtramp_p != NULL) | |
2803 | { | |
10458914 DJ |
2804 | if (tdep->sigtramp_p (this_frame)) |
2805 | return 1; | |
911bc6ee | 2806 | } |
c4f35dd8 | 2807 | |
911bc6ee | 2808 | if (tdep->sigtramp_start != 0) |
1c3545ae | 2809 | { |
10458914 | 2810 | CORE_ADDR pc = get_frame_pc (this_frame); |
1c3545ae | 2811 | |
911bc6ee MK |
2812 | gdb_assert (tdep->sigtramp_end != 0); |
2813 | if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end) | |
10458914 | 2814 | return 1; |
1c3545ae | 2815 | } |
c4f35dd8 | 2816 | |
10458914 | 2817 | return 0; |
c4f35dd8 | 2818 | } |
10458914 DJ |
2819 | |
2820 | static const struct frame_unwind amd64_sigtramp_frame_unwind = | |
2821 | { | |
2822 | SIGTRAMP_FRAME, | |
8fbca658 | 2823 | amd64_sigtramp_frame_unwind_stop_reason, |
10458914 DJ |
2824 | amd64_sigtramp_frame_this_id, |
2825 | amd64_sigtramp_frame_prev_register, | |
2826 | NULL, | |
2827 | amd64_sigtramp_frame_sniffer | |
2828 | }; | |
c4f35dd8 MK |
2829 | \f |
2830 | ||
2831 | static CORE_ADDR | |
10458914 | 2832 | amd64_frame_base_address (struct frame_info *this_frame, void **this_cache) |
c4f35dd8 | 2833 | { |
e53bef9f | 2834 | struct amd64_frame_cache *cache = |
10458914 | 2835 | amd64_frame_cache (this_frame, this_cache); |
c4f35dd8 MK |
2836 | |
2837 | return cache->base; | |
2838 | } | |
2839 | ||
e53bef9f | 2840 | static const struct frame_base amd64_frame_base = |
c4f35dd8 | 2841 | { |
e53bef9f MK |
2842 | &amd64_frame_unwind, |
2843 | amd64_frame_base_address, | |
2844 | amd64_frame_base_address, | |
2845 | amd64_frame_base_address | |
c4f35dd8 MK |
2846 | }; |
2847 | ||
872761f4 MS |
2848 | /* Normal frames, but in a function epilogue. */ |
2849 | ||
c9cf6e20 MG |
2850 | /* Implement the stack_frame_destroyed_p gdbarch method. |
2851 | ||
2852 | The epilogue is defined here as the 'ret' instruction, which will | |
872761f4 MS |
2853 | follow any instruction such as 'leave' or 'pop %ebp' that destroys |
2854 | the function's stack frame. */ | |
2855 | ||
2856 | static int | |
c9cf6e20 | 2857 | amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
872761f4 MS |
2858 | { |
2859 | gdb_byte insn; | |
43f3e411 | 2860 | struct compunit_symtab *cust; |
e0d00bc7 | 2861 | |
43f3e411 DE |
2862 | cust = find_pc_compunit_symtab (pc); |
2863 | if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust)) | |
e0d00bc7 | 2864 | return 0; |
872761f4 MS |
2865 | |
2866 | if (target_read_memory (pc, &insn, 1)) | |
2867 | return 0; /* Can't read memory at pc. */ | |
2868 | ||
2869 | if (insn != 0xc3) /* 'ret' instruction. */ | |
2870 | return 0; | |
2871 | ||
2872 | return 1; | |
2873 | } | |
2874 | ||
2875 | static int | |
2876 | amd64_epilogue_frame_sniffer (const struct frame_unwind *self, | |
2877 | struct frame_info *this_frame, | |
2878 | void **this_prologue_cache) | |
2879 | { | |
2880 | if (frame_relative_level (this_frame) == 0) | |
c9cf6e20 MG |
2881 | return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame), |
2882 | get_frame_pc (this_frame)); | |
872761f4 MS |
2883 | else |
2884 | return 0; | |
2885 | } | |
2886 | ||
2887 | static struct amd64_frame_cache * | |
2888 | amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache) | |
2889 | { | |
2890 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
2891 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
2892 | struct amd64_frame_cache *cache; | |
6c10c06b | 2893 | gdb_byte buf[8]; |
872761f4 MS |
2894 | |
2895 | if (*this_cache) | |
9a3c8263 | 2896 | return (struct amd64_frame_cache *) *this_cache; |
872761f4 MS |
2897 | |
2898 | cache = amd64_alloc_frame_cache (); | |
2899 | *this_cache = cache; | |
2900 | ||
a70b8144 | 2901 | try |
8fbca658 PA |
2902 | { |
2903 | /* Cache base will be %esp plus cache->sp_offset (-8). */ | |
2904 | get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); | |
2905 | cache->base = extract_unsigned_integer (buf, 8, | |
2906 | byte_order) + cache->sp_offset; | |
2907 | ||
2908 | /* Cache pc will be the frame func. */ | |
2909 | cache->pc = get_frame_pc (this_frame); | |
872761f4 | 2910 | |
8fbca658 PA |
2911 | /* The saved %esp will be at cache->base plus 16. */ |
2912 | cache->saved_sp = cache->base + 16; | |
872761f4 | 2913 | |
8fbca658 PA |
2914 | /* The saved %eip will be at cache->base plus 8. */ |
2915 | cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8; | |
872761f4 | 2916 | |
8fbca658 PA |
2917 | cache->base_p = 1; |
2918 | } | |
230d2906 | 2919 | catch (const gdb_exception_error &ex) |
7556d4a4 PA |
2920 | { |
2921 | if (ex.error != NOT_AVAILABLE_ERROR) | |
eedc3f4f | 2922 | throw; |
7556d4a4 | 2923 | } |
872761f4 MS |
2924 | |
2925 | return cache; | |
2926 | } | |
2927 | ||
8fbca658 PA |
2928 | static enum unwind_stop_reason |
2929 | amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame, | |
2930 | void **this_cache) | |
2931 | { | |
2932 | struct amd64_frame_cache *cache | |
2933 | = amd64_epilogue_frame_cache (this_frame, this_cache); | |
2934 | ||
2935 | if (!cache->base_p) | |
2936 | return UNWIND_UNAVAILABLE; | |
2937 | ||
2938 | return UNWIND_NO_REASON; | |
2939 | } | |
2940 | ||
872761f4 MS |
2941 | static void |
2942 | amd64_epilogue_frame_this_id (struct frame_info *this_frame, | |
2943 | void **this_cache, | |
2944 | struct frame_id *this_id) | |
2945 | { | |
2946 | struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame, | |
2947 | this_cache); | |
2948 | ||
8fbca658 | 2949 | if (!cache->base_p) |
5ce0145d PA |
2950 | (*this_id) = frame_id_build_unavailable_stack (cache->pc); |
2951 | else | |
2952 | (*this_id) = frame_id_build (cache->base + 8, cache->pc); | |
872761f4 MS |
2953 | } |
2954 | ||
2955 | static const struct frame_unwind amd64_epilogue_frame_unwind = | |
2956 | { | |
2957 | NORMAL_FRAME, | |
8fbca658 | 2958 | amd64_epilogue_frame_unwind_stop_reason, |
872761f4 MS |
2959 | amd64_epilogue_frame_this_id, |
2960 | amd64_frame_prev_register, | |
2961 | NULL, | |
2962 | amd64_epilogue_frame_sniffer | |
2963 | }; | |
2964 | ||
166f4c7b | 2965 | static struct frame_id |
10458914 | 2966 | amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
166f4c7b | 2967 | { |
c4f35dd8 MK |
2968 | CORE_ADDR fp; |
2969 | ||
10458914 | 2970 | fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM); |
c4f35dd8 | 2971 | |
10458914 | 2972 | return frame_id_build (fp + 16, get_frame_pc (this_frame)); |
166f4c7b ML |
2973 | } |
2974 | ||
8b148df9 AC |
2975 | /* 16 byte align the SP per frame requirements. */ |
2976 | ||
2977 | static CORE_ADDR | |
e53bef9f | 2978 | amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
8b148df9 AC |
2979 | { |
2980 | return sp & -(CORE_ADDR)16; | |
2981 | } | |
473f17b0 MK |
2982 | \f |
2983 | ||
593adc23 MK |
2984 | /* Supply register REGNUM from the buffer specified by FPREGS and LEN |
2985 | in the floating-point register set REGSET to register cache | |
2986 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
473f17b0 MK |
2987 | |
2988 | static void | |
e53bef9f MK |
2989 | amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache, |
2990 | int regnum, const void *fpregs, size_t len) | |
473f17b0 | 2991 | { |
ac7936df | 2992 | struct gdbarch *gdbarch = regcache->arch (); |
09424cff | 2993 | const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
473f17b0 | 2994 | |
1528345d | 2995 | gdb_assert (len >= tdep->sizeof_fpregset); |
90f90721 | 2996 | amd64_supply_fxsave (regcache, regnum, fpregs); |
473f17b0 | 2997 | } |
8b148df9 | 2998 | |
593adc23 MK |
2999 | /* Collect register REGNUM from the register cache REGCACHE and store |
3000 | it in the buffer specified by FPREGS and LEN as described by the | |
3001 | floating-point register set REGSET. If REGNUM is -1, do this for | |
3002 | all registers in REGSET. */ | |
3003 | ||
3004 | static void | |
3005 | amd64_collect_fpregset (const struct regset *regset, | |
3006 | const struct regcache *regcache, | |
3007 | int regnum, void *fpregs, size_t len) | |
3008 | { | |
ac7936df | 3009 | struct gdbarch *gdbarch = regcache->arch (); |
09424cff | 3010 | const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
593adc23 | 3011 | |
1528345d | 3012 | gdb_assert (len >= tdep->sizeof_fpregset); |
593adc23 MK |
3013 | amd64_collect_fxsave (regcache, regnum, fpregs); |
3014 | } | |
3015 | ||
8f0435f7 | 3016 | const struct regset amd64_fpregset = |
ecc37a5a AA |
3017 | { |
3018 | NULL, amd64_supply_fpregset, amd64_collect_fpregset | |
3019 | }; | |
c6b33596 MK |
3020 | \f |
3021 | ||
436675d3 PA |
3022 | /* Figure out where the longjmp will land. Slurp the jmp_buf out of |
3023 | %rdi. We expect its value to be a pointer to the jmp_buf structure | |
3024 | from which we extract the address that we will land at. This | |
3025 | address is copied into PC. This routine returns non-zero on | |
3026 | success. */ | |
3027 | ||
3028 | static int | |
3029 | amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) | |
3030 | { | |
3031 | gdb_byte buf[8]; | |
3032 | CORE_ADDR jb_addr; | |
3033 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
3034 | int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset; | |
0dfff4cb | 3035 | int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr); |
436675d3 PA |
3036 | |
3037 | /* If JB_PC_OFFSET is -1, we have no way to find out where the | |
3038 | longjmp will land. */ | |
3039 | if (jb_pc_offset == -1) | |
3040 | return 0; | |
3041 | ||
3042 | get_frame_register (frame, AMD64_RDI_REGNUM, buf); | |
0dfff4cb UW |
3043 | jb_addr= extract_typed_address |
3044 | (buf, builtin_type (gdbarch)->builtin_data_ptr); | |
436675d3 PA |
3045 | if (target_read_memory (jb_addr + jb_pc_offset, buf, len)) |
3046 | return 0; | |
3047 | ||
0dfff4cb | 3048 | *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); |
436675d3 PA |
3049 | |
3050 | return 1; | |
3051 | } | |
3052 | ||
cf648174 HZ |
3053 | static const int amd64_record_regmap[] = |
3054 | { | |
3055 | AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM, | |
3056 | AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, | |
3057 | AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM, | |
3058 | AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM, | |
3059 | AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM, | |
3060 | AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM | |
3061 | }; | |
3062 | ||
1d509aa6 MM |
3063 | /* Implement the "in_indirect_branch_thunk" gdbarch function. */ |
3064 | ||
3065 | static bool | |
3066 | amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc) | |
3067 | { | |
3068 | return x86_in_indirect_branch_thunk (pc, amd64_register_names, | |
3069 | AMD64_RAX_REGNUM, | |
3070 | AMD64_RIP_REGNUM); | |
3071 | } | |
3072 | ||
2213a65d | 3073 | void |
c55a47e7 | 3074 | amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch, |
a04b5337 | 3075 | const target_desc *default_tdesc) |
53e95fcf | 3076 | { |
0c1a73d6 | 3077 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
90884b2b | 3078 | const struct target_desc *tdesc = info.target_desc; |
05c0465e SDJ |
3079 | static const char *const stap_integer_prefixes[] = { "$", NULL }; |
3080 | static const char *const stap_register_prefixes[] = { "%", NULL }; | |
3081 | static const char *const stap_register_indirection_prefixes[] = { "(", | |
3082 | NULL }; | |
3083 | static const char *const stap_register_indirection_suffixes[] = { ")", | |
3084 | NULL }; | |
53e95fcf | 3085 | |
473f17b0 MK |
3086 | /* AMD64 generally uses `fxsave' instead of `fsave' for saving its |
3087 | floating-point registers. */ | |
3088 | tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE; | |
8f0435f7 | 3089 | tdep->fpregset = &amd64_fpregset; |
473f17b0 | 3090 | |
90884b2b | 3091 | if (! tdesc_has_registers (tdesc)) |
c55a47e7 | 3092 | tdesc = default_tdesc; |
90884b2b L |
3093 | tdep->tdesc = tdesc; |
3094 | ||
3095 | tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS; | |
3096 | tdep->register_names = amd64_register_names; | |
3097 | ||
01f9f808 MS |
3098 | if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL) |
3099 | { | |
3100 | tdep->zmmh_register_names = amd64_zmmh_names; | |
3101 | tdep->k_register_names = amd64_k_names; | |
3102 | tdep->xmm_avx512_register_names = amd64_xmm_avx512_names; | |
3103 | tdep->ymm16h_register_names = amd64_ymmh_avx512_names; | |
3104 | ||
3105 | tdep->num_zmm_regs = 32; | |
3106 | tdep->num_xmm_avx512_regs = 16; | |
3107 | tdep->num_ymm_avx512_regs = 16; | |
3108 | ||
3109 | tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM; | |
3110 | tdep->k0_regnum = AMD64_K0_REGNUM; | |
3111 | tdep->xmm16_regnum = AMD64_XMM16_REGNUM; | |
3112 | tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM; | |
3113 | } | |
3114 | ||
a055a187 L |
3115 | if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL) |
3116 | { | |
3117 | tdep->ymmh_register_names = amd64_ymmh_names; | |
3118 | tdep->num_ymm_regs = 16; | |
3119 | tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM; | |
3120 | } | |
3121 | ||
e43e105e WT |
3122 | if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL) |
3123 | { | |
3124 | tdep->mpx_register_names = amd64_mpx_names; | |
3125 | tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM; | |
3126 | tdep->bnd0r_regnum = AMD64_BND0R_REGNUM; | |
3127 | } | |
3128 | ||
2735833d WT |
3129 | if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL) |
3130 | { | |
1163a4b7 | 3131 | tdep->fsbase_regnum = AMD64_FSBASE_REGNUM; |
2735833d WT |
3132 | } |
3133 | ||
51547df6 MS |
3134 | if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL) |
3135 | { | |
3136 | tdep->pkeys_register_names = amd64_pkeys_names; | |
3137 | tdep->pkru_regnum = AMD64_PKRU_REGNUM; | |
3138 | tdep->num_pkeys_regs = 1; | |
3139 | } | |
3140 | ||
fe01d668 | 3141 | tdep->num_byte_regs = 20; |
1ba53b71 L |
3142 | tdep->num_word_regs = 16; |
3143 | tdep->num_dword_regs = 16; | |
3144 | /* Avoid wiring in the MMX registers for now. */ | |
3145 | tdep->num_mmx_regs = 0; | |
3146 | ||
3543a589 TT |
3147 | set_gdbarch_pseudo_register_read_value (gdbarch, |
3148 | amd64_pseudo_register_read_value); | |
1ba53b71 L |
3149 | set_gdbarch_pseudo_register_write (gdbarch, |
3150 | amd64_pseudo_register_write); | |
62e5fd57 MK |
3151 | set_gdbarch_ax_pseudo_register_collect (gdbarch, |
3152 | amd64_ax_pseudo_register_collect); | |
1ba53b71 L |
3153 | |
3154 | set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name); | |
3155 | ||
5716833c | 3156 | /* AMD64 has an FPU and 16 SSE registers. */ |
90f90721 | 3157 | tdep->st0_regnum = AMD64_ST0_REGNUM; |
0c1a73d6 | 3158 | tdep->num_xmm_regs = 16; |
53e95fcf | 3159 | |
0c1a73d6 | 3160 | /* This is what all the fuss is about. */ |
53e95fcf JS |
3161 | set_gdbarch_long_bit (gdbarch, 64); |
3162 | set_gdbarch_long_long_bit (gdbarch, 64); | |
3163 | set_gdbarch_ptr_bit (gdbarch, 64); | |
3164 | ||
e53bef9f MK |
3165 | /* In contrast to the i386, on AMD64 a `long double' actually takes |
3166 | up 128 bits, even though it's still based on the i387 extended | |
3167 | floating-point format which has only 80 significant bits. */ | |
b83b026c MK |
3168 | set_gdbarch_long_double_bit (gdbarch, 128); |
3169 | ||
e53bef9f | 3170 | set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS); |
b83b026c MK |
3171 | |
3172 | /* Register numbers of various important registers. */ | |
90f90721 MK |
3173 | set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */ |
3174 | set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */ | |
3175 | set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */ | |
3176 | set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */ | |
b83b026c | 3177 | |
e53bef9f MK |
3178 | /* The "default" register numbering scheme for AMD64 is referred to |
3179 | as the "DWARF Register Number Mapping" in the System V psABI. | |
3180 | The preferred debugging format for all known AMD64 targets is | |
3181 | actually DWARF2, and GCC doesn't seem to support DWARF (that is | |
3182 | DWARF-1), but we provide the same mapping just in case. This | |
3183 | mapping is also used for stabs, which GCC does support. */ | |
3184 | set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | |
e53bef9f | 3185 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); |
de220d0f | 3186 | |
c4f35dd8 | 3187 | /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to |
e53bef9f | 3188 | be in use on any of the supported AMD64 targets. */ |
53e95fcf | 3189 | |
c4f35dd8 | 3190 | /* Call dummy code. */ |
e53bef9f MK |
3191 | set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call); |
3192 | set_gdbarch_frame_align (gdbarch, amd64_frame_align); | |
8b148df9 | 3193 | set_gdbarch_frame_red_zone_size (gdbarch, 128); |
53e95fcf | 3194 | |
83acabca | 3195 | set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p); |
d532c08f MK |
3196 | set_gdbarch_register_to_value (gdbarch, i387_register_to_value); |
3197 | set_gdbarch_value_to_register (gdbarch, i387_value_to_register); | |
3198 | ||
efb1c01c | 3199 | set_gdbarch_return_value (gdbarch, amd64_return_value); |
53e95fcf | 3200 | |
e53bef9f | 3201 | set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue); |
53e95fcf | 3202 | |
cf648174 HZ |
3203 | tdep->record_regmap = amd64_record_regmap; |
3204 | ||
10458914 | 3205 | set_gdbarch_dummy_id (gdbarch, amd64_dummy_id); |
53e95fcf | 3206 | |
872761f4 MS |
3207 | /* Hook the function epilogue frame unwinder. This unwinder is |
3208 | appended to the list first, so that it supercedes the other | |
3209 | unwinders in function epilogues. */ | |
3210 | frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind); | |
3211 | ||
3212 | /* Hook the prologue-based frame unwinders. */ | |
10458914 DJ |
3213 | frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind); |
3214 | frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind); | |
e53bef9f | 3215 | frame_base_set_default (gdbarch, &amd64_frame_base); |
c6b33596 | 3216 | |
436675d3 | 3217 | set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target); |
dde08ee1 PA |
3218 | |
3219 | set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction); | |
6710bf39 SS |
3220 | |
3221 | set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address); | |
55aa24fb SDJ |
3222 | |
3223 | /* SystemTap variables and functions. */ | |
05c0465e SDJ |
3224 | set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes); |
3225 | set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes); | |
3226 | set_gdbarch_stap_register_indirection_prefixes (gdbarch, | |
3227 | stap_register_indirection_prefixes); | |
3228 | set_gdbarch_stap_register_indirection_suffixes (gdbarch, | |
3229 | stap_register_indirection_suffixes); | |
55aa24fb SDJ |
3230 | set_gdbarch_stap_is_single_operand (gdbarch, |
3231 | i386_stap_is_single_operand); | |
3232 | set_gdbarch_stap_parse_special_token (gdbarch, | |
3233 | i386_stap_parse_special_token); | |
c2170eef MM |
3234 | set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call); |
3235 | set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret); | |
3236 | set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump); | |
1d509aa6 MM |
3237 | |
3238 | set_gdbarch_in_indirect_branch_thunk (gdbarch, | |
3239 | amd64_in_indirect_branch_thunk); | |
c4f35dd8 | 3240 | } |
c912f608 SM |
3241 | |
3242 | /* Initialize ARCH for x86-64, no osabi. */ | |
3243 | ||
3244 | static void | |
3245 | amd64_none_init_abi (gdbarch_info info, gdbarch *arch) | |
3246 | { | |
de52b960 PA |
3247 | amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK, |
3248 | true)); | |
c912f608 | 3249 | } |
fff4548b MK |
3250 | |
3251 | static struct type * | |
3252 | amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum) | |
3253 | { | |
3254 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3255 | ||
3256 | switch (regnum - tdep->eax_regnum) | |
3257 | { | |
3258 | case AMD64_RBP_REGNUM: /* %ebp */ | |
3259 | case AMD64_RSP_REGNUM: /* %esp */ | |
3260 | return builtin_type (gdbarch)->builtin_data_ptr; | |
3261 | case AMD64_RIP_REGNUM: /* %eip */ | |
3262 | return builtin_type (gdbarch)->builtin_func_ptr; | |
3263 | } | |
3264 | ||
3265 | return i386_pseudo_register_type (gdbarch, regnum); | |
3266 | } | |
3267 | ||
3268 | void | |
c55a47e7 | 3269 | amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch, |
a04b5337 | 3270 | const target_desc *default_tdesc) |
fff4548b MK |
3271 | { |
3272 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
fff4548b | 3273 | |
c55a47e7 | 3274 | amd64_init_abi (info, gdbarch, default_tdesc); |
fff4548b MK |
3275 | |
3276 | tdep->num_dword_regs = 17; | |
3277 | set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type); | |
3278 | ||
3279 | set_gdbarch_long_bit (gdbarch, 32); | |
3280 | set_gdbarch_ptr_bit (gdbarch, 32); | |
3281 | } | |
90884b2b | 3282 | |
c912f608 SM |
3283 | /* Initialize ARCH for x64-32, no osabi. */ |
3284 | ||
3285 | static void | |
3286 | amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch) | |
3287 | { | |
3288 | amd64_x32_init_abi (info, arch, | |
de52b960 | 3289 | amd64_target_description (X86_XSTATE_SSE_MASK, true)); |
c912f608 SM |
3290 | } |
3291 | ||
97de3545 JB |
3292 | /* Return the target description for a specified XSAVE feature mask. */ |
3293 | ||
3294 | const struct target_desc * | |
de52b960 | 3295 | amd64_target_description (uint64_t xcr0, bool segments) |
97de3545 | 3296 | { |
22916b07 | 3297 | static target_desc *amd64_tdescs \ |
de52b960 | 3298 | [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {}; |
22916b07 YQ |
3299 | target_desc **tdesc; |
3300 | ||
3301 | tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0] | |
3302 | [(xcr0 & X86_XSTATE_MPX) ? 1 : 0] | |
3303 | [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0] | |
de52b960 PA |
3304 | [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0] |
3305 | [segments ? 1 : 0]; | |
22916b07 YQ |
3306 | |
3307 | if (*tdesc == NULL) | |
de52b960 PA |
3308 | *tdesc = amd64_create_target_description (xcr0, false, false, |
3309 | segments); | |
22916b07 YQ |
3310 | |
3311 | return *tdesc; | |
97de3545 JB |
3312 | } |
3313 | ||
90884b2b L |
3314 | void |
3315 | _initialize_amd64_tdep (void) | |
3316 | { | |
c912f608 SM |
3317 | gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE, |
3318 | amd64_none_init_abi); | |
3319 | gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE, | |
3320 | amd64_x32_none_init_abi); | |
3321 | ||
22916b07 YQ |
3322 | #if GDB_SELF_TEST |
3323 | struct | |
3324 | { | |
3325 | const char *xml; | |
3326 | uint64_t mask; | |
3327 | } xml_masks[] = { | |
3328 | { "i386/amd64.xml", X86_XSTATE_SSE_MASK }, | |
3329 | { "i386/amd64-avx.xml", X86_XSTATE_AVX_MASK }, | |
3330 | { "i386/amd64-mpx.xml", X86_XSTATE_MPX_MASK }, | |
3331 | { "i386/amd64-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK }, | |
3332 | { "i386/amd64-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK }, | |
3333 | { "i386/amd64-avx-mpx-avx512-pku.xml", | |
3334 | X86_XSTATE_AVX_MPX_AVX512_PKU_MASK }, | |
3335 | }; | |
3336 | ||
3337 | for (auto &a : xml_masks) | |
3338 | { | |
de52b960 | 3339 | auto tdesc = amd64_target_description (a.mask, true); |
22916b07 YQ |
3340 | |
3341 | selftests::record_xml_tdesc (a.xml, tdesc); | |
3342 | } | |
3343 | #endif /* GDB_SELF_TEST */ | |
90884b2b | 3344 | } |
c4f35dd8 MK |
3345 | \f |
3346 | ||
41d041d6 MK |
3347 | /* The 64-bit FXSAVE format differs from the 32-bit format in the |
3348 | sense that the instruction pointer and data pointer are simply | |
3349 | 64-bit offsets into the code segment and the data segment instead | |
3350 | of a selector offset pair. The functions below store the upper 32 | |
3351 | bits of these pointers (instead of just the 16-bits of the segment | |
3352 | selector). */ | |
3353 | ||
3354 | /* Fill register REGNUM in REGCACHE with the appropriate | |
0485f6ad MK |
3355 | floating-point or SSE register value from *FXSAVE. If REGNUM is |
3356 | -1, do this for all registers. This function masks off any of the | |
3357 | reserved bits in *FXSAVE. */ | |
c4f35dd8 MK |
3358 | |
3359 | void | |
90f90721 | 3360 | amd64_supply_fxsave (struct regcache *regcache, int regnum, |
20a6ec49 | 3361 | const void *fxsave) |
c4f35dd8 | 3362 | { |
ac7936df | 3363 | struct gdbarch *gdbarch = regcache->arch (); |
20a6ec49 MD |
3364 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
3365 | ||
41d041d6 | 3366 | i387_supply_fxsave (regcache, regnum, fxsave); |
c4f35dd8 | 3367 | |
233dfcf0 L |
3368 | if (fxsave |
3369 | && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) | |
c4f35dd8 | 3370 | { |
9a3c8263 | 3371 | const gdb_byte *regs = (const gdb_byte *) fxsave; |
41d041d6 | 3372 | |
20a6ec49 | 3373 | if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) |
73e1c03f | 3374 | regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12); |
20a6ec49 | 3375 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) |
73e1c03f | 3376 | regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20); |
c4f35dd8 | 3377 | } |
0c1a73d6 MK |
3378 | } |
3379 | ||
a055a187 L |
3380 | /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */ |
3381 | ||
3382 | void | |
3383 | amd64_supply_xsave (struct regcache *regcache, int regnum, | |
3384 | const void *xsave) | |
3385 | { | |
ac7936df | 3386 | struct gdbarch *gdbarch = regcache->arch (); |
a055a187 L |
3387 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
3388 | ||
3389 | i387_supply_xsave (regcache, regnum, xsave); | |
3390 | ||
233dfcf0 L |
3391 | if (xsave |
3392 | && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) | |
a055a187 | 3393 | { |
9a3c8263 | 3394 | const gdb_byte *regs = (const gdb_byte *) xsave; |
8ee22052 | 3395 | ULONGEST clear_bv; |
a055a187 | 3396 | |
8ee22052 AB |
3397 | clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave); |
3398 | ||
3399 | /* If the FISEG and FOSEG registers have not been initialised yet | |
3400 | (their CLEAR_BV bit is set) then their default values of zero will | |
3401 | have already been setup by I387_SUPPLY_XSAVE. */ | |
3402 | if (!(clear_bv & X86_XSTATE_X87)) | |
3403 | { | |
3404 | if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) | |
73e1c03f | 3405 | regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12); |
8ee22052 | 3406 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) |
73e1c03f | 3407 | regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20); |
8ee22052 | 3408 | } |
a055a187 L |
3409 | } |
3410 | } | |
3411 | ||
3c017e40 MK |
3412 | /* Fill register REGNUM (if it is a floating-point or SSE register) in |
3413 | *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for | |
3414 | all registers. This function doesn't touch any of the reserved | |
3415 | bits in *FXSAVE. */ | |
3416 | ||
3417 | void | |
3418 | amd64_collect_fxsave (const struct regcache *regcache, int regnum, | |
3419 | void *fxsave) | |
3420 | { | |
ac7936df | 3421 | struct gdbarch *gdbarch = regcache->arch (); |
20a6ec49 | 3422 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9a3c8263 | 3423 | gdb_byte *regs = (gdb_byte *) fxsave; |
3c017e40 MK |
3424 | |
3425 | i387_collect_fxsave (regcache, regnum, fxsave); | |
3426 | ||
233dfcf0 | 3427 | if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) |
f0ef85a5 | 3428 | { |
20a6ec49 | 3429 | if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) |
34a79281 | 3430 | regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12); |
20a6ec49 | 3431 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) |
34a79281 | 3432 | regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20); |
f0ef85a5 | 3433 | } |
3c017e40 | 3434 | } |
a055a187 | 3435 | |
7a9dd1b2 | 3436 | /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */ |
a055a187 L |
3437 | |
3438 | void | |
3439 | amd64_collect_xsave (const struct regcache *regcache, int regnum, | |
3440 | void *xsave, int gcore) | |
3441 | { | |
ac7936df | 3442 | struct gdbarch *gdbarch = regcache->arch (); |
a055a187 | 3443 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9a3c8263 | 3444 | gdb_byte *regs = (gdb_byte *) xsave; |
a055a187 L |
3445 | |
3446 | i387_collect_xsave (regcache, regnum, xsave, gcore); | |
3447 | ||
233dfcf0 | 3448 | if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) |
a055a187 L |
3449 | { |
3450 | if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) | |
34a79281 | 3451 | regcache->raw_collect (I387_FISEG_REGNUM (tdep), |
a055a187 L |
3452 | regs + 12); |
3453 | if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) | |
34a79281 | 3454 | regcache->raw_collect (I387_FOSEG_REGNUM (tdep), |
a055a187 L |
3455 | regs + 20); |
3456 | } | |
3457 | } |