* linux-thread-db.c (thread_db_mourn_inferior): Remove breakpoints
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
197e01b6 3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999,
25224166
MK
4 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c 23
34e8f22d
RE
24#include <ctype.h> /* XXX for isupper () */
25
c906108c
SS
26#include "defs.h"
27#include "frame.h"
28#include "inferior.h"
29#include "gdbcmd.h"
30#include "gdbcore.h"
c906108c 31#include "gdb_string.h"
afd7eef0 32#include "dis-asm.h" /* For register styles. */
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
34e8f22d 36#include "arch-utils.h"
4be87837 37#include "osabi.h"
eb5492fa
DJ
38#include "frame-unwind.h"
39#include "frame-base.h"
40#include "trad-frame.h"
842e1f1e
DJ
41#include "objfiles.h"
42#include "dwarf2-frame.h"
34e8f22d
RE
43
44#include "arm-tdep.h"
26216b98 45#include "gdb/sim-arm.h"
34e8f22d 46
082fc60d
RE
47#include "elf-bfd.h"
48#include "coff/internal.h"
97e03143 49#include "elf/arm.h"
c906108c 50
26216b98
AC
51#include "gdb_assert.h"
52
6529d2dd
AC
53static int arm_debug;
54
082fc60d
RE
55/* Macros for setting and testing a bit in a minimal symbol that marks
56 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 57 is used for this purpose.
082fc60d
RE
58
59 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 60 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
61
62#define MSYMBOL_SET_SPECIAL(msym) \
63 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
64 | 0x80000000)
65
66#define MSYMBOL_IS_SPECIAL(msym) \
67 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
68
afd7eef0
RE
69/* The list of available "set arm ..." and "show arm ..." commands. */
70static struct cmd_list_element *setarmcmdlist = NULL;
71static struct cmd_list_element *showarmcmdlist = NULL;
72
fd50bc42
RE
73/* The type of floating-point to use. Keep this in sync with enum
74 arm_float_model, and the help string in _initialize_arm_tdep. */
75static const char *fp_model_strings[] =
76{
77 "auto",
78 "softfpa",
79 "fpa",
80 "softvfp",
28e97307
DJ
81 "vfp",
82 NULL
fd50bc42
RE
83};
84
85/* A variable that can be configured by the user. */
86static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
87static const char *current_fp_model = "auto";
88
28e97307
DJ
89/* The ABI to use. Keep this in sync with arm_abi_kind. */
90static const char *arm_abi_strings[] =
91{
92 "auto",
93 "APCS",
94 "AAPCS",
95 NULL
96};
97
98/* A variable that can be configured by the user. */
99static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
100static const char *arm_abi_string = "auto";
101
94c30b78 102/* Number of different reg name sets (options). */
afd7eef0 103static int num_disassembly_options;
bc90b915
FN
104
105/* We have more registers than the disassembler as gdb can print the value
106 of special registers as well.
107 The general register names are overwritten by whatever is being used by
94c30b78 108 the disassembler at the moment. We also adjust the case of cpsr and fps. */
bc90b915 109
94c30b78 110/* Initial value: Register names used in ARM's ISA documentation. */
bc90b915 111static char * arm_register_name_strings[] =
da59e081
JM
112{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
113 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
114 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
115 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
116 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
117 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 118 "fps", "cpsr" }; /* 24 25 */
966fbf70 119static char **arm_register_names = arm_register_name_strings;
ed9a39eb 120
afd7eef0
RE
121/* Valid register name styles. */
122static const char **valid_disassembly_styles;
ed9a39eb 123
afd7eef0
RE
124/* Disassembly style to use. Default to "std" register names. */
125static const char *disassembly_style;
94c30b78 126/* Index to that option in the opcodes table. */
da3c6d4a 127static int current_option;
96baa820 128
ed9a39eb 129/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
130 style. */
131static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 132 struct cmd_list_element *);
afd7eef0 133static void set_disassembly_style (void);
ed9a39eb 134
b508a996
RE
135static void convert_from_extended (const struct floatformat *, const void *,
136 void *);
137static void convert_to_extended (const struct floatformat *, void *,
138 const void *);
ed9a39eb 139
9b8d791a 140struct arm_prologue_cache
c3b4394c 141{
eb5492fa
DJ
142 /* The stack pointer at the time this frame was created; i.e. the
143 caller's stack pointer when this function was called. It is used
144 to identify this frame. */
145 CORE_ADDR prev_sp;
146
147 /* The frame base for this frame is just prev_sp + frame offset -
148 frame size. FRAMESIZE is the size of this stack frame, and
149 FRAMEOFFSET if the initial offset from the stack pointer (this
150 frame's stack pointer, not PREV_SP) to the frame base. */
151
c3b4394c
RE
152 int framesize;
153 int frameoffset;
eb5492fa
DJ
154
155 /* The register used to hold the frame pointer for this frame. */
c3b4394c 156 int framereg;
eb5492fa
DJ
157
158 /* Saved register offsets. */
159 struct trad_frame_saved_reg *saved_regs;
c3b4394c 160};
ed9a39eb 161
bc90b915
FN
162/* Addresses for calling Thumb functions have the bit 0 set.
163 Here are some macros to test, set, or clear bit 0 of addresses. */
164#define IS_THUMB_ADDR(addr) ((addr) & 1)
165#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
166#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
167
94c30b78 168/* Set to true if the 32-bit mode is in use. */
c906108c
SS
169
170int arm_apcs_32 = 1;
171
ed9a39eb
JM
172/* Determine if the program counter specified in MEMADDR is in a Thumb
173 function. */
c906108c 174
34e8f22d 175int
2a451106 176arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 177{
c5aa993b 178 struct minimal_symbol *sym;
c906108c 179
ed9a39eb 180 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
181 if (IS_THUMB_ADDR (memaddr))
182 return 1;
183
ed9a39eb 184 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
185 sym = lookup_minimal_symbol_by_pc (memaddr);
186 if (sym)
187 {
c5aa993b 188 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
189 }
190 else
ed9a39eb
JM
191 {
192 return 0;
193 }
c906108c
SS
194}
195
181c1381 196/* Remove useless bits from addresses in a running program. */
34e8f22d 197static CORE_ADDR
ed9a39eb 198arm_addr_bits_remove (CORE_ADDR val)
c906108c 199{
a3a2ee65
JT
200 if (arm_apcs_32)
201 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 202 else
a3a2ee65 203 return (val & 0x03fffffc);
c906108c
SS
204}
205
181c1381
RE
206/* When reading symbols, we need to zap the low bit of the address,
207 which may be set to 1 for Thumb functions. */
34e8f22d 208static CORE_ADDR
181c1381
RE
209arm_smash_text_address (CORE_ADDR val)
210{
211 return val & ~1;
212}
213
34e8f22d
RE
214/* Immediately after a function call, return the saved pc. Can't
215 always go through the frames for this because on some machines the
216 new frame is not set up until the new function executes some
217 instructions. */
218
219static CORE_ADDR
ed9a39eb 220arm_saved_pc_after_call (struct frame_info *frame)
c906108c 221{
34e8f22d 222 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
c906108c
SS
223}
224
225/* A typical Thumb prologue looks like this:
c5aa993b
JM
226 push {r7, lr}
227 add sp, sp, #-28
228 add r7, sp, #12
c906108c 229 Sometimes the latter instruction may be replaced by:
da59e081
JM
230 mov r7, sp
231
232 or like this:
233 push {r7, lr}
234 mov r7, sp
235 sub sp, #12
236
237 or, on tpcs, like this:
238 sub sp,#16
239 push {r7, lr}
240 (many instructions)
241 mov r7, sp
242 sub sp, #12
243
244 There is always one instruction of three classes:
245 1 - push
246 2 - setting of r7
247 3 - adjusting of sp
248
249 When we have found at least one of each class we are done with the prolog.
250 Note that the "sub sp, #NN" before the push does not count.
ed9a39eb 251 */
c906108c
SS
252
253static CORE_ADDR
c7885828 254thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
c906108c
SS
255{
256 CORE_ADDR current_pc;
da3c6d4a
MS
257 /* findmask:
258 bit 0 - push { rlist }
259 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
260 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
261 */
262 int findmask = 0;
263
94c30b78
MS
264 for (current_pc = pc;
265 current_pc + 2 < func_end && current_pc < pc + 40;
da3c6d4a 266 current_pc += 2)
c906108c
SS
267 {
268 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
269
94c30b78 270 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 271 {
94c30b78 272 findmask |= 1; /* push found */
da59e081 273 }
da3c6d4a
MS
274 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
275 sub sp, #simm */
da59e081 276 {
94c30b78 277 if ((findmask & 1) == 0) /* before push ? */
da59e081
JM
278 continue;
279 else
94c30b78 280 findmask |= 4; /* add/sub sp found */
da59e081
JM
281 }
282 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
283 {
94c30b78 284 findmask |= 2; /* setting of r7 found */
da59e081
JM
285 }
286 else if (insn == 0x466f) /* mov r7, sp */
287 {
94c30b78 288 findmask |= 2; /* setting of r7 found */
da59e081 289 }
3d74b771
FF
290 else if (findmask == (4+2+1))
291 {
da3c6d4a
MS
292 /* We have found one of each type of prologue instruction */
293 break;
3d74b771 294 }
da59e081 295 else
94c30b78 296 /* Something in the prolog that we don't care about or some
da3c6d4a 297 instruction from outside the prolog scheduled here for
94c30b78 298 optimization. */
da3c6d4a 299 continue;
c906108c
SS
300 }
301
302 return current_pc;
303}
304
da3c6d4a
MS
305/* Advance the PC across any function entry prologue instructions to
306 reach some "real" code.
34e8f22d
RE
307
308 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 309 prologue:
c906108c 310
c5aa993b
JM
311 mov ip, sp
312 [stmfd sp!, {a1,a2,a3,a4}]
313 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
314 [stfe f7, [sp, #-12]!]
315 [stfe f6, [sp, #-12]!]
316 [stfe f5, [sp, #-12]!]
317 [stfe f4, [sp, #-12]!]
318 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 319
34e8f22d 320static CORE_ADDR
ed9a39eb 321arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
322{
323 unsigned long inst;
324 CORE_ADDR skip_pc;
b8d5e71d 325 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 326 char *func_name;
c906108c
SS
327 struct symtab_and_line sal;
328
848cfffb 329 /* If we're in a dummy frame, don't even try to skip the prologue. */
30a4a8e0 330 if (deprecated_pc_in_call_dummy (pc))
848cfffb
AC
331 return pc;
332
96baa820 333 /* See what the symbol table says. */
ed9a39eb 334
50f6fb4b 335 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 336 {
50f6fb4b
CV
337 struct symbol *sym;
338
339 /* Found a function. */
176620f1 340 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
341 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
342 {
94c30b78 343 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
344 sal = find_pc_line (func_addr, 0);
345 if ((sal.line != 0) && (sal.end < func_end))
346 return sal.end;
347 }
c906108c
SS
348 }
349
350 /* Check if this is Thumb code. */
351 if (arm_pc_is_thumb (pc))
c7885828 352 return thumb_skip_prologue (pc, func_end);
c906108c
SS
353
354 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 355 by disassembling the instructions. */
c906108c 356
b8d5e71d
MS
357 /* Like arm_scan_prologue, stop no later than pc + 64. */
358 if (func_end == 0 || func_end > pc + 64)
359 func_end = pc + 64;
c906108c 360
b8d5e71d 361 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 362 {
f43845b3 363 inst = read_memory_integer (skip_pc, 4);
f43845b3 364
b8d5e71d
MS
365 /* "mov ip, sp" is no longer a required part of the prologue. */
366 if (inst == 0xe1a0c00d) /* mov ip, sp */
367 continue;
c906108c 368
28cd8767
JG
369 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
370 continue;
371
372 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
373 continue;
374
b8d5e71d
MS
375 /* Some prologues begin with "str lr, [sp, #-4]!". */
376 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
377 continue;
c906108c 378
b8d5e71d
MS
379 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
380 continue;
c906108c 381
b8d5e71d
MS
382 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
383 continue;
11d3b27d 384
b8d5e71d
MS
385 /* Any insns after this point may float into the code, if it makes
386 for better instruction scheduling, so we skip them only if we
387 find them, but still consider the function to be frame-ful. */
f43845b3 388
b8d5e71d
MS
389 /* We may have either one sfmfd instruction here, or several stfe
390 insns, depending on the version of floating point code we
391 support. */
392 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
393 continue;
394
395 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
396 continue;
397
398 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
399 continue;
400
401 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
402 continue;
403
404 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
405 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
406 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
407 continue;
408
409 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
410 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
411 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
412 continue;
413
414 /* Un-recognized instruction; stop scanning. */
415 break;
f43845b3 416 }
c906108c 417
b8d5e71d 418 return skip_pc; /* End of prologue */
c906108c 419}
94c30b78 420
c5aa993b 421/* *INDENT-OFF* */
c906108c
SS
422/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
423 This function decodes a Thumb function prologue to determine:
424 1) the size of the stack frame
425 2) which registers are saved on it
426 3) the offsets of saved regs
427 4) the offset from the stack pointer to the frame pointer
c906108c 428
da59e081
JM
429 A typical Thumb function prologue would create this stack frame
430 (offsets relative to FP)
c906108c
SS
431 old SP -> 24 stack parameters
432 20 LR
433 16 R7
434 R7 -> 0 local variables (16 bytes)
435 SP -> -12 additional stack space (12 bytes)
436 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
437 12 bytes. The frame register is R7.
438
da3c6d4a
MS
439 The comments for thumb_skip_prolog() describe the algorithm we use
440 to detect the end of the prolog. */
c5aa993b
JM
441/* *INDENT-ON* */
442
c906108c 443static void
eb5492fa 444thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
c906108c
SS
445{
446 CORE_ADDR prologue_start;
447 CORE_ADDR prologue_end;
448 CORE_ADDR current_pc;
94c30b78 449 /* Which register has been copied to register n? */
da3c6d4a
MS
450 int saved_reg[16];
451 /* findmask:
452 bit 0 - push { rlist }
453 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
454 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
455 */
456 int findmask = 0;
c5aa993b 457 int i;
c906108c 458
eb5492fa 459 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
460 {
461 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
462
94c30b78 463 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 464 prologue_end = prev_pc;
c906108c 465 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 466 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
467 }
468 else
da3c6d4a
MS
469 /* We're in the boondocks: allow for
470 16 pushes, an add, and "mv fp,sp". */
471 prologue_end = prologue_start + 40;
c906108c 472
eb5492fa 473 prologue_end = min (prologue_end, prev_pc);
c906108c
SS
474
475 /* Initialize the saved register map. When register H is copied to
476 register L, we will put H in saved_reg[L]. */
477 for (i = 0; i < 16; i++)
478 saved_reg[i] = i;
479
480 /* Search the prologue looking for instructions that set up the
da59e081
JM
481 frame pointer, adjust the stack pointer, and save registers.
482 Do this until all basic prolog instructions are found. */
c906108c 483
9b8d791a 484 cache->framesize = 0;
da59e081
JM
485 for (current_pc = prologue_start;
486 (current_pc < prologue_end) && ((findmask & 7) != 7);
487 current_pc += 2)
c906108c
SS
488 {
489 unsigned short insn;
490 int regno;
491 int offset;
492
493 insn = read_memory_unsigned_integer (current_pc, 2);
494
c5aa993b 495 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
c906108c 496 {
da59e081 497 int mask;
94c30b78 498 findmask |= 1; /* push found */
c906108c
SS
499 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
500 whether to save LR (R14). */
da59e081 501 mask = (insn & 0xff) | ((insn & 0x100) << 6);
c906108c 502
b8d5e71d 503 /* Calculate offsets of saved R0-R7 and LR. */
34e8f22d 504 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
c906108c 505 if (mask & (1 << regno))
c5aa993b 506 {
9b8d791a 507 cache->framesize += 4;
eb5492fa 508 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
da3c6d4a
MS
509 /* Reset saved register map. */
510 saved_reg[regno] = regno;
c906108c
SS
511 }
512 }
da3c6d4a
MS
513 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
514 sub sp, #simm */
c906108c 515 {
b8d5e71d 516 if ((findmask & 1) == 0) /* before push? */
da59e081
JM
517 continue;
518 else
94c30b78 519 findmask |= 4; /* add/sub sp found */
da59e081 520
94c30b78
MS
521 offset = (insn & 0x7f) << 2; /* get scaled offset */
522 if (insn & 0x80) /* is it signed? (==subtracting) */
da59e081 523 {
9b8d791a 524 cache->frameoffset += offset;
da59e081
JM
525 offset = -offset;
526 }
9b8d791a 527 cache->framesize -= offset;
c906108c
SS
528 }
529 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
530 {
94c30b78 531 findmask |= 2; /* setting of r7 found */
9b8d791a 532 cache->framereg = THUMB_FP_REGNUM;
c3b4394c 533 /* get scaled offset */
9b8d791a 534 cache->frameoffset = (insn & 0xff) << 2;
c906108c 535 }
da59e081 536 else if (insn == 0x466f) /* mov r7, sp */
c906108c 537 {
94c30b78 538 findmask |= 2; /* setting of r7 found */
9b8d791a
DJ
539 cache->framereg = THUMB_FP_REGNUM;
540 cache->frameoffset = 0;
34e8f22d 541 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
c906108c
SS
542 }
543 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
544 {
da3c6d4a 545 int lo_reg = insn & 7; /* dest. register (r0-r7) */
c906108c 546 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
94c30b78 547 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
c906108c
SS
548 }
549 else
da3c6d4a
MS
550 /* Something in the prolog that we don't care about or some
551 instruction from outside the prolog scheduled here for
552 optimization. */
553 continue;
c906108c
SS
554 }
555}
556
ed9a39eb 557/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
558 1) the size of the stack frame
559 2) which registers are saved on it
560 3) the offsets of saved regs
561 4) the offset from the stack pointer to the frame pointer
c906108c
SS
562 This information is stored in the "extra" fields of the frame_info.
563
96baa820
JM
564 There are two basic forms for the ARM prologue. The fixed argument
565 function call will look like:
ed9a39eb
JM
566
567 mov ip, sp
568 stmfd sp!, {fp, ip, lr, pc}
569 sub fp, ip, #4
570 [sub sp, sp, #4]
96baa820 571
c906108c 572 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
573 IP -> 4 (caller's stack)
574 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
575 -4 LR (return address in caller)
576 -8 IP (copy of caller's SP)
577 -12 FP (caller's FP)
578 SP -> -28 Local variables
579
c906108c 580 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
581 28 bytes. The stmfd call can also save any of the vN registers it
582 plans to use, which increases the frame size accordingly.
583
584 Note: The stored PC is 8 off of the STMFD instruction that stored it
585 because the ARM Store instructions always store PC + 8 when you read
586 the PC register.
ed9a39eb 587
96baa820
JM
588 A variable argument function call will look like:
589
ed9a39eb
JM
590 mov ip, sp
591 stmfd sp!, {a1, a2, a3, a4}
592 stmfd sp!, {fp, ip, lr, pc}
593 sub fp, ip, #20
594
96baa820 595 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
596 IP -> 20 (caller's stack)
597 16 A4
598 12 A3
599 8 A2
600 4 A1
601 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
602 -4 LR (return address in caller)
603 -8 IP (copy of caller's SP)
604 -12 FP (caller's FP)
605 SP -> -28 Local variables
96baa820
JM
606
607 The frame size would thus be 48 bytes, and the frame offset would be
608 28 bytes.
609
610 There is another potential complication, which is that the optimizer
611 will try to separate the store of fp in the "stmfd" instruction from
612 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
613 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
614
615 Also, note, the original version of the ARM toolchain claimed that there
616 should be an
617
618 instruction at the end of the prologue. I have never seen GCC produce
619 this, and the ARM docs don't mention it. We still test for it below in
620 case it happens...
ed9a39eb
JM
621
622 */
c906108c
SS
623
624static void
eb5492fa 625arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
c906108c 626{
28cd8767 627 int regno, sp_offset, fp_offset, ip_offset;
c906108c 628 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 629 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
c906108c 630
c906108c 631 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
632 cache->framereg = ARM_SP_REGNUM;
633 cache->framesize = 0;
634 cache->frameoffset = 0;
c906108c
SS
635
636 /* Check for Thumb prologue. */
eb5492fa 637 if (arm_pc_is_thumb (prev_pc))
c906108c 638 {
eb5492fa 639 thumb_scan_prologue (prev_pc, cache);
c906108c
SS
640 return;
641 }
642
643 /* Find the function prologue. If we can't find the function in
644 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 645 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 646 {
2a451106
KB
647 /* One way to find the end of the prologue (which works well
648 for unoptimized code) is to do the following:
649
650 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
651
652 if (sal.line == 0)
eb5492fa 653 prologue_end = prev_pc;
2a451106
KB
654 else if (sal.end < prologue_end)
655 prologue_end = sal.end;
656
657 This mechanism is very accurate so long as the optimizer
658 doesn't move any instructions from the function body into the
659 prologue. If this happens, sal.end will be the last
660 instruction in the first hunk of prologue code just before
661 the first instruction that the scheduler has moved from
662 the body to the prologue.
663
664 In order to make sure that we scan all of the prologue
665 instructions, we use a slightly less accurate mechanism which
666 may scan more than necessary. To help compensate for this
667 lack of accuracy, the prologue scanning loop below contains
668 several clauses which'll cause the loop to terminate early if
669 an implausible prologue instruction is encountered.
670
671 The expression
672
673 prologue_start + 64
674
675 is a suitable endpoint since it accounts for the largest
676 possible prologue plus up to five instructions inserted by
94c30b78 677 the scheduler. */
2a451106
KB
678
679 if (prologue_end > prologue_start + 64)
680 {
94c30b78 681 prologue_end = prologue_start + 64; /* See above. */
2a451106 682 }
c906108c
SS
683 }
684 else
685 {
eb5492fa
DJ
686 /* We have no symbol information. Our only option is to assume this
687 function has a standard stack frame and the normal frame register.
688 Then, we can find the value of our frame pointer on entrance to
689 the callee (or at the present moment if this is the innermost frame).
690 The value stored there should be the address of the stmfd + 8. */
691 CORE_ADDR frame_loc;
692 LONGEST return_value;
693
694 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
695 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
696 return;
697 else
698 {
699 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 700 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 701 }
c906108c
SS
702 }
703
eb5492fa
DJ
704 if (prev_pc < prologue_end)
705 prologue_end = prev_pc;
706
c906108c 707 /* Now search the prologue looking for instructions that set up the
96baa820 708 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 709
96baa820
JM
710 Be careful, however, and if it doesn't look like a prologue,
711 don't try to scan it. If, for instance, a frameless function
712 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 713 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
714 and other operations that rely on a knowledge of the stack
715 traceback.
716
717 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 718 if we don't see this as the first insn, we will stop.
c906108c 719
f43845b3
MS
720 [Note: This doesn't seem to be true any longer, so it's now an
721 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 722
f43845b3
MS
723 [Note further: The "mov ip,sp" only seems to be missing in
724 frameless functions at optimization level "-O2" or above,
725 in which case it is often (but not always) replaced by
b8d5e71d 726 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 727
28cd8767 728 sp_offset = fp_offset = ip_offset = 0;
f43845b3 729
94c30b78
MS
730 for (current_pc = prologue_start;
731 current_pc < prologue_end;
f43845b3 732 current_pc += 4)
96baa820 733 {
d4473757
KB
734 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
735
94c30b78 736 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 737 {
28cd8767
JG
738 ip_offset = 0;
739 continue;
740 }
741 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
742 {
743 unsigned imm = insn & 0xff; /* immediate value */
744 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
745 imm = (imm >> rot) | (imm << (32 - rot));
746 ip_offset = imm;
747 continue;
748 }
749 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
750 {
751 unsigned imm = insn & 0xff; /* immediate value */
752 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
753 imm = (imm >> rot) | (imm << (32 - rot));
754 ip_offset = -imm;
f43845b3
MS
755 continue;
756 }
94c30b78 757 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 758 {
e28a332c
JG
759 sp_offset -= 4;
760 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
f43845b3
MS
761 continue;
762 }
763 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
764 /* stmfd sp!, {..., fp, ip, lr, pc}
765 or
766 stmfd sp!, {a1, a2, a3, a4} */
c906108c 767 {
d4473757 768 int mask = insn & 0xffff;
ed9a39eb 769
94c30b78 770 /* Calculate offsets of saved registers. */
34e8f22d 771 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
772 if (mask & (1 << regno))
773 {
774 sp_offset -= 4;
eb5492fa 775 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
776 }
777 }
b8d5e71d
MS
778 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
779 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
780 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
781 {
782 /* No need to add this to saved_regs -- it's just an arg reg. */
783 continue;
784 }
785 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
786 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
787 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
788 {
789 /* No need to add this to saved_regs -- it's just an arg reg. */
790 continue;
791 }
d4473757
KB
792 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
793 {
94c30b78
MS
794 unsigned imm = insn & 0xff; /* immediate value */
795 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 796 imm = (imm >> rot) | (imm << (32 - rot));
28cd8767 797 fp_offset = -imm + ip_offset;
9b8d791a 798 cache->framereg = ARM_FP_REGNUM;
d4473757
KB
799 }
800 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
801 {
94c30b78
MS
802 unsigned imm = insn & 0xff; /* immediate value */
803 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
804 imm = (imm >> rot) | (imm << (32 - rot));
805 sp_offset -= imm;
806 }
807 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
808 {
809 sp_offset -= 12;
34e8f22d 810 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
eb5492fa 811 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
812 }
813 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
814 {
815 int n_saved_fp_regs;
816 unsigned int fp_start_reg, fp_bound_reg;
817
94c30b78 818 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 819 {
d4473757
KB
820 if ((insn & 0x40000) == 0x40000) /* N1 is set */
821 n_saved_fp_regs = 3;
822 else
823 n_saved_fp_regs = 1;
96baa820 824 }
d4473757 825 else
96baa820 826 {
d4473757
KB
827 if ((insn & 0x40000) == 0x40000) /* N1 is set */
828 n_saved_fp_regs = 2;
829 else
830 n_saved_fp_regs = 4;
96baa820 831 }
d4473757 832
34e8f22d 833 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
834 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
835 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
836 {
837 sp_offset -= 12;
eb5492fa 838 cache->saved_regs[fp_start_reg++].addr = sp_offset;
96baa820 839 }
c906108c 840 }
d4473757 841 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 842 break; /* Condition not true, exit early */
b8d5e71d 843 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 844 break; /* Don't scan past a block load */
d4473757
KB
845 else
846 /* The optimizer might shove anything into the prologue,
94c30b78 847 so we just skip what we don't recognize. */
d4473757 848 continue;
c906108c
SS
849 }
850
94c30b78
MS
851 /* The frame size is just the negative of the offset (from the
852 original SP) of the last thing thing we pushed on the stack.
853 The frame offset is [new FP] - [new SP]. */
9b8d791a
DJ
854 cache->framesize = -sp_offset;
855 if (cache->framereg == ARM_FP_REGNUM)
856 cache->frameoffset = fp_offset - sp_offset;
d4473757 857 else
9b8d791a 858 cache->frameoffset = 0;
c906108c
SS
859}
860
eb5492fa
DJ
861static struct arm_prologue_cache *
862arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 863{
eb5492fa
DJ
864 int reg;
865 struct arm_prologue_cache *cache;
866 CORE_ADDR unwound_fp;
c5aa993b 867
eb5492fa
DJ
868 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
869 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 870
eb5492fa 871 arm_scan_prologue (next_frame, cache);
848cfffb 872
eb5492fa
DJ
873 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
874 if (unwound_fp == 0)
875 return cache;
c906108c 876
eb5492fa 877 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
c906108c 878
eb5492fa
DJ
879 /* Calculate actual addresses of saved registers using offsets
880 determined by arm_scan_prologue. */
881 for (reg = 0; reg < NUM_REGS; reg++)
e28a332c 882 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
883 cache->saved_regs[reg].addr += cache->prev_sp;
884
885 return cache;
c906108c
SS
886}
887
eb5492fa
DJ
888/* Our frame ID for a normal frame is the current function's starting PC
889 and the caller's SP when we were called. */
c906108c 890
148754e5 891static void
eb5492fa
DJ
892arm_prologue_this_id (struct frame_info *next_frame,
893 void **this_cache,
894 struct frame_id *this_id)
c906108c 895{
eb5492fa
DJ
896 struct arm_prologue_cache *cache;
897 struct frame_id id;
898 CORE_ADDR func;
f079148d 899
eb5492fa
DJ
900 if (*this_cache == NULL)
901 *this_cache = arm_make_prologue_cache (next_frame);
902 cache = *this_cache;
2a451106 903
eb5492fa 904 func = frame_func_unwind (next_frame);
2a451106 905
eb5492fa
DJ
906 /* This is meant to halt the backtrace at "_start". Make sure we
907 don't halt it at a generic dummy frame. */
9e815ec2 908 if (func <= LOWEST_PC)
eb5492fa 909 return;
5a203e44 910
eb5492fa
DJ
911 /* If we've hit a wall, stop. */
912 if (cache->prev_sp == 0)
913 return;
24de872b 914
eb5492fa 915 id = frame_id_build (cache->prev_sp, func);
eb5492fa 916 *this_id = id;
c906108c
SS
917}
918
eb5492fa
DJ
919static void
920arm_prologue_prev_register (struct frame_info *next_frame,
921 void **this_cache,
922 int prev_regnum,
923 int *optimized,
924 enum lval_type *lvalp,
925 CORE_ADDR *addrp,
926 int *realnump,
9af75ef6 927 gdb_byte *valuep)
24de872b
DJ
928{
929 struct arm_prologue_cache *cache;
930
eb5492fa
DJ
931 if (*this_cache == NULL)
932 *this_cache = arm_make_prologue_cache (next_frame);
933 cache = *this_cache;
24de872b 934
eb5492fa
DJ
935 /* If we are asked to unwind the PC, then we need to return the LR
936 instead. The saved value of PC points into this frame's
937 prologue, not the next frame's resume location. */
938 if (prev_regnum == ARM_PC_REGNUM)
939 prev_regnum = ARM_LR_REGNUM;
24de872b 940
eb5492fa
DJ
941 /* SP is generally not saved to the stack, but this frame is
942 identified by NEXT_FRAME's stack pointer at the time of the call.
943 The value was already reconstructed into PREV_SP. */
944 if (prev_regnum == ARM_SP_REGNUM)
945 {
946 *lvalp = not_lval;
947 if (valuep)
948 store_unsigned_integer (valuep, 4, cache->prev_sp);
949 return;
950 }
951
1f67027d
AC
952 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
953 optimized, lvalp, addrp, realnump, valuep);
eb5492fa
DJ
954}
955
956struct frame_unwind arm_prologue_unwind = {
957 NORMAL_FRAME,
958 arm_prologue_this_id,
959 arm_prologue_prev_register
960};
961
962static const struct frame_unwind *
963arm_prologue_unwind_sniffer (struct frame_info *next_frame)
964{
965 return &arm_prologue_unwind;
24de872b
DJ
966}
967
909cf6ea
DJ
968static struct arm_prologue_cache *
969arm_make_stub_cache (struct frame_info *next_frame)
970{
971 int reg;
972 struct arm_prologue_cache *cache;
973 CORE_ADDR unwound_fp;
974
975 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
976 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
977
978 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
979
980 return cache;
981}
982
983/* Our frame ID for a stub frame is the current SP and LR. */
984
985static void
986arm_stub_this_id (struct frame_info *next_frame,
987 void **this_cache,
988 struct frame_id *this_id)
989{
990 struct arm_prologue_cache *cache;
991
992 if (*this_cache == NULL)
993 *this_cache = arm_make_stub_cache (next_frame);
994 cache = *this_cache;
995
996 *this_id = frame_id_build (cache->prev_sp,
997 frame_pc_unwind (next_frame));
998}
999
1000struct frame_unwind arm_stub_unwind = {
1001 NORMAL_FRAME,
1002 arm_stub_this_id,
1003 arm_prologue_prev_register
1004};
1005
1006static const struct frame_unwind *
1007arm_stub_unwind_sniffer (struct frame_info *next_frame)
1008{
1009 char dummy[4];
1010
1011 if (in_plt_section (frame_unwind_address_in_block (next_frame), NULL)
1012 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1013 return &arm_stub_unwind;
1014
1015 return NULL;
1016}
1017
24de872b 1018static CORE_ADDR
eb5492fa 1019arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1020{
1021 struct arm_prologue_cache *cache;
1022
eb5492fa
DJ
1023 if (*this_cache == NULL)
1024 *this_cache = arm_make_prologue_cache (next_frame);
1025 cache = *this_cache;
1026
1027 return cache->prev_sp + cache->frameoffset - cache->framesize;
24de872b
DJ
1028}
1029
eb5492fa
DJ
1030struct frame_base arm_normal_base = {
1031 &arm_prologue_unwind,
1032 arm_normal_frame_base,
1033 arm_normal_frame_base,
1034 arm_normal_frame_base
1035};
1036
eb5492fa
DJ
1037/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1038 dummy frame. The frame ID's base needs to match the TOS value
1039 saved by save_dummy_frame_tos() and returned from
1040 arm_push_dummy_call, and the PC needs to match the dummy frame's
1041 breakpoint. */
c906108c 1042
eb5492fa
DJ
1043static struct frame_id
1044arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1045{
eb5492fa
DJ
1046 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1047 frame_pc_unwind (next_frame));
1048}
c3b4394c 1049
eb5492fa
DJ
1050/* Given THIS_FRAME, find the previous frame's resume PC (which will
1051 be used to construct the previous frame's ID, after looking up the
1052 containing function). */
c3b4394c 1053
eb5492fa
DJ
1054static CORE_ADDR
1055arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1056{
1057 CORE_ADDR pc;
1058 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1059 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1060}
1061
1062static CORE_ADDR
1063arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1064{
1065 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1066}
1067
2dd604e7
RE
1068/* When arguments must be pushed onto the stack, they go on in reverse
1069 order. The code below implements a FILO (stack) to do this. */
1070
1071struct stack_item
1072{
1073 int len;
1074 struct stack_item *prev;
1075 void *data;
1076};
1077
1078static struct stack_item *
1079push_stack_item (struct stack_item *prev, void *contents, int len)
1080{
1081 struct stack_item *si;
1082 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1083 si->data = xmalloc (len);
2dd604e7
RE
1084 si->len = len;
1085 si->prev = prev;
1086 memcpy (si->data, contents, len);
1087 return si;
1088}
1089
1090static struct stack_item *
1091pop_stack_item (struct stack_item *si)
1092{
1093 struct stack_item *dead = si;
1094 si = si->prev;
1095 xfree (dead->data);
1096 xfree (dead);
1097 return si;
1098}
1099
2af48f68
PB
1100
1101/* Return the alignment (in bytes) of the given type. */
1102
1103static int
1104arm_type_align (struct type *t)
1105{
1106 int n;
1107 int align;
1108 int falign;
1109
1110 t = check_typedef (t);
1111 switch (TYPE_CODE (t))
1112 {
1113 default:
1114 /* Should never happen. */
1115 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1116 return 4;
1117
1118 case TYPE_CODE_PTR:
1119 case TYPE_CODE_ENUM:
1120 case TYPE_CODE_INT:
1121 case TYPE_CODE_FLT:
1122 case TYPE_CODE_SET:
1123 case TYPE_CODE_RANGE:
1124 case TYPE_CODE_BITSTRING:
1125 case TYPE_CODE_REF:
1126 case TYPE_CODE_CHAR:
1127 case TYPE_CODE_BOOL:
1128 return TYPE_LENGTH (t);
1129
1130 case TYPE_CODE_ARRAY:
1131 case TYPE_CODE_COMPLEX:
1132 /* TODO: What about vector types? */
1133 return arm_type_align (TYPE_TARGET_TYPE (t));
1134
1135 case TYPE_CODE_STRUCT:
1136 case TYPE_CODE_UNION:
1137 align = 1;
1138 for (n = 0; n < TYPE_NFIELDS (t); n++)
1139 {
1140 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1141 if (falign > align)
1142 align = falign;
1143 }
1144 return align;
1145 }
1146}
1147
2dd604e7
RE
1148/* We currently only support passing parameters in integer registers. This
1149 conforms with GCC's default model. Several other variants exist and
1150 we should probably support some of them based on the selected ABI. */
1151
1152static CORE_ADDR
7d9b040b 1153arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1154 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1155 struct value **args, CORE_ADDR sp, int struct_return,
1156 CORE_ADDR struct_addr)
2dd604e7
RE
1157{
1158 int argnum;
1159 int argreg;
1160 int nstack;
1161 struct stack_item *si = NULL;
1162
6a65450a
AC
1163 /* Set the return address. For the ARM, the return breakpoint is
1164 always at BP_ADDR. */
2dd604e7 1165 /* XXX Fix for Thumb. */
6a65450a 1166 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1167
1168 /* Walk through the list of args and determine how large a temporary
1169 stack is required. Need to take care here as structs may be
1170 passed on the stack, and we have to to push them. */
1171 nstack = 0;
1172
1173 argreg = ARM_A1_REGNUM;
1174 nstack = 0;
1175
1176 /* Some platforms require a double-word aligned stack. Make sure sp
1177 is correctly aligned before we start. We always do this even if
1178 it isn't really needed -- it can never hurt things. */
b1e29e33 1179 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
2dd604e7
RE
1180
1181 /* The struct_return pointer occupies the first parameter
1182 passing register. */
1183 if (struct_return)
1184 {
1185 if (arm_debug)
1186 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1187 REGISTER_NAME (argreg), paddr (struct_addr));
1188 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1189 argreg++;
1190 }
1191
1192 for (argnum = 0; argnum < nargs; argnum++)
1193 {
1194 int len;
1195 struct type *arg_type;
1196 struct type *target_type;
1197 enum type_code typecode;
0fd88904 1198 bfd_byte *val;
2af48f68 1199 int align;
2dd604e7 1200
df407dfe 1201 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
1202 len = TYPE_LENGTH (arg_type);
1203 target_type = TYPE_TARGET_TYPE (arg_type);
1204 typecode = TYPE_CODE (arg_type);
0fd88904 1205 val = value_contents_writeable (args[argnum]);
2dd604e7 1206
2af48f68
PB
1207 align = arm_type_align (arg_type);
1208 /* Round alignment up to a whole number of words. */
1209 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1210 /* Different ABIs have different maximum alignments. */
1211 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1212 {
1213 /* The APCS ABI only requires word alignment. */
1214 align = INT_REGISTER_SIZE;
1215 }
1216 else
1217 {
1218 /* The AAPCS requires at most doubleword alignment. */
1219 if (align > INT_REGISTER_SIZE * 2)
1220 align = INT_REGISTER_SIZE * 2;
1221 }
1222
1223 /* Push stack padding for dowubleword alignment. */
1224 if (nstack & (align - 1))
1225 {
1226 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1227 nstack += INT_REGISTER_SIZE;
1228 }
1229
1230 /* Doubleword aligned quantities must go in even register pairs. */
1231 if (argreg <= ARM_LAST_ARG_REGNUM
1232 && align > INT_REGISTER_SIZE
1233 && argreg & 1)
1234 argreg++;
1235
2dd604e7
RE
1236 /* If the argument is a pointer to a function, and it is a
1237 Thumb function, create a LOCAL copy of the value and set
1238 the THUMB bit in it. */
1239 if (TYPE_CODE_PTR == typecode
1240 && target_type != NULL
1241 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1242 {
7c0b4a20 1243 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1244 if (arm_pc_is_thumb (regval))
1245 {
1246 val = alloca (len);
fbd9dcd3 1247 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1248 }
1249 }
1250
1251 /* Copy the argument to general registers or the stack in
1252 register-sized pieces. Large arguments are split between
1253 registers and stack. */
1254 while (len > 0)
1255 {
b1e29e33 1256 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1257
1258 if (argreg <= ARM_LAST_ARG_REGNUM)
1259 {
1260 /* The argument is being passed in a general purpose
1261 register. */
7c0b4a20 1262 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
2dd604e7
RE
1263 if (arm_debug)
1264 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1265 argnum, REGISTER_NAME (argreg),
b1e29e33 1266 phex (regval, DEPRECATED_REGISTER_SIZE));
2dd604e7
RE
1267 regcache_cooked_write_unsigned (regcache, argreg, regval);
1268 argreg++;
1269 }
1270 else
1271 {
1272 /* Push the arguments onto the stack. */
1273 if (arm_debug)
1274 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1275 argnum, nstack);
b1e29e33
AC
1276 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1277 nstack += DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1278 }
1279
1280 len -= partial_len;
1281 val += partial_len;
1282 }
1283 }
1284 /* If we have an odd number of words to push, then decrement the stack
1285 by one word now, so first stack argument will be dword aligned. */
1286 if (nstack & 4)
1287 sp -= 4;
1288
1289 while (si)
1290 {
1291 sp -= si->len;
1292 write_memory (sp, si->data, si->len);
1293 si = pop_stack_item (si);
1294 }
1295
1296 /* Finally, update teh SP register. */
1297 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1298
1299 return sp;
1300}
1301
c906108c 1302static void
ed9a39eb 1303print_fpu_flags (int flags)
c906108c 1304{
c5aa993b
JM
1305 if (flags & (1 << 0))
1306 fputs ("IVO ", stdout);
1307 if (flags & (1 << 1))
1308 fputs ("DVZ ", stdout);
1309 if (flags & (1 << 2))
1310 fputs ("OFL ", stdout);
1311 if (flags & (1 << 3))
1312 fputs ("UFL ", stdout);
1313 if (flags & (1 << 4))
1314 fputs ("INX ", stdout);
1315 putchar ('\n');
c906108c
SS
1316}
1317
5e74b15c
RE
1318/* Print interesting information about the floating point processor
1319 (if present) or emulator. */
34e8f22d 1320static void
d855c300 1321arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1322 struct frame_info *frame, const char *args)
c906108c 1323{
52f0bd74 1324 unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1325 int type;
1326
1327 type = (status >> 24) & 127;
edefbb7c
AC
1328 if (status & (1 << 31))
1329 printf (_("Hardware FPU type %d\n"), type);
1330 else
1331 printf (_("Software FPU type %d\n"), type);
1332 /* i18n: [floating point unit] mask */
1333 fputs (_("mask: "), stdout);
c5aa993b 1334 print_fpu_flags (status >> 16);
edefbb7c
AC
1335 /* i18n: [floating point unit] flags */
1336 fputs (_("flags: "), stdout);
c5aa993b 1337 print_fpu_flags (status);
c906108c
SS
1338}
1339
34e8f22d
RE
1340/* Return the GDB type object for the "standard" data type of data in
1341 register N. */
1342
1343static struct type *
7a5ea0d4 1344arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1345{
34e8f22d 1346 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
032758dc 1347 {
d7449b42 1348 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
032758dc
AC
1349 return builtin_type_arm_ext_big;
1350 else
1351 return builtin_type_arm_ext_littlebyte_bigword;
1352 }
1353 else
1354 return builtin_type_int32;
1355}
1356
34e8f22d
RE
1357/* Index within `registers' of the first byte of the space for
1358 register N. */
1359
1360static int
1361arm_register_byte (int regnum)
1362{
1363 if (regnum < ARM_F0_REGNUM)
7a5ea0d4 1364 return regnum * INT_REGISTER_SIZE;
34e8f22d 1365 else if (regnum < ARM_PS_REGNUM)
7a5ea0d4
DJ
1366 return (NUM_GREGS * INT_REGISTER_SIZE
1367 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
34e8f22d 1368 else
7a5ea0d4
DJ
1369 return (NUM_GREGS * INT_REGISTER_SIZE
1370 + NUM_FREGS * FP_REGISTER_SIZE
34e8f22d
RE
1371 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1372}
1373
26216b98
AC
1374/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1375static int
1376arm_register_sim_regno (int regnum)
1377{
1378 int reg = regnum;
1379 gdb_assert (reg >= 0 && reg < NUM_REGS);
1380
1381 if (reg < NUM_GREGS)
1382 return SIM_ARM_R0_REGNUM + reg;
1383 reg -= NUM_GREGS;
1384
1385 if (reg < NUM_FREGS)
1386 return SIM_ARM_FP0_REGNUM + reg;
1387 reg -= NUM_FREGS;
1388
1389 if (reg < NUM_SREGS)
1390 return SIM_ARM_FPS_REGNUM + reg;
1391 reg -= NUM_SREGS;
1392
edefbb7c 1393 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 1394}
34e8f22d 1395
a37b3cc0
AC
1396/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1397 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1398 It is thought that this is is the floating-point register format on
1399 little-endian systems. */
c906108c 1400
ed9a39eb 1401static void
b508a996
RE
1402convert_from_extended (const struct floatformat *fmt, const void *ptr,
1403 void *dbl)
c906108c 1404{
a37b3cc0 1405 DOUBLEST d;
d7449b42 1406 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1407 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1408 else
1409 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1410 ptr, &d);
b508a996 1411 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1412}
1413
34e8f22d 1414static void
b508a996 1415convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1416{
a37b3cc0 1417 DOUBLEST d;
b508a996 1418 floatformat_to_doublest (fmt, ptr, &d);
d7449b42 1419 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1420 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1421 else
1422 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1423 &d, dbl);
c906108c 1424}
ed9a39eb 1425
c906108c 1426static int
ed9a39eb 1427condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1428{
1429 if (cond == INST_AL || cond == INST_NV)
1430 return 1;
1431
1432 switch (cond)
1433 {
1434 case INST_EQ:
1435 return ((status_reg & FLAG_Z) != 0);
1436 case INST_NE:
1437 return ((status_reg & FLAG_Z) == 0);
1438 case INST_CS:
1439 return ((status_reg & FLAG_C) != 0);
1440 case INST_CC:
1441 return ((status_reg & FLAG_C) == 0);
1442 case INST_MI:
1443 return ((status_reg & FLAG_N) != 0);
1444 case INST_PL:
1445 return ((status_reg & FLAG_N) == 0);
1446 case INST_VS:
1447 return ((status_reg & FLAG_V) != 0);
1448 case INST_VC:
1449 return ((status_reg & FLAG_V) == 0);
1450 case INST_HI:
1451 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1452 case INST_LS:
1453 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1454 case INST_GE:
1455 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1456 case INST_LT:
1457 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1458 case INST_GT:
1459 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1460 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1461 case INST_LE:
1462 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1463 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1464 }
1465 return 1;
1466}
1467
9512d7fd 1468/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1469#define submask(x) ((1L << ((x) + 1)) - 1)
1470#define bit(obj,st) (((obj) >> (st)) & 1)
1471#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1472#define sbits(obj,st,fn) \
1473 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1474#define BranchDest(addr,instr) \
1475 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1476#define ARM_PC_32 1
1477
1478static unsigned long
ed9a39eb
JM
1479shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1480 unsigned long status_reg)
c906108c
SS
1481{
1482 unsigned long res, shift;
1483 int rm = bits (inst, 0, 3);
1484 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1485
1486 if (bit (inst, 4))
c906108c
SS
1487 {
1488 int rs = bits (inst, 8, 11);
1489 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1490 }
1491 else
1492 shift = bits (inst, 7, 11);
c5aa993b
JM
1493
1494 res = (rm == 15
c906108c 1495 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1496 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1497 : read_register (rm));
1498
1499 switch (shifttype)
1500 {
c5aa993b 1501 case 0: /* LSL */
c906108c
SS
1502 res = shift >= 32 ? 0 : res << shift;
1503 break;
c5aa993b
JM
1504
1505 case 1: /* LSR */
c906108c
SS
1506 res = shift >= 32 ? 0 : res >> shift;
1507 break;
1508
c5aa993b
JM
1509 case 2: /* ASR */
1510 if (shift >= 32)
1511 shift = 31;
c906108c
SS
1512 res = ((res & 0x80000000L)
1513 ? ~((~res) >> shift) : res >> shift);
1514 break;
1515
c5aa993b 1516 case 3: /* ROR/RRX */
c906108c
SS
1517 shift &= 31;
1518 if (shift == 0)
1519 res = (res >> 1) | (carry ? 0x80000000L : 0);
1520 else
c5aa993b 1521 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1522 break;
1523 }
1524
1525 return res & 0xffffffff;
1526}
1527
c906108c
SS
1528/* Return number of 1-bits in VAL. */
1529
1530static int
ed9a39eb 1531bitcount (unsigned long val)
c906108c
SS
1532{
1533 int nbits;
1534 for (nbits = 0; val != 0; nbits++)
c5aa993b 1535 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1536 return nbits;
1537}
1538
34e8f22d 1539CORE_ADDR
ed9a39eb 1540thumb_get_next_pc (CORE_ADDR pc)
c906108c 1541{
c5aa993b 1542 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
c906108c 1543 unsigned short inst1 = read_memory_integer (pc, 2);
94c30b78 1544 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1545 unsigned long offset;
1546
1547 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1548 {
1549 CORE_ADDR sp;
1550
1551 /* Fetch the saved PC from the stack. It's stored above
1552 all of the other registers. */
b1e29e33 1553 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
34e8f22d 1554 sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1555 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1556 nextpc = ADDR_BITS_REMOVE (nextpc);
1557 if (nextpc == pc)
edefbb7c 1558 error (_("Infinite loop detected"));
c906108c
SS
1559 }
1560 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1561 {
34e8f22d 1562 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1563 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1564 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1565 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1566 }
1567 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1568 {
1569 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1570 }
aa17d93e 1571 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c
SS
1572 {
1573 unsigned short inst2 = read_memory_integer (pc + 2, 2);
c5aa993b 1574 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1575 nextpc = pc_val + offset;
aa17d93e
DJ
1576 /* For BLX make sure to clear the low bits. */
1577 if (bits (inst2, 11, 12) == 1)
1578 nextpc = nextpc & 0xfffffffc;
c906108c 1579 }
aa17d93e 1580 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1581 {
1582 if (bits (inst1, 3, 6) == 0x0f)
1583 nextpc = pc_val;
1584 else
1585 nextpc = read_register (bits (inst1, 3, 6));
1586
1587 nextpc = ADDR_BITS_REMOVE (nextpc);
1588 if (nextpc == pc)
edefbb7c 1589 error (_("Infinite loop detected"));
9498281f 1590 }
c906108c
SS
1591
1592 return nextpc;
1593}
1594
34e8f22d 1595CORE_ADDR
ed9a39eb 1596arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1597{
1598 unsigned long pc_val;
1599 unsigned long this_instr;
1600 unsigned long status;
1601 CORE_ADDR nextpc;
1602
1603 if (arm_pc_is_thumb (pc))
1604 return thumb_get_next_pc (pc);
1605
1606 pc_val = (unsigned long) pc;
1607 this_instr = read_memory_integer (pc, 4);
34e8f22d 1608 status = read_register (ARM_PS_REGNUM);
c5aa993b 1609 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1610
1611 if (condition_true (bits (this_instr, 28, 31), status))
1612 {
1613 switch (bits (this_instr, 24, 27))
1614 {
c5aa993b 1615 case 0x0:
94c30b78 1616 case 0x1: /* data processing */
c5aa993b
JM
1617 case 0x2:
1618 case 0x3:
c906108c
SS
1619 {
1620 unsigned long operand1, operand2, result = 0;
1621 unsigned long rn;
1622 int c;
c5aa993b 1623
c906108c
SS
1624 if (bits (this_instr, 12, 15) != 15)
1625 break;
1626
1627 if (bits (this_instr, 22, 25) == 0
c5aa993b 1628 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 1629 error (_("Invalid update to pc in instruction"));
c906108c 1630
9498281f
DJ
1631 /* BX <reg>, BLX <reg> */
1632 if (bits (this_instr, 4, 28) == 0x12fff1
1633 || bits (this_instr, 4, 28) == 0x12fff3)
1634 {
1635 rn = bits (this_instr, 0, 3);
1636 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1637 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1638
1639 if (nextpc == pc)
edefbb7c 1640 error (_("Infinite loop detected"));
9498281f
DJ
1641
1642 return nextpc;
1643 }
1644
c906108c
SS
1645 /* Multiply into PC */
1646 c = (status & FLAG_C) ? 1 : 0;
1647 rn = bits (this_instr, 16, 19);
1648 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1649
c906108c
SS
1650 if (bit (this_instr, 25))
1651 {
1652 unsigned long immval = bits (this_instr, 0, 7);
1653 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1654 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1655 & 0xffffffff;
c906108c 1656 }
c5aa993b 1657 else /* operand 2 is a shifted register */
c906108c 1658 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1659
c906108c
SS
1660 switch (bits (this_instr, 21, 24))
1661 {
c5aa993b 1662 case 0x0: /*and */
c906108c
SS
1663 result = operand1 & operand2;
1664 break;
1665
c5aa993b 1666 case 0x1: /*eor */
c906108c
SS
1667 result = operand1 ^ operand2;
1668 break;
1669
c5aa993b 1670 case 0x2: /*sub */
c906108c
SS
1671 result = operand1 - operand2;
1672 break;
1673
c5aa993b 1674 case 0x3: /*rsb */
c906108c
SS
1675 result = operand2 - operand1;
1676 break;
1677
c5aa993b 1678 case 0x4: /*add */
c906108c
SS
1679 result = operand1 + operand2;
1680 break;
1681
c5aa993b 1682 case 0x5: /*adc */
c906108c
SS
1683 result = operand1 + operand2 + c;
1684 break;
1685
c5aa993b 1686 case 0x6: /*sbc */
c906108c
SS
1687 result = operand1 - operand2 + c;
1688 break;
1689
c5aa993b 1690 case 0x7: /*rsc */
c906108c
SS
1691 result = operand2 - operand1 + c;
1692 break;
1693
c5aa993b
JM
1694 case 0x8:
1695 case 0x9:
1696 case 0xa:
1697 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1698 result = (unsigned long) nextpc;
1699 break;
1700
c5aa993b 1701 case 0xc: /*orr */
c906108c
SS
1702 result = operand1 | operand2;
1703 break;
1704
c5aa993b 1705 case 0xd: /*mov */
c906108c
SS
1706 /* Always step into a function. */
1707 result = operand2;
c5aa993b 1708 break;
c906108c 1709
c5aa993b 1710 case 0xe: /*bic */
c906108c
SS
1711 result = operand1 & ~operand2;
1712 break;
1713
c5aa993b 1714 case 0xf: /*mvn */
c906108c
SS
1715 result = ~operand2;
1716 break;
1717 }
1718 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1719
1720 if (nextpc == pc)
edefbb7c 1721 error (_("Infinite loop detected"));
c906108c
SS
1722 break;
1723 }
c5aa993b
JM
1724
1725 case 0x4:
1726 case 0x5: /* data transfer */
1727 case 0x6:
1728 case 0x7:
c906108c
SS
1729 if (bit (this_instr, 20))
1730 {
1731 /* load */
1732 if (bits (this_instr, 12, 15) == 15)
1733 {
1734 /* rd == pc */
c5aa993b 1735 unsigned long rn;
c906108c 1736 unsigned long base;
c5aa993b 1737
c906108c 1738 if (bit (this_instr, 22))
edefbb7c 1739 error (_("Invalid update to pc in instruction"));
c906108c
SS
1740
1741 /* byte write to PC */
1742 rn = bits (this_instr, 16, 19);
1743 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1744 if (bit (this_instr, 24))
1745 {
1746 /* pre-indexed */
1747 int c = (status & FLAG_C) ? 1 : 0;
1748 unsigned long offset =
c5aa993b 1749 (bit (this_instr, 25)
ed9a39eb 1750 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1751 : bits (this_instr, 0, 11));
c906108c
SS
1752
1753 if (bit (this_instr, 23))
1754 base += offset;
1755 else
1756 base -= offset;
1757 }
c5aa993b 1758 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1759 4);
c5aa993b 1760
c906108c
SS
1761 nextpc = ADDR_BITS_REMOVE (nextpc);
1762
1763 if (nextpc == pc)
edefbb7c 1764 error (_("Infinite loop detected"));
c906108c
SS
1765 }
1766 }
1767 break;
c5aa993b
JM
1768
1769 case 0x8:
1770 case 0x9: /* block transfer */
c906108c
SS
1771 if (bit (this_instr, 20))
1772 {
1773 /* LDM */
1774 if (bit (this_instr, 15))
1775 {
1776 /* loading pc */
1777 int offset = 0;
1778
1779 if (bit (this_instr, 23))
1780 {
1781 /* up */
1782 unsigned long reglist = bits (this_instr, 0, 14);
1783 offset = bitcount (reglist) * 4;
c5aa993b 1784 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1785 offset += 4;
1786 }
1787 else if (bit (this_instr, 24))
1788 offset = -4;
c5aa993b 1789
c906108c 1790 {
c5aa993b
JM
1791 unsigned long rn_val =
1792 read_register (bits (this_instr, 16, 19));
c906108c
SS
1793 nextpc =
1794 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1795 + offset),
c906108c
SS
1796 4);
1797 }
1798 nextpc = ADDR_BITS_REMOVE (nextpc);
1799 if (nextpc == pc)
edefbb7c 1800 error (_("Infinite loop detected"));
c906108c
SS
1801 }
1802 }
1803 break;
c5aa993b
JM
1804
1805 case 0xb: /* branch & link */
1806 case 0xa: /* branch */
c906108c
SS
1807 {
1808 nextpc = BranchDest (pc, this_instr);
1809
9498281f
DJ
1810 /* BLX */
1811 if (bits (this_instr, 28, 31) == INST_NV)
1812 nextpc |= bit (this_instr, 24) << 1;
1813
c906108c
SS
1814 nextpc = ADDR_BITS_REMOVE (nextpc);
1815 if (nextpc == pc)
edefbb7c 1816 error (_("Infinite loop detected"));
c906108c
SS
1817 break;
1818 }
c5aa993b
JM
1819
1820 case 0xc:
1821 case 0xd:
1822 case 0xe: /* coproc ops */
1823 case 0xf: /* SWI */
c906108c
SS
1824 break;
1825
1826 default:
edefbb7c 1827 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
1828 return (pc);
1829 }
1830 }
1831
1832 return nextpc;
1833}
1834
9512d7fd
FN
1835/* single_step() is called just before we want to resume the inferior,
1836 if we want to single-step it but there is no hardware or kernel
1837 single-step support. We find the target of the coming instruction
1838 and breakpoint it.
1839
94c30b78
MS
1840 single_step() is also called just after the inferior stops. If we
1841 had set up a simulated single-step, we undo our damage. */
9512d7fd 1842
34e8f22d
RE
1843static void
1844arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd 1845{
b8d5e71d 1846 static int next_pc; /* State between setting and unsetting. */
9512d7fd
FN
1847 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1848
1849 if (insert_bpt)
1850 {
34e8f22d 1851 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
80fcf3f0 1852 target_insert_breakpoint (next_pc, break_mem);
9512d7fd
FN
1853 }
1854 else
80fcf3f0 1855 target_remove_breakpoint (next_pc, break_mem);
9512d7fd 1856}
9512d7fd 1857
c906108c
SS
1858#include "bfd-in2.h"
1859#include "libcoff.h"
1860
1861static int
ed9a39eb 1862gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1863{
1864 if (arm_pc_is_thumb (memaddr))
1865 {
c5aa993b
JM
1866 static asymbol *asym;
1867 static combined_entry_type ce;
1868 static struct coff_symbol_struct csym;
27cddce2 1869 static struct bfd fake_bfd;
c5aa993b 1870 static bfd_target fake_target;
c906108c
SS
1871
1872 if (csym.native == NULL)
1873 {
da3c6d4a
MS
1874 /* Create a fake symbol vector containing a Thumb symbol.
1875 This is solely so that the code in print_insn_little_arm()
1876 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1877 the presence of a Thumb symbol and switch to decoding
1878 Thumb instructions. */
c5aa993b
JM
1879
1880 fake_target.flavour = bfd_target_coff_flavour;
1881 fake_bfd.xvec = &fake_target;
c906108c 1882 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
1883 csym.native = &ce;
1884 csym.symbol.the_bfd = &fake_bfd;
1885 csym.symbol.name = "fake";
1886 asym = (asymbol *) & csym;
c906108c 1887 }
c5aa993b 1888
c906108c 1889 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 1890 info->symbols = &asym;
c906108c
SS
1891 }
1892 else
1893 info->symbols = NULL;
c5aa993b 1894
d7449b42 1895 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
1896 return print_insn_big_arm (memaddr, info);
1897 else
1898 return print_insn_little_arm (memaddr, info);
1899}
1900
66e810cd
RE
1901/* The following define instruction sequences that will cause ARM
1902 cpu's to take an undefined instruction trap. These are used to
1903 signal a breakpoint to GDB.
1904
1905 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1906 modes. A different instruction is required for each mode. The ARM
1907 cpu's can also be big or little endian. Thus four different
1908 instructions are needed to support all cases.
1909
1910 Note: ARMv4 defines several new instructions that will take the
1911 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1912 not in fact add the new instructions. The new undefined
1913 instructions in ARMv4 are all instructions that had no defined
1914 behaviour in earlier chips. There is no guarantee that they will
1915 raise an exception, but may be treated as NOP's. In practice, it
1916 may only safe to rely on instructions matching:
1917
1918 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1919 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1920 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1921
1922 Even this may only true if the condition predicate is true. The
1923 following use a condition predicate of ALWAYS so it is always TRUE.
1924
1925 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1926 and NetBSD all use a software interrupt rather than an undefined
1927 instruction to force a trap. This can be handled by by the
1928 abi-specific code during establishment of the gdbarch vector. */
1929
1930
d7b486e7
RE
1931/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1932 override these definitions. */
66e810cd
RE
1933#ifndef ARM_LE_BREAKPOINT
1934#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1935#endif
1936#ifndef ARM_BE_BREAKPOINT
1937#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1938#endif
1939#ifndef THUMB_LE_BREAKPOINT
1940#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1941#endif
1942#ifndef THUMB_BE_BREAKPOINT
1943#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1944#endif
1945
1946static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
1947static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
1948static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
1949static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
1950
34e8f22d
RE
1951/* Determine the type and size of breakpoint to insert at PCPTR. Uses
1952 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
1953 breakpoint should be used. It returns a pointer to a string of
1954 bytes that encode a breakpoint instruction, stores the length of
1955 the string to *lenptr, and adjusts the program counter (if
1956 necessary) to point to the actual memory location where the
c906108c
SS
1957 breakpoint should be inserted. */
1958
34e8f22d
RE
1959/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
1960 breakpoints and storing their handles instread of what was in
1961 memory. It is nice that this is the same size as a handle -
94c30b78 1962 otherwise remote-rdp will have to change. */
34e8f22d 1963
ab89facf 1964static const unsigned char *
ed9a39eb 1965arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 1966{
66e810cd
RE
1967 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1968
4bf7064c 1969 if (arm_pc_is_thumb (*pcptr))
c906108c 1970 {
66e810cd
RE
1971 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1972 *lenptr = tdep->thumb_breakpoint_size;
1973 return tdep->thumb_breakpoint;
c906108c
SS
1974 }
1975 else
1976 {
66e810cd
RE
1977 *lenptr = tdep->arm_breakpoint_size;
1978 return tdep->arm_breakpoint;
c906108c
SS
1979 }
1980}
ed9a39eb
JM
1981
1982/* Extract from an array REGBUF containing the (raw) register state a
1983 function return value of type TYPE, and copy that, in virtual
1984 format, into VALBUF. */
1985
34e8f22d 1986static void
5238cf52
MK
1987arm_extract_return_value (struct type *type, struct regcache *regs,
1988 gdb_byte *valbuf)
ed9a39eb
JM
1989{
1990 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 1991 {
28e97307 1992 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
1993 {
1994 case ARM_FLOAT_FPA:
b508a996
RE
1995 {
1996 /* The value is in register F0 in internal format. We need to
1997 extract the raw value and then convert it to the desired
1998 internal type. */
7a5ea0d4 1999 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
2000
2001 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2002 convert_from_extended (floatformat_from_type (type), tmpbuf,
2003 valbuf);
2004 }
08216dd7
RE
2005 break;
2006
fd50bc42 2007 case ARM_FLOAT_SOFT_FPA:
08216dd7 2008 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2009 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2010 if (TYPE_LENGTH (type) > 4)
2011 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2012 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2013 break;
2014
2015 default:
2016 internal_error
2017 (__FILE__, __LINE__,
edefbb7c 2018 _("arm_extract_return_value: Floating point model not supported"));
08216dd7
RE
2019 break;
2020 }
2021 }
b508a996
RE
2022 else if (TYPE_CODE (type) == TYPE_CODE_INT
2023 || TYPE_CODE (type) == TYPE_CODE_CHAR
2024 || TYPE_CODE (type) == TYPE_CODE_BOOL
2025 || TYPE_CODE (type) == TYPE_CODE_PTR
2026 || TYPE_CODE (type) == TYPE_CODE_REF
2027 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2028 {
2029 /* If the the type is a plain integer, then the access is
2030 straight-forward. Otherwise we have to play around a bit more. */
2031 int len = TYPE_LENGTH (type);
2032 int regno = ARM_A1_REGNUM;
2033 ULONGEST tmp;
2034
2035 while (len > 0)
2036 {
2037 /* By using store_unsigned_integer we avoid having to do
2038 anything special for small big-endian values. */
2039 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2040 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2041 (len > INT_REGISTER_SIZE
2042 ? INT_REGISTER_SIZE : len),
b508a996 2043 tmp);
7a5ea0d4
DJ
2044 len -= INT_REGISTER_SIZE;
2045 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2046 }
2047 }
ed9a39eb 2048 else
b508a996
RE
2049 {
2050 /* For a structure or union the behaviour is as if the value had
2051 been stored to word-aligned memory and then loaded into
2052 registers with 32-bit load instruction(s). */
2053 int len = TYPE_LENGTH (type);
2054 int regno = ARM_A1_REGNUM;
7a5ea0d4 2055 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2056
2057 while (len > 0)
2058 {
2059 regcache_cooked_read (regs, regno++, tmpbuf);
2060 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2061 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2062 len -= INT_REGISTER_SIZE;
2063 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2064 }
2065 }
34e8f22d
RE
2066}
2067
67255d04
RE
2068
2069/* Will a function return an aggregate type in memory or in a
2070 register? Return 0 if an aggregate type can be returned in a
2071 register, 1 if it must be returned in memory. */
2072
2073static int
2af48f68 2074arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
67255d04
RE
2075{
2076 int nRc;
52f0bd74 2077 enum type_code code;
67255d04 2078
44e1a9eb
DJ
2079 CHECK_TYPEDEF (type);
2080
67255d04
RE
2081 /* In the ARM ABI, "integer" like aggregate types are returned in
2082 registers. For an aggregate type to be integer like, its size
b1e29e33
AC
2083 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2084 offset of each addressable subfield must be zero. Note that bit
2085 fields are not addressable, and all addressable subfields of
2086 unions always start at offset zero.
67255d04
RE
2087
2088 This function is based on the behaviour of GCC 2.95.1.
2089 See: gcc/arm.c: arm_return_in_memory() for details.
2090
2091 Note: All versions of GCC before GCC 2.95.2 do not set up the
2092 parameters correctly for a function returning the following
2093 structure: struct { float f;}; This should be returned in memory,
2094 not a register. Richard Earnshaw sent me a patch, but I do not
2095 know of any way to detect if a function like the above has been
2096 compiled with the correct calling convention. */
2097
2098 /* All aggregate types that won't fit in a register must be returned
2099 in memory. */
b1e29e33 2100 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
67255d04
RE
2101 {
2102 return 1;
2103 }
2104
2af48f68
PB
2105 /* The AAPCS says all aggregates not larger than a word are returned
2106 in a register. */
2107 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2108 return 0;
2109
67255d04
RE
2110 /* The only aggregate types that can be returned in a register are
2111 structs and unions. Arrays must be returned in memory. */
2112 code = TYPE_CODE (type);
2113 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2114 {
2115 return 1;
2116 }
2117
2118 /* Assume all other aggregate types can be returned in a register.
2119 Run a check for structures, unions and arrays. */
2120 nRc = 0;
2121
2122 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2123 {
2124 int i;
2125 /* Need to check if this struct/union is "integer" like. For
2126 this to be true, its size must be less than or equal to
b1e29e33
AC
2127 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2128 subfield must be zero. Note that bit fields are not
2129 addressable, and unions always start at offset zero. If any
2130 of the subfields is a floating point type, the struct/union
2131 cannot be an integer type. */
67255d04
RE
2132
2133 /* For each field in the object, check:
2134 1) Is it FP? --> yes, nRc = 1;
2135 2) Is it addressable (bitpos != 0) and
2136 not packed (bitsize == 0)?
2137 --> yes, nRc = 1
2138 */
2139
2140 for (i = 0; i < TYPE_NFIELDS (type); i++)
2141 {
2142 enum type_code field_type_code;
44e1a9eb 2143 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2144
2145 /* Is it a floating point type field? */
2146 if (field_type_code == TYPE_CODE_FLT)
2147 {
2148 nRc = 1;
2149 break;
2150 }
2151
2152 /* If bitpos != 0, then we have to care about it. */
2153 if (TYPE_FIELD_BITPOS (type, i) != 0)
2154 {
2155 /* Bitfields are not addressable. If the field bitsize is
2156 zero, then the field is not packed. Hence it cannot be
2157 a bitfield or any other packed type. */
2158 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2159 {
2160 nRc = 1;
2161 break;
2162 }
2163 }
2164 }
2165 }
2166
2167 return nRc;
2168}
2169
34e8f22d
RE
2170/* Write into appropriate registers a function return value of type
2171 TYPE, given in virtual format. */
2172
2173static void
b508a996 2174arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 2175 const gdb_byte *valbuf)
34e8f22d
RE
2176{
2177 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2178 {
7a5ea0d4 2179 char buf[MAX_REGISTER_SIZE];
34e8f22d 2180
28e97307 2181 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2182 {
2183 case ARM_FLOAT_FPA:
2184
b508a996
RE
2185 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2186 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2187 break;
2188
fd50bc42 2189 case ARM_FLOAT_SOFT_FPA:
08216dd7 2190 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2191 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2192 if (TYPE_LENGTH (type) > 4)
2193 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2194 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2195 break;
2196
2197 default:
2198 internal_error
2199 (__FILE__, __LINE__,
edefbb7c 2200 _("arm_store_return_value: Floating point model not supported"));
08216dd7
RE
2201 break;
2202 }
34e8f22d 2203 }
b508a996
RE
2204 else if (TYPE_CODE (type) == TYPE_CODE_INT
2205 || TYPE_CODE (type) == TYPE_CODE_CHAR
2206 || TYPE_CODE (type) == TYPE_CODE_BOOL
2207 || TYPE_CODE (type) == TYPE_CODE_PTR
2208 || TYPE_CODE (type) == TYPE_CODE_REF
2209 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2210 {
2211 if (TYPE_LENGTH (type) <= 4)
2212 {
2213 /* Values of one word or less are zero/sign-extended and
2214 returned in r0. */
7a5ea0d4 2215 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2216 LONGEST val = unpack_long (type, valbuf);
2217
7a5ea0d4 2218 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2219 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2220 }
2221 else
2222 {
2223 /* Integral values greater than one word are stored in consecutive
2224 registers starting with r0. This will always be a multiple of
2225 the regiser size. */
2226 int len = TYPE_LENGTH (type);
2227 int regno = ARM_A1_REGNUM;
2228
2229 while (len > 0)
2230 {
2231 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2232 len -= INT_REGISTER_SIZE;
2233 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2234 }
2235 }
2236 }
34e8f22d 2237 else
b508a996
RE
2238 {
2239 /* For a structure or union the behaviour is as if the value had
2240 been stored to word-aligned memory and then loaded into
2241 registers with 32-bit load instruction(s). */
2242 int len = TYPE_LENGTH (type);
2243 int regno = ARM_A1_REGNUM;
7a5ea0d4 2244 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2245
2246 while (len > 0)
2247 {
2248 memcpy (tmpbuf, valbuf,
7a5ea0d4 2249 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2250 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2251 len -= INT_REGISTER_SIZE;
2252 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2253 }
2254 }
34e8f22d
RE
2255}
2256
2af48f68
PB
2257
2258/* Handle function return values. */
2259
2260static enum return_value_convention
2261arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
25224166
MK
2262 struct regcache *regcache, gdb_byte *readbuf,
2263 const gdb_byte *writebuf)
2af48f68
PB
2264{
2265 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2266 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2267 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2268 {
2269 if (arm_return_in_memory (gdbarch, valtype))
2270 return RETURN_VALUE_STRUCT_CONVENTION;
2271 }
2272
2273 if (writebuf)
2274 arm_store_return_value (valtype, regcache, writebuf);
2275
2276 if (readbuf)
2277 arm_extract_return_value (valtype, regcache, readbuf);
2278
2279 return RETURN_VALUE_REGISTER_CONVENTION;
2280}
2281
2282
9df628e0
RE
2283static int
2284arm_get_longjmp_target (CORE_ADDR *pc)
2285{
2286 CORE_ADDR jb_addr;
7a5ea0d4 2287 char buf[INT_REGISTER_SIZE];
9df628e0
RE
2288 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2289
2290 jb_addr = read_register (ARM_A1_REGNUM);
2291
2292 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2293 INT_REGISTER_SIZE))
9df628e0
RE
2294 return 0;
2295
7a5ea0d4 2296 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2297 return 1;
2298}
2299
ed9a39eb 2300/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2301
2302int
ed9a39eb 2303arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2304{
2305 CORE_ADDR start_addr;
2306
ed9a39eb
JM
2307 /* Find the starting address of the function containing the PC. If
2308 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2309 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2310 &start_addr, NULL))
c906108c
SS
2311 return 0;
2312
2313 return strncmp (name, "_call_via_r", 11) == 0;
2314}
2315
ed9a39eb
JM
2316/* If PC is in a Thumb call or return stub, return the address of the
2317 target PC, which is in a register. The thunk functions are called
2318 _called_via_xx, where x is the register name. The possible names
2319 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2320
2321CORE_ADDR
ed9a39eb 2322arm_skip_stub (CORE_ADDR pc)
c906108c 2323{
c5aa993b 2324 char *name;
c906108c
SS
2325 CORE_ADDR start_addr;
2326
2327 /* Find the starting address and name of the function containing the PC. */
2328 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2329 return 0;
2330
2331 /* Call thunks always start with "_call_via_". */
2332 if (strncmp (name, "_call_via_", 10) == 0)
2333 {
ed9a39eb
JM
2334 /* Use the name suffix to determine which register contains the
2335 target PC. */
c5aa993b
JM
2336 static char *table[15] =
2337 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2338 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2339 };
c906108c
SS
2340 int regno;
2341
2342 for (regno = 0; regno <= 14; regno++)
2343 if (strcmp (&name[10], table[regno]) == 0)
2344 return read_register (regno);
2345 }
ed9a39eb 2346
c5aa993b 2347 return 0; /* not a stub */
c906108c
SS
2348}
2349
afd7eef0
RE
2350static void
2351set_arm_command (char *args, int from_tty)
2352{
edefbb7c
AC
2353 printf_unfiltered (_("\
2354\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
2355 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2356}
2357
2358static void
2359show_arm_command (char *args, int from_tty)
2360{
26304000 2361 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2362}
2363
28e97307
DJ
2364static void
2365arm_update_current_architecture (void)
fd50bc42 2366{
28e97307 2367 struct gdbarch_info info;
fd50bc42 2368
28e97307
DJ
2369 /* If the current architecture is not ARM, we have nothing to do. */
2370 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2371 return;
fd50bc42 2372
28e97307
DJ
2373 /* Update the architecture. */
2374 gdbarch_info_init (&info);
fd50bc42 2375
28e97307
DJ
2376 if (!gdbarch_update_p (info))
2377 internal_error (__FILE__, __LINE__, "could not update architecture");
fd50bc42
RE
2378}
2379
2380static void
2381set_fp_model_sfunc (char *args, int from_tty,
2382 struct cmd_list_element *c)
2383{
2384 enum arm_float_model fp_model;
2385
2386 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2387 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2388 {
2389 arm_fp_model = fp_model;
2390 break;
2391 }
2392
2393 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 2394 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
2395 current_fp_model);
2396
28e97307 2397 arm_update_current_architecture ();
fd50bc42
RE
2398}
2399
2400static void
08546159
AC
2401show_fp_model (struct ui_file *file, int from_tty,
2402 struct cmd_list_element *c, const char *value)
fd50bc42
RE
2403{
2404 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2405
28e97307 2406 if (arm_fp_model == ARM_FLOAT_AUTO
fd50bc42 2407 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
2408 fprintf_filtered (file, _("\
2409The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2410 fp_model_strings[tdep->fp_model]);
2411 else
2412 fprintf_filtered (file, _("\
2413The current ARM floating point model is \"%s\".\n"),
2414 fp_model_strings[arm_fp_model]);
2415}
2416
2417static void
2418arm_set_abi (char *args, int from_tty,
2419 struct cmd_list_element *c)
2420{
2421 enum arm_abi_kind arm_abi;
2422
2423 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2424 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2425 {
2426 arm_abi_global = arm_abi;
2427 break;
2428 }
2429
2430 if (arm_abi == ARM_ABI_LAST)
2431 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2432 arm_abi_string);
2433
2434 arm_update_current_architecture ();
2435}
2436
2437static void
2438arm_show_abi (struct ui_file *file, int from_tty,
2439 struct cmd_list_element *c, const char *value)
2440{
2441 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2442
2443 if (arm_abi_global == ARM_ABI_AUTO
2444 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2445 fprintf_filtered (file, _("\
2446The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2447 arm_abi_strings[tdep->arm_abi]);
2448 else
2449 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2450 arm_abi_string);
fd50bc42
RE
2451}
2452
afd7eef0
RE
2453/* If the user changes the register disassembly style used for info
2454 register and other commands, we have to also switch the style used
2455 in opcodes for disassembly output. This function is run in the "set
2456 arm disassembly" command, and does that. */
bc90b915
FN
2457
2458static void
afd7eef0 2459set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2460 struct cmd_list_element *c)
2461{
afd7eef0 2462 set_disassembly_style ();
bc90b915
FN
2463}
2464\f
966fbf70 2465/* Return the ARM register name corresponding to register I. */
a208b0cb 2466static const char *
34e8f22d 2467arm_register_name (int i)
966fbf70
RE
2468{
2469 return arm_register_names[i];
2470}
2471
bc90b915 2472static void
afd7eef0 2473set_disassembly_style (void)
bc90b915 2474{
4bd7b427 2475 const char *setname, *setdesc, *const *regnames;
bc90b915
FN
2476 int numregs, j;
2477
afd7eef0 2478 /* Find the style that the user wants in the opcodes table. */
bc90b915
FN
2479 int current = 0;
2480 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
afd7eef0
RE
2481 while ((disassembly_style != setname)
2482 && (current < num_disassembly_options))
bc90b915
FN
2483 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2484 current_option = current;
2485
94c30b78 2486 /* Fill our copy. */
bc90b915
FN
2487 for (j = 0; j < numregs; j++)
2488 arm_register_names[j] = (char *) regnames[j];
2489
94c30b78 2490 /* Adjust case. */
34e8f22d 2491 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2492 {
34e8f22d
RE
2493 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2494 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2495 }
2496 else
2497 {
34e8f22d
RE
2498 arm_register_names[ARM_FPS_REGNUM] = "fps";
2499 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2500 }
2501
94c30b78 2502 /* Synchronize the disassembler. */
bc90b915
FN
2503 set_arm_regname_option (current);
2504}
2505
082fc60d
RE
2506/* Test whether the coff symbol specific value corresponds to a Thumb
2507 function. */
2508
2509static int
2510coff_sym_is_thumb (int val)
2511{
2512 return (val == C_THUMBEXT ||
2513 val == C_THUMBSTAT ||
2514 val == C_THUMBEXTFUNC ||
2515 val == C_THUMBSTATFUNC ||
2516 val == C_THUMBLABEL);
2517}
2518
2519/* arm_coff_make_msymbol_special()
2520 arm_elf_make_msymbol_special()
2521
2522 These functions test whether the COFF or ELF symbol corresponds to
2523 an address in thumb code, and set a "special" bit in a minimal
2524 symbol to indicate that it does. */
2525
34e8f22d 2526static void
082fc60d
RE
2527arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2528{
2529 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2530 STT_ARM_TFUNC). */
2531 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2532 == STT_LOPROC)
2533 MSYMBOL_SET_SPECIAL (msym);
2534}
2535
34e8f22d 2536static void
082fc60d
RE
2537arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2538{
2539 if (coff_sym_is_thumb (val))
2540 MSYMBOL_SET_SPECIAL (msym);
2541}
2542
756fe439
DJ
2543static void
2544arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2545{
2546 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2547
2548 /* If necessary, set the T bit. */
2549 if (arm_apcs_32)
2550 {
2551 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2552 if (arm_pc_is_thumb (pc))
2553 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2554 else
2555 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2556 }
2557}
97e03143 2558\f
70f80edf
JT
2559static enum gdb_osabi
2560arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2561{
2af48f68 2562 unsigned int elfosabi;
70f80edf 2563 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2564
70f80edf 2565 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2566
28e97307
DJ
2567 if (elfosabi == ELFOSABI_ARM)
2568 /* GNU tools use this value. Check note sections in this case,
2569 as well. */
2570 bfd_map_over_sections (abfd,
2571 generic_elf_osabi_sniff_abi_tag_sections,
2572 &osabi);
97e03143 2573
28e97307 2574 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 2575 return osabi;
97e03143
RE
2576}
2577
70f80edf 2578\f
da3c6d4a
MS
2579/* Initialize the current architecture based on INFO. If possible,
2580 re-use an architecture from ARCHES, which is a list of
2581 architectures already created during this debugging session.
97e03143 2582
da3c6d4a
MS
2583 Called e.g. at program startup, when reading a core file, and when
2584 reading a binary file. */
97e03143 2585
39bbf761
RE
2586static struct gdbarch *
2587arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2588{
97e03143 2589 struct gdbarch_tdep *tdep;
39bbf761 2590 struct gdbarch *gdbarch;
28e97307
DJ
2591 struct gdbarch_list *best_arch;
2592 enum arm_abi_kind arm_abi = arm_abi_global;
2593 enum arm_float_model fp_model = arm_fp_model;
39bbf761 2594
28e97307
DJ
2595 /* If we have an object to base this architecture on, try to determine
2596 its ABI. */
39bbf761 2597
28e97307 2598 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
97e03143 2599 {
28e97307
DJ
2600 int ei_osabi;
2601
4be87837 2602 switch (bfd_get_flavour (info.abfd))
97e03143 2603 {
4be87837
DJ
2604 case bfd_target_aout_flavour:
2605 /* Assume it's an old APCS-style ABI. */
28e97307 2606 arm_abi = ARM_ABI_APCS;
4be87837 2607 break;
97e03143 2608
4be87837
DJ
2609 case bfd_target_coff_flavour:
2610 /* Assume it's an old APCS-style ABI. */
2611 /* XXX WinCE? */
28e97307
DJ
2612 arm_abi = ARM_ABI_APCS;
2613 break;
2614
2615 case bfd_target_elf_flavour:
2616 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2617 if (ei_osabi == ELFOSABI_ARM)
2618 {
2619 /* GNU tools used to use this value, but do not for EABI
2620 objects. There's nowhere to tag an EABI version anyway,
2621 so assume APCS. */
2622 arm_abi = ARM_ABI_APCS;
2623 }
2624 else if (ei_osabi == ELFOSABI_NONE)
2625 {
2626 int e_flags, eabi_ver;
2627
2628 e_flags = elf_elfheader (info.abfd)->e_flags;
2629 eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2630
2631 switch (eabi_ver)
2632 {
2633 case EF_ARM_EABI_UNKNOWN:
2634 /* Assume GNU tools. */
2635 arm_abi = ARM_ABI_APCS;
2636 break;
2637
2638 case EF_ARM_EABI_VER4:
2639 arm_abi = ARM_ABI_AAPCS;
2af48f68
PB
2640 /* EABI binaries default to VFP float ordering. */
2641 if (fp_model == ARM_FLOAT_AUTO)
2642 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2643 break;
2644
2645 default:
2646 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2647 arm_abi = ARM_ABI_APCS;
2648 break;
2649 }
2650 }
4be87837 2651 break;
97e03143 2652
4be87837 2653 default:
28e97307 2654 /* Leave it as "auto". */
50ceaba5 2655 break;
97e03143
RE
2656 }
2657 }
2658
28e97307
DJ
2659 /* Now that we have inferred any architecture settings that we
2660 can, try to inherit from the last ARM ABI. */
4be87837 2661 if (arches != NULL)
28e97307
DJ
2662 {
2663 if (arm_abi == ARM_ABI_AUTO)
2664 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2665
2666 if (fp_model == ARM_FLOAT_AUTO)
2667 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2668 }
2669 else
2670 {
2671 /* There was no prior ARM architecture; fill in default values. */
2672
2673 if (arm_abi == ARM_ABI_AUTO)
2674 arm_abi = ARM_ABI_APCS;
2675
2676 /* We used to default to FPA for generic ARM, but almost nobody
2677 uses that now, and we now provide a way for the user to force
2678 the model. So default to the most useful variant. */
2679 if (fp_model == ARM_FLOAT_AUTO)
2680 fp_model = ARM_FLOAT_SOFT_FPA;
2681 }
2682
2683 /* If there is already a candidate, use it. */
2684 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2685 best_arch != NULL;
2686 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2687 {
2688 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2689 continue;
2690
2691 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2692 continue;
2693
2694 /* Found a match. */
2695 break;
2696 }
97e03143 2697
28e97307
DJ
2698 if (best_arch != NULL)
2699 return best_arch->gdbarch;
2700
2701 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
2702 gdbarch = gdbarch_alloc (&info, tdep);
2703
28e97307
DJ
2704 /* Record additional information about the architecture we are defining.
2705 These are gdbarch discriminators, like the OSABI. */
2706 tdep->arm_abi = arm_abi;
2707 tdep->fp_model = fp_model;
08216dd7
RE
2708
2709 /* Breakpoints. */
67255d04
RE
2710 switch (info.byte_order)
2711 {
2712 case BFD_ENDIAN_BIG:
66e810cd
RE
2713 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2714 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2715 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2716 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2717
67255d04
RE
2718 break;
2719
2720 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2721 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2722 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2723 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2724 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2725
67255d04
RE
2726 break;
2727
2728 default:
2729 internal_error (__FILE__, __LINE__,
edefbb7c 2730 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
2731 }
2732
d7b486e7
RE
2733 /* On ARM targets char defaults to unsigned. */
2734 set_gdbarch_char_signed (gdbarch, 0);
2735
9df628e0 2736 /* This should be low enough for everything. */
97e03143 2737 tdep->lowest_pc = 0x20;
94c30b78 2738 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2739
2dd604e7 2740 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
39bbf761 2741
756fe439
DJ
2742 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2743
148754e5 2744 /* Frame handling. */
eb5492fa
DJ
2745 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2746 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2747 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2748
eb5492fa 2749 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2750
34e8f22d
RE
2751 /* Address manipulation. */
2752 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2753 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2754
34e8f22d
RE
2755 /* Advance PC across function entry code. */
2756 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2757
2758 /* Get the PC when a frame might not be available. */
6913c89a 2759 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
34e8f22d
RE
2760
2761 /* The stack grows downward. */
2762 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2763
2764 /* Breakpoint manipulation. */
2765 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
2766
2767 /* Information about registers, etc. */
2768 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
0ba6dca9 2769 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2770 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2771 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9c04cab7 2772 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
34e8f22d 2773 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
7a5ea0d4 2774 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 2775
26216b98
AC
2776 /* Internal <-> external register number maps. */
2777 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2778
34e8f22d 2779 /* Integer registers are 4 bytes. */
b1e29e33 2780 set_gdbarch_deprecated_register_size (gdbarch, 4);
34e8f22d
RE
2781 set_gdbarch_register_name (gdbarch, arm_register_name);
2782
2783 /* Returning results. */
2af48f68 2784 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d
RE
2785
2786 /* Single stepping. */
2787 /* XXX For an RDI target we should ask the target if it can single-step. */
2788 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2789
03d48a7d
RE
2790 /* Disassembly. */
2791 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2792
34e8f22d
RE
2793 /* Minsymbol frobbing. */
2794 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2795 set_gdbarch_coff_make_msymbol_special (gdbarch,
2796 arm_coff_make_msymbol_special);
2797
97e03143 2798 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 2799 gdbarch_init_osabi (info, gdbarch);
97e03143 2800
eb5492fa 2801 /* Add some default predicates. */
909cf6ea 2802 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
842e1f1e 2803 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eb5492fa
DJ
2804 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2805
97e03143
RE
2806 /* Now we have tuned the configuration, set a few final things,
2807 based on what the OS ABI has told us. */
2808
9df628e0
RE
2809 if (tdep->jb_pc >= 0)
2810 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2811
08216dd7
RE
2812 /* Floating point sizes and format. */
2813 switch (info.byte_order)
2814 {
2815 case BFD_ENDIAN_BIG:
2816 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2817 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2818 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
08216dd7
RE
2819 break;
2820
2821 case BFD_ENDIAN_LITTLE:
2822 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
28e97307
DJ
2823 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
2824 {
2825 set_gdbarch_double_format
2826 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2827 set_gdbarch_long_double_format
2828 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2829 }
2830 else
2831 {
2832 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2833 set_gdbarch_long_double_format (gdbarch,
2834 &floatformat_ieee_double_little);
2835 }
08216dd7
RE
2836 break;
2837
2838 default:
2839 internal_error (__FILE__, __LINE__,
edefbb7c 2840 _("arm_gdbarch_init: bad byte order for float format"));
08216dd7
RE
2841 }
2842
39bbf761
RE
2843 return gdbarch;
2844}
2845
97e03143
RE
2846static void
2847arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2848{
2849 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2850
2851 if (tdep == NULL)
2852 return;
2853
edefbb7c 2854 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
2855 (unsigned long) tdep->lowest_pc);
2856}
2857
a78f21af
AC
2858extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2859
c906108c 2860void
ed9a39eb 2861_initialize_arm_tdep (void)
c906108c 2862{
bc90b915
FN
2863 struct ui_file *stb;
2864 long length;
26304000 2865 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
2866 const char *setname;
2867 const char *setdesc;
4bd7b427 2868 const char *const *regnames;
bc90b915
FN
2869 int numregs, i, j;
2870 static char *helptext;
edefbb7c
AC
2871 char regdesc[1024], *rdptr = regdesc;
2872 size_t rest = sizeof (regdesc);
085dd6e6 2873
42cf1509 2874 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 2875
70f80edf
JT
2876 /* Register an ELF OS ABI sniffer for ARM binaries. */
2877 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2878 bfd_target_elf_flavour,
2879 arm_elf_osabi_sniffer);
2880
94c30b78 2881 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
2882 num_disassembly_options = get_arm_regname_num_options ();
2883
2884 /* Add root prefix command for all "set arm"/"show arm" commands. */
2885 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 2886 _("Various ARM-specific commands."),
afd7eef0
RE
2887 &setarmcmdlist, "set arm ", 0, &setlist);
2888
2889 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 2890 _("Various ARM-specific commands."),
afd7eef0 2891 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 2892
94c30b78 2893 /* Sync the opcode insn printer with our register viewer. */
bc90b915 2894 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 2895
eefe576e
AC
2896 /* Initialize the array that will be passed to
2897 add_setshow_enum_cmd(). */
afd7eef0
RE
2898 valid_disassembly_styles
2899 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2900 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
2901 {
2902 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 2903 valid_disassembly_styles[i] = setname;
edefbb7c
AC
2904 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
2905 rdptr += length;
2906 rest -= length;
94c30b78 2907 /* Copy the default names (if found) and synchronize disassembler. */
bc90b915
FN
2908 if (!strcmp (setname, "std"))
2909 {
afd7eef0 2910 disassembly_style = setname;
bc90b915
FN
2911 current_option = i;
2912 for (j = 0; j < numregs; j++)
2913 arm_register_names[j] = (char *) regnames[j];
2914 set_arm_regname_option (i);
2915 }
2916 }
94c30b78 2917 /* Mark the end of valid options. */
afd7eef0 2918 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 2919
edefbb7c
AC
2920 /* Create the help text. */
2921 stb = mem_fileopen ();
2922 fprintf_unfiltered (stb, "%s%s%s",
2923 _("The valid values are:\n"),
2924 regdesc,
2925 _("The default is \"std\"."));
bc90b915
FN
2926 helptext = ui_file_xstrdup (stb, &length);
2927 ui_file_delete (stb);
ed9a39eb 2928
edefbb7c
AC
2929 add_setshow_enum_cmd("disassembler", no_class,
2930 valid_disassembly_styles, &disassembly_style,
2931 _("Set the disassembly style."),
2932 _("Show the disassembly style."),
2933 helptext,
2c5b56ce 2934 set_disassembly_style_sfunc,
7915a72c 2935 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
7376b4c2 2936 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
2937
2938 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
2939 _("Set usage of ARM 32-bit mode."),
2940 _("Show usage of ARM 32-bit mode."),
2941 _("When off, a 26-bit PC will be used."),
2c5b56ce 2942 NULL,
7915a72c 2943 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
26304000 2944 &setarmcmdlist, &showarmcmdlist);
c906108c 2945
fd50bc42 2946 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
2947 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
2948 _("Set the floating point type."),
2949 _("Show the floating point type."),
2950 _("auto - Determine the FP typefrom the OS-ABI.\n\
2951softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
2952fpa - FPA co-processor (GCC compiled).\n\
2953softvfp - Software FP with pure-endian doubles.\n\
2954vfp - VFP co-processor."),
edefbb7c 2955 set_fp_model_sfunc, show_fp_model,
7376b4c2 2956 &setarmcmdlist, &showarmcmdlist);
fd50bc42 2957
28e97307
DJ
2958 /* Add a command to allow the user to force the ABI. */
2959 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
2960 _("Set the ABI."),
2961 _("Show the ABI."),
2962 NULL, arm_set_abi, arm_show_abi,
2963 &setarmcmdlist, &showarmcmdlist);
2964
6529d2dd 2965 /* Debugging flag. */
edefbb7c
AC
2966 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
2967 _("Set ARM debugging."),
2968 _("Show ARM debugging."),
2969 _("When on, arm-specific debugging is enabled."),
2c5b56ce 2970 NULL,
7915a72c 2971 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 2972 &setdebuglist, &showdebuglist);
c906108c 2973}
This page took 0.583052 seconds and 4 git commands to generate.