* symfile-mem.c (symbol_file_add_from_memory): Call do_cleanups.
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
6aba47ca 3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
7b6bb8da 4 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
9b254dd1 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 21
0963b4bd 22#include <ctype.h> /* XXX for isupper (). */
34e8f22d 23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
c906108c 29#include "gdb_string.h"
0963b4bd 30#include "dis-asm.h" /* For register styles. */
4e052eda 31#include "regcache.h"
54483882 32#include "reggroups.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
4be87837 36#include "osabi.h"
eb5492fa
DJ
37#include "frame-unwind.h"
38#include "frame-base.h"
39#include "trad-frame.h"
842e1f1e
DJ
40#include "objfiles.h"
41#include "dwarf2-frame.h"
e4c16157 42#include "gdbtypes.h"
29d73ae4 43#include "prologue-value.h"
123dc839
DJ
44#include "target-descriptions.h"
45#include "user-regs.h"
0e9e9abd 46#include "observer.h"
34e8f22d
RE
47
48#include "arm-tdep.h"
26216b98 49#include "gdb/sim-arm.h"
34e8f22d 50
082fc60d
RE
51#include "elf-bfd.h"
52#include "coff/internal.h"
97e03143 53#include "elf/arm.h"
c906108c 54
26216b98 55#include "gdb_assert.h"
60c5725c 56#include "vec.h"
26216b98 57
9779414d 58#include "features/arm-with-m.c"
ef7e8358
UW
59#include "features/arm-with-iwmmxt.c"
60#include "features/arm-with-vfpv2.c"
61#include "features/arm-with-vfpv3.c"
62#include "features/arm-with-neon.c"
9779414d 63
6529d2dd
AC
64static int arm_debug;
65
082fc60d
RE
66/* Macros for setting and testing a bit in a minimal symbol that marks
67 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 68 is used for this purpose.
082fc60d
RE
69
70 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 71 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d 72
0963b4bd 73#define MSYMBOL_SET_SPECIAL(msym) \
b887350f 74 MSYMBOL_TARGET_FLAG_1 (msym) = 1
082fc60d
RE
75
76#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 77 MSYMBOL_TARGET_FLAG_1 (msym)
082fc60d 78
60c5725c
DJ
79/* Per-objfile data used for mapping symbols. */
80static const struct objfile_data *arm_objfile_data_key;
81
82struct arm_mapping_symbol
83{
84 bfd_vma value;
85 char type;
86};
87typedef struct arm_mapping_symbol arm_mapping_symbol_s;
88DEF_VEC_O(arm_mapping_symbol_s);
89
90struct arm_per_objfile
91{
92 VEC(arm_mapping_symbol_s) **section_maps;
93};
94
afd7eef0
RE
95/* The list of available "set arm ..." and "show arm ..." commands. */
96static struct cmd_list_element *setarmcmdlist = NULL;
97static struct cmd_list_element *showarmcmdlist = NULL;
98
fd50bc42
RE
99/* The type of floating-point to use. Keep this in sync with enum
100 arm_float_model, and the help string in _initialize_arm_tdep. */
101static const char *fp_model_strings[] =
102{
103 "auto",
104 "softfpa",
105 "fpa",
106 "softvfp",
28e97307
DJ
107 "vfp",
108 NULL
fd50bc42
RE
109};
110
111/* A variable that can be configured by the user. */
112static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
113static const char *current_fp_model = "auto";
114
28e97307
DJ
115/* The ABI to use. Keep this in sync with arm_abi_kind. */
116static const char *arm_abi_strings[] =
117{
118 "auto",
119 "APCS",
120 "AAPCS",
121 NULL
122};
123
124/* A variable that can be configured by the user. */
125static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
126static const char *arm_abi_string = "auto";
127
0428b8f5
DJ
128/* The execution mode to assume. */
129static const char *arm_mode_strings[] =
130 {
131 "auto",
132 "arm",
68770265
MGD
133 "thumb",
134 NULL
0428b8f5
DJ
135 };
136
137static const char *arm_fallback_mode_string = "auto";
138static const char *arm_force_mode_string = "auto";
139
18819fa6
UW
140/* Internal override of the execution mode. -1 means no override,
141 0 means override to ARM mode, 1 means override to Thumb mode.
142 The effect is the same as if arm_force_mode has been set by the
143 user (except the internal override has precedence over a user's
144 arm_force_mode override). */
145static int arm_override_mode = -1;
146
94c30b78 147/* Number of different reg name sets (options). */
afd7eef0 148static int num_disassembly_options;
bc90b915 149
f32bf4a4
YQ
150/* The standard register names, and all the valid aliases for them. Note
151 that `fp', `sp' and `pc' are not added in this alias list, because they
152 have been added as builtin user registers in
153 std-regs.c:_initialize_frame_reg. */
123dc839
DJ
154static const struct
155{
156 const char *name;
157 int regnum;
158} arm_register_aliases[] = {
159 /* Basic register numbers. */
160 { "r0", 0 },
161 { "r1", 1 },
162 { "r2", 2 },
163 { "r3", 3 },
164 { "r4", 4 },
165 { "r5", 5 },
166 { "r6", 6 },
167 { "r7", 7 },
168 { "r8", 8 },
169 { "r9", 9 },
170 { "r10", 10 },
171 { "r11", 11 },
172 { "r12", 12 },
173 { "r13", 13 },
174 { "r14", 14 },
175 { "r15", 15 },
176 /* Synonyms (argument and variable registers). */
177 { "a1", 0 },
178 { "a2", 1 },
179 { "a3", 2 },
180 { "a4", 3 },
181 { "v1", 4 },
182 { "v2", 5 },
183 { "v3", 6 },
184 { "v4", 7 },
185 { "v5", 8 },
186 { "v6", 9 },
187 { "v7", 10 },
188 { "v8", 11 },
189 /* Other platform-specific names for r9. */
190 { "sb", 9 },
191 { "tr", 9 },
192 /* Special names. */
193 { "ip", 12 },
123dc839 194 { "lr", 14 },
123dc839
DJ
195 /* Names used by GCC (not listed in the ARM EABI). */
196 { "sl", 10 },
123dc839
DJ
197 /* A special name from the older ATPCS. */
198 { "wr", 7 },
199};
bc90b915 200
123dc839 201static const char *const arm_register_names[] =
da59e081
JM
202{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
203 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
204 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
205 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
206 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
207 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 208 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 209
afd7eef0
RE
210/* Valid register name styles. */
211static const char **valid_disassembly_styles;
ed9a39eb 212
afd7eef0
RE
213/* Disassembly style to use. Default to "std" register names. */
214static const char *disassembly_style;
96baa820 215
ed9a39eb 216/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
217 style. */
218static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 219 struct cmd_list_element *);
afd7eef0 220static void set_disassembly_style (void);
ed9a39eb 221
b508a996 222static void convert_from_extended (const struct floatformat *, const void *,
be8626e0 223 void *, int);
b508a996 224static void convert_to_extended (const struct floatformat *, void *,
be8626e0 225 const void *, int);
ed9a39eb 226
05d1431c
PA
227static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
228 struct regcache *regcache,
229 int regnum, gdb_byte *buf);
58d6951d
DJ
230static void arm_neon_quad_write (struct gdbarch *gdbarch,
231 struct regcache *regcache,
232 int regnum, const gdb_byte *buf);
233
9b8d791a 234struct arm_prologue_cache
c3b4394c 235{
eb5492fa
DJ
236 /* The stack pointer at the time this frame was created; i.e. the
237 caller's stack pointer when this function was called. It is used
238 to identify this frame. */
239 CORE_ADDR prev_sp;
240
4be43953
DJ
241 /* The frame base for this frame is just prev_sp - frame size.
242 FRAMESIZE is the distance from the frame pointer to the
243 initial stack pointer. */
eb5492fa 244
c3b4394c 245 int framesize;
eb5492fa
DJ
246
247 /* The register used to hold the frame pointer for this frame. */
c3b4394c 248 int framereg;
eb5492fa
DJ
249
250 /* Saved register offsets. */
251 struct trad_frame_saved_reg *saved_regs;
c3b4394c 252};
ed9a39eb 253
0d39a070
DJ
254static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
255 CORE_ADDR prologue_start,
256 CORE_ADDR prologue_end,
257 struct arm_prologue_cache *cache);
258
cca44b1b
JB
259/* Architecture version for displaced stepping. This effects the behaviour of
260 certain instructions, and really should not be hard-wired. */
261
262#define DISPLACED_STEPPING_ARCH_VERSION 5
263
bc90b915
FN
264/* Addresses for calling Thumb functions have the bit 0 set.
265 Here are some macros to test, set, or clear bit 0 of addresses. */
266#define IS_THUMB_ADDR(addr) ((addr) & 1)
267#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
268#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
269
94c30b78 270/* Set to true if the 32-bit mode is in use. */
c906108c
SS
271
272int arm_apcs_32 = 1;
273
9779414d
DJ
274/* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
275
478fd957 276int
9779414d
DJ
277arm_psr_thumb_bit (struct gdbarch *gdbarch)
278{
279 if (gdbarch_tdep (gdbarch)->is_m)
280 return XPSR_T;
281 else
282 return CPSR_T;
283}
284
b39cc962
DJ
285/* Determine if FRAME is executing in Thumb mode. */
286
25b41d01 287int
b39cc962
DJ
288arm_frame_is_thumb (struct frame_info *frame)
289{
290 CORE_ADDR cpsr;
9779414d 291 ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
b39cc962
DJ
292
293 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
294 directly (from a signal frame or dummy frame) or by interpreting
295 the saved LR (from a prologue or DWARF frame). So consult it and
296 trust the unwinders. */
297 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
298
9779414d 299 return (cpsr & t_bit) != 0;
b39cc962
DJ
300}
301
60c5725c
DJ
302/* Callback for VEC_lower_bound. */
303
304static inline int
305arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
306 const struct arm_mapping_symbol *rhs)
307{
308 return lhs->value < rhs->value;
309}
310
f9d67f43
DJ
311/* Search for the mapping symbol covering MEMADDR. If one is found,
312 return its type. Otherwise, return 0. If START is non-NULL,
313 set *START to the location of the mapping symbol. */
c906108c 314
f9d67f43
DJ
315static char
316arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
c906108c 317{
60c5725c 318 struct obj_section *sec;
0428b8f5 319
60c5725c
DJ
320 /* If there are mapping symbols, consult them. */
321 sec = find_pc_section (memaddr);
322 if (sec != NULL)
323 {
324 struct arm_per_objfile *data;
325 VEC(arm_mapping_symbol_s) *map;
aded6f54
PA
326 struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
327 0 };
60c5725c
DJ
328 unsigned int idx;
329
330 data = objfile_data (sec->objfile, arm_objfile_data_key);
331 if (data != NULL)
332 {
333 map = data->section_maps[sec->the_bfd_section->index];
334 if (!VEC_empty (arm_mapping_symbol_s, map))
335 {
336 struct arm_mapping_symbol *map_sym;
337
338 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
339 arm_compare_mapping_symbols);
340
341 /* VEC_lower_bound finds the earliest ordered insertion
342 point. If the following symbol starts at this exact
343 address, we use that; otherwise, the preceding
344 mapping symbol covers this address. */
345 if (idx < VEC_length (arm_mapping_symbol_s, map))
346 {
347 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
348 if (map_sym->value == map_key.value)
f9d67f43
DJ
349 {
350 if (start)
351 *start = map_sym->value + obj_section_addr (sec);
352 return map_sym->type;
353 }
60c5725c
DJ
354 }
355
356 if (idx > 0)
357 {
358 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
f9d67f43
DJ
359 if (start)
360 *start = map_sym->value + obj_section_addr (sec);
361 return map_sym->type;
60c5725c
DJ
362 }
363 }
364 }
365 }
366
f9d67f43
DJ
367 return 0;
368}
369
370/* Determine if the program counter specified in MEMADDR is in a Thumb
371 function. This function should be called for addresses unrelated to
372 any executing frame; otherwise, prefer arm_frame_is_thumb. */
373
e3039479 374int
9779414d 375arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
f9d67f43
DJ
376{
377 struct obj_section *sec;
378 struct minimal_symbol *sym;
379 char type;
a42244db
YQ
380 struct displaced_step_closure* dsc
381 = get_displaced_step_closure_by_addr(memaddr);
382
383 /* If checking the mode of displaced instruction in copy area, the mode
384 should be determined by instruction on the original address. */
385 if (dsc)
386 {
387 if (debug_displaced)
388 fprintf_unfiltered (gdb_stdlog,
389 "displaced: check mode of %.8lx instead of %.8lx\n",
390 (unsigned long) dsc->insn_addr,
391 (unsigned long) memaddr);
392 memaddr = dsc->insn_addr;
393 }
f9d67f43
DJ
394
395 /* If bit 0 of the address is set, assume this is a Thumb address. */
396 if (IS_THUMB_ADDR (memaddr))
397 return 1;
398
18819fa6
UW
399 /* Respect internal mode override if active. */
400 if (arm_override_mode != -1)
401 return arm_override_mode;
402
f9d67f43
DJ
403 /* If the user wants to override the symbol table, let him. */
404 if (strcmp (arm_force_mode_string, "arm") == 0)
405 return 0;
406 if (strcmp (arm_force_mode_string, "thumb") == 0)
407 return 1;
408
9779414d
DJ
409 /* ARM v6-M and v7-M are always in Thumb mode. */
410 if (gdbarch_tdep (gdbarch)->is_m)
411 return 1;
412
f9d67f43
DJ
413 /* If there are mapping symbols, consult them. */
414 type = arm_find_mapping_symbol (memaddr, NULL);
415 if (type)
416 return type == 't';
417
ed9a39eb 418 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
419 sym = lookup_minimal_symbol_by_pc (memaddr);
420 if (sym)
0428b8f5
DJ
421 return (MSYMBOL_IS_SPECIAL (sym));
422
423 /* If the user wants to override the fallback mode, let them. */
424 if (strcmp (arm_fallback_mode_string, "arm") == 0)
425 return 0;
426 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
427 return 1;
428
429 /* If we couldn't find any symbol, but we're talking to a running
430 target, then trust the current value of $cpsr. This lets
431 "display/i $pc" always show the correct mode (though if there is
432 a symbol table we will not reach here, so it still may not be
18819fa6 433 displayed in the mode it will be executed). */
0428b8f5 434 if (target_has_registers)
18819fa6 435 return arm_frame_is_thumb (get_current_frame ());
0428b8f5
DJ
436
437 /* Otherwise we're out of luck; we assume ARM. */
438 return 0;
c906108c
SS
439}
440
181c1381 441/* Remove useless bits from addresses in a running program. */
34e8f22d 442static CORE_ADDR
24568a2c 443arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
c906108c 444{
a3a2ee65 445 if (arm_apcs_32)
dd6be234 446 return UNMAKE_THUMB_ADDR (val);
c906108c 447 else
a3a2ee65 448 return (val & 0x03fffffc);
c906108c
SS
449}
450
181c1381
RE
451/* When reading symbols, we need to zap the low bit of the address,
452 which may be set to 1 for Thumb functions. */
34e8f22d 453static CORE_ADDR
24568a2c 454arm_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR val)
181c1381
RE
455{
456 return val & ~1;
457}
458
0d39a070 459/* Return 1 if PC is the start of a compiler helper function which
e0634ccf
UW
460 can be safely ignored during prologue skipping. IS_THUMB is true
461 if the function is known to be a Thumb function due to the way it
462 is being called. */
0d39a070 463static int
e0634ccf 464skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
0d39a070 465{
e0634ccf 466 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
0d39a070 467 struct minimal_symbol *msym;
0d39a070
DJ
468
469 msym = lookup_minimal_symbol_by_pc (pc);
e0634ccf
UW
470 if (msym != NULL
471 && SYMBOL_VALUE_ADDRESS (msym) == pc
472 && SYMBOL_LINKAGE_NAME (msym) != NULL)
473 {
474 const char *name = SYMBOL_LINKAGE_NAME (msym);
0d39a070 475
e0634ccf
UW
476 /* The GNU linker's Thumb call stub to foo is named
477 __foo_from_thumb. */
478 if (strstr (name, "_from_thumb") != NULL)
479 name += 2;
0d39a070 480
e0634ccf
UW
481 /* On soft-float targets, __truncdfsf2 is called to convert promoted
482 arguments to their argument types in non-prototyped
483 functions. */
484 if (strncmp (name, "__truncdfsf2", strlen ("__truncdfsf2")) == 0)
485 return 1;
486 if (strncmp (name, "__aeabi_d2f", strlen ("__aeabi_d2f")) == 0)
487 return 1;
0d39a070 488
e0634ccf
UW
489 /* Internal functions related to thread-local storage. */
490 if (strncmp (name, "__tls_get_addr", strlen ("__tls_get_addr")) == 0)
491 return 1;
492 if (strncmp (name, "__aeabi_read_tp", strlen ("__aeabi_read_tp")) == 0)
493 return 1;
494 }
495 else
496 {
497 /* If we run against a stripped glibc, we may be unable to identify
498 special functions by name. Check for one important case,
499 __aeabi_read_tp, by comparing the *code* against the default
500 implementation (this is hand-written ARM assembler in glibc). */
501
502 if (!is_thumb
503 && read_memory_unsigned_integer (pc, 4, byte_order_for_code)
504 == 0xe3e00a0f /* mov r0, #0xffff0fff */
505 && read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code)
506 == 0xe240f01f) /* sub pc, r0, #31 */
507 return 1;
508 }
ec3d575a 509
0d39a070
DJ
510 return 0;
511}
512
513/* Support routines for instruction parsing. */
514#define submask(x) ((1L << ((x) + 1)) - 1)
515#define bit(obj,st) (((obj) >> (st)) & 1)
516#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
517#define sbits(obj,st,fn) \
518 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
519#define BranchDest(addr,instr) \
520 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
521
621c6d5b
YQ
522/* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
523 the first 16-bit of instruction, and INSN2 is the second 16-bit of
524 instruction. */
525#define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
526 ((bits ((insn1), 0, 3) << 12) \
527 | (bits ((insn1), 10, 10) << 11) \
528 | (bits ((insn2), 12, 14) << 8) \
529 | bits ((insn2), 0, 7))
530
531/* Extract the immediate from instruction movw/movt of encoding A. INSN is
532 the 32-bit instruction. */
533#define EXTRACT_MOVW_MOVT_IMM_A(insn) \
534 ((bits ((insn), 16, 19) << 12) \
535 | bits ((insn), 0, 11))
536
ec3d575a
UW
537/* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
538
539static unsigned int
540thumb_expand_immediate (unsigned int imm)
541{
542 unsigned int count = imm >> 7;
543
544 if (count < 8)
545 switch (count / 2)
546 {
547 case 0:
548 return imm & 0xff;
549 case 1:
550 return (imm & 0xff) | ((imm & 0xff) << 16);
551 case 2:
552 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
553 case 3:
554 return (imm & 0xff) | ((imm & 0xff) << 8)
555 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
556 }
557
558 return (0x80 | (imm & 0x7f)) << (32 - count);
559}
560
561/* Return 1 if the 16-bit Thumb instruction INST might change
562 control flow, 0 otherwise. */
563
564static int
565thumb_instruction_changes_pc (unsigned short inst)
566{
567 if ((inst & 0xff00) == 0xbd00) /* pop {rlist, pc} */
568 return 1;
569
570 if ((inst & 0xf000) == 0xd000) /* conditional branch */
571 return 1;
572
573 if ((inst & 0xf800) == 0xe000) /* unconditional branch */
574 return 1;
575
576 if ((inst & 0xff00) == 0x4700) /* bx REG, blx REG */
577 return 1;
578
ad8b5167
UW
579 if ((inst & 0xff87) == 0x4687) /* mov pc, REG */
580 return 1;
581
ec3d575a
UW
582 if ((inst & 0xf500) == 0xb100) /* CBNZ or CBZ. */
583 return 1;
584
585 return 0;
586}
587
588/* Return 1 if the 32-bit Thumb instruction in INST1 and INST2
589 might change control flow, 0 otherwise. */
590
591static int
592thumb2_instruction_changes_pc (unsigned short inst1, unsigned short inst2)
593{
594 if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000)
595 {
596 /* Branches and miscellaneous control instructions. */
597
598 if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000)
599 {
600 /* B, BL, BLX. */
601 return 1;
602 }
603 else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00)
604 {
605 /* SUBS PC, LR, #imm8. */
606 return 1;
607 }
608 else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380)
609 {
610 /* Conditional branch. */
611 return 1;
612 }
613
614 return 0;
615 }
616
617 if ((inst1 & 0xfe50) == 0xe810)
618 {
619 /* Load multiple or RFE. */
620
621 if (bit (inst1, 7) && !bit (inst1, 8))
622 {
623 /* LDMIA or POP */
624 if (bit (inst2, 15))
625 return 1;
626 }
627 else if (!bit (inst1, 7) && bit (inst1, 8))
628 {
629 /* LDMDB */
630 if (bit (inst2, 15))
631 return 1;
632 }
633 else if (bit (inst1, 7) && bit (inst1, 8))
634 {
635 /* RFEIA */
636 return 1;
637 }
638 else if (!bit (inst1, 7) && !bit (inst1, 8))
639 {
640 /* RFEDB */
641 return 1;
642 }
643
644 return 0;
645 }
646
647 if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00)
648 {
649 /* MOV PC or MOVS PC. */
650 return 1;
651 }
652
653 if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000)
654 {
655 /* LDR PC. */
656 if (bits (inst1, 0, 3) == 15)
657 return 1;
658 if (bit (inst1, 7))
659 return 1;
660 if (bit (inst2, 11))
661 return 1;
662 if ((inst2 & 0x0fc0) == 0x0000)
663 return 1;
664
665 return 0;
666 }
667
668 if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000)
669 {
670 /* TBB. */
671 return 1;
672 }
673
674 if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010)
675 {
676 /* TBH. */
677 return 1;
678 }
679
680 return 0;
681}
682
29d73ae4
DJ
683/* Analyze a Thumb prologue, looking for a recognizable stack frame
684 and frame pointer. Scan until we encounter a store that could
0d39a070
DJ
685 clobber the stack frame unexpectedly, or an unknown instruction.
686 Return the last address which is definitely safe to skip for an
687 initial breakpoint. */
c906108c
SS
688
689static CORE_ADDR
29d73ae4
DJ
690thumb_analyze_prologue (struct gdbarch *gdbarch,
691 CORE_ADDR start, CORE_ADDR limit,
692 struct arm_prologue_cache *cache)
c906108c 693{
0d39a070 694 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e17a4113 695 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
29d73ae4
DJ
696 int i;
697 pv_t regs[16];
698 struct pv_area *stack;
699 struct cleanup *back_to;
700 CORE_ADDR offset;
ec3d575a 701 CORE_ADDR unrecognized_pc = 0;
da3c6d4a 702
29d73ae4
DJ
703 for (i = 0; i < 16; i++)
704 regs[i] = pv_register (i, 0);
55f960e1 705 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
29d73ae4
DJ
706 back_to = make_cleanup_free_pv_area (stack);
707
29d73ae4 708 while (start < limit)
c906108c 709 {
29d73ae4
DJ
710 unsigned short insn;
711
e17a4113 712 insn = read_memory_unsigned_integer (start, 2, byte_order_for_code);
9d4fde75 713
94c30b78 714 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 715 {
29d73ae4
DJ
716 int regno;
717 int mask;
4be43953
DJ
718
719 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
720 break;
29d73ae4
DJ
721
722 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
723 whether to save LR (R14). */
724 mask = (insn & 0xff) | ((insn & 0x100) << 6);
725
726 /* Calculate offsets of saved R0-R7 and LR. */
727 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
728 if (mask & (1 << regno))
729 {
29d73ae4
DJ
730 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
731 -4);
732 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
733 }
da59e081 734 }
da3c6d4a
MS
735 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
736 sub sp, #simm */
da59e081 737 {
29d73ae4
DJ
738 offset = (insn & 0x7f) << 2; /* get scaled offset */
739 if (insn & 0x80) /* Check for SUB. */
740 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
741 -offset);
da59e081 742 else
29d73ae4
DJ
743 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
744 offset);
da59e081 745 }
0d39a070
DJ
746 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
747 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
748 (insn & 0xff) << 2);
749 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
750 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
751 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
752 bits (insn, 6, 8));
753 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
754 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
755 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
756 bits (insn, 0, 7));
757 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
758 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
759 && pv_is_constant (regs[bits (insn, 3, 5)]))
760 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
761 regs[bits (insn, 6, 8)]);
762 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
763 && pv_is_constant (regs[bits (insn, 3, 6)]))
764 {
765 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
766 int rm = bits (insn, 3, 6);
767 regs[rd] = pv_add (regs[rd], regs[rm]);
768 }
29d73ae4 769 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 770 {
29d73ae4
DJ
771 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
772 int src_reg = (insn & 0x78) >> 3;
773 regs[dst_reg] = regs[src_reg];
da59e081 774 }
29d73ae4 775 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 776 {
29d73ae4
DJ
777 /* Handle stores to the stack. Normally pushes are used,
778 but with GCC -mtpcs-frame, there may be other stores
779 in the prologue to create the frame. */
780 int regno = (insn >> 8) & 0x7;
781 pv_t addr;
782
783 offset = (insn & 0xff) << 2;
784 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
785
786 if (pv_area_store_would_trash (stack, addr))
787 break;
788
789 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 790 }
0d39a070
DJ
791 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
792 {
793 int rd = bits (insn, 0, 2);
794 int rn = bits (insn, 3, 5);
795 pv_t addr;
796
797 offset = bits (insn, 6, 10) << 2;
798 addr = pv_add_constant (regs[rn], offset);
799
800 if (pv_area_store_would_trash (stack, addr))
801 break;
802
803 pv_area_store (stack, addr, 4, regs[rd]);
804 }
805 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
806 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
807 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
808 /* Ignore stores of argument registers to the stack. */
809 ;
810 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
811 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
812 /* Ignore block loads from the stack, potentially copying
813 parameters from memory. */
814 ;
815 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
816 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
817 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
818 /* Similarly ignore single loads from the stack. */
819 ;
820 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
821 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
822 /* Skip register copies, i.e. saves to another register
823 instead of the stack. */
824 ;
825 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
826 /* Recognize constant loads; even with small stacks these are necessary
827 on Thumb. */
828 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
829 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
830 {
831 /* Constant pool loads, for the same reason. */
832 unsigned int constant;
833 CORE_ADDR loc;
834
835 loc = start + 4 + bits (insn, 0, 7) * 4;
836 constant = read_memory_unsigned_integer (loc, 4, byte_order);
837 regs[bits (insn, 8, 10)] = pv_constant (constant);
838 }
ec3d575a 839 else if ((insn & 0xe000) == 0xe000)
0d39a070 840 {
0d39a070
DJ
841 unsigned short inst2;
842
843 inst2 = read_memory_unsigned_integer (start + 2, 2,
844 byte_order_for_code);
845
846 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
847 {
848 /* BL, BLX. Allow some special function calls when
849 skipping the prologue; GCC generates these before
850 storing arguments to the stack. */
851 CORE_ADDR nextpc;
852 int j1, j2, imm1, imm2;
853
854 imm1 = sbits (insn, 0, 10);
855 imm2 = bits (inst2, 0, 10);
856 j1 = bit (inst2, 13);
857 j2 = bit (inst2, 11);
858
859 offset = ((imm1 << 12) + (imm2 << 1));
860 offset ^= ((!j2) << 22) | ((!j1) << 23);
861
862 nextpc = start + 4 + offset;
863 /* For BLX make sure to clear the low bits. */
864 if (bit (inst2, 12) == 0)
865 nextpc = nextpc & 0xfffffffc;
866
e0634ccf
UW
867 if (!skip_prologue_function (gdbarch, nextpc,
868 bit (inst2, 12) != 0))
0d39a070
DJ
869 break;
870 }
ec3d575a 871
0963b4bd
MS
872 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
873 { registers } */
ec3d575a
UW
874 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
875 {
876 pv_t addr = regs[bits (insn, 0, 3)];
877 int regno;
878
879 if (pv_area_store_would_trash (stack, addr))
880 break;
881
882 /* Calculate offsets of saved registers. */
883 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
884 if (inst2 & (1 << regno))
885 {
886 addr = pv_add_constant (addr, -4);
887 pv_area_store (stack, addr, 4, regs[regno]);
888 }
889
890 if (insn & 0x0020)
891 regs[bits (insn, 0, 3)] = addr;
892 }
893
0963b4bd
MS
894 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
895 [Rn, #+/-imm]{!} */
ec3d575a
UW
896 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
897 {
898 int regno1 = bits (inst2, 12, 15);
899 int regno2 = bits (inst2, 8, 11);
900 pv_t addr = regs[bits (insn, 0, 3)];
901
902 offset = inst2 & 0xff;
903 if (insn & 0x0080)
904 addr = pv_add_constant (addr, offset);
905 else
906 addr = pv_add_constant (addr, -offset);
907
908 if (pv_area_store_would_trash (stack, addr))
909 break;
910
911 pv_area_store (stack, addr, 4, regs[regno1]);
912 pv_area_store (stack, pv_add_constant (addr, 4),
913 4, regs[regno2]);
914
915 if (insn & 0x0020)
916 regs[bits (insn, 0, 3)] = addr;
917 }
918
919 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
920 && (inst2 & 0x0c00) == 0x0c00
921 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
922 {
923 int regno = bits (inst2, 12, 15);
924 pv_t addr = regs[bits (insn, 0, 3)];
925
926 offset = inst2 & 0xff;
927 if (inst2 & 0x0200)
928 addr = pv_add_constant (addr, offset);
929 else
930 addr = pv_add_constant (addr, -offset);
931
932 if (pv_area_store_would_trash (stack, addr))
933 break;
934
935 pv_area_store (stack, addr, 4, regs[regno]);
936
937 if (inst2 & 0x0100)
938 regs[bits (insn, 0, 3)] = addr;
939 }
940
941 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
942 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
943 {
944 int regno = bits (inst2, 12, 15);
945 pv_t addr;
946
947 offset = inst2 & 0xfff;
948 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
949
950 if (pv_area_store_would_trash (stack, addr))
951 break;
952
953 pv_area_store (stack, addr, 4, regs[regno]);
954 }
955
956 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
0d39a070 957 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 958 /* Ignore stores of argument registers to the stack. */
0d39a070 959 ;
ec3d575a
UW
960
961 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
962 && (inst2 & 0x0d00) == 0x0c00
0d39a070 963 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 964 /* Ignore stores of argument registers to the stack. */
0d39a070 965 ;
ec3d575a 966
0963b4bd
MS
967 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
968 { registers } */
ec3d575a
UW
969 && (inst2 & 0x8000) == 0x0000
970 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
971 /* Ignore block loads from the stack, potentially copying
972 parameters from memory. */
0d39a070 973 ;
ec3d575a 974
0963b4bd
MS
975 else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
976 [Rn, #+/-imm] */
0d39a070 977 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 978 /* Similarly ignore dual loads from the stack. */
0d39a070 979 ;
ec3d575a
UW
980
981 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
982 && (inst2 & 0x0d00) == 0x0c00
0d39a070 983 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 984 /* Similarly ignore single loads from the stack. */
0d39a070 985 ;
ec3d575a
UW
986
987 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
0d39a070 988 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 989 /* Similarly ignore single loads from the stack. */
0d39a070 990 ;
ec3d575a
UW
991
992 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
993 && (inst2 & 0x8000) == 0x0000)
994 {
995 unsigned int imm = ((bits (insn, 10, 10) << 11)
996 | (bits (inst2, 12, 14) << 8)
997 | bits (inst2, 0, 7));
998
999 regs[bits (inst2, 8, 11)]
1000 = pv_add_constant (regs[bits (insn, 0, 3)],
1001 thumb_expand_immediate (imm));
1002 }
1003
1004 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
1005 && (inst2 & 0x8000) == 0x0000)
0d39a070 1006 {
ec3d575a
UW
1007 unsigned int imm = ((bits (insn, 10, 10) << 11)
1008 | (bits (inst2, 12, 14) << 8)
1009 | bits (inst2, 0, 7));
1010
1011 regs[bits (inst2, 8, 11)]
1012 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
1013 }
1014
1015 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
1016 && (inst2 & 0x8000) == 0x0000)
1017 {
1018 unsigned int imm = ((bits (insn, 10, 10) << 11)
1019 | (bits (inst2, 12, 14) << 8)
1020 | bits (inst2, 0, 7));
1021
1022 regs[bits (inst2, 8, 11)]
1023 = pv_add_constant (regs[bits (insn, 0, 3)],
1024 - (CORE_ADDR) thumb_expand_immediate (imm));
1025 }
1026
1027 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
1028 && (inst2 & 0x8000) == 0x0000)
1029 {
1030 unsigned int imm = ((bits (insn, 10, 10) << 11)
1031 | (bits (inst2, 12, 14) << 8)
1032 | bits (inst2, 0, 7));
1033
1034 regs[bits (inst2, 8, 11)]
1035 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
1036 }
1037
1038 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
1039 {
1040 unsigned int imm = ((bits (insn, 10, 10) << 11)
1041 | (bits (inst2, 12, 14) << 8)
1042 | bits (inst2, 0, 7));
1043
1044 regs[bits (inst2, 8, 11)]
1045 = pv_constant (thumb_expand_immediate (imm));
1046 }
1047
1048 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
1049 {
621c6d5b
YQ
1050 unsigned int imm
1051 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
ec3d575a
UW
1052
1053 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1054 }
1055
1056 else if (insn == 0xea5f /* mov.w Rd,Rm */
1057 && (inst2 & 0xf0f0) == 0)
1058 {
1059 int dst_reg = (inst2 & 0x0f00) >> 8;
1060 int src_reg = inst2 & 0xf;
1061 regs[dst_reg] = regs[src_reg];
1062 }
1063
1064 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1065 {
1066 /* Constant pool loads. */
1067 unsigned int constant;
1068 CORE_ADDR loc;
1069
1070 offset = bits (insn, 0, 11);
1071 if (insn & 0x0080)
1072 loc = start + 4 + offset;
1073 else
1074 loc = start + 4 - offset;
1075
1076 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1077 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1078 }
1079
1080 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1081 {
1082 /* Constant pool loads. */
1083 unsigned int constant;
1084 CORE_ADDR loc;
1085
1086 offset = bits (insn, 0, 7) << 2;
1087 if (insn & 0x0080)
1088 loc = start + 4 + offset;
1089 else
1090 loc = start + 4 - offset;
1091
1092 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1093 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1094
1095 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1096 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1097 }
1098
1099 else if (thumb2_instruction_changes_pc (insn, inst2))
1100 {
1101 /* Don't scan past anything that might change control flow. */
0d39a070
DJ
1102 break;
1103 }
ec3d575a
UW
1104 else
1105 {
1106 /* The optimizer might shove anything into the prologue,
1107 so we just skip what we don't recognize. */
1108 unrecognized_pc = start;
1109 }
0d39a070
DJ
1110
1111 start += 2;
1112 }
ec3d575a 1113 else if (thumb_instruction_changes_pc (insn))
3d74b771 1114 {
ec3d575a 1115 /* Don't scan past anything that might change control flow. */
da3c6d4a 1116 break;
3d74b771 1117 }
ec3d575a
UW
1118 else
1119 {
1120 /* The optimizer might shove anything into the prologue,
1121 so we just skip what we don't recognize. */
1122 unrecognized_pc = start;
1123 }
29d73ae4
DJ
1124
1125 start += 2;
c906108c
SS
1126 }
1127
0d39a070
DJ
1128 if (arm_debug)
1129 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1130 paddress (gdbarch, start));
1131
ec3d575a
UW
1132 if (unrecognized_pc == 0)
1133 unrecognized_pc = start;
1134
29d73ae4
DJ
1135 if (cache == NULL)
1136 {
1137 do_cleanups (back_to);
ec3d575a 1138 return unrecognized_pc;
29d73ae4
DJ
1139 }
1140
29d73ae4
DJ
1141 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1142 {
1143 /* Frame pointer is fp. Frame size is constant. */
1144 cache->framereg = ARM_FP_REGNUM;
1145 cache->framesize = -regs[ARM_FP_REGNUM].k;
1146 }
1147 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1148 {
1149 /* Frame pointer is r7. Frame size is constant. */
1150 cache->framereg = THUMB_FP_REGNUM;
1151 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1152 }
1153 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
1154 {
1155 /* Try the stack pointer... this is a bit desperate. */
1156 cache->framereg = ARM_SP_REGNUM;
1157 cache->framesize = -regs[ARM_SP_REGNUM].k;
1158 }
1159 else
1160 {
1161 /* We're just out of luck. We don't know where the frame is. */
1162 cache->framereg = -1;
1163 cache->framesize = 0;
1164 }
1165
1166 for (i = 0; i < 16; i++)
1167 if (pv_area_find_reg (stack, gdbarch, i, &offset))
1168 cache->saved_regs[i].addr = offset;
1169
1170 do_cleanups (back_to);
ec3d575a 1171 return unrecognized_pc;
c906108c
SS
1172}
1173
621c6d5b
YQ
1174
1175/* Try to analyze the instructions starting from PC, which load symbol
1176 __stack_chk_guard. Return the address of instruction after loading this
1177 symbol, set the dest register number to *BASEREG, and set the size of
1178 instructions for loading symbol in OFFSET. Return 0 if instructions are
1179 not recognized. */
1180
1181static CORE_ADDR
1182arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1183 unsigned int *destreg, int *offset)
1184{
1185 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1186 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1187 unsigned int low, high, address;
1188
1189 address = 0;
1190 if (is_thumb)
1191 {
1192 unsigned short insn1
1193 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
1194
1195 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1196 {
1197 *destreg = bits (insn1, 8, 10);
1198 *offset = 2;
1199 address = bits (insn1, 0, 7);
1200 }
1201 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1202 {
1203 unsigned short insn2
1204 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
1205
1206 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1207
1208 insn1
1209 = read_memory_unsigned_integer (pc + 4, 2, byte_order_for_code);
1210 insn2
1211 = read_memory_unsigned_integer (pc + 6, 2, byte_order_for_code);
1212
1213 /* movt Rd, #const */
1214 if ((insn1 & 0xfbc0) == 0xf2c0)
1215 {
1216 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1217 *destreg = bits (insn2, 8, 11);
1218 *offset = 8;
1219 address = (high << 16 | low);
1220 }
1221 }
1222 }
1223 else
1224 {
2e9e421f
UW
1225 unsigned int insn
1226 = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
1227
1228 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, #immed */
1229 {
1230 address = bits (insn, 0, 11);
1231 *destreg = bits (insn, 12, 15);
1232 *offset = 4;
1233 }
1234 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1235 {
1236 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1237
1238 insn
1239 = read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code);
1240
1241 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1242 {
1243 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1244 *destreg = bits (insn, 12, 15);
1245 *offset = 8;
1246 address = (high << 16 | low);
1247 }
1248 }
621c6d5b
YQ
1249 }
1250
1251 return address;
1252}
1253
1254/* Try to skip a sequence of instructions used for stack protector. If PC
0963b4bd
MS
1255 points to the first instruction of this sequence, return the address of
1256 first instruction after this sequence, otherwise, return original PC.
621c6d5b
YQ
1257
1258 On arm, this sequence of instructions is composed of mainly three steps,
1259 Step 1: load symbol __stack_chk_guard,
1260 Step 2: load from address of __stack_chk_guard,
1261 Step 3: store it to somewhere else.
1262
1263 Usually, instructions on step 2 and step 3 are the same on various ARM
1264 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1265 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1266 instructions in step 1 vary from different ARM architectures. On ARMv7,
1267 they are,
1268
1269 movw Rn, #:lower16:__stack_chk_guard
1270 movt Rn, #:upper16:__stack_chk_guard
1271
1272 On ARMv5t, it is,
1273
1274 ldr Rn, .Label
1275 ....
1276 .Lable:
1277 .word __stack_chk_guard
1278
1279 Since ldr/str is a very popular instruction, we can't use them as
1280 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1281 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1282 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1283
1284static CORE_ADDR
1285arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1286{
1287 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1288 unsigned int address, basereg;
1289 struct minimal_symbol *stack_chk_guard;
1290 int offset;
1291 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1292 CORE_ADDR addr;
1293
1294 /* Try to parse the instructions in Step 1. */
1295 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1296 &basereg, &offset);
1297 if (!addr)
1298 return pc;
1299
1300 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
1301 /* If name of symbol doesn't start with '__stack_chk_guard', this
1302 instruction sequence is not for stack protector. If symbol is
1303 removed, we conservatively think this sequence is for stack protector. */
1304 if (stack_chk_guard
c1c2ab58
UW
1305 && strncmp (SYMBOL_LINKAGE_NAME (stack_chk_guard), "__stack_chk_guard",
1306 strlen ("__stack_chk_guard")) != 0)
621c6d5b
YQ
1307 return pc;
1308
1309 if (is_thumb)
1310 {
1311 unsigned int destreg;
1312 unsigned short insn
1313 = read_memory_unsigned_integer (pc + offset, 2, byte_order_for_code);
1314
1315 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1316 if ((insn & 0xf800) != 0x6800)
1317 return pc;
1318 if (bits (insn, 3, 5) != basereg)
1319 return pc;
1320 destreg = bits (insn, 0, 2);
1321
1322 insn = read_memory_unsigned_integer (pc + offset + 2, 2,
1323 byte_order_for_code);
1324 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1325 if ((insn & 0xf800) != 0x6000)
1326 return pc;
1327 if (destreg != bits (insn, 0, 2))
1328 return pc;
1329 }
1330 else
1331 {
1332 unsigned int destreg;
1333 unsigned int insn
1334 = read_memory_unsigned_integer (pc + offset, 4, byte_order_for_code);
1335
1336 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1337 if ((insn & 0x0e500000) != 0x04100000)
1338 return pc;
1339 if (bits (insn, 16, 19) != basereg)
1340 return pc;
1341 destreg = bits (insn, 12, 15);
1342 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
1343 insn = read_memory_unsigned_integer (pc + offset + 4,
1344 4, byte_order_for_code);
1345 if ((insn & 0x0e500000) != 0x04000000)
1346 return pc;
1347 if (bits (insn, 12, 15) != destreg)
1348 return pc;
1349 }
1350 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1351 on arm. */
1352 if (is_thumb)
1353 return pc + offset + 4;
1354 else
1355 return pc + offset + 8;
1356}
1357
da3c6d4a
MS
1358/* Advance the PC across any function entry prologue instructions to
1359 reach some "real" code.
34e8f22d
RE
1360
1361 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 1362 prologue:
c906108c 1363
c5aa993b
JM
1364 mov ip, sp
1365 [stmfd sp!, {a1,a2,a3,a4}]
1366 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
1367 [stfe f7, [sp, #-12]!]
1368 [stfe f6, [sp, #-12]!]
1369 [stfe f5, [sp, #-12]!]
1370 [stfe f4, [sp, #-12]!]
0963b4bd 1371 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
c906108c 1372
34e8f22d 1373static CORE_ADDR
6093d2eb 1374arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1375{
e17a4113 1376 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
c906108c
SS
1377 unsigned long inst;
1378 CORE_ADDR skip_pc;
a89fea3c 1379 CORE_ADDR func_addr, limit_pc;
c906108c
SS
1380 struct symtab_and_line sal;
1381
a89fea3c
JL
1382 /* See if we can determine the end of the prologue via the symbol table.
1383 If so, then return either PC, or the PC after the prologue, whichever
1384 is greater. */
1385 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
c906108c 1386 {
d80b854b
UW
1387 CORE_ADDR post_prologue_pc
1388 = skip_prologue_using_sal (gdbarch, func_addr);
0d39a070
DJ
1389 struct symtab *s = find_pc_symtab (func_addr);
1390
621c6d5b
YQ
1391 if (post_prologue_pc)
1392 post_prologue_pc
1393 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1394
1395
0d39a070
DJ
1396 /* GCC always emits a line note before the prologue and another
1397 one after, even if the two are at the same address or on the
1398 same line. Take advantage of this so that we do not need to
1399 know every instruction that might appear in the prologue. We
1400 will have producer information for most binaries; if it is
1401 missing (e.g. for -gstabs), assuming the GNU tools. */
1402 if (post_prologue_pc
1403 && (s == NULL
1404 || s->producer == NULL
1405 || strncmp (s->producer, "GNU ", sizeof ("GNU ") - 1) == 0))
1406 return post_prologue_pc;
1407
a89fea3c 1408 if (post_prologue_pc != 0)
0d39a070
DJ
1409 {
1410 CORE_ADDR analyzed_limit;
1411
1412 /* For non-GCC compilers, make sure the entire line is an
1413 acceptable prologue; GDB will round this function's
1414 return value up to the end of the following line so we
1415 can not skip just part of a line (and we do not want to).
1416
1417 RealView does not treat the prologue specially, but does
1418 associate prologue code with the opening brace; so this
1419 lets us skip the first line if we think it is the opening
1420 brace. */
9779414d 1421 if (arm_pc_is_thumb (gdbarch, func_addr))
0d39a070
DJ
1422 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1423 post_prologue_pc, NULL);
1424 else
1425 analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
1426 post_prologue_pc, NULL);
1427
1428 if (analyzed_limit != post_prologue_pc)
1429 return func_addr;
1430
1431 return post_prologue_pc;
1432 }
c906108c
SS
1433 }
1434
a89fea3c
JL
1435 /* Can't determine prologue from the symbol table, need to examine
1436 instructions. */
c906108c 1437
a89fea3c
JL
1438 /* Find an upper limit on the function prologue using the debug
1439 information. If the debug information could not be used to provide
1440 that bound, then use an arbitrary large number as the upper bound. */
0963b4bd 1441 /* Like arm_scan_prologue, stop no later than pc + 64. */
d80b854b 1442 limit_pc = skip_prologue_using_sal (gdbarch, pc);
a89fea3c
JL
1443 if (limit_pc == 0)
1444 limit_pc = pc + 64; /* Magic. */
1445
c906108c 1446
29d73ae4 1447 /* Check if this is Thumb code. */
9779414d 1448 if (arm_pc_is_thumb (gdbarch, pc))
a89fea3c 1449 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
29d73ae4 1450
a89fea3c 1451 for (skip_pc = pc; skip_pc < limit_pc; skip_pc += 4)
f43845b3 1452 {
e17a4113 1453 inst = read_memory_unsigned_integer (skip_pc, 4, byte_order_for_code);
9d4fde75 1454
b8d5e71d
MS
1455 /* "mov ip, sp" is no longer a required part of the prologue. */
1456 if (inst == 0xe1a0c00d) /* mov ip, sp */
1457 continue;
c906108c 1458
28cd8767
JG
1459 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
1460 continue;
1461
1462 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
1463 continue;
1464
b8d5e71d
MS
1465 /* Some prologues begin with "str lr, [sp, #-4]!". */
1466 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
1467 continue;
c906108c 1468
b8d5e71d
MS
1469 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
1470 continue;
c906108c 1471
b8d5e71d
MS
1472 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
1473 continue;
11d3b27d 1474
b8d5e71d
MS
1475 /* Any insns after this point may float into the code, if it makes
1476 for better instruction scheduling, so we skip them only if we
1477 find them, but still consider the function to be frame-ful. */
f43845b3 1478
b8d5e71d
MS
1479 /* We may have either one sfmfd instruction here, or several stfe
1480 insns, depending on the version of floating point code we
1481 support. */
1482 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
1483 continue;
1484
1485 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
1486 continue;
1487
1488 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
1489 continue;
1490
1491 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
1492 continue;
1493
f8bf5763
PM
1494 if ((inst & 0xffffc000) == 0xe54b0000 /* strb r(0123),[r11,#-nn] */
1495 || (inst & 0xffffc0f0) == 0xe14b00b0 /* strh r(0123),[r11,#-nn] */
1496 || (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
b8d5e71d
MS
1497 continue;
1498
f8bf5763
PM
1499 if ((inst & 0xffffc000) == 0xe5cd0000 /* strb r(0123),[sp,#nn] */
1500 || (inst & 0xffffc0f0) == 0xe1cd00b0 /* strh r(0123),[sp,#nn] */
1501 || (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
b8d5e71d
MS
1502 continue;
1503
1504 /* Un-recognized instruction; stop scanning. */
1505 break;
f43845b3 1506 }
c906108c 1507
0963b4bd 1508 return skip_pc; /* End of prologue. */
c906108c 1509}
94c30b78 1510
c5aa993b 1511/* *INDENT-OFF* */
c906108c
SS
1512/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1513 This function decodes a Thumb function prologue to determine:
1514 1) the size of the stack frame
1515 2) which registers are saved on it
1516 3) the offsets of saved regs
1517 4) the offset from the stack pointer to the frame pointer
c906108c 1518
da59e081
JM
1519 A typical Thumb function prologue would create this stack frame
1520 (offsets relative to FP)
c906108c
SS
1521 old SP -> 24 stack parameters
1522 20 LR
1523 16 R7
1524 R7 -> 0 local variables (16 bytes)
1525 SP -> -12 additional stack space (12 bytes)
1526 The frame size would thus be 36 bytes, and the frame offset would be
0963b4bd 1527 12 bytes. The frame register is R7.
da59e081 1528
da3c6d4a
MS
1529 The comments for thumb_skip_prolog() describe the algorithm we use
1530 to detect the end of the prolog. */
c5aa993b
JM
1531/* *INDENT-ON* */
1532
c906108c 1533static void
be8626e0 1534thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
b39cc962 1535 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
c906108c
SS
1536{
1537 CORE_ADDR prologue_start;
1538 CORE_ADDR prologue_end;
1539 CORE_ADDR current_pc;
c906108c 1540
b39cc962
DJ
1541 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1542 &prologue_end))
c906108c 1543 {
ec3d575a
UW
1544 /* See comment in arm_scan_prologue for an explanation of
1545 this heuristics. */
1546 if (prologue_end > prologue_start + 64)
1547 {
1548 prologue_end = prologue_start + 64;
1549 }
c906108c
SS
1550 }
1551 else
f7060f85
DJ
1552 /* We're in the boondocks: we have no idea where the start of the
1553 function is. */
1554 return;
c906108c 1555
eb5492fa 1556 prologue_end = min (prologue_end, prev_pc);
c906108c 1557
be8626e0 1558 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
1559}
1560
0d39a070 1561/* Return 1 if THIS_INSTR might change control flow, 0 otherwise. */
c906108c 1562
0d39a070
DJ
1563static int
1564arm_instruction_changes_pc (uint32_t this_instr)
c906108c 1565{
0d39a070
DJ
1566 if (bits (this_instr, 28, 31) == INST_NV)
1567 /* Unconditional instructions. */
1568 switch (bits (this_instr, 24, 27))
1569 {
1570 case 0xa:
1571 case 0xb:
1572 /* Branch with Link and change to Thumb. */
1573 return 1;
1574 case 0xc:
1575 case 0xd:
1576 case 0xe:
1577 /* Coprocessor register transfer. */
1578 if (bits (this_instr, 12, 15) == 15)
1579 error (_("Invalid update to pc in instruction"));
1580 return 0;
1581 default:
1582 return 0;
1583 }
1584 else
1585 switch (bits (this_instr, 25, 27))
1586 {
1587 case 0x0:
1588 if (bits (this_instr, 23, 24) == 2 && bit (this_instr, 20) == 0)
1589 {
1590 /* Multiplies and extra load/stores. */
1591 if (bit (this_instr, 4) == 1 && bit (this_instr, 7) == 1)
1592 /* Neither multiplies nor extension load/stores are allowed
1593 to modify PC. */
1594 return 0;
1595
1596 /* Otherwise, miscellaneous instructions. */
1597
1598 /* BX <reg>, BXJ <reg>, BLX <reg> */
1599 if (bits (this_instr, 4, 27) == 0x12fff1
1600 || bits (this_instr, 4, 27) == 0x12fff2
1601 || bits (this_instr, 4, 27) == 0x12fff3)
1602 return 1;
1603
1604 /* Other miscellaneous instructions are unpredictable if they
1605 modify PC. */
1606 return 0;
1607 }
1608 /* Data processing instruction. Fall through. */
c906108c 1609
0d39a070
DJ
1610 case 0x1:
1611 if (bits (this_instr, 12, 15) == 15)
1612 return 1;
1613 else
1614 return 0;
c906108c 1615
0d39a070
DJ
1616 case 0x2:
1617 case 0x3:
1618 /* Media instructions and architecturally undefined instructions. */
1619 if (bits (this_instr, 25, 27) == 3 && bit (this_instr, 4) == 1)
1620 return 0;
c906108c 1621
0d39a070
DJ
1622 /* Stores. */
1623 if (bit (this_instr, 20) == 0)
1624 return 0;
2a451106 1625
0d39a070
DJ
1626 /* Loads. */
1627 if (bits (this_instr, 12, 15) == ARM_PC_REGNUM)
1628 return 1;
1629 else
1630 return 0;
2a451106 1631
0d39a070
DJ
1632 case 0x4:
1633 /* Load/store multiple. */
1634 if (bit (this_instr, 20) == 1 && bit (this_instr, 15) == 1)
1635 return 1;
1636 else
1637 return 0;
2a451106 1638
0d39a070
DJ
1639 case 0x5:
1640 /* Branch and branch with link. */
1641 return 1;
2a451106 1642
0d39a070
DJ
1643 case 0x6:
1644 case 0x7:
1645 /* Coprocessor transfers or SWIs can not affect PC. */
1646 return 0;
eb5492fa 1647
0d39a070 1648 default:
9b20d036 1649 internal_error (__FILE__, __LINE__, _("bad value in switch"));
0d39a070
DJ
1650 }
1651}
c906108c 1652
0d39a070
DJ
1653/* Analyze an ARM mode prologue starting at PROLOGUE_START and
1654 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1655 fill it in. Return the first address not recognized as a prologue
1656 instruction.
eb5492fa 1657
0d39a070
DJ
1658 We recognize all the instructions typically found in ARM prologues,
1659 plus harmless instructions which can be skipped (either for analysis
1660 purposes, or a more restrictive set that can be skipped when finding
1661 the end of the prologue). */
1662
1663static CORE_ADDR
1664arm_analyze_prologue (struct gdbarch *gdbarch,
1665 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
1666 struct arm_prologue_cache *cache)
1667{
1668 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1669 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1670 int regno;
1671 CORE_ADDR offset, current_pc;
1672 pv_t regs[ARM_FPS_REGNUM];
1673 struct pv_area *stack;
1674 struct cleanup *back_to;
1675 int framereg, framesize;
1676 CORE_ADDR unrecognized_pc = 0;
1677
1678 /* Search the prologue looking for instructions that set up the
96baa820 1679 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 1680
96baa820
JM
1681 Be careful, however, and if it doesn't look like a prologue,
1682 don't try to scan it. If, for instance, a frameless function
1683 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 1684 a frame, which will confuse stack traceback, as well as "finish"
96baa820 1685 and other operations that rely on a knowledge of the stack
0d39a070 1686 traceback. */
d4473757 1687
4be43953
DJ
1688 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1689 regs[regno] = pv_register (regno, 0);
55f960e1 1690 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
4be43953
DJ
1691 back_to = make_cleanup_free_pv_area (stack);
1692
94c30b78
MS
1693 for (current_pc = prologue_start;
1694 current_pc < prologue_end;
f43845b3 1695 current_pc += 4)
96baa820 1696 {
e17a4113
UW
1697 unsigned int insn
1698 = read_memory_unsigned_integer (current_pc, 4, byte_order_for_code);
9d4fde75 1699
94c30b78 1700 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 1701 {
4be43953 1702 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
28cd8767
JG
1703 continue;
1704 }
0d39a070
DJ
1705 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1706 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767
JG
1707 {
1708 unsigned imm = insn & 0xff; /* immediate value */
1709 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
0d39a070 1710 int rd = bits (insn, 12, 15);
28cd8767 1711 imm = (imm >> rot) | (imm << (32 - rot));
0d39a070 1712 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
28cd8767
JG
1713 continue;
1714 }
0d39a070
DJ
1715 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1716 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767
JG
1717 {
1718 unsigned imm = insn & 0xff; /* immediate value */
1719 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
0d39a070 1720 int rd = bits (insn, 12, 15);
28cd8767 1721 imm = (imm >> rot) | (imm << (32 - rot));
0d39a070 1722 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
f43845b3
MS
1723 continue;
1724 }
0963b4bd
MS
1725 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
1726 [sp, #-4]! */
f43845b3 1727 {
4be43953
DJ
1728 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1729 break;
1730 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
0d39a070
DJ
1731 pv_area_store (stack, regs[ARM_SP_REGNUM], 4,
1732 regs[bits (insn, 12, 15)]);
f43845b3
MS
1733 continue;
1734 }
1735 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
1736 /* stmfd sp!, {..., fp, ip, lr, pc}
1737 or
1738 stmfd sp!, {a1, a2, a3, a4} */
c906108c 1739 {
d4473757 1740 int mask = insn & 0xffff;
ed9a39eb 1741
4be43953
DJ
1742 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1743 break;
1744
94c30b78 1745 /* Calculate offsets of saved registers. */
34e8f22d 1746 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
1747 if (mask & (1 << regno))
1748 {
0963b4bd
MS
1749 regs[ARM_SP_REGNUM]
1750 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
4be43953 1751 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
d4473757
KB
1752 }
1753 }
0d39a070
DJ
1754 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1755 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
f8bf5763 1756 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
b8d5e71d
MS
1757 {
1758 /* No need to add this to saved_regs -- it's just an arg reg. */
1759 continue;
1760 }
0d39a070
DJ
1761 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1762 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
f8bf5763 1763 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
1764 {
1765 /* No need to add this to saved_regs -- it's just an arg reg. */
1766 continue;
1767 }
0963b4bd
MS
1768 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
1769 { registers } */
0d39a070
DJ
1770 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1771 {
1772 /* No need to add this to saved_regs -- it's just arg regs. */
1773 continue;
1774 }
d4473757
KB
1775 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1776 {
94c30b78
MS
1777 unsigned imm = insn & 0xff; /* immediate value */
1778 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 1779 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 1780 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
d4473757
KB
1781 }
1782 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1783 {
94c30b78
MS
1784 unsigned imm = insn & 0xff; /* immediate value */
1785 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 1786 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 1787 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
d4473757 1788 }
0963b4bd
MS
1789 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
1790 [sp, -#c]! */
2af46ca0 1791 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757 1792 {
4be43953
DJ
1793 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1794 break;
1795
1796 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
34e8f22d 1797 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
4be43953 1798 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
d4473757 1799 }
0963b4bd
MS
1800 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1801 [sp!] */
2af46ca0 1802 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757
KB
1803 {
1804 int n_saved_fp_regs;
1805 unsigned int fp_start_reg, fp_bound_reg;
1806
4be43953
DJ
1807 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1808 break;
1809
94c30b78 1810 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 1811 {
d4473757
KB
1812 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1813 n_saved_fp_regs = 3;
1814 else
1815 n_saved_fp_regs = 1;
96baa820 1816 }
d4473757 1817 else
96baa820 1818 {
d4473757
KB
1819 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1820 n_saved_fp_regs = 2;
1821 else
1822 n_saved_fp_regs = 4;
96baa820 1823 }
d4473757 1824
34e8f22d 1825 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
1826 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
1827 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820 1828 {
4be43953
DJ
1829 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1830 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
1831 regs[fp_start_reg++]);
96baa820 1832 }
c906108c 1833 }
0d39a070
DJ
1834 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
1835 {
1836 /* Allow some special function calls when skipping the
1837 prologue; GCC generates these before storing arguments to
1838 the stack. */
1839 CORE_ADDR dest = BranchDest (current_pc, insn);
1840
e0634ccf 1841 if (skip_prologue_function (gdbarch, dest, 0))
0d39a070
DJ
1842 continue;
1843 else
1844 break;
1845 }
d4473757 1846 else if ((insn & 0xf0000000) != 0xe0000000)
0963b4bd 1847 break; /* Condition not true, exit early. */
0d39a070
DJ
1848 else if (arm_instruction_changes_pc (insn))
1849 /* Don't scan past anything that might change control flow. */
1850 break;
d19f7eee
UW
1851 else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */
1852 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1853 /* Ignore block loads from the stack, potentially copying
1854 parameters from memory. */
1855 continue;
1856 else if ((insn & 0xfc500000) == 0xe4100000
1857 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1858 /* Similarly ignore single loads from the stack. */
1859 continue;
0d39a070
DJ
1860 else if ((insn & 0xffff0ff0) == 0xe1a00000)
1861 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1862 register instead of the stack. */
d4473757 1863 continue;
0d39a070
DJ
1864 else
1865 {
1866 /* The optimizer might shove anything into the prologue,
1867 so we just skip what we don't recognize. */
1868 unrecognized_pc = current_pc;
1869 continue;
1870 }
c906108c
SS
1871 }
1872
0d39a070
DJ
1873 if (unrecognized_pc == 0)
1874 unrecognized_pc = current_pc;
1875
4be43953
DJ
1876 /* The frame size is just the distance from the frame register
1877 to the original stack pointer. */
1878 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1879 {
1880 /* Frame pointer is fp. */
0d39a070
DJ
1881 framereg = ARM_FP_REGNUM;
1882 framesize = -regs[ARM_FP_REGNUM].k;
4be43953
DJ
1883 }
1884 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
1885 {
1886 /* Try the stack pointer... this is a bit desperate. */
0d39a070
DJ
1887 framereg = ARM_SP_REGNUM;
1888 framesize = -regs[ARM_SP_REGNUM].k;
4be43953 1889 }
d4473757 1890 else
4be43953
DJ
1891 {
1892 /* We're just out of luck. We don't know where the frame is. */
0d39a070
DJ
1893 framereg = -1;
1894 framesize = 0;
4be43953
DJ
1895 }
1896
0d39a070
DJ
1897 if (cache)
1898 {
1899 cache->framereg = framereg;
1900 cache->framesize = framesize;
1901
1902 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1903 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
1904 cache->saved_regs[regno].addr = offset;
1905 }
1906
1907 if (arm_debug)
1908 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1909 paddress (gdbarch, unrecognized_pc));
4be43953
DJ
1910
1911 do_cleanups (back_to);
0d39a070
DJ
1912 return unrecognized_pc;
1913}
1914
1915static void
1916arm_scan_prologue (struct frame_info *this_frame,
1917 struct arm_prologue_cache *cache)
1918{
1919 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1920 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1921 int regno;
1922 CORE_ADDR prologue_start, prologue_end, current_pc;
1923 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1924 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1925 pv_t regs[ARM_FPS_REGNUM];
1926 struct pv_area *stack;
1927 struct cleanup *back_to;
1928 CORE_ADDR offset;
1929
1930 /* Assume there is no frame until proven otherwise. */
1931 cache->framereg = ARM_SP_REGNUM;
1932 cache->framesize = 0;
1933
1934 /* Check for Thumb prologue. */
1935 if (arm_frame_is_thumb (this_frame))
1936 {
1937 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
1938 return;
1939 }
1940
1941 /* Find the function prologue. If we can't find the function in
1942 the symbol table, peek in the stack frame to find the PC. */
1943 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1944 &prologue_end))
1945 {
1946 /* One way to find the end of the prologue (which works well
1947 for unoptimized code) is to do the following:
1948
1949 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1950
1951 if (sal.line == 0)
1952 prologue_end = prev_pc;
1953 else if (sal.end < prologue_end)
1954 prologue_end = sal.end;
1955
1956 This mechanism is very accurate so long as the optimizer
1957 doesn't move any instructions from the function body into the
1958 prologue. If this happens, sal.end will be the last
1959 instruction in the first hunk of prologue code just before
1960 the first instruction that the scheduler has moved from
1961 the body to the prologue.
1962
1963 In order to make sure that we scan all of the prologue
1964 instructions, we use a slightly less accurate mechanism which
1965 may scan more than necessary. To help compensate for this
1966 lack of accuracy, the prologue scanning loop below contains
1967 several clauses which'll cause the loop to terminate early if
1968 an implausible prologue instruction is encountered.
1969
1970 The expression
1971
1972 prologue_start + 64
1973
1974 is a suitable endpoint since it accounts for the largest
1975 possible prologue plus up to five instructions inserted by
1976 the scheduler. */
1977
1978 if (prologue_end > prologue_start + 64)
1979 {
1980 prologue_end = prologue_start + 64; /* See above. */
1981 }
1982 }
1983 else
1984 {
1985 /* We have no symbol information. Our only option is to assume this
1986 function has a standard stack frame and the normal frame register.
1987 Then, we can find the value of our frame pointer on entrance to
1988 the callee (or at the present moment if this is the innermost frame).
1989 The value stored there should be the address of the stmfd + 8. */
1990 CORE_ADDR frame_loc;
1991 LONGEST return_value;
1992
1993 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
1994 if (!safe_read_memory_integer (frame_loc, 4, byte_order, &return_value))
1995 return;
1996 else
1997 {
1998 prologue_start = gdbarch_addr_bits_remove
1999 (gdbarch, return_value) - 8;
2000 prologue_end = prologue_start + 64; /* See above. */
2001 }
2002 }
2003
2004 if (prev_pc < prologue_end)
2005 prologue_end = prev_pc;
2006
2007 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
2008}
2009
eb5492fa 2010static struct arm_prologue_cache *
a262aec2 2011arm_make_prologue_cache (struct frame_info *this_frame)
c906108c 2012{
eb5492fa
DJ
2013 int reg;
2014 struct arm_prologue_cache *cache;
2015 CORE_ADDR unwound_fp;
c5aa993b 2016
35d5d4ee 2017 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
a262aec2 2018 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 2019
a262aec2 2020 arm_scan_prologue (this_frame, cache);
848cfffb 2021
a262aec2 2022 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
eb5492fa
DJ
2023 if (unwound_fp == 0)
2024 return cache;
c906108c 2025
4be43953 2026 cache->prev_sp = unwound_fp + cache->framesize;
c906108c 2027
eb5492fa
DJ
2028 /* Calculate actual addresses of saved registers using offsets
2029 determined by arm_scan_prologue. */
a262aec2 2030 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
e28a332c 2031 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
2032 cache->saved_regs[reg].addr += cache->prev_sp;
2033
2034 return cache;
c906108c
SS
2035}
2036
eb5492fa
DJ
2037/* Our frame ID for a normal frame is the current function's starting PC
2038 and the caller's SP when we were called. */
c906108c 2039
148754e5 2040static void
a262aec2 2041arm_prologue_this_id (struct frame_info *this_frame,
eb5492fa
DJ
2042 void **this_cache,
2043 struct frame_id *this_id)
c906108c 2044{
eb5492fa
DJ
2045 struct arm_prologue_cache *cache;
2046 struct frame_id id;
2c404490 2047 CORE_ADDR pc, func;
f079148d 2048
eb5492fa 2049 if (*this_cache == NULL)
a262aec2 2050 *this_cache = arm_make_prologue_cache (this_frame);
eb5492fa 2051 cache = *this_cache;
2a451106 2052
2c404490
DJ
2053 /* This is meant to halt the backtrace at "_start". */
2054 pc = get_frame_pc (this_frame);
2055 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
eb5492fa 2056 return;
5a203e44 2057
eb5492fa
DJ
2058 /* If we've hit a wall, stop. */
2059 if (cache->prev_sp == 0)
2060 return;
24de872b 2061
0e9e9abd
UW
2062 /* Use function start address as part of the frame ID. If we cannot
2063 identify the start address (due to missing symbol information),
2064 fall back to just using the current PC. */
2c404490 2065 func = get_frame_func (this_frame);
0e9e9abd
UW
2066 if (!func)
2067 func = pc;
2068
eb5492fa 2069 id = frame_id_build (cache->prev_sp, func);
eb5492fa 2070 *this_id = id;
c906108c
SS
2071}
2072
a262aec2
DJ
2073static struct value *
2074arm_prologue_prev_register (struct frame_info *this_frame,
eb5492fa 2075 void **this_cache,
a262aec2 2076 int prev_regnum)
24de872b 2077{
24568a2c 2078 struct gdbarch *gdbarch = get_frame_arch (this_frame);
24de872b
DJ
2079 struct arm_prologue_cache *cache;
2080
eb5492fa 2081 if (*this_cache == NULL)
a262aec2 2082 *this_cache = arm_make_prologue_cache (this_frame);
eb5492fa 2083 cache = *this_cache;
24de872b 2084
eb5492fa 2085 /* If we are asked to unwind the PC, then we need to return the LR
b39cc962
DJ
2086 instead. The prologue may save PC, but it will point into this
2087 frame's prologue, not the next frame's resume location. Also
2088 strip the saved T bit. A valid LR may have the low bit set, but
2089 a valid PC never does. */
eb5492fa 2090 if (prev_regnum == ARM_PC_REGNUM)
b39cc962
DJ
2091 {
2092 CORE_ADDR lr;
2093
2094 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
2095 return frame_unwind_got_constant (this_frame, prev_regnum,
24568a2c 2096 arm_addr_bits_remove (gdbarch, lr));
b39cc962 2097 }
24de872b 2098
eb5492fa 2099 /* SP is generally not saved to the stack, but this frame is
a262aec2 2100 identified by the next frame's stack pointer at the time of the call.
eb5492fa
DJ
2101 The value was already reconstructed into PREV_SP. */
2102 if (prev_regnum == ARM_SP_REGNUM)
a262aec2 2103 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
eb5492fa 2104
b39cc962
DJ
2105 /* The CPSR may have been changed by the call instruction and by the
2106 called function. The only bit we can reconstruct is the T bit,
2107 by checking the low bit of LR as of the call. This is a reliable
2108 indicator of Thumb-ness except for some ARM v4T pre-interworking
2109 Thumb code, which could get away with a clear low bit as long as
2110 the called function did not use bx. Guess that all other
2111 bits are unchanged; the condition flags are presumably lost,
2112 but the processor status is likely valid. */
2113 if (prev_regnum == ARM_PS_REGNUM)
2114 {
2115 CORE_ADDR lr, cpsr;
9779414d 2116 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
b39cc962
DJ
2117
2118 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
2119 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
2120 if (IS_THUMB_ADDR (lr))
9779414d 2121 cpsr |= t_bit;
b39cc962 2122 else
9779414d 2123 cpsr &= ~t_bit;
b39cc962
DJ
2124 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
2125 }
2126
a262aec2
DJ
2127 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
2128 prev_regnum);
eb5492fa
DJ
2129}
2130
2131struct frame_unwind arm_prologue_unwind = {
2132 NORMAL_FRAME,
8fbca658 2133 default_frame_unwind_stop_reason,
eb5492fa 2134 arm_prologue_this_id,
a262aec2
DJ
2135 arm_prologue_prev_register,
2136 NULL,
2137 default_frame_sniffer
eb5492fa
DJ
2138};
2139
0e9e9abd
UW
2140/* Maintain a list of ARM exception table entries per objfile, similar to the
2141 list of mapping symbols. We only cache entries for standard ARM-defined
2142 personality routines; the cache will contain only the frame unwinding
2143 instructions associated with the entry (not the descriptors). */
2144
2145static const struct objfile_data *arm_exidx_data_key;
2146
2147struct arm_exidx_entry
2148{
2149 bfd_vma addr;
2150 gdb_byte *entry;
2151};
2152typedef struct arm_exidx_entry arm_exidx_entry_s;
2153DEF_VEC_O(arm_exidx_entry_s);
2154
2155struct arm_exidx_data
2156{
2157 VEC(arm_exidx_entry_s) **section_maps;
2158};
2159
2160static void
2161arm_exidx_data_free (struct objfile *objfile, void *arg)
2162{
2163 struct arm_exidx_data *data = arg;
2164 unsigned int i;
2165
2166 for (i = 0; i < objfile->obfd->section_count; i++)
2167 VEC_free (arm_exidx_entry_s, data->section_maps[i]);
2168}
2169
2170static inline int
2171arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
2172 const struct arm_exidx_entry *rhs)
2173{
2174 return lhs->addr < rhs->addr;
2175}
2176
2177static struct obj_section *
2178arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2179{
2180 struct obj_section *osect;
2181
2182 ALL_OBJFILE_OSECTIONS (objfile, osect)
2183 if (bfd_get_section_flags (objfile->obfd,
2184 osect->the_bfd_section) & SEC_ALLOC)
2185 {
2186 bfd_vma start, size;
2187 start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
2188 size = bfd_get_section_size (osect->the_bfd_section);
2189
2190 if (start <= vma && vma < start + size)
2191 return osect;
2192 }
2193
2194 return NULL;
2195}
2196
2197/* Parse contents of exception table and exception index sections
2198 of OBJFILE, and fill in the exception table entry cache.
2199
2200 For each entry that refers to a standard ARM-defined personality
2201 routine, extract the frame unwinding instructions (from either
2202 the index or the table section). The unwinding instructions
2203 are normalized by:
2204 - extracting them from the rest of the table data
2205 - converting to host endianness
2206 - appending the implicit 0xb0 ("Finish") code
2207
2208 The extracted and normalized instructions are stored for later
2209 retrieval by the arm_find_exidx_entry routine. */
2210
2211static void
2212arm_exidx_new_objfile (struct objfile *objfile)
2213{
3bb47e8b 2214 struct cleanup *cleanups;
0e9e9abd
UW
2215 struct arm_exidx_data *data;
2216 asection *exidx, *extab;
2217 bfd_vma exidx_vma = 0, extab_vma = 0;
2218 bfd_size_type exidx_size = 0, extab_size = 0;
2219 gdb_byte *exidx_data = NULL, *extab_data = NULL;
2220 LONGEST i;
2221
2222 /* If we've already touched this file, do nothing. */
2223 if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
2224 return;
3bb47e8b 2225 cleanups = make_cleanup (null_cleanup, NULL);
0e9e9abd
UW
2226
2227 /* Read contents of exception table and index. */
2228 exidx = bfd_get_section_by_name (objfile->obfd, ".ARM.exidx");
2229 if (exidx)
2230 {
2231 exidx_vma = bfd_section_vma (objfile->obfd, exidx);
2232 exidx_size = bfd_get_section_size (exidx);
2233 exidx_data = xmalloc (exidx_size);
2234 make_cleanup (xfree, exidx_data);
2235
2236 if (!bfd_get_section_contents (objfile->obfd, exidx,
2237 exidx_data, 0, exidx_size))
2238 {
2239 do_cleanups (cleanups);
2240 return;
2241 }
2242 }
2243
2244 extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
2245 if (extab)
2246 {
2247 extab_vma = bfd_section_vma (objfile->obfd, extab);
2248 extab_size = bfd_get_section_size (extab);
2249 extab_data = xmalloc (extab_size);
2250 make_cleanup (xfree, extab_data);
2251
2252 if (!bfd_get_section_contents (objfile->obfd, extab,
2253 extab_data, 0, extab_size))
2254 {
2255 do_cleanups (cleanups);
2256 return;
2257 }
2258 }
2259
2260 /* Allocate exception table data structure. */
2261 data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
2262 set_objfile_data (objfile, arm_exidx_data_key, data);
2263 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2264 objfile->obfd->section_count,
2265 VEC(arm_exidx_entry_s) *);
2266
2267 /* Fill in exception table. */
2268 for (i = 0; i < exidx_size / 8; i++)
2269 {
2270 struct arm_exidx_entry new_exidx_entry;
2271 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8);
2272 bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4);
2273 bfd_vma addr = 0, word = 0;
2274 int n_bytes = 0, n_words = 0;
2275 struct obj_section *sec;
2276 gdb_byte *entry = NULL;
2277
2278 /* Extract address of start of function. */
2279 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2280 idx += exidx_vma + i * 8;
2281
2282 /* Find section containing function and compute section offset. */
2283 sec = arm_obj_section_from_vma (objfile, idx);
2284 if (sec == NULL)
2285 continue;
2286 idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
2287
2288 /* Determine address of exception table entry. */
2289 if (val == 1)
2290 {
2291 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2292 }
2293 else if ((val & 0xff000000) == 0x80000000)
2294 {
2295 /* Exception table entry embedded in .ARM.exidx
2296 -- must be short form. */
2297 word = val;
2298 n_bytes = 3;
2299 }
2300 else if (!(val & 0x80000000))
2301 {
2302 /* Exception table entry in .ARM.extab. */
2303 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2304 addr += exidx_vma + i * 8 + 4;
2305
2306 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size)
2307 {
2308 word = bfd_h_get_32 (objfile->obfd,
2309 extab_data + addr - extab_vma);
2310 addr += 4;
2311
2312 if ((word & 0xff000000) == 0x80000000)
2313 {
2314 /* Short form. */
2315 n_bytes = 3;
2316 }
2317 else if ((word & 0xff000000) == 0x81000000
2318 || (word & 0xff000000) == 0x82000000)
2319 {
2320 /* Long form. */
2321 n_bytes = 2;
2322 n_words = ((word >> 16) & 0xff);
2323 }
2324 else if (!(word & 0x80000000))
2325 {
2326 bfd_vma pers;
2327 struct obj_section *pers_sec;
2328 int gnu_personality = 0;
2329
2330 /* Custom personality routine. */
2331 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2332 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2333
2334 /* Check whether we've got one of the variants of the
2335 GNU personality routines. */
2336 pers_sec = arm_obj_section_from_vma (objfile, pers);
2337 if (pers_sec)
2338 {
2339 static const char *personality[] =
2340 {
2341 "__gcc_personality_v0",
2342 "__gxx_personality_v0",
2343 "__gcj_personality_v0",
2344 "__gnu_objc_personality_v0",
2345 NULL
2346 };
2347
2348 CORE_ADDR pc = pers + obj_section_offset (pers_sec);
2349 int k;
2350
2351 for (k = 0; personality[k]; k++)
2352 if (lookup_minimal_symbol_by_pc_name
2353 (pc, personality[k], objfile))
2354 {
2355 gnu_personality = 1;
2356 break;
2357 }
2358 }
2359
2360 /* If so, the next word contains a word count in the high
2361 byte, followed by the same unwind instructions as the
2362 pre-defined forms. */
2363 if (gnu_personality
2364 && addr + 4 <= extab_vma + extab_size)
2365 {
2366 word = bfd_h_get_32 (objfile->obfd,
2367 extab_data + addr - extab_vma);
2368 addr += 4;
2369 n_bytes = 3;
2370 n_words = ((word >> 24) & 0xff);
2371 }
2372 }
2373 }
2374 }
2375
2376 /* Sanity check address. */
2377 if (n_words)
2378 if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size)
2379 n_words = n_bytes = 0;
2380
2381 /* The unwind instructions reside in WORD (only the N_BYTES least
2382 significant bytes are valid), followed by N_WORDS words in the
2383 extab section starting at ADDR. */
2384 if (n_bytes || n_words)
2385 {
2386 gdb_byte *p = entry = obstack_alloc (&objfile->objfile_obstack,
2387 n_bytes + n_words * 4 + 1);
2388
2389 while (n_bytes--)
2390 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2391
2392 while (n_words--)
2393 {
2394 word = bfd_h_get_32 (objfile->obfd,
2395 extab_data + addr - extab_vma);
2396 addr += 4;
2397
2398 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2399 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2400 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2401 *p++ = (gdb_byte) (word & 0xff);
2402 }
2403
2404 /* Implied "Finish" to terminate the list. */
2405 *p++ = 0xb0;
2406 }
2407
2408 /* Push entry onto vector. They are guaranteed to always
2409 appear in order of increasing addresses. */
2410 new_exidx_entry.addr = idx;
2411 new_exidx_entry.entry = entry;
2412 VEC_safe_push (arm_exidx_entry_s,
2413 data->section_maps[sec->the_bfd_section->index],
2414 &new_exidx_entry);
2415 }
2416
2417 do_cleanups (cleanups);
2418}
2419
2420/* Search for the exception table entry covering MEMADDR. If one is found,
2421 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2422 set *START to the start of the region covered by this entry. */
2423
2424static gdb_byte *
2425arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2426{
2427 struct obj_section *sec;
2428
2429 sec = find_pc_section (memaddr);
2430 if (sec != NULL)
2431 {
2432 struct arm_exidx_data *data;
2433 VEC(arm_exidx_entry_s) *map;
2434 struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
2435 unsigned int idx;
2436
2437 data = objfile_data (sec->objfile, arm_exidx_data_key);
2438 if (data != NULL)
2439 {
2440 map = data->section_maps[sec->the_bfd_section->index];
2441 if (!VEC_empty (arm_exidx_entry_s, map))
2442 {
2443 struct arm_exidx_entry *map_sym;
2444
2445 idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
2446 arm_compare_exidx_entries);
2447
2448 /* VEC_lower_bound finds the earliest ordered insertion
2449 point. If the following symbol starts at this exact
2450 address, we use that; otherwise, the preceding
2451 exception table entry covers this address. */
2452 if (idx < VEC_length (arm_exidx_entry_s, map))
2453 {
2454 map_sym = VEC_index (arm_exidx_entry_s, map, idx);
2455 if (map_sym->addr == map_key.addr)
2456 {
2457 if (start)
2458 *start = map_sym->addr + obj_section_addr (sec);
2459 return map_sym->entry;
2460 }
2461 }
2462
2463 if (idx > 0)
2464 {
2465 map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
2466 if (start)
2467 *start = map_sym->addr + obj_section_addr (sec);
2468 return map_sym->entry;
2469 }
2470 }
2471 }
2472 }
2473
2474 return NULL;
2475}
2476
2477/* Given the current frame THIS_FRAME, and its associated frame unwinding
2478 instruction list from the ARM exception table entry ENTRY, allocate and
2479 return a prologue cache structure describing how to unwind this frame.
2480
2481 Return NULL if the unwinding instruction list contains a "spare",
2482 "reserved" or "refuse to unwind" instruction as defined in section
2483 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2484 for the ARM Architecture" document. */
2485
2486static struct arm_prologue_cache *
2487arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
2488{
2489 CORE_ADDR vsp = 0;
2490 int vsp_valid = 0;
2491
2492 struct arm_prologue_cache *cache;
2493 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2494 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2495
2496 for (;;)
2497 {
2498 gdb_byte insn;
2499
2500 /* Whenever we reload SP, we actually have to retrieve its
2501 actual value in the current frame. */
2502 if (!vsp_valid)
2503 {
2504 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2505 {
2506 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2507 vsp = get_frame_register_unsigned (this_frame, reg);
2508 }
2509 else
2510 {
2511 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
2512 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2513 }
2514
2515 vsp_valid = 1;
2516 }
2517
2518 /* Decode next unwind instruction. */
2519 insn = *entry++;
2520
2521 if ((insn & 0xc0) == 0)
2522 {
2523 int offset = insn & 0x3f;
2524 vsp += (offset << 2) + 4;
2525 }
2526 else if ((insn & 0xc0) == 0x40)
2527 {
2528 int offset = insn & 0x3f;
2529 vsp -= (offset << 2) + 4;
2530 }
2531 else if ((insn & 0xf0) == 0x80)
2532 {
2533 int mask = ((insn & 0xf) << 8) | *entry++;
2534 int i;
2535
2536 /* The special case of an all-zero mask identifies
2537 "Refuse to unwind". We return NULL to fall back
2538 to the prologue analyzer. */
2539 if (mask == 0)
2540 return NULL;
2541
2542 /* Pop registers r4..r15 under mask. */
2543 for (i = 0; i < 12; i++)
2544 if (mask & (1 << i))
2545 {
2546 cache->saved_regs[4 + i].addr = vsp;
2547 vsp += 4;
2548 }
2549
2550 /* Special-case popping SP -- we need to reload vsp. */
2551 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2552 vsp_valid = 0;
2553 }
2554 else if ((insn & 0xf0) == 0x90)
2555 {
2556 int reg = insn & 0xf;
2557
2558 /* Reserved cases. */
2559 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2560 return NULL;
2561
2562 /* Set SP from another register and mark VSP for reload. */
2563 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2564 vsp_valid = 0;
2565 }
2566 else if ((insn & 0xf0) == 0xa0)
2567 {
2568 int count = insn & 0x7;
2569 int pop_lr = (insn & 0x8) != 0;
2570 int i;
2571
2572 /* Pop r4..r[4+count]. */
2573 for (i = 0; i <= count; i++)
2574 {
2575 cache->saved_regs[4 + i].addr = vsp;
2576 vsp += 4;
2577 }
2578
2579 /* If indicated by flag, pop LR as well. */
2580 if (pop_lr)
2581 {
2582 cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
2583 vsp += 4;
2584 }
2585 }
2586 else if (insn == 0xb0)
2587 {
2588 /* We could only have updated PC by popping into it; if so, it
2589 will show up as address. Otherwise, copy LR into PC. */
2590 if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
2591 cache->saved_regs[ARM_PC_REGNUM]
2592 = cache->saved_regs[ARM_LR_REGNUM];
2593
2594 /* We're done. */
2595 break;
2596 }
2597 else if (insn == 0xb1)
2598 {
2599 int mask = *entry++;
2600 int i;
2601
2602 /* All-zero mask and mask >= 16 is "spare". */
2603 if (mask == 0 || mask >= 16)
2604 return NULL;
2605
2606 /* Pop r0..r3 under mask. */
2607 for (i = 0; i < 4; i++)
2608 if (mask & (1 << i))
2609 {
2610 cache->saved_regs[i].addr = vsp;
2611 vsp += 4;
2612 }
2613 }
2614 else if (insn == 0xb2)
2615 {
2616 ULONGEST offset = 0;
2617 unsigned shift = 0;
2618
2619 do
2620 {
2621 offset |= (*entry & 0x7f) << shift;
2622 shift += 7;
2623 }
2624 while (*entry++ & 0x80);
2625
2626 vsp += 0x204 + (offset << 2);
2627 }
2628 else if (insn == 0xb3)
2629 {
2630 int start = *entry >> 4;
2631 int count = (*entry++) & 0xf;
2632 int i;
2633
2634 /* Only registers D0..D15 are valid here. */
2635 if (start + count >= 16)
2636 return NULL;
2637
2638 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2639 for (i = 0; i <= count; i++)
2640 {
2641 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2642 vsp += 8;
2643 }
2644
2645 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2646 vsp += 4;
2647 }
2648 else if ((insn & 0xf8) == 0xb8)
2649 {
2650 int count = insn & 0x7;
2651 int i;
2652
2653 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2654 for (i = 0; i <= count; i++)
2655 {
2656 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2657 vsp += 8;
2658 }
2659
2660 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2661 vsp += 4;
2662 }
2663 else if (insn == 0xc6)
2664 {
2665 int start = *entry >> 4;
2666 int count = (*entry++) & 0xf;
2667 int i;
2668
2669 /* Only registers WR0..WR15 are valid. */
2670 if (start + count >= 16)
2671 return NULL;
2672
2673 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2674 for (i = 0; i <= count; i++)
2675 {
2676 cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
2677 vsp += 8;
2678 }
2679 }
2680 else if (insn == 0xc7)
2681 {
2682 int mask = *entry++;
2683 int i;
2684
2685 /* All-zero mask and mask >= 16 is "spare". */
2686 if (mask == 0 || mask >= 16)
2687 return NULL;
2688
2689 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2690 for (i = 0; i < 4; i++)
2691 if (mask & (1 << i))
2692 {
2693 cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
2694 vsp += 4;
2695 }
2696 }
2697 else if ((insn & 0xf8) == 0xc0)
2698 {
2699 int count = insn & 0x7;
2700 int i;
2701
2702 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2703 for (i = 0; i <= count; i++)
2704 {
2705 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
2706 vsp += 8;
2707 }
2708 }
2709 else if (insn == 0xc8)
2710 {
2711 int start = *entry >> 4;
2712 int count = (*entry++) & 0xf;
2713 int i;
2714
2715 /* Only registers D0..D31 are valid. */
2716 if (start + count >= 16)
2717 return NULL;
2718
2719 /* Pop VFP double-precision registers
2720 D[16+start]..D[16+start+count]. */
2721 for (i = 0; i <= count; i++)
2722 {
2723 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
2724 vsp += 8;
2725 }
2726 }
2727 else if (insn == 0xc9)
2728 {
2729 int start = *entry >> 4;
2730 int count = (*entry++) & 0xf;
2731 int i;
2732
2733 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2734 for (i = 0; i <= count; i++)
2735 {
2736 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2737 vsp += 8;
2738 }
2739 }
2740 else if ((insn & 0xf8) == 0xd0)
2741 {
2742 int count = insn & 0x7;
2743 int i;
2744
2745 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2746 for (i = 0; i <= count; i++)
2747 {
2748 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2749 vsp += 8;
2750 }
2751 }
2752 else
2753 {
2754 /* Everything else is "spare". */
2755 return NULL;
2756 }
2757 }
2758
2759 /* If we restore SP from a register, assume this was the frame register.
2760 Otherwise just fall back to SP as frame register. */
2761 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2762 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2763 else
2764 cache->framereg = ARM_SP_REGNUM;
2765
2766 /* Determine offset to previous frame. */
2767 cache->framesize
2768 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
2769
2770 /* We already got the previous SP. */
2771 cache->prev_sp = vsp;
2772
2773 return cache;
2774}
2775
2776/* Unwinding via ARM exception table entries. Note that the sniffer
2777 already computes a filled-in prologue cache, which is then used
2778 with the same arm_prologue_this_id and arm_prologue_prev_register
2779 routines also used for prologue-parsing based unwinding. */
2780
2781static int
2782arm_exidx_unwind_sniffer (const struct frame_unwind *self,
2783 struct frame_info *this_frame,
2784 void **this_prologue_cache)
2785{
2786 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2787 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2788 CORE_ADDR addr_in_block, exidx_region, func_start;
2789 struct arm_prologue_cache *cache;
2790 gdb_byte *entry;
2791
2792 /* See if we have an ARM exception table entry covering this address. */
2793 addr_in_block = get_frame_address_in_block (this_frame);
2794 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
2795 if (!entry)
2796 return 0;
2797
2798 /* The ARM exception table does not describe unwind information
2799 for arbitrary PC values, but is guaranteed to be correct only
2800 at call sites. We have to decide here whether we want to use
2801 ARM exception table information for this frame, or fall back
2802 to using prologue parsing. (Note that if we have DWARF CFI,
2803 this sniffer isn't even called -- CFI is always preferred.)
2804
2805 Before we make this decision, however, we check whether we
2806 actually have *symbol* information for the current frame.
2807 If not, prologue parsing would not work anyway, so we might
2808 as well use the exception table and hope for the best. */
2809 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
2810 {
2811 int exc_valid = 0;
2812
2813 /* If the next frame is "normal", we are at a call site in this
2814 frame, so exception information is guaranteed to be valid. */
2815 if (get_next_frame (this_frame)
2816 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
2817 exc_valid = 1;
2818
2819 /* We also assume exception information is valid if we're currently
2820 blocked in a system call. The system library is supposed to
2821 ensure this, so that e.g. pthread cancellation works. */
2822 if (arm_frame_is_thumb (this_frame))
2823 {
2824 LONGEST insn;
2825
2826 if (safe_read_memory_integer (get_frame_pc (this_frame) - 2, 2,
2827 byte_order_for_code, &insn)
2828 && (insn & 0xff00) == 0xdf00 /* svc */)
2829 exc_valid = 1;
2830 }
2831 else
2832 {
2833 LONGEST insn;
2834
2835 if (safe_read_memory_integer (get_frame_pc (this_frame) - 4, 4,
2836 byte_order_for_code, &insn)
2837 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
2838 exc_valid = 1;
2839 }
2840
2841 /* Bail out if we don't know that exception information is valid. */
2842 if (!exc_valid)
2843 return 0;
2844
2845 /* The ARM exception index does not mark the *end* of the region
2846 covered by the entry, and some functions will not have any entry.
2847 To correctly recognize the end of the covered region, the linker
2848 should have inserted dummy records with a CANTUNWIND marker.
2849
2850 Unfortunately, current versions of GNU ld do not reliably do
2851 this, and thus we may have found an incorrect entry above.
2852 As a (temporary) sanity check, we only use the entry if it
2853 lies *within* the bounds of the function. Note that this check
2854 might reject perfectly valid entries that just happen to cover
2855 multiple functions; therefore this check ought to be removed
2856 once the linker is fixed. */
2857 if (func_start > exidx_region)
2858 return 0;
2859 }
2860
2861 /* Decode the list of unwinding instructions into a prologue cache.
2862 Note that this may fail due to e.g. a "refuse to unwind" code. */
2863 cache = arm_exidx_fill_cache (this_frame, entry);
2864 if (!cache)
2865 return 0;
2866
2867 *this_prologue_cache = cache;
2868 return 1;
2869}
2870
2871struct frame_unwind arm_exidx_unwind = {
2872 NORMAL_FRAME,
8fbca658 2873 default_frame_unwind_stop_reason,
0e9e9abd
UW
2874 arm_prologue_this_id,
2875 arm_prologue_prev_register,
2876 NULL,
2877 arm_exidx_unwind_sniffer
2878};
2879
909cf6ea 2880static struct arm_prologue_cache *
a262aec2 2881arm_make_stub_cache (struct frame_info *this_frame)
909cf6ea 2882{
909cf6ea 2883 struct arm_prologue_cache *cache;
909cf6ea 2884
35d5d4ee 2885 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
a262aec2 2886 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
909cf6ea 2887
a262aec2 2888 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
909cf6ea
DJ
2889
2890 return cache;
2891}
2892
2893/* Our frame ID for a stub frame is the current SP and LR. */
2894
2895static void
a262aec2 2896arm_stub_this_id (struct frame_info *this_frame,
909cf6ea
DJ
2897 void **this_cache,
2898 struct frame_id *this_id)
2899{
2900 struct arm_prologue_cache *cache;
2901
2902 if (*this_cache == NULL)
a262aec2 2903 *this_cache = arm_make_stub_cache (this_frame);
909cf6ea
DJ
2904 cache = *this_cache;
2905
a262aec2 2906 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
909cf6ea
DJ
2907}
2908
a262aec2
DJ
2909static int
2910arm_stub_unwind_sniffer (const struct frame_unwind *self,
2911 struct frame_info *this_frame,
2912 void **this_prologue_cache)
909cf6ea 2913{
93d42b30 2914 CORE_ADDR addr_in_block;
909cf6ea
DJ
2915 char dummy[4];
2916
a262aec2 2917 addr_in_block = get_frame_address_in_block (this_frame);
93d42b30 2918 if (in_plt_section (addr_in_block, NULL)
fc36e839
DE
2919 /* We also use the stub winder if the target memory is unreadable
2920 to avoid having the prologue unwinder trying to read it. */
a262aec2
DJ
2921 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2922 return 1;
909cf6ea 2923
a262aec2 2924 return 0;
909cf6ea
DJ
2925}
2926
a262aec2
DJ
2927struct frame_unwind arm_stub_unwind = {
2928 NORMAL_FRAME,
8fbca658 2929 default_frame_unwind_stop_reason,
a262aec2
DJ
2930 arm_stub_this_id,
2931 arm_prologue_prev_register,
2932 NULL,
2933 arm_stub_unwind_sniffer
2934};
2935
24de872b 2936static CORE_ADDR
a262aec2 2937arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
24de872b
DJ
2938{
2939 struct arm_prologue_cache *cache;
2940
eb5492fa 2941 if (*this_cache == NULL)
a262aec2 2942 *this_cache = arm_make_prologue_cache (this_frame);
eb5492fa
DJ
2943 cache = *this_cache;
2944
4be43953 2945 return cache->prev_sp - cache->framesize;
24de872b
DJ
2946}
2947
eb5492fa
DJ
2948struct frame_base arm_normal_base = {
2949 &arm_prologue_unwind,
2950 arm_normal_frame_base,
2951 arm_normal_frame_base,
2952 arm_normal_frame_base
2953};
2954
a262aec2 2955/* Assuming THIS_FRAME is a dummy, return the frame ID of that
eb5492fa
DJ
2956 dummy frame. The frame ID's base needs to match the TOS value
2957 saved by save_dummy_frame_tos() and returned from
2958 arm_push_dummy_call, and the PC needs to match the dummy frame's
2959 breakpoint. */
c906108c 2960
eb5492fa 2961static struct frame_id
a262aec2 2962arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c906108c 2963{
0963b4bd
MS
2964 return frame_id_build (get_frame_register_unsigned (this_frame,
2965 ARM_SP_REGNUM),
a262aec2 2966 get_frame_pc (this_frame));
eb5492fa 2967}
c3b4394c 2968
eb5492fa
DJ
2969/* Given THIS_FRAME, find the previous frame's resume PC (which will
2970 be used to construct the previous frame's ID, after looking up the
2971 containing function). */
c3b4394c 2972
eb5492fa
DJ
2973static CORE_ADDR
2974arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
2975{
2976 CORE_ADDR pc;
2977 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
24568a2c 2978 return arm_addr_bits_remove (gdbarch, pc);
eb5492fa
DJ
2979}
2980
2981static CORE_ADDR
2982arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
2983{
2984 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
2985}
2986
b39cc962
DJ
2987static struct value *
2988arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
2989 int regnum)
2990{
24568a2c 2991 struct gdbarch * gdbarch = get_frame_arch (this_frame);
b39cc962 2992 CORE_ADDR lr, cpsr;
9779414d 2993 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
b39cc962
DJ
2994
2995 switch (regnum)
2996 {
2997 case ARM_PC_REGNUM:
2998 /* The PC is normally copied from the return column, which
2999 describes saves of LR. However, that version may have an
3000 extra bit set to indicate Thumb state. The bit is not
3001 part of the PC. */
3002 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3003 return frame_unwind_got_constant (this_frame, regnum,
24568a2c 3004 arm_addr_bits_remove (gdbarch, lr));
b39cc962
DJ
3005
3006 case ARM_PS_REGNUM:
3007 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
ca38c58e 3008 cpsr = get_frame_register_unsigned (this_frame, regnum);
b39cc962
DJ
3009 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3010 if (IS_THUMB_ADDR (lr))
9779414d 3011 cpsr |= t_bit;
b39cc962 3012 else
9779414d 3013 cpsr &= ~t_bit;
ca38c58e 3014 return frame_unwind_got_constant (this_frame, regnum, cpsr);
b39cc962
DJ
3015
3016 default:
3017 internal_error (__FILE__, __LINE__,
3018 _("Unexpected register %d"), regnum);
3019 }
3020}
3021
3022static void
3023arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3024 struct dwarf2_frame_state_reg *reg,
3025 struct frame_info *this_frame)
3026{
3027 switch (regnum)
3028 {
3029 case ARM_PC_REGNUM:
3030 case ARM_PS_REGNUM:
3031 reg->how = DWARF2_FRAME_REG_FN;
3032 reg->loc.fn = arm_dwarf2_prev_register;
3033 break;
3034 case ARM_SP_REGNUM:
3035 reg->how = DWARF2_FRAME_REG_CFA;
3036 break;
3037 }
3038}
3039
4024ca99
UW
3040/* Return true if we are in the function's epilogue, i.e. after the
3041 instruction that destroyed the function's stack frame. */
3042
3043static int
3044thumb_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3045{
3046 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3047 unsigned int insn, insn2;
3048 int found_return = 0, found_stack_adjust = 0;
3049 CORE_ADDR func_start, func_end;
3050 CORE_ADDR scan_pc;
3051 gdb_byte buf[4];
3052
3053 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3054 return 0;
3055
3056 /* The epilogue is a sequence of instructions along the following lines:
3057
3058 - add stack frame size to SP or FP
3059 - [if frame pointer used] restore SP from FP
3060 - restore registers from SP [may include PC]
3061 - a return-type instruction [if PC wasn't already restored]
3062
3063 In a first pass, we scan forward from the current PC and verify the
3064 instructions we find as compatible with this sequence, ending in a
3065 return instruction.
3066
3067 However, this is not sufficient to distinguish indirect function calls
3068 within a function from indirect tail calls in the epilogue in some cases.
3069 Therefore, if we didn't already find any SP-changing instruction during
3070 forward scan, we add a backward scanning heuristic to ensure we actually
3071 are in the epilogue. */
3072
3073 scan_pc = pc;
3074 while (scan_pc < func_end && !found_return)
3075 {
3076 if (target_read_memory (scan_pc, buf, 2))
3077 break;
3078
3079 scan_pc += 2;
3080 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3081
3082 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3083 found_return = 1;
3084 else if (insn == 0x46f7) /* mov pc, lr */
3085 found_return = 1;
3086 else if (insn == 0x46bd) /* mov sp, r7 */
3087 found_stack_adjust = 1;
3088 else if ((insn & 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */
3089 found_stack_adjust = 1;
3090 else if ((insn & 0xfe00) == 0xbc00) /* pop <registers> */
3091 {
3092 found_stack_adjust = 1;
3093 if (insn & 0x0100) /* <registers> include PC. */
3094 found_return = 1;
3095 }
3096 else if ((insn & 0xe000) == 0xe000) /* 32-bit Thumb-2 instruction */
3097 {
3098 if (target_read_memory (scan_pc, buf, 2))
3099 break;
3100
3101 scan_pc += 2;
3102 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3103
3104 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3105 {
3106 found_stack_adjust = 1;
3107 if (insn2 & 0x8000) /* <registers> include PC. */
3108 found_return = 1;
3109 }
3110 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3111 && (insn2 & 0x0fff) == 0x0b04)
3112 {
3113 found_stack_adjust = 1;
3114 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
3115 found_return = 1;
3116 }
3117 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3118 && (insn2 & 0x0e00) == 0x0a00)
3119 found_stack_adjust = 1;
3120 else
3121 break;
3122 }
3123 else
3124 break;
3125 }
3126
3127 if (!found_return)
3128 return 0;
3129
3130 /* Since any instruction in the epilogue sequence, with the possible
3131 exception of return itself, updates the stack pointer, we need to
3132 scan backwards for at most one instruction. Try either a 16-bit or
3133 a 32-bit instruction. This is just a heuristic, so we do not worry
0963b4bd 3134 too much about false positives. */
4024ca99
UW
3135
3136 if (!found_stack_adjust)
3137 {
3138 if (pc - 4 < func_start)
3139 return 0;
3140 if (target_read_memory (pc - 4, buf, 4))
3141 return 0;
3142
3143 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3144 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
3145
3146 if (insn2 == 0x46bd) /* mov sp, r7 */
3147 found_stack_adjust = 1;
3148 else if ((insn2 & 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */
3149 found_stack_adjust = 1;
3150 else if ((insn2 & 0xff00) == 0xbc00) /* pop <registers> without PC */
3151 found_stack_adjust = 1;
3152 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3153 found_stack_adjust = 1;
3154 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3155 && (insn2 & 0x0fff) == 0x0b04)
3156 found_stack_adjust = 1;
3157 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3158 && (insn2 & 0x0e00) == 0x0a00)
3159 found_stack_adjust = 1;
3160 }
3161
3162 return found_stack_adjust;
3163}
3164
3165/* Return true if we are in the function's epilogue, i.e. after the
3166 instruction that destroyed the function's stack frame. */
3167
3168static int
3169arm_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3170{
3171 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3172 unsigned int insn;
3173 int found_return, found_stack_adjust;
3174 CORE_ADDR func_start, func_end;
3175
3176 if (arm_pc_is_thumb (gdbarch, pc))
3177 return thumb_in_function_epilogue_p (gdbarch, pc);
3178
3179 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3180 return 0;
3181
3182 /* We are in the epilogue if the previous instruction was a stack
3183 adjustment and the next instruction is a possible return (bx, mov
3184 pc, or pop). We could have to scan backwards to find the stack
3185 adjustment, or forwards to find the return, but this is a decent
3186 approximation. First scan forwards. */
3187
3188 found_return = 0;
3189 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
3190 if (bits (insn, 28, 31) != INST_NV)
3191 {
3192 if ((insn & 0x0ffffff0) == 0x012fff10)
3193 /* BX. */
3194 found_return = 1;
3195 else if ((insn & 0x0ffffff0) == 0x01a0f000)
3196 /* MOV PC. */
3197 found_return = 1;
3198 else if ((insn & 0x0fff0000) == 0x08bd0000
3199 && (insn & 0x0000c000) != 0)
3200 /* POP (LDMIA), including PC or LR. */
3201 found_return = 1;
3202 }
3203
3204 if (!found_return)
3205 return 0;
3206
3207 /* Scan backwards. This is just a heuristic, so do not worry about
3208 false positives from mode changes. */
3209
3210 if (pc < func_start + 4)
3211 return 0;
3212
73c964d6 3213 found_stack_adjust = 0;
4024ca99
UW
3214 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
3215 if (bits (insn, 28, 31) != INST_NV)
3216 {
3217 if ((insn & 0x0df0f000) == 0x0080d000)
3218 /* ADD SP (register or immediate). */
3219 found_stack_adjust = 1;
3220 else if ((insn & 0x0df0f000) == 0x0040d000)
3221 /* SUB SP (register or immediate). */
3222 found_stack_adjust = 1;
3223 else if ((insn & 0x0ffffff0) == 0x01a0d000)
3224 /* MOV SP. */
77bc0675 3225 found_stack_adjust = 1;
4024ca99
UW
3226 else if ((insn & 0x0fff0000) == 0x08bd0000)
3227 /* POP (LDMIA). */
3228 found_stack_adjust = 1;
3229 }
3230
3231 if (found_stack_adjust)
3232 return 1;
3233
3234 return 0;
3235}
3236
3237
2dd604e7
RE
3238/* When arguments must be pushed onto the stack, they go on in reverse
3239 order. The code below implements a FILO (stack) to do this. */
3240
3241struct stack_item
3242{
3243 int len;
3244 struct stack_item *prev;
3245 void *data;
3246};
3247
3248static struct stack_item *
8c6363cf 3249push_stack_item (struct stack_item *prev, const void *contents, int len)
2dd604e7
RE
3250{
3251 struct stack_item *si;
3252 si = xmalloc (sizeof (struct stack_item));
226c7fbc 3253 si->data = xmalloc (len);
2dd604e7
RE
3254 si->len = len;
3255 si->prev = prev;
3256 memcpy (si->data, contents, len);
3257 return si;
3258}
3259
3260static struct stack_item *
3261pop_stack_item (struct stack_item *si)
3262{
3263 struct stack_item *dead = si;
3264 si = si->prev;
3265 xfree (dead->data);
3266 xfree (dead);
3267 return si;
3268}
3269
2af48f68
PB
3270
3271/* Return the alignment (in bytes) of the given type. */
3272
3273static int
3274arm_type_align (struct type *t)
3275{
3276 int n;
3277 int align;
3278 int falign;
3279
3280 t = check_typedef (t);
3281 switch (TYPE_CODE (t))
3282 {
3283 default:
3284 /* Should never happen. */
3285 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
3286 return 4;
3287
3288 case TYPE_CODE_PTR:
3289 case TYPE_CODE_ENUM:
3290 case TYPE_CODE_INT:
3291 case TYPE_CODE_FLT:
3292 case TYPE_CODE_SET:
3293 case TYPE_CODE_RANGE:
3294 case TYPE_CODE_BITSTRING:
3295 case TYPE_CODE_REF:
3296 case TYPE_CODE_CHAR:
3297 case TYPE_CODE_BOOL:
3298 return TYPE_LENGTH (t);
3299
3300 case TYPE_CODE_ARRAY:
3301 case TYPE_CODE_COMPLEX:
3302 /* TODO: What about vector types? */
3303 return arm_type_align (TYPE_TARGET_TYPE (t));
3304
3305 case TYPE_CODE_STRUCT:
3306 case TYPE_CODE_UNION:
3307 align = 1;
3308 for (n = 0; n < TYPE_NFIELDS (t); n++)
3309 {
3310 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
3311 if (falign > align)
3312 align = falign;
3313 }
3314 return align;
3315 }
3316}
3317
90445bd3
DJ
3318/* Possible base types for a candidate for passing and returning in
3319 VFP registers. */
3320
3321enum arm_vfp_cprc_base_type
3322{
3323 VFP_CPRC_UNKNOWN,
3324 VFP_CPRC_SINGLE,
3325 VFP_CPRC_DOUBLE,
3326 VFP_CPRC_VEC64,
3327 VFP_CPRC_VEC128
3328};
3329
3330/* The length of one element of base type B. */
3331
3332static unsigned
3333arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
3334{
3335 switch (b)
3336 {
3337 case VFP_CPRC_SINGLE:
3338 return 4;
3339 case VFP_CPRC_DOUBLE:
3340 return 8;
3341 case VFP_CPRC_VEC64:
3342 return 8;
3343 case VFP_CPRC_VEC128:
3344 return 16;
3345 default:
3346 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3347 (int) b);
3348 }
3349}
3350
3351/* The character ('s', 'd' or 'q') for the type of VFP register used
3352 for passing base type B. */
3353
3354static int
3355arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
3356{
3357 switch (b)
3358 {
3359 case VFP_CPRC_SINGLE:
3360 return 's';
3361 case VFP_CPRC_DOUBLE:
3362 return 'd';
3363 case VFP_CPRC_VEC64:
3364 return 'd';
3365 case VFP_CPRC_VEC128:
3366 return 'q';
3367 default:
3368 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3369 (int) b);
3370 }
3371}
3372
3373/* Determine whether T may be part of a candidate for passing and
3374 returning in VFP registers, ignoring the limit on the total number
3375 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3376 classification of the first valid component found; if it is not
3377 VFP_CPRC_UNKNOWN, all components must have the same classification
3378 as *BASE_TYPE. If it is found that T contains a type not permitted
3379 for passing and returning in VFP registers, a type differently
3380 classified from *BASE_TYPE, or two types differently classified
3381 from each other, return -1, otherwise return the total number of
3382 base-type elements found (possibly 0 in an empty structure or
3383 array). Vectors and complex types are not currently supported,
3384 matching the generic AAPCS support. */
3385
3386static int
3387arm_vfp_cprc_sub_candidate (struct type *t,
3388 enum arm_vfp_cprc_base_type *base_type)
3389{
3390 t = check_typedef (t);
3391 switch (TYPE_CODE (t))
3392 {
3393 case TYPE_CODE_FLT:
3394 switch (TYPE_LENGTH (t))
3395 {
3396 case 4:
3397 if (*base_type == VFP_CPRC_UNKNOWN)
3398 *base_type = VFP_CPRC_SINGLE;
3399 else if (*base_type != VFP_CPRC_SINGLE)
3400 return -1;
3401 return 1;
3402
3403 case 8:
3404 if (*base_type == VFP_CPRC_UNKNOWN)
3405 *base_type = VFP_CPRC_DOUBLE;
3406 else if (*base_type != VFP_CPRC_DOUBLE)
3407 return -1;
3408 return 1;
3409
3410 default:
3411 return -1;
3412 }
3413 break;
3414
3415 case TYPE_CODE_ARRAY:
3416 {
3417 int count;
3418 unsigned unitlen;
3419 count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t), base_type);
3420 if (count == -1)
3421 return -1;
3422 if (TYPE_LENGTH (t) == 0)
3423 {
3424 gdb_assert (count == 0);
3425 return 0;
3426 }
3427 else if (count == 0)
3428 return -1;
3429 unitlen = arm_vfp_cprc_unit_length (*base_type);
3430 gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
3431 return TYPE_LENGTH (t) / unitlen;
3432 }
3433 break;
3434
3435 case TYPE_CODE_STRUCT:
3436 {
3437 int count = 0;
3438 unsigned unitlen;
3439 int i;
3440 for (i = 0; i < TYPE_NFIELDS (t); i++)
3441 {
3442 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3443 base_type);
3444 if (sub_count == -1)
3445 return -1;
3446 count += sub_count;
3447 }
3448 if (TYPE_LENGTH (t) == 0)
3449 {
3450 gdb_assert (count == 0);
3451 return 0;
3452 }
3453 else if (count == 0)
3454 return -1;
3455 unitlen = arm_vfp_cprc_unit_length (*base_type);
3456 if (TYPE_LENGTH (t) != unitlen * count)
3457 return -1;
3458 return count;
3459 }
3460
3461 case TYPE_CODE_UNION:
3462 {
3463 int count = 0;
3464 unsigned unitlen;
3465 int i;
3466 for (i = 0; i < TYPE_NFIELDS (t); i++)
3467 {
3468 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3469 base_type);
3470 if (sub_count == -1)
3471 return -1;
3472 count = (count > sub_count ? count : sub_count);
3473 }
3474 if (TYPE_LENGTH (t) == 0)
3475 {
3476 gdb_assert (count == 0);
3477 return 0;
3478 }
3479 else if (count == 0)
3480 return -1;
3481 unitlen = arm_vfp_cprc_unit_length (*base_type);
3482 if (TYPE_LENGTH (t) != unitlen * count)
3483 return -1;
3484 return count;
3485 }
3486
3487 default:
3488 break;
3489 }
3490
3491 return -1;
3492}
3493
3494/* Determine whether T is a VFP co-processor register candidate (CPRC)
3495 if passed to or returned from a non-variadic function with the VFP
3496 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3497 *BASE_TYPE to the base type for T and *COUNT to the number of
3498 elements of that base type before returning. */
3499
3500static int
3501arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
3502 int *count)
3503{
3504 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
3505 int c = arm_vfp_cprc_sub_candidate (t, &b);
3506 if (c <= 0 || c > 4)
3507 return 0;
3508 *base_type = b;
3509 *count = c;
3510 return 1;
3511}
3512
3513/* Return 1 if the VFP ABI should be used for passing arguments to and
3514 returning values from a function of type FUNC_TYPE, 0
3515 otherwise. */
3516
3517static int
3518arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
3519{
3520 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3521 /* Variadic functions always use the base ABI. Assume that functions
3522 without debug info are not variadic. */
3523 if (func_type && TYPE_VARARGS (check_typedef (func_type)))
3524 return 0;
3525 /* The VFP ABI is only supported as a variant of AAPCS. */
3526 if (tdep->arm_abi != ARM_ABI_AAPCS)
3527 return 0;
3528 return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
3529}
3530
3531/* We currently only support passing parameters in integer registers, which
3532 conforms with GCC's default model, and VFP argument passing following
3533 the VFP variant of AAPCS. Several other variants exist and
2dd604e7
RE
3534 we should probably support some of them based on the selected ABI. */
3535
3536static CORE_ADDR
7d9b040b 3537arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
3538 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3539 struct value **args, CORE_ADDR sp, int struct_return,
3540 CORE_ADDR struct_addr)
2dd604e7 3541{
e17a4113 3542 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2dd604e7
RE
3543 int argnum;
3544 int argreg;
3545 int nstack;
3546 struct stack_item *si = NULL;
90445bd3
DJ
3547 int use_vfp_abi;
3548 struct type *ftype;
3549 unsigned vfp_regs_free = (1 << 16) - 1;
3550
3551 /* Determine the type of this function and whether the VFP ABI
3552 applies. */
3553 ftype = check_typedef (value_type (function));
3554 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
3555 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
3556 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
2dd604e7 3557
6a65450a
AC
3558 /* Set the return address. For the ARM, the return breakpoint is
3559 always at BP_ADDR. */
9779414d 3560 if (arm_pc_is_thumb (gdbarch, bp_addr))
9dca5578 3561 bp_addr |= 1;
6a65450a 3562 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
3563
3564 /* Walk through the list of args and determine how large a temporary
3565 stack is required. Need to take care here as structs may be
7a9dd1b2 3566 passed on the stack, and we have to push them. */
2dd604e7
RE
3567 nstack = 0;
3568
3569 argreg = ARM_A1_REGNUM;
3570 nstack = 0;
3571
2dd604e7
RE
3572 /* The struct_return pointer occupies the first parameter
3573 passing register. */
3574 if (struct_return)
3575 {
3576 if (arm_debug)
5af949e3 3577 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
2af46ca0 3578 gdbarch_register_name (gdbarch, argreg),
5af949e3 3579 paddress (gdbarch, struct_addr));
2dd604e7
RE
3580 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
3581 argreg++;
3582 }
3583
3584 for (argnum = 0; argnum < nargs; argnum++)
3585 {
3586 int len;
3587 struct type *arg_type;
3588 struct type *target_type;
3589 enum type_code typecode;
8c6363cf 3590 const bfd_byte *val;
2af48f68 3591 int align;
90445bd3
DJ
3592 enum arm_vfp_cprc_base_type vfp_base_type;
3593 int vfp_base_count;
3594 int may_use_core_reg = 1;
2dd604e7 3595
df407dfe 3596 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
3597 len = TYPE_LENGTH (arg_type);
3598 target_type = TYPE_TARGET_TYPE (arg_type);
3599 typecode = TYPE_CODE (arg_type);
8c6363cf 3600 val = value_contents (args[argnum]);
2dd604e7 3601
2af48f68
PB
3602 align = arm_type_align (arg_type);
3603 /* Round alignment up to a whole number of words. */
3604 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
3605 /* Different ABIs have different maximum alignments. */
3606 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
3607 {
3608 /* The APCS ABI only requires word alignment. */
3609 align = INT_REGISTER_SIZE;
3610 }
3611 else
3612 {
3613 /* The AAPCS requires at most doubleword alignment. */
3614 if (align > INT_REGISTER_SIZE * 2)
3615 align = INT_REGISTER_SIZE * 2;
3616 }
3617
90445bd3
DJ
3618 if (use_vfp_abi
3619 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
3620 &vfp_base_count))
3621 {
3622 int regno;
3623 int unit_length;
3624 int shift;
3625 unsigned mask;
3626
3627 /* Because this is a CPRC it cannot go in a core register or
3628 cause a core register to be skipped for alignment.
3629 Either it goes in VFP registers and the rest of this loop
3630 iteration is skipped for this argument, or it goes on the
3631 stack (and the stack alignment code is correct for this
3632 case). */
3633 may_use_core_reg = 0;
3634
3635 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
3636 shift = unit_length / 4;
3637 mask = (1 << (shift * vfp_base_count)) - 1;
3638 for (regno = 0; regno < 16; regno += shift)
3639 if (((vfp_regs_free >> regno) & mask) == mask)
3640 break;
3641
3642 if (regno < 16)
3643 {
3644 int reg_char;
3645 int reg_scaled;
3646 int i;
3647
3648 vfp_regs_free &= ~(mask << regno);
3649 reg_scaled = regno / shift;
3650 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
3651 for (i = 0; i < vfp_base_count; i++)
3652 {
3653 char name_buf[4];
3654 int regnum;
58d6951d
DJ
3655 if (reg_char == 'q')
3656 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
90445bd3 3657 val + i * unit_length);
58d6951d
DJ
3658 else
3659 {
3660 sprintf (name_buf, "%c%d", reg_char, reg_scaled + i);
3661 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
3662 strlen (name_buf));
3663 regcache_cooked_write (regcache, regnum,
3664 val + i * unit_length);
3665 }
90445bd3
DJ
3666 }
3667 continue;
3668 }
3669 else
3670 {
3671 /* This CPRC could not go in VFP registers, so all VFP
3672 registers are now marked as used. */
3673 vfp_regs_free = 0;
3674 }
3675 }
3676
2af48f68
PB
3677 /* Push stack padding for dowubleword alignment. */
3678 if (nstack & (align - 1))
3679 {
3680 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3681 nstack += INT_REGISTER_SIZE;
3682 }
3683
3684 /* Doubleword aligned quantities must go in even register pairs. */
90445bd3
DJ
3685 if (may_use_core_reg
3686 && argreg <= ARM_LAST_ARG_REGNUM
2af48f68
PB
3687 && align > INT_REGISTER_SIZE
3688 && argreg & 1)
3689 argreg++;
3690
2dd604e7
RE
3691 /* If the argument is a pointer to a function, and it is a
3692 Thumb function, create a LOCAL copy of the value and set
3693 the THUMB bit in it. */
3694 if (TYPE_CODE_PTR == typecode
3695 && target_type != NULL
f96b8fa0 3696 && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
2dd604e7 3697 {
e17a4113 3698 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
9779414d 3699 if (arm_pc_is_thumb (gdbarch, regval))
2dd604e7 3700 {
8c6363cf
TT
3701 bfd_byte *copy = alloca (len);
3702 store_unsigned_integer (copy, len, byte_order,
e17a4113 3703 MAKE_THUMB_ADDR (regval));
8c6363cf 3704 val = copy;
2dd604e7
RE
3705 }
3706 }
3707
3708 /* Copy the argument to general registers or the stack in
3709 register-sized pieces. Large arguments are split between
3710 registers and stack. */
3711 while (len > 0)
3712 {
f0c9063c 3713 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
2dd604e7 3714
90445bd3 3715 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
2dd604e7
RE
3716 {
3717 /* The argument is being passed in a general purpose
3718 register. */
e17a4113
UW
3719 CORE_ADDR regval
3720 = extract_unsigned_integer (val, partial_len, byte_order);
3721 if (byte_order == BFD_ENDIAN_BIG)
8bf8793c 3722 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
2dd604e7
RE
3723 if (arm_debug)
3724 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
c9f4d572
UW
3725 argnum,
3726 gdbarch_register_name
2af46ca0 3727 (gdbarch, argreg),
f0c9063c 3728 phex (regval, INT_REGISTER_SIZE));
2dd604e7
RE
3729 regcache_cooked_write_unsigned (regcache, argreg, regval);
3730 argreg++;
3731 }
3732 else
3733 {
3734 /* Push the arguments onto the stack. */
3735 if (arm_debug)
3736 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
3737 argnum, nstack);
f0c9063c
UW
3738 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3739 nstack += INT_REGISTER_SIZE;
2dd604e7
RE
3740 }
3741
3742 len -= partial_len;
3743 val += partial_len;
3744 }
3745 }
3746 /* If we have an odd number of words to push, then decrement the stack
3747 by one word now, so first stack argument will be dword aligned. */
3748 if (nstack & 4)
3749 sp -= 4;
3750
3751 while (si)
3752 {
3753 sp -= si->len;
3754 write_memory (sp, si->data, si->len);
3755 si = pop_stack_item (si);
3756 }
3757
3758 /* Finally, update teh SP register. */
3759 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
3760
3761 return sp;
3762}
3763
f53f0d0b
PB
3764
3765/* Always align the frame to an 8-byte boundary. This is required on
3766 some platforms and harmless on the rest. */
3767
3768static CORE_ADDR
3769arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3770{
3771 /* Align the stack to eight bytes. */
3772 return sp & ~ (CORE_ADDR) 7;
3773}
3774
c906108c 3775static void
ed9a39eb 3776print_fpu_flags (int flags)
c906108c 3777{
c5aa993b
JM
3778 if (flags & (1 << 0))
3779 fputs ("IVO ", stdout);
3780 if (flags & (1 << 1))
3781 fputs ("DVZ ", stdout);
3782 if (flags & (1 << 2))
3783 fputs ("OFL ", stdout);
3784 if (flags & (1 << 3))
3785 fputs ("UFL ", stdout);
3786 if (flags & (1 << 4))
3787 fputs ("INX ", stdout);
3788 putchar ('\n');
c906108c
SS
3789}
3790
5e74b15c
RE
3791/* Print interesting information about the floating point processor
3792 (if present) or emulator. */
34e8f22d 3793static void
d855c300 3794arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 3795 struct frame_info *frame, const char *args)
c906108c 3796{
9c9acae0 3797 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
c5aa993b
JM
3798 int type;
3799
3800 type = (status >> 24) & 127;
edefbb7c
AC
3801 if (status & (1 << 31))
3802 printf (_("Hardware FPU type %d\n"), type);
3803 else
3804 printf (_("Software FPU type %d\n"), type);
3805 /* i18n: [floating point unit] mask */
3806 fputs (_("mask: "), stdout);
c5aa993b 3807 print_fpu_flags (status >> 16);
edefbb7c
AC
3808 /* i18n: [floating point unit] flags */
3809 fputs (_("flags: "), stdout);
c5aa993b 3810 print_fpu_flags (status);
c906108c
SS
3811}
3812
27067745
UW
3813/* Construct the ARM extended floating point type. */
3814static struct type *
3815arm_ext_type (struct gdbarch *gdbarch)
3816{
3817 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3818
3819 if (!tdep->arm_ext_type)
3820 tdep->arm_ext_type
e9bb382b 3821 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
27067745
UW
3822 floatformats_arm_ext);
3823
3824 return tdep->arm_ext_type;
3825}
3826
58d6951d
DJ
3827static struct type *
3828arm_neon_double_type (struct gdbarch *gdbarch)
3829{
3830 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3831
3832 if (tdep->neon_double_type == NULL)
3833 {
3834 struct type *t, *elem;
3835
3836 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
3837 TYPE_CODE_UNION);
3838 elem = builtin_type (gdbarch)->builtin_uint8;
3839 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
3840 elem = builtin_type (gdbarch)->builtin_uint16;
3841 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
3842 elem = builtin_type (gdbarch)->builtin_uint32;
3843 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
3844 elem = builtin_type (gdbarch)->builtin_uint64;
3845 append_composite_type_field (t, "u64", elem);
3846 elem = builtin_type (gdbarch)->builtin_float;
3847 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
3848 elem = builtin_type (gdbarch)->builtin_double;
3849 append_composite_type_field (t, "f64", elem);
3850
3851 TYPE_VECTOR (t) = 1;
3852 TYPE_NAME (t) = "neon_d";
3853 tdep->neon_double_type = t;
3854 }
3855
3856 return tdep->neon_double_type;
3857}
3858
3859/* FIXME: The vector types are not correctly ordered on big-endian
3860 targets. Just as s0 is the low bits of d0, d0[0] is also the low
3861 bits of d0 - regardless of what unit size is being held in d0. So
3862 the offset of the first uint8 in d0 is 7, but the offset of the
3863 first float is 4. This code works as-is for little-endian
3864 targets. */
3865
3866static struct type *
3867arm_neon_quad_type (struct gdbarch *gdbarch)
3868{
3869 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3870
3871 if (tdep->neon_quad_type == NULL)
3872 {
3873 struct type *t, *elem;
3874
3875 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
3876 TYPE_CODE_UNION);
3877 elem = builtin_type (gdbarch)->builtin_uint8;
3878 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
3879 elem = builtin_type (gdbarch)->builtin_uint16;
3880 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
3881 elem = builtin_type (gdbarch)->builtin_uint32;
3882 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
3883 elem = builtin_type (gdbarch)->builtin_uint64;
3884 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
3885 elem = builtin_type (gdbarch)->builtin_float;
3886 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
3887 elem = builtin_type (gdbarch)->builtin_double;
3888 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
3889
3890 TYPE_VECTOR (t) = 1;
3891 TYPE_NAME (t) = "neon_q";
3892 tdep->neon_quad_type = t;
3893 }
3894
3895 return tdep->neon_quad_type;
3896}
3897
34e8f22d
RE
3898/* Return the GDB type object for the "standard" data type of data in
3899 register N. */
3900
3901static struct type *
7a5ea0d4 3902arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 3903{
58d6951d
DJ
3904 int num_regs = gdbarch_num_regs (gdbarch);
3905
3906 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
3907 && regnum >= num_regs && regnum < num_regs + 32)
3908 return builtin_type (gdbarch)->builtin_float;
3909
3910 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
3911 && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
3912 return arm_neon_quad_type (gdbarch);
3913
3914 /* If the target description has register information, we are only
3915 in this function so that we can override the types of
3916 double-precision registers for NEON. */
3917 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
3918 {
3919 struct type *t = tdesc_register_type (gdbarch, regnum);
3920
3921 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
3922 && TYPE_CODE (t) == TYPE_CODE_FLT
3923 && gdbarch_tdep (gdbarch)->have_neon)
3924 return arm_neon_double_type (gdbarch);
3925 else
3926 return t;
3927 }
3928
34e8f22d 3929 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
58d6951d
DJ
3930 {
3931 if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
3932 return builtin_type (gdbarch)->builtin_void;
3933
3934 return arm_ext_type (gdbarch);
3935 }
e4c16157 3936 else if (regnum == ARM_SP_REGNUM)
0dfff4cb 3937 return builtin_type (gdbarch)->builtin_data_ptr;
e4c16157 3938 else if (regnum == ARM_PC_REGNUM)
0dfff4cb 3939 return builtin_type (gdbarch)->builtin_func_ptr;
ff6f572f
DJ
3940 else if (regnum >= ARRAY_SIZE (arm_register_names))
3941 /* These registers are only supported on targets which supply
3942 an XML description. */
df4df182 3943 return builtin_type (gdbarch)->builtin_int0;
032758dc 3944 else
df4df182 3945 return builtin_type (gdbarch)->builtin_uint32;
032758dc
AC
3946}
3947
ff6f572f
DJ
3948/* Map a DWARF register REGNUM onto the appropriate GDB register
3949 number. */
3950
3951static int
d3f73121 3952arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
ff6f572f
DJ
3953{
3954 /* Core integer regs. */
3955 if (reg >= 0 && reg <= 15)
3956 return reg;
3957
3958 /* Legacy FPA encoding. These were once used in a way which
3959 overlapped with VFP register numbering, so their use is
3960 discouraged, but GDB doesn't support the ARM toolchain
3961 which used them for VFP. */
3962 if (reg >= 16 && reg <= 23)
3963 return ARM_F0_REGNUM + reg - 16;
3964
3965 /* New assignments for the FPA registers. */
3966 if (reg >= 96 && reg <= 103)
3967 return ARM_F0_REGNUM + reg - 96;
3968
3969 /* WMMX register assignments. */
3970 if (reg >= 104 && reg <= 111)
3971 return ARM_WCGR0_REGNUM + reg - 104;
3972
3973 if (reg >= 112 && reg <= 127)
3974 return ARM_WR0_REGNUM + reg - 112;
3975
3976 if (reg >= 192 && reg <= 199)
3977 return ARM_WC0_REGNUM + reg - 192;
3978
58d6951d
DJ
3979 /* VFP v2 registers. A double precision value is actually
3980 in d1 rather than s2, but the ABI only defines numbering
3981 for the single precision registers. This will "just work"
3982 in GDB for little endian targets (we'll read eight bytes,
3983 starting in s0 and then progressing to s1), but will be
3984 reversed on big endian targets with VFP. This won't
3985 be a problem for the new Neon quad registers; you're supposed
3986 to use DW_OP_piece for those. */
3987 if (reg >= 64 && reg <= 95)
3988 {
3989 char name_buf[4];
3990
3991 sprintf (name_buf, "s%d", reg - 64);
3992 return user_reg_map_name_to_regnum (gdbarch, name_buf,
3993 strlen (name_buf));
3994 }
3995
3996 /* VFP v3 / Neon registers. This range is also used for VFP v2
3997 registers, except that it now describes d0 instead of s0. */
3998 if (reg >= 256 && reg <= 287)
3999 {
4000 char name_buf[4];
4001
4002 sprintf (name_buf, "d%d", reg - 256);
4003 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4004 strlen (name_buf));
4005 }
4006
ff6f572f
DJ
4007 return -1;
4008}
4009
26216b98
AC
4010/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4011static int
e7faf938 4012arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
26216b98
AC
4013{
4014 int reg = regnum;
e7faf938 4015 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
26216b98 4016
ff6f572f
DJ
4017 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
4018 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
4019
4020 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
4021 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
4022
4023 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
4024 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
4025
26216b98
AC
4026 if (reg < NUM_GREGS)
4027 return SIM_ARM_R0_REGNUM + reg;
4028 reg -= NUM_GREGS;
4029
4030 if (reg < NUM_FREGS)
4031 return SIM_ARM_FP0_REGNUM + reg;
4032 reg -= NUM_FREGS;
4033
4034 if (reg < NUM_SREGS)
4035 return SIM_ARM_FPS_REGNUM + reg;
4036 reg -= NUM_SREGS;
4037
edefbb7c 4038 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 4039}
34e8f22d 4040
a37b3cc0
AC
4041/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
4042 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
4043 It is thought that this is is the floating-point register format on
4044 little-endian systems. */
c906108c 4045
ed9a39eb 4046static void
b508a996 4047convert_from_extended (const struct floatformat *fmt, const void *ptr,
be8626e0 4048 void *dbl, int endianess)
c906108c 4049{
a37b3cc0 4050 DOUBLEST d;
be8626e0
MD
4051
4052 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
4053 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
4054 else
4055 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
4056 ptr, &d);
b508a996 4057 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
4058}
4059
34e8f22d 4060static void
be8626e0
MD
4061convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
4062 int endianess)
c906108c 4063{
a37b3cc0 4064 DOUBLEST d;
be8626e0 4065
b508a996 4066 floatformat_to_doublest (fmt, ptr, &d);
be8626e0 4067 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
4068 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
4069 else
4070 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
4071 &d, dbl);
c906108c 4072}
ed9a39eb 4073
c906108c 4074static int
ed9a39eb 4075condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
4076{
4077 if (cond == INST_AL || cond == INST_NV)
4078 return 1;
4079
4080 switch (cond)
4081 {
4082 case INST_EQ:
4083 return ((status_reg & FLAG_Z) != 0);
4084 case INST_NE:
4085 return ((status_reg & FLAG_Z) == 0);
4086 case INST_CS:
4087 return ((status_reg & FLAG_C) != 0);
4088 case INST_CC:
4089 return ((status_reg & FLAG_C) == 0);
4090 case INST_MI:
4091 return ((status_reg & FLAG_N) != 0);
4092 case INST_PL:
4093 return ((status_reg & FLAG_N) == 0);
4094 case INST_VS:
4095 return ((status_reg & FLAG_V) != 0);
4096 case INST_VC:
4097 return ((status_reg & FLAG_V) == 0);
4098 case INST_HI:
4099 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
4100 case INST_LS:
4101 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
4102 case INST_GE:
4103 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
4104 case INST_LT:
4105 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
4106 case INST_GT:
f8bf5763
PM
4107 return (((status_reg & FLAG_Z) == 0)
4108 && (((status_reg & FLAG_N) == 0)
4109 == ((status_reg & FLAG_V) == 0)));
c906108c 4110 case INST_LE:
f8bf5763
PM
4111 return (((status_reg & FLAG_Z) != 0)
4112 || (((status_reg & FLAG_N) == 0)
4113 != ((status_reg & FLAG_V) == 0)));
c906108c
SS
4114 }
4115 return 1;
4116}
4117
c906108c 4118static unsigned long
0b1b3e42
UW
4119shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
4120 unsigned long pc_val, unsigned long status_reg)
c906108c
SS
4121{
4122 unsigned long res, shift;
4123 int rm = bits (inst, 0, 3);
4124 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
4125
4126 if (bit (inst, 4))
c906108c
SS
4127 {
4128 int rs = bits (inst, 8, 11);
0b1b3e42
UW
4129 shift = (rs == 15 ? pc_val + 8
4130 : get_frame_register_unsigned (frame, rs)) & 0xFF;
c906108c
SS
4131 }
4132 else
4133 shift = bits (inst, 7, 11);
c5aa993b 4134
bf9f652a 4135 res = (rm == ARM_PC_REGNUM
0d39a070 4136 ? (pc_val + (bit (inst, 4) ? 12 : 8))
0b1b3e42 4137 : get_frame_register_unsigned (frame, rm));
c906108c
SS
4138
4139 switch (shifttype)
4140 {
c5aa993b 4141 case 0: /* LSL */
c906108c
SS
4142 res = shift >= 32 ? 0 : res << shift;
4143 break;
c5aa993b
JM
4144
4145 case 1: /* LSR */
c906108c
SS
4146 res = shift >= 32 ? 0 : res >> shift;
4147 break;
4148
c5aa993b
JM
4149 case 2: /* ASR */
4150 if (shift >= 32)
4151 shift = 31;
c906108c
SS
4152 res = ((res & 0x80000000L)
4153 ? ~((~res) >> shift) : res >> shift);
4154 break;
4155
c5aa993b 4156 case 3: /* ROR/RRX */
c906108c
SS
4157 shift &= 31;
4158 if (shift == 0)
4159 res = (res >> 1) | (carry ? 0x80000000L : 0);
4160 else
c5aa993b 4161 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
4162 break;
4163 }
4164
4165 return res & 0xffffffff;
4166}
4167
c906108c
SS
4168/* Return number of 1-bits in VAL. */
4169
4170static int
ed9a39eb 4171bitcount (unsigned long val)
c906108c
SS
4172{
4173 int nbits;
4174 for (nbits = 0; val != 0; nbits++)
0963b4bd 4175 val &= val - 1; /* Delete rightmost 1-bit in val. */
c906108c
SS
4176 return nbits;
4177}
4178
177321bd
DJ
4179/* Return the size in bytes of the complete Thumb instruction whose
4180 first halfword is INST1. */
4181
4182static int
4183thumb_insn_size (unsigned short inst1)
4184{
4185 if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0)
4186 return 4;
4187 else
4188 return 2;
4189}
4190
4191static int
4192thumb_advance_itstate (unsigned int itstate)
4193{
4194 /* Preserve IT[7:5], the first three bits of the condition. Shift
4195 the upcoming condition flags left by one bit. */
4196 itstate = (itstate & 0xe0) | ((itstate << 1) & 0x1f);
4197
4198 /* If we have finished the IT block, clear the state. */
4199 if ((itstate & 0x0f) == 0)
4200 itstate = 0;
4201
4202 return itstate;
4203}
4204
4205/* Find the next PC after the current instruction executes. In some
4206 cases we can not statically determine the answer (see the IT state
4207 handling in this function); in that case, a breakpoint may be
4208 inserted in addition to the returned PC, which will be used to set
4209 another breakpoint by our caller. */
4210
ad527d2e 4211static CORE_ADDR
18819fa6 4212thumb_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc)
c906108c 4213{
2af46ca0 4214 struct gdbarch *gdbarch = get_frame_arch (frame);
177321bd 4215 struct address_space *aspace = get_frame_address_space (frame);
e17a4113
UW
4216 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4217 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
c5aa993b 4218 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
e17a4113 4219 unsigned short inst1;
0963b4bd 4220 CORE_ADDR nextpc = pc + 2; /* Default is next instruction. */
c906108c 4221 unsigned long offset;
177321bd 4222 ULONGEST status, itstate;
c906108c 4223
50e98be4
DJ
4224 nextpc = MAKE_THUMB_ADDR (nextpc);
4225 pc_val = MAKE_THUMB_ADDR (pc_val);
4226
e17a4113 4227 inst1 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
9d4fde75 4228
9dca5578
DJ
4229 /* Thumb-2 conditional execution support. There are eight bits in
4230 the CPSR which describe conditional execution state. Once
4231 reconstructed (they're in a funny order), the low five bits
4232 describe the low bit of the condition for each instruction and
4233 how many instructions remain. The high three bits describe the
4234 base condition. One of the low four bits will be set if an IT
4235 block is active. These bits read as zero on earlier
4236 processors. */
4237 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
177321bd 4238 itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3);
9dca5578 4239
177321bd
DJ
4240 /* If-Then handling. On GNU/Linux, where this routine is used, we
4241 use an undefined instruction as a breakpoint. Unlike BKPT, IT
4242 can disable execution of the undefined instruction. So we might
4243 miss the breakpoint if we set it on a skipped conditional
4244 instruction. Because conditional instructions can change the
4245 flags, affecting the execution of further instructions, we may
4246 need to set two breakpoints. */
9dca5578 4247
177321bd
DJ
4248 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint != NULL)
4249 {
4250 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4251 {
4252 /* An IT instruction. Because this instruction does not
4253 modify the flags, we can accurately predict the next
4254 executed instruction. */
4255 itstate = inst1 & 0x00ff;
4256 pc += thumb_insn_size (inst1);
4257
4258 while (itstate != 0 && ! condition_true (itstate >> 4, status))
4259 {
0963b4bd
MS
4260 inst1 = read_memory_unsigned_integer (pc, 2,
4261 byte_order_for_code);
177321bd
DJ
4262 pc += thumb_insn_size (inst1);
4263 itstate = thumb_advance_itstate (itstate);
4264 }
4265
50e98be4 4266 return MAKE_THUMB_ADDR (pc);
177321bd
DJ
4267 }
4268 else if (itstate != 0)
4269 {
4270 /* We are in a conditional block. Check the condition. */
4271 if (! condition_true (itstate >> 4, status))
4272 {
4273 /* Advance to the next executed instruction. */
4274 pc += thumb_insn_size (inst1);
4275 itstate = thumb_advance_itstate (itstate);
4276
4277 while (itstate != 0 && ! condition_true (itstate >> 4, status))
4278 {
0963b4bd
MS
4279 inst1 = read_memory_unsigned_integer (pc, 2,
4280 byte_order_for_code);
177321bd
DJ
4281 pc += thumb_insn_size (inst1);
4282 itstate = thumb_advance_itstate (itstate);
4283 }
4284
50e98be4 4285 return MAKE_THUMB_ADDR (pc);
177321bd
DJ
4286 }
4287 else if ((itstate & 0x0f) == 0x08)
4288 {
4289 /* This is the last instruction of the conditional
4290 block, and it is executed. We can handle it normally
4291 because the following instruction is not conditional,
4292 and we must handle it normally because it is
4293 permitted to branch. Fall through. */
4294 }
4295 else
4296 {
4297 int cond_negated;
4298
4299 /* There are conditional instructions after this one.
4300 If this instruction modifies the flags, then we can
4301 not predict what the next executed instruction will
4302 be. Fortunately, this instruction is architecturally
4303 forbidden to branch; we know it will fall through.
4304 Start by skipping past it. */
4305 pc += thumb_insn_size (inst1);
4306 itstate = thumb_advance_itstate (itstate);
4307
4308 /* Set a breakpoint on the following instruction. */
4309 gdb_assert ((itstate & 0x0f) != 0);
18819fa6
UW
4310 arm_insert_single_step_breakpoint (gdbarch, aspace,
4311 MAKE_THUMB_ADDR (pc));
177321bd
DJ
4312 cond_negated = (itstate >> 4) & 1;
4313
4314 /* Skip all following instructions with the same
4315 condition. If there is a later instruction in the IT
4316 block with the opposite condition, set the other
4317 breakpoint there. If not, then set a breakpoint on
4318 the instruction after the IT block. */
4319 do
4320 {
0963b4bd
MS
4321 inst1 = read_memory_unsigned_integer (pc, 2,
4322 byte_order_for_code);
177321bd
DJ
4323 pc += thumb_insn_size (inst1);
4324 itstate = thumb_advance_itstate (itstate);
4325 }
4326 while (itstate != 0 && ((itstate >> 4) & 1) == cond_negated);
4327
50e98be4 4328 return MAKE_THUMB_ADDR (pc);
177321bd
DJ
4329 }
4330 }
4331 }
4332 else if (itstate & 0x0f)
9dca5578
DJ
4333 {
4334 /* We are in a conditional block. Check the condition. */
177321bd 4335 int cond = itstate >> 4;
9dca5578
DJ
4336
4337 if (! condition_true (cond, status))
4338 {
4339 /* Advance to the next instruction. All the 32-bit
4340 instructions share a common prefix. */
4341 if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0)
50e98be4 4342 return MAKE_THUMB_ADDR (pc + 4);
9dca5578 4343 else
50e98be4 4344 return MAKE_THUMB_ADDR (pc + 2);
9dca5578 4345 }
177321bd
DJ
4346
4347 /* Otherwise, handle the instruction normally. */
9dca5578
DJ
4348 }
4349
c906108c
SS
4350 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
4351 {
4352 CORE_ADDR sp;
4353
4354 /* Fetch the saved PC from the stack. It's stored above
4355 all of the other registers. */
f0c9063c 4356 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
0b1b3e42 4357 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
e17a4113 4358 nextpc = read_memory_unsigned_integer (sp + offset, 4, byte_order);
c906108c
SS
4359 }
4360 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
4361 {
c5aa993b 4362 unsigned long cond = bits (inst1, 8, 11);
25b41d01
YQ
4363 if (cond == 0x0f) /* 0x0f = SWI */
4364 {
4365 struct gdbarch_tdep *tdep;
4366 tdep = gdbarch_tdep (gdbarch);
4367
4368 if (tdep->syscall_next_pc != NULL)
4369 nextpc = tdep->syscall_next_pc (frame);
4370
4371 }
4372 else if (cond != 0x0f && condition_true (cond, status))
c906108c
SS
4373 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
4374 }
4375 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
4376 {
4377 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
4378 }
9dca5578 4379 else if ((inst1 & 0xe000) == 0xe000) /* 32-bit instruction */
c906108c 4380 {
e17a4113
UW
4381 unsigned short inst2;
4382 inst2 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
9dca5578
DJ
4383
4384 /* Default to the next instruction. */
4385 nextpc = pc + 4;
50e98be4 4386 nextpc = MAKE_THUMB_ADDR (nextpc);
9dca5578
DJ
4387
4388 if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000)
4389 {
4390 /* Branches and miscellaneous control instructions. */
4391
4392 if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000)
4393 {
4394 /* B, BL, BLX. */
4395 int j1, j2, imm1, imm2;
4396
4397 imm1 = sbits (inst1, 0, 10);
4398 imm2 = bits (inst2, 0, 10);
4399 j1 = bit (inst2, 13);
4400 j2 = bit (inst2, 11);
4401
4402 offset = ((imm1 << 12) + (imm2 << 1));
4403 offset ^= ((!j2) << 22) | ((!j1) << 23);
4404
4405 nextpc = pc_val + offset;
4406 /* For BLX make sure to clear the low bits. */
4407 if (bit (inst2, 12) == 0)
4408 nextpc = nextpc & 0xfffffffc;
4409 }
4410 else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00)
4411 {
4412 /* SUBS PC, LR, #imm8. */
4413 nextpc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
4414 nextpc -= inst2 & 0x00ff;
4415 }
4069ebbe 4416 else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380)
9dca5578
DJ
4417 {
4418 /* Conditional branch. */
4419 if (condition_true (bits (inst1, 6, 9), status))
4420 {
4421 int sign, j1, j2, imm1, imm2;
4422
4423 sign = sbits (inst1, 10, 10);
4424 imm1 = bits (inst1, 0, 5);
4425 imm2 = bits (inst2, 0, 10);
4426 j1 = bit (inst2, 13);
4427 j2 = bit (inst2, 11);
4428
4429 offset = (sign << 20) + (j2 << 19) + (j1 << 18);
4430 offset += (imm1 << 12) + (imm2 << 1);
4431
4432 nextpc = pc_val + offset;
4433 }
4434 }
4435 }
4436 else if ((inst1 & 0xfe50) == 0xe810)
4437 {
4438 /* Load multiple or RFE. */
4439 int rn, offset, load_pc = 1;
4440
4441 rn = bits (inst1, 0, 3);
4442 if (bit (inst1, 7) && !bit (inst1, 8))
4443 {
4444 /* LDMIA or POP */
4445 if (!bit (inst2, 15))
4446 load_pc = 0;
4447 offset = bitcount (inst2) * 4 - 4;
4448 }
4449 else if (!bit (inst1, 7) && bit (inst1, 8))
4450 {
4451 /* LDMDB */
4452 if (!bit (inst2, 15))
4453 load_pc = 0;
4454 offset = -4;
4455 }
4456 else if (bit (inst1, 7) && bit (inst1, 8))
4457 {
4458 /* RFEIA */
4459 offset = 0;
4460 }
4461 else if (!bit (inst1, 7) && !bit (inst1, 8))
4462 {
4463 /* RFEDB */
4464 offset = -8;
4465 }
4466 else
4467 load_pc = 0;
4468
4469 if (load_pc)
4470 {
4471 CORE_ADDR addr = get_frame_register_unsigned (frame, rn);
4472 nextpc = get_frame_memory_unsigned (frame, addr + offset, 4);
4473 }
4474 }
4475 else if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00)
4476 {
4477 /* MOV PC or MOVS PC. */
4478 nextpc = get_frame_register_unsigned (frame, bits (inst2, 0, 3));
50e98be4 4479 nextpc = MAKE_THUMB_ADDR (nextpc);
9dca5578
DJ
4480 }
4481 else if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000)
4482 {
4483 /* LDR PC. */
4484 CORE_ADDR base;
4485 int rn, load_pc = 1;
4486
4487 rn = bits (inst1, 0, 3);
4488 base = get_frame_register_unsigned (frame, rn);
bf9f652a 4489 if (rn == ARM_PC_REGNUM)
9dca5578
DJ
4490 {
4491 base = (base + 4) & ~(CORE_ADDR) 0x3;
4492 if (bit (inst1, 7))
4493 base += bits (inst2, 0, 11);
4494 else
4495 base -= bits (inst2, 0, 11);
4496 }
4497 else if (bit (inst1, 7))
4498 base += bits (inst2, 0, 11);
4499 else if (bit (inst2, 11))
4500 {
4501 if (bit (inst2, 10))
4502 {
4503 if (bit (inst2, 9))
4504 base += bits (inst2, 0, 7);
4505 else
4506 base -= bits (inst2, 0, 7);
4507 }
4508 }
4509 else if ((inst2 & 0x0fc0) == 0x0000)
4510 {
4511 int shift = bits (inst2, 4, 5), rm = bits (inst2, 0, 3);
4512 base += get_frame_register_unsigned (frame, rm) << shift;
4513 }
4514 else
4515 /* Reserved. */
4516 load_pc = 0;
4517
4518 if (load_pc)
4519 nextpc = get_frame_memory_unsigned (frame, base, 4);
4520 }
4521 else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000)
4522 {
4523 /* TBB. */
d476da0e
RE
4524 CORE_ADDR tbl_reg, table, offset, length;
4525
4526 tbl_reg = bits (inst1, 0, 3);
4527 if (tbl_reg == 0x0f)
4528 table = pc + 4; /* Regcache copy of PC isn't right yet. */
4529 else
4530 table = get_frame_register_unsigned (frame, tbl_reg);
9dca5578 4531
9dca5578
DJ
4532 offset = get_frame_register_unsigned (frame, bits (inst2, 0, 3));
4533 length = 2 * get_frame_memory_unsigned (frame, table + offset, 1);
4534 nextpc = pc_val + length;
4535 }
d476da0e 4536 else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010)
9dca5578
DJ
4537 {
4538 /* TBH. */
d476da0e
RE
4539 CORE_ADDR tbl_reg, table, offset, length;
4540
4541 tbl_reg = bits (inst1, 0, 3);
4542 if (tbl_reg == 0x0f)
4543 table = pc + 4; /* Regcache copy of PC isn't right yet. */
4544 else
4545 table = get_frame_register_unsigned (frame, tbl_reg);
9dca5578 4546
9dca5578
DJ
4547 offset = 2 * get_frame_register_unsigned (frame, bits (inst2, 0, 3));
4548 length = 2 * get_frame_memory_unsigned (frame, table + offset, 2);
4549 nextpc = pc_val + length;
4550 }
c906108c 4551 }
aa17d93e 4552 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
4553 {
4554 if (bits (inst1, 3, 6) == 0x0f)
4555 nextpc = pc_val;
4556 else
0b1b3e42 4557 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
9498281f 4558 }
ad8b5167
UW
4559 else if ((inst1 & 0xff87) == 0x4687) /* mov pc, REG */
4560 {
4561 if (bits (inst1, 3, 6) == 0x0f)
4562 nextpc = pc_val;
4563 else
4564 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
4565
4566 nextpc = MAKE_THUMB_ADDR (nextpc);
4567 }
9dca5578
DJ
4568 else if ((inst1 & 0xf500) == 0xb100)
4569 {
4570 /* CBNZ or CBZ. */
4571 int imm = (bit (inst1, 9) << 6) + (bits (inst1, 3, 7) << 1);
4572 ULONGEST reg = get_frame_register_unsigned (frame, bits (inst1, 0, 2));
4573
4574 if (bit (inst1, 11) && reg != 0)
4575 nextpc = pc_val + imm;
4576 else if (!bit (inst1, 11) && reg == 0)
4577 nextpc = pc_val + imm;
4578 }
c906108c
SS
4579 return nextpc;
4580}
4581
50e98be4 4582/* Get the raw next address. PC is the current program counter, in
18819fa6 4583 FRAME, which is assumed to be executing in ARM mode.
50e98be4
DJ
4584
4585 The value returned has the execution state of the next instruction
4586 encoded in it. Use IS_THUMB_ADDR () to see whether the instruction is
4587 in Thumb-State, and gdbarch_addr_bits_remove () to get the plain memory
0963b4bd
MS
4588 address. */
4589
50e98be4 4590static CORE_ADDR
18819fa6 4591arm_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc)
c906108c 4592{
2af46ca0 4593 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113
UW
4594 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4595 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
c906108c
SS
4596 unsigned long pc_val;
4597 unsigned long this_instr;
4598 unsigned long status;
4599 CORE_ADDR nextpc;
4600
c906108c 4601 pc_val = (unsigned long) pc;
e17a4113 4602 this_instr = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
9d4fde75 4603
0b1b3e42 4604 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
c5aa993b 4605 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c 4606
daddc3c1
DJ
4607 if (bits (this_instr, 28, 31) == INST_NV)
4608 switch (bits (this_instr, 24, 27))
4609 {
4610 case 0xa:
4611 case 0xb:
4612 {
4613 /* Branch with Link and change to Thumb. */
4614 nextpc = BranchDest (pc, this_instr);
4615 nextpc |= bit (this_instr, 24) << 1;
50e98be4 4616 nextpc = MAKE_THUMB_ADDR (nextpc);
daddc3c1
DJ
4617 break;
4618 }
4619 case 0xc:
4620 case 0xd:
4621 case 0xe:
4622 /* Coprocessor register transfer. */
4623 if (bits (this_instr, 12, 15) == 15)
4624 error (_("Invalid update to pc in instruction"));
4625 break;
4626 }
4627 else if (condition_true (bits (this_instr, 28, 31), status))
c906108c
SS
4628 {
4629 switch (bits (this_instr, 24, 27))
4630 {
c5aa993b 4631 case 0x0:
94c30b78 4632 case 0x1: /* data processing */
c5aa993b
JM
4633 case 0x2:
4634 case 0x3:
c906108c
SS
4635 {
4636 unsigned long operand1, operand2, result = 0;
4637 unsigned long rn;
4638 int c;
c5aa993b 4639
c906108c
SS
4640 if (bits (this_instr, 12, 15) != 15)
4641 break;
4642
4643 if (bits (this_instr, 22, 25) == 0
c5aa993b 4644 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 4645 error (_("Invalid update to pc in instruction"));
c906108c 4646
9498281f 4647 /* BX <reg>, BLX <reg> */
e150acc7
PB
4648 if (bits (this_instr, 4, 27) == 0x12fff1
4649 || bits (this_instr, 4, 27) == 0x12fff3)
9498281f
DJ
4650 {
4651 rn = bits (this_instr, 0, 3);
bf9f652a
YQ
4652 nextpc = ((rn == ARM_PC_REGNUM)
4653 ? (pc_val + 8)
4654 : get_frame_register_unsigned (frame, rn));
4655
9498281f
DJ
4656 return nextpc;
4657 }
4658
0963b4bd 4659 /* Multiply into PC. */
c906108c
SS
4660 c = (status & FLAG_C) ? 1 : 0;
4661 rn = bits (this_instr, 16, 19);
bf9f652a
YQ
4662 operand1 = ((rn == ARM_PC_REGNUM)
4663 ? (pc_val + 8)
4664 : get_frame_register_unsigned (frame, rn));
c5aa993b 4665
c906108c
SS
4666 if (bit (this_instr, 25))
4667 {
4668 unsigned long immval = bits (this_instr, 0, 7);
4669 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
4670 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
4671 & 0xffffffff;
c906108c 4672 }
0963b4bd
MS
4673 else /* operand 2 is a shifted register. */
4674 operand2 = shifted_reg_val (frame, this_instr, c,
4675 pc_val, status);
c5aa993b 4676
c906108c
SS
4677 switch (bits (this_instr, 21, 24))
4678 {
c5aa993b 4679 case 0x0: /*and */
c906108c
SS
4680 result = operand1 & operand2;
4681 break;
4682
c5aa993b 4683 case 0x1: /*eor */
c906108c
SS
4684 result = operand1 ^ operand2;
4685 break;
4686
c5aa993b 4687 case 0x2: /*sub */
c906108c
SS
4688 result = operand1 - operand2;
4689 break;
4690
c5aa993b 4691 case 0x3: /*rsb */
c906108c
SS
4692 result = operand2 - operand1;
4693 break;
4694
c5aa993b 4695 case 0x4: /*add */
c906108c
SS
4696 result = operand1 + operand2;
4697 break;
4698
c5aa993b 4699 case 0x5: /*adc */
c906108c
SS
4700 result = operand1 + operand2 + c;
4701 break;
4702
c5aa993b 4703 case 0x6: /*sbc */
c906108c
SS
4704 result = operand1 - operand2 + c;
4705 break;
4706
c5aa993b 4707 case 0x7: /*rsc */
c906108c
SS
4708 result = operand2 - operand1 + c;
4709 break;
4710
c5aa993b
JM
4711 case 0x8:
4712 case 0x9:
4713 case 0xa:
4714 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
4715 result = (unsigned long) nextpc;
4716 break;
4717
c5aa993b 4718 case 0xc: /*orr */
c906108c
SS
4719 result = operand1 | operand2;
4720 break;
4721
c5aa993b 4722 case 0xd: /*mov */
c906108c
SS
4723 /* Always step into a function. */
4724 result = operand2;
c5aa993b 4725 break;
c906108c 4726
c5aa993b 4727 case 0xe: /*bic */
c906108c
SS
4728 result = operand1 & ~operand2;
4729 break;
4730
c5aa993b 4731 case 0xf: /*mvn */
c906108c
SS
4732 result = ~operand2;
4733 break;
4734 }
c906108c 4735
50e98be4
DJ
4736 /* In 26-bit APCS the bottom two bits of the result are
4737 ignored, and we always end up in ARM state. */
4738 if (!arm_apcs_32)
4739 nextpc = arm_addr_bits_remove (gdbarch, result);
4740 else
4741 nextpc = result;
4742
c906108c
SS
4743 break;
4744 }
c5aa993b
JM
4745
4746 case 0x4:
4747 case 0x5: /* data transfer */
4748 case 0x6:
4749 case 0x7:
c906108c
SS
4750 if (bit (this_instr, 20))
4751 {
4752 /* load */
4753 if (bits (this_instr, 12, 15) == 15)
4754 {
4755 /* rd == pc */
c5aa993b 4756 unsigned long rn;
c906108c 4757 unsigned long base;
c5aa993b 4758
c906108c 4759 if (bit (this_instr, 22))
edefbb7c 4760 error (_("Invalid update to pc in instruction"));
c906108c
SS
4761
4762 /* byte write to PC */
4763 rn = bits (this_instr, 16, 19);
bf9f652a
YQ
4764 base = ((rn == ARM_PC_REGNUM)
4765 ? (pc_val + 8)
4766 : get_frame_register_unsigned (frame, rn));
4767
c906108c
SS
4768 if (bit (this_instr, 24))
4769 {
4770 /* pre-indexed */
4771 int c = (status & FLAG_C) ? 1 : 0;
4772 unsigned long offset =
c5aa993b 4773 (bit (this_instr, 25)
0b1b3e42 4774 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
c5aa993b 4775 : bits (this_instr, 0, 11));
c906108c
SS
4776
4777 if (bit (this_instr, 23))
4778 base += offset;
4779 else
4780 base -= offset;
4781 }
c5aa993b 4782 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
e17a4113 4783 4, byte_order);
c906108c
SS
4784 }
4785 }
4786 break;
c5aa993b
JM
4787
4788 case 0x8:
4789 case 0x9: /* block transfer */
c906108c
SS
4790 if (bit (this_instr, 20))
4791 {
4792 /* LDM */
4793 if (bit (this_instr, 15))
4794 {
4795 /* loading pc */
4796 int offset = 0;
4797
4798 if (bit (this_instr, 23))
4799 {
4800 /* up */
4801 unsigned long reglist = bits (this_instr, 0, 14);
4802 offset = bitcount (reglist) * 4;
c5aa993b 4803 if (bit (this_instr, 24)) /* pre */
c906108c
SS
4804 offset += 4;
4805 }
4806 else if (bit (this_instr, 24))
4807 offset = -4;
c5aa993b 4808
c906108c 4809 {
c5aa993b 4810 unsigned long rn_val =
0b1b3e42
UW
4811 get_frame_register_unsigned (frame,
4812 bits (this_instr, 16, 19));
c906108c
SS
4813 nextpc =
4814 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 4815 + offset),
e17a4113 4816 4, byte_order);
c906108c 4817 }
c906108c
SS
4818 }
4819 }
4820 break;
c5aa993b
JM
4821
4822 case 0xb: /* branch & link */
4823 case 0xa: /* branch */
c906108c
SS
4824 {
4825 nextpc = BranchDest (pc, this_instr);
c906108c
SS
4826 break;
4827 }
c5aa993b
JM
4828
4829 case 0xc:
4830 case 0xd:
4831 case 0xe: /* coproc ops */
25b41d01 4832 break;
c5aa993b 4833 case 0xf: /* SWI */
25b41d01
YQ
4834 {
4835 struct gdbarch_tdep *tdep;
4836 tdep = gdbarch_tdep (gdbarch);
4837
4838 if (tdep->syscall_next_pc != NULL)
4839 nextpc = tdep->syscall_next_pc (frame);
4840
4841 }
c906108c
SS
4842 break;
4843
4844 default:
edefbb7c 4845 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
4846 return (pc);
4847 }
4848 }
4849
4850 return nextpc;
4851}
4852
18819fa6
UW
4853/* Determine next PC after current instruction executes. Will call either
4854 arm_get_next_pc_raw or thumb_get_next_pc_raw. Error out if infinite
4855 loop is detected. */
4856
50e98be4
DJ
4857CORE_ADDR
4858arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
4859{
18819fa6
UW
4860 CORE_ADDR nextpc;
4861
4862 if (arm_frame_is_thumb (frame))
4863 {
4864 nextpc = thumb_get_next_pc_raw (frame, pc);
4865 if (nextpc == MAKE_THUMB_ADDR (pc))
4866 error (_("Infinite loop detected"));
4867 }
4868 else
4869 {
4870 nextpc = arm_get_next_pc_raw (frame, pc);
4871 if (nextpc == pc)
4872 error (_("Infinite loop detected"));
4873 }
4874
50e98be4
DJ
4875 return nextpc;
4876}
4877
18819fa6
UW
4878/* Like insert_single_step_breakpoint, but make sure we use a breakpoint
4879 of the appropriate mode (as encoded in the PC value), even if this
4880 differs from what would be expected according to the symbol tables. */
4881
4882void
4883arm_insert_single_step_breakpoint (struct gdbarch *gdbarch,
4884 struct address_space *aspace,
4885 CORE_ADDR pc)
4886{
4887 struct cleanup *old_chain
4888 = make_cleanup_restore_integer (&arm_override_mode);
4889
4890 arm_override_mode = IS_THUMB_ADDR (pc);
4891 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4892
4893 insert_single_step_breakpoint (gdbarch, aspace, pc);
4894
4895 do_cleanups (old_chain);
4896}
4897
9512d7fd
FN
4898/* single_step() is called just before we want to resume the inferior,
4899 if we want to single-step it but there is no hardware or kernel
4900 single-step support. We find the target of the coming instruction
e0cd558a 4901 and breakpoint it. */
9512d7fd 4902
190dce09 4903int
0b1b3e42 4904arm_software_single_step (struct frame_info *frame)
9512d7fd 4905{
a6d9a66e 4906 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 4907 struct address_space *aspace = get_frame_address_space (frame);
0b1b3e42 4908 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
18819fa6
UW
4909
4910 arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
e6590a1b
UW
4911
4912 return 1;
9512d7fd 4913}
9512d7fd 4914
f9d67f43
DJ
4915/* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
4916 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
4917 NULL if an error occurs. BUF is freed. */
4918
4919static gdb_byte *
4920extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
4921 int old_len, int new_len)
4922{
4923 gdb_byte *new_buf, *middle;
4924 int bytes_to_read = new_len - old_len;
4925
4926 new_buf = xmalloc (new_len);
4927 memcpy (new_buf + bytes_to_read, buf, old_len);
4928 xfree (buf);
4929 if (target_read_memory (endaddr - new_len, new_buf, bytes_to_read) != 0)
4930 {
4931 xfree (new_buf);
4932 return NULL;
4933 }
4934 return new_buf;
4935}
4936
4937/* An IT block is at most the 2-byte IT instruction followed by
4938 four 4-byte instructions. The furthest back we must search to
4939 find an IT block that affects the current instruction is thus
4940 2 + 3 * 4 == 14 bytes. */
4941#define MAX_IT_BLOCK_PREFIX 14
4942
4943/* Use a quick scan if there are more than this many bytes of
4944 code. */
4945#define IT_SCAN_THRESHOLD 32
4946
4947/* Adjust a breakpoint's address to move breakpoints out of IT blocks.
4948 A breakpoint in an IT block may not be hit, depending on the
4949 condition flags. */
4950static CORE_ADDR
4951arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
4952{
4953 gdb_byte *buf;
4954 char map_type;
4955 CORE_ADDR boundary, func_start;
4956 int buf_len, buf2_len;
4957 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
4958 int i, any, last_it, last_it_count;
4959
4960 /* If we are using BKPT breakpoints, none of this is necessary. */
4961 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
4962 return bpaddr;
4963
4964 /* ARM mode does not have this problem. */
9779414d 4965 if (!arm_pc_is_thumb (gdbarch, bpaddr))
f9d67f43
DJ
4966 return bpaddr;
4967
4968 /* We are setting a breakpoint in Thumb code that could potentially
4969 contain an IT block. The first step is to find how much Thumb
4970 code there is; we do not need to read outside of known Thumb
4971 sequences. */
4972 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
4973 if (map_type == 0)
4974 /* Thumb-2 code must have mapping symbols to have a chance. */
4975 return bpaddr;
4976
4977 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
4978
4979 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
4980 && func_start > boundary)
4981 boundary = func_start;
4982
4983 /* Search for a candidate IT instruction. We have to do some fancy
4984 footwork to distinguish a real IT instruction from the second
4985 half of a 32-bit instruction, but there is no need for that if
4986 there's no candidate. */
4987 buf_len = min (bpaddr - boundary, MAX_IT_BLOCK_PREFIX);
4988 if (buf_len == 0)
4989 /* No room for an IT instruction. */
4990 return bpaddr;
4991
4992 buf = xmalloc (buf_len);
4993 if (target_read_memory (bpaddr - buf_len, buf, buf_len) != 0)
4994 return bpaddr;
4995 any = 0;
4996 for (i = 0; i < buf_len; i += 2)
4997 {
4998 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4999 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
5000 {
5001 any = 1;
5002 break;
5003 }
5004 }
5005 if (any == 0)
5006 {
5007 xfree (buf);
5008 return bpaddr;
5009 }
5010
5011 /* OK, the code bytes before this instruction contain at least one
5012 halfword which resembles an IT instruction. We know that it's
5013 Thumb code, but there are still two possibilities. Either the
5014 halfword really is an IT instruction, or it is the second half of
5015 a 32-bit Thumb instruction. The only way we can tell is to
5016 scan forwards from a known instruction boundary. */
5017 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
5018 {
5019 int definite;
5020
5021 /* There's a lot of code before this instruction. Start with an
5022 optimistic search; it's easy to recognize halfwords that can
5023 not be the start of a 32-bit instruction, and use that to
5024 lock on to the instruction boundaries. */
5025 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
5026 if (buf == NULL)
5027 return bpaddr;
5028 buf_len = IT_SCAN_THRESHOLD;
5029
5030 definite = 0;
5031 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
5032 {
5033 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
5034 if (thumb_insn_size (inst1) == 2)
5035 {
5036 definite = 1;
5037 break;
5038 }
5039 }
5040
5041 /* At this point, if DEFINITE, BUF[I] is the first place we
5042 are sure that we know the instruction boundaries, and it is far
5043 enough from BPADDR that we could not miss an IT instruction
5044 affecting BPADDR. If ! DEFINITE, give up - start from a
5045 known boundary. */
5046 if (! definite)
5047 {
0963b4bd
MS
5048 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
5049 bpaddr - boundary);
f9d67f43
DJ
5050 if (buf == NULL)
5051 return bpaddr;
5052 buf_len = bpaddr - boundary;
5053 i = 0;
5054 }
5055 }
5056 else
5057 {
5058 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
5059 if (buf == NULL)
5060 return bpaddr;
5061 buf_len = bpaddr - boundary;
5062 i = 0;
5063 }
5064
5065 /* Scan forwards. Find the last IT instruction before BPADDR. */
5066 last_it = -1;
5067 last_it_count = 0;
5068 while (i < buf_len)
5069 {
5070 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
5071 last_it_count--;
5072 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
5073 {
5074 last_it = i;
5075 if (inst1 & 0x0001)
5076 last_it_count = 4;
5077 else if (inst1 & 0x0002)
5078 last_it_count = 3;
5079 else if (inst1 & 0x0004)
5080 last_it_count = 2;
5081 else
5082 last_it_count = 1;
5083 }
5084 i += thumb_insn_size (inst1);
5085 }
5086
5087 xfree (buf);
5088
5089 if (last_it == -1)
5090 /* There wasn't really an IT instruction after all. */
5091 return bpaddr;
5092
5093 if (last_it_count < 1)
5094 /* It was too far away. */
5095 return bpaddr;
5096
5097 /* This really is a trouble spot. Move the breakpoint to the IT
5098 instruction. */
5099 return bpaddr - buf_len + last_it;
5100}
5101
cca44b1b 5102/* ARM displaced stepping support.
c906108c 5103
cca44b1b 5104 Generally ARM displaced stepping works as follows:
c906108c 5105
cca44b1b
JB
5106 1. When an instruction is to be single-stepped, it is first decoded by
5107 arm_process_displaced_insn (called from arm_displaced_step_copy_insn).
5108 Depending on the type of instruction, it is then copied to a scratch
5109 location, possibly in a modified form. The copy_* set of functions
0963b4bd 5110 performs such modification, as necessary. A breakpoint is placed after
cca44b1b
JB
5111 the modified instruction in the scratch space to return control to GDB.
5112 Note in particular that instructions which modify the PC will no longer
5113 do so after modification.
c5aa993b 5114
cca44b1b
JB
5115 2. The instruction is single-stepped, by setting the PC to the scratch
5116 location address, and resuming. Control returns to GDB when the
5117 breakpoint is hit.
c5aa993b 5118
cca44b1b
JB
5119 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
5120 function used for the current instruction. This function's job is to
5121 put the CPU/memory state back to what it would have been if the
5122 instruction had been executed unmodified in its original location. */
c5aa993b 5123
cca44b1b
JB
5124/* NOP instruction (mov r0, r0). */
5125#define ARM_NOP 0xe1a00000
5126
5127/* Helper for register reads for displaced stepping. In particular, this
5128 returns the PC as it would be seen by the instruction at its original
5129 location. */
5130
5131ULONGEST
36073a92
YQ
5132displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc,
5133 int regno)
cca44b1b
JB
5134{
5135 ULONGEST ret;
36073a92 5136 CORE_ADDR from = dsc->insn_addr;
cca44b1b 5137
bf9f652a 5138 if (regno == ARM_PC_REGNUM)
cca44b1b 5139 {
4db71c0b
YQ
5140 /* Compute pipeline offset:
5141 - When executing an ARM instruction, PC reads as the address of the
5142 current instruction plus 8.
5143 - When executing a Thumb instruction, PC reads as the address of the
5144 current instruction plus 4. */
5145
36073a92 5146 if (!dsc->is_thumb)
4db71c0b
YQ
5147 from += 8;
5148 else
5149 from += 4;
5150
cca44b1b
JB
5151 if (debug_displaced)
5152 fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
4db71c0b
YQ
5153 (unsigned long) from);
5154 return (ULONGEST) from;
cca44b1b 5155 }
c906108c 5156 else
cca44b1b
JB
5157 {
5158 regcache_cooked_read_unsigned (regs, regno, &ret);
5159 if (debug_displaced)
5160 fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
5161 regno, (unsigned long) ret);
5162 return ret;
5163 }
c906108c
SS
5164}
5165
cca44b1b
JB
5166static int
5167displaced_in_arm_mode (struct regcache *regs)
5168{
5169 ULONGEST ps;
9779414d 5170 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
66e810cd 5171
cca44b1b 5172 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
66e810cd 5173
9779414d 5174 return (ps & t_bit) == 0;
cca44b1b 5175}
66e810cd 5176
cca44b1b 5177/* Write to the PC as from a branch instruction. */
c906108c 5178
cca44b1b 5179static void
36073a92
YQ
5180branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
5181 ULONGEST val)
c906108c 5182{
36073a92 5183 if (!dsc->is_thumb)
cca44b1b
JB
5184 /* Note: If bits 0/1 are set, this branch would be unpredictable for
5185 architecture versions < 6. */
0963b4bd
MS
5186 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
5187 val & ~(ULONGEST) 0x3);
cca44b1b 5188 else
0963b4bd
MS
5189 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
5190 val & ~(ULONGEST) 0x1);
cca44b1b 5191}
66e810cd 5192
cca44b1b
JB
5193/* Write to the PC as from a branch-exchange instruction. */
5194
5195static void
5196bx_write_pc (struct regcache *regs, ULONGEST val)
5197{
5198 ULONGEST ps;
9779414d 5199 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
cca44b1b
JB
5200
5201 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
5202
5203 if ((val & 1) == 1)
c906108c 5204 {
9779414d 5205 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
cca44b1b
JB
5206 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
5207 }
5208 else if ((val & 2) == 0)
5209 {
9779414d 5210 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 5211 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
c906108c
SS
5212 }
5213 else
5214 {
cca44b1b
JB
5215 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
5216 mode, align dest to 4 bytes). */
5217 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
9779414d 5218 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 5219 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
c906108c
SS
5220 }
5221}
ed9a39eb 5222
cca44b1b 5223/* Write to the PC as if from a load instruction. */
ed9a39eb 5224
34e8f22d 5225static void
36073a92
YQ
5226load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
5227 ULONGEST val)
ed9a39eb 5228{
cca44b1b
JB
5229 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
5230 bx_write_pc (regs, val);
5231 else
36073a92 5232 branch_write_pc (regs, dsc, val);
cca44b1b 5233}
be8626e0 5234
cca44b1b
JB
5235/* Write to the PC as if from an ALU instruction. */
5236
5237static void
36073a92
YQ
5238alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
5239 ULONGEST val)
cca44b1b 5240{
36073a92 5241 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
cca44b1b
JB
5242 bx_write_pc (regs, val);
5243 else
36073a92 5244 branch_write_pc (regs, dsc, val);
cca44b1b
JB
5245}
5246
5247/* Helper for writing to registers for displaced stepping. Writing to the PC
5248 has a varying effects depending on the instruction which does the write:
5249 this is controlled by the WRITE_PC argument. */
5250
5251void
5252displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
5253 int regno, ULONGEST val, enum pc_write_style write_pc)
5254{
bf9f652a 5255 if (regno == ARM_PC_REGNUM)
08216dd7 5256 {
cca44b1b
JB
5257 if (debug_displaced)
5258 fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
5259 (unsigned long) val);
5260 switch (write_pc)
08216dd7 5261 {
cca44b1b 5262 case BRANCH_WRITE_PC:
36073a92 5263 branch_write_pc (regs, dsc, val);
08216dd7
RE
5264 break;
5265
cca44b1b
JB
5266 case BX_WRITE_PC:
5267 bx_write_pc (regs, val);
5268 break;
5269
5270 case LOAD_WRITE_PC:
36073a92 5271 load_write_pc (regs, dsc, val);
cca44b1b
JB
5272 break;
5273
5274 case ALU_WRITE_PC:
36073a92 5275 alu_write_pc (regs, dsc, val);
cca44b1b
JB
5276 break;
5277
5278 case CANNOT_WRITE_PC:
5279 warning (_("Instruction wrote to PC in an unexpected way when "
5280 "single-stepping"));
08216dd7
RE
5281 break;
5282
5283 default:
97b9747c
JB
5284 internal_error (__FILE__, __LINE__,
5285 _("Invalid argument to displaced_write_reg"));
08216dd7 5286 }
b508a996 5287
cca44b1b 5288 dsc->wrote_to_pc = 1;
b508a996 5289 }
ed9a39eb 5290 else
b508a996 5291 {
cca44b1b
JB
5292 if (debug_displaced)
5293 fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
5294 regno, (unsigned long) val);
5295 regcache_cooked_write_unsigned (regs, regno, val);
b508a996 5296 }
34e8f22d
RE
5297}
5298
cca44b1b
JB
5299/* This function is used to concisely determine if an instruction INSN
5300 references PC. Register fields of interest in INSN should have the
0963b4bd
MS
5301 corresponding fields of BITMASK set to 0b1111. The function
5302 returns return 1 if any of these fields in INSN reference the PC
5303 (also 0b1111, r15), else it returns 0. */
67255d04
RE
5304
5305static int
cca44b1b 5306insn_references_pc (uint32_t insn, uint32_t bitmask)
67255d04 5307{
cca44b1b 5308 uint32_t lowbit = 1;
67255d04 5309
cca44b1b
JB
5310 while (bitmask != 0)
5311 {
5312 uint32_t mask;
44e1a9eb 5313
cca44b1b
JB
5314 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
5315 ;
67255d04 5316
cca44b1b
JB
5317 if (!lowbit)
5318 break;
67255d04 5319
cca44b1b 5320 mask = lowbit * 0xf;
67255d04 5321
cca44b1b
JB
5322 if ((insn & mask) == mask)
5323 return 1;
5324
5325 bitmask &= ~mask;
67255d04
RE
5326 }
5327
cca44b1b
JB
5328 return 0;
5329}
2af48f68 5330
cca44b1b
JB
5331/* The simplest copy function. Many instructions have the same effect no
5332 matter what address they are executed at: in those cases, use this. */
67255d04 5333
cca44b1b 5334static int
7ff120b4
YQ
5335arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
5336 const char *iname, struct displaced_step_closure *dsc)
cca44b1b
JB
5337{
5338 if (debug_displaced)
5339 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
5340 "opcode/class '%s' unmodified\n", (unsigned long) insn,
5341 iname);
67255d04 5342
cca44b1b 5343 dsc->modinsn[0] = insn;
67255d04 5344
cca44b1b
JB
5345 return 0;
5346}
5347
5348/* Preload instructions with immediate offset. */
5349
5350static void
6e39997a 5351cleanup_preload (struct gdbarch *gdbarch,
cca44b1b
JB
5352 struct regcache *regs, struct displaced_step_closure *dsc)
5353{
5354 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5355 if (!dsc->u.preload.immed)
5356 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5357}
5358
7ff120b4
YQ
5359static void
5360install_preload (struct gdbarch *gdbarch, struct regcache *regs,
5361 struct displaced_step_closure *dsc, unsigned int rn)
cca44b1b 5362{
cca44b1b 5363 ULONGEST rn_val;
cca44b1b
JB
5364 /* Preload instructions:
5365
5366 {pli/pld} [rn, #+/-imm]
5367 ->
5368 {pli/pld} [r0, #+/-imm]. */
5369
36073a92
YQ
5370 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5371 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 5372 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
cca44b1b
JB
5373 dsc->u.preload.immed = 1;
5374
cca44b1b 5375 dsc->cleanup = &cleanup_preload;
cca44b1b
JB
5376}
5377
cca44b1b 5378static int
7ff120b4 5379arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
cca44b1b
JB
5380 struct displaced_step_closure *dsc)
5381{
5382 unsigned int rn = bits (insn, 16, 19);
cca44b1b 5383
7ff120b4
YQ
5384 if (!insn_references_pc (insn, 0x000f0000ul))
5385 return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
cca44b1b
JB
5386
5387 if (debug_displaced)
5388 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
5389 (unsigned long) insn);
5390
7ff120b4
YQ
5391 dsc->modinsn[0] = insn & 0xfff0ffff;
5392
5393 install_preload (gdbarch, regs, dsc, rn);
5394
5395 return 0;
5396}
5397
5398/* Preload instructions with register offset. */
5399
5400static void
5401install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
5402 struct displaced_step_closure *dsc, unsigned int rn,
5403 unsigned int rm)
5404{
5405 ULONGEST rn_val, rm_val;
5406
cca44b1b
JB
5407 /* Preload register-offset instructions:
5408
5409 {pli/pld} [rn, rm {, shift}]
5410 ->
5411 {pli/pld} [r0, r1 {, shift}]. */
5412
36073a92
YQ
5413 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5414 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5415 rn_val = displaced_read_reg (regs, dsc, rn);
5416 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5417 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
5418 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
cca44b1b
JB
5419 dsc->u.preload.immed = 0;
5420
cca44b1b 5421 dsc->cleanup = &cleanup_preload;
7ff120b4
YQ
5422}
5423
5424static int
5425arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
5426 struct regcache *regs,
5427 struct displaced_step_closure *dsc)
5428{
5429 unsigned int rn = bits (insn, 16, 19);
5430 unsigned int rm = bits (insn, 0, 3);
5431
5432
5433 if (!insn_references_pc (insn, 0x000f000ful))
5434 return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
5435
5436 if (debug_displaced)
5437 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
5438 (unsigned long) insn);
5439
5440 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
cca44b1b 5441
7ff120b4 5442 install_preload_reg (gdbarch, regs, dsc, rn, rm);
cca44b1b
JB
5443 return 0;
5444}
5445
5446/* Copy/cleanup coprocessor load and store instructions. */
5447
5448static void
6e39997a 5449cleanup_copro_load_store (struct gdbarch *gdbarch,
cca44b1b
JB
5450 struct regcache *regs,
5451 struct displaced_step_closure *dsc)
5452{
36073a92 5453 ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
5454
5455 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5456
5457 if (dsc->u.ldst.writeback)
5458 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
5459}
5460
7ff120b4
YQ
5461static void
5462install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
5463 struct displaced_step_closure *dsc,
5464 int writeback, unsigned int rn)
cca44b1b 5465{
cca44b1b 5466 ULONGEST rn_val;
cca44b1b 5467
cca44b1b
JB
5468 /* Coprocessor load/store instructions:
5469
5470 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
5471 ->
5472 {stc/stc2} [r0, #+/-imm].
5473
5474 ldc/ldc2 are handled identically. */
5475
36073a92
YQ
5476 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5477 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b
JB
5478 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
5479
7ff120b4 5480 dsc->u.ldst.writeback = writeback;
cca44b1b
JB
5481 dsc->u.ldst.rn = rn;
5482
7ff120b4
YQ
5483 dsc->cleanup = &cleanup_copro_load_store;
5484}
5485
5486static int
5487arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
5488 struct regcache *regs,
5489 struct displaced_step_closure *dsc)
5490{
5491 unsigned int rn = bits (insn, 16, 19);
5492
5493 if (!insn_references_pc (insn, 0x000f0000ul))
5494 return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
5495
5496 if (debug_displaced)
5497 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
5498 "load/store insn %.8lx\n", (unsigned long) insn);
5499
cca44b1b
JB
5500 dsc->modinsn[0] = insn & 0xfff0ffff;
5501
7ff120b4 5502 install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
cca44b1b
JB
5503
5504 return 0;
5505}
5506
5507/* Clean up branch instructions (actually perform the branch, by setting
5508 PC). */
5509
5510static void
6e39997a 5511cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5512 struct displaced_step_closure *dsc)
5513{
36073a92 5514 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
5515 int branch_taken = condition_true (dsc->u.branch.cond, status);
5516 enum pc_write_style write_pc = dsc->u.branch.exchange
5517 ? BX_WRITE_PC : BRANCH_WRITE_PC;
5518
5519 if (!branch_taken)
5520 return;
5521
5522 if (dsc->u.branch.link)
5523 {
8c8dba6d
YQ
5524 /* The value of LR should be the next insn of current one. In order
5525 not to confuse logic hanlding later insn `bx lr', if current insn mode
5526 is Thumb, the bit 0 of LR value should be set to 1. */
5527 ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
5528
5529 if (dsc->is_thumb)
5530 next_insn_addr |= 0x1;
5531
5532 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
5533 CANNOT_WRITE_PC);
cca44b1b
JB
5534 }
5535
bf9f652a 5536 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
cca44b1b
JB
5537}
5538
5539/* Copy B/BL/BLX instructions with immediate destinations. */
5540
7ff120b4
YQ
5541static void
5542install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
5543 struct displaced_step_closure *dsc,
5544 unsigned int cond, int exchange, int link, long offset)
5545{
5546 /* Implement "BL<cond> <label>" as:
5547
5548 Preparation: cond <- instruction condition
5549 Insn: mov r0, r0 (nop)
5550 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
5551
5552 B<cond> similar, but don't set r14 in cleanup. */
5553
5554 dsc->u.branch.cond = cond;
5555 dsc->u.branch.link = link;
5556 dsc->u.branch.exchange = exchange;
5557
5558 if (dsc->is_thumb)
5559 dsc->u.branch.dest = dsc->insn_addr + 4 + offset;
5560 else
5561 dsc->u.branch.dest = dsc->insn_addr + 8 + offset;
5562
5563 dsc->cleanup = &cleanup_branch;
5564}
cca44b1b 5565static int
7ff120b4
YQ
5566arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
5567 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b
JB
5568{
5569 unsigned int cond = bits (insn, 28, 31);
5570 int exchange = (cond == 0xf);
5571 int link = exchange || bit (insn, 24);
cca44b1b
JB
5572 long offset;
5573
5574 if (debug_displaced)
5575 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
5576 "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
5577 (unsigned long) insn);
cca44b1b
JB
5578 if (exchange)
5579 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
5580 then arrange the switch into Thumb mode. */
5581 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
5582 else
5583 offset = bits (insn, 0, 23) << 2;
5584
5585 if (bit (offset, 25))
5586 offset = offset | ~0x3ffffff;
5587
cca44b1b
JB
5588 dsc->modinsn[0] = ARM_NOP;
5589
7ff120b4 5590 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
cca44b1b
JB
5591 return 0;
5592}
5593
5594/* Copy BX/BLX with register-specified destinations. */
5595
7ff120b4
YQ
5596static void
5597install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
5598 struct displaced_step_closure *dsc, int link,
5599 unsigned int cond, unsigned int rm)
cca44b1b 5600{
cca44b1b
JB
5601 /* Implement {BX,BLX}<cond> <reg>" as:
5602
5603 Preparation: cond <- instruction condition
5604 Insn: mov r0, r0 (nop)
5605 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
5606
5607 Don't set r14 in cleanup for BX. */
5608
36073a92 5609 dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5610
5611 dsc->u.branch.cond = cond;
5612 dsc->u.branch.link = link;
cca44b1b 5613
7ff120b4 5614 dsc->u.branch.exchange = 1;
cca44b1b
JB
5615
5616 dsc->cleanup = &cleanup_branch;
7ff120b4 5617}
cca44b1b 5618
7ff120b4
YQ
5619static int
5620arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
5621 struct regcache *regs, struct displaced_step_closure *dsc)
5622{
5623 unsigned int cond = bits (insn, 28, 31);
5624 /* BX: x12xxx1x
5625 BLX: x12xxx3x. */
5626 int link = bit (insn, 5);
5627 unsigned int rm = bits (insn, 0, 3);
5628
5629 if (debug_displaced)
5630 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx",
5631 (unsigned long) insn);
5632
5633 dsc->modinsn[0] = ARM_NOP;
5634
5635 install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
cca44b1b
JB
5636 return 0;
5637}
5638
0963b4bd 5639/* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
cca44b1b
JB
5640
5641static void
6e39997a 5642cleanup_alu_imm (struct gdbarch *gdbarch,
cca44b1b
JB
5643 struct regcache *regs, struct displaced_step_closure *dsc)
5644{
36073a92 5645 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
5646 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5647 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5648 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5649}
5650
5651static int
7ff120b4
YQ
5652arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5653 struct displaced_step_closure *dsc)
cca44b1b
JB
5654{
5655 unsigned int rn = bits (insn, 16, 19);
5656 unsigned int rd = bits (insn, 12, 15);
5657 unsigned int op = bits (insn, 21, 24);
5658 int is_mov = (op == 0xd);
5659 ULONGEST rd_val, rn_val;
cca44b1b
JB
5660
5661 if (!insn_references_pc (insn, 0x000ff000ul))
7ff120b4 5662 return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
cca44b1b
JB
5663
5664 if (debug_displaced)
5665 fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
5666 "%.8lx\n", is_mov ? "move" : "ALU",
5667 (unsigned long) insn);
5668
5669 /* Instruction is of form:
5670
5671 <op><cond> rd, [rn,] #imm
5672
5673 Rewrite as:
5674
5675 Preparation: tmp1, tmp2 <- r0, r1;
5676 r0, r1 <- rd, rn
5677 Insn: <op><cond> r0, r1, #imm
5678 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5679 */
5680
36073a92
YQ
5681 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5682 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5683 rn_val = displaced_read_reg (regs, dsc, rn);
5684 rd_val = displaced_read_reg (regs, dsc, rd);
cca44b1b
JB
5685 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5686 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5687 dsc->rd = rd;
5688
5689 if (is_mov)
5690 dsc->modinsn[0] = insn & 0xfff00fff;
5691 else
5692 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
5693
5694 dsc->cleanup = &cleanup_alu_imm;
5695
5696 return 0;
5697}
5698
5699/* Copy/cleanup arithmetic/logic insns with register RHS. */
5700
5701static void
6e39997a 5702cleanup_alu_reg (struct gdbarch *gdbarch,
cca44b1b
JB
5703 struct regcache *regs, struct displaced_step_closure *dsc)
5704{
5705 ULONGEST rd_val;
5706 int i;
5707
36073a92 5708 rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
5709
5710 for (i = 0; i < 3; i++)
5711 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5712
5713 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5714}
5715
7ff120b4
YQ
5716static void
5717install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
5718 struct displaced_step_closure *dsc,
5719 unsigned int rd, unsigned int rn, unsigned int rm)
cca44b1b 5720{
cca44b1b 5721 ULONGEST rd_val, rn_val, rm_val;
cca44b1b 5722
cca44b1b
JB
5723 /* Instruction is of form:
5724
5725 <op><cond> rd, [rn,] rm [, <shift>]
5726
5727 Rewrite as:
5728
5729 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
5730 r0, r1, r2 <- rd, rn, rm
5731 Insn: <op><cond> r0, r1, r2 [, <shift>]
5732 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
5733 */
5734
36073a92
YQ
5735 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5736 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5737 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5738 rd_val = displaced_read_reg (regs, dsc, rd);
5739 rn_val = displaced_read_reg (regs, dsc, rn);
5740 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5741 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5742 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5743 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5744 dsc->rd = rd;
5745
7ff120b4
YQ
5746 dsc->cleanup = &cleanup_alu_reg;
5747}
5748
5749static int
5750arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5751 struct displaced_step_closure *dsc)
5752{
5753 unsigned int op = bits (insn, 21, 24);
5754 int is_mov = (op == 0xd);
5755
5756 if (!insn_references_pc (insn, 0x000ff00ful))
5757 return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
5758
5759 if (debug_displaced)
5760 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
5761 is_mov ? "move" : "ALU", (unsigned long) insn);
5762
cca44b1b
JB
5763 if (is_mov)
5764 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
5765 else
5766 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
5767
7ff120b4
YQ
5768 install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
5769 bits (insn, 0, 3));
cca44b1b
JB
5770 return 0;
5771}
5772
5773/* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
5774
5775static void
6e39997a 5776cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
cca44b1b
JB
5777 struct regcache *regs,
5778 struct displaced_step_closure *dsc)
5779{
36073a92 5780 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
5781 int i;
5782
5783 for (i = 0; i < 4; i++)
5784 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5785
5786 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5787}
5788
7ff120b4
YQ
5789static void
5790install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
5791 struct displaced_step_closure *dsc,
5792 unsigned int rd, unsigned int rn, unsigned int rm,
5793 unsigned rs)
cca44b1b 5794{
7ff120b4 5795 int i;
cca44b1b 5796 ULONGEST rd_val, rn_val, rm_val, rs_val;
cca44b1b 5797
cca44b1b
JB
5798 /* Instruction is of form:
5799
5800 <op><cond> rd, [rn,] rm, <shift> rs
5801
5802 Rewrite as:
5803
5804 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
5805 r0, r1, r2, r3 <- rd, rn, rm, rs
5806 Insn: <op><cond> r0, r1, r2, <shift> r3
5807 Cleanup: tmp5 <- r0
5808 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
5809 rd <- tmp5
5810 */
5811
5812 for (i = 0; i < 4; i++)
36073a92 5813 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
cca44b1b 5814
36073a92
YQ
5815 rd_val = displaced_read_reg (regs, dsc, rd);
5816 rn_val = displaced_read_reg (regs, dsc, rn);
5817 rm_val = displaced_read_reg (regs, dsc, rm);
5818 rs_val = displaced_read_reg (regs, dsc, rs);
cca44b1b
JB
5819 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5820 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5821 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5822 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
5823 dsc->rd = rd;
7ff120b4
YQ
5824 dsc->cleanup = &cleanup_alu_shifted_reg;
5825}
5826
5827static int
5828arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
5829 struct regcache *regs,
5830 struct displaced_step_closure *dsc)
5831{
5832 unsigned int op = bits (insn, 21, 24);
5833 int is_mov = (op == 0xd);
5834 unsigned int rd, rn, rm, rs;
5835
5836 if (!insn_references_pc (insn, 0x000fff0ful))
5837 return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
5838
5839 if (debug_displaced)
5840 fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
5841 "%.8lx\n", is_mov ? "move" : "ALU",
5842 (unsigned long) insn);
5843
5844 rn = bits (insn, 16, 19);
5845 rm = bits (insn, 0, 3);
5846 rs = bits (insn, 8, 11);
5847 rd = bits (insn, 12, 15);
cca44b1b
JB
5848
5849 if (is_mov)
5850 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
5851 else
5852 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
5853
7ff120b4 5854 install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
cca44b1b
JB
5855
5856 return 0;
5857}
5858
5859/* Clean up load instructions. */
5860
5861static void
6e39997a 5862cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5863 struct displaced_step_closure *dsc)
5864{
5865 ULONGEST rt_val, rt_val2 = 0, rn_val;
cca44b1b 5866
36073a92 5867 rt_val = displaced_read_reg (regs, dsc, 0);
cca44b1b 5868 if (dsc->u.ldst.xfersize == 8)
36073a92
YQ
5869 rt_val2 = displaced_read_reg (regs, dsc, 1);
5870 rn_val = displaced_read_reg (regs, dsc, 2);
cca44b1b
JB
5871
5872 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5873 if (dsc->u.ldst.xfersize > 4)
5874 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5875 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5876 if (!dsc->u.ldst.immed)
5877 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5878
5879 /* Handle register writeback. */
5880 if (dsc->u.ldst.writeback)
5881 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5882 /* Put result in right place. */
5883 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
5884 if (dsc->u.ldst.xfersize == 8)
5885 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
5886}
5887
5888/* Clean up store instructions. */
5889
5890static void
6e39997a 5891cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5892 struct displaced_step_closure *dsc)
5893{
36073a92 5894 ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
cca44b1b
JB
5895
5896 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5897 if (dsc->u.ldst.xfersize > 4)
5898 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5899 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5900 if (!dsc->u.ldst.immed)
5901 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5902 if (!dsc->u.ldst.restore_r4)
5903 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
5904
5905 /* Writeback. */
5906 if (dsc->u.ldst.writeback)
5907 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5908}
5909
5910/* Copy "extra" load/store instructions. These are halfword/doubleword
5911 transfers, which have a different encoding to byte/word transfers. */
5912
5913static int
7ff120b4
YQ
5914arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unpriveleged,
5915 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b
JB
5916{
5917 unsigned int op1 = bits (insn, 20, 24);
5918 unsigned int op2 = bits (insn, 5, 6);
5919 unsigned int rt = bits (insn, 12, 15);
5920 unsigned int rn = bits (insn, 16, 19);
5921 unsigned int rm = bits (insn, 0, 3);
5922 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
5923 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
5924 int immed = (op1 & 0x4) != 0;
5925 int opcode;
5926 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
cca44b1b
JB
5927
5928 if (!insn_references_pc (insn, 0x000ff00ful))
7ff120b4 5929 return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
cca44b1b
JB
5930
5931 if (debug_displaced)
5932 fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
5933 "insn %.8lx\n", unpriveleged ? "unpriveleged " : "",
5934 (unsigned long) insn);
5935
5936 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
5937
5938 if (opcode < 0)
5939 internal_error (__FILE__, __LINE__,
5940 _("copy_extra_ld_st: instruction decode error"));
5941
36073a92
YQ
5942 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5943 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5944 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
cca44b1b 5945 if (!immed)
36073a92 5946 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
cca44b1b 5947
36073a92 5948 rt_val = displaced_read_reg (regs, dsc, rt);
cca44b1b 5949 if (bytesize[opcode] == 8)
36073a92
YQ
5950 rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
5951 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 5952 if (!immed)
36073a92 5953 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5954
5955 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5956 if (bytesize[opcode] == 8)
5957 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
5958 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5959 if (!immed)
5960 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5961
5962 dsc->rd = rt;
5963 dsc->u.ldst.xfersize = bytesize[opcode];
5964 dsc->u.ldst.rn = rn;
5965 dsc->u.ldst.immed = immed;
5966 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5967 dsc->u.ldst.restore_r4 = 0;
5968
5969 if (immed)
5970 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
5971 ->
5972 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
5973 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5974 else
5975 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
5976 ->
5977 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
5978 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5979
5980 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
5981
5982 return 0;
5983}
5984
5985/* Copy byte/word loads and stores. */
5986
7ff120b4
YQ
5987static void
5988install_ldr_str_ldrb_strb (struct gdbarch *gdbarch, struct regcache *regs,
5989 struct displaced_step_closure *dsc, int load,
5990 int immed, int writeback, int byte, int usermode,
5991 int rt, int rm, int rn)
cca44b1b 5992{
cca44b1b 5993 ULONGEST rt_val, rn_val, rm_val = 0;
cca44b1b 5994
36073a92
YQ
5995 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5996 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
cca44b1b 5997 if (!immed)
36073a92 5998 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
cca44b1b 5999 if (!load)
36073a92 6000 dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
cca44b1b 6001
36073a92
YQ
6002 rt_val = displaced_read_reg (regs, dsc, rt);
6003 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 6004 if (!immed)
36073a92 6005 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
6006
6007 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
6008 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
6009 if (!immed)
6010 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
cca44b1b
JB
6011 dsc->rd = rt;
6012 dsc->u.ldst.xfersize = byte ? 1 : 4;
6013 dsc->u.ldst.rn = rn;
6014 dsc->u.ldst.immed = immed;
7ff120b4 6015 dsc->u.ldst.writeback = writeback;
cca44b1b
JB
6016
6017 /* To write PC we can do:
6018
494e194e
YQ
6019 Before this sequence of instructions:
6020 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
6021 r2 is the Rn value got from dispalced_read_reg.
6022
6023 Insn1: push {pc} Write address of STR instruction + offset on stack
6024 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
6025 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
6026 = addr(Insn1) + offset - addr(Insn3) - 8
6027 = offset - 16
6028 Insn4: add r4, r4, #8 r4 = offset - 8
6029 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
6030 = from + offset
6031 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
cca44b1b
JB
6032
6033 Otherwise we don't know what value to write for PC, since the offset is
494e194e
YQ
6034 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
6035 of this can be found in Section "Saving from r15" in
6036 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
cca44b1b 6037
7ff120b4
YQ
6038 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
6039}
6040
6041static int
6042arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
6043 struct regcache *regs,
6044 struct displaced_step_closure *dsc,
6045 int load, int byte, int usermode)
6046{
6047 int immed = !bit (insn, 25);
6048 int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
6049 unsigned int rt = bits (insn, 12, 15);
6050 unsigned int rn = bits (insn, 16, 19);
6051 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
6052
6053 if (!insn_references_pc (insn, 0x000ff00ful))
6054 return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
6055
6056 if (debug_displaced)
6057 fprintf_unfiltered (gdb_stdlog,
6058 "displaced: copying %s%s r%d [r%d] insn %.8lx\n",
6059 load ? (byte ? "ldrb" : "ldr")
6060 : (byte ? "strb" : "str"), usermode ? "t" : "",
6061 rt, rn,
6062 (unsigned long) insn);
6063
6064 install_ldr_str_ldrb_strb (gdbarch, regs, dsc, load, immed, writeback, byte,
6065 usermode, rt, rm, rn);
6066
bf9f652a 6067 if (load || rt != ARM_PC_REGNUM)
cca44b1b
JB
6068 {
6069 dsc->u.ldst.restore_r4 = 0;
6070
6071 if (immed)
6072 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
6073 ->
6074 {ldr,str}[b]<cond> r0, [r2, #imm]. */
6075 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
6076 else
6077 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
6078 ->
6079 {ldr,str}[b]<cond> r0, [r2, r3]. */
6080 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
6081 }
6082 else
6083 {
6084 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
6085 dsc->u.ldst.restore_r4 = 1;
494e194e
YQ
6086 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
6087 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
cca44b1b
JB
6088 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
6089 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
6090 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
6091
6092 /* As above. */
6093 if (immed)
6094 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
6095 else
6096 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
6097
cca44b1b
JB
6098 dsc->numinsns = 6;
6099 }
6100
6101 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
6102
6103 return 0;
6104}
6105
6106/* Cleanup LDM instructions with fully-populated register list. This is an
6107 unfortunate corner case: it's impossible to implement correctly by modifying
6108 the instruction. The issue is as follows: we have an instruction,
6109
6110 ldm rN, {r0-r15}
6111
6112 which we must rewrite to avoid loading PC. A possible solution would be to
6113 do the load in two halves, something like (with suitable cleanup
6114 afterwards):
6115
6116 mov r8, rN
6117 ldm[id][ab] r8!, {r0-r7}
6118 str r7, <temp>
6119 ldm[id][ab] r8, {r7-r14}
6120 <bkpt>
6121
6122 but at present there's no suitable place for <temp>, since the scratch space
6123 is overwritten before the cleanup routine is called. For now, we simply
6124 emulate the instruction. */
6125
6126static void
6127cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
6128 struct displaced_step_closure *dsc)
6129{
cca44b1b
JB
6130 int inc = dsc->u.block.increment;
6131 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
6132 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
6133 uint32_t regmask = dsc->u.block.regmask;
6134 int regno = inc ? 0 : 15;
6135 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
6136 int exception_return = dsc->u.block.load && dsc->u.block.user
6137 && (regmask & 0x8000) != 0;
36073a92 6138 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
6139 int do_transfer = condition_true (dsc->u.block.cond, status);
6140 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6141
6142 if (!do_transfer)
6143 return;
6144
6145 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
6146 sensible we can do here. Complain loudly. */
6147 if (exception_return)
6148 error (_("Cannot single-step exception return"));
6149
6150 /* We don't handle any stores here for now. */
6151 gdb_assert (dsc->u.block.load != 0);
6152
6153 if (debug_displaced)
6154 fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
6155 "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
6156 dsc->u.block.increment ? "inc" : "dec",
6157 dsc->u.block.before ? "before" : "after");
6158
6159 while (regmask)
6160 {
6161 uint32_t memword;
6162
6163 if (inc)
bf9f652a 6164 while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
cca44b1b
JB
6165 regno++;
6166 else
6167 while (regno >= 0 && (regmask & (1 << regno)) == 0)
6168 regno--;
6169
6170 xfer_addr += bump_before;
6171
6172 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
6173 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
6174
6175 xfer_addr += bump_after;
6176
6177 regmask &= ~(1 << regno);
6178 }
6179
6180 if (dsc->u.block.writeback)
6181 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
6182 CANNOT_WRITE_PC);
6183}
6184
6185/* Clean up an STM which included the PC in the register list. */
6186
6187static void
6188cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
6189 struct displaced_step_closure *dsc)
6190{
36073a92 6191 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
6192 int store_executed = condition_true (dsc->u.block.cond, status);
6193 CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
6194 CORE_ADDR stm_insn_addr;
6195 uint32_t pc_val;
6196 long offset;
6197 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6198
6199 /* If condition code fails, there's nothing else to do. */
6200 if (!store_executed)
6201 return;
6202
6203 if (dsc->u.block.increment)
6204 {
6205 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
6206
6207 if (dsc->u.block.before)
6208 pc_stored_at += 4;
6209 }
6210 else
6211 {
6212 pc_stored_at = dsc->u.block.xfer_addr;
6213
6214 if (dsc->u.block.before)
6215 pc_stored_at -= 4;
6216 }
6217
6218 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
6219 stm_insn_addr = dsc->scratch_base;
6220 offset = pc_val - stm_insn_addr;
6221
6222 if (debug_displaced)
6223 fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
6224 "STM instruction\n", offset);
6225
6226 /* Rewrite the stored PC to the proper value for the non-displaced original
6227 instruction. */
6228 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
6229 dsc->insn_addr + offset);
6230}
6231
6232/* Clean up an LDM which includes the PC in the register list. We clumped all
6233 the registers in the transferred list into a contiguous range r0...rX (to
6234 avoid loading PC directly and losing control of the debugged program), so we
6235 must undo that here. */
6236
6237static void
6e39997a 6238cleanup_block_load_pc (struct gdbarch *gdbarch,
cca44b1b
JB
6239 struct regcache *regs,
6240 struct displaced_step_closure *dsc)
6241{
36073a92 6242 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b 6243 int load_executed = condition_true (dsc->u.block.cond, status), i;
bf9f652a 6244 unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
cca44b1b
JB
6245 unsigned int regs_loaded = bitcount (mask);
6246 unsigned int num_to_shuffle = regs_loaded, clobbered;
6247
6248 /* The method employed here will fail if the register list is fully populated
6249 (we need to avoid loading PC directly). */
6250 gdb_assert (num_to_shuffle < 16);
6251
6252 if (!load_executed)
6253 return;
6254
6255 clobbered = (1 << num_to_shuffle) - 1;
6256
6257 while (num_to_shuffle > 0)
6258 {
6259 if ((mask & (1 << write_reg)) != 0)
6260 {
6261 unsigned int read_reg = num_to_shuffle - 1;
6262
6263 if (read_reg != write_reg)
6264 {
36073a92 6265 ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
cca44b1b
JB
6266 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
6267 if (debug_displaced)
6268 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
6269 "loaded register r%d to r%d\n"), read_reg,
6270 write_reg);
6271 }
6272 else if (debug_displaced)
6273 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
6274 "r%d already in the right place\n"),
6275 write_reg);
6276
6277 clobbered &= ~(1 << write_reg);
6278
6279 num_to_shuffle--;
6280 }
6281
6282 write_reg--;
6283 }
6284
6285 /* Restore any registers we scribbled over. */
6286 for (write_reg = 0; clobbered != 0; write_reg++)
6287 {
6288 if ((clobbered & (1 << write_reg)) != 0)
6289 {
6290 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
6291 CANNOT_WRITE_PC);
6292 if (debug_displaced)
6293 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
6294 "clobbered register r%d\n"), write_reg);
6295 clobbered &= ~(1 << write_reg);
6296 }
6297 }
6298
6299 /* Perform register writeback manually. */
6300 if (dsc->u.block.writeback)
6301 {
6302 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
6303
6304 if (dsc->u.block.increment)
6305 new_rn_val += regs_loaded * 4;
6306 else
6307 new_rn_val -= regs_loaded * 4;
6308
6309 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
6310 CANNOT_WRITE_PC);
6311 }
6312}
6313
6314/* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
6315 in user-level code (in particular exception return, ldm rn, {...pc}^). */
6316
6317static int
7ff120b4
YQ
6318arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
6319 struct regcache *regs,
6320 struct displaced_step_closure *dsc)
cca44b1b
JB
6321{
6322 int load = bit (insn, 20);
6323 int user = bit (insn, 22);
6324 int increment = bit (insn, 23);
6325 int before = bit (insn, 24);
6326 int writeback = bit (insn, 21);
6327 int rn = bits (insn, 16, 19);
cca44b1b 6328
0963b4bd
MS
6329 /* Block transfers which don't mention PC can be run directly
6330 out-of-line. */
bf9f652a 6331 if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
7ff120b4 6332 return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
cca44b1b 6333
bf9f652a 6334 if (rn == ARM_PC_REGNUM)
cca44b1b 6335 {
0963b4bd
MS
6336 warning (_("displaced: Unpredictable LDM or STM with "
6337 "base register r15"));
7ff120b4 6338 return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
cca44b1b
JB
6339 }
6340
6341 if (debug_displaced)
6342 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6343 "%.8lx\n", (unsigned long) insn);
6344
36073a92 6345 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
cca44b1b
JB
6346 dsc->u.block.rn = rn;
6347
6348 dsc->u.block.load = load;
6349 dsc->u.block.user = user;
6350 dsc->u.block.increment = increment;
6351 dsc->u.block.before = before;
6352 dsc->u.block.writeback = writeback;
6353 dsc->u.block.cond = bits (insn, 28, 31);
6354
6355 dsc->u.block.regmask = insn & 0xffff;
6356
6357 if (load)
6358 {
6359 if ((insn & 0xffff) == 0xffff)
6360 {
6361 /* LDM with a fully-populated register list. This case is
6362 particularly tricky. Implement for now by fully emulating the
6363 instruction (which might not behave perfectly in all cases, but
6364 these instructions should be rare enough for that not to matter
6365 too much). */
6366 dsc->modinsn[0] = ARM_NOP;
6367
6368 dsc->cleanup = &cleanup_block_load_all;
6369 }
6370 else
6371 {
6372 /* LDM of a list of registers which includes PC. Implement by
6373 rewriting the list of registers to be transferred into a
6374 contiguous chunk r0...rX before doing the transfer, then shuffling
6375 registers into the correct places in the cleanup routine. */
6376 unsigned int regmask = insn & 0xffff;
6377 unsigned int num_in_list = bitcount (regmask), new_regmask, bit = 1;
6378 unsigned int to = 0, from = 0, i, new_rn;
6379
6380 for (i = 0; i < num_in_list; i++)
36073a92 6381 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
cca44b1b
JB
6382
6383 /* Writeback makes things complicated. We need to avoid clobbering
6384 the base register with one of the registers in our modified
6385 register list, but just using a different register can't work in
6386 all cases, e.g.:
6387
6388 ldm r14!, {r0-r13,pc}
6389
6390 which would need to be rewritten as:
6391
6392 ldm rN!, {r0-r14}
6393
6394 but that can't work, because there's no free register for N.
6395
6396 Solve this by turning off the writeback bit, and emulating
6397 writeback manually in the cleanup routine. */
6398
6399 if (writeback)
6400 insn &= ~(1 << 21);
6401
6402 new_regmask = (1 << num_in_list) - 1;
6403
6404 if (debug_displaced)
6405 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6406 "{..., pc}: original reg list %.4x, modified "
6407 "list %.4x\n"), rn, writeback ? "!" : "",
6408 (int) insn & 0xffff, new_regmask);
6409
6410 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
6411
6412 dsc->cleanup = &cleanup_block_load_pc;
6413 }
6414 }
6415 else
6416 {
6417 /* STM of a list of registers which includes PC. Run the instruction
6418 as-is, but out of line: this will store the wrong value for the PC,
6419 so we must manually fix up the memory in the cleanup routine.
6420 Doing things this way has the advantage that we can auto-detect
6421 the offset of the PC write (which is architecture-dependent) in
6422 the cleanup routine. */
6423 dsc->modinsn[0] = insn;
6424
6425 dsc->cleanup = &cleanup_block_store_pc;
6426 }
6427
6428 return 0;
6429}
6430
6431/* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
6432 for Linux, where some SVC instructions must be treated specially. */
6433
6434static void
6e39997a 6435cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
6436 struct displaced_step_closure *dsc)
6437{
bd18283a 6438 CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
cca44b1b
JB
6439
6440 if (debug_displaced)
6441 fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
6442 "%.8lx\n", (unsigned long) resume_addr);
6443
6444 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
6445}
6446
6447static int
7ff120b4
YQ
6448
6449arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
6450 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b 6451{
cca44b1b
JB
6452
6453 if (debug_displaced)
6454 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
6455 (unsigned long) insn);
6456
6457 /* Preparation: none.
6458 Insn: unmodified svc.
6459 Cleanup: pc <- insn_addr + 4. */
6460
6461 dsc->modinsn[0] = insn;
6462
cca44b1b
JB
6463 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
6464 instruction. */
6465 dsc->wrote_to_pc = 1;
6466
bd18283a
YQ
6467 /* Allow OS-specific code to override SVC handling. */
6468 if (dsc->u.svc.copy_svc_os)
6469 return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
6470 else
6471 {
6472 dsc->cleanup = &cleanup_svc;
6473 return 0;
6474 }
6475
cca44b1b
JB
6476}
6477
6478/* Copy undefined instructions. */
6479
6480static int
7ff120b4
YQ
6481arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
6482 struct displaced_step_closure *dsc)
cca44b1b
JB
6483{
6484 if (debug_displaced)
0963b4bd
MS
6485 fprintf_unfiltered (gdb_stdlog,
6486 "displaced: copying undefined insn %.8lx\n",
cca44b1b
JB
6487 (unsigned long) insn);
6488
6489 dsc->modinsn[0] = insn;
6490
6491 return 0;
6492}
6493
6494/* Copy unpredictable instructions. */
6495
6496static int
7ff120b4
YQ
6497arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
6498 struct displaced_step_closure *dsc)
cca44b1b
JB
6499{
6500 if (debug_displaced)
6501 fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
6502 "%.8lx\n", (unsigned long) insn);
6503
6504 dsc->modinsn[0] = insn;
6505
6506 return 0;
6507}
6508
6509/* The decode_* functions are instruction decoding helpers. They mostly follow
6510 the presentation in the ARM ARM. */
6511
6512static int
7ff120b4
YQ
6513arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
6514 struct regcache *regs,
6515 struct displaced_step_closure *dsc)
cca44b1b
JB
6516{
6517 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
6518 unsigned int rn = bits (insn, 16, 19);
6519
6520 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0)
7ff120b4 6521 return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
cca44b1b 6522 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1)
7ff120b4 6523 return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
cca44b1b 6524 else if ((op1 & 0x60) == 0x20)
7ff120b4 6525 return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
cca44b1b 6526 else if ((op1 & 0x71) == 0x40)
7ff120b4
YQ
6527 return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
6528 dsc);
cca44b1b 6529 else if ((op1 & 0x77) == 0x41)
7ff120b4 6530 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
cca44b1b 6531 else if ((op1 & 0x77) == 0x45)
7ff120b4 6532 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */
cca44b1b
JB
6533 else if ((op1 & 0x77) == 0x51)
6534 {
6535 if (rn != 0xf)
7ff120b4 6536 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
cca44b1b 6537 else
7ff120b4 6538 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
6539 }
6540 else if ((op1 & 0x77) == 0x55)
7ff120b4 6541 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
cca44b1b
JB
6542 else if (op1 == 0x57)
6543 switch (op2)
6544 {
7ff120b4
YQ
6545 case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
6546 case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
6547 case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
6548 case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
6549 default: return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
6550 }
6551 else if ((op1 & 0x63) == 0x43)
7ff120b4 6552 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
6553 else if ((op2 & 0x1) == 0x0)
6554 switch (op1 & ~0x80)
6555 {
6556 case 0x61:
7ff120b4 6557 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
cca44b1b 6558 case 0x65:
7ff120b4 6559 return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
cca44b1b
JB
6560 case 0x71: case 0x75:
6561 /* pld/pldw reg. */
7ff120b4 6562 return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
cca44b1b 6563 case 0x63: case 0x67: case 0x73: case 0x77:
7ff120b4 6564 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b 6565 default:
7ff120b4 6566 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6567 }
6568 else
7ff120b4 6569 return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
cca44b1b
JB
6570}
6571
6572static int
7ff120b4
YQ
6573arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
6574 struct regcache *regs,
6575 struct displaced_step_closure *dsc)
cca44b1b
JB
6576{
6577 if (bit (insn, 27) == 0)
7ff120b4 6578 return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
cca44b1b
JB
6579 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
6580 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
6581 {
6582 case 0x0: case 0x2:
7ff120b4 6583 return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
cca44b1b
JB
6584
6585 case 0x1: case 0x3:
7ff120b4 6586 return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
cca44b1b
JB
6587
6588 case 0x4: case 0x5: case 0x6: case 0x7:
7ff120b4 6589 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
cca44b1b
JB
6590
6591 case 0x8:
6592 switch ((insn & 0xe00000) >> 21)
6593 {
6594 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
6595 /* stc/stc2. */
7ff120b4 6596 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6597
6598 case 0x2:
7ff120b4 6599 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
cca44b1b
JB
6600
6601 default:
7ff120b4 6602 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6603 }
6604
6605 case 0x9:
6606 {
6607 int rn_f = (bits (insn, 16, 19) == 0xf);
6608 switch ((insn & 0xe00000) >> 21)
6609 {
6610 case 0x1: case 0x3:
6611 /* ldc/ldc2 imm (undefined for rn == pc). */
7ff120b4
YQ
6612 return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
6613 : arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6614
6615 case 0x2:
7ff120b4 6616 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
cca44b1b
JB
6617
6618 case 0x4: case 0x5: case 0x6: case 0x7:
6619 /* ldc/ldc2 lit (undefined for rn != pc). */
7ff120b4
YQ
6620 return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
6621 : arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6622
6623 default:
7ff120b4 6624 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6625 }
6626 }
6627
6628 case 0xa:
7ff120b4 6629 return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
cca44b1b
JB
6630
6631 case 0xb:
6632 if (bits (insn, 16, 19) == 0xf)
6633 /* ldc/ldc2 lit. */
7ff120b4 6634 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b 6635 else
7ff120b4 6636 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6637
6638 case 0xc:
6639 if (bit (insn, 4))
7ff120b4 6640 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
cca44b1b 6641 else
7ff120b4 6642 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
6643
6644 case 0xd:
6645 if (bit (insn, 4))
7ff120b4 6646 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
cca44b1b 6647 else
7ff120b4 6648 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
6649
6650 default:
7ff120b4 6651 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6652 }
6653}
6654
6655/* Decode miscellaneous instructions in dp/misc encoding space. */
6656
6657static int
7ff120b4
YQ
6658arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
6659 struct regcache *regs,
6660 struct displaced_step_closure *dsc)
cca44b1b
JB
6661{
6662 unsigned int op2 = bits (insn, 4, 6);
6663 unsigned int op = bits (insn, 21, 22);
6664 unsigned int op1 = bits (insn, 16, 19);
6665
6666 switch (op2)
6667 {
6668 case 0x0:
7ff120b4 6669 return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
cca44b1b
JB
6670
6671 case 0x1:
6672 if (op == 0x1) /* bx. */
7ff120b4 6673 return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
cca44b1b 6674 else if (op == 0x3)
7ff120b4 6675 return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
cca44b1b 6676 else
7ff120b4 6677 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6678
6679 case 0x2:
6680 if (op == 0x1)
6681 /* Not really supported. */
7ff120b4 6682 return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
cca44b1b 6683 else
7ff120b4 6684 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6685
6686 case 0x3:
6687 if (op == 0x1)
7ff120b4 6688 return arm_copy_bx_blx_reg (gdbarch, insn,
0963b4bd 6689 regs, dsc); /* blx register. */
cca44b1b 6690 else
7ff120b4 6691 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6692
6693 case 0x5:
7ff120b4 6694 return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
cca44b1b
JB
6695
6696 case 0x7:
6697 if (op == 0x1)
7ff120b4 6698 return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
cca44b1b
JB
6699 else if (op == 0x3)
6700 /* Not really supported. */
7ff120b4 6701 return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
cca44b1b
JB
6702
6703 default:
7ff120b4 6704 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6705 }
6706}
6707
6708static int
7ff120b4
YQ
6709arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
6710 struct regcache *regs,
6711 struct displaced_step_closure *dsc)
cca44b1b
JB
6712{
6713 if (bit (insn, 25))
6714 switch (bits (insn, 20, 24))
6715 {
6716 case 0x10:
7ff120b4 6717 return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
cca44b1b
JB
6718
6719 case 0x14:
7ff120b4 6720 return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
cca44b1b
JB
6721
6722 case 0x12: case 0x16:
7ff120b4 6723 return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
cca44b1b
JB
6724
6725 default:
7ff120b4 6726 return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
cca44b1b
JB
6727 }
6728 else
6729 {
6730 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
6731
6732 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
7ff120b4 6733 return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
cca44b1b 6734 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
7ff120b4 6735 return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
cca44b1b 6736 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
7ff120b4 6737 return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
cca44b1b 6738 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
7ff120b4 6739 return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
cca44b1b 6740 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
7ff120b4 6741 return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
cca44b1b 6742 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
7ff120b4 6743 return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
cca44b1b
JB
6744 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
6745 /* 2nd arg means "unpriveleged". */
7ff120b4
YQ
6746 return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
6747 dsc);
cca44b1b
JB
6748 }
6749
6750 /* Should be unreachable. */
6751 return 1;
6752}
6753
6754static int
7ff120b4
YQ
6755arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
6756 struct regcache *regs,
6757 struct displaced_step_closure *dsc)
cca44b1b
JB
6758{
6759 int a = bit (insn, 25), b = bit (insn, 4);
6760 uint32_t op1 = bits (insn, 20, 24);
6761 int rn_f = bits (insn, 16, 19) == 0xf;
6762
6763 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
6764 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
7ff120b4 6765 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 0, 0);
cca44b1b
JB
6766 else if ((!a && (op1 & 0x17) == 0x02)
6767 || (a && (op1 & 0x17) == 0x02 && !b))
7ff120b4 6768 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 0, 1);
cca44b1b
JB
6769 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
6770 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
7ff120b4 6771 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 0, 0);
cca44b1b
JB
6772 else if ((!a && (op1 & 0x17) == 0x03)
6773 || (a && (op1 & 0x17) == 0x03 && !b))
7ff120b4 6774 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 0, 1);
cca44b1b
JB
6775 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
6776 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
7ff120b4 6777 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
cca44b1b
JB
6778 else if ((!a && (op1 & 0x17) == 0x06)
6779 || (a && (op1 & 0x17) == 0x06 && !b))
7ff120b4 6780 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
cca44b1b
JB
6781 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
6782 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
7ff120b4 6783 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
cca44b1b
JB
6784 else if ((!a && (op1 & 0x17) == 0x07)
6785 || (a && (op1 & 0x17) == 0x07 && !b))
7ff120b4 6786 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
cca44b1b
JB
6787
6788 /* Should be unreachable. */
6789 return 1;
6790}
6791
6792static int
7ff120b4
YQ
6793arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
6794 struct displaced_step_closure *dsc)
cca44b1b
JB
6795{
6796 switch (bits (insn, 20, 24))
6797 {
6798 case 0x00: case 0x01: case 0x02: case 0x03:
7ff120b4 6799 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
cca44b1b
JB
6800
6801 case 0x04: case 0x05: case 0x06: case 0x07:
7ff120b4 6802 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
cca44b1b
JB
6803
6804 case 0x08: case 0x09: case 0x0a: case 0x0b:
6805 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
7ff120b4 6806 return arm_copy_unmodified (gdbarch, insn,
cca44b1b
JB
6807 "decode/pack/unpack/saturate/reverse", dsc);
6808
6809 case 0x18:
6810 if (bits (insn, 5, 7) == 0) /* op2. */
6811 {
6812 if (bits (insn, 12, 15) == 0xf)
7ff120b4 6813 return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
cca44b1b 6814 else
7ff120b4 6815 return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
cca44b1b
JB
6816 }
6817 else
7ff120b4 6818 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6819
6820 case 0x1a: case 0x1b:
6821 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
7ff120b4 6822 return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
cca44b1b 6823 else
7ff120b4 6824 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6825
6826 case 0x1c: case 0x1d:
6827 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
6828 {
6829 if (bits (insn, 0, 3) == 0xf)
7ff120b4 6830 return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
cca44b1b 6831 else
7ff120b4 6832 return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
cca44b1b
JB
6833 }
6834 else
7ff120b4 6835 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6836
6837 case 0x1e: case 0x1f:
6838 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
7ff120b4 6839 return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
cca44b1b 6840 else
7ff120b4 6841 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6842 }
6843
6844 /* Should be unreachable. */
6845 return 1;
6846}
6847
6848static int
7ff120b4
YQ
6849arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, int32_t insn,
6850 struct regcache *regs,
6851 struct displaced_step_closure *dsc)
cca44b1b
JB
6852{
6853 if (bit (insn, 25))
7ff120b4 6854 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
cca44b1b 6855 else
7ff120b4 6856 return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
cca44b1b
JB
6857}
6858
6859static int
7ff120b4
YQ
6860arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
6861 struct regcache *regs,
6862 struct displaced_step_closure *dsc)
cca44b1b
JB
6863{
6864 unsigned int opcode = bits (insn, 20, 24);
6865
6866 switch (opcode)
6867 {
6868 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
7ff120b4 6869 return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
cca44b1b
JB
6870
6871 case 0x08: case 0x0a: case 0x0c: case 0x0e:
6872 case 0x12: case 0x16:
7ff120b4 6873 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
cca44b1b
JB
6874
6875 case 0x09: case 0x0b: case 0x0d: case 0x0f:
6876 case 0x13: case 0x17:
7ff120b4 6877 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
cca44b1b
JB
6878
6879 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6880 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6881 /* Note: no writeback for these instructions. Bit 25 will always be
6882 zero though (via caller), so the following works OK. */
7ff120b4 6883 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6884 }
6885
6886 /* Should be unreachable. */
6887 return 1;
6888}
6889
6890static int
7ff120b4
YQ
6891arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
6892 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b
JB
6893{
6894 unsigned int op1 = bits (insn, 20, 25);
6895 int op = bit (insn, 4);
6896 unsigned int coproc = bits (insn, 8, 11);
6897 unsigned int rn = bits (insn, 16, 19);
6898
6899 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
7ff120b4 6900 return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
cca44b1b
JB
6901 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
6902 && (coproc & 0xe) != 0xa)
6903 /* stc/stc2. */
7ff120b4 6904 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6905 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
6906 && (coproc & 0xe) != 0xa)
6907 /* ldc/ldc2 imm/lit. */
7ff120b4 6908 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b 6909 else if ((op1 & 0x3e) == 0x00)
7ff120b4 6910 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b 6911 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
7ff120b4 6912 return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
cca44b1b 6913 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
7ff120b4 6914 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
cca44b1b 6915 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
7ff120b4 6916 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
cca44b1b
JB
6917 else if ((op1 & 0x30) == 0x20 && !op)
6918 {
6919 if ((coproc & 0xe) == 0xa)
7ff120b4 6920 return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
cca44b1b 6921 else
7ff120b4 6922 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
6923 }
6924 else if ((op1 & 0x30) == 0x20 && op)
7ff120b4 6925 return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
cca44b1b 6926 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
7ff120b4 6927 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
cca44b1b 6928 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
7ff120b4 6929 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
cca44b1b 6930 else if ((op1 & 0x30) == 0x30)
7ff120b4 6931 return arm_copy_svc (gdbarch, insn, regs, dsc);
cca44b1b 6932 else
7ff120b4 6933 return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
cca44b1b
JB
6934}
6935
b434a28f
YQ
6936static void
6937thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
6938 CORE_ADDR to, struct regcache *regs,
6939 struct displaced_step_closure *dsc)
6940{
6941 error (_("Displaced stepping is only supported in ARM mode"));
6942}
6943
cca44b1b 6944void
b434a28f
YQ
6945arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
6946 CORE_ADDR to, struct regcache *regs,
cca44b1b
JB
6947 struct displaced_step_closure *dsc)
6948{
6949 int err = 0;
b434a28f
YQ
6950 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
6951 uint32_t insn;
cca44b1b
JB
6952
6953 /* Most displaced instructions use a 1-instruction scratch space, so set this
6954 here and override below if/when necessary. */
6955 dsc->numinsns = 1;
6956 dsc->insn_addr = from;
6957 dsc->scratch_base = to;
6958 dsc->cleanup = NULL;
6959 dsc->wrote_to_pc = 0;
6960
b434a28f
YQ
6961 if (!displaced_in_arm_mode (regs))
6962 return thumb_process_displaced_insn (gdbarch, from, to, regs, dsc);
6963
4db71c0b
YQ
6964 dsc->is_thumb = 0;
6965 dsc->insn_size = 4;
b434a28f
YQ
6966 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
6967 if (debug_displaced)
6968 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
6969 "at %.8lx\n", (unsigned long) insn,
6970 (unsigned long) from);
6971
cca44b1b 6972 if ((insn & 0xf0000000) == 0xf0000000)
7ff120b4 6973 err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
cca44b1b
JB
6974 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
6975 {
6976 case 0x0: case 0x1: case 0x2: case 0x3:
7ff120b4 6977 err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
cca44b1b
JB
6978 break;
6979
6980 case 0x4: case 0x5: case 0x6:
7ff120b4 6981 err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
cca44b1b
JB
6982 break;
6983
6984 case 0x7:
7ff120b4 6985 err = arm_decode_media (gdbarch, insn, dsc);
cca44b1b
JB
6986 break;
6987
6988 case 0x8: case 0x9: case 0xa: case 0xb:
7ff120b4 6989 err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
cca44b1b
JB
6990 break;
6991
6992 case 0xc: case 0xd: case 0xe: case 0xf:
7ff120b4 6993 err = arm_decode_svc_copro (gdbarch, insn, to, regs, dsc);
cca44b1b
JB
6994 break;
6995 }
6996
6997 if (err)
6998 internal_error (__FILE__, __LINE__,
6999 _("arm_process_displaced_insn: Instruction decode error"));
7000}
7001
7002/* Actually set up the scratch space for a displaced instruction. */
7003
7004void
7005arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
7006 CORE_ADDR to, struct displaced_step_closure *dsc)
7007{
7008 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4db71c0b 7009 unsigned int i, len, offset;
cca44b1b 7010 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
4db71c0b
YQ
7011 int size = dsc->is_thumb? 2 : 4;
7012 const unsigned char *bkp_insn;
cca44b1b 7013
4db71c0b 7014 offset = 0;
cca44b1b
JB
7015 /* Poke modified instruction(s). */
7016 for (i = 0; i < dsc->numinsns; i++)
7017 {
7018 if (debug_displaced)
4db71c0b
YQ
7019 {
7020 fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
7021 if (size == 4)
7022 fprintf_unfiltered (gdb_stdlog, "%.8lx",
7023 dsc->modinsn[i]);
7024 else if (size == 2)
7025 fprintf_unfiltered (gdb_stdlog, "%.4x",
7026 (unsigned short)dsc->modinsn[i]);
7027
7028 fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
7029 (unsigned long) to + offset);
7030
7031 }
7032 write_memory_unsigned_integer (to + offset, size,
7033 byte_order_for_code,
cca44b1b 7034 dsc->modinsn[i]);
4db71c0b
YQ
7035 offset += size;
7036 }
7037
7038 /* Choose the correct breakpoint instruction. */
7039 if (dsc->is_thumb)
7040 {
7041 bkp_insn = tdep->thumb_breakpoint;
7042 len = tdep->thumb_breakpoint_size;
7043 }
7044 else
7045 {
7046 bkp_insn = tdep->arm_breakpoint;
7047 len = tdep->arm_breakpoint_size;
cca44b1b
JB
7048 }
7049
7050 /* Put breakpoint afterwards. */
4db71c0b 7051 write_memory (to + offset, bkp_insn, len);
cca44b1b
JB
7052
7053 if (debug_displaced)
7054 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
7055 paddress (gdbarch, from), paddress (gdbarch, to));
7056}
7057
7058/* Entry point for copying an instruction into scratch space for displaced
7059 stepping. */
7060
7061struct displaced_step_closure *
7062arm_displaced_step_copy_insn (struct gdbarch *gdbarch,
7063 CORE_ADDR from, CORE_ADDR to,
7064 struct regcache *regs)
7065{
7066 struct displaced_step_closure *dsc
7067 = xmalloc (sizeof (struct displaced_step_closure));
b434a28f 7068 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
cca44b1b
JB
7069 arm_displaced_init_closure (gdbarch, from, to, dsc);
7070
7071 return dsc;
7072}
7073
7074/* Entry point for cleaning things up after a displaced instruction has been
7075 single-stepped. */
7076
7077void
7078arm_displaced_step_fixup (struct gdbarch *gdbarch,
7079 struct displaced_step_closure *dsc,
7080 CORE_ADDR from, CORE_ADDR to,
7081 struct regcache *regs)
7082{
7083 if (dsc->cleanup)
7084 dsc->cleanup (gdbarch, regs, dsc);
7085
7086 if (!dsc->wrote_to_pc)
4db71c0b
YQ
7087 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
7088 dsc->insn_addr + dsc->insn_size);
7089
cca44b1b
JB
7090}
7091
7092#include "bfd-in2.h"
7093#include "libcoff.h"
7094
7095static int
7096gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
7097{
9779414d
DJ
7098 struct gdbarch *gdbarch = info->application_data;
7099
7100 if (arm_pc_is_thumb (gdbarch, memaddr))
cca44b1b
JB
7101 {
7102 static asymbol *asym;
7103 static combined_entry_type ce;
7104 static struct coff_symbol_struct csym;
7105 static struct bfd fake_bfd;
7106 static bfd_target fake_target;
7107
7108 if (csym.native == NULL)
7109 {
7110 /* Create a fake symbol vector containing a Thumb symbol.
7111 This is solely so that the code in print_insn_little_arm()
7112 and print_insn_big_arm() in opcodes/arm-dis.c will detect
7113 the presence of a Thumb symbol and switch to decoding
7114 Thumb instructions. */
7115
7116 fake_target.flavour = bfd_target_coff_flavour;
7117 fake_bfd.xvec = &fake_target;
7118 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
7119 csym.native = &ce;
7120 csym.symbol.the_bfd = &fake_bfd;
7121 csym.symbol.name = "fake";
7122 asym = (asymbol *) & csym;
7123 }
7124
7125 memaddr = UNMAKE_THUMB_ADDR (memaddr);
7126 info->symbols = &asym;
7127 }
7128 else
7129 info->symbols = NULL;
7130
7131 if (info->endian == BFD_ENDIAN_BIG)
7132 return print_insn_big_arm (memaddr, info);
7133 else
7134 return print_insn_little_arm (memaddr, info);
7135}
7136
7137/* The following define instruction sequences that will cause ARM
7138 cpu's to take an undefined instruction trap. These are used to
7139 signal a breakpoint to GDB.
7140
7141 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
7142 modes. A different instruction is required for each mode. The ARM
7143 cpu's can also be big or little endian. Thus four different
7144 instructions are needed to support all cases.
7145
7146 Note: ARMv4 defines several new instructions that will take the
7147 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
7148 not in fact add the new instructions. The new undefined
7149 instructions in ARMv4 are all instructions that had no defined
7150 behaviour in earlier chips. There is no guarantee that they will
7151 raise an exception, but may be treated as NOP's. In practice, it
7152 may only safe to rely on instructions matching:
7153
7154 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7155 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
7156 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
7157
0963b4bd 7158 Even this may only true if the condition predicate is true. The
cca44b1b
JB
7159 following use a condition predicate of ALWAYS so it is always TRUE.
7160
7161 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
7162 and NetBSD all use a software interrupt rather than an undefined
7163 instruction to force a trap. This can be handled by by the
7164 abi-specific code during establishment of the gdbarch vector. */
7165
7166#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
7167#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
7168#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
7169#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
7170
7171static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
7172static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
7173static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
7174static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
7175
7176/* Determine the type and size of breakpoint to insert at PCPTR. Uses
7177 the program counter value to determine whether a 16-bit or 32-bit
7178 breakpoint should be used. It returns a pointer to a string of
7179 bytes that encode a breakpoint instruction, stores the length of
7180 the string to *lenptr, and adjusts the program counter (if
7181 necessary) to point to the actual memory location where the
7182 breakpoint should be inserted. */
7183
7184static const unsigned char *
7185arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
7186{
7187 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177321bd 7188 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
cca44b1b 7189
9779414d 7190 if (arm_pc_is_thumb (gdbarch, *pcptr))
cca44b1b
JB
7191 {
7192 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
177321bd
DJ
7193
7194 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
7195 check whether we are replacing a 32-bit instruction. */
7196 if (tdep->thumb2_breakpoint != NULL)
7197 {
7198 gdb_byte buf[2];
7199 if (target_read_memory (*pcptr, buf, 2) == 0)
7200 {
7201 unsigned short inst1;
7202 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
7203 if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0)
7204 {
7205 *lenptr = tdep->thumb2_breakpoint_size;
7206 return tdep->thumb2_breakpoint;
7207 }
7208 }
7209 }
7210
cca44b1b
JB
7211 *lenptr = tdep->thumb_breakpoint_size;
7212 return tdep->thumb_breakpoint;
7213 }
7214 else
7215 {
7216 *lenptr = tdep->arm_breakpoint_size;
7217 return tdep->arm_breakpoint;
7218 }
7219}
7220
177321bd
DJ
7221static void
7222arm_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
7223 int *kindptr)
7224{
7225 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7226
7227 arm_breakpoint_from_pc (gdbarch, pcptr, kindptr);
7228
9779414d 7229 if (arm_pc_is_thumb (gdbarch, *pcptr) && *kindptr == 4)
177321bd
DJ
7230 /* The documented magic value for a 32-bit Thumb-2 breakpoint, so
7231 that this is not confused with a 32-bit ARM breakpoint. */
7232 *kindptr = 3;
7233}
7234
cca44b1b
JB
7235/* Extract from an array REGBUF containing the (raw) register state a
7236 function return value of type TYPE, and copy that, in virtual
7237 format, into VALBUF. */
7238
7239static void
7240arm_extract_return_value (struct type *type, struct regcache *regs,
7241 gdb_byte *valbuf)
7242{
7243 struct gdbarch *gdbarch = get_regcache_arch (regs);
7244 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7245
7246 if (TYPE_CODE_FLT == TYPE_CODE (type))
7247 {
7248 switch (gdbarch_tdep (gdbarch)->fp_model)
7249 {
7250 case ARM_FLOAT_FPA:
7251 {
7252 /* The value is in register F0 in internal format. We need to
7253 extract the raw value and then convert it to the desired
7254 internal type. */
7255 bfd_byte tmpbuf[FP_REGISTER_SIZE];
7256
7257 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
7258 convert_from_extended (floatformat_from_type (type), tmpbuf,
7259 valbuf, gdbarch_byte_order (gdbarch));
7260 }
7261 break;
7262
7263 case ARM_FLOAT_SOFT_FPA:
7264 case ARM_FLOAT_SOFT_VFP:
7265 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7266 not using the VFP ABI code. */
7267 case ARM_FLOAT_VFP:
7268 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
7269 if (TYPE_LENGTH (type) > 4)
7270 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7271 valbuf + INT_REGISTER_SIZE);
7272 break;
7273
7274 default:
0963b4bd
MS
7275 internal_error (__FILE__, __LINE__,
7276 _("arm_extract_return_value: "
7277 "Floating point model not supported"));
cca44b1b
JB
7278 break;
7279 }
7280 }
7281 else if (TYPE_CODE (type) == TYPE_CODE_INT
7282 || TYPE_CODE (type) == TYPE_CODE_CHAR
7283 || TYPE_CODE (type) == TYPE_CODE_BOOL
7284 || TYPE_CODE (type) == TYPE_CODE_PTR
7285 || TYPE_CODE (type) == TYPE_CODE_REF
7286 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7287 {
b021a221
MS
7288 /* If the type is a plain integer, then the access is
7289 straight-forward. Otherwise we have to play around a bit
7290 more. */
cca44b1b
JB
7291 int len = TYPE_LENGTH (type);
7292 int regno = ARM_A1_REGNUM;
7293 ULONGEST tmp;
7294
7295 while (len > 0)
7296 {
7297 /* By using store_unsigned_integer we avoid having to do
7298 anything special for small big-endian values. */
7299 regcache_cooked_read_unsigned (regs, regno++, &tmp);
7300 store_unsigned_integer (valbuf,
7301 (len > INT_REGISTER_SIZE
7302 ? INT_REGISTER_SIZE : len),
7303 byte_order, tmp);
7304 len -= INT_REGISTER_SIZE;
7305 valbuf += INT_REGISTER_SIZE;
7306 }
7307 }
7308 else
7309 {
7310 /* For a structure or union the behaviour is as if the value had
7311 been stored to word-aligned memory and then loaded into
7312 registers with 32-bit load instruction(s). */
7313 int len = TYPE_LENGTH (type);
7314 int regno = ARM_A1_REGNUM;
7315 bfd_byte tmpbuf[INT_REGISTER_SIZE];
7316
7317 while (len > 0)
7318 {
7319 regcache_cooked_read (regs, regno++, tmpbuf);
7320 memcpy (valbuf, tmpbuf,
7321 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
7322 len -= INT_REGISTER_SIZE;
7323 valbuf += INT_REGISTER_SIZE;
7324 }
7325 }
7326}
7327
7328
7329/* Will a function return an aggregate type in memory or in a
7330 register? Return 0 if an aggregate type can be returned in a
7331 register, 1 if it must be returned in memory. */
7332
7333static int
7334arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
7335{
7336 int nRc;
7337 enum type_code code;
7338
7339 CHECK_TYPEDEF (type);
7340
7341 /* In the ARM ABI, "integer" like aggregate types are returned in
7342 registers. For an aggregate type to be integer like, its size
7343 must be less than or equal to INT_REGISTER_SIZE and the
7344 offset of each addressable subfield must be zero. Note that bit
7345 fields are not addressable, and all addressable subfields of
7346 unions always start at offset zero.
7347
7348 This function is based on the behaviour of GCC 2.95.1.
7349 See: gcc/arm.c: arm_return_in_memory() for details.
7350
7351 Note: All versions of GCC before GCC 2.95.2 do not set up the
7352 parameters correctly for a function returning the following
7353 structure: struct { float f;}; This should be returned in memory,
7354 not a register. Richard Earnshaw sent me a patch, but I do not
7355 know of any way to detect if a function like the above has been
7356 compiled with the correct calling convention. */
7357
7358 /* All aggregate types that won't fit in a register must be returned
7359 in memory. */
7360 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
7361 {
7362 return 1;
7363 }
7364
7365 /* The AAPCS says all aggregates not larger than a word are returned
7366 in a register. */
7367 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
7368 return 0;
7369
7370 /* The only aggregate types that can be returned in a register are
7371 structs and unions. Arrays must be returned in memory. */
7372 code = TYPE_CODE (type);
7373 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
7374 {
7375 return 1;
7376 }
7377
7378 /* Assume all other aggregate types can be returned in a register.
7379 Run a check for structures, unions and arrays. */
7380 nRc = 0;
7381
7382 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
7383 {
7384 int i;
7385 /* Need to check if this struct/union is "integer" like. For
7386 this to be true, its size must be less than or equal to
7387 INT_REGISTER_SIZE and the offset of each addressable
7388 subfield must be zero. Note that bit fields are not
7389 addressable, and unions always start at offset zero. If any
7390 of the subfields is a floating point type, the struct/union
7391 cannot be an integer type. */
7392
7393 /* For each field in the object, check:
7394 1) Is it FP? --> yes, nRc = 1;
67255d04
RE
7395 2) Is it addressable (bitpos != 0) and
7396 not packed (bitsize == 0)?
7397 --> yes, nRc = 1
7398 */
7399
7400 for (i = 0; i < TYPE_NFIELDS (type); i++)
7401 {
7402 enum type_code field_type_code;
0963b4bd
MS
7403 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
7404 i)));
67255d04
RE
7405
7406 /* Is it a floating point type field? */
7407 if (field_type_code == TYPE_CODE_FLT)
7408 {
7409 nRc = 1;
7410 break;
7411 }
7412
7413 /* If bitpos != 0, then we have to care about it. */
7414 if (TYPE_FIELD_BITPOS (type, i) != 0)
7415 {
7416 /* Bitfields are not addressable. If the field bitsize is
7417 zero, then the field is not packed. Hence it cannot be
7418 a bitfield or any other packed type. */
7419 if (TYPE_FIELD_BITSIZE (type, i) == 0)
7420 {
7421 nRc = 1;
7422 break;
7423 }
7424 }
7425 }
7426 }
7427
7428 return nRc;
7429}
7430
34e8f22d
RE
7431/* Write into appropriate registers a function return value of type
7432 TYPE, given in virtual format. */
7433
7434static void
b508a996 7435arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 7436 const gdb_byte *valbuf)
34e8f22d 7437{
be8626e0 7438 struct gdbarch *gdbarch = get_regcache_arch (regs);
e17a4113 7439 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
be8626e0 7440
34e8f22d
RE
7441 if (TYPE_CODE (type) == TYPE_CODE_FLT)
7442 {
7a5ea0d4 7443 char buf[MAX_REGISTER_SIZE];
34e8f22d 7444
be8626e0 7445 switch (gdbarch_tdep (gdbarch)->fp_model)
08216dd7
RE
7446 {
7447 case ARM_FLOAT_FPA:
7448
be8626e0
MD
7449 convert_to_extended (floatformat_from_type (type), buf, valbuf,
7450 gdbarch_byte_order (gdbarch));
b508a996 7451 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
7452 break;
7453
fd50bc42 7454 case ARM_FLOAT_SOFT_FPA:
08216dd7 7455 case ARM_FLOAT_SOFT_VFP:
90445bd3
DJ
7456 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7457 not using the VFP ABI code. */
7458 case ARM_FLOAT_VFP:
b508a996
RE
7459 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
7460 if (TYPE_LENGTH (type) > 4)
7461 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 7462 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
7463 break;
7464
7465 default:
9b20d036
MS
7466 internal_error (__FILE__, __LINE__,
7467 _("arm_store_return_value: Floating "
7468 "point model not supported"));
08216dd7
RE
7469 break;
7470 }
34e8f22d 7471 }
b508a996
RE
7472 else if (TYPE_CODE (type) == TYPE_CODE_INT
7473 || TYPE_CODE (type) == TYPE_CODE_CHAR
7474 || TYPE_CODE (type) == TYPE_CODE_BOOL
7475 || TYPE_CODE (type) == TYPE_CODE_PTR
7476 || TYPE_CODE (type) == TYPE_CODE_REF
7477 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7478 {
7479 if (TYPE_LENGTH (type) <= 4)
7480 {
7481 /* Values of one word or less are zero/sign-extended and
7482 returned in r0. */
7a5ea0d4 7483 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
7484 LONGEST val = unpack_long (type, valbuf);
7485
e17a4113 7486 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
b508a996
RE
7487 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
7488 }
7489 else
7490 {
7491 /* Integral values greater than one word are stored in consecutive
7492 registers starting with r0. This will always be a multiple of
7493 the regiser size. */
7494 int len = TYPE_LENGTH (type);
7495 int regno = ARM_A1_REGNUM;
7496
7497 while (len > 0)
7498 {
7499 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
7500 len -= INT_REGISTER_SIZE;
7501 valbuf += INT_REGISTER_SIZE;
b508a996
RE
7502 }
7503 }
7504 }
34e8f22d 7505 else
b508a996
RE
7506 {
7507 /* For a structure or union the behaviour is as if the value had
7508 been stored to word-aligned memory and then loaded into
7509 registers with 32-bit load instruction(s). */
7510 int len = TYPE_LENGTH (type);
7511 int regno = ARM_A1_REGNUM;
7a5ea0d4 7512 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
7513
7514 while (len > 0)
7515 {
7516 memcpy (tmpbuf, valbuf,
7a5ea0d4 7517 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 7518 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
7519 len -= INT_REGISTER_SIZE;
7520 valbuf += INT_REGISTER_SIZE;
b508a996
RE
7521 }
7522 }
34e8f22d
RE
7523}
7524
2af48f68
PB
7525
7526/* Handle function return values. */
7527
7528static enum return_value_convention
c055b101
CV
7529arm_return_value (struct gdbarch *gdbarch, struct type *func_type,
7530 struct type *valtype, struct regcache *regcache,
7531 gdb_byte *readbuf, const gdb_byte *writebuf)
2af48f68 7532{
7c00367c 7533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
90445bd3
DJ
7534 enum arm_vfp_cprc_base_type vfp_base_type;
7535 int vfp_base_count;
7536
7537 if (arm_vfp_abi_for_function (gdbarch, func_type)
7538 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
7539 {
7540 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
7541 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
7542 int i;
7543 for (i = 0; i < vfp_base_count; i++)
7544 {
58d6951d
DJ
7545 if (reg_char == 'q')
7546 {
7547 if (writebuf)
7548 arm_neon_quad_write (gdbarch, regcache, i,
7549 writebuf + i * unit_length);
7550
7551 if (readbuf)
7552 arm_neon_quad_read (gdbarch, regcache, i,
7553 readbuf + i * unit_length);
7554 }
7555 else
7556 {
7557 char name_buf[4];
7558 int regnum;
7559
7560 sprintf (name_buf, "%c%d", reg_char, i);
7561 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
7562 strlen (name_buf));
7563 if (writebuf)
7564 regcache_cooked_write (regcache, regnum,
7565 writebuf + i * unit_length);
7566 if (readbuf)
7567 regcache_cooked_read (regcache, regnum,
7568 readbuf + i * unit_length);
7569 }
90445bd3
DJ
7570 }
7571 return RETURN_VALUE_REGISTER_CONVENTION;
7572 }
7c00367c 7573
2af48f68
PB
7574 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
7575 || TYPE_CODE (valtype) == TYPE_CODE_UNION
7576 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
7577 {
7c00367c
MK
7578 if (tdep->struct_return == pcc_struct_return
7579 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
7580 return RETURN_VALUE_STRUCT_CONVENTION;
7581 }
7582
7583 if (writebuf)
7584 arm_store_return_value (valtype, regcache, writebuf);
7585
7586 if (readbuf)
7587 arm_extract_return_value (valtype, regcache, readbuf);
7588
7589 return RETURN_VALUE_REGISTER_CONVENTION;
7590}
7591
7592
9df628e0 7593static int
60ade65d 7594arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
9df628e0 7595{
e17a4113
UW
7596 struct gdbarch *gdbarch = get_frame_arch (frame);
7597 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9df628e0 7599 CORE_ADDR jb_addr;
7a5ea0d4 7600 char buf[INT_REGISTER_SIZE];
9df628e0 7601
60ade65d 7602 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
9df628e0
RE
7603
7604 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 7605 INT_REGISTER_SIZE))
9df628e0
RE
7606 return 0;
7607
e17a4113 7608 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
9df628e0
RE
7609 return 1;
7610}
7611
faa95490
DJ
7612/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
7613 return the target PC. Otherwise return 0. */
c906108c
SS
7614
7615CORE_ADDR
52f729a7 7616arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
c906108c 7617{
c5aa993b 7618 char *name;
faa95490 7619 int namelen;
c906108c
SS
7620 CORE_ADDR start_addr;
7621
7622 /* Find the starting address and name of the function containing the PC. */
7623 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7624 return 0;
7625
faa95490
DJ
7626 /* If PC is in a Thumb call or return stub, return the address of the
7627 target PC, which is in a register. The thunk functions are called
7628 _call_via_xx, where x is the register name. The possible names
3d8d5e79
DJ
7629 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
7630 functions, named __ARM_call_via_r[0-7]. */
7631 if (strncmp (name, "_call_via_", 10) == 0
7632 || strncmp (name, "__ARM_call_via_", strlen ("__ARM_call_via_")) == 0)
c906108c 7633 {
ed9a39eb
JM
7634 /* Use the name suffix to determine which register contains the
7635 target PC. */
c5aa993b
JM
7636 static char *table[15] =
7637 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
7638 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
7639 };
c906108c 7640 int regno;
faa95490 7641 int offset = strlen (name) - 2;
c906108c
SS
7642
7643 for (regno = 0; regno <= 14; regno++)
faa95490 7644 if (strcmp (&name[offset], table[regno]) == 0)
52f729a7 7645 return get_frame_register_unsigned (frame, regno);
c906108c 7646 }
ed9a39eb 7647
faa95490
DJ
7648 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
7649 non-interworking calls to foo. We could decode the stubs
7650 to find the target but it's easier to use the symbol table. */
7651 namelen = strlen (name);
7652 if (name[0] == '_' && name[1] == '_'
7653 && ((namelen > 2 + strlen ("_from_thumb")
7654 && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
7655 strlen ("_from_thumb")) == 0)
7656 || (namelen > 2 + strlen ("_from_arm")
7657 && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
7658 strlen ("_from_arm")) == 0)))
7659 {
7660 char *target_name;
7661 int target_len = namelen - 2;
7662 struct minimal_symbol *minsym;
7663 struct objfile *objfile;
7664 struct obj_section *sec;
7665
7666 if (name[namelen - 1] == 'b')
7667 target_len -= strlen ("_from_thumb");
7668 else
7669 target_len -= strlen ("_from_arm");
7670
7671 target_name = alloca (target_len + 1);
7672 memcpy (target_name, name + 2, target_len);
7673 target_name[target_len] = '\0';
7674
7675 sec = find_pc_section (pc);
7676 objfile = (sec == NULL) ? NULL : sec->objfile;
7677 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
7678 if (minsym != NULL)
7679 return SYMBOL_VALUE_ADDRESS (minsym);
7680 else
7681 return 0;
7682 }
7683
c5aa993b 7684 return 0; /* not a stub */
c906108c
SS
7685}
7686
afd7eef0
RE
7687static void
7688set_arm_command (char *args, int from_tty)
7689{
edefbb7c
AC
7690 printf_unfiltered (_("\
7691\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
7692 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
7693}
7694
7695static void
7696show_arm_command (char *args, int from_tty)
7697{
26304000 7698 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
7699}
7700
28e97307
DJ
7701static void
7702arm_update_current_architecture (void)
fd50bc42 7703{
28e97307 7704 struct gdbarch_info info;
fd50bc42 7705
28e97307 7706 /* If the current architecture is not ARM, we have nothing to do. */
1cf3db46 7707 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_arm)
28e97307 7708 return;
fd50bc42 7709
28e97307
DJ
7710 /* Update the architecture. */
7711 gdbarch_info_init (&info);
fd50bc42 7712
28e97307 7713 if (!gdbarch_update_p (info))
9b20d036 7714 internal_error (__FILE__, __LINE__, _("could not update architecture"));
fd50bc42
RE
7715}
7716
7717static void
7718set_fp_model_sfunc (char *args, int from_tty,
7719 struct cmd_list_element *c)
7720{
7721 enum arm_float_model fp_model;
7722
7723 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
7724 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
7725 {
7726 arm_fp_model = fp_model;
7727 break;
7728 }
7729
7730 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 7731 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
7732 current_fp_model);
7733
28e97307 7734 arm_update_current_architecture ();
fd50bc42
RE
7735}
7736
7737static void
08546159
AC
7738show_fp_model (struct ui_file *file, int from_tty,
7739 struct cmd_list_element *c, const char *value)
fd50bc42 7740{
1cf3db46 7741 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
fd50bc42 7742
28e97307 7743 if (arm_fp_model == ARM_FLOAT_AUTO
1cf3db46 7744 && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
7745 fprintf_filtered (file, _("\
7746The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
7747 fp_model_strings[tdep->fp_model]);
7748 else
7749 fprintf_filtered (file, _("\
7750The current ARM floating point model is \"%s\".\n"),
7751 fp_model_strings[arm_fp_model]);
7752}
7753
7754static void
7755arm_set_abi (char *args, int from_tty,
7756 struct cmd_list_element *c)
7757{
7758 enum arm_abi_kind arm_abi;
7759
7760 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
7761 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
7762 {
7763 arm_abi_global = arm_abi;
7764 break;
7765 }
7766
7767 if (arm_abi == ARM_ABI_LAST)
7768 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
7769 arm_abi_string);
7770
7771 arm_update_current_architecture ();
7772}
7773
7774static void
7775arm_show_abi (struct ui_file *file, int from_tty,
7776 struct cmd_list_element *c, const char *value)
7777{
1cf3db46 7778 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
28e97307
DJ
7779
7780 if (arm_abi_global == ARM_ABI_AUTO
1cf3db46 7781 && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
7782 fprintf_filtered (file, _("\
7783The current ARM ABI is \"auto\" (currently \"%s\").\n"),
7784 arm_abi_strings[tdep->arm_abi]);
7785 else
7786 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
7787 arm_abi_string);
fd50bc42
RE
7788}
7789
0428b8f5
DJ
7790static void
7791arm_show_fallback_mode (struct ui_file *file, int from_tty,
7792 struct cmd_list_element *c, const char *value)
7793{
1cf3db46 7794 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
0428b8f5 7795
0963b4bd
MS
7796 fprintf_filtered (file,
7797 _("The current execution mode assumed "
7798 "(when symbols are unavailable) is \"%s\".\n"),
0428b8f5
DJ
7799 arm_fallback_mode_string);
7800}
7801
7802static void
7803arm_show_force_mode (struct ui_file *file, int from_tty,
7804 struct cmd_list_element *c, const char *value)
7805{
1cf3db46 7806 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
0428b8f5 7807
0963b4bd
MS
7808 fprintf_filtered (file,
7809 _("The current execution mode assumed "
7810 "(even when symbols are available) is \"%s\".\n"),
0428b8f5
DJ
7811 arm_force_mode_string);
7812}
7813
afd7eef0
RE
7814/* If the user changes the register disassembly style used for info
7815 register and other commands, we have to also switch the style used
7816 in opcodes for disassembly output. This function is run in the "set
7817 arm disassembly" command, and does that. */
bc90b915
FN
7818
7819static void
afd7eef0 7820set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
7821 struct cmd_list_element *c)
7822{
afd7eef0 7823 set_disassembly_style ();
bc90b915
FN
7824}
7825\f
966fbf70 7826/* Return the ARM register name corresponding to register I. */
a208b0cb 7827static const char *
d93859e2 7828arm_register_name (struct gdbarch *gdbarch, int i)
966fbf70 7829{
58d6951d
DJ
7830 const int num_regs = gdbarch_num_regs (gdbarch);
7831
7832 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
7833 && i >= num_regs && i < num_regs + 32)
7834 {
7835 static const char *const vfp_pseudo_names[] = {
7836 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
7837 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
7838 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
7839 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
7840 };
7841
7842 return vfp_pseudo_names[i - num_regs];
7843 }
7844
7845 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
7846 && i >= num_regs + 32 && i < num_regs + 32 + 16)
7847 {
7848 static const char *const neon_pseudo_names[] = {
7849 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
7850 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
7851 };
7852
7853 return neon_pseudo_names[i - num_regs - 32];
7854 }
7855
ff6f572f
DJ
7856 if (i >= ARRAY_SIZE (arm_register_names))
7857 /* These registers are only supported on targets which supply
7858 an XML description. */
7859 return "";
7860
966fbf70
RE
7861 return arm_register_names[i];
7862}
7863
bc90b915 7864static void
afd7eef0 7865set_disassembly_style (void)
bc90b915 7866{
123dc839 7867 int current;
bc90b915 7868
123dc839
DJ
7869 /* Find the style that the user wants. */
7870 for (current = 0; current < num_disassembly_options; current++)
7871 if (disassembly_style == valid_disassembly_styles[current])
7872 break;
7873 gdb_assert (current < num_disassembly_options);
bc90b915 7874
94c30b78 7875 /* Synchronize the disassembler. */
bc90b915
FN
7876 set_arm_regname_option (current);
7877}
7878
082fc60d
RE
7879/* Test whether the coff symbol specific value corresponds to a Thumb
7880 function. */
7881
7882static int
7883coff_sym_is_thumb (int val)
7884{
f8bf5763
PM
7885 return (val == C_THUMBEXT
7886 || val == C_THUMBSTAT
7887 || val == C_THUMBEXTFUNC
7888 || val == C_THUMBSTATFUNC
7889 || val == C_THUMBLABEL);
082fc60d
RE
7890}
7891
7892/* arm_coff_make_msymbol_special()
7893 arm_elf_make_msymbol_special()
7894
7895 These functions test whether the COFF or ELF symbol corresponds to
7896 an address in thumb code, and set a "special" bit in a minimal
7897 symbol to indicate that it does. */
7898
34e8f22d 7899static void
082fc60d
RE
7900arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
7901{
467d42c4
UW
7902 if (ARM_SYM_BRANCH_TYPE (&((elf_symbol_type *)sym)->internal_elf_sym)
7903 == ST_BRANCH_TO_THUMB)
082fc60d
RE
7904 MSYMBOL_SET_SPECIAL (msym);
7905}
7906
34e8f22d 7907static void
082fc60d
RE
7908arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
7909{
7910 if (coff_sym_is_thumb (val))
7911 MSYMBOL_SET_SPECIAL (msym);
7912}
7913
60c5725c 7914static void
c1bd65d0 7915arm_objfile_data_free (struct objfile *objfile, void *arg)
60c5725c
DJ
7916{
7917 struct arm_per_objfile *data = arg;
7918 unsigned int i;
7919
7920 for (i = 0; i < objfile->obfd->section_count; i++)
7921 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
7922}
7923
7924static void
7925arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
7926 asymbol *sym)
7927{
7928 const char *name = bfd_asymbol_name (sym);
7929 struct arm_per_objfile *data;
7930 VEC(arm_mapping_symbol_s) **map_p;
7931 struct arm_mapping_symbol new_map_sym;
7932
7933 gdb_assert (name[0] == '$');
7934 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
7935 return;
7936
7937 data = objfile_data (objfile, arm_objfile_data_key);
7938 if (data == NULL)
7939 {
7940 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7941 struct arm_per_objfile);
7942 set_objfile_data (objfile, arm_objfile_data_key, data);
7943 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
7944 objfile->obfd->section_count,
7945 VEC(arm_mapping_symbol_s) *);
7946 }
7947 map_p = &data->section_maps[bfd_get_section (sym)->index];
7948
7949 new_map_sym.value = sym->value;
7950 new_map_sym.type = name[1];
7951
7952 /* Assume that most mapping symbols appear in order of increasing
7953 value. If they were randomly distributed, it would be faster to
7954 always push here and then sort at first use. */
7955 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
7956 {
7957 struct arm_mapping_symbol *prev_map_sym;
7958
7959 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
7960 if (prev_map_sym->value >= sym->value)
7961 {
7962 unsigned int idx;
7963 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
7964 arm_compare_mapping_symbols);
7965 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
7966 return;
7967 }
7968 }
7969
7970 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
7971}
7972
756fe439 7973static void
61a1198a 7974arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
756fe439 7975{
9779414d 7976 struct gdbarch *gdbarch = get_regcache_arch (regcache);
61a1198a 7977 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
756fe439
DJ
7978
7979 /* If necessary, set the T bit. */
7980 if (arm_apcs_32)
7981 {
9779414d 7982 ULONGEST val, t_bit;
61a1198a 7983 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
9779414d
DJ
7984 t_bit = arm_psr_thumb_bit (gdbarch);
7985 if (arm_pc_is_thumb (gdbarch, pc))
7986 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
7987 val | t_bit);
756fe439 7988 else
61a1198a 7989 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
9779414d 7990 val & ~t_bit);
756fe439
DJ
7991 }
7992}
123dc839 7993
58d6951d
DJ
7994/* Read the contents of a NEON quad register, by reading from two
7995 double registers. This is used to implement the quad pseudo
7996 registers, and for argument passing in case the quad registers are
7997 missing; vectors are passed in quad registers when using the VFP
7998 ABI, even if a NEON unit is not present. REGNUM is the index of
7999 the quad register, in [0, 15]. */
8000
05d1431c 8001static enum register_status
58d6951d
DJ
8002arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
8003 int regnum, gdb_byte *buf)
8004{
8005 char name_buf[4];
8006 gdb_byte reg_buf[8];
8007 int offset, double_regnum;
05d1431c 8008 enum register_status status;
58d6951d
DJ
8009
8010 sprintf (name_buf, "d%d", regnum << 1);
8011 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8012 strlen (name_buf));
8013
8014 /* d0 is always the least significant half of q0. */
8015 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8016 offset = 8;
8017 else
8018 offset = 0;
8019
05d1431c
PA
8020 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8021 if (status != REG_VALID)
8022 return status;
58d6951d
DJ
8023 memcpy (buf + offset, reg_buf, 8);
8024
8025 offset = 8 - offset;
05d1431c
PA
8026 status = regcache_raw_read (regcache, double_regnum + 1, reg_buf);
8027 if (status != REG_VALID)
8028 return status;
58d6951d 8029 memcpy (buf + offset, reg_buf, 8);
05d1431c
PA
8030
8031 return REG_VALID;
58d6951d
DJ
8032}
8033
05d1431c 8034static enum register_status
58d6951d
DJ
8035arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
8036 int regnum, gdb_byte *buf)
8037{
8038 const int num_regs = gdbarch_num_regs (gdbarch);
8039 char name_buf[4];
8040 gdb_byte reg_buf[8];
8041 int offset, double_regnum;
8042
8043 gdb_assert (regnum >= num_regs);
8044 regnum -= num_regs;
8045
8046 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8047 /* Quad-precision register. */
05d1431c 8048 return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
58d6951d
DJ
8049 else
8050 {
05d1431c
PA
8051 enum register_status status;
8052
58d6951d
DJ
8053 /* Single-precision register. */
8054 gdb_assert (regnum < 32);
8055
8056 /* s0 is always the least significant half of d0. */
8057 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8058 offset = (regnum & 1) ? 0 : 4;
8059 else
8060 offset = (regnum & 1) ? 4 : 0;
8061
8062 sprintf (name_buf, "d%d", regnum >> 1);
8063 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8064 strlen (name_buf));
8065
05d1431c
PA
8066 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8067 if (status == REG_VALID)
8068 memcpy (buf, reg_buf + offset, 4);
8069 return status;
58d6951d
DJ
8070 }
8071}
8072
8073/* Store the contents of BUF to a NEON quad register, by writing to
8074 two double registers. This is used to implement the quad pseudo
8075 registers, and for argument passing in case the quad registers are
8076 missing; vectors are passed in quad registers when using the VFP
8077 ABI, even if a NEON unit is not present. REGNUM is the index
8078 of the quad register, in [0, 15]. */
8079
8080static void
8081arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
8082 int regnum, const gdb_byte *buf)
8083{
8084 char name_buf[4];
8085 gdb_byte reg_buf[8];
8086 int offset, double_regnum;
8087
8088 sprintf (name_buf, "d%d", regnum << 1);
8089 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8090 strlen (name_buf));
8091
8092 /* d0 is always the least significant half of q0. */
8093 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8094 offset = 8;
8095 else
8096 offset = 0;
8097
8098 regcache_raw_write (regcache, double_regnum, buf + offset);
8099 offset = 8 - offset;
8100 regcache_raw_write (regcache, double_regnum + 1, buf + offset);
8101}
8102
8103static void
8104arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
8105 int regnum, const gdb_byte *buf)
8106{
8107 const int num_regs = gdbarch_num_regs (gdbarch);
8108 char name_buf[4];
8109 gdb_byte reg_buf[8];
8110 int offset, double_regnum;
8111
8112 gdb_assert (regnum >= num_regs);
8113 regnum -= num_regs;
8114
8115 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8116 /* Quad-precision register. */
8117 arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
8118 else
8119 {
8120 /* Single-precision register. */
8121 gdb_assert (regnum < 32);
8122
8123 /* s0 is always the least significant half of d0. */
8124 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8125 offset = (regnum & 1) ? 0 : 4;
8126 else
8127 offset = (regnum & 1) ? 4 : 0;
8128
8129 sprintf (name_buf, "d%d", regnum >> 1);
8130 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8131 strlen (name_buf));
8132
8133 regcache_raw_read (regcache, double_regnum, reg_buf);
8134 memcpy (reg_buf + offset, buf, 4);
8135 regcache_raw_write (regcache, double_regnum, reg_buf);
8136 }
8137}
8138
123dc839
DJ
8139static struct value *
8140value_of_arm_user_reg (struct frame_info *frame, const void *baton)
8141{
8142 const int *reg_p = baton;
8143 return value_of_register (*reg_p, frame);
8144}
97e03143 8145\f
70f80edf
JT
8146static enum gdb_osabi
8147arm_elf_osabi_sniffer (bfd *abfd)
97e03143 8148{
2af48f68 8149 unsigned int elfosabi;
70f80edf 8150 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 8151
70f80edf 8152 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 8153
28e97307
DJ
8154 if (elfosabi == ELFOSABI_ARM)
8155 /* GNU tools use this value. Check note sections in this case,
8156 as well. */
8157 bfd_map_over_sections (abfd,
8158 generic_elf_osabi_sniff_abi_tag_sections,
8159 &osabi);
97e03143 8160
28e97307 8161 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 8162 return osabi;
97e03143
RE
8163}
8164
54483882
YQ
8165static int
8166arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
8167 struct reggroup *group)
8168{
2c291032
YQ
8169 /* FPS register's type is INT, but belongs to float_reggroup. Beside
8170 this, FPS register belongs to save_regroup, restore_reggroup, and
8171 all_reggroup, of course. */
54483882 8172 if (regnum == ARM_FPS_REGNUM)
2c291032
YQ
8173 return (group == float_reggroup
8174 || group == save_reggroup
8175 || group == restore_reggroup
8176 || group == all_reggroup);
54483882
YQ
8177 else
8178 return default_register_reggroup_p (gdbarch, regnum, group);
8179}
8180
70f80edf 8181\f
da3c6d4a
MS
8182/* Initialize the current architecture based on INFO. If possible,
8183 re-use an architecture from ARCHES, which is a list of
8184 architectures already created during this debugging session.
97e03143 8185
da3c6d4a
MS
8186 Called e.g. at program startup, when reading a core file, and when
8187 reading a binary file. */
97e03143 8188
39bbf761
RE
8189static struct gdbarch *
8190arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8191{
97e03143 8192 struct gdbarch_tdep *tdep;
39bbf761 8193 struct gdbarch *gdbarch;
28e97307
DJ
8194 struct gdbarch_list *best_arch;
8195 enum arm_abi_kind arm_abi = arm_abi_global;
8196 enum arm_float_model fp_model = arm_fp_model;
123dc839 8197 struct tdesc_arch_data *tdesc_data = NULL;
9779414d 8198 int i, is_m = 0;
58d6951d
DJ
8199 int have_vfp_registers = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
8200 int have_neon = 0;
ff6f572f 8201 int have_fpa_registers = 1;
9779414d
DJ
8202 const struct target_desc *tdesc = info.target_desc;
8203
8204 /* If we have an object to base this architecture on, try to determine
8205 its ABI. */
8206
8207 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
8208 {
8209 int ei_osabi, e_flags;
8210
8211 switch (bfd_get_flavour (info.abfd))
8212 {
8213 case bfd_target_aout_flavour:
8214 /* Assume it's an old APCS-style ABI. */
8215 arm_abi = ARM_ABI_APCS;
8216 break;
8217
8218 case bfd_target_coff_flavour:
8219 /* Assume it's an old APCS-style ABI. */
8220 /* XXX WinCE? */
8221 arm_abi = ARM_ABI_APCS;
8222 break;
8223
8224 case bfd_target_elf_flavour:
8225 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
8226 e_flags = elf_elfheader (info.abfd)->e_flags;
8227
8228 if (ei_osabi == ELFOSABI_ARM)
8229 {
8230 /* GNU tools used to use this value, but do not for EABI
8231 objects. There's nowhere to tag an EABI version
8232 anyway, so assume APCS. */
8233 arm_abi = ARM_ABI_APCS;
8234 }
8235 else if (ei_osabi == ELFOSABI_NONE)
8236 {
8237 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
8238 int attr_arch, attr_profile;
8239
8240 switch (eabi_ver)
8241 {
8242 case EF_ARM_EABI_UNKNOWN:
8243 /* Assume GNU tools. */
8244 arm_abi = ARM_ABI_APCS;
8245 break;
8246
8247 case EF_ARM_EABI_VER4:
8248 case EF_ARM_EABI_VER5:
8249 arm_abi = ARM_ABI_AAPCS;
8250 /* EABI binaries default to VFP float ordering.
8251 They may also contain build attributes that can
8252 be used to identify if the VFP argument-passing
8253 ABI is in use. */
8254 if (fp_model == ARM_FLOAT_AUTO)
8255 {
8256#ifdef HAVE_ELF
8257 switch (bfd_elf_get_obj_attr_int (info.abfd,
8258 OBJ_ATTR_PROC,
8259 Tag_ABI_VFP_args))
8260 {
8261 case 0:
8262 /* "The user intended FP parameter/result
8263 passing to conform to AAPCS, base
8264 variant". */
8265 fp_model = ARM_FLOAT_SOFT_VFP;
8266 break;
8267 case 1:
8268 /* "The user intended FP parameter/result
8269 passing to conform to AAPCS, VFP
8270 variant". */
8271 fp_model = ARM_FLOAT_VFP;
8272 break;
8273 case 2:
8274 /* "The user intended FP parameter/result
8275 passing to conform to tool chain-specific
8276 conventions" - we don't know any such
8277 conventions, so leave it as "auto". */
8278 break;
8279 default:
8280 /* Attribute value not mentioned in the
8281 October 2008 ABI, so leave it as
8282 "auto". */
8283 break;
8284 }
8285#else
8286 fp_model = ARM_FLOAT_SOFT_VFP;
8287#endif
8288 }
8289 break;
8290
8291 default:
8292 /* Leave it as "auto". */
8293 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
8294 break;
8295 }
8296
8297#ifdef HAVE_ELF
8298 /* Detect M-profile programs. This only works if the
8299 executable file includes build attributes; GCC does
8300 copy them to the executable, but e.g. RealView does
8301 not. */
8302 attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
8303 Tag_CPU_arch);
0963b4bd
MS
8304 attr_profile = bfd_elf_get_obj_attr_int (info.abfd,
8305 OBJ_ATTR_PROC,
9779414d
DJ
8306 Tag_CPU_arch_profile);
8307 /* GCC specifies the profile for v6-M; RealView only
8308 specifies the profile for architectures starting with
8309 V7 (as opposed to architectures with a tag
8310 numerically greater than TAG_CPU_ARCH_V7). */
8311 if (!tdesc_has_registers (tdesc)
8312 && (attr_arch == TAG_CPU_ARCH_V6_M
8313 || attr_arch == TAG_CPU_ARCH_V6S_M
8314 || attr_profile == 'M'))
8315 tdesc = tdesc_arm_with_m;
8316#endif
8317 }
8318
8319 if (fp_model == ARM_FLOAT_AUTO)
8320 {
8321 int e_flags = elf_elfheader (info.abfd)->e_flags;
8322
8323 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
8324 {
8325 case 0:
8326 /* Leave it as "auto". Strictly speaking this case
8327 means FPA, but almost nobody uses that now, and
8328 many toolchains fail to set the appropriate bits
8329 for the floating-point model they use. */
8330 break;
8331 case EF_ARM_SOFT_FLOAT:
8332 fp_model = ARM_FLOAT_SOFT_FPA;
8333 break;
8334 case EF_ARM_VFP_FLOAT:
8335 fp_model = ARM_FLOAT_VFP;
8336 break;
8337 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
8338 fp_model = ARM_FLOAT_SOFT_VFP;
8339 break;
8340 }
8341 }
8342
8343 if (e_flags & EF_ARM_BE8)
8344 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
8345
8346 break;
8347
8348 default:
8349 /* Leave it as "auto". */
8350 break;
8351 }
8352 }
123dc839
DJ
8353
8354 /* Check any target description for validity. */
9779414d 8355 if (tdesc_has_registers (tdesc))
123dc839
DJ
8356 {
8357 /* For most registers we require GDB's default names; but also allow
8358 the numeric names for sp / lr / pc, as a convenience. */
8359 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
8360 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
8361 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
8362
8363 const struct tdesc_feature *feature;
58d6951d 8364 int valid_p;
123dc839 8365
9779414d 8366 feature = tdesc_find_feature (tdesc,
123dc839
DJ
8367 "org.gnu.gdb.arm.core");
8368 if (feature == NULL)
9779414d
DJ
8369 {
8370 feature = tdesc_find_feature (tdesc,
8371 "org.gnu.gdb.arm.m-profile");
8372 if (feature == NULL)
8373 return NULL;
8374 else
8375 is_m = 1;
8376 }
123dc839
DJ
8377
8378 tdesc_data = tdesc_data_alloc ();
8379
8380 valid_p = 1;
8381 for (i = 0; i < ARM_SP_REGNUM; i++)
8382 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8383 arm_register_names[i]);
8384 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
8385 ARM_SP_REGNUM,
8386 arm_sp_names);
8387 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
8388 ARM_LR_REGNUM,
8389 arm_lr_names);
8390 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
8391 ARM_PC_REGNUM,
8392 arm_pc_names);
9779414d
DJ
8393 if (is_m)
8394 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8395 ARM_PS_REGNUM, "xpsr");
8396 else
8397 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8398 ARM_PS_REGNUM, "cpsr");
123dc839
DJ
8399
8400 if (!valid_p)
8401 {
8402 tdesc_data_cleanup (tdesc_data);
8403 return NULL;
8404 }
8405
9779414d 8406 feature = tdesc_find_feature (tdesc,
123dc839
DJ
8407 "org.gnu.gdb.arm.fpa");
8408 if (feature != NULL)
8409 {
8410 valid_p = 1;
8411 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
8412 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8413 arm_register_names[i]);
8414 if (!valid_p)
8415 {
8416 tdesc_data_cleanup (tdesc_data);
8417 return NULL;
8418 }
8419 }
ff6f572f
DJ
8420 else
8421 have_fpa_registers = 0;
8422
9779414d 8423 feature = tdesc_find_feature (tdesc,
ff6f572f
DJ
8424 "org.gnu.gdb.xscale.iwmmxt");
8425 if (feature != NULL)
8426 {
8427 static const char *const iwmmxt_names[] = {
8428 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
8429 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
8430 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
8431 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
8432 };
8433
8434 valid_p = 1;
8435 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
8436 valid_p
8437 &= tdesc_numbered_register (feature, tdesc_data, i,
8438 iwmmxt_names[i - ARM_WR0_REGNUM]);
8439
8440 /* Check for the control registers, but do not fail if they
8441 are missing. */
8442 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
8443 tdesc_numbered_register (feature, tdesc_data, i,
8444 iwmmxt_names[i - ARM_WR0_REGNUM]);
8445
8446 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
8447 valid_p
8448 &= tdesc_numbered_register (feature, tdesc_data, i,
8449 iwmmxt_names[i - ARM_WR0_REGNUM]);
8450
8451 if (!valid_p)
8452 {
8453 tdesc_data_cleanup (tdesc_data);
8454 return NULL;
8455 }
8456 }
58d6951d
DJ
8457
8458 /* If we have a VFP unit, check whether the single precision registers
8459 are present. If not, then we will synthesize them as pseudo
8460 registers. */
9779414d 8461 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
8462 "org.gnu.gdb.arm.vfp");
8463 if (feature != NULL)
8464 {
8465 static const char *const vfp_double_names[] = {
8466 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
8467 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
8468 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
8469 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
8470 };
8471
8472 /* Require the double precision registers. There must be either
8473 16 or 32. */
8474 valid_p = 1;
8475 for (i = 0; i < 32; i++)
8476 {
8477 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8478 ARM_D0_REGNUM + i,
8479 vfp_double_names[i]);
8480 if (!valid_p)
8481 break;
8482 }
2b9e5ea6
UW
8483 if (!valid_p && i == 16)
8484 valid_p = 1;
58d6951d 8485
2b9e5ea6
UW
8486 /* Also require FPSCR. */
8487 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8488 ARM_FPSCR_REGNUM, "fpscr");
8489 if (!valid_p)
58d6951d
DJ
8490 {
8491 tdesc_data_cleanup (tdesc_data);
8492 return NULL;
8493 }
8494
8495 if (tdesc_unnumbered_register (feature, "s0") == 0)
8496 have_vfp_pseudos = 1;
8497
8498 have_vfp_registers = 1;
8499
8500 /* If we have VFP, also check for NEON. The architecture allows
8501 NEON without VFP (integer vector operations only), but GDB
8502 does not support that. */
9779414d 8503 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
8504 "org.gnu.gdb.arm.neon");
8505 if (feature != NULL)
8506 {
8507 /* NEON requires 32 double-precision registers. */
8508 if (i != 32)
8509 {
8510 tdesc_data_cleanup (tdesc_data);
8511 return NULL;
8512 }
8513
8514 /* If there are quad registers defined by the stub, use
8515 their type; otherwise (normally) provide them with
8516 the default type. */
8517 if (tdesc_unnumbered_register (feature, "q0") == 0)
8518 have_neon_pseudos = 1;
8519
8520 have_neon = 1;
8521 }
8522 }
123dc839 8523 }
39bbf761 8524
28e97307
DJ
8525 /* If there is already a candidate, use it. */
8526 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
8527 best_arch != NULL;
8528 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
8529 {
b8926edc
DJ
8530 if (arm_abi != ARM_ABI_AUTO
8531 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
28e97307
DJ
8532 continue;
8533
b8926edc
DJ
8534 if (fp_model != ARM_FLOAT_AUTO
8535 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
28e97307
DJ
8536 continue;
8537
58d6951d
DJ
8538 /* There are various other properties in tdep that we do not
8539 need to check here: those derived from a target description,
8540 since gdbarches with a different target description are
8541 automatically disqualified. */
8542
9779414d
DJ
8543 /* Do check is_m, though, since it might come from the binary. */
8544 if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
8545 continue;
8546
28e97307
DJ
8547 /* Found a match. */
8548 break;
8549 }
97e03143 8550
28e97307 8551 if (best_arch != NULL)
123dc839
DJ
8552 {
8553 if (tdesc_data != NULL)
8554 tdesc_data_cleanup (tdesc_data);
8555 return best_arch->gdbarch;
8556 }
28e97307
DJ
8557
8558 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
8559 gdbarch = gdbarch_alloc (&info, tdep);
8560
28e97307
DJ
8561 /* Record additional information about the architecture we are defining.
8562 These are gdbarch discriminators, like the OSABI. */
8563 tdep->arm_abi = arm_abi;
8564 tdep->fp_model = fp_model;
9779414d 8565 tdep->is_m = is_m;
ff6f572f 8566 tdep->have_fpa_registers = have_fpa_registers;
58d6951d
DJ
8567 tdep->have_vfp_registers = have_vfp_registers;
8568 tdep->have_vfp_pseudos = have_vfp_pseudos;
8569 tdep->have_neon_pseudos = have_neon_pseudos;
8570 tdep->have_neon = have_neon;
08216dd7
RE
8571
8572 /* Breakpoints. */
9d4fde75 8573 switch (info.byte_order_for_code)
67255d04
RE
8574 {
8575 case BFD_ENDIAN_BIG:
66e810cd
RE
8576 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
8577 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
8578 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
8579 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
8580
67255d04
RE
8581 break;
8582
8583 case BFD_ENDIAN_LITTLE:
66e810cd
RE
8584 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
8585 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
8586 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
8587 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
8588
67255d04
RE
8589 break;
8590
8591 default:
8592 internal_error (__FILE__, __LINE__,
edefbb7c 8593 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
8594 }
8595
d7b486e7
RE
8596 /* On ARM targets char defaults to unsigned. */
8597 set_gdbarch_char_signed (gdbarch, 0);
8598
cca44b1b
JB
8599 /* Note: for displaced stepping, this includes the breakpoint, and one word
8600 of additional scratch space. This setting isn't used for anything beside
8601 displaced stepping at present. */
8602 set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
8603
9df628e0 8604 /* This should be low enough for everything. */
97e03143 8605 tdep->lowest_pc = 0x20;
94c30b78 8606 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 8607
7c00367c
MK
8608 /* The default, for both APCS and AAPCS, is to return small
8609 structures in registers. */
8610 tdep->struct_return = reg_struct_return;
8611
2dd604e7 8612 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 8613 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 8614
756fe439
DJ
8615 set_gdbarch_write_pc (gdbarch, arm_write_pc);
8616
148754e5 8617 /* Frame handling. */
a262aec2 8618 set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
eb5492fa
DJ
8619 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
8620 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
8621
eb5492fa 8622 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 8623
34e8f22d
RE
8624 /* Address manipulation. */
8625 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
8626 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
8627
34e8f22d
RE
8628 /* Advance PC across function entry code. */
8629 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
8630
4024ca99
UW
8631 /* Detect whether PC is in function epilogue. */
8632 set_gdbarch_in_function_epilogue_p (gdbarch, arm_in_function_epilogue_p);
8633
190dce09
UW
8634 /* Skip trampolines. */
8635 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
8636
34e8f22d
RE
8637 /* The stack grows downward. */
8638 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8639
8640 /* Breakpoint manipulation. */
8641 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
177321bd
DJ
8642 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
8643 arm_remote_breakpoint_from_pc);
34e8f22d
RE
8644
8645 /* Information about registers, etc. */
34e8f22d
RE
8646 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
8647 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ff6f572f 8648 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
7a5ea0d4 8649 set_gdbarch_register_type (gdbarch, arm_register_type);
54483882 8650 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
34e8f22d 8651
ff6f572f
DJ
8652 /* This "info float" is FPA-specific. Use the generic version if we
8653 do not have FPA. */
8654 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
8655 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
8656
26216b98 8657 /* Internal <-> external register number maps. */
ff6f572f 8658 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
8659 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
8660
34e8f22d
RE
8661 set_gdbarch_register_name (gdbarch, arm_register_name);
8662
8663 /* Returning results. */
2af48f68 8664 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d 8665
03d48a7d
RE
8666 /* Disassembly. */
8667 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
8668
34e8f22d
RE
8669 /* Minsymbol frobbing. */
8670 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
8671 set_gdbarch_coff_make_msymbol_special (gdbarch,
8672 arm_coff_make_msymbol_special);
60c5725c 8673 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
34e8f22d 8674
f9d67f43
DJ
8675 /* Thumb-2 IT block support. */
8676 set_gdbarch_adjust_breakpoint_address (gdbarch,
8677 arm_adjust_breakpoint_address);
8678
0d5de010
DJ
8679 /* Virtual tables. */
8680 set_gdbarch_vbit_in_delta (gdbarch, 1);
8681
97e03143 8682 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 8683 gdbarch_init_osabi (info, gdbarch);
97e03143 8684
b39cc962
DJ
8685 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
8686
eb5492fa 8687 /* Add some default predicates. */
a262aec2
DJ
8688 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
8689 dwarf2_append_unwinders (gdbarch);
0e9e9abd 8690 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
a262aec2 8691 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
eb5492fa 8692
97e03143
RE
8693 /* Now we have tuned the configuration, set a few final things,
8694 based on what the OS ABI has told us. */
8695
b8926edc
DJ
8696 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
8697 binaries are always marked. */
8698 if (tdep->arm_abi == ARM_ABI_AUTO)
8699 tdep->arm_abi = ARM_ABI_APCS;
8700
e3039479
UW
8701 /* Watchpoints are not steppable. */
8702 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8703
b8926edc
DJ
8704 /* We used to default to FPA for generic ARM, but almost nobody
8705 uses that now, and we now provide a way for the user to force
8706 the model. So default to the most useful variant. */
8707 if (tdep->fp_model == ARM_FLOAT_AUTO)
8708 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
8709
9df628e0
RE
8710 if (tdep->jb_pc >= 0)
8711 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
8712
08216dd7 8713 /* Floating point sizes and format. */
8da61cc4 8714 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
b8926edc 8715 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
08216dd7 8716 {
8da61cc4
DJ
8717 set_gdbarch_double_format
8718 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
8719 set_gdbarch_long_double_format
8720 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
8721 }
8722 else
8723 {
8724 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
8725 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
8726 }
8727
58d6951d
DJ
8728 if (have_vfp_pseudos)
8729 {
8730 /* NOTE: These are the only pseudo registers used by
8731 the ARM target at the moment. If more are added, a
8732 little more care in numbering will be needed. */
8733
8734 int num_pseudos = 32;
8735 if (have_neon_pseudos)
8736 num_pseudos += 16;
8737 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
8738 set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
8739 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
8740 }
8741
123dc839 8742 if (tdesc_data)
58d6951d
DJ
8743 {
8744 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
8745
9779414d 8746 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
58d6951d
DJ
8747
8748 /* Override tdesc_register_type to adjust the types of VFP
8749 registers for NEON. */
8750 set_gdbarch_register_type (gdbarch, arm_register_type);
8751 }
123dc839
DJ
8752
8753 /* Add standard register aliases. We add aliases even for those
8754 nanes which are used by the current architecture - it's simpler,
8755 and does no harm, since nothing ever lists user registers. */
8756 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
8757 user_reg_add (gdbarch, arm_register_aliases[i].name,
8758 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
8759
39bbf761
RE
8760 return gdbarch;
8761}
8762
97e03143 8763static void
2af46ca0 8764arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
97e03143 8765{
2af46ca0 8766 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
97e03143
RE
8767
8768 if (tdep == NULL)
8769 return;
8770
edefbb7c 8771 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
8772 (unsigned long) tdep->lowest_pc);
8773}
8774
a78f21af
AC
8775extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
8776
c906108c 8777void
ed9a39eb 8778_initialize_arm_tdep (void)
c906108c 8779{
bc90b915
FN
8780 struct ui_file *stb;
8781 long length;
26304000 8782 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
8783 const char *setname;
8784 const char *setdesc;
4bd7b427 8785 const char *const *regnames;
bc90b915
FN
8786 int numregs, i, j;
8787 static char *helptext;
edefbb7c
AC
8788 char regdesc[1024], *rdptr = regdesc;
8789 size_t rest = sizeof (regdesc);
085dd6e6 8790
42cf1509 8791 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 8792
60c5725c 8793 arm_objfile_data_key
c1bd65d0 8794 = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
60c5725c 8795
0e9e9abd
UW
8796 /* Add ourselves to objfile event chain. */
8797 observer_attach_new_objfile (arm_exidx_new_objfile);
8798 arm_exidx_data_key
8799 = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
8800
70f80edf
JT
8801 /* Register an ELF OS ABI sniffer for ARM binaries. */
8802 gdbarch_register_osabi_sniffer (bfd_arch_arm,
8803 bfd_target_elf_flavour,
8804 arm_elf_osabi_sniffer);
8805
9779414d
DJ
8806 /* Initialize the standard target descriptions. */
8807 initialize_tdesc_arm_with_m ();
ef7e8358
UW
8808 initialize_tdesc_arm_with_iwmmxt ();
8809 initialize_tdesc_arm_with_vfpv2 ();
8810 initialize_tdesc_arm_with_vfpv3 ();
8811 initialize_tdesc_arm_with_neon ();
9779414d 8812
94c30b78 8813 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
8814 num_disassembly_options = get_arm_regname_num_options ();
8815
8816 /* Add root prefix command for all "set arm"/"show arm" commands. */
8817 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 8818 _("Various ARM-specific commands."),
afd7eef0
RE
8819 &setarmcmdlist, "set arm ", 0, &setlist);
8820
8821 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 8822 _("Various ARM-specific commands."),
afd7eef0 8823 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 8824
94c30b78 8825 /* Sync the opcode insn printer with our register viewer. */
bc90b915 8826 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 8827
eefe576e
AC
8828 /* Initialize the array that will be passed to
8829 add_setshow_enum_cmd(). */
afd7eef0
RE
8830 valid_disassembly_styles
8831 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
8832 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
8833 {
8834 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 8835 valid_disassembly_styles[i] = setname;
edefbb7c
AC
8836 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
8837 rdptr += length;
8838 rest -= length;
123dc839
DJ
8839 /* When we find the default names, tell the disassembler to use
8840 them. */
bc90b915
FN
8841 if (!strcmp (setname, "std"))
8842 {
afd7eef0 8843 disassembly_style = setname;
bc90b915
FN
8844 set_arm_regname_option (i);
8845 }
8846 }
94c30b78 8847 /* Mark the end of valid options. */
afd7eef0 8848 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 8849
edefbb7c
AC
8850 /* Create the help text. */
8851 stb = mem_fileopen ();
8852 fprintf_unfiltered (stb, "%s%s%s",
8853 _("The valid values are:\n"),
8854 regdesc,
8855 _("The default is \"std\"."));
759ef836 8856 helptext = ui_file_xstrdup (stb, NULL);
bc90b915 8857 ui_file_delete (stb);
ed9a39eb 8858
edefbb7c
AC
8859 add_setshow_enum_cmd("disassembler", no_class,
8860 valid_disassembly_styles, &disassembly_style,
8861 _("Set the disassembly style."),
8862 _("Show the disassembly style."),
8863 helptext,
2c5b56ce 8864 set_disassembly_style_sfunc,
0963b4bd
MS
8865 NULL, /* FIXME: i18n: The disassembly style is
8866 \"%s\". */
7376b4c2 8867 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
8868
8869 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
8870 _("Set usage of ARM 32-bit mode."),
8871 _("Show usage of ARM 32-bit mode."),
8872 _("When off, a 26-bit PC will be used."),
2c5b56ce 8873 NULL,
0963b4bd
MS
8874 NULL, /* FIXME: i18n: Usage of ARM 32-bit
8875 mode is %s. */
26304000 8876 &setarmcmdlist, &showarmcmdlist);
c906108c 8877
fd50bc42 8878 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
8879 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
8880 _("Set the floating point type."),
8881 _("Show the floating point type."),
8882 _("auto - Determine the FP typefrom the OS-ABI.\n\
8883softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
8884fpa - FPA co-processor (GCC compiled).\n\
8885softvfp - Software FP with pure-endian doubles.\n\
8886vfp - VFP co-processor."),
edefbb7c 8887 set_fp_model_sfunc, show_fp_model,
7376b4c2 8888 &setarmcmdlist, &showarmcmdlist);
fd50bc42 8889
28e97307
DJ
8890 /* Add a command to allow the user to force the ABI. */
8891 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
8892 _("Set the ABI."),
8893 _("Show the ABI."),
8894 NULL, arm_set_abi, arm_show_abi,
8895 &setarmcmdlist, &showarmcmdlist);
8896
0428b8f5
DJ
8897 /* Add two commands to allow the user to force the assumed
8898 execution mode. */
8899 add_setshow_enum_cmd ("fallback-mode", class_support,
8900 arm_mode_strings, &arm_fallback_mode_string,
8901 _("Set the mode assumed when symbols are unavailable."),
8902 _("Show the mode assumed when symbols are unavailable."),
8903 NULL, NULL, arm_show_fallback_mode,
8904 &setarmcmdlist, &showarmcmdlist);
8905 add_setshow_enum_cmd ("force-mode", class_support,
8906 arm_mode_strings, &arm_force_mode_string,
8907 _("Set the mode assumed even when symbols are available."),
8908 _("Show the mode assumed even when symbols are available."),
8909 NULL, NULL, arm_show_force_mode,
8910 &setarmcmdlist, &showarmcmdlist);
8911
6529d2dd 8912 /* Debugging flag. */
edefbb7c
AC
8913 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
8914 _("Set ARM debugging."),
8915 _("Show ARM debugging."),
8916 _("When on, arm-specific debugging is enabled."),
2c5b56ce 8917 NULL,
7915a72c 8918 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 8919 &setdebuglist, &showdebuglist);
c906108c 8920}
This page took 1.247465 seconds and 4 git commands to generate.