Add OpenBSD/powerpc support.
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
b6ba6518 2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
756fe439 3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
34e8f22d
RE
22#include <ctype.h> /* XXX for isupper () */
23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
c906108c 29#include "gdb_string.h"
afd7eef0 30#include "dis-asm.h" /* For register styles. */
4e052eda 31#include "regcache.h"
d16aafd8 32#include "doublest.h"
fd0407d6 33#include "value.h"
34e8f22d 34#include "arch-utils.h"
4be87837 35#include "osabi.h"
eb5492fa
DJ
36#include "frame-unwind.h"
37#include "frame-base.h"
38#include "trad-frame.h"
34e8f22d
RE
39
40#include "arm-tdep.h"
26216b98 41#include "gdb/sim-arm.h"
34e8f22d 42
082fc60d
RE
43#include "elf-bfd.h"
44#include "coff/internal.h"
97e03143 45#include "elf/arm.h"
c906108c 46
26216b98
AC
47#include "gdb_assert.h"
48
6529d2dd
AC
49static int arm_debug;
50
2a451106
KB
51/* Each OS has a different mechanism for accessing the various
52 registers stored in the sigcontext structure.
53
54 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
55 function pointer) which may be used to determine the addresses
56 of the various saved registers in the sigcontext structure.
57
58 For the ARM target, there are three parameters to this function.
59 The first is the pc value of the frame under consideration, the
60 second the stack pointer of this frame, and the last is the
61 register number to fetch.
62
63 If the tm.h file does not define this macro, then it's assumed that
64 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
65 be 0.
66
67 When it comes time to multi-arching this code, see the identically
68 named machinery in ia64-tdep.c for an example of how it could be
69 done. It should not be necessary to modify the code below where
70 this macro is used. */
71
3bb04bdd
AC
72#ifdef SIGCONTEXT_REGISTER_ADDRESS
73#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
74#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
75#endif
76#else
77#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
78#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
2a451106
KB
79#endif
80
082fc60d
RE
81/* Macros for setting and testing a bit in a minimal symbol that marks
82 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 83 is used for this purpose.
082fc60d
RE
84
85 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 86 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
87
88#define MSYMBOL_SET_SPECIAL(msym) \
89 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
90 | 0x80000000)
91
92#define MSYMBOL_IS_SPECIAL(msym) \
93 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
94
afd7eef0
RE
95/* The list of available "set arm ..." and "show arm ..." commands. */
96static struct cmd_list_element *setarmcmdlist = NULL;
97static struct cmd_list_element *showarmcmdlist = NULL;
98
fd50bc42
RE
99/* The type of floating-point to use. Keep this in sync with enum
100 arm_float_model, and the help string in _initialize_arm_tdep. */
101static const char *fp_model_strings[] =
102{
103 "auto",
104 "softfpa",
105 "fpa",
106 "softvfp",
107 "vfp"
108};
109
110/* A variable that can be configured by the user. */
111static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
112static const char *current_fp_model = "auto";
113
94c30b78 114/* Number of different reg name sets (options). */
afd7eef0 115static int num_disassembly_options;
bc90b915
FN
116
117/* We have more registers than the disassembler as gdb can print the value
118 of special registers as well.
119 The general register names are overwritten by whatever is being used by
94c30b78 120 the disassembler at the moment. We also adjust the case of cpsr and fps. */
bc90b915 121
94c30b78 122/* Initial value: Register names used in ARM's ISA documentation. */
bc90b915 123static char * arm_register_name_strings[] =
da59e081
JM
124{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
125 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
126 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
127 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
128 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
129 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 130 "fps", "cpsr" }; /* 24 25 */
966fbf70 131static char **arm_register_names = arm_register_name_strings;
ed9a39eb 132
afd7eef0
RE
133/* Valid register name styles. */
134static const char **valid_disassembly_styles;
ed9a39eb 135
afd7eef0
RE
136/* Disassembly style to use. Default to "std" register names. */
137static const char *disassembly_style;
94c30b78 138/* Index to that option in the opcodes table. */
da3c6d4a 139static int current_option;
96baa820 140
ed9a39eb 141/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
142 style. */
143static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 144 struct cmd_list_element *);
afd7eef0 145static void set_disassembly_style (void);
ed9a39eb 146
b508a996
RE
147static void convert_from_extended (const struct floatformat *, const void *,
148 void *);
149static void convert_to_extended (const struct floatformat *, void *,
150 const void *);
ed9a39eb 151
9b8d791a 152struct arm_prologue_cache
c3b4394c 153{
eb5492fa
DJ
154 /* The stack pointer at the time this frame was created; i.e. the
155 caller's stack pointer when this function was called. It is used
156 to identify this frame. */
157 CORE_ADDR prev_sp;
158
159 /* The frame base for this frame is just prev_sp + frame offset -
160 frame size. FRAMESIZE is the size of this stack frame, and
161 FRAMEOFFSET if the initial offset from the stack pointer (this
162 frame's stack pointer, not PREV_SP) to the frame base. */
163
c3b4394c
RE
164 int framesize;
165 int frameoffset;
eb5492fa
DJ
166
167 /* The register used to hold the frame pointer for this frame. */
c3b4394c 168 int framereg;
eb5492fa
DJ
169
170 /* Saved register offsets. */
171 struct trad_frame_saved_reg *saved_regs;
c3b4394c 172};
ed9a39eb 173
bc90b915
FN
174/* Addresses for calling Thumb functions have the bit 0 set.
175 Here are some macros to test, set, or clear bit 0 of addresses. */
176#define IS_THUMB_ADDR(addr) ((addr) & 1)
177#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
178#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
179
94c30b78 180/* Set to true if the 32-bit mode is in use. */
c906108c
SS
181
182int arm_apcs_32 = 1;
183
ed9a39eb
JM
184/* Flag set by arm_fix_call_dummy that tells whether the target
185 function is a Thumb function. This flag is checked by
186 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
187 its use in valops.c) to pass the function address as an additional
188 parameter. */
c906108c
SS
189
190static int target_is_thumb;
191
ed9a39eb
JM
192/* Flag set by arm_fix_call_dummy that tells whether the calling
193 function is a Thumb function. This flag is checked by
194 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
c906108c
SS
195
196static int caller_is_thumb;
197
ed9a39eb
JM
198/* Determine if the program counter specified in MEMADDR is in a Thumb
199 function. */
c906108c 200
34e8f22d 201int
2a451106 202arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 203{
c5aa993b 204 struct minimal_symbol *sym;
c906108c 205
ed9a39eb 206 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
207 if (IS_THUMB_ADDR (memaddr))
208 return 1;
209
ed9a39eb 210 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
211 sym = lookup_minimal_symbol_by_pc (memaddr);
212 if (sym)
213 {
c5aa993b 214 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
215 }
216 else
ed9a39eb
JM
217 {
218 return 0;
219 }
c906108c
SS
220}
221
ed9a39eb
JM
222/* Determine if the program counter specified in MEMADDR is in a call
223 dummy being called from a Thumb function. */
c906108c 224
34e8f22d 225int
2a451106 226arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
c906108c 227{
c5aa993b 228 CORE_ADDR sp = read_sp ();
c906108c 229
dfcd3bfb
JM
230 /* FIXME: Until we switch for the new call dummy macros, this heuristic
231 is the best we can do. We are trying to determine if the pc is on
232 the stack, which (hopefully) will only happen in a call dummy.
233 We hope the current stack pointer is not so far alway from the dummy
234 frame location (true if we have not pushed large data structures or
235 gone too many levels deep) and that our 1024 is not enough to consider
94c30b78 236 code regions as part of the stack (true for most practical purposes). */
ae45cd16 237 if (DEPRECATED_PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
c906108c
SS
238 return caller_is_thumb;
239 else
240 return 0;
241}
242
181c1381 243/* Remove useless bits from addresses in a running program. */
34e8f22d 244static CORE_ADDR
ed9a39eb 245arm_addr_bits_remove (CORE_ADDR val)
c906108c 246{
a3a2ee65
JT
247 if (arm_apcs_32)
248 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 249 else
a3a2ee65 250 return (val & 0x03fffffc);
c906108c
SS
251}
252
181c1381
RE
253/* When reading symbols, we need to zap the low bit of the address,
254 which may be set to 1 for Thumb functions. */
34e8f22d 255static CORE_ADDR
181c1381
RE
256arm_smash_text_address (CORE_ADDR val)
257{
258 return val & ~1;
259}
260
34e8f22d
RE
261/* Immediately after a function call, return the saved pc. Can't
262 always go through the frames for this because on some machines the
263 new frame is not set up until the new function executes some
264 instructions. */
265
266static CORE_ADDR
ed9a39eb 267arm_saved_pc_after_call (struct frame_info *frame)
c906108c 268{
34e8f22d 269 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
c906108c
SS
270}
271
0defa245
RE
272/* Determine whether the function invocation represented by FI has a
273 frame on the stack associated with it. If it does return zero,
274 otherwise return 1. */
275
148754e5 276static int
ed9a39eb 277arm_frameless_function_invocation (struct frame_info *fi)
392a587b 278{
392a587b 279 CORE_ADDR func_start, after_prologue;
96baa820 280 int frameless;
ed9a39eb 281
0defa245
RE
282 /* Sometimes we have functions that do a little setup (like saving the
283 vN registers with the stmdb instruction, but DO NOT set up a frame.
284 The symbol table will report this as a prologue. However, it is
285 important not to try to parse these partial frames as frames, or we
286 will get really confused.
287
288 So I will demand 3 instructions between the start & end of the
289 prologue before I call it a real prologue, i.e. at least
290 mov ip, sp,
291 stmdb sp!, {}
292 sub sp, ip, #4. */
293
8cf71652 294 func_start = (get_frame_func (fi) + FUNCTION_START_OFFSET);
7be570e7 295 after_prologue = SKIP_PROLOGUE (func_start);
ed9a39eb 296
96baa820 297 /* There are some frameless functions whose first two instructions
ed9a39eb 298 follow the standard APCS form, in which case after_prologue will
94c30b78 299 be func_start + 8. */
ed9a39eb 300
96baa820 301 frameless = (after_prologue < func_start + 12);
392a587b
JM
302 return frameless;
303}
304
c906108c 305/* A typical Thumb prologue looks like this:
c5aa993b
JM
306 push {r7, lr}
307 add sp, sp, #-28
308 add r7, sp, #12
c906108c 309 Sometimes the latter instruction may be replaced by:
da59e081
JM
310 mov r7, sp
311
312 or like this:
313 push {r7, lr}
314 mov r7, sp
315 sub sp, #12
316
317 or, on tpcs, like this:
318 sub sp,#16
319 push {r7, lr}
320 (many instructions)
321 mov r7, sp
322 sub sp, #12
323
324 There is always one instruction of three classes:
325 1 - push
326 2 - setting of r7
327 3 - adjusting of sp
328
329 When we have found at least one of each class we are done with the prolog.
330 Note that the "sub sp, #NN" before the push does not count.
ed9a39eb 331 */
c906108c
SS
332
333static CORE_ADDR
c7885828 334thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
c906108c
SS
335{
336 CORE_ADDR current_pc;
da3c6d4a
MS
337 /* findmask:
338 bit 0 - push { rlist }
339 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
340 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
341 */
342 int findmask = 0;
343
94c30b78
MS
344 for (current_pc = pc;
345 current_pc + 2 < func_end && current_pc < pc + 40;
da3c6d4a 346 current_pc += 2)
c906108c
SS
347 {
348 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
349
94c30b78 350 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 351 {
94c30b78 352 findmask |= 1; /* push found */
da59e081 353 }
da3c6d4a
MS
354 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
355 sub sp, #simm */
da59e081 356 {
94c30b78 357 if ((findmask & 1) == 0) /* before push ? */
da59e081
JM
358 continue;
359 else
94c30b78 360 findmask |= 4; /* add/sub sp found */
da59e081
JM
361 }
362 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
363 {
94c30b78 364 findmask |= 2; /* setting of r7 found */
da59e081
JM
365 }
366 else if (insn == 0x466f) /* mov r7, sp */
367 {
94c30b78 368 findmask |= 2; /* setting of r7 found */
da59e081 369 }
3d74b771
FF
370 else if (findmask == (4+2+1))
371 {
da3c6d4a
MS
372 /* We have found one of each type of prologue instruction */
373 break;
3d74b771 374 }
da59e081 375 else
94c30b78 376 /* Something in the prolog that we don't care about or some
da3c6d4a 377 instruction from outside the prolog scheduled here for
94c30b78 378 optimization. */
da3c6d4a 379 continue;
c906108c
SS
380 }
381
382 return current_pc;
383}
384
da3c6d4a
MS
385/* Advance the PC across any function entry prologue instructions to
386 reach some "real" code.
34e8f22d
RE
387
388 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 389 prologue:
c906108c 390
c5aa993b
JM
391 mov ip, sp
392 [stmfd sp!, {a1,a2,a3,a4}]
393 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
394 [stfe f7, [sp, #-12]!]
395 [stfe f6, [sp, #-12]!]
396 [stfe f5, [sp, #-12]!]
397 [stfe f4, [sp, #-12]!]
398 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 399
34e8f22d 400static CORE_ADDR
ed9a39eb 401arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
402{
403 unsigned long inst;
404 CORE_ADDR skip_pc;
b8d5e71d 405 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 406 char *func_name;
c906108c
SS
407 struct symtab_and_line sal;
408
848cfffb 409 /* If we're in a dummy frame, don't even try to skip the prologue. */
ae45cd16 410 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
848cfffb
AC
411 return pc;
412
96baa820 413 /* See what the symbol table says. */
ed9a39eb 414
50f6fb4b 415 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 416 {
50f6fb4b
CV
417 struct symbol *sym;
418
419 /* Found a function. */
176620f1 420 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
421 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
422 {
94c30b78 423 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
424 sal = find_pc_line (func_addr, 0);
425 if ((sal.line != 0) && (sal.end < func_end))
426 return sal.end;
427 }
c906108c
SS
428 }
429
430 /* Check if this is Thumb code. */
431 if (arm_pc_is_thumb (pc))
c7885828 432 return thumb_skip_prologue (pc, func_end);
c906108c
SS
433
434 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 435 by disassembling the instructions. */
c906108c 436
b8d5e71d
MS
437 /* Like arm_scan_prologue, stop no later than pc + 64. */
438 if (func_end == 0 || func_end > pc + 64)
439 func_end = pc + 64;
c906108c 440
b8d5e71d 441 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 442 {
f43845b3 443 inst = read_memory_integer (skip_pc, 4);
f43845b3 444
b8d5e71d
MS
445 /* "mov ip, sp" is no longer a required part of the prologue. */
446 if (inst == 0xe1a0c00d) /* mov ip, sp */
447 continue;
c906108c 448
28cd8767
JG
449 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
450 continue;
451
452 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
453 continue;
454
b8d5e71d
MS
455 /* Some prologues begin with "str lr, [sp, #-4]!". */
456 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
457 continue;
c906108c 458
b8d5e71d
MS
459 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
460 continue;
c906108c 461
b8d5e71d
MS
462 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
463 continue;
11d3b27d 464
b8d5e71d
MS
465 /* Any insns after this point may float into the code, if it makes
466 for better instruction scheduling, so we skip them only if we
467 find them, but still consider the function to be frame-ful. */
f43845b3 468
b8d5e71d
MS
469 /* We may have either one sfmfd instruction here, or several stfe
470 insns, depending on the version of floating point code we
471 support. */
472 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
473 continue;
474
475 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
479 continue;
480
481 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
482 continue;
483
484 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
485 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
486 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
487 continue;
488
489 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
490 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
491 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
492 continue;
493
494 /* Un-recognized instruction; stop scanning. */
495 break;
f43845b3 496 }
c906108c 497
b8d5e71d 498 return skip_pc; /* End of prologue */
c906108c 499}
94c30b78 500
c5aa993b 501/* *INDENT-OFF* */
c906108c
SS
502/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
503 This function decodes a Thumb function prologue to determine:
504 1) the size of the stack frame
505 2) which registers are saved on it
506 3) the offsets of saved regs
507 4) the offset from the stack pointer to the frame pointer
c906108c 508
da59e081
JM
509 A typical Thumb function prologue would create this stack frame
510 (offsets relative to FP)
c906108c
SS
511 old SP -> 24 stack parameters
512 20 LR
513 16 R7
514 R7 -> 0 local variables (16 bytes)
515 SP -> -12 additional stack space (12 bytes)
516 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
517 12 bytes. The frame register is R7.
518
da3c6d4a
MS
519 The comments for thumb_skip_prolog() describe the algorithm we use
520 to detect the end of the prolog. */
c5aa993b
JM
521/* *INDENT-ON* */
522
c906108c 523static void
eb5492fa 524thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
c906108c
SS
525{
526 CORE_ADDR prologue_start;
527 CORE_ADDR prologue_end;
528 CORE_ADDR current_pc;
94c30b78 529 /* Which register has been copied to register n? */
da3c6d4a
MS
530 int saved_reg[16];
531 /* findmask:
532 bit 0 - push { rlist }
533 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
534 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
535 */
536 int findmask = 0;
c5aa993b 537 int i;
c906108c 538
eb5492fa 539 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
540 {
541 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
542
94c30b78 543 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 544 prologue_end = prev_pc;
c906108c 545 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 546 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
547 }
548 else
da3c6d4a
MS
549 /* We're in the boondocks: allow for
550 16 pushes, an add, and "mv fp,sp". */
551 prologue_end = prologue_start + 40;
c906108c 552
eb5492fa 553 prologue_end = min (prologue_end, prev_pc);
c906108c
SS
554
555 /* Initialize the saved register map. When register H is copied to
556 register L, we will put H in saved_reg[L]. */
557 for (i = 0; i < 16; i++)
558 saved_reg[i] = i;
559
560 /* Search the prologue looking for instructions that set up the
da59e081
JM
561 frame pointer, adjust the stack pointer, and save registers.
562 Do this until all basic prolog instructions are found. */
c906108c 563
9b8d791a 564 cache->framesize = 0;
da59e081
JM
565 for (current_pc = prologue_start;
566 (current_pc < prologue_end) && ((findmask & 7) != 7);
567 current_pc += 2)
c906108c
SS
568 {
569 unsigned short insn;
570 int regno;
571 int offset;
572
573 insn = read_memory_unsigned_integer (current_pc, 2);
574
c5aa993b 575 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
c906108c 576 {
da59e081 577 int mask;
94c30b78 578 findmask |= 1; /* push found */
c906108c
SS
579 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
580 whether to save LR (R14). */
da59e081 581 mask = (insn & 0xff) | ((insn & 0x100) << 6);
c906108c 582
b8d5e71d 583 /* Calculate offsets of saved R0-R7 and LR. */
34e8f22d 584 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
c906108c 585 if (mask & (1 << regno))
c5aa993b 586 {
9b8d791a 587 cache->framesize += 4;
eb5492fa 588 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
da3c6d4a
MS
589 /* Reset saved register map. */
590 saved_reg[regno] = regno;
c906108c
SS
591 }
592 }
da3c6d4a
MS
593 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
594 sub sp, #simm */
c906108c 595 {
b8d5e71d 596 if ((findmask & 1) == 0) /* before push? */
da59e081
JM
597 continue;
598 else
94c30b78 599 findmask |= 4; /* add/sub sp found */
da59e081 600
94c30b78
MS
601 offset = (insn & 0x7f) << 2; /* get scaled offset */
602 if (insn & 0x80) /* is it signed? (==subtracting) */
da59e081 603 {
9b8d791a 604 cache->frameoffset += offset;
da59e081
JM
605 offset = -offset;
606 }
9b8d791a 607 cache->framesize -= offset;
c906108c
SS
608 }
609 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
610 {
94c30b78 611 findmask |= 2; /* setting of r7 found */
9b8d791a 612 cache->framereg = THUMB_FP_REGNUM;
c3b4394c 613 /* get scaled offset */
9b8d791a 614 cache->frameoffset = (insn & 0xff) << 2;
c906108c 615 }
da59e081 616 else if (insn == 0x466f) /* mov r7, sp */
c906108c 617 {
94c30b78 618 findmask |= 2; /* setting of r7 found */
9b8d791a
DJ
619 cache->framereg = THUMB_FP_REGNUM;
620 cache->frameoffset = 0;
34e8f22d 621 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
c906108c
SS
622 }
623 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
624 {
da3c6d4a 625 int lo_reg = insn & 7; /* dest. register (r0-r7) */
c906108c 626 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
94c30b78 627 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
c906108c
SS
628 }
629 else
da3c6d4a
MS
630 /* Something in the prolog that we don't care about or some
631 instruction from outside the prolog scheduled here for
632 optimization. */
633 continue;
c906108c
SS
634 }
635}
636
ed9a39eb 637/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
638 1) the size of the stack frame
639 2) which registers are saved on it
640 3) the offsets of saved regs
641 4) the offset from the stack pointer to the frame pointer
c906108c
SS
642 This information is stored in the "extra" fields of the frame_info.
643
96baa820
JM
644 There are two basic forms for the ARM prologue. The fixed argument
645 function call will look like:
ed9a39eb
JM
646
647 mov ip, sp
648 stmfd sp!, {fp, ip, lr, pc}
649 sub fp, ip, #4
650 [sub sp, sp, #4]
96baa820 651
c906108c 652 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
653 IP -> 4 (caller's stack)
654 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
655 -4 LR (return address in caller)
656 -8 IP (copy of caller's SP)
657 -12 FP (caller's FP)
658 SP -> -28 Local variables
659
c906108c 660 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
661 28 bytes. The stmfd call can also save any of the vN registers it
662 plans to use, which increases the frame size accordingly.
663
664 Note: The stored PC is 8 off of the STMFD instruction that stored it
665 because the ARM Store instructions always store PC + 8 when you read
666 the PC register.
ed9a39eb 667
96baa820
JM
668 A variable argument function call will look like:
669
ed9a39eb
JM
670 mov ip, sp
671 stmfd sp!, {a1, a2, a3, a4}
672 stmfd sp!, {fp, ip, lr, pc}
673 sub fp, ip, #20
674
96baa820 675 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
676 IP -> 20 (caller's stack)
677 16 A4
678 12 A3
679 8 A2
680 4 A1
681 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
682 -4 LR (return address in caller)
683 -8 IP (copy of caller's SP)
684 -12 FP (caller's FP)
685 SP -> -28 Local variables
96baa820
JM
686
687 The frame size would thus be 48 bytes, and the frame offset would be
688 28 bytes.
689
690 There is another potential complication, which is that the optimizer
691 will try to separate the store of fp in the "stmfd" instruction from
692 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
693 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
694
695 Also, note, the original version of the ARM toolchain claimed that there
696 should be an
697
698 instruction at the end of the prologue. I have never seen GCC produce
699 this, and the ARM docs don't mention it. We still test for it below in
700 case it happens...
ed9a39eb
JM
701
702 */
c906108c
SS
703
704static void
eb5492fa 705arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
c906108c 706{
28cd8767 707 int regno, sp_offset, fp_offset, ip_offset;
c906108c 708 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 709 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
c906108c 710
c906108c 711 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
712 cache->framereg = ARM_SP_REGNUM;
713 cache->framesize = 0;
714 cache->frameoffset = 0;
c906108c
SS
715
716 /* Check for Thumb prologue. */
eb5492fa 717 if (arm_pc_is_thumb (prev_pc))
c906108c 718 {
eb5492fa 719 thumb_scan_prologue (prev_pc, cache);
c906108c
SS
720 return;
721 }
722
723 /* Find the function prologue. If we can't find the function in
724 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 725 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 726 {
2a451106
KB
727 /* One way to find the end of the prologue (which works well
728 for unoptimized code) is to do the following:
729
730 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
731
732 if (sal.line == 0)
eb5492fa 733 prologue_end = prev_pc;
2a451106
KB
734 else if (sal.end < prologue_end)
735 prologue_end = sal.end;
736
737 This mechanism is very accurate so long as the optimizer
738 doesn't move any instructions from the function body into the
739 prologue. If this happens, sal.end will be the last
740 instruction in the first hunk of prologue code just before
741 the first instruction that the scheduler has moved from
742 the body to the prologue.
743
744 In order to make sure that we scan all of the prologue
745 instructions, we use a slightly less accurate mechanism which
746 may scan more than necessary. To help compensate for this
747 lack of accuracy, the prologue scanning loop below contains
748 several clauses which'll cause the loop to terminate early if
749 an implausible prologue instruction is encountered.
750
751 The expression
752
753 prologue_start + 64
754
755 is a suitable endpoint since it accounts for the largest
756 possible prologue plus up to five instructions inserted by
94c30b78 757 the scheduler. */
2a451106
KB
758
759 if (prologue_end > prologue_start + 64)
760 {
94c30b78 761 prologue_end = prologue_start + 64; /* See above. */
2a451106 762 }
c906108c
SS
763 }
764 else
765 {
eb5492fa
DJ
766 /* We have no symbol information. Our only option is to assume this
767 function has a standard stack frame and the normal frame register.
768 Then, we can find the value of our frame pointer on entrance to
769 the callee (or at the present moment if this is the innermost frame).
770 The value stored there should be the address of the stmfd + 8. */
771 CORE_ADDR frame_loc;
772 LONGEST return_value;
773
774 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
775 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
776 return;
777 else
778 {
779 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 780 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 781 }
c906108c
SS
782 }
783
eb5492fa
DJ
784 if (prev_pc < prologue_end)
785 prologue_end = prev_pc;
786
c906108c 787 /* Now search the prologue looking for instructions that set up the
96baa820 788 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 789
96baa820
JM
790 Be careful, however, and if it doesn't look like a prologue,
791 don't try to scan it. If, for instance, a frameless function
792 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 793 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
794 and other operations that rely on a knowledge of the stack
795 traceback.
796
797 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 798 if we don't see this as the first insn, we will stop.
c906108c 799
f43845b3
MS
800 [Note: This doesn't seem to be true any longer, so it's now an
801 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 802
f43845b3
MS
803 [Note further: The "mov ip,sp" only seems to be missing in
804 frameless functions at optimization level "-O2" or above,
805 in which case it is often (but not always) replaced by
b8d5e71d 806 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 807
28cd8767 808 sp_offset = fp_offset = ip_offset = 0;
f43845b3 809
94c30b78
MS
810 for (current_pc = prologue_start;
811 current_pc < prologue_end;
f43845b3 812 current_pc += 4)
96baa820 813 {
d4473757
KB
814 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
815
94c30b78 816 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 817 {
28cd8767
JG
818 ip_offset = 0;
819 continue;
820 }
821 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
822 {
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
825 imm = (imm >> rot) | (imm << (32 - rot));
826 ip_offset = imm;
827 continue;
828 }
829 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
830 {
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
833 imm = (imm >> rot) | (imm << (32 - rot));
834 ip_offset = -imm;
f43845b3
MS
835 continue;
836 }
94c30b78 837 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 838 {
e28a332c
JG
839 sp_offset -= 4;
840 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
f43845b3
MS
841 continue;
842 }
843 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
844 /* stmfd sp!, {..., fp, ip, lr, pc}
845 or
846 stmfd sp!, {a1, a2, a3, a4} */
c906108c 847 {
d4473757 848 int mask = insn & 0xffff;
ed9a39eb 849
94c30b78 850 /* Calculate offsets of saved registers. */
34e8f22d 851 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
852 if (mask & (1 << regno))
853 {
854 sp_offset -= 4;
eb5492fa 855 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
856 }
857 }
b8d5e71d
MS
858 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
859 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
860 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
861 {
862 /* No need to add this to saved_regs -- it's just an arg reg. */
863 continue;
864 }
865 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
866 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
867 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
868 {
869 /* No need to add this to saved_regs -- it's just an arg reg. */
870 continue;
871 }
d4473757
KB
872 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
873 {
94c30b78
MS
874 unsigned imm = insn & 0xff; /* immediate value */
875 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 876 imm = (imm >> rot) | (imm << (32 - rot));
28cd8767 877 fp_offset = -imm + ip_offset;
9b8d791a 878 cache->framereg = ARM_FP_REGNUM;
d4473757
KB
879 }
880 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
881 {
94c30b78
MS
882 unsigned imm = insn & 0xff; /* immediate value */
883 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
884 imm = (imm >> rot) | (imm << (32 - rot));
885 sp_offset -= imm;
886 }
887 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
888 {
889 sp_offset -= 12;
34e8f22d 890 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
eb5492fa 891 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
892 }
893 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
894 {
895 int n_saved_fp_regs;
896 unsigned int fp_start_reg, fp_bound_reg;
897
94c30b78 898 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 899 {
d4473757
KB
900 if ((insn & 0x40000) == 0x40000) /* N1 is set */
901 n_saved_fp_regs = 3;
902 else
903 n_saved_fp_regs = 1;
96baa820 904 }
d4473757 905 else
96baa820 906 {
d4473757
KB
907 if ((insn & 0x40000) == 0x40000) /* N1 is set */
908 n_saved_fp_regs = 2;
909 else
910 n_saved_fp_regs = 4;
96baa820 911 }
d4473757 912
34e8f22d 913 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
914 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
915 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
916 {
917 sp_offset -= 12;
eb5492fa 918 cache->saved_regs[fp_start_reg++].addr = sp_offset;
96baa820 919 }
c906108c 920 }
d4473757 921 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 922 break; /* Condition not true, exit early */
b8d5e71d 923 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 924 break; /* Don't scan past a block load */
d4473757
KB
925 else
926 /* The optimizer might shove anything into the prologue,
94c30b78 927 so we just skip what we don't recognize. */
d4473757 928 continue;
c906108c
SS
929 }
930
94c30b78
MS
931 /* The frame size is just the negative of the offset (from the
932 original SP) of the last thing thing we pushed on the stack.
933 The frame offset is [new FP] - [new SP]. */
9b8d791a
DJ
934 cache->framesize = -sp_offset;
935 if (cache->framereg == ARM_FP_REGNUM)
936 cache->frameoffset = fp_offset - sp_offset;
d4473757 937 else
9b8d791a 938 cache->frameoffset = 0;
c906108c
SS
939}
940
eb5492fa
DJ
941static struct arm_prologue_cache *
942arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 943{
eb5492fa
DJ
944 int reg;
945 struct arm_prologue_cache *cache;
946 CORE_ADDR unwound_fp;
c5aa993b 947
eb5492fa
DJ
948 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
949 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 950
eb5492fa 951 arm_scan_prologue (next_frame, cache);
848cfffb 952
eb5492fa
DJ
953 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
954 if (unwound_fp == 0)
955 return cache;
c906108c 956
eb5492fa 957 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
c906108c 958
eb5492fa
DJ
959 /* Calculate actual addresses of saved registers using offsets
960 determined by arm_scan_prologue. */
961 for (reg = 0; reg < NUM_REGS; reg++)
e28a332c 962 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
963 cache->saved_regs[reg].addr += cache->prev_sp;
964
965 return cache;
c906108c
SS
966}
967
eb5492fa
DJ
968/* Our frame ID for a normal frame is the current function's starting PC
969 and the caller's SP when we were called. */
c906108c 970
148754e5 971static void
eb5492fa
DJ
972arm_prologue_this_id (struct frame_info *next_frame,
973 void **this_cache,
974 struct frame_id *this_id)
c906108c 975{
eb5492fa
DJ
976 struct arm_prologue_cache *cache;
977 struct frame_id id;
978 CORE_ADDR func;
f079148d 979
eb5492fa
DJ
980 if (*this_cache == NULL)
981 *this_cache = arm_make_prologue_cache (next_frame);
982 cache = *this_cache;
2a451106 983
eb5492fa 984 func = frame_func_unwind (next_frame);
2a451106 985
eb5492fa
DJ
986 /* This is meant to halt the backtrace at "_start". Make sure we
987 don't halt it at a generic dummy frame. */
9e815ec2 988 if (func <= LOWEST_PC)
eb5492fa 989 return;
5a203e44 990
eb5492fa
DJ
991 /* If we've hit a wall, stop. */
992 if (cache->prev_sp == 0)
993 return;
24de872b 994
eb5492fa 995 id = frame_id_build (cache->prev_sp, func);
eb5492fa 996 *this_id = id;
c906108c
SS
997}
998
eb5492fa
DJ
999static void
1000arm_prologue_prev_register (struct frame_info *next_frame,
1001 void **this_cache,
1002 int prev_regnum,
1003 int *optimized,
1004 enum lval_type *lvalp,
1005 CORE_ADDR *addrp,
1006 int *realnump,
1007 void *valuep)
24de872b
DJ
1008{
1009 struct arm_prologue_cache *cache;
1010
eb5492fa
DJ
1011 if (*this_cache == NULL)
1012 *this_cache = arm_make_prologue_cache (next_frame);
1013 cache = *this_cache;
24de872b 1014
eb5492fa
DJ
1015 /* If we are asked to unwind the PC, then we need to return the LR
1016 instead. The saved value of PC points into this frame's
1017 prologue, not the next frame's resume location. */
1018 if (prev_regnum == ARM_PC_REGNUM)
1019 prev_regnum = ARM_LR_REGNUM;
24de872b 1020
eb5492fa
DJ
1021 /* SP is generally not saved to the stack, but this frame is
1022 identified by NEXT_FRAME's stack pointer at the time of the call.
1023 The value was already reconstructed into PREV_SP. */
1024 if (prev_regnum == ARM_SP_REGNUM)
1025 {
1026 *lvalp = not_lval;
1027 if (valuep)
1028 store_unsigned_integer (valuep, 4, cache->prev_sp);
1029 return;
1030 }
1031
1032 trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
1033 optimized, lvalp, addrp, realnump, valuep);
1034}
1035
1036struct frame_unwind arm_prologue_unwind = {
1037 NORMAL_FRAME,
1038 arm_prologue_this_id,
1039 arm_prologue_prev_register
1040};
1041
1042static const struct frame_unwind *
1043arm_prologue_unwind_sniffer (struct frame_info *next_frame)
1044{
1045 return &arm_prologue_unwind;
24de872b
DJ
1046}
1047
1048static CORE_ADDR
eb5492fa 1049arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1050{
1051 struct arm_prologue_cache *cache;
1052
eb5492fa
DJ
1053 if (*this_cache == NULL)
1054 *this_cache = arm_make_prologue_cache (next_frame);
1055 cache = *this_cache;
1056
1057 return cache->prev_sp + cache->frameoffset - cache->framesize;
24de872b
DJ
1058}
1059
eb5492fa
DJ
1060struct frame_base arm_normal_base = {
1061 &arm_prologue_unwind,
1062 arm_normal_frame_base,
1063 arm_normal_frame_base,
1064 arm_normal_frame_base
1065};
1066
1067static struct arm_prologue_cache *
1068arm_make_sigtramp_cache (struct frame_info *next_frame)
24de872b
DJ
1069{
1070 struct arm_prologue_cache *cache;
eb5492fa
DJ
1071 int reg;
1072
1073 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
24de872b 1074
eb5492fa 1075 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
24de872b 1076
eb5492fa 1077 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
24de872b 1078
eb5492fa
DJ
1079 for (reg = 0; reg < NUM_REGS; reg++)
1080 cache->saved_regs[reg].addr
1081 = SIGCONTEXT_REGISTER_ADDRESS (cache->prev_sp,
1082 frame_pc_unwind (next_frame), reg);
24de872b 1083
eb5492fa
DJ
1084 /* FIXME: What about thumb mode? */
1085 cache->framereg = ARM_SP_REGNUM;
1086 cache->prev_sp
1087 = read_memory_integer (cache->saved_regs[cache->framereg].addr,
7a5ea0d4 1088 register_size (current_gdbarch, cache->framereg));
eb5492fa
DJ
1089
1090 return cache;
24de872b 1091}
c906108c 1092
eb5492fa
DJ
1093static void
1094arm_sigtramp_this_id (struct frame_info *next_frame,
1095 void **this_cache,
1096 struct frame_id *this_id)
1097{
1098 struct arm_prologue_cache *cache;
c906108c 1099
eb5492fa
DJ
1100 if (*this_cache == NULL)
1101 *this_cache = arm_make_sigtramp_cache (next_frame);
1102 cache = *this_cache;
c906108c 1103
eb5492fa
DJ
1104 /* FIXME drow/2003-07-07: This isn't right if we single-step within
1105 the sigtramp frame; the PC should be the beginning of the trampoline. */
1106 *this_id = frame_id_build (cache->prev_sp, frame_pc_unwind (next_frame));
1107}
1108
1109static void
1110arm_sigtramp_prev_register (struct frame_info *next_frame,
1111 void **this_cache,
1112 int prev_regnum,
1113 int *optimized,
1114 enum lval_type *lvalp,
1115 CORE_ADDR *addrp,
1116 int *realnump,
1117 void *valuep)
c906108c 1118{
eb5492fa 1119 struct arm_prologue_cache *cache;
848cfffb 1120
eb5492fa
DJ
1121 if (*this_cache == NULL)
1122 *this_cache = arm_make_sigtramp_cache (next_frame);
1123 cache = *this_cache;
1124
1125 trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
1126 optimized, lvalp, addrp, realnump, valuep);
c906108c
SS
1127}
1128
eb5492fa
DJ
1129struct frame_unwind arm_sigtramp_unwind = {
1130 SIGTRAMP_FRAME,
1131 arm_sigtramp_this_id,
1132 arm_sigtramp_prev_register
1133};
c906108c 1134
eb5492fa
DJ
1135static const struct frame_unwind *
1136arm_sigtramp_unwind_sniffer (struct frame_info *next_frame)
c906108c 1137{
f561f026
AC
1138 /* Note: If an ARM DEPRECATED_PC_IN_SIGTRAMP method ever needs to
1139 compare against the name of the function, the code below will
1140 have to be changed to first fetch the name of the function and
1141 then pass this name to DEPRECATED_PC_IN_SIGTRAMP. */
eb5492fa
DJ
1142
1143 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
f561f026 1144 && DEPRECATED_PC_IN_SIGTRAMP (frame_pc_unwind (next_frame), (char *) 0))
eb5492fa
DJ
1145 return &arm_sigtramp_unwind;
1146
1147 return NULL;
c906108c
SS
1148}
1149
eb5492fa
DJ
1150/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1151 dummy frame. The frame ID's base needs to match the TOS value
1152 saved by save_dummy_frame_tos() and returned from
1153 arm_push_dummy_call, and the PC needs to match the dummy frame's
1154 breakpoint. */
c906108c 1155
eb5492fa
DJ
1156static struct frame_id
1157arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1158{
eb5492fa
DJ
1159 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1160 frame_pc_unwind (next_frame));
1161}
c3b4394c 1162
eb5492fa
DJ
1163/* Given THIS_FRAME, find the previous frame's resume PC (which will
1164 be used to construct the previous frame's ID, after looking up the
1165 containing function). */
c3b4394c 1166
eb5492fa
DJ
1167static CORE_ADDR
1168arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1169{
1170 CORE_ADDR pc;
1171 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1172 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1173}
1174
1175static CORE_ADDR
1176arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1177{
1178 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1179}
1180
b1e29e33 1181/* DEPRECATED_CALL_DUMMY_WORDS:
6eb69eab
RE
1182 This sequence of words is the instructions
1183
1184 mov lr,pc
1185 mov pc,r4
1186 illegal
1187
1188 Note this is 12 bytes. */
1189
34e8f22d 1190static LONGEST arm_call_dummy_words[] =
6eb69eab
RE
1191{
1192 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1193};
1194
2dd604e7
RE
1195/* When arguments must be pushed onto the stack, they go on in reverse
1196 order. The code below implements a FILO (stack) to do this. */
1197
1198struct stack_item
1199{
1200 int len;
1201 struct stack_item *prev;
1202 void *data;
1203};
1204
1205static struct stack_item *
1206push_stack_item (struct stack_item *prev, void *contents, int len)
1207{
1208 struct stack_item *si;
1209 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1210 si->data = xmalloc (len);
2dd604e7
RE
1211 si->len = len;
1212 si->prev = prev;
1213 memcpy (si->data, contents, len);
1214 return si;
1215}
1216
1217static struct stack_item *
1218pop_stack_item (struct stack_item *si)
1219{
1220 struct stack_item *dead = si;
1221 si = si->prev;
1222 xfree (dead->data);
1223 xfree (dead);
1224 return si;
1225}
1226
1227/* We currently only support passing parameters in integer registers. This
1228 conforms with GCC's default model. Several other variants exist and
1229 we should probably support some of them based on the selected ABI. */
1230
1231static CORE_ADDR
6a65450a
AC
1232arm_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1233 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1234 struct value **args, CORE_ADDR sp, int struct_return,
1235 CORE_ADDR struct_addr)
2dd604e7
RE
1236{
1237 int argnum;
1238 int argreg;
1239 int nstack;
1240 struct stack_item *si = NULL;
1241
6a65450a
AC
1242 /* Set the return address. For the ARM, the return breakpoint is
1243 always at BP_ADDR. */
2dd604e7 1244 /* XXX Fix for Thumb. */
6a65450a 1245 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1246
1247 /* Walk through the list of args and determine how large a temporary
1248 stack is required. Need to take care here as structs may be
1249 passed on the stack, and we have to to push them. */
1250 nstack = 0;
1251
1252 argreg = ARM_A1_REGNUM;
1253 nstack = 0;
1254
1255 /* Some platforms require a double-word aligned stack. Make sure sp
1256 is correctly aligned before we start. We always do this even if
1257 it isn't really needed -- it can never hurt things. */
b1e29e33 1258 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
2dd604e7
RE
1259
1260 /* The struct_return pointer occupies the first parameter
1261 passing register. */
1262 if (struct_return)
1263 {
1264 if (arm_debug)
1265 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1266 REGISTER_NAME (argreg), paddr (struct_addr));
1267 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1268 argreg++;
1269 }
1270
1271 for (argnum = 0; argnum < nargs; argnum++)
1272 {
1273 int len;
1274 struct type *arg_type;
1275 struct type *target_type;
1276 enum type_code typecode;
1277 char *val;
1278
1279 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1280 len = TYPE_LENGTH (arg_type);
1281 target_type = TYPE_TARGET_TYPE (arg_type);
1282 typecode = TYPE_CODE (arg_type);
1283 val = VALUE_CONTENTS (args[argnum]);
1284
1285 /* If the argument is a pointer to a function, and it is a
1286 Thumb function, create a LOCAL copy of the value and set
1287 the THUMB bit in it. */
1288 if (TYPE_CODE_PTR == typecode
1289 && target_type != NULL
1290 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1291 {
7c0b4a20 1292 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1293 if (arm_pc_is_thumb (regval))
1294 {
1295 val = alloca (len);
fbd9dcd3 1296 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1297 }
1298 }
1299
1300 /* Copy the argument to general registers or the stack in
1301 register-sized pieces. Large arguments are split between
1302 registers and stack. */
1303 while (len > 0)
1304 {
b1e29e33 1305 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1306
1307 if (argreg <= ARM_LAST_ARG_REGNUM)
1308 {
1309 /* The argument is being passed in a general purpose
1310 register. */
7c0b4a20 1311 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
2dd604e7
RE
1312 if (arm_debug)
1313 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1314 argnum, REGISTER_NAME (argreg),
b1e29e33 1315 phex (regval, DEPRECATED_REGISTER_SIZE));
2dd604e7
RE
1316 regcache_cooked_write_unsigned (regcache, argreg, regval);
1317 argreg++;
1318 }
1319 else
1320 {
1321 /* Push the arguments onto the stack. */
1322 if (arm_debug)
1323 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1324 argnum, nstack);
b1e29e33
AC
1325 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1326 nstack += DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1327 }
1328
1329 len -= partial_len;
1330 val += partial_len;
1331 }
1332 }
1333 /* If we have an odd number of words to push, then decrement the stack
1334 by one word now, so first stack argument will be dword aligned. */
1335 if (nstack & 4)
1336 sp -= 4;
1337
1338 while (si)
1339 {
1340 sp -= si->len;
1341 write_memory (sp, si->data, si->len);
1342 si = pop_stack_item (si);
1343 }
1344
1345 /* Finally, update teh SP register. */
1346 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1347
1348 return sp;
1349}
1350
c906108c 1351static void
ed9a39eb 1352print_fpu_flags (int flags)
c906108c 1353{
c5aa993b
JM
1354 if (flags & (1 << 0))
1355 fputs ("IVO ", stdout);
1356 if (flags & (1 << 1))
1357 fputs ("DVZ ", stdout);
1358 if (flags & (1 << 2))
1359 fputs ("OFL ", stdout);
1360 if (flags & (1 << 3))
1361 fputs ("UFL ", stdout);
1362 if (flags & (1 << 4))
1363 fputs ("INX ", stdout);
1364 putchar ('\n');
c906108c
SS
1365}
1366
5e74b15c
RE
1367/* Print interesting information about the floating point processor
1368 (if present) or emulator. */
34e8f22d 1369static void
d855c300 1370arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1371 struct frame_info *frame, const char *args)
c906108c 1372{
52f0bd74 1373 unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1374 int type;
1375
1376 type = (status >> 24) & 127;
1377 printf ("%s FPU type %d\n",
ed9a39eb 1378 (status & (1 << 31)) ? "Hardware" : "Software",
c5aa993b
JM
1379 type);
1380 fputs ("mask: ", stdout);
1381 print_fpu_flags (status >> 16);
1382 fputs ("flags: ", stdout);
1383 print_fpu_flags (status);
c906108c
SS
1384}
1385
34e8f22d
RE
1386/* Return the GDB type object for the "standard" data type of data in
1387 register N. */
1388
1389static struct type *
7a5ea0d4 1390arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1391{
34e8f22d 1392 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
032758dc 1393 {
d7449b42 1394 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
032758dc
AC
1395 return builtin_type_arm_ext_big;
1396 else
1397 return builtin_type_arm_ext_littlebyte_bigword;
1398 }
1399 else
1400 return builtin_type_int32;
1401}
1402
34e8f22d
RE
1403/* Index within `registers' of the first byte of the space for
1404 register N. */
1405
1406static int
1407arm_register_byte (int regnum)
1408{
1409 if (regnum < ARM_F0_REGNUM)
7a5ea0d4 1410 return regnum * INT_REGISTER_SIZE;
34e8f22d 1411 else if (regnum < ARM_PS_REGNUM)
7a5ea0d4
DJ
1412 return (NUM_GREGS * INT_REGISTER_SIZE
1413 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
34e8f22d 1414 else
7a5ea0d4
DJ
1415 return (NUM_GREGS * INT_REGISTER_SIZE
1416 + NUM_FREGS * FP_REGISTER_SIZE
34e8f22d
RE
1417 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1418}
1419
26216b98
AC
1420/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1421static int
1422arm_register_sim_regno (int regnum)
1423{
1424 int reg = regnum;
1425 gdb_assert (reg >= 0 && reg < NUM_REGS);
1426
1427 if (reg < NUM_GREGS)
1428 return SIM_ARM_R0_REGNUM + reg;
1429 reg -= NUM_GREGS;
1430
1431 if (reg < NUM_FREGS)
1432 return SIM_ARM_FP0_REGNUM + reg;
1433 reg -= NUM_FREGS;
1434
1435 if (reg < NUM_SREGS)
1436 return SIM_ARM_FPS_REGNUM + reg;
1437 reg -= NUM_SREGS;
1438
1439 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1440}
34e8f22d 1441
a37b3cc0
AC
1442/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1443 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1444 It is thought that this is is the floating-point register format on
1445 little-endian systems. */
c906108c 1446
ed9a39eb 1447static void
b508a996
RE
1448convert_from_extended (const struct floatformat *fmt, const void *ptr,
1449 void *dbl)
c906108c 1450{
a37b3cc0 1451 DOUBLEST d;
d7449b42 1452 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1453 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1454 else
1455 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1456 ptr, &d);
b508a996 1457 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1458}
1459
34e8f22d 1460static void
b508a996 1461convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1462{
a37b3cc0 1463 DOUBLEST d;
b508a996 1464 floatformat_to_doublest (fmt, ptr, &d);
d7449b42 1465 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1466 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1467 else
1468 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1469 &d, dbl);
c906108c 1470}
ed9a39eb 1471
c906108c 1472static int
ed9a39eb 1473condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1474{
1475 if (cond == INST_AL || cond == INST_NV)
1476 return 1;
1477
1478 switch (cond)
1479 {
1480 case INST_EQ:
1481 return ((status_reg & FLAG_Z) != 0);
1482 case INST_NE:
1483 return ((status_reg & FLAG_Z) == 0);
1484 case INST_CS:
1485 return ((status_reg & FLAG_C) != 0);
1486 case INST_CC:
1487 return ((status_reg & FLAG_C) == 0);
1488 case INST_MI:
1489 return ((status_reg & FLAG_N) != 0);
1490 case INST_PL:
1491 return ((status_reg & FLAG_N) == 0);
1492 case INST_VS:
1493 return ((status_reg & FLAG_V) != 0);
1494 case INST_VC:
1495 return ((status_reg & FLAG_V) == 0);
1496 case INST_HI:
1497 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1498 case INST_LS:
1499 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1500 case INST_GE:
1501 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1502 case INST_LT:
1503 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1504 case INST_GT:
1505 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1506 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1507 case INST_LE:
1508 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1509 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1510 }
1511 return 1;
1512}
1513
9512d7fd 1514/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1515#define submask(x) ((1L << ((x) + 1)) - 1)
1516#define bit(obj,st) (((obj) >> (st)) & 1)
1517#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1518#define sbits(obj,st,fn) \
1519 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1520#define BranchDest(addr,instr) \
1521 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1522#define ARM_PC_32 1
1523
1524static unsigned long
ed9a39eb
JM
1525shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1526 unsigned long status_reg)
c906108c
SS
1527{
1528 unsigned long res, shift;
1529 int rm = bits (inst, 0, 3);
1530 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1531
1532 if (bit (inst, 4))
c906108c
SS
1533 {
1534 int rs = bits (inst, 8, 11);
1535 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1536 }
1537 else
1538 shift = bits (inst, 7, 11);
c5aa993b
JM
1539
1540 res = (rm == 15
c906108c 1541 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1542 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1543 : read_register (rm));
1544
1545 switch (shifttype)
1546 {
c5aa993b 1547 case 0: /* LSL */
c906108c
SS
1548 res = shift >= 32 ? 0 : res << shift;
1549 break;
c5aa993b
JM
1550
1551 case 1: /* LSR */
c906108c
SS
1552 res = shift >= 32 ? 0 : res >> shift;
1553 break;
1554
c5aa993b
JM
1555 case 2: /* ASR */
1556 if (shift >= 32)
1557 shift = 31;
c906108c
SS
1558 res = ((res & 0x80000000L)
1559 ? ~((~res) >> shift) : res >> shift);
1560 break;
1561
c5aa993b 1562 case 3: /* ROR/RRX */
c906108c
SS
1563 shift &= 31;
1564 if (shift == 0)
1565 res = (res >> 1) | (carry ? 0x80000000L : 0);
1566 else
c5aa993b 1567 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1568 break;
1569 }
1570
1571 return res & 0xffffffff;
1572}
1573
c906108c
SS
1574/* Return number of 1-bits in VAL. */
1575
1576static int
ed9a39eb 1577bitcount (unsigned long val)
c906108c
SS
1578{
1579 int nbits;
1580 for (nbits = 0; val != 0; nbits++)
c5aa993b 1581 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1582 return nbits;
1583}
1584
34e8f22d 1585CORE_ADDR
ed9a39eb 1586thumb_get_next_pc (CORE_ADDR pc)
c906108c 1587{
c5aa993b 1588 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
c906108c 1589 unsigned short inst1 = read_memory_integer (pc, 2);
94c30b78 1590 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1591 unsigned long offset;
1592
1593 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1594 {
1595 CORE_ADDR sp;
1596
1597 /* Fetch the saved PC from the stack. It's stored above
1598 all of the other registers. */
b1e29e33 1599 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
34e8f22d 1600 sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1601 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1602 nextpc = ADDR_BITS_REMOVE (nextpc);
1603 if (nextpc == pc)
1604 error ("Infinite loop detected");
1605 }
1606 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1607 {
34e8f22d 1608 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1609 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1610 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1611 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1612 }
1613 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1614 {
1615 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1616 }
aa17d93e 1617 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c
SS
1618 {
1619 unsigned short inst2 = read_memory_integer (pc + 2, 2);
c5aa993b 1620 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1621 nextpc = pc_val + offset;
aa17d93e
DJ
1622 /* For BLX make sure to clear the low bits. */
1623 if (bits (inst2, 11, 12) == 1)
1624 nextpc = nextpc & 0xfffffffc;
c906108c 1625 }
aa17d93e 1626 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1627 {
1628 if (bits (inst1, 3, 6) == 0x0f)
1629 nextpc = pc_val;
1630 else
1631 nextpc = read_register (bits (inst1, 3, 6));
1632
1633 nextpc = ADDR_BITS_REMOVE (nextpc);
1634 if (nextpc == pc)
1635 error ("Infinite loop detected");
1636 }
c906108c
SS
1637
1638 return nextpc;
1639}
1640
34e8f22d 1641CORE_ADDR
ed9a39eb 1642arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1643{
1644 unsigned long pc_val;
1645 unsigned long this_instr;
1646 unsigned long status;
1647 CORE_ADDR nextpc;
1648
1649 if (arm_pc_is_thumb (pc))
1650 return thumb_get_next_pc (pc);
1651
1652 pc_val = (unsigned long) pc;
1653 this_instr = read_memory_integer (pc, 4);
34e8f22d 1654 status = read_register (ARM_PS_REGNUM);
c5aa993b 1655 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1656
1657 if (condition_true (bits (this_instr, 28, 31), status))
1658 {
1659 switch (bits (this_instr, 24, 27))
1660 {
c5aa993b 1661 case 0x0:
94c30b78 1662 case 0x1: /* data processing */
c5aa993b
JM
1663 case 0x2:
1664 case 0x3:
c906108c
SS
1665 {
1666 unsigned long operand1, operand2, result = 0;
1667 unsigned long rn;
1668 int c;
c5aa993b 1669
c906108c
SS
1670 if (bits (this_instr, 12, 15) != 15)
1671 break;
1672
1673 if (bits (this_instr, 22, 25) == 0
c5aa993b 1674 && bits (this_instr, 4, 7) == 9) /* multiply */
c906108c
SS
1675 error ("Illegal update to pc in instruction");
1676
9498281f
DJ
1677 /* BX <reg>, BLX <reg> */
1678 if (bits (this_instr, 4, 28) == 0x12fff1
1679 || bits (this_instr, 4, 28) == 0x12fff3)
1680 {
1681 rn = bits (this_instr, 0, 3);
1682 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1683 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1684
1685 if (nextpc == pc)
1686 error ("Infinite loop detected");
1687
1688 return nextpc;
1689 }
1690
c906108c
SS
1691 /* Multiply into PC */
1692 c = (status & FLAG_C) ? 1 : 0;
1693 rn = bits (this_instr, 16, 19);
1694 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1695
c906108c
SS
1696 if (bit (this_instr, 25))
1697 {
1698 unsigned long immval = bits (this_instr, 0, 7);
1699 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1700 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1701 & 0xffffffff;
c906108c 1702 }
c5aa993b 1703 else /* operand 2 is a shifted register */
c906108c 1704 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1705
c906108c
SS
1706 switch (bits (this_instr, 21, 24))
1707 {
c5aa993b 1708 case 0x0: /*and */
c906108c
SS
1709 result = operand1 & operand2;
1710 break;
1711
c5aa993b 1712 case 0x1: /*eor */
c906108c
SS
1713 result = operand1 ^ operand2;
1714 break;
1715
c5aa993b 1716 case 0x2: /*sub */
c906108c
SS
1717 result = operand1 - operand2;
1718 break;
1719
c5aa993b 1720 case 0x3: /*rsb */
c906108c
SS
1721 result = operand2 - operand1;
1722 break;
1723
c5aa993b 1724 case 0x4: /*add */
c906108c
SS
1725 result = operand1 + operand2;
1726 break;
1727
c5aa993b 1728 case 0x5: /*adc */
c906108c
SS
1729 result = operand1 + operand2 + c;
1730 break;
1731
c5aa993b 1732 case 0x6: /*sbc */
c906108c
SS
1733 result = operand1 - operand2 + c;
1734 break;
1735
c5aa993b 1736 case 0x7: /*rsc */
c906108c
SS
1737 result = operand2 - operand1 + c;
1738 break;
1739
c5aa993b
JM
1740 case 0x8:
1741 case 0x9:
1742 case 0xa:
1743 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1744 result = (unsigned long) nextpc;
1745 break;
1746
c5aa993b 1747 case 0xc: /*orr */
c906108c
SS
1748 result = operand1 | operand2;
1749 break;
1750
c5aa993b 1751 case 0xd: /*mov */
c906108c
SS
1752 /* Always step into a function. */
1753 result = operand2;
c5aa993b 1754 break;
c906108c 1755
c5aa993b 1756 case 0xe: /*bic */
c906108c
SS
1757 result = operand1 & ~operand2;
1758 break;
1759
c5aa993b 1760 case 0xf: /*mvn */
c906108c
SS
1761 result = ~operand2;
1762 break;
1763 }
1764 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1765
1766 if (nextpc == pc)
1767 error ("Infinite loop detected");
1768 break;
1769 }
c5aa993b
JM
1770
1771 case 0x4:
1772 case 0x5: /* data transfer */
1773 case 0x6:
1774 case 0x7:
c906108c
SS
1775 if (bit (this_instr, 20))
1776 {
1777 /* load */
1778 if (bits (this_instr, 12, 15) == 15)
1779 {
1780 /* rd == pc */
c5aa993b 1781 unsigned long rn;
c906108c 1782 unsigned long base;
c5aa993b 1783
c906108c
SS
1784 if (bit (this_instr, 22))
1785 error ("Illegal update to pc in instruction");
1786
1787 /* byte write to PC */
1788 rn = bits (this_instr, 16, 19);
1789 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1790 if (bit (this_instr, 24))
1791 {
1792 /* pre-indexed */
1793 int c = (status & FLAG_C) ? 1 : 0;
1794 unsigned long offset =
c5aa993b 1795 (bit (this_instr, 25)
ed9a39eb 1796 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1797 : bits (this_instr, 0, 11));
c906108c
SS
1798
1799 if (bit (this_instr, 23))
1800 base += offset;
1801 else
1802 base -= offset;
1803 }
c5aa993b 1804 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1805 4);
c5aa993b 1806
c906108c
SS
1807 nextpc = ADDR_BITS_REMOVE (nextpc);
1808
1809 if (nextpc == pc)
1810 error ("Infinite loop detected");
1811 }
1812 }
1813 break;
c5aa993b
JM
1814
1815 case 0x8:
1816 case 0x9: /* block transfer */
c906108c
SS
1817 if (bit (this_instr, 20))
1818 {
1819 /* LDM */
1820 if (bit (this_instr, 15))
1821 {
1822 /* loading pc */
1823 int offset = 0;
1824
1825 if (bit (this_instr, 23))
1826 {
1827 /* up */
1828 unsigned long reglist = bits (this_instr, 0, 14);
1829 offset = bitcount (reglist) * 4;
c5aa993b 1830 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1831 offset += 4;
1832 }
1833 else if (bit (this_instr, 24))
1834 offset = -4;
c5aa993b 1835
c906108c 1836 {
c5aa993b
JM
1837 unsigned long rn_val =
1838 read_register (bits (this_instr, 16, 19));
c906108c
SS
1839 nextpc =
1840 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1841 + offset),
c906108c
SS
1842 4);
1843 }
1844 nextpc = ADDR_BITS_REMOVE (nextpc);
1845 if (nextpc == pc)
1846 error ("Infinite loop detected");
1847 }
1848 }
1849 break;
c5aa993b
JM
1850
1851 case 0xb: /* branch & link */
1852 case 0xa: /* branch */
c906108c
SS
1853 {
1854 nextpc = BranchDest (pc, this_instr);
1855
9498281f
DJ
1856 /* BLX */
1857 if (bits (this_instr, 28, 31) == INST_NV)
1858 nextpc |= bit (this_instr, 24) << 1;
1859
c906108c
SS
1860 nextpc = ADDR_BITS_REMOVE (nextpc);
1861 if (nextpc == pc)
1862 error ("Infinite loop detected");
1863 break;
1864 }
c5aa993b
JM
1865
1866 case 0xc:
1867 case 0xd:
1868 case 0xe: /* coproc ops */
1869 case 0xf: /* SWI */
c906108c
SS
1870 break;
1871
1872 default:
97e03143 1873 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
c906108c
SS
1874 return (pc);
1875 }
1876 }
1877
1878 return nextpc;
1879}
1880
9512d7fd
FN
1881/* single_step() is called just before we want to resume the inferior,
1882 if we want to single-step it but there is no hardware or kernel
1883 single-step support. We find the target of the coming instruction
1884 and breakpoint it.
1885
94c30b78
MS
1886 single_step() is also called just after the inferior stops. If we
1887 had set up a simulated single-step, we undo our damage. */
9512d7fd 1888
34e8f22d
RE
1889static void
1890arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd 1891{
b8d5e71d 1892 static int next_pc; /* State between setting and unsetting. */
9512d7fd
FN
1893 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1894
1895 if (insert_bpt)
1896 {
34e8f22d 1897 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
80fcf3f0 1898 target_insert_breakpoint (next_pc, break_mem);
9512d7fd
FN
1899 }
1900 else
80fcf3f0 1901 target_remove_breakpoint (next_pc, break_mem);
9512d7fd 1902}
9512d7fd 1903
c906108c
SS
1904#include "bfd-in2.h"
1905#include "libcoff.h"
1906
1907static int
ed9a39eb 1908gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1909{
1910 if (arm_pc_is_thumb (memaddr))
1911 {
c5aa993b
JM
1912 static asymbol *asym;
1913 static combined_entry_type ce;
1914 static struct coff_symbol_struct csym;
27cddce2 1915 static struct bfd fake_bfd;
c5aa993b 1916 static bfd_target fake_target;
c906108c
SS
1917
1918 if (csym.native == NULL)
1919 {
da3c6d4a
MS
1920 /* Create a fake symbol vector containing a Thumb symbol.
1921 This is solely so that the code in print_insn_little_arm()
1922 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1923 the presence of a Thumb symbol and switch to decoding
1924 Thumb instructions. */
c5aa993b
JM
1925
1926 fake_target.flavour = bfd_target_coff_flavour;
1927 fake_bfd.xvec = &fake_target;
c906108c 1928 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
1929 csym.native = &ce;
1930 csym.symbol.the_bfd = &fake_bfd;
1931 csym.symbol.name = "fake";
1932 asym = (asymbol *) & csym;
c906108c 1933 }
c5aa993b 1934
c906108c 1935 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 1936 info->symbols = &asym;
c906108c
SS
1937 }
1938 else
1939 info->symbols = NULL;
c5aa993b 1940
d7449b42 1941 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
1942 return print_insn_big_arm (memaddr, info);
1943 else
1944 return print_insn_little_arm (memaddr, info);
1945}
1946
66e810cd
RE
1947/* The following define instruction sequences that will cause ARM
1948 cpu's to take an undefined instruction trap. These are used to
1949 signal a breakpoint to GDB.
1950
1951 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1952 modes. A different instruction is required for each mode. The ARM
1953 cpu's can also be big or little endian. Thus four different
1954 instructions are needed to support all cases.
1955
1956 Note: ARMv4 defines several new instructions that will take the
1957 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1958 not in fact add the new instructions. The new undefined
1959 instructions in ARMv4 are all instructions that had no defined
1960 behaviour in earlier chips. There is no guarantee that they will
1961 raise an exception, but may be treated as NOP's. In practice, it
1962 may only safe to rely on instructions matching:
1963
1964 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1965 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1966 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1967
1968 Even this may only true if the condition predicate is true. The
1969 following use a condition predicate of ALWAYS so it is always TRUE.
1970
1971 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1972 and NetBSD all use a software interrupt rather than an undefined
1973 instruction to force a trap. This can be handled by by the
1974 abi-specific code during establishment of the gdbarch vector. */
1975
1976
d7b486e7
RE
1977/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1978 override these definitions. */
66e810cd
RE
1979#ifndef ARM_LE_BREAKPOINT
1980#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1981#endif
1982#ifndef ARM_BE_BREAKPOINT
1983#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1984#endif
1985#ifndef THUMB_LE_BREAKPOINT
1986#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1987#endif
1988#ifndef THUMB_BE_BREAKPOINT
1989#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1990#endif
1991
1992static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
1993static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
1994static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
1995static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
1996
34e8f22d
RE
1997/* Determine the type and size of breakpoint to insert at PCPTR. Uses
1998 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
1999 breakpoint should be used. It returns a pointer to a string of
2000 bytes that encode a breakpoint instruction, stores the length of
2001 the string to *lenptr, and adjusts the program counter (if
2002 necessary) to point to the actual memory location where the
c906108c
SS
2003 breakpoint should be inserted. */
2004
34e8f22d
RE
2005/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2006 breakpoints and storing their handles instread of what was in
2007 memory. It is nice that this is the same size as a handle -
94c30b78 2008 otherwise remote-rdp will have to change. */
34e8f22d 2009
ab89facf 2010static const unsigned char *
ed9a39eb 2011arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 2012{
66e810cd
RE
2013 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2014
c906108c
SS
2015 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2016 {
66e810cd
RE
2017 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2018 *lenptr = tdep->thumb_breakpoint_size;
2019 return tdep->thumb_breakpoint;
c906108c
SS
2020 }
2021 else
2022 {
66e810cd
RE
2023 *lenptr = tdep->arm_breakpoint_size;
2024 return tdep->arm_breakpoint;
c906108c
SS
2025 }
2026}
ed9a39eb
JM
2027
2028/* Extract from an array REGBUF containing the (raw) register state a
2029 function return value of type TYPE, and copy that, in virtual
2030 format, into VALBUF. */
2031
34e8f22d 2032static void
ed9a39eb 2033arm_extract_return_value (struct type *type,
b508a996
RE
2034 struct regcache *regs,
2035 void *dst)
ed9a39eb 2036{
b508a996
RE
2037 bfd_byte *valbuf = dst;
2038
ed9a39eb 2039 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 2040 {
fd50bc42 2041 switch (arm_get_fp_model (current_gdbarch))
08216dd7
RE
2042 {
2043 case ARM_FLOAT_FPA:
b508a996
RE
2044 {
2045 /* The value is in register F0 in internal format. We need to
2046 extract the raw value and then convert it to the desired
2047 internal type. */
7a5ea0d4 2048 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
2049
2050 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2051 convert_from_extended (floatformat_from_type (type), tmpbuf,
2052 valbuf);
2053 }
08216dd7
RE
2054 break;
2055
fd50bc42 2056 case ARM_FLOAT_SOFT_FPA:
08216dd7 2057 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2058 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2059 if (TYPE_LENGTH (type) > 4)
2060 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2061 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2062 break;
2063
2064 default:
2065 internal_error
2066 (__FILE__, __LINE__,
2067 "arm_extract_return_value: Floating point model not supported");
2068 break;
2069 }
2070 }
b508a996
RE
2071 else if (TYPE_CODE (type) == TYPE_CODE_INT
2072 || TYPE_CODE (type) == TYPE_CODE_CHAR
2073 || TYPE_CODE (type) == TYPE_CODE_BOOL
2074 || TYPE_CODE (type) == TYPE_CODE_PTR
2075 || TYPE_CODE (type) == TYPE_CODE_REF
2076 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2077 {
2078 /* If the the type is a plain integer, then the access is
2079 straight-forward. Otherwise we have to play around a bit more. */
2080 int len = TYPE_LENGTH (type);
2081 int regno = ARM_A1_REGNUM;
2082 ULONGEST tmp;
2083
2084 while (len > 0)
2085 {
2086 /* By using store_unsigned_integer we avoid having to do
2087 anything special for small big-endian values. */
2088 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2089 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2090 (len > INT_REGISTER_SIZE
2091 ? INT_REGISTER_SIZE : len),
b508a996 2092 tmp);
7a5ea0d4
DJ
2093 len -= INT_REGISTER_SIZE;
2094 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2095 }
2096 }
ed9a39eb 2097 else
b508a996
RE
2098 {
2099 /* For a structure or union the behaviour is as if the value had
2100 been stored to word-aligned memory and then loaded into
2101 registers with 32-bit load instruction(s). */
2102 int len = TYPE_LENGTH (type);
2103 int regno = ARM_A1_REGNUM;
7a5ea0d4 2104 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2105
2106 while (len > 0)
2107 {
2108 regcache_cooked_read (regs, regno++, tmpbuf);
2109 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2110 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2111 len -= INT_REGISTER_SIZE;
2112 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2113 }
2114 }
34e8f22d
RE
2115}
2116
67255d04
RE
2117/* Extract from an array REGBUF containing the (raw) register state
2118 the address in which a function should return its structure value. */
2119
2120static CORE_ADDR
95f95911 2121arm_extract_struct_value_address (struct regcache *regcache)
67255d04 2122{
95f95911
MS
2123 ULONGEST ret;
2124
2125 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2126 return ret;
67255d04
RE
2127}
2128
2129/* Will a function return an aggregate type in memory or in a
2130 register? Return 0 if an aggregate type can be returned in a
2131 register, 1 if it must be returned in memory. */
2132
2133static int
2134arm_use_struct_convention (int gcc_p, struct type *type)
2135{
2136 int nRc;
52f0bd74 2137 enum type_code code;
67255d04 2138
44e1a9eb
DJ
2139 CHECK_TYPEDEF (type);
2140
67255d04
RE
2141 /* In the ARM ABI, "integer" like aggregate types are returned in
2142 registers. For an aggregate type to be integer like, its size
b1e29e33
AC
2143 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2144 offset of each addressable subfield must be zero. Note that bit
2145 fields are not addressable, and all addressable subfields of
2146 unions always start at offset zero.
67255d04
RE
2147
2148 This function is based on the behaviour of GCC 2.95.1.
2149 See: gcc/arm.c: arm_return_in_memory() for details.
2150
2151 Note: All versions of GCC before GCC 2.95.2 do not set up the
2152 parameters correctly for a function returning the following
2153 structure: struct { float f;}; This should be returned in memory,
2154 not a register. Richard Earnshaw sent me a patch, but I do not
2155 know of any way to detect if a function like the above has been
2156 compiled with the correct calling convention. */
2157
2158 /* All aggregate types that won't fit in a register must be returned
2159 in memory. */
b1e29e33 2160 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
67255d04
RE
2161 {
2162 return 1;
2163 }
2164
2165 /* The only aggregate types that can be returned in a register are
2166 structs and unions. Arrays must be returned in memory. */
2167 code = TYPE_CODE (type);
2168 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2169 {
2170 return 1;
2171 }
2172
2173 /* Assume all other aggregate types can be returned in a register.
2174 Run a check for structures, unions and arrays. */
2175 nRc = 0;
2176
2177 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2178 {
2179 int i;
2180 /* Need to check if this struct/union is "integer" like. For
2181 this to be true, its size must be less than or equal to
b1e29e33
AC
2182 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2183 subfield must be zero. Note that bit fields are not
2184 addressable, and unions always start at offset zero. If any
2185 of the subfields is a floating point type, the struct/union
2186 cannot be an integer type. */
67255d04
RE
2187
2188 /* For each field in the object, check:
2189 1) Is it FP? --> yes, nRc = 1;
2190 2) Is it addressable (bitpos != 0) and
2191 not packed (bitsize == 0)?
2192 --> yes, nRc = 1
2193 */
2194
2195 for (i = 0; i < TYPE_NFIELDS (type); i++)
2196 {
2197 enum type_code field_type_code;
44e1a9eb 2198 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2199
2200 /* Is it a floating point type field? */
2201 if (field_type_code == TYPE_CODE_FLT)
2202 {
2203 nRc = 1;
2204 break;
2205 }
2206
2207 /* If bitpos != 0, then we have to care about it. */
2208 if (TYPE_FIELD_BITPOS (type, i) != 0)
2209 {
2210 /* Bitfields are not addressable. If the field bitsize is
2211 zero, then the field is not packed. Hence it cannot be
2212 a bitfield or any other packed type. */
2213 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2214 {
2215 nRc = 1;
2216 break;
2217 }
2218 }
2219 }
2220 }
2221
2222 return nRc;
2223}
2224
34e8f22d
RE
2225/* Write into appropriate registers a function return value of type
2226 TYPE, given in virtual format. */
2227
2228static void
b508a996
RE
2229arm_store_return_value (struct type *type, struct regcache *regs,
2230 const void *src)
34e8f22d 2231{
b508a996
RE
2232 const bfd_byte *valbuf = src;
2233
34e8f22d
RE
2234 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2235 {
7a5ea0d4 2236 char buf[MAX_REGISTER_SIZE];
34e8f22d 2237
fd50bc42 2238 switch (arm_get_fp_model (current_gdbarch))
08216dd7
RE
2239 {
2240 case ARM_FLOAT_FPA:
2241
b508a996
RE
2242 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2243 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2244 break;
2245
fd50bc42 2246 case ARM_FLOAT_SOFT_FPA:
08216dd7 2247 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2248 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2249 if (TYPE_LENGTH (type) > 4)
2250 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2251 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2252 break;
2253
2254 default:
2255 internal_error
2256 (__FILE__, __LINE__,
2257 "arm_store_return_value: Floating point model not supported");
2258 break;
2259 }
34e8f22d 2260 }
b508a996
RE
2261 else if (TYPE_CODE (type) == TYPE_CODE_INT
2262 || TYPE_CODE (type) == TYPE_CODE_CHAR
2263 || TYPE_CODE (type) == TYPE_CODE_BOOL
2264 || TYPE_CODE (type) == TYPE_CODE_PTR
2265 || TYPE_CODE (type) == TYPE_CODE_REF
2266 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2267 {
2268 if (TYPE_LENGTH (type) <= 4)
2269 {
2270 /* Values of one word or less are zero/sign-extended and
2271 returned in r0. */
7a5ea0d4 2272 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2273 LONGEST val = unpack_long (type, valbuf);
2274
7a5ea0d4 2275 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2276 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2277 }
2278 else
2279 {
2280 /* Integral values greater than one word are stored in consecutive
2281 registers starting with r0. This will always be a multiple of
2282 the regiser size. */
2283 int len = TYPE_LENGTH (type);
2284 int regno = ARM_A1_REGNUM;
2285
2286 while (len > 0)
2287 {
2288 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2289 len -= INT_REGISTER_SIZE;
2290 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2291 }
2292 }
2293 }
34e8f22d 2294 else
b508a996
RE
2295 {
2296 /* For a structure or union the behaviour is as if the value had
2297 been stored to word-aligned memory and then loaded into
2298 registers with 32-bit load instruction(s). */
2299 int len = TYPE_LENGTH (type);
2300 int regno = ARM_A1_REGNUM;
7a5ea0d4 2301 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2302
2303 while (len > 0)
2304 {
2305 memcpy (tmpbuf, valbuf,
7a5ea0d4 2306 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2307 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2308 len -= INT_REGISTER_SIZE;
2309 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2310 }
2311 }
34e8f22d
RE
2312}
2313
9df628e0
RE
2314static int
2315arm_get_longjmp_target (CORE_ADDR *pc)
2316{
2317 CORE_ADDR jb_addr;
7a5ea0d4 2318 char buf[INT_REGISTER_SIZE];
9df628e0
RE
2319 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2320
2321 jb_addr = read_register (ARM_A1_REGNUM);
2322
2323 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2324 INT_REGISTER_SIZE))
9df628e0
RE
2325 return 0;
2326
7a5ea0d4 2327 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2328 return 1;
2329}
2330
ed9a39eb 2331/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2332
2333int
ed9a39eb 2334arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2335{
2336 CORE_ADDR start_addr;
2337
ed9a39eb
JM
2338 /* Find the starting address of the function containing the PC. If
2339 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2340 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2341 &start_addr, NULL))
c906108c
SS
2342 return 0;
2343
2344 return strncmp (name, "_call_via_r", 11) == 0;
2345}
2346
ed9a39eb
JM
2347/* If PC is in a Thumb call or return stub, return the address of the
2348 target PC, which is in a register. The thunk functions are called
2349 _called_via_xx, where x is the register name. The possible names
2350 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2351
2352CORE_ADDR
ed9a39eb 2353arm_skip_stub (CORE_ADDR pc)
c906108c 2354{
c5aa993b 2355 char *name;
c906108c
SS
2356 CORE_ADDR start_addr;
2357
2358 /* Find the starting address and name of the function containing the PC. */
2359 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2360 return 0;
2361
2362 /* Call thunks always start with "_call_via_". */
2363 if (strncmp (name, "_call_via_", 10) == 0)
2364 {
ed9a39eb
JM
2365 /* Use the name suffix to determine which register contains the
2366 target PC. */
c5aa993b
JM
2367 static char *table[15] =
2368 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2369 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2370 };
c906108c
SS
2371 int regno;
2372
2373 for (regno = 0; regno <= 14; regno++)
2374 if (strcmp (&name[10], table[regno]) == 0)
2375 return read_register (regno);
2376 }
ed9a39eb 2377
c5aa993b 2378 return 0; /* not a stub */
c906108c
SS
2379}
2380
afd7eef0
RE
2381static void
2382set_arm_command (char *args, int from_tty)
2383{
2384 printf_unfiltered ("\"set arm\" must be followed by an apporpriate subcommand.\n");
2385 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2386}
2387
2388static void
2389show_arm_command (char *args, int from_tty)
2390{
26304000 2391 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2392}
2393
fd50bc42
RE
2394enum arm_float_model
2395arm_get_fp_model (struct gdbarch *gdbarch)
2396{
2397 if (arm_fp_model == ARM_FLOAT_AUTO)
2398 return gdbarch_tdep (gdbarch)->fp_model;
2399
2400 return arm_fp_model;
2401}
2402
2403static void
2404arm_set_fp (struct gdbarch *gdbarch)
2405{
2406 enum arm_float_model fp_model = arm_get_fp_model (gdbarch);
2407
2408 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2409 && (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA))
2410 {
2411 set_gdbarch_double_format (gdbarch,
2412 &floatformat_ieee_double_littlebyte_bigword);
2413 set_gdbarch_long_double_format
2414 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2415 }
2416 else
2417 {
2418 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2419 set_gdbarch_long_double_format (gdbarch,
2420 &floatformat_ieee_double_little);
2421 }
2422}
2423
2424static void
2425set_fp_model_sfunc (char *args, int from_tty,
2426 struct cmd_list_element *c)
2427{
2428 enum arm_float_model fp_model;
2429
2430 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2431 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2432 {
2433 arm_fp_model = fp_model;
2434 break;
2435 }
2436
2437 if (fp_model == ARM_FLOAT_LAST)
2438 internal_error (__FILE__, __LINE__, "Invalid fp model accepted: %s.",
2439 current_fp_model);
2440
2441 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2442 arm_set_fp (current_gdbarch);
2443}
2444
2445static void
2446show_fp_model (char *args, int from_tty,
2447 struct cmd_list_element *c)
2448{
2449 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2450
2451 if (arm_fp_model == ARM_FLOAT_AUTO
2452 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2453 printf_filtered (" - the default for the current ABI is \"%s\".\n",
2454 fp_model_strings[tdep->fp_model]);
2455}
2456
afd7eef0
RE
2457/* If the user changes the register disassembly style used for info
2458 register and other commands, we have to also switch the style used
2459 in opcodes for disassembly output. This function is run in the "set
2460 arm disassembly" command, and does that. */
bc90b915
FN
2461
2462static void
afd7eef0 2463set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2464 struct cmd_list_element *c)
2465{
afd7eef0 2466 set_disassembly_style ();
bc90b915
FN
2467}
2468\f
966fbf70 2469/* Return the ARM register name corresponding to register I. */
a208b0cb 2470static const char *
34e8f22d 2471arm_register_name (int i)
966fbf70
RE
2472{
2473 return arm_register_names[i];
2474}
2475
bc90b915 2476static void
afd7eef0 2477set_disassembly_style (void)
bc90b915
FN
2478{
2479 const char *setname, *setdesc, **regnames;
2480 int numregs, j;
2481
afd7eef0 2482 /* Find the style that the user wants in the opcodes table. */
bc90b915
FN
2483 int current = 0;
2484 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
afd7eef0
RE
2485 while ((disassembly_style != setname)
2486 && (current < num_disassembly_options))
bc90b915
FN
2487 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2488 current_option = current;
2489
94c30b78 2490 /* Fill our copy. */
bc90b915
FN
2491 for (j = 0; j < numregs; j++)
2492 arm_register_names[j] = (char *) regnames[j];
2493
94c30b78 2494 /* Adjust case. */
34e8f22d 2495 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2496 {
34e8f22d
RE
2497 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2498 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2499 }
2500 else
2501 {
34e8f22d
RE
2502 arm_register_names[ARM_FPS_REGNUM] = "fps";
2503 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2504 }
2505
94c30b78 2506 /* Synchronize the disassembler. */
bc90b915
FN
2507 set_arm_regname_option (current);
2508}
2509
afd7eef0
RE
2510/* arm_othernames implements the "othernames" command. This is deprecated
2511 by the "set arm disassembly" command. */
bc90b915
FN
2512
2513static void
2514arm_othernames (char *names, int n)
2515{
94c30b78 2516 /* Circle through the various flavors. */
afd7eef0 2517 current_option = (current_option + 1) % num_disassembly_options;
bc90b915 2518
afd7eef0
RE
2519 disassembly_style = valid_disassembly_styles[current_option];
2520 set_disassembly_style ();
bc90b915
FN
2521}
2522
082fc60d
RE
2523/* Test whether the coff symbol specific value corresponds to a Thumb
2524 function. */
2525
2526static int
2527coff_sym_is_thumb (int val)
2528{
2529 return (val == C_THUMBEXT ||
2530 val == C_THUMBSTAT ||
2531 val == C_THUMBEXTFUNC ||
2532 val == C_THUMBSTATFUNC ||
2533 val == C_THUMBLABEL);
2534}
2535
2536/* arm_coff_make_msymbol_special()
2537 arm_elf_make_msymbol_special()
2538
2539 These functions test whether the COFF or ELF symbol corresponds to
2540 an address in thumb code, and set a "special" bit in a minimal
2541 symbol to indicate that it does. */
2542
34e8f22d 2543static void
082fc60d
RE
2544arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2545{
2546 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2547 STT_ARM_TFUNC). */
2548 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2549 == STT_LOPROC)
2550 MSYMBOL_SET_SPECIAL (msym);
2551}
2552
34e8f22d 2553static void
082fc60d
RE
2554arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2555{
2556 if (coff_sym_is_thumb (val))
2557 MSYMBOL_SET_SPECIAL (msym);
2558}
2559
756fe439
DJ
2560static void
2561arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2562{
2563 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2564
2565 /* If necessary, set the T bit. */
2566 if (arm_apcs_32)
2567 {
2568 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2569 if (arm_pc_is_thumb (pc))
2570 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2571 else
2572 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2573 }
2574}
97e03143 2575\f
70f80edf
JT
2576static enum gdb_osabi
2577arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2578{
70f80edf
JT
2579 unsigned int elfosabi, eflags;
2580 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2581
70f80edf 2582 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2583
70f80edf 2584 switch (elfosabi)
97e03143 2585 {
70f80edf
JT
2586 case ELFOSABI_NONE:
2587 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2588 file are conforming to the base specification for that machine
2589 (there are no OS-specific extensions). In order to determine the
2590 real OS in use we must look for OS notes that have been added. */
2591 bfd_map_over_sections (abfd,
2592 generic_elf_osabi_sniff_abi_tag_sections,
2593 &osabi);
2594 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2595 {
70f80edf
JT
2596 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2597 field for more information. */
2598 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2599 switch (eflags)
97e03143 2600 {
70f80edf
JT
2601 case EF_ARM_EABI_VER1:
2602 osabi = GDB_OSABI_ARM_EABI_V1;
97e03143
RE
2603 break;
2604
70f80edf
JT
2605 case EF_ARM_EABI_VER2:
2606 osabi = GDB_OSABI_ARM_EABI_V2;
97e03143
RE
2607 break;
2608
70f80edf
JT
2609 case EF_ARM_EABI_UNKNOWN:
2610 /* Assume GNU tools. */
2611 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2612 break;
2613
70f80edf
JT
2614 default:
2615 internal_error (__FILE__, __LINE__,
2616 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2617 "version 0x%x", eflags);
97e03143
RE
2618 }
2619 }
70f80edf 2620 break;
97e03143 2621
70f80edf
JT
2622 case ELFOSABI_ARM:
2623 /* GNU tools use this value. Check note sections in this case,
2624 as well. */
97e03143 2625 bfd_map_over_sections (abfd,
70f80edf
JT
2626 generic_elf_osabi_sniff_abi_tag_sections,
2627 &osabi);
2628 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2629 {
70f80edf
JT
2630 /* Assume APCS ABI. */
2631 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2632 }
2633 break;
2634
97e03143 2635 case ELFOSABI_FREEBSD:
70f80edf
JT
2636 osabi = GDB_OSABI_FREEBSD_ELF;
2637 break;
97e03143 2638
70f80edf
JT
2639 case ELFOSABI_NETBSD:
2640 osabi = GDB_OSABI_NETBSD_ELF;
2641 break;
97e03143 2642
70f80edf
JT
2643 case ELFOSABI_LINUX:
2644 osabi = GDB_OSABI_LINUX;
2645 break;
97e03143
RE
2646 }
2647
70f80edf 2648 return osabi;
97e03143
RE
2649}
2650
70f80edf 2651\f
da3c6d4a
MS
2652/* Initialize the current architecture based on INFO. If possible,
2653 re-use an architecture from ARCHES, which is a list of
2654 architectures already created during this debugging session.
97e03143 2655
da3c6d4a
MS
2656 Called e.g. at program startup, when reading a core file, and when
2657 reading a binary file. */
97e03143 2658
39bbf761
RE
2659static struct gdbarch *
2660arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2661{
97e03143 2662 struct gdbarch_tdep *tdep;
39bbf761
RE
2663 struct gdbarch *gdbarch;
2664
97e03143 2665 /* Try to deterimine the ABI of the object we are loading. */
39bbf761 2666
4be87837 2667 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
97e03143 2668 {
4be87837 2669 switch (bfd_get_flavour (info.abfd))
97e03143 2670 {
4be87837
DJ
2671 case bfd_target_aout_flavour:
2672 /* Assume it's an old APCS-style ABI. */
2673 info.osabi = GDB_OSABI_ARM_APCS;
2674 break;
97e03143 2675
4be87837
DJ
2676 case bfd_target_coff_flavour:
2677 /* Assume it's an old APCS-style ABI. */
2678 /* XXX WinCE? */
2679 info.osabi = GDB_OSABI_ARM_APCS;
2680 break;
97e03143 2681
4be87837
DJ
2682 default:
2683 /* Leave it as "unknown". */
50ceaba5 2684 break;
97e03143
RE
2685 }
2686 }
2687
4be87837
DJ
2688 /* If there is already a candidate, use it. */
2689 arches = gdbarch_list_lookup_by_info (arches, &info);
2690 if (arches != NULL)
2691 return arches->gdbarch;
97e03143
RE
2692
2693 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2694 gdbarch = gdbarch_alloc (&info, tdep);
2695
fd50bc42
RE
2696 /* We used to default to FPA for generic ARM, but almost nobody uses that
2697 now, and we now provide a way for the user to force the model. So
2698 default to the most useful variant. */
2699 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
08216dd7
RE
2700
2701 /* Breakpoints. */
67255d04
RE
2702 switch (info.byte_order)
2703 {
2704 case BFD_ENDIAN_BIG:
66e810cd
RE
2705 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2706 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2707 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2708 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2709
67255d04
RE
2710 break;
2711
2712 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2713 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2714 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2715 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2716 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2717
67255d04
RE
2718 break;
2719
2720 default:
2721 internal_error (__FILE__, __LINE__,
2722 "arm_gdbarch_init: bad byte order for float format");
2723 }
2724
d7b486e7
RE
2725 /* On ARM targets char defaults to unsigned. */
2726 set_gdbarch_char_signed (gdbarch, 0);
2727
9df628e0 2728 /* This should be low enough for everything. */
97e03143 2729 tdep->lowest_pc = 0x20;
94c30b78 2730 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2731
b1e29e33
AC
2732 set_gdbarch_deprecated_call_dummy_words (gdbarch, arm_call_dummy_words);
2733 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, 0);
848cfffb 2734
2dd604e7 2735 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
39bbf761 2736
756fe439
DJ
2737 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2738
148754e5 2739 /* Frame handling. */
eb5492fa
DJ
2740 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2741 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2742 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2743
19772a2c 2744 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, arm_frameless_function_invocation);
eb5492fa
DJ
2745
2746 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2747
34e8f22d
RE
2748 /* Address manipulation. */
2749 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2750 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2751
34e8f22d
RE
2752 /* Advance PC across function entry code. */
2753 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2754
2755 /* Get the PC when a frame might not be available. */
6913c89a 2756 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
34e8f22d
RE
2757
2758 /* The stack grows downward. */
2759 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2760
2761 /* Breakpoint manipulation. */
2762 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
2763
2764 /* Information about registers, etc. */
2765 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
0ba6dca9 2766 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2767 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2768 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9c04cab7 2769 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
b8b527c5 2770 set_gdbarch_deprecated_register_bytes (gdbarch,
7a5ea0d4
DJ
2771 (NUM_GREGS * INT_REGISTER_SIZE
2772 + NUM_FREGS * FP_REGISTER_SIZE
b8b527c5 2773 + NUM_SREGS * STATUS_REGISTER_SIZE));
34e8f22d 2774 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
7a5ea0d4 2775 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 2776
26216b98
AC
2777 /* Internal <-> external register number maps. */
2778 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2779
34e8f22d 2780 /* Integer registers are 4 bytes. */
b1e29e33 2781 set_gdbarch_deprecated_register_size (gdbarch, 4);
34e8f22d
RE
2782 set_gdbarch_register_name (gdbarch, arm_register_name);
2783
2784 /* Returning results. */
b508a996
RE
2785 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2786 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
67255d04 2787 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
74055713 2788 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, arm_extract_struct_value_address);
34e8f22d
RE
2789
2790 /* Single stepping. */
2791 /* XXX For an RDI target we should ask the target if it can single-step. */
2792 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2793
03d48a7d
RE
2794 /* Disassembly. */
2795 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2796
34e8f22d
RE
2797 /* Minsymbol frobbing. */
2798 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2799 set_gdbarch_coff_make_msymbol_special (gdbarch,
2800 arm_coff_make_msymbol_special);
2801
97e03143 2802 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 2803 gdbarch_init_osabi (info, gdbarch);
97e03143 2804
eb5492fa
DJ
2805 /* Add some default predicates. */
2806 frame_unwind_append_sniffer (gdbarch, arm_sigtramp_unwind_sniffer);
2807 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2808
97e03143
RE
2809 /* Now we have tuned the configuration, set a few final things,
2810 based on what the OS ABI has told us. */
2811
9df628e0
RE
2812 if (tdep->jb_pc >= 0)
2813 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2814
08216dd7
RE
2815 /* Floating point sizes and format. */
2816 switch (info.byte_order)
2817 {
2818 case BFD_ENDIAN_BIG:
2819 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2820 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2821 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2822
2823 break;
2824
2825 case BFD_ENDIAN_LITTLE:
2826 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
fd50bc42 2827 arm_set_fp (gdbarch);
08216dd7
RE
2828 break;
2829
2830 default:
2831 internal_error (__FILE__, __LINE__,
2832 "arm_gdbarch_init: bad byte order for float format");
2833 }
2834
39bbf761
RE
2835 return gdbarch;
2836}
2837
97e03143
RE
2838static void
2839arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2840{
2841 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2842
2843 if (tdep == NULL)
2844 return;
2845
97e03143
RE
2846 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
2847 (unsigned long) tdep->lowest_pc);
2848}
2849
2850static void
2851arm_init_abi_eabi_v1 (struct gdbarch_info info,
2852 struct gdbarch *gdbarch)
2853{
2854 /* Place-holder. */
2855}
2856
2857static void
2858arm_init_abi_eabi_v2 (struct gdbarch_info info,
2859 struct gdbarch *gdbarch)
2860{
2861 /* Place-holder. */
2862}
2863
2864static void
2865arm_init_abi_apcs (struct gdbarch_info info,
2866 struct gdbarch *gdbarch)
2867{
2868 /* Place-holder. */
2869}
2870
a78f21af
AC
2871extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2872
c906108c 2873void
ed9a39eb 2874_initialize_arm_tdep (void)
c906108c 2875{
bc90b915
FN
2876 struct ui_file *stb;
2877 long length;
26304000 2878 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
2879 const char *setname;
2880 const char *setdesc;
2881 const char **regnames;
bc90b915
FN
2882 int numregs, i, j;
2883 static char *helptext;
085dd6e6 2884
42cf1509 2885 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 2886
70f80edf
JT
2887 /* Register an ELF OS ABI sniffer for ARM binaries. */
2888 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2889 bfd_target_elf_flavour,
2890 arm_elf_osabi_sniffer);
2891
97e03143 2892 /* Register some ABI variants for embedded systems. */
05816f70 2893 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
70f80edf 2894 arm_init_abi_eabi_v1);
05816f70 2895 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
70f80edf 2896 arm_init_abi_eabi_v2);
05816f70 2897 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
70f80edf 2898 arm_init_abi_apcs);
39bbf761 2899
94c30b78 2900 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
2901 num_disassembly_options = get_arm_regname_num_options ();
2902
2903 /* Add root prefix command for all "set arm"/"show arm" commands. */
2904 add_prefix_cmd ("arm", no_class, set_arm_command,
2905 "Various ARM-specific commands.",
2906 &setarmcmdlist, "set arm ", 0, &setlist);
2907
2908 add_prefix_cmd ("arm", no_class, show_arm_command,
2909 "Various ARM-specific commands.",
2910 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 2911
94c30b78 2912 /* Sync the opcode insn printer with our register viewer. */
bc90b915 2913 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 2914
94c30b78 2915 /* Begin creating the help text. */
bc90b915 2916 stb = mem_fileopen ();
afd7eef0
RE
2917 fprintf_unfiltered (stb, "Set the disassembly style.\n"
2918 "The valid values are:\n");
ed9a39eb 2919
94c30b78 2920 /* Initialize the array that will be passed to add_set_enum_cmd(). */
afd7eef0
RE
2921 valid_disassembly_styles
2922 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2923 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
2924 {
2925 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 2926 valid_disassembly_styles[i] = setname;
bc90b915
FN
2927 fprintf_unfiltered (stb, "%s - %s\n", setname,
2928 setdesc);
94c30b78 2929 /* Copy the default names (if found) and synchronize disassembler. */
bc90b915
FN
2930 if (!strcmp (setname, "std"))
2931 {
afd7eef0 2932 disassembly_style = setname;
bc90b915
FN
2933 current_option = i;
2934 for (j = 0; j < numregs; j++)
2935 arm_register_names[j] = (char *) regnames[j];
2936 set_arm_regname_option (i);
2937 }
2938 }
94c30b78 2939 /* Mark the end of valid options. */
afd7eef0 2940 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 2941
94c30b78 2942 /* Finish the creation of the help text. */
bc90b915
FN
2943 fprintf_unfiltered (stb, "The default is \"std\".");
2944 helptext = ui_file_xstrdup (stb, &length);
2945 ui_file_delete (stb);
ed9a39eb 2946
afd7eef0 2947 /* Add the deprecated disassembly-flavor command. */
26304000 2948 new_set = add_set_enum_cmd ("disassembly-flavor", no_class,
afd7eef0
RE
2949 valid_disassembly_styles,
2950 &disassembly_style,
bc90b915 2951 helptext,
ed9a39eb 2952 &setlist);
26304000
RE
2953 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
2954 deprecate_cmd (new_set, "set arm disassembly");
2955 deprecate_cmd (add_show_from_set (new_set, &showlist),
afd7eef0
RE
2956 "show arm disassembly");
2957
2958 /* And now add the new interface. */
30757f90 2959 new_set = add_set_enum_cmd ("disassembler", no_class,
26304000
RE
2960 valid_disassembly_styles, &disassembly_style,
2961 helptext, &setarmcmdlist);
2962
fd50bc42 2963 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
26304000
RE
2964 add_show_from_set (new_set, &showarmcmdlist);
2965
2966 add_setshow_cmd_full ("apcs32", no_class,
2967 var_boolean, (char *) &arm_apcs_32,
2968 "Set usage of ARM 32-bit mode.",
2969 "Show usage of ARM 32-bit mode.",
2970 NULL, NULL,
2971 &setlist, &showlist, &new_set, &new_show);
2972 deprecate_cmd (new_set, "set arm apcs32");
2973 deprecate_cmd (new_show, "show arm apcs32");
2974
2975 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
2976 "Set usage of ARM 32-bit mode. "
2977 "When off, a 26-bit PC will be used.",
2978 "Show usage of ARM 32-bit mode. "
2979 "When off, a 26-bit PC will be used.",
2980 NULL, NULL,
2981 &setarmcmdlist, &showarmcmdlist);
c906108c 2982
fd50bc42
RE
2983 /* Add a command to allow the user to force the FPU model. */
2984 new_set = add_set_enum_cmd
2985 ("fpu", no_class, fp_model_strings, &current_fp_model,
2986 "Set the floating point type.\n"
2987 "auto - Determine the FP typefrom the OS-ABI.\n"
2988 "softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n"
2989 "fpa - FPA co-processor (GCC compiled).\n"
2990 "softvfp - Software FP with pure-endian doubles.\n"
2991 "vfp - VFP co-processor.",
2992 &setarmcmdlist);
2993 set_cmd_sfunc (new_set, set_fp_model_sfunc);
2994 set_cmd_sfunc (add_show_from_set (new_set, &showarmcmdlist), show_fp_model);
2995
94c30b78 2996 /* Add the deprecated "othernames" command. */
afd7eef0
RE
2997 deprecate_cmd (add_com ("othernames", class_obscure, arm_othernames,
2998 "Switch to the next set of register names."),
2999 "set arm disassembly");
c3b4394c 3000
6529d2dd 3001 /* Debugging flag. */
26304000
RE
3002 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3003 "Set ARM debugging. "
3004 "When on, arm-specific debugging is enabled.",
3005 "Show ARM debugging. "
3006 "When on, arm-specific debugging is enabled.",
3007 NULL, NULL,
3008 &setdebuglist, &showdebuglist);
c906108c 3009}
This page took 0.539005 seconds and 4 git commands to generate.