2007-10-08 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 20
34e8f22d
RE
21#include <ctype.h> /* XXX for isupper () */
22
c906108c
SS
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "gdbcmd.h"
27#include "gdbcore.h"
c906108c 28#include "gdb_string.h"
afd7eef0 29#include "dis-asm.h" /* For register styles. */
4e052eda 30#include "regcache.h"
d16aafd8 31#include "doublest.h"
fd0407d6 32#include "value.h"
34e8f22d 33#include "arch-utils.h"
4be87837 34#include "osabi.h"
eb5492fa
DJ
35#include "frame-unwind.h"
36#include "frame-base.h"
37#include "trad-frame.h"
842e1f1e
DJ
38#include "objfiles.h"
39#include "dwarf2-frame.h"
e4c16157 40#include "gdbtypes.h"
29d73ae4 41#include "prologue-value.h"
123dc839
DJ
42#include "target-descriptions.h"
43#include "user-regs.h"
34e8f22d
RE
44
45#include "arm-tdep.h"
26216b98 46#include "gdb/sim-arm.h"
34e8f22d 47
082fc60d
RE
48#include "elf-bfd.h"
49#include "coff/internal.h"
97e03143 50#include "elf/arm.h"
c906108c 51
26216b98
AC
52#include "gdb_assert.h"
53
6529d2dd
AC
54static int arm_debug;
55
082fc60d
RE
56/* Macros for setting and testing a bit in a minimal symbol that marks
57 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 58 is used for this purpose.
082fc60d
RE
59
60 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 61 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
62
63#define MSYMBOL_SET_SPECIAL(msym) \
64 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
65 | 0x80000000)
66
67#define MSYMBOL_IS_SPECIAL(msym) \
68 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
69
afd7eef0
RE
70/* The list of available "set arm ..." and "show arm ..." commands. */
71static struct cmd_list_element *setarmcmdlist = NULL;
72static struct cmd_list_element *showarmcmdlist = NULL;
73
fd50bc42
RE
74/* The type of floating-point to use. Keep this in sync with enum
75 arm_float_model, and the help string in _initialize_arm_tdep. */
76static const char *fp_model_strings[] =
77{
78 "auto",
79 "softfpa",
80 "fpa",
81 "softvfp",
28e97307
DJ
82 "vfp",
83 NULL
fd50bc42
RE
84};
85
86/* A variable that can be configured by the user. */
87static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
88static const char *current_fp_model = "auto";
89
28e97307
DJ
90/* The ABI to use. Keep this in sync with arm_abi_kind. */
91static const char *arm_abi_strings[] =
92{
93 "auto",
94 "APCS",
95 "AAPCS",
96 NULL
97};
98
99/* A variable that can be configured by the user. */
100static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
101static const char *arm_abi_string = "auto";
102
94c30b78 103/* Number of different reg name sets (options). */
afd7eef0 104static int num_disassembly_options;
bc90b915 105
123dc839
DJ
106/* The standard register names, and all the valid aliases for them. */
107static const struct
108{
109 const char *name;
110 int regnum;
111} arm_register_aliases[] = {
112 /* Basic register numbers. */
113 { "r0", 0 },
114 { "r1", 1 },
115 { "r2", 2 },
116 { "r3", 3 },
117 { "r4", 4 },
118 { "r5", 5 },
119 { "r6", 6 },
120 { "r7", 7 },
121 { "r8", 8 },
122 { "r9", 9 },
123 { "r10", 10 },
124 { "r11", 11 },
125 { "r12", 12 },
126 { "r13", 13 },
127 { "r14", 14 },
128 { "r15", 15 },
129 /* Synonyms (argument and variable registers). */
130 { "a1", 0 },
131 { "a2", 1 },
132 { "a3", 2 },
133 { "a4", 3 },
134 { "v1", 4 },
135 { "v2", 5 },
136 { "v3", 6 },
137 { "v4", 7 },
138 { "v5", 8 },
139 { "v6", 9 },
140 { "v7", 10 },
141 { "v8", 11 },
142 /* Other platform-specific names for r9. */
143 { "sb", 9 },
144 { "tr", 9 },
145 /* Special names. */
146 { "ip", 12 },
147 { "sp", 13 },
148 { "lr", 14 },
149 { "pc", 15 },
150 /* Names used by GCC (not listed in the ARM EABI). */
151 { "sl", 10 },
152 { "fp", 11 },
153 /* A special name from the older ATPCS. */
154 { "wr", 7 },
155};
bc90b915 156
123dc839 157static const char *const arm_register_names[] =
da59e081
JM
158{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
159 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
160 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
161 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
162 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
163 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 164 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 165
afd7eef0
RE
166/* Valid register name styles. */
167static const char **valid_disassembly_styles;
ed9a39eb 168
afd7eef0
RE
169/* Disassembly style to use. Default to "std" register names. */
170static const char *disassembly_style;
96baa820 171
ed9a39eb 172/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
173 style. */
174static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 175 struct cmd_list_element *);
afd7eef0 176static void set_disassembly_style (void);
ed9a39eb 177
b508a996
RE
178static void convert_from_extended (const struct floatformat *, const void *,
179 void *);
180static void convert_to_extended (const struct floatformat *, void *,
181 const void *);
ed9a39eb 182
9b8d791a 183struct arm_prologue_cache
c3b4394c 184{
eb5492fa
DJ
185 /* The stack pointer at the time this frame was created; i.e. the
186 caller's stack pointer when this function was called. It is used
187 to identify this frame. */
188 CORE_ADDR prev_sp;
189
190 /* The frame base for this frame is just prev_sp + frame offset -
191 frame size. FRAMESIZE is the size of this stack frame, and
192 FRAMEOFFSET if the initial offset from the stack pointer (this
193 frame's stack pointer, not PREV_SP) to the frame base. */
194
c3b4394c
RE
195 int framesize;
196 int frameoffset;
eb5492fa
DJ
197
198 /* The register used to hold the frame pointer for this frame. */
c3b4394c 199 int framereg;
eb5492fa
DJ
200
201 /* Saved register offsets. */
202 struct trad_frame_saved_reg *saved_regs;
c3b4394c 203};
ed9a39eb 204
bc90b915
FN
205/* Addresses for calling Thumb functions have the bit 0 set.
206 Here are some macros to test, set, or clear bit 0 of addresses. */
207#define IS_THUMB_ADDR(addr) ((addr) & 1)
208#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
209#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
210
94c30b78 211/* Set to true if the 32-bit mode is in use. */
c906108c
SS
212
213int arm_apcs_32 = 1;
214
ed9a39eb
JM
215/* Determine if the program counter specified in MEMADDR is in a Thumb
216 function. */
c906108c 217
ad527d2e 218static int
2a451106 219arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 220{
c5aa993b 221 struct minimal_symbol *sym;
c906108c 222
ed9a39eb 223 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
224 if (IS_THUMB_ADDR (memaddr))
225 return 1;
226
ed9a39eb 227 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
228 sym = lookup_minimal_symbol_by_pc (memaddr);
229 if (sym)
230 {
c5aa993b 231 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
232 }
233 else
ed9a39eb
JM
234 {
235 return 0;
236 }
c906108c
SS
237}
238
181c1381 239/* Remove useless bits from addresses in a running program. */
34e8f22d 240static CORE_ADDR
ed9a39eb 241arm_addr_bits_remove (CORE_ADDR val)
c906108c 242{
a3a2ee65
JT
243 if (arm_apcs_32)
244 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 245 else
a3a2ee65 246 return (val & 0x03fffffc);
c906108c
SS
247}
248
181c1381
RE
249/* When reading symbols, we need to zap the low bit of the address,
250 which may be set to 1 for Thumb functions. */
34e8f22d 251static CORE_ADDR
181c1381
RE
252arm_smash_text_address (CORE_ADDR val)
253{
254 return val & ~1;
255}
256
29d73ae4
DJ
257/* Analyze a Thumb prologue, looking for a recognizable stack frame
258 and frame pointer. Scan until we encounter a store that could
259 clobber the stack frame unexpectedly, or an unknown instruction. */
c906108c
SS
260
261static CORE_ADDR
29d73ae4
DJ
262thumb_analyze_prologue (struct gdbarch *gdbarch,
263 CORE_ADDR start, CORE_ADDR limit,
264 struct arm_prologue_cache *cache)
c906108c 265{
29d73ae4
DJ
266 int i;
267 pv_t regs[16];
268 struct pv_area *stack;
269 struct cleanup *back_to;
270 CORE_ADDR offset;
da3c6d4a 271
29d73ae4
DJ
272 for (i = 0; i < 16; i++)
273 regs[i] = pv_register (i, 0);
274 stack = make_pv_area (ARM_SP_REGNUM);
275 back_to = make_cleanup_free_pv_area (stack);
276
277 /* The call instruction saved PC in LR, and the current PC is not
278 interesting. Due to this file's conventions, we want the value
279 of LR at this function's entry, not at the call site, so we do
280 not record the save of the PC - when the ARM prologue analyzer
281 has also been converted to the pv mechanism, we could record the
282 save here and remove the hack in prev_register. */
283 regs[ARM_PC_REGNUM] = pv_unknown ();
284
285 while (start < limit)
c906108c 286 {
29d73ae4
DJ
287 unsigned short insn;
288
289 insn = read_memory_unsigned_integer (start, 2);
c906108c 290
94c30b78 291 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 292 {
29d73ae4
DJ
293 int regno;
294 int mask;
295 int stop = 0;
296
297 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
298 whether to save LR (R14). */
299 mask = (insn & 0xff) | ((insn & 0x100) << 6);
300
301 /* Calculate offsets of saved R0-R7 and LR. */
302 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
303 if (mask & (1 << regno))
304 {
305 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
306 {
307 stop = 1;
308 break;
309 }
310
311 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
312 -4);
313 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
314 }
315
316 if (stop)
317 break;
da59e081 318 }
da3c6d4a
MS
319 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
320 sub sp, #simm */
da59e081 321 {
29d73ae4
DJ
322 offset = (insn & 0x7f) << 2; /* get scaled offset */
323 if (insn & 0x80) /* Check for SUB. */
324 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
325 -offset);
da59e081 326 else
29d73ae4
DJ
327 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
328 offset);
da59e081
JM
329 }
330 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
29d73ae4
DJ
331 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
332 (insn & 0xff) << 2);
333 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 334 {
29d73ae4
DJ
335 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
336 int src_reg = (insn & 0x78) >> 3;
337 regs[dst_reg] = regs[src_reg];
da59e081 338 }
29d73ae4 339 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 340 {
29d73ae4
DJ
341 /* Handle stores to the stack. Normally pushes are used,
342 but with GCC -mtpcs-frame, there may be other stores
343 in the prologue to create the frame. */
344 int regno = (insn >> 8) & 0x7;
345 pv_t addr;
346
347 offset = (insn & 0xff) << 2;
348 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
349
350 if (pv_area_store_would_trash (stack, addr))
351 break;
352
353 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 354 }
29d73ae4 355 else
3d74b771 356 {
29d73ae4
DJ
357 /* We don't know what this instruction is. We're finished
358 scanning. NOTE: Recognizing more safe-to-ignore
359 instructions here will improve support for optimized
360 code. */
da3c6d4a 361 break;
3d74b771 362 }
29d73ae4
DJ
363
364 start += 2;
c906108c
SS
365 }
366
29d73ae4
DJ
367 if (cache == NULL)
368 {
369 do_cleanups (back_to);
370 return start;
371 }
372
373 /* frameoffset is unused for this unwinder. */
374 cache->frameoffset = 0;
375
376 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
377 {
378 /* Frame pointer is fp. Frame size is constant. */
379 cache->framereg = ARM_FP_REGNUM;
380 cache->framesize = -regs[ARM_FP_REGNUM].k;
381 }
382 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
383 {
384 /* Frame pointer is r7. Frame size is constant. */
385 cache->framereg = THUMB_FP_REGNUM;
386 cache->framesize = -regs[THUMB_FP_REGNUM].k;
387 }
388 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
389 {
390 /* Try the stack pointer... this is a bit desperate. */
391 cache->framereg = ARM_SP_REGNUM;
392 cache->framesize = -regs[ARM_SP_REGNUM].k;
393 }
394 else
395 {
396 /* We're just out of luck. We don't know where the frame is. */
397 cache->framereg = -1;
398 cache->framesize = 0;
399 }
400
401 for (i = 0; i < 16; i++)
402 if (pv_area_find_reg (stack, gdbarch, i, &offset))
403 cache->saved_regs[i].addr = offset;
404
405 do_cleanups (back_to);
406 return start;
c906108c
SS
407}
408
da3c6d4a
MS
409/* Advance the PC across any function entry prologue instructions to
410 reach some "real" code.
34e8f22d
RE
411
412 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 413 prologue:
c906108c 414
c5aa993b
JM
415 mov ip, sp
416 [stmfd sp!, {a1,a2,a3,a4}]
417 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
418 [stfe f7, [sp, #-12]!]
419 [stfe f6, [sp, #-12]!]
420 [stfe f5, [sp, #-12]!]
421 [stfe f4, [sp, #-12]!]
422 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 423
34e8f22d 424static CORE_ADDR
ed9a39eb 425arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
426{
427 unsigned long inst;
428 CORE_ADDR skip_pc;
b8d5e71d 429 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 430 char *func_name;
c906108c
SS
431 struct symtab_and_line sal;
432
848cfffb 433 /* If we're in a dummy frame, don't even try to skip the prologue. */
30a4a8e0 434 if (deprecated_pc_in_call_dummy (pc))
848cfffb
AC
435 return pc;
436
96baa820 437 /* See what the symbol table says. */
ed9a39eb 438
50f6fb4b 439 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 440 {
50f6fb4b
CV
441 struct symbol *sym;
442
443 /* Found a function. */
176620f1 444 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
445 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
446 {
94c30b78 447 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
448 sal = find_pc_line (func_addr, 0);
449 if ((sal.line != 0) && (sal.end < func_end))
450 return sal.end;
451 }
c906108c
SS
452 }
453
c906108c 454 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 455 by disassembling the instructions. */
c906108c 456
b8d5e71d
MS
457 /* Like arm_scan_prologue, stop no later than pc + 64. */
458 if (func_end == 0 || func_end > pc + 64)
459 func_end = pc + 64;
c906108c 460
29d73ae4
DJ
461 /* Check if this is Thumb code. */
462 if (arm_pc_is_thumb (pc))
463 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
464
b8d5e71d 465 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 466 {
1c5bada0 467 inst = read_memory_unsigned_integer (skip_pc, 4);
f43845b3 468
b8d5e71d
MS
469 /* "mov ip, sp" is no longer a required part of the prologue. */
470 if (inst == 0xe1a0c00d) /* mov ip, sp */
471 continue;
c906108c 472
28cd8767
JG
473 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
474 continue;
475
476 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
477 continue;
478
b8d5e71d
MS
479 /* Some prologues begin with "str lr, [sp, #-4]!". */
480 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
481 continue;
c906108c 482
b8d5e71d
MS
483 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
484 continue;
c906108c 485
b8d5e71d
MS
486 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
487 continue;
11d3b27d 488
b8d5e71d
MS
489 /* Any insns after this point may float into the code, if it makes
490 for better instruction scheduling, so we skip them only if we
491 find them, but still consider the function to be frame-ful. */
f43845b3 492
b8d5e71d
MS
493 /* We may have either one sfmfd instruction here, or several stfe
494 insns, depending on the version of floating point code we
495 support. */
496 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
497 continue;
498
499 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
500 continue;
501
502 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
503 continue;
504
505 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
506 continue;
507
508 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
509 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
510 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
511 continue;
512
513 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
514 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
515 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
516 continue;
517
518 /* Un-recognized instruction; stop scanning. */
519 break;
f43845b3 520 }
c906108c 521
b8d5e71d 522 return skip_pc; /* End of prologue */
c906108c 523}
94c30b78 524
c5aa993b 525/* *INDENT-OFF* */
c906108c
SS
526/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
527 This function decodes a Thumb function prologue to determine:
528 1) the size of the stack frame
529 2) which registers are saved on it
530 3) the offsets of saved regs
531 4) the offset from the stack pointer to the frame pointer
c906108c 532
da59e081
JM
533 A typical Thumb function prologue would create this stack frame
534 (offsets relative to FP)
c906108c
SS
535 old SP -> 24 stack parameters
536 20 LR
537 16 R7
538 R7 -> 0 local variables (16 bytes)
539 SP -> -12 additional stack space (12 bytes)
540 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
541 12 bytes. The frame register is R7.
542
da3c6d4a
MS
543 The comments for thumb_skip_prolog() describe the algorithm we use
544 to detect the end of the prolog. */
c5aa993b
JM
545/* *INDENT-ON* */
546
c906108c 547static void
eb5492fa 548thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
c906108c
SS
549{
550 CORE_ADDR prologue_start;
551 CORE_ADDR prologue_end;
552 CORE_ADDR current_pc;
94c30b78 553 /* Which register has been copied to register n? */
da3c6d4a
MS
554 int saved_reg[16];
555 /* findmask:
556 bit 0 - push { rlist }
557 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
558 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
559 */
560 int findmask = 0;
c5aa993b 561 int i;
c906108c 562
eb5492fa 563 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
564 {
565 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
566
94c30b78 567 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 568 prologue_end = prev_pc;
c906108c 569 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 570 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
571 }
572 else
f7060f85
DJ
573 /* We're in the boondocks: we have no idea where the start of the
574 function is. */
575 return;
c906108c 576
eb5492fa 577 prologue_end = min (prologue_end, prev_pc);
c906108c 578
29d73ae4
DJ
579 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
580 cache);
c906108c
SS
581}
582
ed9a39eb 583/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
584 1) the size of the stack frame
585 2) which registers are saved on it
586 3) the offsets of saved regs
587 4) the offset from the stack pointer to the frame pointer
c906108c
SS
588 This information is stored in the "extra" fields of the frame_info.
589
96baa820
JM
590 There are two basic forms for the ARM prologue. The fixed argument
591 function call will look like:
ed9a39eb
JM
592
593 mov ip, sp
594 stmfd sp!, {fp, ip, lr, pc}
595 sub fp, ip, #4
596 [sub sp, sp, #4]
96baa820 597
c906108c 598 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
599 IP -> 4 (caller's stack)
600 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
601 -4 LR (return address in caller)
602 -8 IP (copy of caller's SP)
603 -12 FP (caller's FP)
604 SP -> -28 Local variables
605
c906108c 606 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
607 28 bytes. The stmfd call can also save any of the vN registers it
608 plans to use, which increases the frame size accordingly.
609
610 Note: The stored PC is 8 off of the STMFD instruction that stored it
611 because the ARM Store instructions always store PC + 8 when you read
612 the PC register.
ed9a39eb 613
96baa820
JM
614 A variable argument function call will look like:
615
ed9a39eb
JM
616 mov ip, sp
617 stmfd sp!, {a1, a2, a3, a4}
618 stmfd sp!, {fp, ip, lr, pc}
619 sub fp, ip, #20
620
96baa820 621 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
622 IP -> 20 (caller's stack)
623 16 A4
624 12 A3
625 8 A2
626 4 A1
627 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
628 -4 LR (return address in caller)
629 -8 IP (copy of caller's SP)
630 -12 FP (caller's FP)
631 SP -> -28 Local variables
96baa820
JM
632
633 The frame size would thus be 48 bytes, and the frame offset would be
634 28 bytes.
635
636 There is another potential complication, which is that the optimizer
637 will try to separate the store of fp in the "stmfd" instruction from
638 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
639 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
640
641 Also, note, the original version of the ARM toolchain claimed that there
642 should be an
643
644 instruction at the end of the prologue. I have never seen GCC produce
645 this, and the ARM docs don't mention it. We still test for it below in
646 case it happens...
ed9a39eb
JM
647
648 */
c906108c
SS
649
650static void
eb5492fa 651arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
c906108c 652{
28cd8767 653 int regno, sp_offset, fp_offset, ip_offset;
c906108c 654 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 655 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
c906108c 656
c906108c 657 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
658 cache->framereg = ARM_SP_REGNUM;
659 cache->framesize = 0;
660 cache->frameoffset = 0;
c906108c
SS
661
662 /* Check for Thumb prologue. */
eb5492fa 663 if (arm_pc_is_thumb (prev_pc))
c906108c 664 {
eb5492fa 665 thumb_scan_prologue (prev_pc, cache);
c906108c
SS
666 return;
667 }
668
669 /* Find the function prologue. If we can't find the function in
670 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 671 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 672 {
2a451106
KB
673 /* One way to find the end of the prologue (which works well
674 for unoptimized code) is to do the following:
675
676 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
677
678 if (sal.line == 0)
eb5492fa 679 prologue_end = prev_pc;
2a451106
KB
680 else if (sal.end < prologue_end)
681 prologue_end = sal.end;
682
683 This mechanism is very accurate so long as the optimizer
684 doesn't move any instructions from the function body into the
685 prologue. If this happens, sal.end will be the last
686 instruction in the first hunk of prologue code just before
687 the first instruction that the scheduler has moved from
688 the body to the prologue.
689
690 In order to make sure that we scan all of the prologue
691 instructions, we use a slightly less accurate mechanism which
692 may scan more than necessary. To help compensate for this
693 lack of accuracy, the prologue scanning loop below contains
694 several clauses which'll cause the loop to terminate early if
695 an implausible prologue instruction is encountered.
696
697 The expression
698
699 prologue_start + 64
700
701 is a suitable endpoint since it accounts for the largest
702 possible prologue plus up to five instructions inserted by
94c30b78 703 the scheduler. */
2a451106
KB
704
705 if (prologue_end > prologue_start + 64)
706 {
94c30b78 707 prologue_end = prologue_start + 64; /* See above. */
2a451106 708 }
c906108c
SS
709 }
710 else
711 {
eb5492fa
DJ
712 /* We have no symbol information. Our only option is to assume this
713 function has a standard stack frame and the normal frame register.
714 Then, we can find the value of our frame pointer on entrance to
715 the callee (or at the present moment if this is the innermost frame).
716 The value stored there should be the address of the stmfd + 8. */
717 CORE_ADDR frame_loc;
718 LONGEST return_value;
719
720 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
721 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
722 return;
723 else
724 {
bf6ae464
UW
725 prologue_start = gdbarch_addr_bits_remove
726 (current_gdbarch, return_value) - 8;
94c30b78 727 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 728 }
c906108c
SS
729 }
730
eb5492fa
DJ
731 if (prev_pc < prologue_end)
732 prologue_end = prev_pc;
733
c906108c 734 /* Now search the prologue looking for instructions that set up the
96baa820 735 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 736
96baa820
JM
737 Be careful, however, and if it doesn't look like a prologue,
738 don't try to scan it. If, for instance, a frameless function
739 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 740 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
741 and other operations that rely on a knowledge of the stack
742 traceback.
743
744 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 745 if we don't see this as the first insn, we will stop.
c906108c 746
f43845b3
MS
747 [Note: This doesn't seem to be true any longer, so it's now an
748 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 749
f43845b3
MS
750 [Note further: The "mov ip,sp" only seems to be missing in
751 frameless functions at optimization level "-O2" or above,
752 in which case it is often (but not always) replaced by
b8d5e71d 753 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 754
28cd8767 755 sp_offset = fp_offset = ip_offset = 0;
f43845b3 756
94c30b78
MS
757 for (current_pc = prologue_start;
758 current_pc < prologue_end;
f43845b3 759 current_pc += 4)
96baa820 760 {
d4473757
KB
761 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
762
94c30b78 763 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 764 {
28cd8767
JG
765 ip_offset = 0;
766 continue;
767 }
768 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
769 {
770 unsigned imm = insn & 0xff; /* immediate value */
771 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
772 imm = (imm >> rot) | (imm << (32 - rot));
773 ip_offset = imm;
774 continue;
775 }
776 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
777 {
778 unsigned imm = insn & 0xff; /* immediate value */
779 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
780 imm = (imm >> rot) | (imm << (32 - rot));
781 ip_offset = -imm;
f43845b3
MS
782 continue;
783 }
94c30b78 784 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 785 {
e28a332c
JG
786 sp_offset -= 4;
787 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
f43845b3
MS
788 continue;
789 }
790 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
791 /* stmfd sp!, {..., fp, ip, lr, pc}
792 or
793 stmfd sp!, {a1, a2, a3, a4} */
c906108c 794 {
d4473757 795 int mask = insn & 0xffff;
ed9a39eb 796
94c30b78 797 /* Calculate offsets of saved registers. */
34e8f22d 798 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
799 if (mask & (1 << regno))
800 {
801 sp_offset -= 4;
eb5492fa 802 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
803 }
804 }
b8d5e71d
MS
805 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
806 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
807 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
808 {
809 /* No need to add this to saved_regs -- it's just an arg reg. */
810 continue;
811 }
812 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
813 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
814 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
815 {
816 /* No need to add this to saved_regs -- it's just an arg reg. */
817 continue;
818 }
d4473757
KB
819 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
820 {
94c30b78
MS
821 unsigned imm = insn & 0xff; /* immediate value */
822 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 823 imm = (imm >> rot) | (imm << (32 - rot));
28cd8767 824 fp_offset = -imm + ip_offset;
9b8d791a 825 cache->framereg = ARM_FP_REGNUM;
d4473757
KB
826 }
827 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
828 {
94c30b78
MS
829 unsigned imm = insn & 0xff; /* immediate value */
830 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
831 imm = (imm >> rot) | (imm << (32 - rot));
832 sp_offset -= imm;
833 }
ff6f572f
DJ
834 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
835 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
d4473757
KB
836 {
837 sp_offset -= 12;
34e8f22d 838 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
eb5492fa 839 cache->saved_regs[regno].addr = sp_offset;
d4473757 840 }
ff6f572f
DJ
841 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
842 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
d4473757
KB
843 {
844 int n_saved_fp_regs;
845 unsigned int fp_start_reg, fp_bound_reg;
846
94c30b78 847 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 848 {
d4473757
KB
849 if ((insn & 0x40000) == 0x40000) /* N1 is set */
850 n_saved_fp_regs = 3;
851 else
852 n_saved_fp_regs = 1;
96baa820 853 }
d4473757 854 else
96baa820 855 {
d4473757
KB
856 if ((insn & 0x40000) == 0x40000) /* N1 is set */
857 n_saved_fp_regs = 2;
858 else
859 n_saved_fp_regs = 4;
96baa820 860 }
d4473757 861
34e8f22d 862 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
863 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
864 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
865 {
866 sp_offset -= 12;
eb5492fa 867 cache->saved_regs[fp_start_reg++].addr = sp_offset;
96baa820 868 }
c906108c 869 }
d4473757 870 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 871 break; /* Condition not true, exit early */
b8d5e71d 872 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 873 break; /* Don't scan past a block load */
d4473757
KB
874 else
875 /* The optimizer might shove anything into the prologue,
94c30b78 876 so we just skip what we don't recognize. */
d4473757 877 continue;
c906108c
SS
878 }
879
94c30b78
MS
880 /* The frame size is just the negative of the offset (from the
881 original SP) of the last thing thing we pushed on the stack.
882 The frame offset is [new FP] - [new SP]. */
9b8d791a
DJ
883 cache->framesize = -sp_offset;
884 if (cache->framereg == ARM_FP_REGNUM)
885 cache->frameoffset = fp_offset - sp_offset;
d4473757 886 else
9b8d791a 887 cache->frameoffset = 0;
c906108c
SS
888}
889
eb5492fa
DJ
890static struct arm_prologue_cache *
891arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 892{
eb5492fa
DJ
893 int reg;
894 struct arm_prologue_cache *cache;
895 CORE_ADDR unwound_fp;
c5aa993b 896
35d5d4ee 897 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
eb5492fa 898 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 899
eb5492fa 900 arm_scan_prologue (next_frame, cache);
848cfffb 901
eb5492fa
DJ
902 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
903 if (unwound_fp == 0)
904 return cache;
c906108c 905
eb5492fa 906 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
c906108c 907
eb5492fa
DJ
908 /* Calculate actual addresses of saved registers using offsets
909 determined by arm_scan_prologue. */
f57d151a 910 for (reg = 0; reg < gdbarch_num_regs (current_gdbarch); reg++)
e28a332c 911 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
912 cache->saved_regs[reg].addr += cache->prev_sp;
913
914 return cache;
c906108c
SS
915}
916
eb5492fa
DJ
917/* Our frame ID for a normal frame is the current function's starting PC
918 and the caller's SP when we were called. */
c906108c 919
148754e5 920static void
eb5492fa
DJ
921arm_prologue_this_id (struct frame_info *next_frame,
922 void **this_cache,
923 struct frame_id *this_id)
c906108c 924{
eb5492fa
DJ
925 struct arm_prologue_cache *cache;
926 struct frame_id id;
927 CORE_ADDR func;
f079148d 928
eb5492fa
DJ
929 if (*this_cache == NULL)
930 *this_cache = arm_make_prologue_cache (next_frame);
931 cache = *this_cache;
2a451106 932
93d42b30 933 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2a451106 934
eb5492fa
DJ
935 /* This is meant to halt the backtrace at "_start". Make sure we
936 don't halt it at a generic dummy frame. */
9e815ec2 937 if (func <= LOWEST_PC)
eb5492fa 938 return;
5a203e44 939
eb5492fa
DJ
940 /* If we've hit a wall, stop. */
941 if (cache->prev_sp == 0)
942 return;
24de872b 943
eb5492fa 944 id = frame_id_build (cache->prev_sp, func);
eb5492fa 945 *this_id = id;
c906108c
SS
946}
947
eb5492fa
DJ
948static void
949arm_prologue_prev_register (struct frame_info *next_frame,
950 void **this_cache,
951 int prev_regnum,
952 int *optimized,
953 enum lval_type *lvalp,
954 CORE_ADDR *addrp,
955 int *realnump,
9af75ef6 956 gdb_byte *valuep)
24de872b
DJ
957{
958 struct arm_prologue_cache *cache;
959
eb5492fa
DJ
960 if (*this_cache == NULL)
961 *this_cache = arm_make_prologue_cache (next_frame);
962 cache = *this_cache;
24de872b 963
eb5492fa
DJ
964 /* If we are asked to unwind the PC, then we need to return the LR
965 instead. The saved value of PC points into this frame's
966 prologue, not the next frame's resume location. */
967 if (prev_regnum == ARM_PC_REGNUM)
968 prev_regnum = ARM_LR_REGNUM;
24de872b 969
eb5492fa
DJ
970 /* SP is generally not saved to the stack, but this frame is
971 identified by NEXT_FRAME's stack pointer at the time of the call.
972 The value was already reconstructed into PREV_SP. */
973 if (prev_regnum == ARM_SP_REGNUM)
974 {
975 *lvalp = not_lval;
976 if (valuep)
977 store_unsigned_integer (valuep, 4, cache->prev_sp);
978 return;
979 }
980
1f67027d
AC
981 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
982 optimized, lvalp, addrp, realnump, valuep);
eb5492fa
DJ
983}
984
985struct frame_unwind arm_prologue_unwind = {
986 NORMAL_FRAME,
987 arm_prologue_this_id,
988 arm_prologue_prev_register
989};
990
991static const struct frame_unwind *
992arm_prologue_unwind_sniffer (struct frame_info *next_frame)
993{
994 return &arm_prologue_unwind;
24de872b
DJ
995}
996
909cf6ea
DJ
997static struct arm_prologue_cache *
998arm_make_stub_cache (struct frame_info *next_frame)
999{
1000 int reg;
1001 struct arm_prologue_cache *cache;
1002 CORE_ADDR unwound_fp;
1003
35d5d4ee 1004 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
909cf6ea
DJ
1005 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1006
1007 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1008
1009 return cache;
1010}
1011
1012/* Our frame ID for a stub frame is the current SP and LR. */
1013
1014static void
1015arm_stub_this_id (struct frame_info *next_frame,
1016 void **this_cache,
1017 struct frame_id *this_id)
1018{
1019 struct arm_prologue_cache *cache;
1020
1021 if (*this_cache == NULL)
1022 *this_cache = arm_make_stub_cache (next_frame);
1023 cache = *this_cache;
1024
1025 *this_id = frame_id_build (cache->prev_sp,
1026 frame_pc_unwind (next_frame));
1027}
1028
1029struct frame_unwind arm_stub_unwind = {
1030 NORMAL_FRAME,
1031 arm_stub_this_id,
1032 arm_prologue_prev_register
1033};
1034
1035static const struct frame_unwind *
1036arm_stub_unwind_sniffer (struct frame_info *next_frame)
1037{
93d42b30 1038 CORE_ADDR addr_in_block;
909cf6ea
DJ
1039 char dummy[4];
1040
93d42b30
DJ
1041 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1042 if (in_plt_section (addr_in_block, NULL)
909cf6ea
DJ
1043 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1044 return &arm_stub_unwind;
1045
1046 return NULL;
1047}
1048
24de872b 1049static CORE_ADDR
eb5492fa 1050arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1051{
1052 struct arm_prologue_cache *cache;
1053
eb5492fa
DJ
1054 if (*this_cache == NULL)
1055 *this_cache = arm_make_prologue_cache (next_frame);
1056 cache = *this_cache;
1057
1058 return cache->prev_sp + cache->frameoffset - cache->framesize;
24de872b
DJ
1059}
1060
eb5492fa
DJ
1061struct frame_base arm_normal_base = {
1062 &arm_prologue_unwind,
1063 arm_normal_frame_base,
1064 arm_normal_frame_base,
1065 arm_normal_frame_base
1066};
1067
eb5492fa
DJ
1068/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1069 dummy frame. The frame ID's base needs to match the TOS value
1070 saved by save_dummy_frame_tos() and returned from
1071 arm_push_dummy_call, and the PC needs to match the dummy frame's
1072 breakpoint. */
c906108c 1073
eb5492fa
DJ
1074static struct frame_id
1075arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1076{
eb5492fa
DJ
1077 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1078 frame_pc_unwind (next_frame));
1079}
c3b4394c 1080
eb5492fa
DJ
1081/* Given THIS_FRAME, find the previous frame's resume PC (which will
1082 be used to construct the previous frame's ID, after looking up the
1083 containing function). */
c3b4394c 1084
eb5492fa
DJ
1085static CORE_ADDR
1086arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1087{
1088 CORE_ADDR pc;
1089 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
59ea4f70 1090 return arm_addr_bits_remove (pc);
eb5492fa
DJ
1091}
1092
1093static CORE_ADDR
1094arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1095{
1096 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1097}
1098
2dd604e7
RE
1099/* When arguments must be pushed onto the stack, they go on in reverse
1100 order. The code below implements a FILO (stack) to do this. */
1101
1102struct stack_item
1103{
1104 int len;
1105 struct stack_item *prev;
1106 void *data;
1107};
1108
1109static struct stack_item *
1110push_stack_item (struct stack_item *prev, void *contents, int len)
1111{
1112 struct stack_item *si;
1113 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1114 si->data = xmalloc (len);
2dd604e7
RE
1115 si->len = len;
1116 si->prev = prev;
1117 memcpy (si->data, contents, len);
1118 return si;
1119}
1120
1121static struct stack_item *
1122pop_stack_item (struct stack_item *si)
1123{
1124 struct stack_item *dead = si;
1125 si = si->prev;
1126 xfree (dead->data);
1127 xfree (dead);
1128 return si;
1129}
1130
2af48f68
PB
1131
1132/* Return the alignment (in bytes) of the given type. */
1133
1134static int
1135arm_type_align (struct type *t)
1136{
1137 int n;
1138 int align;
1139 int falign;
1140
1141 t = check_typedef (t);
1142 switch (TYPE_CODE (t))
1143 {
1144 default:
1145 /* Should never happen. */
1146 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1147 return 4;
1148
1149 case TYPE_CODE_PTR:
1150 case TYPE_CODE_ENUM:
1151 case TYPE_CODE_INT:
1152 case TYPE_CODE_FLT:
1153 case TYPE_CODE_SET:
1154 case TYPE_CODE_RANGE:
1155 case TYPE_CODE_BITSTRING:
1156 case TYPE_CODE_REF:
1157 case TYPE_CODE_CHAR:
1158 case TYPE_CODE_BOOL:
1159 return TYPE_LENGTH (t);
1160
1161 case TYPE_CODE_ARRAY:
1162 case TYPE_CODE_COMPLEX:
1163 /* TODO: What about vector types? */
1164 return arm_type_align (TYPE_TARGET_TYPE (t));
1165
1166 case TYPE_CODE_STRUCT:
1167 case TYPE_CODE_UNION:
1168 align = 1;
1169 for (n = 0; n < TYPE_NFIELDS (t); n++)
1170 {
1171 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1172 if (falign > align)
1173 align = falign;
1174 }
1175 return align;
1176 }
1177}
1178
2dd604e7
RE
1179/* We currently only support passing parameters in integer registers. This
1180 conforms with GCC's default model. Several other variants exist and
1181 we should probably support some of them based on the selected ABI. */
1182
1183static CORE_ADDR
7d9b040b 1184arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1185 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1186 struct value **args, CORE_ADDR sp, int struct_return,
1187 CORE_ADDR struct_addr)
2dd604e7
RE
1188{
1189 int argnum;
1190 int argreg;
1191 int nstack;
1192 struct stack_item *si = NULL;
1193
6a65450a
AC
1194 /* Set the return address. For the ARM, the return breakpoint is
1195 always at BP_ADDR. */
2dd604e7 1196 /* XXX Fix for Thumb. */
6a65450a 1197 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1198
1199 /* Walk through the list of args and determine how large a temporary
1200 stack is required. Need to take care here as structs may be
1201 passed on the stack, and we have to to push them. */
1202 nstack = 0;
1203
1204 argreg = ARM_A1_REGNUM;
1205 nstack = 0;
1206
2dd604e7
RE
1207 /* The struct_return pointer occupies the first parameter
1208 passing register. */
1209 if (struct_return)
1210 {
1211 if (arm_debug)
1212 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
c9f4d572
UW
1213 gdbarch_register_name (current_gdbarch, argreg),
1214 paddr (struct_addr));
2dd604e7
RE
1215 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1216 argreg++;
1217 }
1218
1219 for (argnum = 0; argnum < nargs; argnum++)
1220 {
1221 int len;
1222 struct type *arg_type;
1223 struct type *target_type;
1224 enum type_code typecode;
0fd88904 1225 bfd_byte *val;
2af48f68 1226 int align;
2dd604e7 1227
df407dfe 1228 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
1229 len = TYPE_LENGTH (arg_type);
1230 target_type = TYPE_TARGET_TYPE (arg_type);
1231 typecode = TYPE_CODE (arg_type);
0fd88904 1232 val = value_contents_writeable (args[argnum]);
2dd604e7 1233
2af48f68
PB
1234 align = arm_type_align (arg_type);
1235 /* Round alignment up to a whole number of words. */
1236 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1237 /* Different ABIs have different maximum alignments. */
1238 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1239 {
1240 /* The APCS ABI only requires word alignment. */
1241 align = INT_REGISTER_SIZE;
1242 }
1243 else
1244 {
1245 /* The AAPCS requires at most doubleword alignment. */
1246 if (align > INT_REGISTER_SIZE * 2)
1247 align = INT_REGISTER_SIZE * 2;
1248 }
1249
1250 /* Push stack padding for dowubleword alignment. */
1251 if (nstack & (align - 1))
1252 {
1253 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1254 nstack += INT_REGISTER_SIZE;
1255 }
1256
1257 /* Doubleword aligned quantities must go in even register pairs. */
1258 if (argreg <= ARM_LAST_ARG_REGNUM
1259 && align > INT_REGISTER_SIZE
1260 && argreg & 1)
1261 argreg++;
1262
2dd604e7
RE
1263 /* If the argument is a pointer to a function, and it is a
1264 Thumb function, create a LOCAL copy of the value and set
1265 the THUMB bit in it. */
1266 if (TYPE_CODE_PTR == typecode
1267 && target_type != NULL
1268 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1269 {
7c0b4a20 1270 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1271 if (arm_pc_is_thumb (regval))
1272 {
1273 val = alloca (len);
fbd9dcd3 1274 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1275 }
1276 }
1277
1278 /* Copy the argument to general registers or the stack in
1279 register-sized pieces. Large arguments are split between
1280 registers and stack. */
1281 while (len > 0)
1282 {
f0c9063c 1283 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
2dd604e7
RE
1284
1285 if (argreg <= ARM_LAST_ARG_REGNUM)
1286 {
1287 /* The argument is being passed in a general purpose
1288 register. */
7c0b4a20 1289 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
8bf8793c
JM
1290 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1291 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
2dd604e7
RE
1292 if (arm_debug)
1293 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
c9f4d572
UW
1294 argnum,
1295 gdbarch_register_name
1296 (current_gdbarch, argreg),
f0c9063c 1297 phex (regval, INT_REGISTER_SIZE));
2dd604e7
RE
1298 regcache_cooked_write_unsigned (regcache, argreg, regval);
1299 argreg++;
1300 }
1301 else
1302 {
1303 /* Push the arguments onto the stack. */
1304 if (arm_debug)
1305 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1306 argnum, nstack);
f0c9063c
UW
1307 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1308 nstack += INT_REGISTER_SIZE;
2dd604e7
RE
1309 }
1310
1311 len -= partial_len;
1312 val += partial_len;
1313 }
1314 }
1315 /* If we have an odd number of words to push, then decrement the stack
1316 by one word now, so first stack argument will be dword aligned. */
1317 if (nstack & 4)
1318 sp -= 4;
1319
1320 while (si)
1321 {
1322 sp -= si->len;
1323 write_memory (sp, si->data, si->len);
1324 si = pop_stack_item (si);
1325 }
1326
1327 /* Finally, update teh SP register. */
1328 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1329
1330 return sp;
1331}
1332
f53f0d0b
PB
1333
1334/* Always align the frame to an 8-byte boundary. This is required on
1335 some platforms and harmless on the rest. */
1336
1337static CORE_ADDR
1338arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1339{
1340 /* Align the stack to eight bytes. */
1341 return sp & ~ (CORE_ADDR) 7;
1342}
1343
c906108c 1344static void
ed9a39eb 1345print_fpu_flags (int flags)
c906108c 1346{
c5aa993b
JM
1347 if (flags & (1 << 0))
1348 fputs ("IVO ", stdout);
1349 if (flags & (1 << 1))
1350 fputs ("DVZ ", stdout);
1351 if (flags & (1 << 2))
1352 fputs ("OFL ", stdout);
1353 if (flags & (1 << 3))
1354 fputs ("UFL ", stdout);
1355 if (flags & (1 << 4))
1356 fputs ("INX ", stdout);
1357 putchar ('\n');
c906108c
SS
1358}
1359
5e74b15c
RE
1360/* Print interesting information about the floating point processor
1361 (if present) or emulator. */
34e8f22d 1362static void
d855c300 1363arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1364 struct frame_info *frame, const char *args)
c906108c 1365{
9c9acae0 1366 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
c5aa993b
JM
1367 int type;
1368
1369 type = (status >> 24) & 127;
edefbb7c
AC
1370 if (status & (1 << 31))
1371 printf (_("Hardware FPU type %d\n"), type);
1372 else
1373 printf (_("Software FPU type %d\n"), type);
1374 /* i18n: [floating point unit] mask */
1375 fputs (_("mask: "), stdout);
c5aa993b 1376 print_fpu_flags (status >> 16);
edefbb7c
AC
1377 /* i18n: [floating point unit] flags */
1378 fputs (_("flags: "), stdout);
c5aa993b 1379 print_fpu_flags (status);
c906108c
SS
1380}
1381
34e8f22d
RE
1382/* Return the GDB type object for the "standard" data type of data in
1383 register N. */
1384
1385static struct type *
7a5ea0d4 1386arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1387{
34e8f22d 1388 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
8da61cc4 1389 return builtin_type_arm_ext;
e4c16157
DJ
1390 else if (regnum == ARM_SP_REGNUM)
1391 return builtin_type_void_data_ptr;
1392 else if (regnum == ARM_PC_REGNUM)
1393 return builtin_type_void_func_ptr;
ff6f572f
DJ
1394 else if (regnum >= ARRAY_SIZE (arm_register_names))
1395 /* These registers are only supported on targets which supply
1396 an XML description. */
1397 return builtin_type_int0;
032758dc 1398 else
e4c16157 1399 return builtin_type_uint32;
032758dc
AC
1400}
1401
ff6f572f
DJ
1402/* Map a DWARF register REGNUM onto the appropriate GDB register
1403 number. */
1404
1405static int
1406arm_dwarf_reg_to_regnum (int reg)
1407{
1408 /* Core integer regs. */
1409 if (reg >= 0 && reg <= 15)
1410 return reg;
1411
1412 /* Legacy FPA encoding. These were once used in a way which
1413 overlapped with VFP register numbering, so their use is
1414 discouraged, but GDB doesn't support the ARM toolchain
1415 which used them for VFP. */
1416 if (reg >= 16 && reg <= 23)
1417 return ARM_F0_REGNUM + reg - 16;
1418
1419 /* New assignments for the FPA registers. */
1420 if (reg >= 96 && reg <= 103)
1421 return ARM_F0_REGNUM + reg - 96;
1422
1423 /* WMMX register assignments. */
1424 if (reg >= 104 && reg <= 111)
1425 return ARM_WCGR0_REGNUM + reg - 104;
1426
1427 if (reg >= 112 && reg <= 127)
1428 return ARM_WR0_REGNUM + reg - 112;
1429
1430 if (reg >= 192 && reg <= 199)
1431 return ARM_WC0_REGNUM + reg - 192;
1432
1433 return -1;
1434}
1435
26216b98
AC
1436/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1437static int
1438arm_register_sim_regno (int regnum)
1439{
1440 int reg = regnum;
f57d151a 1441 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (current_gdbarch));
26216b98 1442
ff6f572f
DJ
1443 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1444 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1445
1446 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1447 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1448
1449 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1450 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1451
26216b98
AC
1452 if (reg < NUM_GREGS)
1453 return SIM_ARM_R0_REGNUM + reg;
1454 reg -= NUM_GREGS;
1455
1456 if (reg < NUM_FREGS)
1457 return SIM_ARM_FP0_REGNUM + reg;
1458 reg -= NUM_FREGS;
1459
1460 if (reg < NUM_SREGS)
1461 return SIM_ARM_FPS_REGNUM + reg;
1462 reg -= NUM_SREGS;
1463
edefbb7c 1464 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 1465}
34e8f22d 1466
a37b3cc0
AC
1467/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1468 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1469 It is thought that this is is the floating-point register format on
1470 little-endian systems. */
c906108c 1471
ed9a39eb 1472static void
b508a996
RE
1473convert_from_extended (const struct floatformat *fmt, const void *ptr,
1474 void *dbl)
c906108c 1475{
a37b3cc0 1476 DOUBLEST d;
4c6b5505 1477 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
a37b3cc0
AC
1478 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1479 else
1480 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1481 ptr, &d);
b508a996 1482 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1483}
1484
34e8f22d 1485static void
b508a996 1486convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1487{
a37b3cc0 1488 DOUBLEST d;
b508a996 1489 floatformat_to_doublest (fmt, ptr, &d);
4c6b5505 1490 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
a37b3cc0
AC
1491 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1492 else
1493 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1494 &d, dbl);
c906108c 1495}
ed9a39eb 1496
c906108c 1497static int
ed9a39eb 1498condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1499{
1500 if (cond == INST_AL || cond == INST_NV)
1501 return 1;
1502
1503 switch (cond)
1504 {
1505 case INST_EQ:
1506 return ((status_reg & FLAG_Z) != 0);
1507 case INST_NE:
1508 return ((status_reg & FLAG_Z) == 0);
1509 case INST_CS:
1510 return ((status_reg & FLAG_C) != 0);
1511 case INST_CC:
1512 return ((status_reg & FLAG_C) == 0);
1513 case INST_MI:
1514 return ((status_reg & FLAG_N) != 0);
1515 case INST_PL:
1516 return ((status_reg & FLAG_N) == 0);
1517 case INST_VS:
1518 return ((status_reg & FLAG_V) != 0);
1519 case INST_VC:
1520 return ((status_reg & FLAG_V) == 0);
1521 case INST_HI:
1522 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1523 case INST_LS:
1524 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1525 case INST_GE:
1526 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1527 case INST_LT:
1528 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1529 case INST_GT:
1530 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1531 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1532 case INST_LE:
1533 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1534 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1535 }
1536 return 1;
1537}
1538
9512d7fd 1539/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1540#define submask(x) ((1L << ((x) + 1)) - 1)
1541#define bit(obj,st) (((obj) >> (st)) & 1)
1542#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1543#define sbits(obj,st,fn) \
1544 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1545#define BranchDest(addr,instr) \
1546 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1547#define ARM_PC_32 1
1548
1549static unsigned long
0b1b3e42
UW
1550shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
1551 unsigned long pc_val, unsigned long status_reg)
c906108c
SS
1552{
1553 unsigned long res, shift;
1554 int rm = bits (inst, 0, 3);
1555 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1556
1557 if (bit (inst, 4))
c906108c
SS
1558 {
1559 int rs = bits (inst, 8, 11);
0b1b3e42
UW
1560 shift = (rs == 15 ? pc_val + 8
1561 : get_frame_register_unsigned (frame, rs)) & 0xFF;
c906108c
SS
1562 }
1563 else
1564 shift = bits (inst, 7, 11);
c5aa993b
JM
1565
1566 res = (rm == 15
c906108c 1567 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1568 + (bit (inst, 4) ? 12 : 8))
0b1b3e42 1569 : get_frame_register_unsigned (frame, rm));
c906108c
SS
1570
1571 switch (shifttype)
1572 {
c5aa993b 1573 case 0: /* LSL */
c906108c
SS
1574 res = shift >= 32 ? 0 : res << shift;
1575 break;
c5aa993b
JM
1576
1577 case 1: /* LSR */
c906108c
SS
1578 res = shift >= 32 ? 0 : res >> shift;
1579 break;
1580
c5aa993b
JM
1581 case 2: /* ASR */
1582 if (shift >= 32)
1583 shift = 31;
c906108c
SS
1584 res = ((res & 0x80000000L)
1585 ? ~((~res) >> shift) : res >> shift);
1586 break;
1587
c5aa993b 1588 case 3: /* ROR/RRX */
c906108c
SS
1589 shift &= 31;
1590 if (shift == 0)
1591 res = (res >> 1) | (carry ? 0x80000000L : 0);
1592 else
c5aa993b 1593 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1594 break;
1595 }
1596
1597 return res & 0xffffffff;
1598}
1599
c906108c
SS
1600/* Return number of 1-bits in VAL. */
1601
1602static int
ed9a39eb 1603bitcount (unsigned long val)
c906108c
SS
1604{
1605 int nbits;
1606 for (nbits = 0; val != 0; nbits++)
c5aa993b 1607 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1608 return nbits;
1609}
1610
ad527d2e 1611static CORE_ADDR
0b1b3e42 1612thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 1613{
c5aa993b 1614 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1c5bada0 1615 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
94c30b78 1616 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1617 unsigned long offset;
1618
1619 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1620 {
1621 CORE_ADDR sp;
1622
1623 /* Fetch the saved PC from the stack. It's stored above
1624 all of the other registers. */
f0c9063c 1625 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
0b1b3e42 1626 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
1c5bada0 1627 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
bf6ae464 1628 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
c906108c 1629 if (nextpc == pc)
edefbb7c 1630 error (_("Infinite loop detected"));
c906108c
SS
1631 }
1632 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1633 {
0b1b3e42 1634 unsigned long status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
c5aa993b 1635 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1636 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1637 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1638 }
1639 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1640 {
1641 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1642 }
aa17d93e 1643 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c 1644 {
1c5bada0 1645 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
c5aa993b 1646 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1647 nextpc = pc_val + offset;
aa17d93e
DJ
1648 /* For BLX make sure to clear the low bits. */
1649 if (bits (inst2, 11, 12) == 1)
1650 nextpc = nextpc & 0xfffffffc;
c906108c 1651 }
aa17d93e 1652 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1653 {
1654 if (bits (inst1, 3, 6) == 0x0f)
1655 nextpc = pc_val;
1656 else
0b1b3e42 1657 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
9498281f 1658
bf6ae464 1659 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
9498281f 1660 if (nextpc == pc)
edefbb7c 1661 error (_("Infinite loop detected"));
9498281f 1662 }
c906108c
SS
1663
1664 return nextpc;
1665}
1666
daddc3c1 1667CORE_ADDR
0b1b3e42 1668arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c
SS
1669{
1670 unsigned long pc_val;
1671 unsigned long this_instr;
1672 unsigned long status;
1673 CORE_ADDR nextpc;
1674
1675 if (arm_pc_is_thumb (pc))
0b1b3e42 1676 return thumb_get_next_pc (frame, pc);
c906108c
SS
1677
1678 pc_val = (unsigned long) pc;
1c5bada0 1679 this_instr = read_memory_unsigned_integer (pc, 4);
0b1b3e42 1680 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
c5aa993b 1681 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c 1682
daddc3c1
DJ
1683 if (bits (this_instr, 28, 31) == INST_NV)
1684 switch (bits (this_instr, 24, 27))
1685 {
1686 case 0xa:
1687 case 0xb:
1688 {
1689 /* Branch with Link and change to Thumb. */
1690 nextpc = BranchDest (pc, this_instr);
1691 nextpc |= bit (this_instr, 24) << 1;
1692
1693 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1694 if (nextpc == pc)
1695 error (_("Infinite loop detected"));
1696 break;
1697 }
1698 case 0xc:
1699 case 0xd:
1700 case 0xe:
1701 /* Coprocessor register transfer. */
1702 if (bits (this_instr, 12, 15) == 15)
1703 error (_("Invalid update to pc in instruction"));
1704 break;
1705 }
1706 else if (condition_true (bits (this_instr, 28, 31), status))
c906108c
SS
1707 {
1708 switch (bits (this_instr, 24, 27))
1709 {
c5aa993b 1710 case 0x0:
94c30b78 1711 case 0x1: /* data processing */
c5aa993b
JM
1712 case 0x2:
1713 case 0x3:
c906108c
SS
1714 {
1715 unsigned long operand1, operand2, result = 0;
1716 unsigned long rn;
1717 int c;
c5aa993b 1718
c906108c
SS
1719 if (bits (this_instr, 12, 15) != 15)
1720 break;
1721
1722 if (bits (this_instr, 22, 25) == 0
c5aa993b 1723 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 1724 error (_("Invalid update to pc in instruction"));
c906108c 1725
9498281f 1726 /* BX <reg>, BLX <reg> */
e150acc7
PB
1727 if (bits (this_instr, 4, 27) == 0x12fff1
1728 || bits (this_instr, 4, 27) == 0x12fff3)
9498281f
DJ
1729 {
1730 rn = bits (this_instr, 0, 3);
0b1b3e42
UW
1731 result = (rn == 15) ? pc_val + 8
1732 : get_frame_register_unsigned (frame, rn);
bf6ae464
UW
1733 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1734 (current_gdbarch, result);
9498281f
DJ
1735
1736 if (nextpc == pc)
edefbb7c 1737 error (_("Infinite loop detected"));
9498281f
DJ
1738
1739 return nextpc;
1740 }
1741
c906108c
SS
1742 /* Multiply into PC */
1743 c = (status & FLAG_C) ? 1 : 0;
1744 rn = bits (this_instr, 16, 19);
0b1b3e42
UW
1745 operand1 = (rn == 15) ? pc_val + 8
1746 : get_frame_register_unsigned (frame, rn);
c5aa993b 1747
c906108c
SS
1748 if (bit (this_instr, 25))
1749 {
1750 unsigned long immval = bits (this_instr, 0, 7);
1751 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1752 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1753 & 0xffffffff;
c906108c 1754 }
c5aa993b 1755 else /* operand 2 is a shifted register */
0b1b3e42 1756 operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
c5aa993b 1757
c906108c
SS
1758 switch (bits (this_instr, 21, 24))
1759 {
c5aa993b 1760 case 0x0: /*and */
c906108c
SS
1761 result = operand1 & operand2;
1762 break;
1763
c5aa993b 1764 case 0x1: /*eor */
c906108c
SS
1765 result = operand1 ^ operand2;
1766 break;
1767
c5aa993b 1768 case 0x2: /*sub */
c906108c
SS
1769 result = operand1 - operand2;
1770 break;
1771
c5aa993b 1772 case 0x3: /*rsb */
c906108c
SS
1773 result = operand2 - operand1;
1774 break;
1775
c5aa993b 1776 case 0x4: /*add */
c906108c
SS
1777 result = operand1 + operand2;
1778 break;
1779
c5aa993b 1780 case 0x5: /*adc */
c906108c
SS
1781 result = operand1 + operand2 + c;
1782 break;
1783
c5aa993b 1784 case 0x6: /*sbc */
c906108c
SS
1785 result = operand1 - operand2 + c;
1786 break;
1787
c5aa993b 1788 case 0x7: /*rsc */
c906108c
SS
1789 result = operand2 - operand1 + c;
1790 break;
1791
c5aa993b
JM
1792 case 0x8:
1793 case 0x9:
1794 case 0xa:
1795 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1796 result = (unsigned long) nextpc;
1797 break;
1798
c5aa993b 1799 case 0xc: /*orr */
c906108c
SS
1800 result = operand1 | operand2;
1801 break;
1802
c5aa993b 1803 case 0xd: /*mov */
c906108c
SS
1804 /* Always step into a function. */
1805 result = operand2;
c5aa993b 1806 break;
c906108c 1807
c5aa993b 1808 case 0xe: /*bic */
c906108c
SS
1809 result = operand1 & ~operand2;
1810 break;
1811
c5aa993b 1812 case 0xf: /*mvn */
c906108c
SS
1813 result = ~operand2;
1814 break;
1815 }
bf6ae464
UW
1816 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1817 (current_gdbarch, result);
c906108c
SS
1818
1819 if (nextpc == pc)
edefbb7c 1820 error (_("Infinite loop detected"));
c906108c
SS
1821 break;
1822 }
c5aa993b
JM
1823
1824 case 0x4:
1825 case 0x5: /* data transfer */
1826 case 0x6:
1827 case 0x7:
c906108c
SS
1828 if (bit (this_instr, 20))
1829 {
1830 /* load */
1831 if (bits (this_instr, 12, 15) == 15)
1832 {
1833 /* rd == pc */
c5aa993b 1834 unsigned long rn;
c906108c 1835 unsigned long base;
c5aa993b 1836
c906108c 1837 if (bit (this_instr, 22))
edefbb7c 1838 error (_("Invalid update to pc in instruction"));
c906108c
SS
1839
1840 /* byte write to PC */
1841 rn = bits (this_instr, 16, 19);
0b1b3e42
UW
1842 base = (rn == 15) ? pc_val + 8
1843 : get_frame_register_unsigned (frame, rn);
c906108c
SS
1844 if (bit (this_instr, 24))
1845 {
1846 /* pre-indexed */
1847 int c = (status & FLAG_C) ? 1 : 0;
1848 unsigned long offset =
c5aa993b 1849 (bit (this_instr, 25)
0b1b3e42 1850 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
c5aa993b 1851 : bits (this_instr, 0, 11));
c906108c
SS
1852
1853 if (bit (this_instr, 23))
1854 base += offset;
1855 else
1856 base -= offset;
1857 }
c5aa993b 1858 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1859 4);
c5aa993b 1860
bf6ae464 1861 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
c906108c
SS
1862
1863 if (nextpc == pc)
edefbb7c 1864 error (_("Infinite loop detected"));
c906108c
SS
1865 }
1866 }
1867 break;
c5aa993b
JM
1868
1869 case 0x8:
1870 case 0x9: /* block transfer */
c906108c
SS
1871 if (bit (this_instr, 20))
1872 {
1873 /* LDM */
1874 if (bit (this_instr, 15))
1875 {
1876 /* loading pc */
1877 int offset = 0;
1878
1879 if (bit (this_instr, 23))
1880 {
1881 /* up */
1882 unsigned long reglist = bits (this_instr, 0, 14);
1883 offset = bitcount (reglist) * 4;
c5aa993b 1884 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1885 offset += 4;
1886 }
1887 else if (bit (this_instr, 24))
1888 offset = -4;
c5aa993b 1889
c906108c 1890 {
c5aa993b 1891 unsigned long rn_val =
0b1b3e42
UW
1892 get_frame_register_unsigned (frame,
1893 bits (this_instr, 16, 19));
c906108c
SS
1894 nextpc =
1895 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1896 + offset),
c906108c
SS
1897 4);
1898 }
bf6ae464
UW
1899 nextpc = gdbarch_addr_bits_remove
1900 (current_gdbarch, nextpc);
c906108c 1901 if (nextpc == pc)
edefbb7c 1902 error (_("Infinite loop detected"));
c906108c
SS
1903 }
1904 }
1905 break;
c5aa993b
JM
1906
1907 case 0xb: /* branch & link */
1908 case 0xa: /* branch */
c906108c
SS
1909 {
1910 nextpc = BranchDest (pc, this_instr);
1911
bf6ae464 1912 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
c906108c 1913 if (nextpc == pc)
edefbb7c 1914 error (_("Infinite loop detected"));
c906108c
SS
1915 break;
1916 }
c5aa993b
JM
1917
1918 case 0xc:
1919 case 0xd:
1920 case 0xe: /* coproc ops */
1921 case 0xf: /* SWI */
c906108c
SS
1922 break;
1923
1924 default:
edefbb7c 1925 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
1926 return (pc);
1927 }
1928 }
1929
1930 return nextpc;
1931}
1932
9512d7fd
FN
1933/* single_step() is called just before we want to resume the inferior,
1934 if we want to single-step it but there is no hardware or kernel
1935 single-step support. We find the target of the coming instruction
e0cd558a 1936 and breakpoint it. */
9512d7fd 1937
190dce09 1938int
0b1b3e42 1939arm_software_single_step (struct frame_info *frame)
9512d7fd 1940{
8181d85f
DJ
1941 /* NOTE: This may insert the wrong breakpoint instruction when
1942 single-stepping over a mode-changing instruction, if the
1943 CPSR heuristics are used. */
9512d7fd 1944
0b1b3e42 1945 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
e0cd558a 1946 insert_single_step_breakpoint (next_pc);
e6590a1b
UW
1947
1948 return 1;
9512d7fd 1949}
9512d7fd 1950
c906108c
SS
1951#include "bfd-in2.h"
1952#include "libcoff.h"
1953
1954static int
ed9a39eb 1955gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1956{
1957 if (arm_pc_is_thumb (memaddr))
1958 {
c5aa993b
JM
1959 static asymbol *asym;
1960 static combined_entry_type ce;
1961 static struct coff_symbol_struct csym;
27cddce2 1962 static struct bfd fake_bfd;
c5aa993b 1963 static bfd_target fake_target;
c906108c
SS
1964
1965 if (csym.native == NULL)
1966 {
da3c6d4a
MS
1967 /* Create a fake symbol vector containing a Thumb symbol.
1968 This is solely so that the code in print_insn_little_arm()
1969 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1970 the presence of a Thumb symbol and switch to decoding
1971 Thumb instructions. */
c5aa993b
JM
1972
1973 fake_target.flavour = bfd_target_coff_flavour;
1974 fake_bfd.xvec = &fake_target;
c906108c 1975 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
1976 csym.native = &ce;
1977 csym.symbol.the_bfd = &fake_bfd;
1978 csym.symbol.name = "fake";
1979 asym = (asymbol *) & csym;
c906108c 1980 }
c5aa993b 1981
c906108c 1982 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 1983 info->symbols = &asym;
c906108c
SS
1984 }
1985 else
1986 info->symbols = NULL;
c5aa993b 1987
4c6b5505 1988 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
1989 return print_insn_big_arm (memaddr, info);
1990 else
1991 return print_insn_little_arm (memaddr, info);
1992}
1993
66e810cd
RE
1994/* The following define instruction sequences that will cause ARM
1995 cpu's to take an undefined instruction trap. These are used to
1996 signal a breakpoint to GDB.
1997
1998 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1999 modes. A different instruction is required for each mode. The ARM
2000 cpu's can also be big or little endian. Thus four different
2001 instructions are needed to support all cases.
2002
2003 Note: ARMv4 defines several new instructions that will take the
2004 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2005 not in fact add the new instructions. The new undefined
2006 instructions in ARMv4 are all instructions that had no defined
2007 behaviour in earlier chips. There is no guarantee that they will
2008 raise an exception, but may be treated as NOP's. In practice, it
2009 may only safe to rely on instructions matching:
2010
2011 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2012 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2013 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2014
2015 Even this may only true if the condition predicate is true. The
2016 following use a condition predicate of ALWAYS so it is always TRUE.
2017
2018 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2019 and NetBSD all use a software interrupt rather than an undefined
2020 instruction to force a trap. This can be handled by by the
2021 abi-specific code during establishment of the gdbarch vector. */
2022
66e810cd 2023#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
66e810cd 2024#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
190dce09
UW
2025#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
2026#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
66e810cd
RE
2027
2028static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2029static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2030static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2031static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2032
34e8f22d
RE
2033/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2034 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2035 breakpoint should be used. It returns a pointer to a string of
2036 bytes that encode a breakpoint instruction, stores the length of
2037 the string to *lenptr, and adjusts the program counter (if
2038 necessary) to point to the actual memory location where the
c906108c
SS
2039 breakpoint should be inserted. */
2040
ab89facf 2041static const unsigned char *
ed9a39eb 2042arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 2043{
66e810cd
RE
2044 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2045
4bf7064c 2046 if (arm_pc_is_thumb (*pcptr))
c906108c 2047 {
66e810cd
RE
2048 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2049 *lenptr = tdep->thumb_breakpoint_size;
2050 return tdep->thumb_breakpoint;
c906108c
SS
2051 }
2052 else
2053 {
66e810cd
RE
2054 *lenptr = tdep->arm_breakpoint_size;
2055 return tdep->arm_breakpoint;
c906108c
SS
2056 }
2057}
ed9a39eb
JM
2058
2059/* Extract from an array REGBUF containing the (raw) register state a
2060 function return value of type TYPE, and copy that, in virtual
2061 format, into VALBUF. */
2062
34e8f22d 2063static void
5238cf52
MK
2064arm_extract_return_value (struct type *type, struct regcache *regs,
2065 gdb_byte *valbuf)
ed9a39eb
JM
2066{
2067 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 2068 {
28e97307 2069 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2070 {
2071 case ARM_FLOAT_FPA:
b508a996
RE
2072 {
2073 /* The value is in register F0 in internal format. We need to
2074 extract the raw value and then convert it to the desired
2075 internal type. */
7a5ea0d4 2076 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
2077
2078 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2079 convert_from_extended (floatformat_from_type (type), tmpbuf,
2080 valbuf);
2081 }
08216dd7
RE
2082 break;
2083
fd50bc42 2084 case ARM_FLOAT_SOFT_FPA:
08216dd7 2085 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2086 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2087 if (TYPE_LENGTH (type) > 4)
2088 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2089 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2090 break;
2091
2092 default:
2093 internal_error
2094 (__FILE__, __LINE__,
edefbb7c 2095 _("arm_extract_return_value: Floating point model not supported"));
08216dd7
RE
2096 break;
2097 }
2098 }
b508a996
RE
2099 else if (TYPE_CODE (type) == TYPE_CODE_INT
2100 || TYPE_CODE (type) == TYPE_CODE_CHAR
2101 || TYPE_CODE (type) == TYPE_CODE_BOOL
2102 || TYPE_CODE (type) == TYPE_CODE_PTR
2103 || TYPE_CODE (type) == TYPE_CODE_REF
2104 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2105 {
2106 /* If the the type is a plain integer, then the access is
2107 straight-forward. Otherwise we have to play around a bit more. */
2108 int len = TYPE_LENGTH (type);
2109 int regno = ARM_A1_REGNUM;
2110 ULONGEST tmp;
2111
2112 while (len > 0)
2113 {
2114 /* By using store_unsigned_integer we avoid having to do
2115 anything special for small big-endian values. */
2116 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2117 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2118 (len > INT_REGISTER_SIZE
2119 ? INT_REGISTER_SIZE : len),
b508a996 2120 tmp);
7a5ea0d4
DJ
2121 len -= INT_REGISTER_SIZE;
2122 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2123 }
2124 }
ed9a39eb 2125 else
b508a996
RE
2126 {
2127 /* For a structure or union the behaviour is as if the value had
2128 been stored to word-aligned memory and then loaded into
2129 registers with 32-bit load instruction(s). */
2130 int len = TYPE_LENGTH (type);
2131 int regno = ARM_A1_REGNUM;
7a5ea0d4 2132 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2133
2134 while (len > 0)
2135 {
2136 regcache_cooked_read (regs, regno++, tmpbuf);
2137 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2138 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2139 len -= INT_REGISTER_SIZE;
2140 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2141 }
2142 }
34e8f22d
RE
2143}
2144
67255d04
RE
2145
2146/* Will a function return an aggregate type in memory or in a
2147 register? Return 0 if an aggregate type can be returned in a
2148 register, 1 if it must be returned in memory. */
2149
2150static int
2af48f68 2151arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
67255d04
RE
2152{
2153 int nRc;
52f0bd74 2154 enum type_code code;
67255d04 2155
44e1a9eb
DJ
2156 CHECK_TYPEDEF (type);
2157
67255d04
RE
2158 /* In the ARM ABI, "integer" like aggregate types are returned in
2159 registers. For an aggregate type to be integer like, its size
f0c9063c 2160 must be less than or equal to INT_REGISTER_SIZE and the
b1e29e33
AC
2161 offset of each addressable subfield must be zero. Note that bit
2162 fields are not addressable, and all addressable subfields of
2163 unions always start at offset zero.
67255d04
RE
2164
2165 This function is based on the behaviour of GCC 2.95.1.
2166 See: gcc/arm.c: arm_return_in_memory() for details.
2167
2168 Note: All versions of GCC before GCC 2.95.2 do not set up the
2169 parameters correctly for a function returning the following
2170 structure: struct { float f;}; This should be returned in memory,
2171 not a register. Richard Earnshaw sent me a patch, but I do not
2172 know of any way to detect if a function like the above has been
2173 compiled with the correct calling convention. */
2174
2175 /* All aggregate types that won't fit in a register must be returned
2176 in memory. */
f0c9063c 2177 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
67255d04
RE
2178 {
2179 return 1;
2180 }
2181
2af48f68
PB
2182 /* The AAPCS says all aggregates not larger than a word are returned
2183 in a register. */
2184 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2185 return 0;
2186
67255d04
RE
2187 /* The only aggregate types that can be returned in a register are
2188 structs and unions. Arrays must be returned in memory. */
2189 code = TYPE_CODE (type);
2190 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2191 {
2192 return 1;
2193 }
2194
2195 /* Assume all other aggregate types can be returned in a register.
2196 Run a check for structures, unions and arrays. */
2197 nRc = 0;
2198
2199 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2200 {
2201 int i;
2202 /* Need to check if this struct/union is "integer" like. For
2203 this to be true, its size must be less than or equal to
f0c9063c 2204 INT_REGISTER_SIZE and the offset of each addressable
b1e29e33
AC
2205 subfield must be zero. Note that bit fields are not
2206 addressable, and unions always start at offset zero. If any
2207 of the subfields is a floating point type, the struct/union
2208 cannot be an integer type. */
67255d04
RE
2209
2210 /* For each field in the object, check:
2211 1) Is it FP? --> yes, nRc = 1;
2212 2) Is it addressable (bitpos != 0) and
2213 not packed (bitsize == 0)?
2214 --> yes, nRc = 1
2215 */
2216
2217 for (i = 0; i < TYPE_NFIELDS (type); i++)
2218 {
2219 enum type_code field_type_code;
44e1a9eb 2220 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2221
2222 /* Is it a floating point type field? */
2223 if (field_type_code == TYPE_CODE_FLT)
2224 {
2225 nRc = 1;
2226 break;
2227 }
2228
2229 /* If bitpos != 0, then we have to care about it. */
2230 if (TYPE_FIELD_BITPOS (type, i) != 0)
2231 {
2232 /* Bitfields are not addressable. If the field bitsize is
2233 zero, then the field is not packed. Hence it cannot be
2234 a bitfield or any other packed type. */
2235 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2236 {
2237 nRc = 1;
2238 break;
2239 }
2240 }
2241 }
2242 }
2243
2244 return nRc;
2245}
2246
34e8f22d
RE
2247/* Write into appropriate registers a function return value of type
2248 TYPE, given in virtual format. */
2249
2250static void
b508a996 2251arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 2252 const gdb_byte *valbuf)
34e8f22d
RE
2253{
2254 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2255 {
7a5ea0d4 2256 char buf[MAX_REGISTER_SIZE];
34e8f22d 2257
28e97307 2258 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2259 {
2260 case ARM_FLOAT_FPA:
2261
b508a996
RE
2262 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2263 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2264 break;
2265
fd50bc42 2266 case ARM_FLOAT_SOFT_FPA:
08216dd7 2267 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2268 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2269 if (TYPE_LENGTH (type) > 4)
2270 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2271 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2272 break;
2273
2274 default:
2275 internal_error
2276 (__FILE__, __LINE__,
edefbb7c 2277 _("arm_store_return_value: Floating point model not supported"));
08216dd7
RE
2278 break;
2279 }
34e8f22d 2280 }
b508a996
RE
2281 else if (TYPE_CODE (type) == TYPE_CODE_INT
2282 || TYPE_CODE (type) == TYPE_CODE_CHAR
2283 || TYPE_CODE (type) == TYPE_CODE_BOOL
2284 || TYPE_CODE (type) == TYPE_CODE_PTR
2285 || TYPE_CODE (type) == TYPE_CODE_REF
2286 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2287 {
2288 if (TYPE_LENGTH (type) <= 4)
2289 {
2290 /* Values of one word or less are zero/sign-extended and
2291 returned in r0. */
7a5ea0d4 2292 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2293 LONGEST val = unpack_long (type, valbuf);
2294
7a5ea0d4 2295 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2296 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2297 }
2298 else
2299 {
2300 /* Integral values greater than one word are stored in consecutive
2301 registers starting with r0. This will always be a multiple of
2302 the regiser size. */
2303 int len = TYPE_LENGTH (type);
2304 int regno = ARM_A1_REGNUM;
2305
2306 while (len > 0)
2307 {
2308 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2309 len -= INT_REGISTER_SIZE;
2310 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2311 }
2312 }
2313 }
34e8f22d 2314 else
b508a996
RE
2315 {
2316 /* For a structure or union the behaviour is as if the value had
2317 been stored to word-aligned memory and then loaded into
2318 registers with 32-bit load instruction(s). */
2319 int len = TYPE_LENGTH (type);
2320 int regno = ARM_A1_REGNUM;
7a5ea0d4 2321 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2322
2323 while (len > 0)
2324 {
2325 memcpy (tmpbuf, valbuf,
7a5ea0d4 2326 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2327 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2328 len -= INT_REGISTER_SIZE;
2329 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2330 }
2331 }
34e8f22d
RE
2332}
2333
2af48f68
PB
2334
2335/* Handle function return values. */
2336
2337static enum return_value_convention
2338arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
25224166
MK
2339 struct regcache *regcache, gdb_byte *readbuf,
2340 const gdb_byte *writebuf)
2af48f68 2341{
7c00367c
MK
2342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2343
2af48f68
PB
2344 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2345 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2346 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2347 {
7c00367c
MK
2348 if (tdep->struct_return == pcc_struct_return
2349 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
2350 return RETURN_VALUE_STRUCT_CONVENTION;
2351 }
2352
2353 if (writebuf)
2354 arm_store_return_value (valtype, regcache, writebuf);
2355
2356 if (readbuf)
2357 arm_extract_return_value (valtype, regcache, readbuf);
2358
2359 return RETURN_VALUE_REGISTER_CONVENTION;
2360}
2361
2362
9df628e0 2363static int
60ade65d 2364arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
9df628e0
RE
2365{
2366 CORE_ADDR jb_addr;
7a5ea0d4 2367 char buf[INT_REGISTER_SIZE];
60ade65d 2368 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
9df628e0 2369
60ade65d 2370 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
9df628e0
RE
2371
2372 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2373 INT_REGISTER_SIZE))
9df628e0
RE
2374 return 0;
2375
7a5ea0d4 2376 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2377 return 1;
2378}
2379
faa95490
DJ
2380/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
2381 return the target PC. Otherwise return 0. */
c906108c
SS
2382
2383CORE_ADDR
52f729a7 2384arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
c906108c 2385{
c5aa993b 2386 char *name;
faa95490 2387 int namelen;
c906108c
SS
2388 CORE_ADDR start_addr;
2389
2390 /* Find the starting address and name of the function containing the PC. */
2391 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2392 return 0;
2393
faa95490
DJ
2394 /* If PC is in a Thumb call or return stub, return the address of the
2395 target PC, which is in a register. The thunk functions are called
2396 _call_via_xx, where x is the register name. The possible names
2397 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2398 if (strncmp (name, "_call_via_", 10) == 0)
2399 {
ed9a39eb
JM
2400 /* Use the name suffix to determine which register contains the
2401 target PC. */
c5aa993b
JM
2402 static char *table[15] =
2403 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2404 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2405 };
c906108c 2406 int regno;
faa95490 2407 int offset = strlen (name) - 2;
c906108c
SS
2408
2409 for (regno = 0; regno <= 14; regno++)
faa95490 2410 if (strcmp (&name[offset], table[regno]) == 0)
52f729a7 2411 return get_frame_register_unsigned (frame, regno);
c906108c 2412 }
ed9a39eb 2413
faa95490
DJ
2414 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
2415 non-interworking calls to foo. We could decode the stubs
2416 to find the target but it's easier to use the symbol table. */
2417 namelen = strlen (name);
2418 if (name[0] == '_' && name[1] == '_'
2419 && ((namelen > 2 + strlen ("_from_thumb")
2420 && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
2421 strlen ("_from_thumb")) == 0)
2422 || (namelen > 2 + strlen ("_from_arm")
2423 && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
2424 strlen ("_from_arm")) == 0)))
2425 {
2426 char *target_name;
2427 int target_len = namelen - 2;
2428 struct minimal_symbol *minsym;
2429 struct objfile *objfile;
2430 struct obj_section *sec;
2431
2432 if (name[namelen - 1] == 'b')
2433 target_len -= strlen ("_from_thumb");
2434 else
2435 target_len -= strlen ("_from_arm");
2436
2437 target_name = alloca (target_len + 1);
2438 memcpy (target_name, name + 2, target_len);
2439 target_name[target_len] = '\0';
2440
2441 sec = find_pc_section (pc);
2442 objfile = (sec == NULL) ? NULL : sec->objfile;
2443 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
2444 if (minsym != NULL)
2445 return SYMBOL_VALUE_ADDRESS (minsym);
2446 else
2447 return 0;
2448 }
2449
c5aa993b 2450 return 0; /* not a stub */
c906108c
SS
2451}
2452
afd7eef0
RE
2453static void
2454set_arm_command (char *args, int from_tty)
2455{
edefbb7c
AC
2456 printf_unfiltered (_("\
2457\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
2458 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2459}
2460
2461static void
2462show_arm_command (char *args, int from_tty)
2463{
26304000 2464 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2465}
2466
28e97307
DJ
2467static void
2468arm_update_current_architecture (void)
fd50bc42 2469{
28e97307 2470 struct gdbarch_info info;
fd50bc42 2471
28e97307
DJ
2472 /* If the current architecture is not ARM, we have nothing to do. */
2473 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2474 return;
fd50bc42 2475
28e97307
DJ
2476 /* Update the architecture. */
2477 gdbarch_info_init (&info);
fd50bc42 2478
28e97307
DJ
2479 if (!gdbarch_update_p (info))
2480 internal_error (__FILE__, __LINE__, "could not update architecture");
fd50bc42
RE
2481}
2482
2483static void
2484set_fp_model_sfunc (char *args, int from_tty,
2485 struct cmd_list_element *c)
2486{
2487 enum arm_float_model fp_model;
2488
2489 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2490 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2491 {
2492 arm_fp_model = fp_model;
2493 break;
2494 }
2495
2496 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 2497 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
2498 current_fp_model);
2499
28e97307 2500 arm_update_current_architecture ();
fd50bc42
RE
2501}
2502
2503static void
08546159
AC
2504show_fp_model (struct ui_file *file, int from_tty,
2505 struct cmd_list_element *c, const char *value)
fd50bc42
RE
2506{
2507 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2508
28e97307 2509 if (arm_fp_model == ARM_FLOAT_AUTO
fd50bc42 2510 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
2511 fprintf_filtered (file, _("\
2512The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2513 fp_model_strings[tdep->fp_model]);
2514 else
2515 fprintf_filtered (file, _("\
2516The current ARM floating point model is \"%s\".\n"),
2517 fp_model_strings[arm_fp_model]);
2518}
2519
2520static void
2521arm_set_abi (char *args, int from_tty,
2522 struct cmd_list_element *c)
2523{
2524 enum arm_abi_kind arm_abi;
2525
2526 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2527 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2528 {
2529 arm_abi_global = arm_abi;
2530 break;
2531 }
2532
2533 if (arm_abi == ARM_ABI_LAST)
2534 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2535 arm_abi_string);
2536
2537 arm_update_current_architecture ();
2538}
2539
2540static void
2541arm_show_abi (struct ui_file *file, int from_tty,
2542 struct cmd_list_element *c, const char *value)
2543{
2544 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2545
2546 if (arm_abi_global == ARM_ABI_AUTO
2547 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2548 fprintf_filtered (file, _("\
2549The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2550 arm_abi_strings[tdep->arm_abi]);
2551 else
2552 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2553 arm_abi_string);
fd50bc42
RE
2554}
2555
afd7eef0
RE
2556/* If the user changes the register disassembly style used for info
2557 register and other commands, we have to also switch the style used
2558 in opcodes for disassembly output. This function is run in the "set
2559 arm disassembly" command, and does that. */
bc90b915
FN
2560
2561static void
afd7eef0 2562set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2563 struct cmd_list_element *c)
2564{
afd7eef0 2565 set_disassembly_style ();
bc90b915
FN
2566}
2567\f
966fbf70 2568/* Return the ARM register name corresponding to register I. */
a208b0cb 2569static const char *
34e8f22d 2570arm_register_name (int i)
966fbf70 2571{
ff6f572f
DJ
2572 if (i >= ARRAY_SIZE (arm_register_names))
2573 /* These registers are only supported on targets which supply
2574 an XML description. */
2575 return "";
2576
966fbf70
RE
2577 return arm_register_names[i];
2578}
2579
bc90b915 2580static void
afd7eef0 2581set_disassembly_style (void)
bc90b915 2582{
123dc839 2583 int current;
bc90b915 2584
123dc839
DJ
2585 /* Find the style that the user wants. */
2586 for (current = 0; current < num_disassembly_options; current++)
2587 if (disassembly_style == valid_disassembly_styles[current])
2588 break;
2589 gdb_assert (current < num_disassembly_options);
bc90b915 2590
94c30b78 2591 /* Synchronize the disassembler. */
bc90b915
FN
2592 set_arm_regname_option (current);
2593}
2594
082fc60d
RE
2595/* Test whether the coff symbol specific value corresponds to a Thumb
2596 function. */
2597
2598static int
2599coff_sym_is_thumb (int val)
2600{
2601 return (val == C_THUMBEXT ||
2602 val == C_THUMBSTAT ||
2603 val == C_THUMBEXTFUNC ||
2604 val == C_THUMBSTATFUNC ||
2605 val == C_THUMBLABEL);
2606}
2607
2608/* arm_coff_make_msymbol_special()
2609 arm_elf_make_msymbol_special()
2610
2611 These functions test whether the COFF or ELF symbol corresponds to
2612 an address in thumb code, and set a "special" bit in a minimal
2613 symbol to indicate that it does. */
2614
34e8f22d 2615static void
082fc60d
RE
2616arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2617{
2618 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2619 STT_ARM_TFUNC). */
2620 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2621 == STT_LOPROC)
2622 MSYMBOL_SET_SPECIAL (msym);
2623}
2624
34e8f22d 2625static void
082fc60d
RE
2626arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2627{
2628 if (coff_sym_is_thumb (val))
2629 MSYMBOL_SET_SPECIAL (msym);
2630}
2631
756fe439 2632static void
61a1198a 2633arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
756fe439 2634{
61a1198a 2635 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
756fe439
DJ
2636
2637 /* If necessary, set the T bit. */
2638 if (arm_apcs_32)
2639 {
61a1198a
UW
2640 ULONGEST val;
2641 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
756fe439 2642 if (arm_pc_is_thumb (pc))
61a1198a 2643 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | 0x20);
756fe439 2644 else
61a1198a
UW
2645 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
2646 val & ~(ULONGEST) 0x20);
756fe439
DJ
2647 }
2648}
123dc839
DJ
2649
2650static struct value *
2651value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2652{
2653 const int *reg_p = baton;
2654 return value_of_register (*reg_p, frame);
2655}
97e03143 2656\f
70f80edf
JT
2657static enum gdb_osabi
2658arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2659{
2af48f68 2660 unsigned int elfosabi;
70f80edf 2661 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2662
70f80edf 2663 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2664
28e97307
DJ
2665 if (elfosabi == ELFOSABI_ARM)
2666 /* GNU tools use this value. Check note sections in this case,
2667 as well. */
2668 bfd_map_over_sections (abfd,
2669 generic_elf_osabi_sniff_abi_tag_sections,
2670 &osabi);
97e03143 2671
28e97307 2672 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 2673 return osabi;
97e03143
RE
2674}
2675
70f80edf 2676\f
da3c6d4a
MS
2677/* Initialize the current architecture based on INFO. If possible,
2678 re-use an architecture from ARCHES, which is a list of
2679 architectures already created during this debugging session.
97e03143 2680
da3c6d4a
MS
2681 Called e.g. at program startup, when reading a core file, and when
2682 reading a binary file. */
97e03143 2683
39bbf761
RE
2684static struct gdbarch *
2685arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2686{
97e03143 2687 struct gdbarch_tdep *tdep;
39bbf761 2688 struct gdbarch *gdbarch;
28e97307
DJ
2689 struct gdbarch_list *best_arch;
2690 enum arm_abi_kind arm_abi = arm_abi_global;
2691 enum arm_float_model fp_model = arm_fp_model;
123dc839
DJ
2692 struct tdesc_arch_data *tdesc_data = NULL;
2693 int i;
ff6f572f 2694 int have_fpa_registers = 1;
123dc839
DJ
2695
2696 /* Check any target description for validity. */
2697 if (tdesc_has_registers (info.target_desc))
2698 {
2699 /* For most registers we require GDB's default names; but also allow
2700 the numeric names for sp / lr / pc, as a convenience. */
2701 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2702 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2703 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2704
2705 const struct tdesc_feature *feature;
2706 int i, valid_p;
2707
2708 feature = tdesc_find_feature (info.target_desc,
2709 "org.gnu.gdb.arm.core");
2710 if (feature == NULL)
2711 return NULL;
2712
2713 tdesc_data = tdesc_data_alloc ();
2714
2715 valid_p = 1;
2716 for (i = 0; i < ARM_SP_REGNUM; i++)
2717 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2718 arm_register_names[i]);
2719 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2720 ARM_SP_REGNUM,
2721 arm_sp_names);
2722 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2723 ARM_LR_REGNUM,
2724 arm_lr_names);
2725 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2726 ARM_PC_REGNUM,
2727 arm_pc_names);
2728 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2729 ARM_PS_REGNUM, "cpsr");
2730
2731 if (!valid_p)
2732 {
2733 tdesc_data_cleanup (tdesc_data);
2734 return NULL;
2735 }
2736
2737 feature = tdesc_find_feature (info.target_desc,
2738 "org.gnu.gdb.arm.fpa");
2739 if (feature != NULL)
2740 {
2741 valid_p = 1;
2742 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2743 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2744 arm_register_names[i]);
2745 if (!valid_p)
2746 {
2747 tdesc_data_cleanup (tdesc_data);
2748 return NULL;
2749 }
2750 }
ff6f572f
DJ
2751 else
2752 have_fpa_registers = 0;
2753
2754 feature = tdesc_find_feature (info.target_desc,
2755 "org.gnu.gdb.xscale.iwmmxt");
2756 if (feature != NULL)
2757 {
2758 static const char *const iwmmxt_names[] = {
2759 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2760 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2761 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2762 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2763 };
2764
2765 valid_p = 1;
2766 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2767 valid_p
2768 &= tdesc_numbered_register (feature, tdesc_data, i,
2769 iwmmxt_names[i - ARM_WR0_REGNUM]);
2770
2771 /* Check for the control registers, but do not fail if they
2772 are missing. */
2773 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2774 tdesc_numbered_register (feature, tdesc_data, i,
2775 iwmmxt_names[i - ARM_WR0_REGNUM]);
2776
2777 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2778 valid_p
2779 &= tdesc_numbered_register (feature, tdesc_data, i,
2780 iwmmxt_names[i - ARM_WR0_REGNUM]);
2781
2782 if (!valid_p)
2783 {
2784 tdesc_data_cleanup (tdesc_data);
2785 return NULL;
2786 }
2787 }
123dc839 2788 }
39bbf761 2789
28e97307
DJ
2790 /* If we have an object to base this architecture on, try to determine
2791 its ABI. */
39bbf761 2792
28e97307 2793 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
97e03143 2794 {
6b26d61a 2795 int ei_osabi, e_flags;
28e97307 2796
4be87837 2797 switch (bfd_get_flavour (info.abfd))
97e03143 2798 {
4be87837
DJ
2799 case bfd_target_aout_flavour:
2800 /* Assume it's an old APCS-style ABI. */
28e97307 2801 arm_abi = ARM_ABI_APCS;
4be87837 2802 break;
97e03143 2803
4be87837
DJ
2804 case bfd_target_coff_flavour:
2805 /* Assume it's an old APCS-style ABI. */
2806 /* XXX WinCE? */
28e97307
DJ
2807 arm_abi = ARM_ABI_APCS;
2808 break;
2809
2810 case bfd_target_elf_flavour:
2811 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
6b26d61a
MK
2812 e_flags = elf_elfheader (info.abfd)->e_flags;
2813
28e97307
DJ
2814 if (ei_osabi == ELFOSABI_ARM)
2815 {
2816 /* GNU tools used to use this value, but do not for EABI
6b26d61a
MK
2817 objects. There's nowhere to tag an EABI version
2818 anyway, so assume APCS. */
28e97307
DJ
2819 arm_abi = ARM_ABI_APCS;
2820 }
2821 else if (ei_osabi == ELFOSABI_NONE)
2822 {
6b26d61a 2823 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
28e97307
DJ
2824
2825 switch (eabi_ver)
2826 {
2827 case EF_ARM_EABI_UNKNOWN:
2828 /* Assume GNU tools. */
2829 arm_abi = ARM_ABI_APCS;
2830 break;
2831
2832 case EF_ARM_EABI_VER4:
625b5003 2833 case EF_ARM_EABI_VER5:
28e97307 2834 arm_abi = ARM_ABI_AAPCS;
2af48f68
PB
2835 /* EABI binaries default to VFP float ordering. */
2836 if (fp_model == ARM_FLOAT_AUTO)
2837 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2838 break;
2839
2840 default:
6b26d61a 2841 /* Leave it as "auto". */
28e97307 2842 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
6b26d61a
MK
2843 break;
2844 }
2845 }
2846
2847 if (fp_model == ARM_FLOAT_AUTO)
2848 {
2849 int e_flags = elf_elfheader (info.abfd)->e_flags;
2850
2851 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2852 {
2853 case 0:
2854 /* Leave it as "auto". Strictly speaking this case
2855 means FPA, but almost nobody uses that now, and
2856 many toolchains fail to set the appropriate bits
2857 for the floating-point model they use. */
2858 break;
2859 case EF_ARM_SOFT_FLOAT:
2860 fp_model = ARM_FLOAT_SOFT_FPA;
2861 break;
2862 case EF_ARM_VFP_FLOAT:
2863 fp_model = ARM_FLOAT_VFP;
2864 break;
2865 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2866 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2867 break;
2868 }
2869 }
4be87837 2870 break;
97e03143 2871
4be87837 2872 default:
28e97307 2873 /* Leave it as "auto". */
50ceaba5 2874 break;
97e03143
RE
2875 }
2876 }
2877
28e97307
DJ
2878 /* If there is already a candidate, use it. */
2879 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2880 best_arch != NULL;
2881 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2882 {
b8926edc
DJ
2883 if (arm_abi != ARM_ABI_AUTO
2884 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
28e97307
DJ
2885 continue;
2886
b8926edc
DJ
2887 if (fp_model != ARM_FLOAT_AUTO
2888 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
28e97307
DJ
2889 continue;
2890
2891 /* Found a match. */
2892 break;
2893 }
97e03143 2894
28e97307 2895 if (best_arch != NULL)
123dc839
DJ
2896 {
2897 if (tdesc_data != NULL)
2898 tdesc_data_cleanup (tdesc_data);
2899 return best_arch->gdbarch;
2900 }
28e97307
DJ
2901
2902 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
2903 gdbarch = gdbarch_alloc (&info, tdep);
2904
28e97307
DJ
2905 /* Record additional information about the architecture we are defining.
2906 These are gdbarch discriminators, like the OSABI. */
2907 tdep->arm_abi = arm_abi;
2908 tdep->fp_model = fp_model;
ff6f572f 2909 tdep->have_fpa_registers = have_fpa_registers;
08216dd7
RE
2910
2911 /* Breakpoints. */
67255d04
RE
2912 switch (info.byte_order)
2913 {
2914 case BFD_ENDIAN_BIG:
66e810cd
RE
2915 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2916 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2917 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2918 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2919
67255d04
RE
2920 break;
2921
2922 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2923 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2924 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2925 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2926 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2927
67255d04
RE
2928 break;
2929
2930 default:
2931 internal_error (__FILE__, __LINE__,
edefbb7c 2932 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
2933 }
2934
d7b486e7
RE
2935 /* On ARM targets char defaults to unsigned. */
2936 set_gdbarch_char_signed (gdbarch, 0);
2937
9df628e0 2938 /* This should be low enough for everything. */
97e03143 2939 tdep->lowest_pc = 0x20;
94c30b78 2940 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2941
7c00367c
MK
2942 /* The default, for both APCS and AAPCS, is to return small
2943 structures in registers. */
2944 tdep->struct_return = reg_struct_return;
2945
2dd604e7 2946 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 2947 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 2948
756fe439
DJ
2949 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2950
148754e5 2951 /* Frame handling. */
eb5492fa
DJ
2952 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2953 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2954 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2955
eb5492fa 2956 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2957
34e8f22d
RE
2958 /* Address manipulation. */
2959 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2960 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2961
34e8f22d
RE
2962 /* Advance PC across function entry code. */
2963 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2964
190dce09
UW
2965 /* Skip trampolines. */
2966 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
2967
34e8f22d
RE
2968 /* The stack grows downward. */
2969 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2970
2971 /* Breakpoint manipulation. */
2972 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
2973
2974 /* Information about registers, etc. */
0ba6dca9 2975 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2976 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2977 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ff6f572f 2978 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
7a5ea0d4 2979 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 2980
ff6f572f
DJ
2981 /* This "info float" is FPA-specific. Use the generic version if we
2982 do not have FPA. */
2983 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
2984 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2985
26216b98 2986 /* Internal <-> external register number maps. */
ff6f572f
DJ
2987 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2988 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
2989 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2990
34e8f22d
RE
2991 set_gdbarch_register_name (gdbarch, arm_register_name);
2992
2993 /* Returning results. */
2af48f68 2994 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d 2995
03d48a7d
RE
2996 /* Disassembly. */
2997 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2998
34e8f22d
RE
2999 /* Minsymbol frobbing. */
3000 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
3001 set_gdbarch_coff_make_msymbol_special (gdbarch,
3002 arm_coff_make_msymbol_special);
3003
0d5de010
DJ
3004 /* Virtual tables. */
3005 set_gdbarch_vbit_in_delta (gdbarch, 1);
3006
97e03143 3007 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 3008 gdbarch_init_osabi (info, gdbarch);
97e03143 3009
eb5492fa 3010 /* Add some default predicates. */
909cf6ea 3011 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
842e1f1e 3012 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eb5492fa
DJ
3013 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
3014
97e03143
RE
3015 /* Now we have tuned the configuration, set a few final things,
3016 based on what the OS ABI has told us. */
3017
b8926edc
DJ
3018 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
3019 binaries are always marked. */
3020 if (tdep->arm_abi == ARM_ABI_AUTO)
3021 tdep->arm_abi = ARM_ABI_APCS;
3022
3023 /* We used to default to FPA for generic ARM, but almost nobody
3024 uses that now, and we now provide a way for the user to force
3025 the model. So default to the most useful variant. */
3026 if (tdep->fp_model == ARM_FLOAT_AUTO)
3027 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
3028
9df628e0
RE
3029 if (tdep->jb_pc >= 0)
3030 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3031
08216dd7 3032 /* Floating point sizes and format. */
8da61cc4 3033 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
b8926edc 3034 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
08216dd7 3035 {
8da61cc4
DJ
3036 set_gdbarch_double_format
3037 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3038 set_gdbarch_long_double_format
3039 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3040 }
3041 else
3042 {
3043 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3044 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
3045 }
3046
123dc839
DJ
3047 if (tdesc_data)
3048 tdesc_use_registers (gdbarch, tdesc_data);
3049
3050 /* Add standard register aliases. We add aliases even for those
3051 nanes which are used by the current architecture - it's simpler,
3052 and does no harm, since nothing ever lists user registers. */
3053 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3054 user_reg_add (gdbarch, arm_register_aliases[i].name,
3055 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3056
39bbf761
RE
3057 return gdbarch;
3058}
3059
97e03143
RE
3060static void
3061arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3062{
3063 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3064
3065 if (tdep == NULL)
3066 return;
3067
edefbb7c 3068 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
3069 (unsigned long) tdep->lowest_pc);
3070}
3071
a78f21af
AC
3072extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3073
c906108c 3074void
ed9a39eb 3075_initialize_arm_tdep (void)
c906108c 3076{
bc90b915
FN
3077 struct ui_file *stb;
3078 long length;
26304000 3079 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
3080 const char *setname;
3081 const char *setdesc;
4bd7b427 3082 const char *const *regnames;
bc90b915
FN
3083 int numregs, i, j;
3084 static char *helptext;
edefbb7c
AC
3085 char regdesc[1024], *rdptr = regdesc;
3086 size_t rest = sizeof (regdesc);
085dd6e6 3087
42cf1509 3088 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 3089
70f80edf
JT
3090 /* Register an ELF OS ABI sniffer for ARM binaries. */
3091 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3092 bfd_target_elf_flavour,
3093 arm_elf_osabi_sniffer);
3094
94c30b78 3095 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
3096 num_disassembly_options = get_arm_regname_num_options ();
3097
3098 /* Add root prefix command for all "set arm"/"show arm" commands. */
3099 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 3100 _("Various ARM-specific commands."),
afd7eef0
RE
3101 &setarmcmdlist, "set arm ", 0, &setlist);
3102
3103 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 3104 _("Various ARM-specific commands."),
afd7eef0 3105 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 3106
94c30b78 3107 /* Sync the opcode insn printer with our register viewer. */
bc90b915 3108 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 3109
eefe576e
AC
3110 /* Initialize the array that will be passed to
3111 add_setshow_enum_cmd(). */
afd7eef0
RE
3112 valid_disassembly_styles
3113 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3114 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
3115 {
3116 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 3117 valid_disassembly_styles[i] = setname;
edefbb7c
AC
3118 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3119 rdptr += length;
3120 rest -= length;
123dc839
DJ
3121 /* When we find the default names, tell the disassembler to use
3122 them. */
bc90b915
FN
3123 if (!strcmp (setname, "std"))
3124 {
afd7eef0 3125 disassembly_style = setname;
bc90b915
FN
3126 set_arm_regname_option (i);
3127 }
3128 }
94c30b78 3129 /* Mark the end of valid options. */
afd7eef0 3130 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 3131
edefbb7c
AC
3132 /* Create the help text. */
3133 stb = mem_fileopen ();
3134 fprintf_unfiltered (stb, "%s%s%s",
3135 _("The valid values are:\n"),
3136 regdesc,
3137 _("The default is \"std\"."));
bc90b915
FN
3138 helptext = ui_file_xstrdup (stb, &length);
3139 ui_file_delete (stb);
ed9a39eb 3140
edefbb7c
AC
3141 add_setshow_enum_cmd("disassembler", no_class,
3142 valid_disassembly_styles, &disassembly_style,
3143 _("Set the disassembly style."),
3144 _("Show the disassembly style."),
3145 helptext,
2c5b56ce 3146 set_disassembly_style_sfunc,
7915a72c 3147 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
7376b4c2 3148 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
3149
3150 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3151 _("Set usage of ARM 32-bit mode."),
3152 _("Show usage of ARM 32-bit mode."),
3153 _("When off, a 26-bit PC will be used."),
2c5b56ce 3154 NULL,
7915a72c 3155 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
26304000 3156 &setarmcmdlist, &showarmcmdlist);
c906108c 3157
fd50bc42 3158 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
3159 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3160 _("Set the floating point type."),
3161 _("Show the floating point type."),
3162 _("auto - Determine the FP typefrom the OS-ABI.\n\
3163softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3164fpa - FPA co-processor (GCC compiled).\n\
3165softvfp - Software FP with pure-endian doubles.\n\
3166vfp - VFP co-processor."),
edefbb7c 3167 set_fp_model_sfunc, show_fp_model,
7376b4c2 3168 &setarmcmdlist, &showarmcmdlist);
fd50bc42 3169
28e97307
DJ
3170 /* Add a command to allow the user to force the ABI. */
3171 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3172 _("Set the ABI."),
3173 _("Show the ABI."),
3174 NULL, arm_set_abi, arm_show_abi,
3175 &setarmcmdlist, &showarmcmdlist);
3176
6529d2dd 3177 /* Debugging flag. */
edefbb7c
AC
3178 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3179 _("Set ARM debugging."),
3180 _("Show ARM debugging."),
3181 _("When on, arm-specific debugging is enabled."),
2c5b56ce 3182 NULL,
7915a72c 3183 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 3184 &setdebuglist, &showdebuglist);
c906108c 3185}
This page took 0.679525 seconds and 4 git commands to generate.